More stories

  • in

    Household perception and infestation dynamics of bedbugs among residential communities and its potential distribution in Africa

    Sample collectionA survey was conducted among the residents of nine counties in Kenya (Mombasa, Kisumu, Machakos, Nairobi, Makueni, Bomet, Kericho, Kiambu, and Narok) and GPS location coordinates were recorded and later used to build the predictive model (“Infestation dynamics of bedbugs in residential communities” section). These counties represent diversity in cultural practices, livelihood strategies (such as fishing, tourism, farming), and infrastructure development. Also, they comprise different altitudes above sea level, temperatures, and differing in average annual rainfall.Samples identification using morphological identification keysIn each county where the survey was conducted, bedbug samples was taken and preserved in ethanol 70% for morphological identification. Cimex belonging to Cimicidae family is the common genus adapted to human environment and reported throughout the world and comprising species such as Cimex lectularius and C. hemipterus that are hematophagous mainly feeding on human blood5. The key morphological features used in identifying bedbugs include: (1) the head has a labrum that appears as a free sclerite at the extreme anterior margin, ecdysial lines form a broad V, eyes project from the sides composed of several facets and the antennae are 4-segmented, (2) thorax is subdivided into prothorax, mesothorax and metathorax, (3) legs have all other normal parts except pulvilli and arolia, tarsus is 3-segmented with 2 simple claws, (4) the abdomen has 11 more-or-less segmented recognizable segments, 7 pairs of spiracles borne on the second to eighth segments, hosts the genital structures, paramere in males and mesospermalege in females45. Bedbug specimen morphological features were examined using Leica EZ24 HD dissecting microscope (Leica Microsystems, UK) and photos documented using the associated software.Survey for household’s knowledge and perceptions on bedbugsThis study was a community-based cross-sectional survey conducted from November–December 2020 with respect of the rules/guidlines introduced by the Ministry of Health to contain the COVID-19 pandemic in Kenya (wearing mask, social distance, washing hand, etc.). It was based on a stratified, systematic random sampling where 100 respondents were selected from each county.A total number of 900 respondents were randomly selected and the household head or the representative showing willingness and consent was interviewed face-to-face. The interview was conducted using a semi-structured questionnaire prepared in the English language (Appendix A). The questionnaire was translated into the local native language (Kiswahili) to avoid biasness and improve the understanding between the enumerator and the respondent. Prior to the commencement of the survey and authentic data collection, a pre-testing exercise was performed by training enumerators on a similar socio-demographic pattern. This was useful for improving the quality of data, ensuring validity, familiarizing the enumerators with the questionnaire, and data handling.The information collected using the semi-structured questionnaire included residents’ socio-economic profiles, knowledge, and perceptions on the pest, bedbug incidence, and management practices. The socio-economic profile factors addressed in the survey comprised gender, age, education, access to basic social amenities, and household size. The study also prioritized the financial consequences, the severity of the bites, perceptions of respondents on the pest, and management practices for its control.Survey data were checked for errors, completeness, summarized, and entered in Microsoft-Excel. It was then cleaned and transferred to Statistical Package for Social Science (SPSS) version 25 software (IBM Corp., Armonk, NY) for purposes of descriptive statistics (means and percentages).In contrast, in instances where more than one reason was given for a single question, percentages were calculated based on each group of similar responses. Chi-square was performed to determine the differences regarding socio-demographic characteristics, knowledge, and perceptions on bedbugs and control practices. Additionally, data were disaggregated by gender and age categories to understand the existing differences among the various respondent categories. Besides, F-test statistics was performed on the ages of respondents to determine the mean, standard deviation and statistical significance. The level of significance was considered when the p-value was below 5%.Infestation dynamics model of bedbugModel simulation assumptionsHouses infestation dynamics was studied following Susceptible-Infested-Treatment (SIT) model46. Therefore, houses in the community are classified into three groups: susceptible, infested or treated. Within a house, bedbug population dynamics was ignored, while it was considered from one house to another where infested houses have some potential to spread the infestation to other houses in the community. A population of bedbugs in an infested house has some probability per unit of time of becoming extinct either naturally or after treatment. In the infestation dynamics, the rate of house infestation depends on the number of infested houses, the movement of people from one house to another and the proportion of treated houses in the community. We assume that infested houses (I) spread the infestation at the rate β and only a fraction S/N of the houses is susceptible (S) to infestation. Infested houses become extinct at a certain rate known as rate γ. Infested houses are treated at the rate τ and the protection conferred is lost at the rate α. Ordinary differential equation developed to study SIT model were used in this study46. All the models used have the generic formulations displayed below:$$frac{dS}{dt}=frac{beta }{N}SI+gamma I+alpha T$$
    (1)
    $$frac{dI}{dt}=frac{beta }{N}SI-(gamma +tau )I$$
    (2)
    $$frac{dT}{dt}=tau I-alpha T$$
    (3)
    where β  > 0, τ  > 0, α ≥ 0 and γ  > 0. The total population size is N = S(t) + I(t) + t(t). The initial conditions satisfy at S(0)  > 0, I(0)  > 0, T(0) ≥ 0 and S(0) + I(0) = N, where N is the constant total population size, dN/dt = 0.Infestation dynamics models implementationThe method used to implement the infestation dynamics model of the pest is based on the system thinking approach with its archetypes [Causal Loop Diagram (CLD), Reinforcing (R) and Balancing (B)] by a mental and holistic conceptual framework. This is important for mapping how the variables, issues, and processes influence each other in the complex interactions of bedbugs within and between houses and their impacts. Despite these archetypes being qualitative, they are necessary for elucidating and disclosing the basic feedback configurations that occur in houses and their environs when infested with pests like bedbugs. A dynamic model was generated by converting the causal loop diagram (CLD) obtained using stocks, flows, auxiliary links, and clouds. Consequently, these in turn were translated into coupled differential equations for simulations.The SIT model was translated into causal loop diagram where arrows show the cause-effect relations where positive sign indicates direct proportionality of cause and effect while negative sign shows inverse proportionality relations, and two different scenarios have been assessed: (1) homogeneous houses where there is a single community of houses of the same quality, and (2) heterogeneous houses where there is a community of good and bad houses. Ancient houses presenting slits/fissures with less cleanliness and filled with old or secondhand furniture at low grade are considered bad houses as they may sustain high level of bedbug infestation; and new houses don’t provide well enough conditions for bedbug population to survive, and they are called in the model good houses47. Bad houses are considered to act as sources while good houses act as sinks, but all together are randomly distributed where each house has the same probability to contact good or bad houses.In the scenarios of homogeneous houses, the causal loop diagram (Fig. 7) has two feedback loops: (a) one positive, as the number of infested houses increases, the probability to get susceptible houses infested also increases resulting in infested houses increase; (b) one negative, as the infested houses increases, the treated houses increase resulting in susceptible houses decrease. The causal loop diagram is displayed in Fig. 7A while Fig. 7B showed the stocked and flows diagram and axillary variables obtained from causal loop diagram.Figure 7Susceptible-Infested-Treatment (SIT) model translated into causal loop diagram (A) and stock and flow diagram (B) for homogeneous houses and causal loop diagram (C) and stock and flow diagram (D) for heterogeneous houses in the community.Full size imageSusceptible, infested, and treated houses are stocks in the system, representing the number of houses susceptible, infested, and treated, respectively at a given point of time. The rates represent in and out-flows of the diagram. Auxiliary and constants that drive the behavior of the system were connected using information arrows within them and flows and stocks to represent the relations among variables in terms of equations.In the scenarios of heterogeneous houses, the causal loop diagram (Fig. 7C) comes with the two previous feedback loops but for each category of house. In addition, there is a fifth feedback loop that connect bad house to good house and vice versa.Therefore, as the infested bad houses increase, the probability to infest good houses increases. The more they are exposed the more they get infested. In turn, as the infested good houses increase, the chance to infest susceptible bad houses increases and the more they are exposed, the more they get infested, resulting in the increase of infested bad houses. The stocks and flows diagram of each of the two categories of houses occurred with interconnexion relationships between the two categories (Fig. 7D).Models’ simulationsThe survey data (“Bedbug Genus identification” section) on prevalence, knowledge, perceptions and self-reported; in addition, the respondents’ reported control mechanisms and their average time of effectiveness (Appendix B, Table S1) were used for model simulations. The different control methods reported were reclassified in three control approaches: chemical control, other control methods (including exposure to direct sunlight, use of hot water, painting, application of diesel, paraffin and wood ash, use of Aloe Vera extract and Herbs), and combination of chemical and other control methods. All the models commodities and units were checked before performing the simulations. Simulation and implementation of the models were done using Vensim PLP 8.1 platform (Ventana systems, Harvard, USA). It consists of a graphical environment that usually permits drawing of Causal Loop Diagram (CLD), stocks, flow diagrams and to carry out simulations. After we simulated the infestation dynamics under the two scenarios, we explored the effect of the different control methods.Spatial distribution analysis of bedbugs using MaxEnt modelEnvironmental data for MaxEntThe environmental variables used as the other maxent input were obtained by deriving bioclimatic, land cover, and elevation data. Bioclimatic variables and elevation (Digital Elevation Model; DEM) data were obtained from the Global Climate Data official website, Worldclim (http://www.worldclim.org/bioclim.htm)48 including 19 bioclimatic variables (Appendix B, Table S2). The land cover data were downloaded from the Global Land Cover Facility (GLCF).In order to reduce collinearity between predictors, a collinearity test was performed on all the variables by filtering them according to the following steps36: firstly, the MaxEnt model was run using the distribution data of bedbugs and 19 bioclimatic variables to obtain the percent contribution of each variable to the preliminary prediction results. Secondly, following the generation of the percentage contribution of all the variables, we then imported all distribution points in Arc-GIS and extracted the attribute values of the 19 variables. Furthermore, the “virtual species” package49 in R-software (R Foundation for Statistical Computing, Vienna, Australia) was used to explore the extracted variables’ clusters spatial correlation using Pearson’s correlation coefficient and the cluster tree (Fig. 8). Thus, the final number of predictor variables after screening was 5 establishing the potential geographical distribution of bedbug, which includes Temperature Seasonality (bio4), Precipitation of Driest Month (bio14), Temperature Annual Range (bio7), Precipitation of Driest Quarter (bio17) and Precipitation of Warmest Quarter (bio18) (Appendix B, Table S2). The land cover was considered because studies have shown its importance on insect spatial distribution50,51,52 and it was setled as a categorical variable53. Elevation was selected as variable because it greatly influences species’ occurrence and dispersal by affecting the temperature, precipitation, vegetation, and sun characteristics (direction, intensity, etc.) on the earth’s surface54,55,56. The study variables had different resolutions and were therefore, resampled to 1 km. The variables were clipped to Kenya and Africa boundaries and converted to ASCII (Stands for “American Standard Code for Information Interchange”) format using the ‘raster’ package49 in R statistical software (R Foundation for Statistical Computing, Vienna, Australia).Figure 8Key model predictor variables.Full size imageDistribution modelling in Kenya and AfricaIn our study, we used the maximum entropy distribution modelling method. This is because it has been recommended to have the ability to perform best and remain effective despite the use of small sample size relative to the other modelling methods57.Our selected bioclimatic variables (5) and occurrence/prevalence data for bedbugs were then imported into MaxEnt model and the options of ‘Create response curves’ and ‘Do jackknife’ were selected to measure variable importance’ options. The model output file was selected as ‘Logistic’, the commonly used approach is the random portioning of distribution datasets into ‘training’, and ‘test’ sets57,58. MaxEnt model was run with a total number of 5000 iterations and five replicates for better convergence of the model and rescaled within the range of 0–1000 suitability scores using ‘raster’ package49 in R statistical software (R Foundation for Statistical Computing, Vienna, Australia).The modelling performance/MaxEnt accuracy was evaluated by choosing the area under the receiver operating characteristics (ROC) curve (AUC) as the estimation index. This was important for the calibration and validation of the robustness of MaxEnt model evaluation. Furthermore, the area under the ROC curve (AUC) was necessary as an additional precision analysis59. The range of AUC values greater than 0.7 was considered a fair model performance, while those greater than 0.9 indicated that the model was considered an excellent model performance. Therefore, by considering the AUC values, the excellently performing model was selected to analyze the suitability of bedbugs in Kenya and Africa59,60,61,62.The ASCII format output was then imported into QGIS 3.10.2 (using the QGIS 3.10.2 software, https://qgis.org/downloads/), following its conversion into a raster format file using R software. This was useful for the classification and visualization of the distribution area63,64. The potential suitable distribution of bedbugs was extracted using the Kenyan and African maps. At the same time, Jenks’ natural breaks were also used to reclassify and classify the suitability into five categories, namely: unsuitable (P  More

  • in

    Towards net-zero phosphorus cities

    C40 Cities. 700+ cities in 53 countries now committed to halve emissions by 2030 and reach net zero by 2050. C40 Cities https://www.c40.org/news/cities-committed-race-to-zero/ (2021).Watts, M. Cities spearhead climate action. Nat. Clim. Change 7, 537–538 (2017).
    Google Scholar 
    Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).CAS 

    Google Scholar 
    El Wali, M., Golroudbary, S. R. & Kraslawski, A. Circular economy for phosphorus supply chain and its impact on social sustainable development goals. Sci. Total Environ. 777, 146060 (2021).CAS 

    Google Scholar 
    Bai, X. et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23, 69–78 (2016).
    Google Scholar 
    De Boer, M. A., Wolzak, L. & Slootweg, J. C. Phosphorus: reserves, production, and applications. in Phosphorus Recovery and Recycling. (eds. Ohtake, H. & Tsuneda, S.) 75–100 (Springer, 2019).Brownlie, W. J. et al. Chapter 2. Phosphorus reserves, resources and uses. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.25016.83209.Chow, E. China issues phosphate quotas to rein in fertiliser exports – analysts. Reuters (2022).Klesty, V. Global food supply at risk from Russian invasion of Ukraine, Yara says. Reuters (2022).Dumas, M., Frossard, E. & Scholz, R. W. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84, 798–805 (2011).CAS 

    Google Scholar 
    Cordell, D., Turner, A. & Chong, J. The hidden cost of phosphate fertilizers: mapping multi-stakeholder supply chain risks and impacts from mine to fork. Glob. Change Peace Secur. 27, 1–21 (2015).
    Google Scholar 
    Metson, G. S., Bennett, E. M. & Elser, J. J. The role of diet in phosphorus demand. Environmental Research Letters 7, 044043 (2012).
    Google Scholar 
    Oita, A., Wirasenjaya, F., Liu, J., Webeck, E. & Matsubae, K. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour. Conserv. Recycl. 157, 104752 (2020).
    Google Scholar 
    Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 36, 139–152 (2016).
    Google Scholar 
    Johnes, P. J. et al. Chapter 5. Phosphorus and water quality. in Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.14950.50246.Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2008).
    Google Scholar 
    Watson, S. B. et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 56, 44–66 (2016).CAS 

    Google Scholar 
    Rabalais, N. N. & Turner, R. E. Gulf of Mexico Hypoxia: Past, Present, and Future. Limnol. Oceanogr. Bull. 28, 117–124 (2019).
    Google Scholar 
    Carstensen, J. & Conley, D. J. Baltic Sea Hypoxia Takes Many Shapes and Sizes. Limnol. Oceanog. Bull. 28, 125–129 (2019).
    Google Scholar 
    Kanter, D. R. & Brownlie, W. J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 92, 1–8 (2019).CAS 

    Google Scholar 
    Hamilton, D. P., Salmaso, N. & Paerl, H. W. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquat. Ecol. 50, 351–366 (2016).CAS 

    Google Scholar 
    Brownlie, W. J. et al. Chapter 9. Towards our phosphorus future. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.16995.22561.MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016).
    Google Scholar 
    Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44, 193–206 (2015).CAS 

    Google Scholar 
    Withers, P. J. A. et al. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089 (2020).CAS 

    Google Scholar 
    Withers, P. J. A. Closing the phosphorus cycle. Nat. Sustain. 2, 1001–1002 (2019).
    Google Scholar 
    Langhans, C., Beusen, A. H. W., Mogollón, J. M. & Bouwman, A. F. Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nat. Sustain. 5, 57–63 (2022).
    Google Scholar 
    Kuss, P. & Nicholas, K. A. A dozen effective interventions to reduce car use in European cities: Lessons learned from a meta-analysis and transition management. Case Stud. Transp. Policy. 10, 1494–1513 (2022).
    Google Scholar 
    Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 114, E4116–E4116 (2017).
    Google Scholar 
    Seto, K. C. et al. From low- to net-zero carbon cities: the next global agenda. Annu. Rev. Environ. Resour. 46, 377–415 (2021).
    Google Scholar 
    Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 178, 463–473 (2013).CAS 

    Google Scholar 
    Kissinger, M. & Stossel, Z. An integrated, multi-scale approach for modelling urban metabolism changes as a means for assessing urban sustainability. Sustain. Cities Soc. 67, 102695 (2021).
    Google Scholar 
    Li, H. & Kwan, M.-P. Advancing analytical methods for urban metabolism studies. Resour. Conserv. Recycl. 132, 239–245 (2018).
    Google Scholar 
    Goldstein, B., Birkved, M., Quitzau, M.-B. & Hauschild, M. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ. Res. Lett. 8, 035024 (2013).CAS 

    Google Scholar 
    Kovac, A. et al. Global Protocol for Community-Scale Greenhouse Gas Inventories— An Accounting and Reporting Standard for Cities Version 1.1. 190 https://ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities.Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).CAS 

    Google Scholar 
    Wiedmann, T. et al. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25, 735–750 (2021).CAS 

    Google Scholar 
    Metson, G. S. et al. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environ. Sci. Policy 47, 1–11 (2015).CAS 

    Google Scholar 
    Harseim, L., Sprecher, B. & Zengerling, C. Phosphorus governance within planetary boundaries: the potential of strategic local resource planning in The Hague and Delfland, The Netherlands. Sustainability 13, 10801 (2021).CAS 

    Google Scholar 
    Coutard, O. & Florentin, D. Resource ecologies, urban metabolisms, and the provision of essential services. J. Urban Technol. 29, 49–58 (2022).
    Google Scholar 
    UDG at COP26 | Urban Design Events. Urban Design Group https://www.udg.org.uk/events/2021/udg-cop26 (2021).Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).CAS 

    Google Scholar 
    McPhearson, T. et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).
    Google Scholar 
    McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).
    Google Scholar 
    Metson, G. S. et al. Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change 18, 1387–1401 (2018).
    Google Scholar 
    Iwaniec, D. M., Metson, G. S. & Cordell, D. P-FUTURES: Towards urban food & water security through collaborative design and impact. Curr. Opin. Environ. Sustain. 20, 1–7 (2016).
    Google Scholar 
    Bulkeley, H. et al. Urban living laboratories: Conducting the experimental city? Eur. Urban. Reg. Stud. 26, 317–335 (2019).
    Google Scholar 
    Beukers, E. & Bertolini, L. Learning for transitions: An experiential learning strategy for urban experiments. Environ. Innov. Soc. Transit. 40, 395–407 (2021).
    Google Scholar 
    Ramaswami, A. et al. Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4, 460–463 (2021).
    Google Scholar 
    Petit-Boix, A., Apul, D., Wiedmann, T. & Leipold, S. Transdisciplinary resource monitoring is essential to prioritize circular economy strategies in cities. Environ. Res. Lett. 17, 021001 (2022).
    Google Scholar 
    WWAP. Wastewater: The Untapped Resource. https://www.unwater.org/publications/un-world-water-development-report-2017 (2017).van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).
    Google Scholar 
    Kovacs, A. & Zavadsky, I. Success and sustainability of nutrient pollution reduction in the Danube River Basin: recovery and future protection of the Black Sea Northwest shelf. Water Int. 46, 176–194 (2021).
    Google Scholar 
    Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).
    Google Scholar 
    Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).
    Google Scholar 
    Metson, G. S., Cordell, D., Ridoutt, B. & Mohr, S. Mapping phosphorus hotspots in Sydney’s organic wastes: a spatially-explicit inventory to facilitate urban phosphorus recycling. J. Urban Ecol. 4, 1–19 (2018).
    Google Scholar 
    Hu, Y., Sampat, A. M., Ruiz-Mercado, G. J. & Zavala, V. M. Logistics Network Management of Livestock Waste for Spatiotemporal Control of Nutrient Pollution in Water Bodies. ACS Sustain. Chem. Eng. 7, 18359–18374 (2019).CAS 

    Google Scholar 
    Mayer, B. K. et al. Total value of phosphorus recovery. Environ. Sci. Technol. 50, 6606–6620 (2016).CAS 

    Google Scholar 
    van Hessen, J. An Assessment of Small-Scale Biodigester Programmes in the Developing World: The SNV and Hivos Approach. (Vrije Universiteit Amsterdam, 2014).Harder, R., Wielemaker, R., Larsen, T. A., Zeeman, G. & Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 49, 695–743 (2019).
    Google Scholar 
    Metson, G. S. et al. Chapter 8. Consumption: the missing link towards phosphorus security. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.36498.73925.Qiao, M., Zheng, Y. M. & Zhu, Y. G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 84, 773–778 (2011).CAS 

    Google Scholar 
    Forber, K. J., Rothwell, S. A., Metson, G. S., Jarvie, H. P. & Withers, P. J. A. Plant-based diets add to the wastewater phosphorus burden. Environ. Res. Lett. 15, 094018 (2020).CAS 

    Google Scholar 
    UN Population Division. The World’s cities in 2018. https://digitallibrary.un.org/record/3799524 (2018).Klöckner, C. A. A comprehensive model of the psychology of environmental behaviour-A meta-analysis. Glob. Environ. Change 23, 1028–1038 (2013).
    Google Scholar 
    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 

    Google Scholar 
    Vermeir, I. & Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude – Behavioral Intention” Gap. J. Agric. Environ. Ethics 19, 169–194 (2006).
    Google Scholar 
    Ullström, S., Stripple, J. & Nicholas, K. A. From aspirational luxury to hypermobility to staying on the ground: changing discourses of holiday air travel in Sweden. J. Sustain. Tour. https://doi.org/10.1080/09669582.2021.1998079 (2021).Morris, T. H. Experiential learning—a systematic review and revision of Kolb’s model. Interact. Learn. Environ. 28, 1064–1077 (2020).
    Google Scholar 
    Metson, G. S. & Bennett, E. M. Facilitators & barriers to organic waste and phosphorus re-use in Montreal. Elementa 3, 000070 (2015).
    Google Scholar 
    Winkler, B., Maier, A. & Lewandowski, I. Urban gardening in germany: cultivating a sustainable lifestyle for the societal transition to a bioeconomy. Sustainability 11, 801 (2019).
    Google Scholar 
    Kim, J. E. Fostering behaviour change to encourage low-carbon food consumption through community gardens. Int. J. Urban Sci. 21, 364–384 (2017).
    Google Scholar 
    Fuhr, H., Hickmann, T. & Kern, K. The role of cities in multi-level climate governance: local climate policies and the 1.5 °C target. Curr. Opin. Environ. Sustain. 30, 1–6 (2018).
    Google Scholar 
    Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).
    Google Scholar 
    Santos, A. F., Almeida, P. V., Alvarenga, P., Gando-Ferreira, L. M. & Quina, M. J. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Chemosphere 284, 131258 (2021).CAS 

    Google Scholar 
    UNFCCC. Race To Zero Campaign. https://unfccc.int/climate-action/race-to-zero-campaign.Locsin, J. A., Hood, K. M., Doré, E., Trueman, B. F. & Gagnon, G. A. Colloidal lead in drinking water: Formation, occurrence, and characterization. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2022.2039549 (2022).Li, Y. et al. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 768, 144582 (2021).CAS 

    Google Scholar 
    Gong, H. et al. Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Sci. Total Environ. 838, 155997 (2022).CAS 

    Google Scholar  More

  • in

    Comparative environmental RNA and DNA metabarcoding analysis of river algae and arthropods for ecological surveys and water quality assessment

    United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. General Assembly https://doi.org/10.5040/9781782257790.part-008 (2015).Article 

    Google Scholar 
    European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities L327, 1–72 (2000).
    Google Scholar 
    Kelly, R. P. et al. Harnessing DNA to improve environmental management. Science (80-) 344, 1455–1456 (2014).ADS 
    CAS 

    Google Scholar 
    Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Chang. 1, 313–318 (2011).ADS 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J., Jeppe, K., Pettigrove, V. & Zhang, X. Environmental DNA metabarcoding supporting community assessment of environmental stressors in a field-based sediment microcosm study. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b04903 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 1–15 (2020).
    Google Scholar 
    Ministry of the Environment. Manual for Water Quality Assessment Method by Aquatic Organisms -Japanese version of average score method-. (2017).Mayama, S. Taxonomic revisions to the differentiating diatom groups for water quality evaluation and some comments for taxa with new designations. Diatom 15, 1–9 (1994).
    Google Scholar 
    Kobayashi, H. & Mayama, S. Evaluation of river water quality by diatoms. Korean J. Phycol. 4, 121–133 (1989).
    Google Scholar 
    European Commission. Technical Guidance Document on Risk Assessment Part II. (2003).Wang, P. et al. Environmental DNA: An emerging tool in ecological assessment. Bull. Environ. Contam. Toxicol. 103, 651–656 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhang, X. Environmental DNA shaping a new era of ecotoxicological research. Environ. Sci. Technol. 53, 5605–5612 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).
    Google Scholar 
    Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16, 604–607 (2016).CAS 
    PubMed 

    Google Scholar 
    Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: A revolution in ecological resolution?. Trends Ecol. Evol. 36, 601–609 (2021).CAS 
    PubMed 

    Google Scholar 
    Veilleux, H. D., Misutka, M. D. & Glover, C. N. Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. Sci. Total Environ. 782, 146891 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cristescu, M. E. Can Environmental RNA Revolutionize Biodiversity Science?. Trends Ecol. Evol. 34, 694–697 (2019).PubMed 

    Google Scholar 
    Qian, T., Shan, X., Wang, W. & Jin, X. Effects of Temperature on the Timeliness of eDNA/eRNA: A Case Study of Fenneropenaeus chinensis. Water (Switzerland) 14, 1155 (2022).CAS 

    Google Scholar 
    Jo, T., Tsuri, K., Hirohara, T., Yamanaka, H. & Toshiaki Jo, C. Warm temperature and alkaline conditions accelerate environmental RNA degradation. Environ. DNA 00, 1–13 (2022).
    Google Scholar 
    Miyata, K. et al. Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecol. Indic. 128, 107796 (2021).
    Google Scholar 
    Littlefair, J. E., Rennie, M. D. & Cristescu, M. E. Environmental nucleic acids: a field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13671 (2022).Article 
    PubMed 

    Google Scholar 
    Broman, E., Bonaglia, S., Norkko, A., Creer, S. & Nascimento, F. J. A. High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Mol. Ecol. https://doi.org/10.1111/mec.15561 (2020).Article 
    PubMed 

    Google Scholar 
    Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. https://doi.org/10.3791/54741 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oe, S., Sashika, M., Fujimoto, A., Shimozuru, M. & Tsubota, T. Predation impacts of invasive raccoons on rare native species. Sci. Rep. 10, 1–12 (2020).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MLIT (Ministry of Land Infrastructure and Transport). IV Benthic invertebrate. Manual of National Census of the River Environment (River Edition) (in Japanese). http://www.nilim.go.jp/lab/fbg/ksnkankyo/mizukokuweb/system/DownLoad/H28KK_manual_river/H28KK_02.teisei.pdf (2016).Hleap, J. S., Littlefair, J. E., Steinke, D., Hebert, P. D. N. & Cristescu, M. E. Assessment of current taxonomic assignment strategies for metabarcoding eukaryotes. Mol. Ecol. Resour. 21, 2190–2203 (2021).PubMed 

    Google Scholar 
    Jones, E. P. et al. Guidance for end users on DNA methods development and project assessment. JNCC Report (2020).Littlefair, J. E., Rennie, M. D. & Cristescu, M. E. Environmental nucleic acids: A field-based comparison for monitoring freshwater habitats using eDNA and eRNA. Mol. Ecol. Resour. 22, 2928–2940. https://doi.org/10.1111/1755-0998.13671 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    MLIT (Ministry of Land Infrastructure and Transport). River Environmental Database (in Japanese). http://www.nilim.go.jp/lab/fbg/ksnkankyo/ (2018).Kitahashi, T. et al. Meiofaunal diversity at a seamount in the Pacific Ocean: A comprehensive study using environmental DNA and RNA. Deep. Res. Part I Oceanogr. Res. Pap. 160, 103253. https://doi.org/10.1016/j.dsr.2020.103253 (2020).Article 

    Google Scholar 
    Brandt, M. I. et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front. Mar. Sci. 7, 234 (2020).
    Google Scholar 
    Laroche, O. et al. A cross-taxa study using environmental DNA / RNA metabarcoding to measure biological impacts of off shore oil and gas drilling and production operations. Mar. Pollut. Bull. 127, 97–107 (2018).CAS 
    PubMed 

    Google Scholar 
    Laroche, O. et al. Metabarcoding monitoring analysis: The pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities. PeerJ 5, e3347 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pochon, X. et al. Wanted dead or alive ? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, 1–19 (2017).
    Google Scholar 
    Foley, C. J., Bradley, D. L. & Höök, T. O. A review and assessment of the potential use of RNA: DNA ratios to assess the condition of entrained fish larvae. Ecol. Indic. 60, 346–357 (2016).CAS 

    Google Scholar 
    Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, 1–31 (2016).
    Google Scholar 
    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic. 85, 1044–1057 (2018).CAS 

    Google Scholar 
    Whangbo, J. S. & Hunter, C. P. Environmental RNA interference. Trends Genet. 24, 297–305 (2008).CAS 
    PubMed 

    Google Scholar 
    Sidova, M., Tomankova, S., Abaffy, P., Kubista, M. & Sindelka, R. Effects of post-mortem and physical degradation on RNA integrity and quality. Biomol. Detect. Quantif. 5, 3–9 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. A. et al. Release and degradation of environmental DNA and RNA in a marine system. Sci. Total Environ. 704, 135314 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Watanabe, T. Picture Book and Ecology of the Freshwater Diatoms (UCHIDA ROKAKUHO PUBLISHING CO., LTD., 2005).
    Google Scholar 
    Laroche, O. et al. First evaluation of foraminiferal metabarcoding for monitoring environmental impact from an offshore oil drilling site. Mar. Environ. Res. 120, 225–235 (2016).CAS 
    PubMed 

    Google Scholar 
    Andruszkiewicz Allan, E. et al. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514 (2021).
    Google Scholar 
    Hajibabaei, M. et al. Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS ONE 14, e0225409 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    the Orthopterological Society of Japan. Orthoptera of the Japanese archipelago in color (Hokkaido University Press, 2006).Li, Z. H. et al. Enzymatic alterations and RNA/DNA ratio in intestine of rainbow trout, Oncorhynchus mykiss, induced by chronic exposure to carbamazepine. Ecotoxicology 19, 872–878 (2010).CAS 
    PubMed 

    Google Scholar 
    Chícharo, M. A. & Chícharo, L. RNA:DNA ratio and other nucleic acid derived indices in marine ecology. Int. J. Mol. Sci. 9, 1453–1471 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS Biol. 2, e312 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Takenaka, M., Yano, K., Suzuki, T. & Tojo, K. Development of novel PCR primer sets for DNA metabarcoding of aquatic insects, and the discovery of some cryptic species. bioRxiv https://doi.org/10.1101/2021.11.05.467390 (2021).Article 

    Google Scholar 
    Elbrecht, V. et al. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ 4, 1966 (2016).
    Google Scholar 
    Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA 3, 261–276 (2021).CAS 

    Google Scholar 
    Hajibabaei, M., Porter, T. M., Wright, M. & Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS ONE 14, e0220953 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbrecht, V. et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ 7, 7745 (2019).
    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Marquina, D., Andersson, A. F. & Ronquist, F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol. Ecol. Resour. 19, 90–104 (2019).CAS 
    PubMed 

    Google Scholar 
    Tochigi prefectural government. Results of continuous monitoring and measurement [Water quality] in Japanese. https://www.pref.tochigi.lg.jp/d03/eco/kankyou/hozen/joujikanshikekka-mizu.html (2020).Emilson, C. E. et al. DNA metabarcoding and morphological macroinvertebrate metrics reveal the same changes in boreal watersheds across an environmental gradient. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    Uchida, N., Kubota, K., Aita, S. & Kazama, S. Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment. PeerJ 2020, e9176 (2020).
    Google Scholar 
    Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).PubMed 

    Google Scholar  More

  • in

    Survival fluctuation is linked to precipitation variation during staging in a migratory shorebird

    Marra, P., Hobson, K. A. & Holmes, R. T. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282, 1884–1886 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Korslund, L. & Steen, H. Small rodent winter survival: Snow conditions limit access to food resources. J. Anim. Ecol. 75, 423–436 (2009).
    Google Scholar 
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rughetti, M. & Festa-Bianchet, M. Effects of spring–summer temperature on body mass of chamois. J. Mammal. 93, 1301–1307 (2012).
    Google Scholar 
    Davidson, J. & Andrewartha, H. The influence of rainfall, evaporation and atmospheric temperature on fluctuations in the size of a natural population of Thrips imaginis (Thysanoptera). J. Anim. Ecol. 17, 200–222 (1948).
    Google Scholar 
    Sillett, T. S., Holmes, R. T. & Sherry, T. W. Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288, 2040–2043 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    SÆther, B. E., Sutherland, W. J. & Engen, S. Climate influences on avian population dynamics. Adv. Ecol. Res. 35, 185–209 (2004).
    Google Scholar 
    Frederiksen, M., Daunt, F., Harris, M. & Wanless, S. The demographic impact of extreme events: Stochastic weather drives survival and population dynamics in a long-lived seabird. J. Anim. Ecol. 77, 1020–1029 (2008).CAS 
    PubMed 

    Google Scholar 
    Cox, A. R., Robertson, R. J., Rendell, W. B. & Bonier, F. Population decline in tree swallows (Tachycineta bicolor) linked to climate change and inclement weather on the breeding ground. Oecologia 192, 713–722 (2020).ADS 
    PubMed 

    Google Scholar 
    Peach, W., Baillie, S. & Underhill, L. Survival of British Sedge Warblers in relation to west African rainfall. Ibis 133, 300–305 (1991).
    Google Scholar 
    Altwegg, R., Dummermuth, S., Anholt, B. R. & Flatt, T. Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos 110, 55–66 (2005).
    Google Scholar 
    Woodworth, B. K., Wheelwright, N. T., Newman, A. E., Schaub, M. & Norris, D. R. Winter temperatures limit population growth rate of a migratory songbird. Nat. Commun. 8, 14812 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ådahl, E., Lundberg, P. & Jonzén, N. From climate change to population change: The need to consider annual life cycles. Glob. Change Biol. 12, 1627–1633 (2006).ADS 

    Google Scholar 
    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Telenský, T., Klvaňa, P., Jelínek, M., Cepák, J. & Reif, J. The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Sci. Rep. 10, 17592 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dybala, K. E., Eadie, J. M., Gardali, T., Seavy, N. E. & Herzog, M. P. Projecting demographic responses to climate change: Adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population. Glob. Chang. Biol. 19, 2688–2697 (2013).ADS 
    PubMed 

    Google Scholar 
    Gullett, P., Evans, K. L., Robinson, R. A. & Hatchwell, B. J. Climate change and annual survival in a temperate passerine: Partitioning seasonal effects and predicting future patterns. Oikos 123, 389–400 (2014).
    Google Scholar 
    Selwood, K. E., McGeoch, M. A. & Mac Nally, R. The effects of climate change and land-use change on demographic rates and population viability. Biol. Rev. 90, 837–853 (2015).PubMed 

    Google Scholar 
    Bridge, E. S. et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. Bioscience 61, 689–698 (2011).
    Google Scholar 
    van Bemmelen, R. S. A. et al. Red-necked phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies. Front. Ecol. Evol. 7, 86 (2019).
    Google Scholar 
    Jiguet, F. et al. Unravelling migration connectivity reveals unsustainable hunting of the declining ortolan bunting. Sci. Adv. 5, eaau2642 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stutchbury, B. J. M. et al. Tracking long-distance songbird migration by using geolocators. Science 323, 896 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & Van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).
    Google Scholar 
    Sandvik, H., Erikstad, K. E., Barrett, R. T. & Yoccoz, N. G. The effect of climate on adult survival in five species of North Atlantic seabirds. J. Anim. Ecol. 74, 817–831 (2005).
    Google Scholar 
    BirdLife International and NatureServe. Bird species distribution maps of the world. (2014).Hedenström, A., Klaassen, R. H. G. & Åkesson, S. Migration of the little ringed plover Charadrius dubius breeding in South Sweden tracked by geolocators. Bird Study 60, 466–474 (2013).
    Google Scholar 
    Fransson, T., Österblom, H. & Hall-Karlsson, S. Svensk ringmärkningsatlas. (2008).Pakanen, V., Lampila, S., Arppe, H. & Valkama, J. Estimating sex specific apparent survival and dispersal of Little Ringed Plovers (Charadrius dubius). Ornis Fenn. 92, 52 (2015).
    Google Scholar 
    Jarošík, V., Honěk, A., Magarey, R. & Skuhrovec, J. Developmental database for phenology models: Related insect and mite species have similar thermal requirements. J. Econ. Entomol. 104, 1870–1876 (2011).PubMed 

    Google Scholar 
    Cramp, J. Handbook of the Birds of Europe, the Middle East and North Africa (Oxford University Press, 1992).
    Google Scholar 
    Leyrer, J. et al. Mortality within the annual cycle: Seasonal survival patterns in Afro-Siberian Red Knots Calidris canutus canutus. J. Ornithol. 154, 933–943 (2013).
    Google Scholar 
    Norris, R. D. & Marra, P. P. Seasonal interactions, habitat quality, an population dynamics in migratory birds. Condor 109, 535–547 (2007).
    Google Scholar 
    Schmaljohann, H., Eikenaar, C. & Sapir, N. Understanding the ecological and evolutionary function of stopover in migrating birds. Biol. Rev. 97, 1231–1252 (2022).PubMed 

    Google Scholar 
    Doyle, S. et al. Temperature and precipitation at migratory grounds influence demographic trends of an Arctic-breeding bird. Glob. Change Biol. 26, 5447–5458 (2020).ADS 

    Google Scholar 
    Rockwell, S. M. et al. Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia 183, 715–726 (2017).ADS 
    PubMed 

    Google Scholar 
    Insley, H., Peach, W., Swann, B. & Etheridge, B. Survival rates of Redshank Tringa totanus wintering on the Moray Firth. Bird Study 44, 277–289 (1997).
    Google Scholar 
    Duriez, O., Ens, B. J., Choquet, R., Pradel, R. & Klaassen, M. Comparing the seasonal survival of resident and migratory oystercatchers: Carry-over effects of habitat quality and weather conditions. Oikos 121, 862–873 (2012).
    Google Scholar 
    Cook, A. S. C. P. et al. Temperature and density influence survival in a rapidly declining migratory shorebird. Biol. Conserv. 260, 109198 (2021).
    Google Scholar 
    Pearce-Higgins, J. W., Yalden, D., Dougall, T. & Beale, C. M. Does climate change explain the decline of a trans-Saharan Afro-Palaearctic migrant?. Oecologia 159, 649–659 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).
    Google Scholar 
    Piersma, T. & Baker, A. Life history characteristics and the conservation of migratory shorebirds. In Behaviour and Conservation (eds Gosling, L. & Sutherland, W.) 105–124 (Cambridge University Press, 2000).
    Google Scholar 
    Conklin, J. R., Senner, N. R., Battley, P. F. & Piersma, T. Extreme migration and the individual quality spectrum. J. Avian Biol. 48, 19–36 (2017).
    Google Scholar 
    Méndez, V., Alves, J. A., Gill, J. A. & Gunnarsson, T. G. Patterns and processes in shorebird survival rates: A global review. Ibis (Lond.) 160, 723–741 (2018).
    Google Scholar 
    Roche, E. A. et al. Range-wide piping plover survival: Correlated patterns and temporal declines. J. Wildl. Manage. 74, 1784–1791 (2010).
    Google Scholar 
    Skagen, S. K. & Knopf, F. L. Toward conservation of midcontinental shorebird migrations. Conserv. Biol. 7, 533–541 (1993).
    Google Scholar 
    Kasahara, S., Moritomo, G., Kitamura, W., Imanishi, S. & Azuma, N. Rice fields along the East Asian-Australasian flyway are important habitats for an inland wader’s migration. Sci. Rep. 10, 4118 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Studds, C. E. & Marra, P. P. Linking fluctuations in rainfall to nonbreeding season performance in a long-distance migratory bird, Setophaga ruticilla. Clim. Res. 35, 115–122 (2007).
    Google Scholar 
    Newton, I. Can conditions experienced during migration limit the population levels of birds?. J. Ornithol. 147, 146–166 (2006).
    Google Scholar 
    Anderson, A. M. et al. Drought at a coastal wetland affects refuelling and migration strategies of shorebirds. Oecologia 197, 661–674 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rakhimberdiev, E. et al. Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird. Nat. Commun. 9, 4263 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423, 704 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meissner, W. Ageing and sexing the curonicus subspecies of the Little Ringed Plover Charadrius dubius. Wader Study Gr. Bull. 113, 28–31 (2007).
    Google Scholar 
    Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).ADS 

    Google Scholar 
    Almazroui, M., Saeed, S., Saeed, F., Islam, M. N. & Ismail, M. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst. Environ. 4, 297–320 (2020).ADS 

    Google Scholar 
    Lisovski, S. et al. The Indo-European flyway: Opportunities and constraints reflected by Common Rosefinches breeding across Europe. J. Biogeogr. 48, 1255–1266 (2021).
    Google Scholar 
    Lislevand, T. et al. Red-spotted Bluethroats Luscinia s. svecica migrate along the Indo-European flyway: A geolocator study. Bird Study 62, 508–515 (2015).
    Google Scholar 
    Brlík, V., Ilieva, M., Lisovski, S., Voigt, C. C. & Procházka, P. First insights into the migration route and migratory connectivity of the Paddyfield Warbler using geolocator tagging and stable isotope analysis. J. Ornithol. 159, 879–882 (2018).
    Google Scholar 
    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland (Poyser, 2002).
    Google Scholar 
    Saurola, P., Valkama, J. & Velmala, W. The Finnish Bird Ringing Atlas (Finnish Museum of Natural History and the Ministry of Environment, 2013).
    Google Scholar 
    Bairlein, F. et al. Atlas des Vogelzugs—Ringfunde Deutscher Brut- und Gastvögel (AULA-Verlag GmbH, 2014).
    Google Scholar 
    Salewski, V., Hochachka, W. M. & Fiedler, W. Multiple weather factors affect apparent survival of European Passerine birds. PLoS One 8, e59110 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaub, M., Jakober, H. & Stauber, W. Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine. Oecologia 167, 445–459 (2011).ADS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Weak effects of geolocators on small birds: A meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).PubMed 

    Google Scholar 
    Weiser, E. L. et al. Effects of geolocators on hatching success, return rates, breeding movements, and change in body mass in 16 species of Arctic-breeding shorebirds. Mov. Ecol. 4, 12 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lisovski, S., Sumner, M. D., & Wotherspoon, S. J. TwGeos: Basic data processing for light based geolocation archival tags. 2015. https://github.com/slisovski/TwGeosLisovski, S. & Hahn, S. GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol. Evol. 3, 1055–1059 (2012).
    Google Scholar 
    Ekstrom, P. A. An advance in geolocation by light. Mem. Natl Inst. Polar Res. 58, 210–226 (2004).
    Google Scholar 
    Brunsdon, C. & Chen, H. GISTools: Some further GIS capabilities for R. (2014).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, B. The Asian Monsoon (Springer, 2006).
    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing (2021).Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 

    Google Scholar 
    Lebreton, J., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).
    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Pradel, R. Flexibility in survival analysis from recapture data: Handling trap-dependence. In Marked Individuals in the Study of Bird Population (eds Lebreton, J.-D. & North, P.) (Birkhäuser-Verlag, 1993).
    Google Scholar 
    Choquet, R., Lebreton, J. D., Gimenez, O., Reboulet, A. M. & Pradel, R. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography (Cop.) 32, 1071–1074 (2009).
    Google Scholar 
    Pakanen, V. M. et al. Natal dispersal does not entail survival costs but is linked to breeding dispersal in a migratory shorebird, the southern dunlin Calidris alpina schinzii. Oikos 2022, ee08951 (2022).Article 

    Google Scholar 
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical in-Formation-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Grosbois, V. et al. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 83, 357–399 (2008).CAS 
    PubMed 

    Google Scholar 
    Brlík, V. et al. Survival fluctuations linked to variation in the South Asian monsoon in a Palearctic migratory shorebird. Zenodo https://doi.org/10.5281/zenodo.7026440 (2022). More

  • in

    Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    PubMed 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diamond, S. E. Contemporary climate‐driven range shifts: putting evolution back on the table. Functional Ecol. 32, 1652–1665 (2018).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 
    PubMed 

    Google Scholar 
    Nelson, E. J. et al. Climate change’s impact on key ecosystem services and the human well‐being they support in the US. Front. Ecol. Environ. 11, 483–893 (2013).Article 

    Google Scholar 
    Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).Article 

    Google Scholar 
    Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).Article 

    Google Scholar 
    Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).Article 
    PubMed 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).Article 
    PubMed 

    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).Article 
    PubMed 

    Google Scholar 
    Cardoso, P. et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 41, 749–761 (2014).Article 

    Google Scholar 
    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshwater Sci. 34, 1040–1049 (2015).Article 

    Google Scholar 
    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Global Ecol. Biogeogr. 22, 403–409 (2013).Article 

    Google Scholar 
    Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.2101458118 (2021).Castillo-Pérez, E. U., Suárez-Tovar, C. M., González-Tokman, D., Schondube, J. E. & Córdoba-Aguilar, A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Thermal Biol. 103, 103164 (2022).Article 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).Article 
    PubMed Central 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change biology 11, 502–506 (2005).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455 (2006).Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).Article 
    PubMed 

    Google Scholar 
    Mustonen, K. R. et al. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages. Global Change Biol. 24, 2434–2446 (2018).Article 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Wong, J. S. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).Article 

    Google Scholar 
    Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).Article 

    Google Scholar 
    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 1–3 (2019).Article 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).Article 

    Google Scholar 
    Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).Article 

    Google Scholar 
    Thomas, C. D. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375, 20190113 (2020).Article 

    Google Scholar 
    Krosby, M. et al. Climate-induced range overlap among closely related species. Nat. Clim. Change 5, 883–886 (2015).Article 

    Google Scholar 
    Sánchez-Guillén, R. A., Wellenreuther, M., Cordero-Rivera, A. & Hansson, B. Introgression and rapid species turnover in sympatric damselflies. BMC Evol. Biol. 11, 1–17 (2011).Article 

    Google Scholar 
    Bybee, S. et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 13, 1–20 (2016).Article 

    Google Scholar 
    Tobias, N. & Monika, W. Does taxonomic homogenization imply functional homogenization in temperate forest herb layer communities? Plant Ecol. 213, 431–443 (2012).Article 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).Article 
    PubMed 

    Google Scholar 
    Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiversity Conserv. 23, 2107–2126 (2014).Article 

    Google Scholar 
    McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J. Appl. Ecol. 50, 1010–1018 (2013).Article 

    Google Scholar 
    Vilenica, M., Kerovec, M., Pozojević, I. & Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 80, 1968 (2021).Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Diversity Distrib. 27, 2596–2614 (2021).Article 

    Google Scholar 
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256 (2018).Article 

    Google Scholar 
    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018). .Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Miller, J. A. & Holloway, P. Incorporating movement in species distribution models. Progr. Phys. Geogr. 39, 837–849 (2015).Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. 115, 11982–11987 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Pinkert, S. et al. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. Ecography 41, 795–804 (2018).Article 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 1–9 (2014).Article 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).Article 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the R‐package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbet, P. S. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Animal Ecol. 1–69. https://doi.org/10.2307/1781 (1957).Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005).Article 
    PubMed 

    Google Scholar 
    Peterson, A. T. et al. Ecological niches and geographic distributions (MPB-49) (Princeton University Press, 2011).Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2010).Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography 44(2), 199–205 (2021).Article 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, M. P. et al. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat. Conserv. Marine Freshwater Ecosyst. 26, 639–659 (2016).Ficetola, G. F., Thuiller, W. & Padoa‐Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity Distrib. 15, 108–116 (2009).Article 

    Google Scholar 
    Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Sci. 15, 365 (2007).Article 

    Google Scholar 
    Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).Article 

    Google Scholar 
    Guyennon, A. et al. Colonization and extinction dynamics and their link to the distribution of European trees at the continental scale. J. Biogeogr. 49, 117–129 (2022).Article 

    Google Scholar 
    Pritchard, G. & Leggott, M. A. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Clausnitzer, V. et al. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv. 142, 1864–1869 (2009).Article 

    Google Scholar 
    Córdoba-Aguilar, A. (Ed.). Dragonflies and damselflies: model organisms for ecological and evolutionary research (OUP Oxford, 2008).Corbet, P. S. et al. Dragonflies: behaviour and ecology of Odonata (Harley books, 1999).Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PloS One 11, e0148949 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harabiš, F. & Dolný, A. The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40, 17 (2011).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. J. (eds) Atlas of the European dragonflies and damselflies (KNNV publishing, 2015).Dijkstra, K. D. & Schröter, A. Field guide to the dragonflies of Britain and Europe (Bloomsbury Publishing, 2020).Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS One 12, e0189577 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).Article 

    Google Scholar 
    Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burgman, M. A. & Fox, J. C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning, Animal Conservation Forum (6, No. 1, pp. 19–28 (Cambridge University Press, 2003). https://doi.org/10.1017/S1367943003003044Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2020).Hijmans, R. J., Phillips S., Leathwick J. & Elith J. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo (2020).Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’story is misleading https://doi.org/10.1038/d41586-020-00177-3 (2020)Mammola, S., Milano, F., Vignal, M., Andrieu, J. & Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol. Biogeogr. 28, 1325–1335 (2019).Article 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41(1), 233–243 (2018).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Routledge, 2017).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4), 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).https://doi.org/10.1145/1015330.1015412 (2004).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 77, 802–813 (2008).Article 
    CAS 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).Article 
    PubMed 

    Google Scholar 
    Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).Article 
    PubMed 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Zhang, Z. et al. Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity Distrib. 27, 684–695 (2021).Article 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).Article 

    Google Scholar 
    Martín‐Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. https://doi.org/10.1111/icad.12563 (2022).Qiao, H., Soberon, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1–10 (1992).Article 

    Google Scholar 
    Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).Article 
    PubMed 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).Article 
    PubMed 

    Google Scholar 
    Corbet, P. S. ‘Biology of Odonata’. Ann. Rev. Entomol. 25, 189–217 (1980).Article 

    Google Scholar 
    Mitchell. Dragonfly locomotion: Ecology, form and function. PhD thesis, (University of Leeds, 2018). https://etheses.whiterose.ac.uk/21211/.The GIMP Development Team. GIMP (version 2.10.12). https://www.gimp.org (2019).Weller, H. Colordistance: distance metrics for image color similarity. https://CRAN.R-project.org/package=colordistance (2020).R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.R-project.org/.de Bello, F., Botta‐Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Acquah‐Lamptey, D., Brändle, M., Brandl, R. & Pinkert, S. Temperature‐driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol. Evol. 10, 8936–8948 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).Article 

    Google Scholar 
    Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biol. 52, 471–477 (2007).Article 

    Google Scholar 
    Finlayson, C. M. et al. The second warning to humanity–providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).Article 

    Google Scholar 
    Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mani, M. S. Ecology and biogeography of high altitude insects, vol. 4. (Springer Science & Business Media, 2013).Suárez‐Tovar, C. M., Guillermo‐Ferreira, R., Cooper, I. A., Cezário, R. R. & Córdoba‐Aguilar, A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J. Zool. https://doi.org/10.1111/jzo.12963 (2022).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 
    PubMed 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, P., Stefano, M., Francois, R. & Jose, C. C. BAT: biodiversity assessment tools. https://CRAN.R-project.org/package=BAT (2021).Robert J. H. geosphere: spherical trigonometry. R package version 1.5-14. https://CRAN.R-project.org/package=geosphere (2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).Silva, L. F. et al. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecol. Indic. 133, 108367 (2021).Article 

    Google Scholar  More

  • in

    The impact of environmental and climatic variables on genetic diversity and plant functional traits of the endangered tuberous orchid (Orchis mascula L.)

    Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K. & Sanders, N. J. Convergent effects of elevation on functional leaf traits within and among species. Funct. Ecol. 28, 37–45. https://doi.org/10.1111/1365-2435.12162 (2014).Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. https://doi.org/10.1038/nature15374 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838. https://doi.org/10.1111/ele.12618 (2016).Article 
    PubMed 

    Google Scholar 
    Paschke, M. C. & Schmid, B. Relationship between population size, allozyme variation, and plant performance in the narrow endemic Cochlearia bavarica. Conserv. Genet. 3, 131–144 (2002).Article 
    CAS 

    Google Scholar 
    Soleimani, V., Baum, B. & Johnson, D. A. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor. Appl. Genet. 104, 350–357. https://doi.org/10.1007/s001220100714 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x (2008).Article 
    PubMed 

    Google Scholar 
    Prati, D., Peintinger, M. & Fischer, M. Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant. J. Plant Ecol. https://doi.org/10.1093/jpe/rtv067 (2016).Article 

    Google Scholar 
    Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44. https://doi.org/10.1016/j.tree.2007.09.008 (2008).Article 
    PubMed 

    Google Scholar 
    Atwater, D. Z. & Callaway, R. M. Testing the mechanisms of diversity-dependent overyielding in a grass species. Ecology 96, 3332–3342. https://doi.org/10.1890/15-0889.1 (2015).Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C., McArt, S. H., Parachnowitsch, A. L., Thaler, J. S. & Agrawal, A. A. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. https://doi.org/10.1890/10-0999.1 (2011).Article 
    PubMed 

    Google Scholar 
    Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107–1120. https://doi.org/10.1007/s00442-019-04371-7 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x (2007).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188. https://doi.org/10.1111/gcb.14904 (2020).Article 
    ADS 

    Google Scholar 
    König, P. et al. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Glob. Ecol. Biogeogr. 27, 310–321 (2018).Article 

    Google Scholar 
    Robinson, K. M., Ingvarsson, P. K., Jansson, S. & Albrectsen, B. R. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.). PLoS ONE 7, e37679. https://doi.org/10.1371/journal.pone.0037679 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karbstein, K., Prinz, K., Hellwig, F. & Römermann, C. Plant intraspecific functional trait variation is related to within-habitat heterogeneity and genetic diversity in Trifolium montanum L. Ecol. Evol. 10, 5015–5033. https://doi.org/10.1002/ece3.6255 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaya, S. & Tekin, A. R. The effect of salep content on the rheological characteristics of a typical ice-cream mix. J. Food Eng. 47, 59–62. https://doi.org/10.1016/S0260-8774(00)00093-5 (2001).Article 

    Google Scholar 
    Ktistis, G. & Georgakopoulos, P. P. Rheology of salep mucilages. Pharmazie 46, 55–56 (1991).CAS 

    Google Scholar 
    Kayacier, A. & Dogan, M. Rheological properties of some gums-salep mixed solutions. J. Food Eng. 72, 261–265. https://doi.org/10.1016/j.jfoodeng.2004.12.005 (2006).Article 
    CAS 

    Google Scholar 
    Sen, M. A., Palabiyik, I. & Kurultay, S. The effect of saleps obtained from various Orchidacease species on some physical and sensory properties of ice cream. Food Sci. Technol. 39, 82–87. https://doi.org/10.1590/fst.26017 (2019).Article 

    Google Scholar 
    Farhoosh, R. & Riazi, A. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature. Food Hydrocoll. 21, 660–666. https://doi.org/10.1016/j.foodhyd.2006.07.021 (2007).Article 
    CAS 

    Google Scholar 
    Ghorbani, A., Zarre, S., Gravendeel, B. & de Boer, H. J. Illegal wild collection and international trade of CITES-listed terrestrial orchid tubers in Iran. Traffic Bullet. 26, 52–58 (2014).
    Google Scholar 
    Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. https://doi.org/10.1126/science.1156831 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, Z.-Q., Algeo, T. J. & Fraiser, M. L. Organism-environment interactions during the Permian-Triassic mass extinction and its aftermath. Palaios 28, 661–663. https://doi.org/10.2110/palo.2012.p12-102r (2013).Article 
    ADS 

    Google Scholar 
    Ebrahimi, A. et al. Evaluation of phenotypic diversity of the endangered orchid (Orchis mascula): Emphasizing on breeding, conservation and development. S. Afr. J. Bot. 132, 304–315. https://doi.org/10.1016/j.sajb.2020.05.013 (2020).Article 

    Google Scholar 
    Ghorbani, A., Gravendeel, B., Naghibi, F. & de Boer, H. Wild orchid tuber collection in Iran: A wake-up call for conservation. Biodivers. Conserv. 23, 2749–2760. https://doi.org/10.1007/s10531-014-0746-y (2014).Article 

    Google Scholar 
    Barrett, S. C. & Kohn, J. R. The application of minimum viable population theory to plants. Genetics and conservation of rare plants 3–1 (Oxford University Press, 1991).
    Google Scholar 
    Yun, S. A., Son, H.-D., Im, H.-T. & Kim, S.-C. Genetic diversity and population structure of the endangered orchid Pelatantheria scolopendrifolia (Orchidaceae) in Korea. PLoS ONE 15, e0237546. https://doi.org/10.1371/journal.pone.0237546 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gholami, S., Vafaee, Y., Nazari, F. & Ghorbani, A. Exploring genetic variations in threatened medicinal orchids using start codon targeted (SCoT) polymorphism and marker-association with seed morphometric traits. Physiol. Mol. Biol. Plants 27, 769–785. https://doi.org/10.1007/s12298-021-00978-4 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gholami, S., Vafaee, Y., Nazari, F. & Ghorbani, A. Molecular characterization of endangered Iranian terrestrial orchids using ISSR markers and association with floral and tuber-related phenotypic traits. Physiol. Mol. Biol. Plants 27, 53–68. https://doi.org/10.1007/s12298-020-00920-0 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaki, A., Vafaee, Y. & Khadivi, A. Genetic variation of Anacamptis coriophora, Dactylorhiza umbrosa, Himantoglossum affine, Orchis mascula, and Ophrys schulzei in the western parts of Iran. Ind. Crops Prod. 156, 112854. https://doi.org/10.1016/j.indcrop.2020.112854 (2020).Article 
    CAS 

    Google Scholar 
    Falk, D., & Holsinger, K. E. Genetic sampling guidelines for conservation collections of endangered plants (1991).Dempewolf, H. et al. Past and future use of wild relatives in crop breeding. Crop Sci. 57, 1070–1082. https://doi.org/10.2135/cropsci2016.10.0885 (2017).Article 

    Google Scholar 
    Renz, J. Flora Iranica. Part 126: Orchidaceae (1978).Shahsavari, A. Flora of Iran. Part 57: Orchidaceae (2008).Boulila, A., Béjaoui, A., Messaoud, C. & Boussaid, M. Genetic diversity and population structure of Teucrium polium (Lamiaceae) in Tunisia. Biochem. Gen. 48, 57–70. https://doi.org/10.1007/s10528-009-9295-6 (2010).Article 
    CAS 

    Google Scholar 
    Zannou, A., Struik, P., Richards, P., Zoundjih, E. & Yam, J. (Dioscorea spp.) responses to the environmental variability in the Guinea Sudan zone of Benin. Afr. J. Agric. Res. 10, 4913–4925. https://doi.org/10.5897/AJAR2013.8099 (2015).Article 

    Google Scholar 
    Sujii, P. et al. Morphological and molecular characteristics do not confirm popular classification of the Brazil nut tree in Acre, Brazil. Genet. Mol. Res. https://doi.org/10.4238/2013.september.27.3 (2013).Article 
    PubMed 

    Google Scholar 
    Nadeem, M. A. et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32, 261–285. https://doi.org/10.1080/13102818.2017.1400401 (2018).Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Brys, R., Adriaens, D., Honnay, O. & Roldán-Ruiz, I. Effects of population size and forest management on genetic diversity and structure of the tuberous orchid Orchis mascula. Conserv. Genet. 10, 161–168. https://doi.org/10.1007/s10592-008-9543-z (2009).Article 

    Google Scholar 
    Mitchell, P. & Woodward, F. Responses of three woodland herbs to reduced photosynthetically active radiation and low red to far-red ratio in shade. J. Ecol. https://doi.org/10.2307/2260575 (1988).Article 

    Google Scholar 
    Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. & Pierce, R. S. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monog. 40, 23–47. https://doi.org/10.2307/1942440 (1970).Article 

    Google Scholar 
    Jacquemyn, H. & Brys, R. Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. Ann. Bot. 126, 445–453. https://doi.org/10.1093/aob/mcaa080 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olaya-Arenas, P., Meléndez-Ackerman, E. J., Pérez, M. E. & Tremblay, R. Demographic response by a small epiphytic orchid. Am. J. Bot. 98, 2040–2048. https://doi.org/10.3732/ajb.1100223 (2011).Article 
    PubMed 

    Google Scholar 
    Primack, R. B., Miao, S. & Becker, K. R. Costs of reproduction in the pink lady’s slipper orchid (Cypripedium acaule): Defoliation, increased fruit production, and fire. Am. J. Bot. 81, 1083–1090. https://doi.org/10.2307/2446500 (1994).Article 

    Google Scholar 
    Whigham, D. F. & O’Neill, J. P. Dynamics of flowering and fruit production in two eastern North American terrestrial orchids. In Tipularia Discolor and Liparis Lilifolia in Population Ecology of Terrestrial Orchids (eds Wells, T. C. E. & Willems, J. H.) 89–101 (SPB Academic Publishers, 1991).
    Google Scholar 
    Tekinşen, K. K. & Güner, A. Chemical composition and physicochemical properties of tubera salep produced from some Orchidaceae species. Food Chem. 121, 468–471. https://doi.org/10.1016/j.foodchem.2009.12.066 (2010).Article 
    CAS 

    Google Scholar 
    Whigham, D. F. Biomass and nutrient allocation of Tipularia discolor (Orchidaceae). Oikos https://doi.org/10.2307/3544398 (1984).Article 

    Google Scholar 
    Mattila, E. & Kuitunen, M. T. Nutrient versus pollination limitation in Platanthera bifolia and Dactylorhiza incarnata (Orchidaceae). Oikos 89, 360–366. https://doi.org/10.1034/j.1600-0706.2000.890217.x (2000).Article 

    Google Scholar 
    Xu, W. et al. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 37, 9. https://doi.org/10.1007/s11738-014-1760-0 (2015).Article 
    CAS 

    Google Scholar 
    March-Salas, M., Fandos, G. & Fitze, P. S. Effects of intrinsic environmental predictability on intra-individual and intra-population variability of plant reproductive traits and eco-evolutionary consequences. Ann. Bot. 127, 413–423. https://doi.org/10.1093/aob/mcaa096 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. https://doi.org/10.1007/s00382-015-2636-8 (2016).Article 

    Google Scholar 
    Crémieux, L., Bischoff, A., Müller-Schärer, H. & Steinger, T. Gene flow from foreign provenances into local plant populations: Fitness consequences and implications for biodiversity restoration. Am. J. Bot. 97, 94–100. https://doi.org/10.3732/ajb.0900103 (2010).Article 
    PubMed 

    Google Scholar 
    Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443. https://doi.org/10.1111/j.1365-2435.2006.01228.x (2007).Article 

    Google Scholar 
    Jacquemyn, H. et al. Multigenerational analysis of spatial structure in the terrestrial, food-deceptive orchid Orchis mascula. J. Ecol. 97, 206–216. https://doi.org/10.1111/j.1365-2745.2008.01464.x (2009).Article 

    Google Scholar 
    Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962. https://doi.org/10.1126/science.aag2773 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ene, C. O., Ogbonna, P. E., Agbo, C. U. & Chukwudi, U. P. Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chilean J. Agric. Res. 76, 307–313. https://doi.org/10.4067/S0718-58392016000300007 (2016).Article 

    Google Scholar 
    Pradhan, S. K. et al. Population structure, genetic diversity and molecular marker-trait association analysis for high temperature stress tolerance in rice. PLoS ONE 11, e0160027. https://doi.org/10.1371/journal.pone.0160027 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swarup, S. et al. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 61, 839–852. https://doi.org/10.1002/csc2.20377 (2021).Article 

    Google Scholar 
    Patzak, A. Plantaginaceae in KH Rechinger Flora Iranica 15: 1–21 (Academische Druck und Verlagsantalt, 1965).
    Google Scholar 
    Mehrvarz Saeidi, S. Plantaginaceae Family Vol. 14 (Research Institute of Forests and Rangelands, 1995).
    Google Scholar 
    Limited, M. I. I. Glucomannan assay procedure KGLUM 10/04. Ireland (2004).Limited, M. I. I. Total starch assay procedure (amyloglucosidase/a-Amylase Method) AA/AMG 11/01. AOAC Method 996.11.Ireland (2004).Bradshaw, H., Otto, K. G., Frewen, B. E., McKay, J. K. & Schemske, D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149, 367–382. https://doi.org/10.1093/genetics/149.1.367 (1998).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Del Sal, G., Manfioletti, G. & Schneider, C. The CTAB-DNA precipitation method: A common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7, 514–520 (1989).PubMed 

    Google Scholar 
    Vos, P. et al. AFLP: A new technique for DNA fingerprinting. Nucl. Acid Res. 23, 4407–4414. https://doi.org/10.1093/nar/23.21.4407 (1995).Article 
    CAS 

    Google Scholar 
    Bassam, B. J., Caetano-Anollés, G. & Gresshoff, P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83. https://doi.org/10.1016/0003-2697(91)90120-I (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Husson, F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’. An R package 96, 698 (2016).
    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Galili, T. in The R User Conference, useR! 2017 July 4–7 2017 Brussels, Belgium. 219.Wei, T. et al. Package ‘corrplot’. 56, e24 (2017).Yeh, F. POPGENE (version 1.3. 1). Microsoft Window-Bases Freeware for Population Genetic Analysis. http://www.ualbertaca/~fyeh/ (1999).Wickham, H. & Chang, W. URL: http://CRAN.R-project.org/package=ggplot2.ggplot2: An implementation of the Grammar of Graphics. 3 (2008).Kolde, R. & Kolde, M. R. Package’ pheatmap’. R package 1, 790 (2015).
    Google Scholar 
    Landgraf, A. J. & Lee, Y. Dimensionality reduction for binary data through the projection of natural parameters. J. Mult. Anal. 180, 104668. https://doi.org/10.1016/j.jmva.2020.104668 (2020).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Biol. J. Linn. Soc. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4-3 (2016).Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer. J. 2, e281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vavrek, M. J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 16. https://doi.org/10.7717/peerj.281 (2011).Article 

    Google Scholar 
    Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast

    According to the target of the present study, the mortality incidence on P. nobilis in local populations along the Apulia peninsula (the Southeast coast of Italy) following the MME was assessed. In addition, an investigation on the species distribution and densities in the Adriatic and the Ionian Sea was carried out, which allowed us to build a picture of species populations before the MME.Concerning the P. nobilis distribution in the Apulia region before the MME, unfortunately, there is a lack of information at the wide scale, and literature reports only concern semi-enclosed systems such as the Taranto basins17,18,19 and the Aquatina lagoon20. No large-scale monitoring program on P. nobilis, in fact, has been carried out previously along the Apulian coast, although this kind of surveys is indispensable for the management of a protected species and must become mandatory for a critically endangered species such has become P. nobilis. The present data-gathering, that is aimed to partially address this information gap, based on the monitoring of recently dead specimens, allowed to realize a plausible map of P. nobilis distribution and densities before the MME in 30 areas distributed along the entire Apulian region coast.Along the Ionian coast, recently dead P. nobilis were detected in all the areas studied, highlighting a continuous distribution of the species prior to the MME, differently from the not continuous distribution along the Adriatic coast. The occurrence of P. nobilis was recorded in the areas surveyed in the south, from A7 to A17, but no traces were found along the northernmost areas except for the Tremiti archipelago, suggesting that the northernmost Adriatic coast of the region does not meet the environmental conditions suitable for hosting this species. Nevertheless, in the Gulf of Manfredonia multiple reports from fisherman indicating the presence of the species in a local Cymodocea nodosa meadow before the 1980s, suggest that this area may have been an exception in the past. Therefore, we can assume that excessive fishing and anthropogenic activities in this area are likely to have caused the species to disappear many decades ago.Data regarding the mortality incidence after the MME in Apulian populations is scarce. Panarese et al.11 reported the advent of the disease in Mar Piccolo di Taranto but without describing the disease incidence. In this study, a mortality incidence of 100% in all basins, bathymetric (down to 15 m) and habitat types, was recorded, demonstrating the severity of the situation along the entire Apulian coast, both inshore and offshore, and in lagoon and marine-protected areas.Although the availability of nutrients and the trophic conditions are assumed to be very different between offshore, inshore, and transitional systems, the archipelago of Tremiti islands, located 13 miles away from the coast, showed no differences in mortality incidence from sites along the coast, evidencing the same critical conditions in all environments.Many Mediterranean lagoon systems, including the Ebro Delta, Mar Menor Lagoon in Spain21, the Rhone delta, Leucate and Thau in France22,23,24, Venice, Grado-Marano and Faro in Italy25,26,27, Bizerte in Tunisia24 are considered the last healthy shelters for P. nobilis populations in the Mediterranean Sea22. These systems seem to offer a degree of resistance against the disease and are all characterized by high seasonal fluctuations of environmental parameters, such as temperature and salinity. It has been supposed that the effect of these fluctuations could make these environments less suitable for the spread of the disease and reduce the rate of transmission21,22. In the present study, two lagoon systems were also investigated, but no live specimens were found. These systems are strongly affected by the saltwater intrusion and the freshwater inputs became very low during the dry season. Hence, we can assume that during the summer season, when P. nobilis become susceptible to the disease, no salinity barrier against the pathogen spread persists in these lagoons systems.Considering that the lagoon refuges currently represent the main source of larval production for P. nobilis recruitment22,28, the collapse of these populations confirms the severity of the situation for species conservation. For the Italian coast, the last live populations are those in the lagoons located in the northen Adriatic Sea (Venice and Grado-Marano lagoon). These environments can act as larval exporters for the Adriatic Sea taking advantage of the mobility of the larvae that can spread over hundreds of kms28.Regarding the timeframe of the spread of the MME along the Apulian coast, the first report of the infection dates back to 201818, in the Mar Piccolo di Taranto. Compared to the first MME event observed in the Spanish coast in 20165,7, the disease has spread from the western to the eastern basin of the Mediterranean Sea over a period of 2 years. Our surveys, carried out in 2020, showed that 91% of the shells were still undamaged and with joined valves. Based on the state of conservation of the shells29 it is possible to hypothesize that the death of the specimens was a recent phenomenon that had occurred in Apulia in the two years preceding our surveys, and most probably it should be dated back to 2019.Kersting and Ballesteros30 have suggested that other species, such as P. rudis, could benefit from the collapse of the P. nobilis population. During our surveys, only 5 specimens of P. rudis were found, located in 2 sites, but it must be considered that the survey was carried out only a short time after the MME of P. nobilis. Further studies aimed at assessing an increase in P. rudis in the investigated areas would be of great interest to corroborate this hypothesis.In these surveys, P. nobilis showed transverse distribution among habitat types occurring both in marine and lagoon systems, inside and outside seagrass meadows, on sandy, rocky, and maerl beds substrate. Nevertheless, on a spatial macro (from a few kilometers to tens of kilometers) and mesoscale (from hundreds to thousands of meters), an overlap with the distributional range of seagrass meadows emerges. A clear cross-boundary subsidy trend was evidenced by the data collected on P. nobilis distribution in association with seagrasses. The specimens inside seagrass meadows were almost double than those detected nearby and a gradual decrease was observed with the increase of the distance from the seagrass patches (Fig. 2). This is particularly evident along the northern Adriatic coast of the region, where extended seagrass meadows are absent and, no trace of P. nobilis was encountered, except in the Tremiti archipelago where both P. oceanica meadows and pen shells were found. By contrast, present data reporting P. nobilis as associated with various seagrass species, such as P. oceanica, C. nodosa, and Zostera sp., are consistent with the macroscale and mesoscale association between P. nobilis and seagrass meadows sensu lato and most literature reporting ubiquitous distribution of P. nobilis both in lagoon-estuarine21,22,24,25,26,31 and in marine ecosystems4,7,9,14,16,24.However, regarding their microscale distribution, the pen shells in our surveys were recorded also outside the seagrass meadows boundaries, at times up to 1 km away. Hence, seagrass sheltering can potentially be ruled out as the sole explanatory factor for the distribution pattern of the species. The pattern emerging from this study led us to hypothesize that a trophic link with the seagrass detritus food-chain may explain both the macroscale–mesoscale association with seagrass species and the microscale cross-boundary distribution. In fact, seagrass detritus is highly refractory, since it is largely exported to the nearby areas where it can represent the major food source for other invertebrates32,33,34. This hypothesis is consistent with the stomach contents observations reported by Davenport et al.3 indicating detritus as the bulk component, accounting for 95% of the total ingested material.One of the main factors underlying the distribution pattern in benthic invertebrates is indeed food availability35,36. According to the Ideal Free Distribution (IFD) theory, the individuals in a population disperse to different resource patches within their environment, minimizing competition and maximizing fitness37. When the IFD assumptions are met, the number of individuals who aggregate in patches is proportional to the amount of food resource available in each one. Accordingly, the distribution of large, long life, and sessile organisms such as P. nobilis would be expected to depict the species trophic supply, by analyzing the resources available in those patches.Studies on the seagrass system energy flow have shown that seagrass debris must be fractionated before entering the food chain33. In this way, plant material becomes fine particulates moving in the boundary layer over the sediment–water interface38,39. These processes take time, and while the matter is transported, heterotrophic bacteria grow exponentially, turning it into a high quality and protein-enriched food for consumers. Hence, bacteria adhering to seagrass detritus may play a key role in this benthic food chain and sediment–water interface consumers may incorporate more energy from associated microbes than from the detritus itself32,38. On the basis of these considerations, it is reasonable to hypothesize that the quantity, composition and origin of the suspended particles are regulated by a drift mechanism and that this mechanism may explain local densities of P. nobilis as a response to sinking rates and resuspension effects. This hypothesis explain also the species distribution in systems, characterized by strong dominant current and shallow seabeds where the seagrass detritus can be spread/drift several kilometers away from the meadows. An example of this condition is encountered in the north Adriatic Sea (e.g., Gulf of Trieste) where extensive population of P. nobilis develops on several sink areas even kilometers downstream from the meadows. The assumption of the species’ ability to feed on seagrass detritus, together with the high biomasses reached (large size specimens and high density), lead us to suppose that P. nobilis may play a key role in the processing of matter and in the energy pathway deriving from seagrass detritus in Mediterranean coastal areas. This makes the repercussions of the MME not only a problem of conservation, but also and above all, an ecological-functional issue.We can, therefore, conclude that Mediterranean seagrass meadows not only constitute a habitat for P. nobilis, but probably also a food source through refractory detritus generation which is transferred and transformed outside the meadows. Unfortunately, literature is lacking on this topic and further investigations are needed to define the trophic role and function of these filter feeders in the different seagrass meadows.The density values that emerged were significantly different among basins. In the Adriatic Sea, where all the coastal values were recorded, the densities were consistently lower than those reported in the Ionian Sea, except for the two southernmost areas. In the Adriatic basin, it was also possible to recognize a north-south trend when considering the densities of pen shells in the coastal areas. Although the values recorded along the southern coast of the region were much greater than those recorded in the central coast, they were far lower than those reported by Čižmek et al.40 in the Croatian coast (North Adriatic Sea). Similar values to ours within the same basin were reported by Celebicic et al.41 in Bosnian waters (0.12 individuals/100 m2).On the other hand, in the Ionian areas, the values recorded were consistently >0.1 individuals/100 m2. The values recorded in the Mar Grande di Taranto were higher than those reported by Centoducati et al.17 (0.1–0.7 ind/ha2). From interviews with fishermen, it emerged that illegal trawling in this area has strongly impacted the natural populations of the Mar Grande di Taranto, and a partial reduction of this activity, in recent years could explain the slight increase in density compared to the 2004 survey data17.In interpreting our data, it should be considered that the surveys were carried out employing an extensive sampling protocol conceived to assess wide surface densities on coastal areas investigating across several habitat types. Therefore, literature density values focused only on local areas or habitat patchiness that were not randomly selected must be contextualized when compared with these data. In addition, given the scale of the presented surveys, emphasis must be given to P. nobilis absence data of which the literature appears poor. Indeed, contrary to the data on presence, reliable absence data are difficult to obtain requiring much greater effort to rule out a rare occurrence42. The absence data obtained in this study derive from the merger of two different data types. The first come from the local ecological knowledge obtained from interviews with the local fishermen, which allowed us to confirm our data, excluding spot occurrences in the same areas. Furthermore the interviews allowed us to collect information on a historical series of species presence/absence in the areas, which was helpful to confirm local absence when no P. nobilis specimens were recorded in our surveys. The second derives from the complete vision of divers during the field surveys. Indeed the scuba diver’s view was at least 10 times wider than 50 cm from the side around the rope and hence, the perception of absence can be extended over a much larger surface area investigated. By merging these two sources of information, we can assume that the absence data collected in exhaustive and complete.In conclusion, this study investigated different basins, habitat types, and bathymetries along the Apulian coast. The shells spatial distribution that arise from this study allowed to obtain important information on the species trophic ecology. Indeed, the species distributional pattern showed a strong overlap with seagrass meadows on meso and macro geographical scale, however this was not the case on a micro scale. This result indicates that although there is a strong relationship between P. nobilis and seagrass meadows, it is not limited to the habitat patch but crosses the boundaries of seagrass. This result led us to hypothesize that the distribution of P. nobilis displays a trophic link through the cross-boundary subsidy occurring from seagrass meadows to the nearby habitat, by means of the refractory detrital pathway. However, further investigations taking into account other factors such as hydrodynamics, are needed to investigate this topic.No live specimens of P. nobilis were found in >800 km of coastal line, leading us to the conclusion that the coastal and lagoon population had totally collapsed in the region after the MME. The seriousness of the situation on the Apulian coasts, just as in the other Mediterranean ecoregions, indicates that the MME that began in 2016 is still in progress, and no local population can be considered safe. Given the gravity of the current situation, it is vital for species preservation to extend the survey across the entire Italian coast to gain a overall picture of the status of the P. nobilis population on a national scale. Indeed, other regions may reveal the existence of natural shelters, where live populations of P. nobilis may still persist. If this is the case, it is essential to identify and protect them in time. As already suggested by Kersting et al.9, this initiative should be conducted in parallel by all the nations of the Mediterranean basin to implement standard guidelines for the monitoring, protection, and recovery of this critically endangered species. More

  • in

    Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio 11, e02901-19 (2020).Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Minich, J. J. et al. Temporal, environmental, and biological drivers of the mucosal microbiome in a wild marine fish, Scomber japonicus. mSphere 5, e00401-20 (2020).Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).PubMed 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bosco, N. & Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 22, 289–303 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, A. A., Müller, K. M., Weese, J. S. & Neufeld, J. D. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc. Natl Acad. Sci. USA 115, E5786–E5795 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobbie, J. E., Daley, R. J. & Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225–1228 (1977).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prussin, A. J. 2nd, Garcia, E. B. & Marr, L. C. Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, D., Sunyer, J. O. & Salinas, I. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish. Shellfish Immunol. 35, 1729–1739 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowrey, L., Woodhams, D. C., Tacchi, L. & Salinas, I. Topographical mapping of the Rainbow Trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81, 6915–6925 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Microbial ecology of Atlantic Salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl. Environ. Microbiol. 86, 20 (2020).Minich, J. J. et al. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front. Mar. Sci. 0, 676731 (2021).Minich, J. J. et al. The Southern Bluefin Tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front. Microbiol. 11, 2015 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ruiz-Rodríguez, M. et al. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb. Ecol. 80, 212–222 (2020).PubMed 

    Google Scholar 
    Tarnecki, A. M., Burgos, F. A., Ray, C. L. & Arias, C. R. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J. Appl. Microbiol. 123, 2–17 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 6, 24340 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karachle, P. K. & Stergiou, K. I. Gut length for several marine fish: relationships with body length and trophic implications. Mar. Biodivers. Rec. 3, 1–10 (2010).Ghilardi, M. et al. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol. Evol. 11, 13218–13231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Clements, K. D., Angert, E. R., Linn Montgomery, W. & Howard Choat, J. Intestinal microbiota in fishes: what’s known and what’s not. Mol. Ecol. 23, 1891–1898 (2014).PubMed 

    Google Scholar 
    Zhu, D., Delgado-Baquerizo, M., Ding, J., Gillings, M. R. & Zhu, Y.-G. Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome 9, 189 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218-17 (2018).Davis, C. Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 103, 9–17 (2014).CAS 
    PubMed 

    Google Scholar 
    Rastogi, G., Tech, J. J., Coaker, G. L. & Leveau, J. H. J. A PCR-based toolbox for the culture-independent quantification of total bacterial abundances in plant environments. J. Microbiol. Methods 83, 127–132 (2010).CAS 
    PubMed 

    Google Scholar 
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S., Doebeli, M. & Parfrey, L. W. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6, 41 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, N. C., Rise, M. L. & Christian, S. L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, 2292 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).CAS 
    PubMed 

    Google Scholar 
    Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R. & Graham, N. A. J. The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7, e42167 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yahel, G. et al. Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar. Ecol. Prog. Ser. 372, 195–209 (2008).ADS 
    CAS 

    Google Scholar 
    Glover, C. N., Bucking, C. & Wood, C. M. The skin of fish as a transport epithelium: a review. J. Comp. Physiol. B 183, 877–891 (2013).CAS 
    PubMed 

    Google Scholar 
    León-Zayas, R., McCargar, M., Drew, J. A. & Biddle, J. F. Microbiomes of fish, sediment and seagrass suggest connectivity of coral reef microbial populations. PeerJ 8, e10026 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hess, S., Wenger, A. S., Ainsworth, T. D. & Rummer, J. L. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: impacts on gill structure and microbiome. Sci. Rep. 5, 10561 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sparagon, W. J. et al. Fine scale transitions of the microbiota and metabolome along the gastrointestinal tract of herbivorous fishes. Anim. Microbiome 4, 33 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edward Stevens, C. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, 2004).Wilson, J. M. & Castro, L. F. C. Morphological diversity of the gastrointestinal tract in fishes. Fish Physiol. 1–55 https://doi.org/10.1016/s1546-5098(10)03001-3 (2010).Shirakashi, S. et al. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol. Int. 61, 242–249 (2012).PubMed 

    Google Scholar 
    Ogawa, K. & Fukudome, M. Mass mortality caused by Blood Fluke(Paradeontacylix) among Amberjack(Seriola dumeili) imported to Japan. Fish. Pathol. 29, 265–269 (1994).
    Google Scholar 
    Wilson, J. M. & Laurent, P. Fish gill morphology: inside out. J. Exp. Zool. 293, 192–213 (2002).PubMed 

    Google Scholar 
    Huang, Q. et al. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol. Ecol. 29, 5019–5034 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS 
    PubMed 

    Google Scholar 
    Lall, S. P. & Tibbetts, S. M. Nutrition, feeding, and behavior of fish. Vet. Clin. North Am. Exot. Anim. Pract. 12, 361–372 (2009). xi.PubMed 

    Google Scholar 
    Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).CAS 
    PubMed 

    Google Scholar 
    Day, R. D., German, D. P. & Tibbetts, I. R. Why can’t young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 158, 23–29 (2011).
    Google Scholar 
    Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. Biol. Sci. 287, 20192900 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mazel, F. et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems 3, e00097-18 (2018).Ross, A. A., Rodrigues Hoffmann, A. & Neufeld, J. D. The skin microbiome of vertebrates. Microbiome 7, 79 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Javůrková, V. G. et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 13, 2363–2376 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Doane, M. P. et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome 8, 93 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Chiarello, M. et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome 6, 147 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sylvain, F.-É. et al. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 86, e00789-20 (2020).Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 

    Google Scholar 
    Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).
    Google Scholar 
    Sale, P. F. Reef fish communities: open nonequilibrial systems. In The Ecology of Fishes on Coral Reefs. 564–598. https://doi.org/10.1016/b978-0-08-092551-6.50024-6 (Academic Press Inc., San Diego, 1991).Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-18 (2018).Press, C. McL & Evensen, Ø. The morphology of the immune system in teleost fishes. Fish Shellfish Immunol. 9, 309–318 (1999).Koppang, E. O., Kvellestad, A. & Fischer, U. Fish mucosal immunity: gill. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 93–133. https://doi.org/10.1016/b978-0-12-417186-2.00005-4 (Elsevier Inc., 2015).Esteban, M. Á. & Cerezuela, R. Fish mucosal immunity: skin. In Mucosal Health in Aquaculture (eds Beck, B. & Peatman, E.) 67–92. https://doi.org/10.1016/b978-0-12-417186-2.00004-2 (Elsevier Inc., 2015).Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-16 (2016).Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Love, M. S., Bizzarro, J. J., Maria Cornthwaite, A., Frable, B. W. & Maslenikov, K. P. Checklist of marine and estuarine fishes from the Alaska–Yukon Border, Beaufort Sea, to Cabo San Lucas, Mexico. Zootaxa 5053, 1–285 (2021).PubMed 

    Google Scholar 
    Allen, L. G. & Horn, M. H. The Ecology of Marine Fishes: California and Adjacent Waters (University of California Press, 2006).Al-Hussaini, A. H. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits; anatomy and histology. Q. J. Microsc. Sci. 90(Pt. 2), 109–139 (1949).PubMed 

    Google Scholar 
    Maddock, L., Bone, Q. & Rayner, J. M. V. (eds). In Mechanics and Physiology of Animal Swimming (Press Syndicate-of the University of Cambridge, 1994).Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cruz, G. N. F., Christoff, A. P. & de Oliveira, L. F. V. Equivolumetric protocol generates library sizes proportional to total microbial load in 16S amplicon sequencing. Front. Microbiol. 12, 638231 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4, e00186-19 (2019).Minich, J. J. et al. High-throughput miniaturized 16S rRNA amplicon library preparation reduces costs while preserving microbiome integrity. mSystems 3, e00166-18 (2018).Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009-15 (2016).Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 

    Google Scholar 
    McDonald, D. et al. Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nat. Methods 15, 847–848 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Minich, J. J. et al. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen 7, e00716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Van Doan, H. et al. Host-associated probiotics: a key factor in sustainable aquaculture. Rev. Fish. Sci. Aquac. 28, 16–42 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar  More