More stories

  • in

    Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion

    Sket, B. Can we agree on an ecological classification of subterranean animals?. J. Nat. Hist. 42, 1549–1563. https://doi.org/10.1080/00222930801995762 (2008).Article 

    Google Scholar 
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650. https://doi.org/10.1093/biosci/biz064 (2019).Article 

    Google Scholar 
    Boulton, A. J., Fenwick, G. D., Hancock, P. J. & Harvey, M. S. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst. 22, 103–116. https://doi.org/10.1071/IS07024 (2008).Article 

    Google Scholar 
    Danielopol, D. L. & Griebler, C. Changing paradigms in groundwater ecology—From the ‘living fossils’ tradition to the ‘new groundwater ecology’. Int. Rev. Hydrobiol. 93, 565–577. https://doi.org/10.1002/iroh.200711045 (2008).Article 

    Google Scholar 
    Griebler, C., Malard, F. & Lefébure, T. Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Curr. Opin. Biotechnol. 27, 159–167. https://doi.org/10.1016/j.copbio.2014.01.018 (2014).Article 
    PubMed 

    Google Scholar 
    Fišer, C. Niphargus—A model system for evolution and ecology. In Encyclopedia of Caves (eds Culver, D. C. et al.) 746–755 (Academic Press, 2019).Chapter 

    Google Scholar 
    Riddle, M. R. et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555, 647–651. https://doi.org/10.1038/nature26136 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibert, J. et al. Assessing and conserving groundwater biodiversity: Synthesis and perspectives. Freshw. Biol. 54, 930–941. https://doi.org/10.1111/j.1365-2427.2009.02201.x (2009).Article 

    Google Scholar 
    Trontelj, P. et al. A molecular test for cryptic diversity in ground water: How large are the ranges of macro stygobionts?. Freshw. Biol. 54, 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x (2009).Article 

    Google Scholar 
    Cooper, J. E. Ecological and Behavioral Studies in Shelta Cave, Alabama, with Emphasis on Decapod Crustaceans (University of Kentucky, 1975).
    Google Scholar 
    Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7, 105–107. https://doi.org/10.1098/rsbl.2010.0539 (2011).Article 
    PubMed 

    Google Scholar 
    Poulson, T. L. Cave adaptation in amblyopsid fishes. Am. Midl. Nat. 70, 257–290. https://doi.org/10.2307/2423056 (1963).Article 

    Google Scholar 
    Venarsky, M. P., Huryn, A. D. & Benstead, J. P. Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: A lesson on the limitations of iterative size-at-age models. Freshw. Biol. 57, 1471–1481. https://doi.org/10.1111/j.1365-2427.2012.02812.x (2012).Article 

    Google Scholar 
    Culver, D. C., Kane, T. C. & Fong, D. W. Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus (Harvard University Press, 1995).Book 

    Google Scholar 
    Niemiller, M. L. & Poulson, T. L. Subterranean fishes of North America: Amblyopsidae. In Biology of Subterranean Fishes (eds Trajano, E. et al.) 169–280 (CRC Press, 2010).Chapter 

    Google Scholar 
    Fišer, C., Zagmajster, M. & Zakšek, V. Coevolution of life history traits and morphology in female subterranean amphipods. Oikos 122, 770–778. https://doi.org/10.1111/j.1600-0706.2012.20644.x (2013).Article 

    Google Scholar 
    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. Biol. Sci. 267, 1947–1952. https://doi.org/10.1098/rspb.2000.1234 (2000).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221. https://doi.org/10.1038/nclimate2113 (2014).Article 
    ADS 

    Google Scholar 
    Niemiller, M. L., Bichuette, E. & Taylor, S. J. Conservation of cave fauna in Europe and the Americas. In Ecological Studies: Cave Ecology (eds Moldovan, O. T. et al.) 451–478 (Springer, 2018).Chapter 

    Google Scholar 
    Niemiller, M. L. & Taylor, S. J. Protecting cave life. In Encyclopedia of Caves (eds Culver, D. C. et al.) 822–829 (Academic Press, 2019).Chapter 

    Google Scholar 
    Niemiller, M. L., Taylor, S. J., Slay, M. E. & Hobbs, H. H. III. Biodiversity in the United States and Canada. In Encyclopedia of Caves (eds Culver, D. C. et al.) 163–176 (Academic Press, 2019).Chapter 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–529. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Academic Press, 2018).MATH 

    Google Scholar 
    Roberto, P. & Pietro, B. Species rediscovery or lucky endemic? Looking for the supposed missing species Leistus punctatissimus through a biogeographer’s eye (Coleoptera, Carabidae). ZooKeys 740, 97–108. https://doi.org/10.3897/zookeys.740.23495 (2018).Article 

    Google Scholar 
    Chu, C., Mandrak, N. E. & Minns, C. K. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11, 299–310. https://doi.org/10.1111/j.1366-9516.2005.00153.x (2005).Article 

    Google Scholar 
    Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110. https://doi.org/10.1111/j.1523-1739.2010.01462.x (2010).Article 
    PubMed 

    Google Scholar 
    Filipe, A. F. et al. Selection of priority areas for fish conservation in Guadiana River Basin, Iberian Peninsula. Conserv. Biol. 18, 189–200. https://doi.org/10.1111/j.1523-1739.2004.00620.x (2004).Article 

    Google Scholar 
    Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872. https://doi.org/10.1111/brv.12642 (2020).Article 
    PubMed 

    Google Scholar 
    Domínguez-Domínguez, O., Martínez-Meyer, E., Zombrano, L. & de León, G. P. Using ecological-niche modeling as a conservation tool for freshwater species: Live-bearing fishes in central Mexico. Conserv. Biol. 20, 1730–1739. https://doi.org/10.1111/j.1523-1739.2006.00588.x (2006).Article 
    PubMed 

    Google Scholar 
    Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography 41, 1194–1208. https://doi.org/10.1111/ecog.03464 (2018).Article 

    Google Scholar 
    Castellarini, F., Malard, F., Dole-Olivier, M. & Gibert, J. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Divers. Distrib. 13, 213–224. https://doi.org/10.1111/j.1472-4642.2006.00317.x (2007).Article 

    Google Scholar 
    Foulquier, A., Malard, F., Lefébure, T., Douady, C. J. & Gibert, J. The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). J. Biogeogr. 35, 552–564. https://doi.org/10.1111/j.1365-2699.2007.01795.x (2008).Article 

    Google Scholar 
    Johns, T. et al. Regional-scale drivers of groundwater faunal distributions. Freshw. Sci. 34, 316–328. https://doi.org/10.1086/678460 (2015).Article 

    Google Scholar 
    Camp, C. D., Wooten, J. A., Jensen, J. B. & Bartek, D. F. Role of temperature in determining relative abundance in cave twilight zones by two species of lungless salamander (family Plethodontidae). Can. J. Zool. 92, 119–127. https://doi.org/10.1139/cjz-2013-0178 (2014).Article 

    Google Scholar 
    Korbel, K. L., Hancock, P. J., Serov, P., Lim, R. P. & Hose, G. C. Groundwater ecosystems vary with land use across a mixed agricultural landscape. J. Environ. Qual. 42, 380–390. https://doi.org/10.2134/jeq2012.0018 (2013).Article 
    PubMed 

    Google Scholar 
    Español, C. et al. Does land use impact on groundwater invertebrate diversity and functionality in floodplains?. Ecol. Eng. 103, 394–403. https://doi.org/10.1016/j.ecoleng.2016.11.061 (2017).Article 

    Google Scholar 
    Christman, M. C. et al. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11, e0160408. https://doi.org/10.1371/journal.pone.0160408 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145. https://doi.org/10.1111/geb.12200 (2014).Article 

    Google Scholar 
    Poff, N. L. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 16, 391–409. https://doi.org/10.2307/1468026 (1997).Article 

    Google Scholar 
    Stevenson, R. J. Scale-dependent determinants and consequences of benthic algal heterogeneity. J. North Am. Benthol. Soc. 16, 248–262. https://doi.org/10.2307/1468255 (1997).Article 
    ADS 

    Google Scholar 
    U.S. Geological Survey. NLCD 2011 land cover. Multi-Resolution Land Characteristics. https://www.mrlc.gov/data/nlcd-2011-land-cover-conus (2011).Adamski, J. C. Geochemistry of the Springfield Plateau Aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA. Hydrol. Process. 14, 849–866. https://doi.org/10.1002/(SICI)1099-1085(20000415)14:5%3c849::AID-HYP973%3e3.0.CO;2-7 (2000).Article 
    ADS 

    Google Scholar 
    Woods, A. J. et al. Ecoregions of Oklahoma (Color Poster with Map, Descriptive Text, Summary Tables, and Photographs) (U.S. Geological Survey, 2005).
    Google Scholar 
    Unklesbay, A. G. & Vineyard, J. D. Missouri Geology: Three Billion Years of Volcanoes, Seas, Sediments, and Erosion (University of Missouri Press, 1992).
    Google Scholar 
    Eigenmann, C. H. A new blind fish. In Proceedings of the Indiana Academy of Science 1897 (ed Waldo, C. A.) 231 (1898).Graening, G. O., Fenolio, D. B., Niemiller, M. L., Brown, A. V. & Beard, J. B. The 30-year recovery effort for the Ozark cavefish (Amblyopsis rosae): Analysis of current distribution, population trends, and conservation status of this threatened species. Environ. Biol. Fish. 87, 55–88. https://doi.org/10.1007/s10641-009-9568-2 (2010).Article 

    Google Scholar 
    Niemiller, M. L., Near, T. J. & Fitzpatrick, B. M. Delimiting species using multilocus data: Diagnosing cryptic diversity in the southern cavefish, Typhlichthys subterraneus (Teleostei: Amblyopsidae). Evolution 66, 846–866. https://doi.org/10.1111/j.1558-5646.2011.01480.x (2012).Article 
    PubMed 

    Google Scholar 
    Hobbs, H. H. Jr. & Brown, A. V. A new troglobitic crayfish from northwestern Arkansas (Decapoda: Cambaridae). Proc. Biol. Soc. Wash. 100, 1040–1048 (1987).
    Google Scholar 
    Graening, G. O., Slay, M. E., Brown, A. V. & Koppelman, J. B. Status and distribution of the endangered Benton cave crayfish, Cambarus aculabrum (Decapoda: Cambaridae). Southwest. Nat. 51, 376–381. https://doi.org/10.1894/0038-4909(2006)51[376:SADOTE]2.0.CO;2 (2006).Article 

    Google Scholar 
    Faxon, W. Cave animals from southwestern Missouri. Bull. Mus. Comp. Zool. 17, 225–240 (1889).
    Google Scholar 
    Graening, G. O., Hobbs, H. H. III., Slay, M. E., Elliott, W. R. & Brown, A. V. Status update for bristly cave crayfish, Cambarus setosus (Decapoda: Cambaridae), and range extension into Arkansas. Southwest. Nat. 51, 382–392. https://doi.org/10.1894/0038-4909(2006)51[382:SUFBCC]2.0.CO;2 (2006).Article 

    Google Scholar 
    Hobbs, H. H. III. Cambarus (Jugicambarus) subterraneus, a new cave crayfish (Decapoda: Cambaridae) from northeastern Oklahoma, with a key to the troglobitic members of the subgenus Jugicambarus. Proc. Biol. Soc. Wash. 106, 719–727 (1993).
    Google Scholar 
    Graening, G. O. & Fenolio, D. B. Status update of the Delaware County cave crayfish, Cambarus subterraneus (Decapoda: Cambaridae). Proc. Okla. Acad. Sci. 85, 85–89 (2005).
    Google Scholar 
    Hobbs, H. H. Jr. & Cooper, M. R. A new troglobitic crayfish from Oklahoma (Decapoda: Astacidae). Proc. Biol. Soc. Wash. 85, 49–56 (1972).
    Google Scholar 
    Graening, G. O. et al. Range extension and status update for the Oklahoma cave crayfish, Cambarus tartarus (Decapoda: Cambaridae). Southwest. Nat. 51, 94–99 (2006).Article 

    Google Scholar 
    Hobbs, H. H. III. A new cave crayfish of the genus Orconectes, subgenus Orconectes, from southcentral Missouri, USA, with a key to the stygobitic species of the genus (Decapoda, Cambaridae). Crustaceana 74, 635–646. https://doi.org/10.1163/156854001750377911 (2001).Article 

    Google Scholar 
    Miller, B. V. The Hydrology of the Carroll Cave-Toronto Springs System: Identifying and Examining Source Mixing Through Dye Tracing, Geochemical Monitoring, Seepage Runs, and Statistical Methods (Western Kentucky University, 2010).
    Google Scholar 
    Mouser, J. B., Brewer, S. K., Niemiller, M. L., Mollenhauer, R. & Van Den Bussche, R. Comparing visual and environmental DNA surveys for detection of stygobionts. Subterr. Biol. 39, 79–105. https://doi.org/10.3897/subtbiol.39.64279 (2021).Article 

    Google Scholar 
    Longmire, J. L., Maltbie, M. & Baker, R. J. Use of “Lysis Buffer” in DNA Isolation and Its Implication for Museum Collections (Museum of Texas Tech University, 1997).Book 

    Google Scholar 
    Mouser, J. B., Mollenhauer, R. & Brewer, S. K. Relationships between landscape constraints and a crayfish assemblage with consideration of competitor presence. Divers. Distrib. 25, 61–73. https://doi.org/10.1111/ddi.12840 (2019).Article 

    Google Scholar 
    U.S. Geological Survey. 1 Arc-second digital elevation models (DEMs)—USGS national map 3DEP downloadable data collection. https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b (U.S. Geological Survey, 2017).Oak Ridge National Laboratory Distributed Active Archive Center. MODIS and VIIRS land products global subsetting and visualization tool. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1379 (2018).Horton, J. D., San Juan, C. A. & Stoeser, D. B. The state geologic map compilation (SGMC) geodatabase of the conterminous United States. U.S. Geol. Surv. https://doi.org/10.3133/ds1052 (2017).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 (2002).Article 

    Google Scholar 
    Tyre, A. J. et al. Improving precision and reducing bias in biological surveys: Estimating false negative error rates. Ecol. Appl. 13, 1790–1801. https://doi.org/10.1890/02-5078 (2003).Article 

    Google Scholar 
    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar 
    Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS (Academic Press, 2016).MATH 

    Google Scholar 
    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (eds Hornik, K. et al.) 1–10 (Austrian Science Foundation, 2003).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Kellner, J. jagsUI: A wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. https://CRAN.R-project.org/package=jagsUI (R-project, 2019).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.1080/10618600.1998.10474787 (1998).Article 
    MathSciNet 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2015).MATH 

    Google Scholar 
    Hobbs, N. T. & Hooten, M. B. Bayesian Models (Princeton University Press, 2015). https://doi.org/10.1515/9781400866557.Book 

    Google Scholar 
    Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542. https://doi.org/10.1002/ecm.1314 (2018).Article 

    Google Scholar 
    Allan, J. D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).Article 

    Google Scholar 
    Paul, M. J. & Meyer, J. L. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst. 32, 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 (2001).Article 

    Google Scholar 
    Wicks, C., Kelley, C. & Peterson, E. Estrogen in a karstic aquifer. Groundwater 42, 384–389. https://doi.org/10.1111/j.1745-6584.2004.tb02686.x (2004).Article 

    Google Scholar 
    Buřič, M., Kouba, A., Máchová, J., Mahovská, I. & Kozák, P. Toxicity of the organophosphate pesticide diazinon to crayfish of differing age. Int. J. Environ. Sci. Technol. 10, 607–610. https://doi.org/10.1007/s13762-013-0185-4 (2013).Article 

    Google Scholar 
    Sohn, L., Brodie, R. J., Couldwell, G., Demmons, E. & Sturve, J. Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology 27, 900–907. https://doi.org/10.1007/s10646-018-1950-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noltie, D. B. & Wicks, C. M. How hydrogeology has shaped the ecology of Missouri’s Ozark cavefish, Amblyopsis rosae, and southern cavefish, Typhlichthys subterraneus: Insights on the sightless from understanding the underground. Environ. Biol. Fish. 62, 171–194. https://doi.org/10.1023/A:1011815806589 (2001).Article 

    Google Scholar 
    Kuhajda, B. R. & Mayden, R. L. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and surrounding caves, Alabama. Environ. Biol. Fish. 62, 215–222. https://doi.org/10.1023/A:1011817023749 (2001).Article 

    Google Scholar 
    Hutchins, B. T. The conservation status of Texas groundwater invertebrates. Biodivers. Conserv. 27, 475–501. https://doi.org/10.1007/s10531-017-1447-0 (2018).Article 

    Google Scholar 
    Niemiller, M. L. et al. Discovery of a new population of the federally endangered Alabama cave shrimp, Palaemonias alabamae Smalley, 1961, in northern Alabama. Subterr. Biol. 32, 43–59. https://doi.org/10.3897/subtbiol.32.38280 (2019).Article 

    Google Scholar 
    Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63. https://doi.org/10.1016/j.biocon.2006.08.017 (2007).Article 

    Google Scholar 
    Liu, Y. et al. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 601–602, 580–593. https://doi.org/10.1016/j.scitotenv.2017.05.212 (2017).Article 
    ADS 
    PubMed 

    Google Scholar  More

  • in

    Publisher Correction: Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    These authors contributed equally: Yannick Garcin, Enno Schefuß, Greta C. Dargie, Simon L. LewisAix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, FranceYannick Garcin & Ghislain GassierInstitute of Geosciences, University of Potsdam, Potsdam, GermanyYannick GarcinMARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, GermanyEnno SchefußSchool of Geography, University of Leeds, Leeds, UKGreta C. Dargie, Bart Crezee, Dylan M. Young, Andy J. Baird, Paul J. Morris & Simon L. LewisSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, UKDonna Hawthorne, Ian T. Lawson & George E. BiddulphIFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, FranceDavid SebagInstitute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, SwitzerlandDavid SebagFaculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the CongoYannick E. Bocko & Y. Emmanuel Mampouya WeninaÉcole Normale Supérieure, Université Marien Ngouabi, Brazzaville, Republic of the CongoSuspense A. IfoÉcole Normale Supérieure d’Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, Republic of the CongoMackline MbembaFaculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Joseph Kanyama TabuFaculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. EwangoInstitut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the CongoOvide Emba & Pierre BolaSchool of Geography, Geology and the Environment, University of Leicester, Leicester, UKGenevieve Tyrrell, Arnoud Boom & Susan E. PageSchool of Water, Energy and Environment, Cranfield University, Bedford, UKNicholas T. GirkinBritish Geological Survey, Centre for Environmental Geochemistry, Keyworth, UKChristopher H. VaneInstitute of Earth Sciences, University of Lausanne, Lausanne, SwitzerlandThierry AdatteNEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Glasgow, UKPauline GulliverSchool of Biosciences, University of Nottingham, Nottingham, UKSofie SjögerstenDepartment of Geography, University College London, London, UKSimon L. Lewis More

  • in

    Low net carbonate accretion characterizes Florida’s coral reef

    Survey sites and data collectionBenthic and fish surveys were conducted at randomly stratified sites throughout the entirety of the FRT by NOAA’s National Coral Reef Monitoring Program (NCRMP). Sites were categorized into three biogeographic regions, including Dry Tortugas (DRTO, n = 228), Florida Keys (FLKs, n = 322), and Southeast Florida (SEFL, n = 173) (Fig. 1). The Florida Keys were further classified into the following four sub-regions: Lower Keys (LK, n = 103), Middle Keys (MK, n = 46), Upper Keys (UK, n = 140), Biscayne (BISC, n = 33). Within each region/sub-region (except for SEFL), reefs were categorized according to reef types. For DRTO, this included bank, forereef, and lagoon reef sites. For the LK, MK, UK, and BISC, reef types were categorized as inshore, mid-channel, and offshore. Data were collected throughout the region in 2014, 2016, and 2018.Fish and benthic surveys were conducted in accordance with NCRMP methodologies34 (Table S2). The protocol used for the fish surveys was developed from a modified Reef Visual Census (RVC) method35 and was performed using a stratified random sampling design. Divers surveyed two 15 m diameter cylinders, spaced 15 m apart. Fish species were identified to the lowest taxonomic level for a period of five minutes. This was followed by an additional five minutes dedicated to recording species abundances and sizes (10 cm bins).Surveys were used to quantify the benthic cover at each site. The protocol for these surveys followed a standard line point-intercept sampling design. At each site, a 15 m weighted transect was draped along the reef surface. Surveyors recorded benthic composition at 15 cm intervals along the transect (i.e., 100 equidistant points). The benthic composition from these 100 points was then transformed to percent cover of ecologically important functional groups (scleractinian coral [species-specific], gorgonians, hydrocoral, CCA, macroalgae, turf algae, sponges, bare/dead substrate, sand/sediment).Carbonate budget analysisPlanar benthic surveys were adjusted to account for the three-dimensional complexity (i.e., rugosity) of each site using light detection and ranging (LiDAR) data (1 m horizontal resolution; 15 cm vertical resolution) from topobathymetric mapping surveys of the South Florida eastern coastline conducted by NOAA’s National Geodetic Survey. A 15 m x 15 m region of interest (ROI) was placed around the GPS coordinates of each site using ArcGIS Pro with 3D and Spatial Analyst extensions (ESRI). The ROI was then overlaid with existing multibeam echosounder (MBES) and LiDAR bathymetry data. Within the ROI, LiDAR was extracted using the Clip Raster function from ArcPy (ArcGIS’s python coding interface), and the Surface Volume tool was used to calculate the 3D surface area. Rugosity was calculated by dividing the 3D surface area by the 2D surface area of the ROI.The methodology for standardizing reef carbonate budgets to topographic complexity (i.e., rugosity) diverged from that of the ReefBudget approach by using site-specific rugosity rather than species-specific rugosity17. This was a necessary limitation of this analysis as transect rugosity at 1 m increments was not measured using the NCRMP benthic survey protocol. To ensure that reef topographic complexity was still accounted for, however, rugosity of the entire reef site, calculated from LiDAR bathymetry data, was used in this analysis. While rugosity of the site rather than of each benthic component, specifically for corals, can lead to an under or overestimation of carbonate production rates, we note that site and species rugosity (i.e., encrusting and massive coral morphologies) was low for the vast majority of sites and species surveyed, thereby reducing the probability of an under or overestimation.Reef carbonate budget analysis was performed following a modified version of the ReefBudget approach17. Coral carbonate production was derived from species-specific linear extension rates (cm year−1), skeletal density (g cm−3), coral morphology (branching, massive, sub-massive, encrusting/plating), and percent cover. Carbonate production by CCA and other calcareous encrusters was similarly calculated as a function of surface area, literature reported linear extension rates, and skeletal density17. Gross carbonate production at each survey site was measured as the sum total of carbonate production by all calcareous organisms found at each site and was standardized to site-specific reef rugosity.Gross carbonate erosion for each survey-site was calculated as the sum total of erosion by four bioeroding groups: parrotfish, microborers, macroborers, and urchins. The calculations roughly followed the ReefBudget methodologies17 (Table 1). Parrotfish size frequency distributions from NCRMP surveys were multiplied by size and species-specific bite rates (bites min−1), volume removed per bite (cm3), and proportion of bites leaving scars to calculate total parrotfish erosion17. The substrate density (1.72 g cm−3) used in these calculations followed that of the ReefBudget protocol17. Microbioerosion was calculated from the percent cover of dead coral substrate, which was multiplied by a literature-derived rate17 of − 0.240 kg CaCO3 m−2 year−1. Macroboring was calculated as the percent cover of clionid sponges multiplied by the average erosion rate of all Caribbean/Atlantic clionid sponges17 (-6.05 kg CaCO3 m−2 year−1). External bioerosion by urchins was calculated using Diadema urchin abundance collected from the benthic surveys. Due to the lack of test size data from the NCRMP benthic surveys, urchin abundance was multiplied by the bioerosion rate of an average test sized36 (66 mm) Caribbean/Atlantic Diadema urchin (-0.003 kg CaCO3 m-2 year−1). While using an average test sized Diadema urchin for this analysis may have led to an under or overestimation of urchin erosion, the abundance of Diadema urchins measured in the surveys was minimal, as they appeared to be functionally irrelevant across the FRT.Model validationAs the survey methodologies and data sources employed in this analysis were modified from that of the standard ReefBudget approach17, we chose to validate our model through a fine scale temporal comparison of annual ReefBudget surveys conducted by NOAA at Cheeca Rocks (UK) to three nearby NCRMP sites used in our analysis. Since the NCRMP surveys were performed in 2014, 2016, and 2018, this study focused exclusively on these three survey years from the NOAA Cheeca Rocks dataset. Temporal trends related to reef growth/erosion were visually compared to see if survey types provided comparable results (SI Figure S6).Statistical analysisAll model calculations and statistical analyses were performed using R37 with the R Studio extension38. Generalized linear models (GLMs) were run on response variables involved in habitat production (i.e., net carbonate production, gross carbonate production, and gross carbonate erosion) to evaluate spatial trends related to reef development across sub-regions and reef types. Each GLM was performed with reef type being nested within sub-region. The best fit distribution for each variable was determined using the fitdistrplus R package39. Linear regression analysis was used to evaluate the relationship between net carbonate production and both live coral cover and parrotfish biomass. All plots were created using ggplot2 R package40 and edited for style with Adobe Illustrator41. More

  • in

    Impacts of the US southeast wood pellet industry on local forest carbon stocks

    European Commission Directorate General for Research and Innovation. A sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment: Updated Bioeconomy Strategy (Directorate General for Research and Innovation, 2018).
    Google Scholar 
    Teitelbaum, L., Boldt, C. & Patermann, C. Global Bioeconomy Policy Report (IV): A Decade of Bioeconomy policy (International Advisory Council on Global Bioeconomy, 2020).
    Google Scholar 
    European Parliament; European Council. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018). (Online). http://data.europa.eu/eli/dir/2018/2001/oj.European Parliament; European Council. Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources (2009). (Online). http://data.europa.eu/eli/dir/2009/28/oj.Glasenapp, S., & McCusker, A. Wood energy data: the joint wood, in Wood Energy in the ECE Region: Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America, Geneva, United Nations’ Economic Commission for Europe: ECE/TIM/SP/42, 12–29 (2018).Eurostat. Wood Products—Production and Trade (2021). (Online). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade#Wood-based_industries. Accessed 10 9 2021.Food and Agriculture Organization of the United Nations. FAOSTAT: Forestry Production and Trade (2021). (Online). http://www.fao.org/faostat/en/#data. Accessed 13 September 2021.The Intergovernmental Panel on Climate Change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (PCC Task Force on National Greenhouse Gas Inventories, 2019).
    Google Scholar 
    European Parliament; European Council. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019 Supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council as Regards the Determination of High Indirect Land-Use Change-Risk (2018) (Online). fttps://eur-lex.europa.eu/eli/reg_del/2019/807/oj.de Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 5280 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Searchinger, T. et al. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 9, 3741 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galik, C. S. & Abt, R. C. Sustainability guidelines and forest market response: An assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8, 658–669 (2016).
    Google Scholar 
    Favero, A. D. & Sohngen, B. Forests: Carbon sequestration, biomass energy, or both?. Sci. Adv. 6(13), eaay6792 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowie, A. et al. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB-Bioenergy 13, 1210–1231 (2021).
    Google Scholar 
    Camia, A, Jonsson, G. J. R., Robert, N., Cazzaniga, N., Jasinevičius, G., Avitabile, V., Grassi, G., Barredo, J., & Mubareka, S. The Use of Woody Biomass for Energy Production in the EU (European Commission, Joint Research Center, 2021).Aguilar, F. X., Mirzaee, A., McGarvey, R., Shifley, S. & Burtraw, D. Expansion of US wood pellet industry points to positive trends but the need for continued monitoring. Sci. Rep. 10, 18607 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dale, V., Parish, E., Kline, K. & Tobin, E. How is wood-based pellet production affecting forest conditions in the southeastern United States?. For Ecol Manag 396, 143–14 (2017).
    Google Scholar 
    Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    FORISK Consulting. U.S. Wood Bioenergy Database (2020). (Online). https://forisk.com/. Accessed 2020.Domke, G. et al. Toward inventory-based estimates of soil organic carbon in forests of the United States. Ecol. Appl. 27(4), 1223–1235 (2017).CAS 
    PubMed 

    Google Scholar 
    Python Org. Python Programming Language (2022) (Online). https://www.python.org/. Accessed 1 January 2018.STATA. Stata: statistical software for data science (2022) (Online). https://www.stata.com/. Accessed 1 January 2018.QGIS. Free and Open Source Geographic Information System (2021). (Online). https://qgis.org/en/site/.US Department of Agriculture, Forest Service. Forest Inventory and Analysis National Program (2020). (Online). https://www.fia.fs.fed.us/.Burrill, E. A., Wilson, A. M., Turner, J. A., Pugh, S. A., Menlove, J., Christiansen, G., Conkling, B., & David, W. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2 (US Department of Agriculture, US Forest Service, 2018).Ahmed, M. et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 199, 158–171 (2017).
    Google Scholar 
    Timilsina, N. et al. A framework for identifying carbon hotspots and forest management drivers. J. Environ. Manag. 114, 293–302 (2012).
    Google Scholar 
    Coulston, J., Ritters, K., McRoberts, R., Reams, G. & Smith, W. True versus perturbed forest inventory plot locations for modeling: A simulation study. Can. J. For. Res. 36, 801–807 (2006).
    Google Scholar 
    Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ. 83(3), 705–710 (2001).MathSciNet 

    Google Scholar 
    Strange-Olesen, A., Bager, S., Kittler, B., Price, W., & Aguilar, F. Environmental Implications of Increased Reliance of the EU on Biomass from the South East US (European Commission Report ENV.B.1/ETU/2014/0043, 2015).Spelter, H., & Toth, D. North America’s Wood Pellet Sector (U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2009).Goerndt, M., Aguilar, F. & Skog, K. Drivers of biomass co-firing in US coal-fired power plants. Biomass Bioenerg. 58, 158–167 (2013).
    Google Scholar 
    US Department of Agriculture, Forest Service. Forest Inventory and Analysis National Program: Timber Products Output Studies (2022). (Online). https://www.fia.fs.fed.us/program-features/tpo/. Accessed 2022.Sonter, L. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8(1013), 66. https://doi.org/10.1038/s41467-017-00557-w (2017).CAS 

    Google Scholar 
    Mirzaee, A., McGarvey, R., Aguilar, F. & Schliep, E. Impact of biopower generation on eastern US forests. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-022-02235-4 (2022).
    Google Scholar 
    Brandeis, C., Taylor, M., Abt, K., & Alderman, D. Status and Trends for the U.S. Forest Products Sector: A Technical Document Supporting the Forest Service 2020 RPA Assessment (US Department of Agriculture, Forest Service Southern Research Station, Forest Inventory and Analysis, 2021).US Environmental Protection Agency. Emissions & Generation Resource Integrated Database (eGRID) (2021) (Online). https://www.epa.gov/egrid.US Department of Transportation. Ports: ArcGIS Online (2021) (Online). https://data-usdot.opendata.arcgis.com/datasets/usdot::ports/about.US Census Bureau. TIGER/Line Shapefiles (2021) (Online). https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.US Census Bureau. Population and Housing Units Estimates Datasets (2021) (Online). https://www.census.gov/programs-surveys/popest/data/data-sets.html.McCann, P. The Economics of Industrial Location: A Logistics-Costs Approach (Springer, 1998).Singh, D., Cubbage, F., Gonzalez, R. & Abt, R. Locational determinants for wood pellet plants: A review and case study of North and South America. BioResources 11(3), 7928–7952 (2016).
    Google Scholar 
    Boukherroub, T., LeBel, L. & Lemieux, S. An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales. Appl. Energy 198, 385–400 (2017).
    Google Scholar 
    Heckman, J., Ichimura, H. & Todd, P. Matching as an econometric evaluation estimator: Evidence from evaluating a JobTraining Programme. Rev. Econ. Stud. 64(4), 605–654 (1997).MATH 

    Google Scholar 
    Caliendo, M. & Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22(1), 31–72 (2008).
    Google Scholar 
    Woo, H., Eskelson, B. & Monleon, V. Matching methods to quantify wildfire effects on forest carbon mass in the U.S. Pacific Northwest. Ecol. Appl. 31(3), e02283 (2021).PubMed 

    Google Scholar 
    Morreale, L., Thompson, J., Tang, X., Reinmann, A. & Hutyra, L. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12(7181), 66 (2021).
    Google Scholar 
    Isard, W. The general theory of location and space-economy. Q. J. Econ. 63(4), 476–506 (1949).
    Google Scholar 
    Aguilar, F. X. Spatial econometric analysis of location drivers in a renewable resource-based industry: The U.S. South Lumber Industry. For. Policy Econ. 11(3), 184–193 (2009).
    Google Scholar 
    Aguilar, F. X. Conjoint analysis of industry location preferences: evidence from the softwood lumber industry in the US. Appl. Econ. 66, 3265–3274 (2010).
    Google Scholar 
    Aguilar, F. X., Goerndt, M., Song, N. & Shifley, S. Internal, external and location factors influencing cofiring of biomass with coal in the US northern region. Energy Econ. 34, 1790–1798 (2012).
    Google Scholar 
    Ferraro, P. J. et al. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proc. Natl. Acad. Sci. 112(24), 7420–7425 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, D. & Pearse, P. Forest Economics 412 (UBC Press, 2011).
    Google Scholar 
    Villalobos, L., Coria, J. & Nordén, L. Has forest certification reduced forest degradation in Sweden?. Land Econ. 94, 220–238 (2018).
    Google Scholar 
    Wooldridge, J. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2010).Blackman, A., Corral, L., Lima, E. & Asner, G. Titling indigenous communities protects forests in the Peruvian Amazon. PNAS 114(16), 4123–4128 (2016).ADS 

    Google Scholar 
    Abt, K. L., Abt, R. C., Galik, C. S., & Skog, K. E. Effect of Policies on Pellet Production and Forests in the U.S. South: A Technical Document Supporting the Forest Service Update of the 2010 RPA Assessment USDA (Forest Service GTR Srs-202, 2014).Hardie, P. Parks, P. Gottleib and D. Wear, “Responsiveness of rural and urban land uses to land rent determinants in the U.S. South,” Land Economics, vol. 76, no. 4, pp. 659–673, 2000.Parish, E., Herzberger, A., Phifer, C. & Dale, V. Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecol. Soc. 23(1), 28 (2018).
    Google Scholar 
    Titus, B. et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 11, 66. https://doi.org/10.1186/s13705-021-00281-w (2021).
    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration?. Geoderma 137(3), 253–268 (2007).ADS 
    CAS 

    Google Scholar 
    Nave, L., Vance, E., Swanston, C. & Cepas, P. S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 259, 857–866 (2010).
    Google Scholar 
    Mayer, M. et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 466, 118127 (2020).
    Google Scholar 
    Berryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., & Domke, G. M. Soil carbon in Forest and Rangeland Soils of the United States Under Changing Conditions 9–31 (Springer, 2020).Nave, L. E. et al. Land use and management effects on soil carbon in US Lake States, with emphasis on forestry, fire, and reforestation. Ecol. Appl. 66, 2356 (2021).
    Google Scholar 
    Cao, B., Domke, G. M., Russell, M. B. & Walters, B. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 654, 94–106 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coulston, J. & Wear, D. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 66. https://doi.org/10.1038/srep16518 (2015).
    Google Scholar 
    Röder, M., Whittaker, C. & Thornley, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenerg. 79, 50–63 (2015).
    Google Scholar 
    Hanssen, S., Duden, A., Junginger, M., Dale, D. & D. vander Hilst,. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GC-Bioenergy 9(9), 1406–1422 (2017).CAS 

    Google Scholar 
    Picciano, P., Aguilar, F., Burtraw, D. & Mirzaee, A. Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants. Resour. Energy Econ. 6, 66 (2022).
    Google Scholar 
    Hetchner, S., Schelhas, J., & Brosius, J. Forests as Fuel: Energy, Landscape, Climate, and Race in the U.S. South (Lexington Books, 2022).Coulston, J., Wear, D. & Vose, J. Complex forest dynamics indicate potential for slowing carbon accumulation in the southeastern United States. Sci. Rep. 5, 8002 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palahí, M. et al. Concerns about reported harvests in European forests. Nature 592, E15–E17 (2021).PubMed 

    Google Scholar  More

  • in

    Metagenome-assembled genome extraction and analysis from microbiomes using KBase

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    Tully, B. J. & Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Stewart, R. D. et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 9, 870 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography and lifestyle. Cell 176, 649–662 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509, https://doi.org/10.1038/s41587-020-0718-6 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol 12, 69 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saheb Kashaf, S., Almeida, A., Segre, J. A. & Finn, R. D. Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nat. Protoc. 16, 2520–2541 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 49, D10–D17 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Kluyver, T., et al. Jupyter Notebooks – a publishing format for reproducible computational workflows. In: Loizides F, Schmidt B, editors. Positioning and Power in Academic Publishing: Players, Agents and Agendas. p. 87–90 (2016).Banfield, J. Development of a Knowledgebase to Integrate, Analyze, Distribute, and Visualize Microbial Community Systems Biology Data. (2015). Report number: DOE-UCB-4918, OSTI ID: 1167269.Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47, D666–D677 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44, W3–W10 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Devisetty, U. K., Kennedy, K., Sarando, P., Merchant, N. & Lyons, E. Bringing your tools to CyVerse discovery environment using Docker. F1000Res. 5, 1442 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L., Lu, Z., Van Buren, P. & Ware, D. SciApps: a bioinformatics workflow platform powered by XSEDE and CyVerse. in Proceedings of the Practice and Experience on Advanced Research Computing 1–5 (Association for Computing Machinery, 2018).Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45, D535–D542 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).PubMed 
    CAS 

    Google Scholar 
    Wu, Y.-W. et al. Ionic liquids impact the bioenergy feedstock-degrading microbiome and transcription of enzymes relevant to polysaccharide hydrolysis. mSystems 1, e00120–16 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7, 2178–2191 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Foster, I. Globus Online: accelerating and democratizing science through cloud-based services. IEEE Internet Comput 15, 70–73 (2011).Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46, W95–W101 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma 10, 421 (2009).Article 

    Google Scholar 
    Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42, D26–D31 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Freitas, T. A. K., Li, P.-E., Scholz, M. B. & Chain, P. S. G. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res 43, e69 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 2014 (2019).Article 

    Google Scholar 
    Youngblut, N. D. & Ley, R. E. Struo2: efficient metagenome profiling database construction for ever-expanding microbial genome datasets. Peer J 9, e12198 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform 12, 385 (2011).Article 

    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol 22, 178 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. Chapter 10, Unit 10.3 (2003).
    Google Scholar 
    Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394–1403 (2004).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50, D785–D794 (2022).Article 
    PubMed 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Overbeek, R. et al. The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42, D206–D214 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11, 119 (2010).Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Haft, D. H. et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46, D851–D860 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 48, 8883–8900 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43, D261–D269 (2015). (Database Issue).Article 
    PubMed 
    CAS 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res 41, D387–D395 (2013). (Database issue).Article 
    PubMed 
    CAS 

    Google Scholar 
    Eddy, S. R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490–D495 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Chivian, D., Dehal, P. S., Keller, K. & Arkin, A. P. MetaMicrobesOnline: phylogenomic analysis of microbial communities. Nucleic Acids Res 41, D648–D654 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    Karaoz, U. & Brodie, E. L. microTrait: a toolset for a trait-based representation of microbial genomes. Front. Bioinform. https://doi.org/10.3389/fbinf.2022.918853 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood-Charlson, E. M. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Hofmeyr, S. et al. Terabase-scale metagenome coassembly with MetaHipMer. Sci. Rep. 10, 10689 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res 30, 315–333 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lui, L. M., Nielsen, T. N. & Arkin, A. P. A method for achieving complete microbial genomes and improving bins from metagenomics data. PLoS Comput Biol 17, e1008972 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12, R44 (2011).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Chivian, D. et al. Genome extraction from shotgun metagenome sequence data. KBase n/33233/628 https://doi.org/10.25982/33233.606/1831502 (2022).Article 

    Google Scholar 
    Chivian, D., et al. Moab desert crust – sample 4E. KBase n/62384/334 (2022). https://doi.org/10.25982/62384.253/1831503Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform 11, 538 (2010).Article 

    Google Scholar 
    Benson, D. A. et al. GenBank. Nucleic Acids Res 46, D41–D47 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).Article 
    PubMed 
    CAS 

    Google Scholar 
    Teiling, C. BaseSpace: Simplifying metagenomic analysis. 26th European Congress of Clinical Microbiology and Infectious Diseases (2016) 10.26226/morressier.56d5ba2ed462b80296c9509dReich, M. et al. The GenePattern notebook environment. Cell Syst 5, 149–151.e1 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karp, P. D. et al. A comparison of microbial genome web portals. Front. Microbiol. 10, 208 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yue, Y. et al. Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets. BMC Bioinform 21, 334 (2020).Article 
    CAS 

    Google Scholar 
    Nelson, W. C., Tully, B. J. & Mobberley, J. M. Biases in genome reconstruction from metagenomic data. PeerJ 8, e10119 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11, 2864–2868 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Li, L., Stoeckert, C. J. Jr & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189 (2003).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumari, S. et al. A KBase case study on genome-wide transcriptomics and plant primary metabolism in response to drought stress in sorghum. Curr. Plant Biol. 28, 100229 (2021).Article 
    CAS 

    Google Scholar 
    Seaver, S. M. D. et al. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res 49, D575–D588 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar  More

  • in

    Current global population size, post-whaling trend and historical trajectory of sperm whales

    Selection of surveys and extraction of dataWe selected published surveys that produced estimates of sperm whale population size or density (see Supplementary Information for methodology; surveys listed in Table 1). We extracted: the type of survey (ship, aerial; acoustic, visual), the years of data collection; the coordinates of the boundary of the study area; the estimates of g(0) and CV (g(0)) used to correct for availability bias, if given; and an estimate of sperm whale population or density in study area with CV. From these we calculated for each survey the survey area with waters greater than 1000 m deep (typical shallow depth limit of sperm whales3). When no value of g(0) was used (8 ship visual surveys) we corrected the population/density estimate using an assumed generic value of g(0) and recalculated the CV to include uncertainty in g(0) (as in Eq. 1 of8). Three ship visual surveys did calculate a single g(0) estimate: 0.62 (CV 0.35)32; 0.57 (CV 0.28)35; 0.61 (CV 0.25)37. These are consistent and suggest a generic g(0) = 0.60 (CV 0.29), also agreeing with g(0) = 0.60 estimated from pooled surveys in the California Current10.Global habitat of sperm whalesTo extrapolate sperm whale densities from surveyed study areas to the sperm whales’ global habitat, we created a one-degree latitude by one-degree longitude grid. We removed the following grid points as not being prime sperm whale habitat1,3,40: points on land or with central depths less than 1000 m; largely ice-covered points in the Beaufort Sea, and the waters north of Svalbard and Russia; the Black Sea and Red Sea both of which have shallow entrances that appear not to be traversable by sperm whales.Generally, food abundance is a good predictor of species distribution. However, this is not possible for sperm whales as we have no good measures of the abundance or distribution of most of their prey, deep-water squid57. Instead, oceanographic measures have been used to describe sperm whale distributions over various spatial scales with a moderate level of success13,14. We follow this approach. Measures that might predict sperm whale density were collected for each grid point, some at just the surface, others at the surface, 500 m depth, 1000 m depth or an average of the measures at the different depths (Supplementary Table S2). Water depth was the strongest predictor in Mediterranean encounters, when compared to slope and distance to shore13. Temperature and salinity have been used as predictors for the distribution of fish and larger marine animals, which could translate into prey availability and thus density for sperm whales58,59. Primary productivity and dissolved oxygen generally dictate the biomass of wildlife in an area, while nitrate and phosphate levels limit the amount of primary productivity in an area60. Eddy kinetic energy is a measure of the dynamism of physical oceanography which is becoming a commonly used predictor of cetacean habitat61. We did not use: latitude and longitude as these primarily describe the general geographic distribution of the study areas, and geographic aggregates of sperm whale catches62 as these proved to have no predictive power. The mean values of the 14 predictor measures were calculated over calendar months for each grid point, and then over the grid points in each study area.To obtain predictors of the sperm whale density at each grid point, we then made quadratic regressions of the density of sperm whales in each study area (i), d(i), on the mean values of the predictor measures, weighting each study area by its surface area. Because the surveys were conducted over different time periods, the densities were corrected based on the estimated trajectory of global sperm whale populations by multiplying d(i) by the ratio of the global population in 1993 over that in the mid-year of the survey (as in Fig. 4). Predictor variables were selected using forward stepwise selection based upon reduction in AIC.Sperm whale population sizeThe population of sperm whales globally, N, was then calculated as follows:$$N=sum_{k}dleft(kright)cdot aleft(kright),$$
    (1)
    where a{k} are the parameters of the regression; the summation is over k, the grid points; d(k) is the estimated sperm whale density at grid point k from the habitat suitability model; and a(k) is the area of the 1° cell centred on grid point k. Population estimates for other ocean areas (North Atlantic, North Pacific, Southern Hemisphere) were calculated similarly.The CVs of these population estimates were calculated following the methodology in8, (although there is an error in Eq. (3) of8 such that the squareroot symbol covers both the numerator and denominator rather than just the numerator). The error due to uncertain density estimates for the different surveys is:$$CVleft({D}_{T}right)=frac{sqrt{sum_{i}{left(CV({n}_{i})cdot {n}_{i}right)}^{2}}}{sum_{i}{n}_{i}}.$$
    (2)
    This is combined with the uncertainty in the extrapolation process (output from the linear models), CV(extrap.), to give an overall CV for the population estimate:$$CVleft(Nright)=sqrt{{CV({D}_{T})}^{2}+{CV(mathrm{extrap}.)}^{2}.}$$
    (3)
    Post-whaling trend in population sizeWe compiled a database of series of surveys producing population estimates of the same study area during the period 1978 (by which time most commercial sperm whaling had ceased) and 2022. Each series had to span at least 10 years, and all of the surveys in the series had to be comparable in terms of area covered throughout the time span. There also had to have been at least 3 surveys for a data set to be included.The data consisted of the survey area, A, the estimated population in area A in year y (for multi-year surveys, y would be the midpoint of the data collection years), nE(A,y), and the provided CV of that estimate, CV(nE(A,y)). The data series used for these analyses are summarized in Table 3.For each survey area, A, we calculated the trend in logarithmic population size, r(A), over time using weighted linear regression:$${text{Log}}left( {n_{E} left( {A,y} right)} right) , sim {text{ constant}}left( A right) , + rleft( A right) cdot y. left[ {{text{weight }} = { 1}/left( {{1} + {text{ CV}}left( {n_{E} left( {A,y} right)} right)} right)^{{2}} } right]$$
    (4)
    Table 3 also includes other published estimates of sperm whale population trends, from sighting rates or mark-recapture analyses of photoidentification data, with these estimates also having to span at least 10 years of data collection, and include data collected in three or more different years.Population trajectoryTo examine possible trajectories of the global sperm whale population following the start of commercial whaling in 1712, we used a variant of the theta-logistic, a population model that has been employed in other recent analyses of the population trajectories of large cetaceans45,63. The theta-logistic model is:$$nleft(y+1right)=nleft(yright)+rcdot nleft(yright)left(1-{left(frac{nleft(yright)}{nleft(1711right)}right)}^{theta }right)-fleft(yright)cdot cleft(yright).$$
    (5)

    Here, n(y) is the population of sperm whales in year y, r is the maximum potential rate of increase of a sperm whale population, and θ describes how the rate of increase varies with population size relative to its basal level before whaling in 1711, n(1711). The recorded catch in year y is c(y) and f(y) is a correction for bias in recorded catches.Whaling reduced the proportion of large breeding males64, likely disrupted the social cohesion of the females3, and may have had other lingering effects which reduced pregnancy or survival, and thus the rate of increase. Poaching has been found to reduce the reproductive output of African elephants, Loxodonta Africana, which have a similar social system to the sperm whales3, and this effect lingers well beyond the effective cessation of poaching46. There is some evidence for these effects of what we call “social disruption” on sperm whale population dynamics20,46,65. We added a term to the theta-logistic to account for such effects:$$nleft(y+1right)=nleft(yright)left[1+rcdot left(1-{left(frac{nleft(yright)}{nleft(1711right)}right)}^{theta }right)-qcdot frac{sum_{t=y-T}^{y}f(t)cdot c(t)}{nleft(y-Tright)}right]-f(y)cdot c(y).$$
    (6)

    Here, (frac{sum_{t=y-T}^{y}f(t)cdot c(t)}{nleft(y-Tright)}) is the proportion of the population killed over the last T years, and q is the reduction in the rate of increase when almost all the whales have been killed. This reduction is modelled to fall linearly as the proportion killed declines to zero.The global sperm whale population has some geographic structure18. Females appear to rarely move between ocean basins, and males seem to largely stay within one basin. Furthermore, sperm whaling was progressive, moving from ocean area to ocean area as numbers were depleted4. We model this by assuming K largely separate sperm whale subpopulations of equal size. Exploitation in 1712 starts in subpopulation 1 and moves to subpopulations 1 and 2 when the population 1 falls to α% of its initial value, and so on for the other ocean areas. The catch in each year in each area being exploited is pro-rated by the sizes of the different subpopulations being exploited. The population model for subpopulation k, which is one of the KE subpopulations being exploited in year y, is:$$nleft(k,y+1right)=nleft(k,yright)left[1+rcdot left(1-{left(frac{nleft(k,yright)}{nleft(k,1711right)}right)}^{theta }right)-qcdot frac{sum_{t=y-T}^{y}C(k,t)}{nleft(k,y-Tright)}right]-Cleft(k,yright),$$
    (7)
    where the estimated catch in year y in subpopulation k is given by: (Cleft(k,yright)=f(y)cdot c(y)cdot n(k,y)/sum_{{k}^{mathrm{^{prime}}}= More

  • in

    The supply of multiple ecosystem services requires biodiversity across spatial scales

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).Article 

    Google Scholar 
    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 
    PubMed 

    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, E2549–E2549 (2016).
    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).Article 
    PubMed 

    Google Scholar 
    Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).Article 

    Google Scholar 
    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).Article 
    PubMed 

    Google Scholar 
    Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).Article 
    PubMed 

    Google Scholar 
    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).Article 
    PubMed 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hagan, J. G., Vanschoenwinkel, B. & Gamfeldt, L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol. Lett. 24, 2537–2548 (2021).Article 
    PubMed 

    Google Scholar 
    Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B 371, 20150267 (2016).Article 

    Google Scholar 
    Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 
    PubMed 

    Google Scholar 
    Ricotta, C. On beta diversity decomposition: trouble shared is not trouble halved. Ecology 91, 1981–1983 (2010).Article 
    PubMed 

    Google Scholar 
    Kraft, N. J. B. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B 281, 20141358 (2014).
    Google Scholar 
    Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).Article 
    PubMed 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).Article 

    Google Scholar 
    Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, L. A. Legacy effects. Oxford Bibliographies in Environmental Science https://doi.org/10.1093/OBO/9780199363445-0019 (2015).Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11, 124017 (2016).Article 

    Google Scholar 
    Alsterberg, C. et al. Habitat diversity and ecosystem multifunctionality—the importance of direct and indirect effects. Sci. Adv. 3, e1601475 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).Article 
    PubMed 

    Google Scholar 
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).Article 
    PubMed 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).Article 

    Google Scholar 
    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).Article 
    PubMed 

    Google Scholar 
    Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).Article 

    Google Scholar 
    Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article 

    Google Scholar 
    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).Article 
    PubMed 

    Google Scholar 
    Vickery, J. A. et al. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J. Appl. Ecol. 38, 647–664 (2001).Article 

    Google Scholar 
    López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird. Conserv. Int. 21, 328–341 (2011).Article 

    Google Scholar 
    Wells, K., Böhm, S. M., Boch, S., Fischer, M. & Kalko, E. K. Local and landscape-scale forest attributes differ in their impact on bird assemblages across years in forest production landscapes. Basic Appl. Ecol. 12, 97–106 (2011).Article 

    Google Scholar 
    Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20, 591–599 (2014).Article 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 
    PubMed 

    Google Scholar 
    Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).Article 
    CAS 

    Google Scholar 
    Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 20, 2708–2711 (2014).Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).Article 
    PubMed 

    Google Scholar 
    Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).Article 

    Google Scholar 
    Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, B. J. et al. Spatial covariance between biodiversity and other ecosystem service priorities. J. Appl. Ecol. 46, 888–896 (2009).Article 

    Google Scholar 
    Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).Article 

    Google Scholar 
    Metzger, J. P. et al. Considering landscape-level processes in ecosystem service assessments. Sci. Total Environ. 796, 149028 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article 
    PubMed 

    Google Scholar 
    Schenk, N. et al. Assembled ecosystem measures from grassland EPs (2008–2018) for multifunctionality synthesis—June 2020. Version 40. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27087 (2022).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, HAI, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27568 (2020).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, Alb, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27569 (2020).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, SCH, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27570 (2020).Penone, C. et al. Assembled RAW diversity from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27707 (2021).Penone, C. et al. Assembled species information from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 3. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27706 (2021).Junge, X., Schüpbach, B., Walter, T., Schmid, B. & Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 133, 67–77 (2015).Article 

    Google Scholar 
    Lindemann-Matthies, P., Junge, X. & Matthies, D. The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 143, 195–202 (2010).Article 

    Google Scholar 
    Haines-Young, R. & Potschin, M. B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (2018)Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).Article 

    Google Scholar 
    Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).Article 

    Google Scholar 
    Ferraro, D. M. et al. The phantom chorus: birdsong boosts human well-being in protected areas. Proc. R. Soc. B 287, 20201811 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chan, K. M. A., Satterfield, T. & Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 74, 8–18 (2012).Article 

    Google Scholar 
    Villamagna, A. M., Angermeier, P. L. & Bennett, E. M. Capacity, pressure, demand, and flow: a conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 15, 114–121 (2013).Article 

    Google Scholar 
    Bolliger, R., Prati, D., Fischer, M., Hoelzel, N. & Busch, V. Vegetation Records for Grassland EPs, 2008–2018. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24247 (2020).Le Provost, G. & Manning, P. Cover of all vascular plant species in representative 2×2 quadrats of the major surrounding homogeneous vegetation zones in a 75-m radius of the 150 grassland EPs, 2017–2018. Version 4. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27846 (2021).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).Thiele, J., Weisser, W. & Scherreiks, P. Historical land use and landscape metrics of grassland EP. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/25747 (2020).Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).Article 

    Google Scholar 
    Westphal, C., Steckel, J. & Rothenwöhrer, C. InsectScale / LANDSCAPES – Landscape heterogeneity metrics (grassland EPs, radii 500 m–2000 m, 2009) – shape files. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24046 (2019).Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 
    PubMed 

    Google Scholar 
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gessler, P. E., Moore, I. D., Mckenzie, N. J. & Ryan, P. J. Soil–landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article 

    Google Scholar 
    Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. Plant species numbers predicted by a topography-based groundwater flow index. Ecosystems 8, 430–441 (2005).Article 
    CAS 

    Google Scholar 
    Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article 

    Google Scholar 
    Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).Article 

    Google Scholar 
    Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).Article 

    Google Scholar 
    Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article 

    Google Scholar 
    Schöning, I., Klötzing, T., Schrumpf, M., Solly, E. & Trumbore, S. Mineral soil pH values of all experimental plots (EP) of the Biodiversity Exploratories project from 2011, Soil (core project). Version 8. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/14447 (2021).Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).Article 

    Google Scholar 
    Le Provost, G. et al. Aggregated environmental and land-use covariates of the 150 grassland EPs used in ‘Contrasting responses of above- and belowground diversity to multiple components of land-use intensity’. Version 5. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/31018 (2021).R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Grace, J. B. Structural equation modeling for observational studies. J. Wildl. Manag. 72, 14–22 (2008).Article 

    Google Scholar 
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).Article 

    Google Scholar 
    Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress

    Prasad, N. G. & Joshi, A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us?. J. Genet. 82, 45–76 (2003).CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A., Walsh, J. P. & Sinclair, B. J. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 16, 263–276 (2009).
    Google Scholar 
    Flatt, T. Life-history evolution and the genetics of fitness components in drosophila melanogaster. Genetics 214(1), 3–48. https://doi.org/10.1534/genetics.119.300160 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A. & Parsons, P. A. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses. Genetics 122, 837–845 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nghiem, D., Gibbs, A. G., Rose, M. R. & Bradley, T. J. Postponed aging and desiccation resistance in Drosophila melanogaster. Exp. Gerontol. 35, 957–969 (2000).CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Scott, M., Partridge, L. & Hallas, R. Overwintering in Drosophila melanogaster: Outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. J. Evol. Biol. 16, 614–623 (2003).CAS 
    PubMed 

    Google Scholar 
    Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 

    Google Scholar 
    Bourg, É. L. & Le Bourg, É. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12, 185–193 (2011).PubMed 

    Google Scholar 
    Sejerkilde, M., Sørensen, J. G. & Loeschcke, V. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719–726 (2003).CAS 
    PubMed 

    Google Scholar 
    Coulson, S. C. & Bale, J. S. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect Physiol. 38, 421–424 (1992).
    Google Scholar 
    Bayley, M., Petersen, S. O., Knigge, T., Köhler, H.-R. & Holmstrup, M. Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J. Insect Physiol. 47, 1197–1204 (2001).CAS 
    PubMed 

    Google Scholar 
    Wu, B. S. et al. Anoxia induces thermotolerance in the locust flight system. J. Exp. Biol. 205, 815–827 (2002).CAS 
    PubMed 

    Google Scholar 
    Phelan, J. P. et al. Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57, 527–535 (2003).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 83(Pt 6), 637–643 (1999).PubMed 

    Google Scholar 
    Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. & Gibbs, A. G. The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiol. Entomol. 32, 322–327 (2007).
    Google Scholar 
    Anderson, A. R., Hoffmann, A. A. & McKechnie, S. W. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: Physiology and life-history traits. Genet. Res. 85, 15–22 (2005).PubMed 

    Google Scholar 
    Kellett, M., Hoffmann, A. A. & Mckechnie, S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).
    Google Scholar 
    Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. & Holmstrup, M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol. Entomol. 31, 328–335 (2006).CAS 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Kochar, E. & Prasad, N. G. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. PLoS ONE 10, e0129992 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Singh, K., Kochar, E., Gahlot, P., Bhatt, K. & Prasad, N. G. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol. Evol. 21, 1–4 (2021).
    Google Scholar 
    Salehipour-Shirazi, G., Ferguson, L. V. & Sinclair, B. J. Does cold activate the Drosophila melanogaster immune system?. J. Insect Physiol. 96, 29–34 (2017).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Zulkifli, M. & Prasad, N. G. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp. Microbes Infect. 18, 813–821 (2016).PubMed 

    Google Scholar 
    Singh, K., Samant, M. A., Tom, M. T. & Prasad, N. G. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress. PLoS ONE 11, e0153629 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lefevre, G. J. & Jonsson, U. B. The effect of cold shock on D. melanogaster sperm. Drosophila Inf. Serv. 1962(36), 86–876 (1962).
    Google Scholar 
    Novitski, E. & Rush, G. Viability and fertility of Drosophila exposed to sub-zero temperatures. Biol. Bull. 97, 150–157 (1949).CAS 
    PubMed 

    Google Scholar 
    Arbogast, R. T. Mortality and Reproduction of Ephestia cautella and Plodia interpunctella 1 Exposed as Pupae to High Temperatures. Environ. Entomol. 10, 708–711 (1981).
    Google Scholar 
    Saxena, B. P., Sharma, P. R., Thappa, R. K. & Tikku, K. Temperature induced sterilization for control of three stored grain beetles. J. Stored Prod. Res. 28, 67–70 (1992).
    Google Scholar 
    Collett, J. I. & Jarman, M. G. Adult female Drosophila pseudoobscura survive and carry fertile sperm through long periods in the cold: Populations are unlikely to suffer substantial bottlenecks in overwintering. Evolution 55, 840–845 (2001).CAS 
    PubMed 

    Google Scholar 
    Schnebel, E. M. & Grossfield, J. Mating-temperature range in drosophila. Evolution 38, 1296–1307 (1984).PubMed 

    Google Scholar 
    Chakir, M., Chafik, A., Moreteau, B., Gibert, P. & David, J. R. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114, 195–205 (2002).PubMed 

    Google Scholar 
    David, J. R. et al. Male sterility at extreme temperatures: A significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).CAS 
    PubMed 

    Google Scholar 
    Dolgin, E. S., Whitlock, M. C. & Agrawal, A. F. Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. J. Evol. Biol. 19, 1894–1900 (2006).CAS 
    PubMed 

    Google Scholar 
    David, J. R. Male sterility at high and low temperatures in Drosophila. J. Soc. Biol. 202, 113–117 (2008).PubMed 

    Google Scholar 
    Zhang, W., Zhao, F., Hoffmann, A. A. & Ma, C.-S. A single hot event that does not affect survival but decreases reproduction in the diamondback moth, plutella xylostella. PLoS ONE 8, e75923 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tucić, N. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350–358 (1979).PubMed 

    Google Scholar 
    Chen, C.-P. & Walker, V. K. Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecol. Entomol. 18, 184–190 (1993).
    Google Scholar 
    Ring, R. A. & Danks, H. V. Desiccation and cryoprotection: Overlapping adaptations. Cryo Lett. 15, 181–190 (1994).
    Google Scholar 
    Ring, R. A. & Danks, H. The role of trehalose in cold-hardiness and desiccation. Cryo Lett. 19, 275–282 (1998).CAS 

    Google Scholar 
    Singh, K. & Prasad, N. G. Cold stress upregulates the expression of heat shock proteins and Frost genes, but evolution of cold stress resistance is apparently not mediated through either heat shock proteins or Frost genes in the cold stress selected population. bioRxiv https://doi.org/10.1101/2022.03.07.483305 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bubliy, O. A., Kristensen, T. N., Kellermann, V. & Loeschcke, V. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct. Ecol. 26, 245–253 (2012).
    Google Scholar 
    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. Biol. Sci. 274, 771–778 (2007).PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).
    Google Scholar 
    Yi, S.-X. & Lee, R. E. Jr. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999–1004 (2003).CAS 
    PubMed 

    Google Scholar 
    Macmillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).CAS 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J. Exp. Biol. 214, 1205–1212 (2011).PubMed 

    Google Scholar 
    Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).PubMed 

    Google Scholar 
    Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mikonranta, L., Mappes, J., Kaukoniitty, M. & Freitak, D. Insect immunity: Oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front. Zool. 11, 23 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ramløv, H. & Lee, R. E. Jr. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, tephritidae). J. Exp. Biol. 203, 783–789 (2000).PubMed 

    Google Scholar 
    Holmstrup, M., Bayley, M. & Ramløv, H. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc. Natl. Acad. Sci. 99, 5716–5720 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chippindale, A. K. et al. Resource acquisition and the evolution of stress resistance in drosophila melanogaster. Evolution 52, 1342 (1998).PubMed 

    Google Scholar 
    Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).ADS 
    PubMed 

    Google Scholar 
    Crill, W. D., Huey, R. B. & Gilchrist, G. W. Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50, 1205–1218 (1996).PubMed 

    Google Scholar 
    Kwan, L., Bedhomme, S., Prasad, N. G. & Chippindale, A. K. Sexual conflict and environmental change: Trade-offs within and between the sexes during the evolution of desiccation resistance. J. Genet. 87, 383–394 (2008).PubMed 

    Google Scholar  More