Diversity of soil faunal community as influenced by crop straw combined with different synthetic fertilizers in upland purple soil
Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Sci. 42, S3–S15 (2006).
Google Scholar
Nielsen, U. N. et al. Response of belowground communities to short-term phosphorus addition in a phosphorus-limited woodland. Plant Soil 391, 321–331 (2015).
Google Scholar
Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).
Google Scholar
Lu, P. et al. Composition and structure of soil fauna communities and their relationships with environmental factors in copper mine waste rock after re-vegetation. Glob. Ecol. Conserv. 32, e01889 (2021).
Google Scholar
Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).
Google Scholar
Shao, Y., Zhang, W., Liu, S., Wang, X. & Fu, S. Diversity and function of soil fauna. Acta Ecol. Sin. (in Chinese) 35, 6614–6625 (2015).
Google Scholar
Voronin, A. N. & Kotyak, P. A. Influence of different agricultural practices on the number of soil fauna and productivity of agricultural crops. Taurida Herald Agrar. Sci. 3, 49–56 (2019).
Google Scholar
Zhu, X. & Zhu, B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Sci. Agric. Sin. (in Chinese) 45, 911–920 (2015).
Google Scholar
Islam, M. U., Guo, Z., Jiang, F. & Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop Res. 279, 108447 (2022).
Google Scholar
Cui, H. et al. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 133, 126436 (2022).
Google Scholar
Wang, X. et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res. 218, 11–17 (2018).
Google Scholar
Gai, X. et al. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 650, 2251–2259 (2019).ADS
PubMed
Google Scholar
Wang, W. et al. Effects of different fertility-building practices on the meso-micro soil fauna communities in a black soil area. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 1344–1351 (2019).
Google Scholar
Kautz, T., López-Fando, C. & Ellmer, F. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol. 33, 278–285 (2006).
Google Scholar
Zhang, T. et al. Effects of straw returning on soil meso-and micro-arthropod community diversity in wheat-maize fields in North China. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 70–75 (2019).
Google Scholar
Yang, P., Wang, H. & Yue, J. Ecological distribution of middle-small-size soil faunas under conservation tillage and straw mulch conditions. Res. Soil Water Conserv. (in Chinese) 20, 145–150 (2013).
Google Scholar
Zhu, Q., Zhu, A., Zhang, J., Zhang, H. & Zhang, C. Effect of conservation tillage on soil fauna in wheat field of Huang-huai-hai Plain. J. Agro Environ. Sci. (in Chinese) 28, 1766–1772 (2009).
Google Scholar
Cao, Z. et al. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl. Soil Ecol. 49, 131–138 (2011).
Google Scholar
Li, Y., Xu, Z., Xu, H., Chen, Y. & Ruan, H. Review of the effect of fertilizer application on the soil fauna in soil ecosystems. J. Nanjing For. Univ. Nat. Sci. Ed. (in Chinese) 42, 179–184 (2018).
Google Scholar
McGee, K. M. & Eaton, W. D. A comparison of the wet and dry season DNA-based soil invertebrate community characteristics in large patches of the bromeliad Bromelia pinguin in a primary forest in Costa Rica. Appl. Soil Ecol. 87, 99–107 (2015).
Google Scholar
Zhu, B., Wang, T., You, X. & Gao, M. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere 18, 257–264 (2008).
Google Scholar
Zhu, B. et al. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 73, 1419–1426 (2009).ADS
Google Scholar
He, Y. Purple Soil of China Part (II) (Science Press, 2003).
Google Scholar
Huang, R. et al. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 265, 576–586 (2018).
Google Scholar
Zhu, X., Dong, Z., Kuang, F. & Zhu, B. Effects of fertilization regimes on soil faunal communities in cropland of purple soil. Acta Ecol. Sin. (in Chinese) 33, 464–474 (2013).
Google Scholar
Querner, P. & Bruckner, A. Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. Appl. Soil. Ecol. 45, 293–297 (2010).
Google Scholar
Smith, M. A. et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. PNAS 105, 12359–12364 (2008).ADS
PubMed
PubMed Central
Google Scholar
Müller, C. A. et al. Meiofaunal diversity in the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis. For. Ecol. Manag. 453, 117591 (2019).
Google Scholar
Ding, J. et al. Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biol. Biochem. 130, 141–149 (2019).
Google Scholar
Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).
Google Scholar
McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429 (2020).PubMed
PubMed Central
Google Scholar
Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).ADS
PubMed
PubMed Central
Google Scholar
Morise, H., Miyazaki, E., Yoshimitsu, S. & Eki, T. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS One 7, e51785 (2012).ADS
PubMed
PubMed Central
Google Scholar
Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 46 (2015).PubMed
PubMed Central
Google Scholar
Dopheide, A. et al. Estimating the biodiversity of terrestrial invertebrates on a forested island using DNA barcodes and metabarcoding data. Ecol. Appl. 29, e01877 (2019).PubMed
Google Scholar
Watts, C. et al. DNA metabarcoding as a tool for invertebrate community monitoring: A case study comparison with conventional techniques. Austral Entomol. 58, 675–686 (2019).
Google Scholar
Kvist, S. Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol. Phylogenet. Evol. 69, 39–45 (2013).PubMed
Google Scholar
Shao, Y. et al. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 40, 2040–2046 (2008).
Google Scholar
Neher, D. A., Wu, J., Barbercheck, M. E. & Anas, O. Ecosystem type affects interpretation of soil nematode community measures. Appl. Soil Ecol. 30, 47–64 (2005).
Google Scholar
Yang, C., Ji, Y., Wang, X., Yang, C. & Yu, D. W. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity. Sci. China Life Sci. 56, 73–81 (2013).ADS
PubMed
Google Scholar
Horton, D. J., Kershner, M. W. & Blackwood, C. B. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. Eur. J. Soil Biol. 80, 43–48 (2017).
Google Scholar
Geisen, S., Laros, I., Vizcaino, A., Bonkowski, M. & de Groot, G. A. Not all are free-living: High-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol. Ecol. 24, 4556–4569 (2015).PubMed
Google Scholar
Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).PubMed
Google Scholar
Kitagami, Y. & Matsuda, Y. High-throughput sequencing covers greater nematode diversity than conventional morphotyping on natural cedar forests in Yakushima Island, Japan. Eur. J. Soil Biol. 112, 103432 (2022).
Google Scholar
Juliet, W. K., Lisa, B. F., Lamers, J. P. A., Till, S. & Christian, B. Soil fertility and biodiversity on organic and conventional smallholder farms in Kenya. Appl. Soil Ecol. 134, 85–97 (2019).
Google Scholar
Li, Q., Zhou, D. & Chen, X. The accumulation decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecol. Sin. (in Chinese) 34, 3807–3819 (2014).
Google Scholar
Tie, L. et al. Phosphorus addition reverses the negative effect of nitrogen addition on soil arthropods during litter decomposition in a subtropical forest. Sci. Total. Environ. 781, 146786 (2021).ADS
Google Scholar
Nottingham, A. T., Turner, B. L., Stott, A. W. & Tanner, E. V. J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80, 26–33 (2015).
Google Scholar
Xiao, Q. et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin. Agric. Ecosyst. Environ. 311, 107266 (2021).
Google Scholar
Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).
Google Scholar
Wei, K., Wang, J., Dong, Z., Tang, J. & Zhu, B. The combined application of organic materials and chemical fertilizer mitigates the deterioration of the trophic structure of nematode community by increasing soil N concentration. J. Soil Sci. Plant Nutr. 21, 2530–2537 (2021).
Google Scholar
Kuo, S. Phosphorus. In Methods of Soil Analysis (ed. Sparks, D. L.) 869–919 (Soil Science Society of America, 1996).
Google Scholar
Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis (ed. Sparks, D. L.) 960–1010 (ASA and SSSA, 1996).
Google Scholar
Lu, R. Analysis of Soil Agro-Chemistry (Chinese Agricultural Science and Technology Press, 2000).
Google Scholar
Page, A. L., Miller, R. H. & Keeney, D. R. Chemical and microbiological properties. In Methods of Soil Analysis (ASA and SSSA, 1982).
Google Scholar
Olsen, S. R., Cole, C. U., Watanabe, F. S. & Deen, L. A. Estimation of Available Phosphorus in Soil by Extracting with Sodium Bicarbonate (USDA Circular 939, 1954).
Google Scholar
Townshend, J. L. A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica 9, 106–110 (1963).
Google Scholar
Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).PubMed
Google Scholar
Yang, T., Song, X., Xu, X., Zhou, C. & Shi, A. A comparative analysis of spider prey spectra analyzed through the next-generation sequencing of individual and mixed DNA samples. Ecol. Evol. 11, 15444–15454 (2021).PubMed
PubMed Central
Google Scholar
Chen, H. & Jiang, W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front. Microbiol. 5, 508 (2014).PubMed
PubMed Central
Google Scholar
Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed
PubMed Central
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).PubMed
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).PubMed
PubMed Central
Google Scholar
R Core Team. R: A language and environment for statistical computing. http://www.r-project.org (2020).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet
MATH
Google Scholar
Margalef, R. Perspectives in Ecological Theory 111–119 (The University of Chicago Press, 1970).
Google Scholar
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 88, 131–144 (1966).ADS
Google Scholar
Zhou, Y. et al. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecol. Evol. 8, 8930–8939 (2018).PubMed
PubMed Central
Google Scholar
Wang, H. et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30 (2018).
Google Scholar
Yang, K. et al. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization: Relationships with soil environmental variables and plant community diversity. Soil Biol. Biochem. 145, 107795 (2020).
Google Scholar
Zhang, S., Li, Q., Lü, Y., Zhang, X. & Liang, W. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol. Biochem. 62, 147–156 (2013).
Google Scholar More