More stories

  • in

    Modelling the Mediterranean Sea ecosystem at high spatial resolution to inform the ecosystem-based management in the region

    Barbier, E. B. Marine ecosystem services. Curr. Biol. 27, R507–R510 (2017).CAS 
    PubMed 

    Google Scholar 
    Liquete, C., Piroddi, C., Macías, D., Druon, J.-N. & Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 6, 34162 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).
    Google Scholar 
    Link, J. S. & Browman, H. I. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74, 379–381 (2017).
    Google Scholar 
    EC. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Brussels: European Commission. (2020).EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, “Pathway to a healthy planet for all” with the sub-title “EU action Plan: ’Towards zero pollution for air, water and soil, COM (2021) 400. (2021).EC. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions, COM (2019) 640. (2019).Alexander, K. & Haward, M. The human side of marine ecosystem-based management (EBM): ‘Sectoral interplay’ as a challenge to implementing EBM. Mar. Policy 101, 33–38 (2019).
    Google Scholar 
    EC. The EU Blue Economy Report 2021. (2021).Ostlaender, N. et al. Modelling Inventory and Knowledge Man-agement System of the European Commission (MIDAS) (Publications Office of the European Union, 2019).
    Google Scholar 
    Friedland, R. et al. Effects of nutrient management scenarios on marine eutrophication indicators: A Pan-European, multi-model assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 596126 (2021).
    Google Scholar 
    Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: A Pan-European Assessment in support of the Marine Strategy Framework Directive. Front. Mar. Sci. 8, 179 (2021).
    Google Scholar 
    Corrales, X. et al. Multi-zone marine protected areas: Assessment of ecosystem and fisheries benefits using multiple ecosystem models. Ocean Coast. Manag. 193, 105232 (2020).
    Google Scholar 
    Bentley, J. W. et al. Refining fisheries advice with stock-specific ecosystem information. Front. Mar. Sci. 8, 602072 (2021).
    Google Scholar 
    Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Heymans, J. J. et al. The ocean decade: A true ecosystem modelling challenge. Front. Mar. Sci. 7, 554573 (2020).
    Google Scholar 
    Hernvann, P.-Y. et al. The Celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018 (2020).
    Google Scholar 
    Christensen, V. & Walters, C. J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
    Google Scholar 
    Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).
    Google Scholar 
    Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).CAS 

    Google Scholar 
    de Mutsert, K., Lewis, K., Milroy, S., Buszowski, J. & Steenbeek, J. Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries. Ecol. Model. 360, 14–26 (2017).
    Google Scholar 
    Serpetti, N. et al. Modelling small scale impacts of Multi-Purpose Platforms: An ecosystem approach. Front. Mar. Sci. 8, 778 (2021).
    Google Scholar 
    DFO. Technical review of Roberts Bank Terminal 2 environmental assessment: section 10.3—assessing ecosystem productivity. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/050 (2016).Coll, M., Pennino, M. G., Steenbeek, J., Solé, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).
    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).
    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS One 8, e79889 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piroddi, C., Colloca, F. & Tsikliras, A. C. The living marine resources in the Mediterranean Sea large marine ecosystem. Environ. Dev. 36, 100555 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Barale, V. & Gade, M. Remote Sensing of the European Seas. (Springer, 2008).Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).ADS 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Bianchi, C. N. et al. In Life in the Mediterranean Sea: A Look at Habitat Changes, vol. 1 55 (2012).Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: The known, the unknown, and the unknowable. PLoS One 5, e11832 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moullec, F. et al. Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog. Oceanogr. 178, 102179 (2019).
    Google Scholar 
    Macias, D., Garcia-Gorriz, E., Piroddi, C. & Stips, A. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Glob. Biogeochem. Cycles 28, 897–907 (2014).ADS 
    CAS 

    Google Scholar 
    Piroddi, C. et al. Historical changes of the Mediterranean Sea ecosystem: Modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7, 44491 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lotze, H. K., Coll, M. & Dunne, J. A. Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea, Mediterranean. Ecosystems 14, 198–222 (2011).
    Google Scholar 
    Macias, D., Huertas, I. E., Garcia-Gorriz, E. & Stips, A. Non-Redfieldian dynamics driven by phytoplankton phosphate frugality explain nutrient and chlorophyll patterns in model simulations for the Mediterranean Sea. Prog. Oceanogr. 173, 37–50 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spedicato, M. T. et al. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83, 9–20 (2019).
    Google Scholar 
    Corrales, X. et al. Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors. Mar. Ecol. Prog. Ser. 580, 17–36 (2017).ADS 

    Google Scholar 
    FAO. The State of the Mediterranean and Black Sea fisheries (General Fisheries Commission for the Mediterranean (GFCM), 2020).Ferrà, C. et al. Mapping change in bottom trawling activity in the Mediterranean Sea through AIS data. Mar. Policy 94, 275–281 (2018).
    Google Scholar 
    Russo, T. et al. Trends in effort and yield of trawl fisheries: A case study from the Mediterranean Sea. Front. Mar. Sci. 6, 153 (2019).ADS 

    Google Scholar 
    Ramírez, F., Coll, M., Navarro, J., Bustamante, J. & Green, A. J. Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    Coll, M., Steenbeek, J., Ben Rais Lasram, F., Mouillot, D. & Cury, P. ‘Low-hanging fruit’ for conservation of marine vertebrate species at risk in the Mediterranean Sea. Glob. Ecol. Biogeogr. 24, 226–239 (2015).
    Google Scholar 
    Ruiz, J. et al. “Strengthening regional cooperation in the area of large pelagic fishery data collection (RECOLAPE)”, Annex III “Biological data collection for fisheries on highly migratory species” (2019).Boerder, K., Schiller, L. & Worm, B. Not all who wander are lost: Improving spatial protection for large pelagic fishes. Mar. Policy 105, 80–90 (2019).
    Google Scholar 
    Giakoumi, S. et al. Conserving European biodiversity across realms. Conserv. Lett. 12, e12586 (2019).
    Google Scholar 
    Gascuel, D. & Cheung, W. W. In Predicting Future Oceans 79–85 (Elsevier, 2019).Macias, D., Garcia-Gorriz, E. & Stips, A. Major fertilization sources and mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63, 897–914 (2018).ADS 
    CAS 

    Google Scholar 
    Alvarez-Berastegui, D., Tugores, M., Ottmann, D., Martín-Quetglas, M. & Reglero, P. Bluefin tuna larval indices in the Western Mediterranean, ecological and analytical sources of uncertainty. Collect. Vol. Sci. Pap. ICCAT. 77, 289–311 (2020).
    Google Scholar 
    ICCAT. 2020 SCRS Advice to the Commission (Madrid, Spain, 2020).Clavel-Henry, M., Piroddi, C., Quattrocchi, F., Macias, D. & Christensen, V. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea. Front. Mar. Sci. 7, 1136 (2020).
    Google Scholar 
    García-Ruiz, C. et al. Spatio-temporal patterns of macrourid fish species in the northern Mediterranean Sea. Sci. Mar. 83, 117–127 (2019).
    Google Scholar 
    Ainsworth, C. Quantifying species abundance trends in the Northern Gulf of California using local ecological knowledge. Mar. Coast. Fish. 3, 190–218 (2011).
    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Ind. 60, 947–962 (2016).
    Google Scholar 
    Swartz, W., Sala, E., Tracey, S., Watson, R. & Pauly, D. The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5, e15143 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damasio, L. M., Peninno, M. G. & Lopes, P. F. Small changes, big impacts: Geographic expansion in small-scale fisheries. Fish. Res. 226, 105533 (2020).
    Google Scholar 
    Coll, M. et al. Assessing fishing and marine biodiversity changes using fishers’ perceptions: The Spanish Mediterranean and Gulf of Cadiz case study. PLoS One 9, e85670 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z. & Tsalkou, E. The Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE 10, e0121188 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Pittman, S. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).ADS 

    Google Scholar 
    Kritzer, J. P. & Liu, O. R. In Stock Identification Methods 29–57 (Elsevier, 2014).Piroddi, C., Heymans, J. J., Macias, D., Gregoire, M. & Townsend, H. Editorial: Using ecological models to support and shape environmental policy decisions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.815313 (2021).
    Google Scholar 
    Macias, D. et al. JRC marine modelling framework in support of the marine strategy framework directive: Inventory of models, basin configurations and datasets. Update 2018. (2018).Piante, C. & Ody, D. Blue Growth in the Mediterranean Sea: The Challenge of Good Environmental Status. 192 (France, 2015).Borja, A. et al. Past and future grand challenges in marine ecosystem ecology. Front. Mar. Sci. 7, 362 (2020).
    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS 

    Google Scholar 
    Piroddi, C., Coll, M., Steenbeek, J., Moy, D. M. & Christensen, V. Modelling the Mediterranean marine ecosystem as a whole: Addressing the challenge of complexity. Mar. Ecol. Prog. Ser. 533, 47–65 (2015).ADS 

    Google Scholar 
    Walters, C., Pauly, D. & Christensen, V. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).
    Google Scholar 
    Christensen, V., Walters, C., Pauly, D. & Forrest, R. Ecopath with Ecosim 6: A User’s Guide (University of British Columbia, 2008).
    Google Scholar 
    Kaschner, K. et al. AquaMaps: Predicted range maps for aquatic species. In World Wide Web Electronic Publication, www.aquamaps.org, Version, vol. 8, 2016 (2016).De Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-End modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104 (2021).
    Google Scholar 
    Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 741, 567877 (2020).
    Google Scholar 
    Shannon, C. & Weaver, W. (Univ. Illinois Press, 1949).Ainsworth, C. H. & Pitcher, T. J. Modifying Kempton’s species diversity index for use with ecosystem simulation models. Ecol. Ind. 6, 623–630 (2006).
    Google Scholar 
    Coll, M. & Steenbeek, J. Standardized ecological indicators to assess aquatic food webs: The ECOIND software plug-in for Ecopath with Ecosim models. Environ. Model. Softw. 89, 120–130 (2017).
    Google Scholar 
    Taconet, M., Kroodsma, D. & Fernandes, J. Global Atlas of AIS-Based Fishing Activity—Challenges and Opportunities (2021). More

  • in

    Analysis on ecological characteristics of Mississippian coral reefs in Langping, Guangxi

    Notwithstanding constraints on the amount of hard data, according to our integrated analysis, the developmental environment and ecology of reef communities have an important impact on the appearance of reefs.Analysis of environmental conditions for reef developmentSettings of reef developmentThe F/F extinction event in Late Devonian caused the complete recession of the reef-building communities based on stromatoporoid-coral assemblages7,17. The Carboniferous is generally considered to be a sub-optimal period for the development of framed reefs. After the biological mass extinction, microorganisms and algae rebuilt new reef-building ecosystems18,19. Some short-term biological frame reefs developed with low diversity, limited reef-building organisms, small sizes, and restricted distribution20. Harsh climate and marine conditions occurred in the Mississippian, including extensive marine hypoxia, repeated glacial and interglacial climate changes, and frequent changes of sea level and seawater surface temperature, potentially hindering the recovery of Early Carboniferous metazoan reefs7,21.Metazoans gradually began to participate in reef building in Early Viséan. A large number of biogenic structures formed by corals and bryozoans began to appear, including a small number of sponge reefs/mounds in the middle and late stage of Viséan. The richness and biodiversity of the Mississippian post-zoobenthic reefs flourished in the late Viséan during which corals, bryozoans, sponges, calcareous microorganisms, and some calcareous algae became the main builders3 and large-scale reefs could also be seen in some areas although most of the Viséan metazoan reefs were tabular or laminar. Thus, the metazoan skeletal reefs in the middle to late Viséan were considered to have been resurrected due to relatively warm climatic conditions and higher sea levels after a period of complete disintegration at the end of the Devonian and recession at the beginning of the Carboniferous7.Consequently, the coral reefs in the study area were the products of shallow benthic communities thriving in relatively favourable conditions of Late Viséan-Serpukhovian, which was common for reef development at that time7. Thus, it is expected that more synchronous reefs would to be identified in southern China, or even in the study area in the future.Paleogeography of reefsLangping is located in Dian-Qian-Gui Basin22 regionally (Fig. 2), in the eastern end of Tethys tectonic domain and at the interjunction of Tethys and Pacific structure globally. The Carboniferous Dian-Qian-Gui Basin is adjacent to the Tethys Basin. During the Early Carboniferous, the continent of Gondwana was close to the equator but was separated from the northern continent by the Tethys, where the tropical currents flowed freely from east to west. The benthic warm-water organisms were distributed widely with high abundance and diversity on both sides of the shallow shelf of Tethys.Figure 2Paleogeographic map of southern China in Viséan-Serpukhovian (modified from Feng23, Yao8, and Maillet24). This figure was obtained from articles by Feng23, Yao8 and Maillet24 respectively. The author modified the picture with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/). QG Qian-Gui Basin, DQGX Dian-Qian-Gui-Xiang platform.Full size imageViséan-Serpukhovian ecosystems experienced dramatic climate changes and widespread glaciation25. However, the Viséan was also a key layer for a variety of biological structures, with abundant coral reefs and a high diversity of shallow benthic communities, peaking in the late Viséan. Newly discovered post-faunal reefs in Tianlin were mainly formed in the late Viséan-Serpukhovian period, which coincided with frequent sea level fluctuations and possible glacial changes. It seems counterintuitive that tropical coral communities developed during glacial period. However, recent studies suggest that the persistent warm ocean currents on the platform helped some coral species survive from Carboniferous glacial events24. While other areas of symbiotic reefs were poorly developed, Tianlin may provide an ecological sanctuary for corals associated with ocean currents26.Sedimentation of reef developmentAccording to the regional geological structure, the slope model for Langping paleocarbonate platform was obviously different from that of steep slope platform margin, which could be directly affected by waves. Langping palaeo-platform could be regarded as one of the small blocks (block fault barrier) separated from a large platform (continental margin sea basin)13. The relative positions of these blocks were crucial for the emergence and growth of reefs.In situ development of mud-crystalline tuffs and muddy tuffs with weak hydrodynamic conditions is common in the Langping area, and evaporites are poorly developed. There were patch reefs and reef layers in different sizes in the wide intraclast beach, where obviously developed reef beach complexes were rare. The fragments of carbonate base broken by storm in the clastic beach haven’t been observed. The study area is considered to be gentle-slope open platform27,28 based on sedimentary characteristics. It suggests that the study area was far away from the margin of steep-slope platform that directly affected by waves, and more consistent with less energetic internal environments of gentle-slope platform.On the vast platform of Langping gentle slop, deep water lead to low water energy. While in the coastal area, the water energy was relatively strong, thus coarse-grained bioclastic beach and a small amount of point reef could be developed. The beaches were irregular-shaped due to long term transportation and reformation effects of waves and water flow, showing low and gentle slope angles. Dispersed reef-beach complexes at the platform margin slightly impacted inner-platform seawater and the water flows smoothly29.Therefore, it can be assumed that Langping reefs developed along the intertidal shallows of the terrace. The seawater around Langping carbonate platform in Late Viséan-Serpukhovian was relatively shallow while the water flow was strong. Remains of crinoids, brachiopods, a few foraminifera, and solitary corals were likely broken by strong currents, and deposited in situ with a small amount of gravels and lime-mud (Fig. 3). The clastic beach was unstable, suggesting large-scale wave-resistant structures could not be formed quickly30 due to insufficient cohesive and consolidating organisms. In addition, the circumferential impact of water in extensive terraces leads to mud-lime deposition, which is detrimental to most benthic organisms. However, bondstone was more likely to be formed by some binding algaes in the platform (Fig. 4). Therefore, neither the surrounding or the inner region of the platform could provide favourable living conditions for coral reefs to develop over for a long term. The gently sloping terrace environment of Lanping resulted in significant differences in growth size, wave resistance and reef-building capacity between corals in the study area and those on the edge of the steeply sloping terrace.Figure 3Clastic beaches in the Langping. Various clastic beaches developed in the study area. Diverse composition, fragmentation degree and sorting of the clast indicate different water conditions of formation. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageFigure 4Algal bondstone in the Langping. Bondstone formed by various algaes living in still water. Morphology of bondstone correlates water environment and deposition of mud. Vast algal bondstones indicate deep water and high deposition rate. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageAt the same time, the warm climate of the late Viséan-Serpukhovian, the good circulation of seawater around the Langping platform, and the abundant supply of oxygen and nutrients were a series of favourable conditions that facilitated the growth of reef-building corals, which led to uplifts being formed on clastic beach, including patch reefs and reef layers with certain sizes. These uplifts impeded waves and provided a protected nearshore environment, though they were much smaller than those developed at the steep-slope platform margin. The inhabitants on the beach could not resist strong waves. These rises were therefore known as reef-beach complexes and could only persist where waves and currents were mild28. They were essentially different from the framework coral reefs which developed on steep-slope platform margin that reflected changed hydrodynamic conditions, nutrient sources, reef sizes, and growth rates.Another potentially favourable factor in the study area could be the deeper water area in the gentle-slope sedimentary environment, which could provide more stable conditions and reduce the damaging effects of global glacial events and large scale sea level fluctuations on reef-building communities25. The frequent fault activities in Dian-Qian-Gui Basin caused the rise and fall of equivalent sea level. More influence of sea-level fluctuations and hydrodynamic conditions would be exerted on Langping platform due to its small size. Furthermore, reef growth promoted by reef-building communities would be frequently disturbed. The sediments displaying evidence of multicycle sedimentation, different components, and diversely fragile clasts in the study area provided direct evidence of frequently changing environment.Alternatively, the sedimentary environment of Langping platform provided conditions favorable for reef-building communities to develop and reefs to grow rapidly. These factors directly or indirectly determined the ecology of reef-building communities and the general appearance of reef development in the study area.Overall, the environmental factor is the primary factor affecting the overall development trend of reefs.Inferred ecological characteristics of reef communitiesResponse of reef-building corals to hydrodynamic conditionsHydrodynamic conditions are very important factors for reef development, which directly determine the abundance and distribution of each reef-building population and are key factors influencing sedimentation and reef growth, and was particularly evident at Langping. Evidence from the fossils suggested the reef-building corals were also changed in response (Table 1). The hydrodynamic condition changes during the development of reefs are inferred based on analysis of the vertical sediments and microfacies changes of coral reefs in the study area31. How these ancient reef-building corals adapted to hydrodynamic conditions was reconstructed combining the evolution of reef-building communities with the study.Table.1 General situation of reef-building coral population in Langping.Full size tableThe Xiadong coral reef started with colonization and expansion of Diphyphyllum on the bioclastic hard substrates32,33. They grew vertically into upright clusters (Fig. 5A) and were insensitive to more sediment in a relatively calm, turbid water environment34. The relatively dense clumped Siphonodendron and massive Lithostrotion (Fig. 5B) were better suited to the turbulent water environment, becoming dominant over time, with Diphyphyllum subordinate with the continuous increase of the water energy, as indicated by the characteristics of sediment particles from fine to coarse. After flourishing for a period, the Siphonodendron–Lithostrotion assemblage eventually waned, likely due to the failure to adapt to the increasing hydrodynamic conditions. Diphyphyllum had persisted combined with Syringopora, to maintain the growth of the reef. However, this assemblage subsequently declined as a result of strong hydrodynamic conditions and finally died out in response to continuous falling of sea level. Consequently, the reefs stopped developing.Figure 5Sketch of coral cluster with upright growing morphology. Most reef-building corals in Langping grow vertically into cluster colonies. This type of morphology is very favourable for corals to get more living space and is important to reef-building. (A) Cluster coral individuals grow uprightly with certain distance between each other. (B) Polygonal columnar coral individuals grow closely to resist strong water flow. This figure is made by the author with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageThe Longjiangdong multi-layer reef was composed of three relatively independent, flat reef layers, suggesting three distinct periods of reef development. Diverse species were identified in the reef, with colonial coral Diphyphyllum contributing greatly to reef growth. Diphyphyllum clusters colonized in patchy form on substrates composed of bioclasts or lithic gravels (Fig. 6A). The first reef-building process was brief, ending under high-energy water conditions after a period of growing (Fig. 6B). Subsequently the hydrodynamic conditions became weaker and favorable. Then Diphyphyllum once again flourished. Diphyphyllum clumps in the unit grew closely together in strong currents, with larger and more sparse individuals than in the lower units. A relatively low energy environment was formed between the Diphyphyllum clusters (Fig. 6C). Subsequently, Diphyphyllum could only grow in a limited area of suitability due to the disturbance of high-energy water brought about by short-term sea-level rise and fall. Afterwards, the environment became more favourable and Diphyphyllum expanded rapidly. As a result, the upper unit of Longjiangdong coral reef was formed, in which Diphyphyllum individuals were slightly larger than those in the first two units. Finally, because the kinetic energy of the water continued to weaken, the plaster deposition forced the whole coral reef to stop growing (Fig. 6D).Figure 6Micrographs of sediments in different positions of reef. (A) Calcareous bioclastic limestone, with biological particles accounting for about 70% of the debris. Abundant and diverse organisms indicate a medium-energy environment of the subtidal zone. Samples were taken from the bioclastic beach at the reef base. (B) Slightly larger bioclastics but lower biologic content than that in (A) suggest an increasing water energy. (C) Various bioclastic particles account for about 80% of the clastic particles contained in the calcareous bio-granular rock. The obviously small benthos indicate a low-energy environment in the subtidal zone barriered by the Diphyphyllum clusters. (D) Bioclastic grainstone is mainly composed of marl, with fine clastic particles (about 30%) and bedding. Low biomass indicates a low-energy environment of the subtidal zone. This figure is modified by the author with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/). Meaning of the letters in the figure: C crinoids, BF brachiopods, F foraminifera, B bryozoan, P pelletoid, MF mollusk shell fragment.Full size imageLongjiangdong patch reef started to develop in a relatively deep water environment. Diphyphyllum initially colonized and expanded in favorable conditions with the increase of water energy. Then the reef-builders transitioned from a single coral species to an assemblage of Diphyphyllum–Caninia–Lithostrotionella. These three coral species grew independently and contribute almost equally to the structure of the reef. However, the structure and function of the coral community were not yet stable enough. It was easily influenced by the weakening hydrodynamics and the increasing sedimentation, resulting in only small patch reefs.The Xinzhai layer reef was initialized by colonization and expansion of Lonsdaleia on bioclastic beach. Large coral clusters were formed in the presence of turbulent water. With the weakening of hydrodynamic conditions, an unknown branchlike organism and Antheria communities continued to develop separately in this area. Slender branchlike organisms expanded rapidly in these low-energy water environments until they were replaced by some individual corals as hydrodynamic energy increased. Each builder was short-lived in this layer reef, departing from the reef just at the beginning of colonization and expansion, due to rapidly changed hydrodynamic conditions.The evolution of reef-building corals in these four reefs indicated that both the coral assemblages and coral individuals would constantly adapt to the changing hydrodynamic conditions in Langping as sea level rose and fell. Although this was a reactive adjustment of coral populations in response to long-term environmental impacts, it was clearly positive for the building and development of coral reefs.Impact of disturbance on reef communitiesDisturbance is a relatively discontinuous event, which is ubiquitous in nature. It may indirectly affect the composition and population structure of reef communities by changing the environmental conditions, thus affect the structure and function of reef communities, even the evolution of the reef35. The major disturbances evident in these Mississippian framework reefs were associated with frequent changes of water flow, and drastic changes of climate and weather. These seem to be most obvious in the Langping platform due to its small size, with more frequent environmental influence evident on the reef communities in the study area.The most direct effect of disturbance events on coral reefs is the disruption of continuously evolving reef communities, which is common in coral reef studies. After the interruption caused by disturbances, some communities gradually recover due to the absence of continuous disturbance, or the dominant biota may be substituted by invading communities. The winner after interruption is decided by random factors to a large extent, in a ‘Competitive lottery’36. The conditions for the emergence of ‘Competitive lottery’ also include the need for species in a community to have similar abilities to invade discontinuities and to tolerate environmental conditions.Certainly, low-intensity disturbance does not necessarily produce discontinuity, but medium-intensity disturbance without discontinuity could directly impact on community species diversity. According to the ‘Moderate disturbance hypothesis’, moderate disturbance is conducive to a higher level of community diversity37. In environmental conditions with moderate intensity of disturbance, most species will not disappear entirely. The dominant pioneer species will also be restrained by disturbance to a certain extent, so large number of species can coexist, attaining the highest diversity35.The reef-builders in Langping are diverse compared with the Late Carboniferous reefs in Ziyun County10, which also developed in Dian-Qian-Gui Basin. More than 4 reef-building corals are identified in Xiadong reef, while 4 and 3 are in Xinzhai layer reef, Longjiangdong patch reef respectively. These reef-building corals, mostly Diphyphyllum, Lithostrotion, Siphonodendron and Lonsdaleia, were distributed irregularly in the reefs. Their ecological niche and function were likely similar and none of them was obviously dominant in the community (Fig. 7). This is in line with ‘Competitive lottery’ theory and the ‘Moderate disturbance hypothesis’.Figure 7Different species occupied the discontinuity surface irregularly. (A) Different reef-builders colonized and grew on the same hard substrate. (B) and (C) show detailed morphology of colony corals of (A). (D) Colony corals and a large number of individual corals grew together in a limited area, indicating equal colonization on the newly formed discontinuity surface. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageThe stability of a classical reef ecosystem includes the ability to withstand external disturbances and the ability to return to its original state once the disturbance is removed37,38. It is generally accepted that communities with high diversity are always more stable although ecosystem stability is not absolutely correlated to biodiversity35.There have been no reef-building corals with strong resistance and rapid recovery ability in the communities in Langping. None of these corals succeeded in developing into dominant species that can build reef shelves, which made the reefs in Langping mostly appear in the form of small patch reefs or reef layers. However, formation of the large reef in Xiadong Village, patch reef in Longjiangdong Village, and layer reef in Xinzhai Village were all related to their relatively high diversity of reef-building corals. Compared with the situation where only one reef-building organism dominated the Bianping large coral reef, Wengdao large phylloid algal reef and Ivanovia cf. manchurica patch reefs in Ziyun County10, Guizhou province, the different coral assemblages in Langping area could effectively adapt to changing hydrodynamic conditions and maintain reef growth.Species diversity increased by disturbance stabilized the ecosystemas shown during the construction of coral reefs in Langping.Effects of non-reef-builders on reef-building coralsBesides reef-building corals, there were a large number of reef-dwellers and off-reef organisms in the study area. Reef-dwellers referred to the species that didn’t directly contribute to reef growth in the community, mainly including various benthos and algaes39. Off-reef organisms are not part of the reef-building community, but also play an important role in participating in energy flow and providing organic matter to the reef ecosystem40.Common reef-dwelling organisms include crinoids, brachiopods, gastropods, various algae, foraminifera, bryozoans and individual corals. Crinoids were overwhelmingly dominant in numbers in the reef samples studied here.Carboniferous echinodermata in Guangxi Province reached its peak in Middle-to-Late Mississippian. In terms of amount and distribution, thick limestone with echinodermata debris in the carbonate platform were often dominated by crinoids41,42,43,44,45,46. The large number of crinoids in Langping excluded other metazoans and restricted the development of benthic reef-builders in Late Viséan-Serpukhovian in Langping, leading to poorly developed reef-building communities.Microorganisms and algaes had limited success in stablishing on the moving clastic beach in frequently disturbed water. There has not been obvious evidence of extensive “algal turf” in the coastal area of Langping platform. Only a few corals bonded by algal mats were observed47 (Fig. 8). In addition to their significant contribution to primary productivity, macroalgae were considered to play an important role in two aspects of coral reef ecosystems. One was to promote reef construction by its own binding and consolidation48,49. The other was to create a good condition for zoobenthos larvae to dwell and develop, thereby improving species diversity50. The limited productivity of algae in Langping constrained coral reef trophic inputs, which may then have limited populations of dependent metazoans. As a result, algaes and other metazoans were unable to achieve a variety of reef-building patterns, such as bonding, bounding, entanglement51,52. The reef framework in the study area was not stable in the presence of strong water flow, and the biological communities could not deal with frequent environmental changes, which were directly related to poor development of calcareous algae.Figure 8Micrographs of microbes and algaes. (A) Encrustations (indicated by black arrows) with distinct thickness around coral clusters formed by microbe and algal mats through bonding mud. The encrustations were formed before the clastic deposition (indicated by white arrows), showing the corals were living then. Microbes and algaes inside of the dense coral clusters had little impact on corals. (B) Single polarized micrograph showed clear and smooth boundaries of coral individuals without encrustation or drilling hole made by microbes or algaes. Few corals surrounded by bonding algaes could be observed in Langping, indicating that algaes were poorly developed between coral clusters. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageInfluence of coral morphology on reef developmentThe accumulation of reef structure had obvious impact on communities. Large reef structures could support abundance and diverse biota by modifying local environments and creating diverse conditions. Consequently the reef-building communities thrived between disturbances, stabilizing reef construction. In terms of large reef, the framework-building corals would play a key role in reef construction regardless of which kind of patterns was adopted. Therefore, reef-building corals with large size, rapid growth vertically, and strong resistance would become the biggest contributors to reef frame construction.The main reef-building corals in Langping were composed of Diphyphyllum, Lithostrotion, Siphonodendron, and Lonsdaleia, etc., being the dominant builders. These corals were similar in morphology such as cluster colony, thick and strong skeleton, and densely packed individuals (Fig. 9), which enabled them to resist water flow. At the same time, the upright colonies were adaptable to relatively calm water, being insensitive to mud deposition. The ecological characteristics of the Langping corals matched the gently sloping environment, the deep water environment and the rapidly changing energy of the currents. These cluster corals were able to colonize hard substrates and expand rapidly, thus altering the surrounding environment. The visible carbonate uplifts were formed with a large amount of benthos grouped into reef-building communities. These distinct uplifts constructed by coral clusters in different water conditions are composed of coral reefs of different sizes and appearance in the study area.Figure 9Main reef-building corals in the study area. (A) Diphyphyllum, (B) Lithostrotion, (C) Siphonodendron, (D) Lonsdaleia. (A) Rapidly grew clusters of main reef-building corals. The strong individuals are packed tightly when growing to support each other. This figure is modified by the author from field photos with CorelDRAW (version 2022, and the URL link: https://www.coreldraw.com/cn/).Full size imageThe complex and diverse local environments formed by large coral reefs can significantly increase benthic populations and improve reef species diversity. As a result, the nutrient flow in the community becomes complicated, and nutrients could be recycled effectively by reducing loss caused by water flow. Therefore, the overall productivity of large coral reef communities was always high. Complex trophic structure satisfied most of the benthos in the community with sufficient nutrients and inorganic salts.The morphology of reef-building corals in Langping enabled them to become predominant species in various water environments, which promoted the continued domed growth of coral reefs and facilitates the development of reef-building communities that form a variety of reefs. It suggests that the morphology of reef-building corals was a key prerequisite for reef development.In conclusion, coral reef communities are always constrained and influenced by environmental conditions. However, the ecology of the inhabitants is also an important factor in the formation of coral reefs. More

  • in

    Effect of marigold (Tagetes erecta L.) on soil microbial communities in continuously cropped tobacco fields

    Chen, X. L. et al. Effects of Meloidogyne incognitaon the fungal community in tobaccorhizosphere. Rev. Bras. Cienc. Solo. 46, e0210127 (2022).
    Google Scholar 
    Zhang, S. X. et al. Research progresses on continuous cropping obstacles of tobacco. Soils 47(5), 823–829 (2015).CAS 

    Google Scholar 
    Luo, J. Y. et al. Effects of soil salinity onrhizosphere soil microbes in transgenic Bt cotton fields. J. Integr. Agric. 16, 1624–1633 (2017).CAS 

    Google Scholar 
    Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 
    Newton, A., Begg, G. & Swanston, J. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).
    Google Scholar 
    Li, X. G. et al. Effects of intercropping with Atractylodeslancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuouspeanut cropping field in subtropical China. Agrofor. Syst. 88, 41–52 (2014).
    Google Scholar 
    Ahmed, W. et al. Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21, 100479 (2022).
    Google Scholar 
    Gómez-Rodrıguez, O., Zavaleta-Mejıa, E., Gonzalez-Hernandez, V., Livera-Munoz, M. & Cárdenas-Soriano, E. Allelopathyand microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Res. 83, 27–34 (2003).
    Google Scholar 
    Weidenhamer, J. D., Montgomery, T. M., Cipollini, D. F., Weston, P. A. & Mohney, B. K. Plandensity and rhizosphere chemistry: Does marigold root exudate composition respond to intra-and interspecific competition?. J. Chem. Ecol. 45(5–6), 525–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Ploeg, A. T. Effects of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis. 86(5), 505–508 (2002).PubMed 

    Google Scholar 
    Hooks, C. R., Wang, K. H., Ploeg, A. & McSorley, R. Using marigold (Tagetes spp.) as a cover crop to protect crops fromplant-parasitic nematodes. Appl. Soil Ecol. 46, 307–320 (2010).
    Google Scholar 
    Li, W., Xu, J., Chen, H. & Qi, Y. Phytochemicals and their biological activities of plants in tagetes l.-sciencedirect. Chin. Herbal Med. 4(2), 103–117 (2012).
    Google Scholar 
    Weidenhamer, J. D., Mohney, B. K., Shihada, N. & Rupasinghe, M. Spatial and temporal dynamics of root exudation: How important is heterogeneity in allelopathic interactions?. J. Chem. Ecol. 40(8), 940–952 (2014).CAS 
    PubMed 

    Google Scholar 
    Marotti, I. et al. Thiophene occurrence in different tagetes species: Agricultural biomasses as sources ofbiocidal substances. J. Sci. Food Agric. 90(7), 1210–1217 (2010).CAS 
    PubMed 

    Google Scholar 
    Barto, E. K. et al. The fungal fastlane: Common mycorrhizal networks extendbioactive zones of allelochemicals in soils. PLoS ONE 6, e27195 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evenhuis, A., Korthals, G. & Molendijk, L. Tagetes patula as an effective catch crop forlong-term control of Pratylenchus penetrans. Nematology 6, 877–881 (2004).
    Google Scholar 
    Wu, W. T. et al. Effects of marigold-tobacco rotation on soil nematode community composition. Southwest China J. Agric. Sci. 32(2), 342–348 (2019).
    Google Scholar 
    Reynolds, L. B., Potter, J. W. & Ball-Coelho, B. R. Crop rotation with sp. is an alternative to chemical fumigation for control of root-lesion nematodes. Agron. J. 92(5), 957–966 (2000).
    Google Scholar 
    El-Hamawi, M., Youssef, M. & Zawam, H. S. Management of Meloidogyne incognita, the root-knot nematode, on soybean asaffected by marigold and sea ambrosia (damsisa) plants. J. Pest Sci. 77, 95–98 (2004).
    Google Scholar 
    Kumar, N., Krishnappa, K., Reddy, B., Ravichandra, N. & Karuna, K. Intercropping for the management of root-knotnematode, Meloidogyne incognitain vegetable-based cropping systems. Indian J. Nematol. 35, 46–49 (2005).
    Google Scholar 
    Zhang, J. et al. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot Incidence in Chinese Cabbage. Plants 11(17), 2295 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia, T. Y. et al. Microbial diversity of tobacco rhizospheresoil in different growth stages of marigold-tobacco intercropping system. Southwest China J. Agric. Sci. 31(4), 680–686 (2018).
    Google Scholar 
    Wei, H. Y. et al. Effects of marigold diversified cropping with angelica on fungal community in soils. Plant Prot. 41(5), 69–74 (2015).MathSciNet 
    CAS 

    Google Scholar 
    Li, Y. et al. Intercropping with marigold promotes soil health and microbialstructure to assist in mitigating tobacco bacterial wilt. J. Plant Pathol. 102, 731–742 (2020).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. MicroBiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Irikiin, I. et al. Rhizobacterial community-level, sole carbon source utilization pattern aff ects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl. Soil Ecol. 34(1), 27–32 (2006).
    Google Scholar 
    Wu, M. N. et al. Soil fungistasis and its relations to soil microbial composition and diversity: A case study of a series of soils with different fungistasis. J. Environ. Sci. 20(7), 871–877 (2008).CAS 

    Google Scholar 
    Mendes, L. W. et al. Soil-Borne microbiome: Linking diversity to function. Microb. Ecol. 70(1), 255–265 (2015).CAS 
    PubMed 

    Google Scholar 
    Jaiswal, A. K. et al. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 7, 44382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raaijmakers, J. M. & Mazzola, M. Soil immune responses soil microbiomes may be harnessed for plant health. Science 352, 1392–1393 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kušlienė, G., Rasmussen, J., Kuzyakov, Y. & Eriksen, J. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol. Biochem. 76, 22–33 (2014).
    Google Scholar 
    Mohammadi, K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. Am.-Eurasian J. Agric. Environ. Sci. 10, 330–337 (2011).
    Google Scholar 
    Wang, G. H. et al. Research progress of Acidobacteria ecology in soils. Biotechnol. Bull. 32(2), 14–20 (2016).
    Google Scholar 
    Wei, H., Wang, L., Hassan, M. & Xie, B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresour. Technol. 256, 333–341 (2018).CAS 
    PubMed 

    Google Scholar 
    Wang, Y., Liu, L., Yang, J., Duan, Y. & Zhao, Z. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 715, 136983 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Glass, N. L., Schmoll, M., Cate, J. H. & Coradetti, S. Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67, 477–498 (2013).CAS 
    PubMed 

    Google Scholar 
    Li, Y. et al. Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biol. Biochem. 107, 19–31 (2017).CAS 

    Google Scholar 
    Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. & Ramos, L. P. Comparison of Penicillium echinulatumand Trichoderma reeseicellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99, 1417–1424 (2008).CAS 
    PubMed 

    Google Scholar  More

  • in

    Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects

    Gandhi, K. J. K. & Herms, D. A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 12, 389–405 (2010).
    Google Scholar 
    Desurmont, G. A. et al. Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant. Cell Environ. 37, 1854–1865 (2014).PubMed 

    Google Scholar 
    Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasions 11, 21–45 (2009).
    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. 113, 7575–7579 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).
    Google Scholar 
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).PubMed 

    Google Scholar 
    Sherpa, S. et al. Landscape does matter: Disentangling founder effects from natural and human-aided post-introduction dispersal during an ongoing biological invasion. J. Anim. Ecol. 89, 2027–2042 (2020).PubMed 

    Google Scholar 
    Sherpa, S. & Després, L. The evolutionary dynamics of biological invasions: A multi‐approach perspective. Evol. Appl. (2021).North, H. L., McGaughran, A. & Jiggins, C. Insights into invasive species from whole-genome resequencing. Mol. Ecol. (2021).Ma, L. et al. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Divers. Distrib. 26, 610–622 (2020).
    Google Scholar 
    Ortego, J., Céspedes, V., Millán, A. & Green, A. J. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Mol. Ecol. 30, 4189–4203 (2021).PubMed 

    Google Scholar 
    Varone, L., Logarzo, G., Briano, J., Hight, S. & Carpenter, J. Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina. Biol. Invasions 16, 2367–2380 (2014).
    Google Scholar 
    Singer, M. C., Ng, D. & Moore, R. A. Genetic variation in oviposition preference between butterfly populations. J. Insect Behav. 4, 531–535 (1991).
    Google Scholar 
    Forister, M. L. Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. Ecol. Entomol. 29, 264–272 (2004).
    Google Scholar 
    Wiklund, C. The concept of oligophagy and the natural habitats and host plants of Papilio machaon L. Fennoscandia. Insect Syst. Evol. 5, 151–160 (1974).
    Google Scholar 
    Courtney, S. P. & Forsberg, J. Host use by two pierid butterflies varies with host density. Funct. Ecol. 2, 67–75 (1988).
    Google Scholar 
    Franklin, J. Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19, 1217–1223 (2013).
    Google Scholar 
    Peterson, A. et al. Ecological niches and geographic distributions. Monographs in Population Biology vol. 49 (2011).Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248 (2014).PubMed 

    Google Scholar 
    Carrera-Martínez, R., Aponte-Díaz, L. A., Ruiz-Arocho, J., Lorenzo-Ramos, A. & Jenkins, D. A. The effects of the invasive Harrisia cactus mealybug (Hypogeococcus sp.) and exotic lianas (Jasminum fluminense) on Puerto Rican native cacti survival and reproduction. Biol. Invasions 21, 3269–3284 (2019).
    Google Scholar 
    Acevedo-Rodríguez, P. & Strong, M. T. Catalogue of seed plants of the West Indies. Smithson. Contrib. to Bot. 98, 1–1192 (2012).
    Google Scholar 
    Carrera-Martínez, R., Aponte-Díaz, L., Ruiz-Arocho, J. & Jenkins, D. A. Symptomatology of infestation by Hypogeococcus pungens: Contrasts between host species. Haseltonia 2015, 14–18 (2015).
    Google Scholar 
    Aponte-Díaz, L., Ruiz-Arocho, J., Carrera-Martínez, R. & Ee, B. Contrasting effects of the invasive Hypogeococcus sp. (Hemiptera: Pseudococcidae) infestation on seed germination of Pilosocereus royenii (Cactaceae), a Puerto Rican native cactus. Caribb. J. Sci. 50, 212–218 (2020).
    Google Scholar 
    California Department of Food and Agriculture. Harrisia Cactus Mealybug | Hypogeococcus pungens | Pest rating proposals and final ratings. https://blogs.cdfa.ca.gov/Section3162/?p=5881 (2018).Poveda-Martínez, D. et al. Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecol. Evol. 10, 10463–10480 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Segarra-Carmona, A. E., Ramírez-Lluch, A., Cabrera-Asencio, I. & Jiménez-López, A. N. First report of a new invasive mealybug, the Harrisia cactus mealybug Hypogeococcus pungens (Hemiptera: Pseudococcidae). J. Agric. Univ. Puerto Rico 94, 183–187 (2010).
    Google Scholar 
    Poveda-Martínez, D. et al. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS ONE 14, e0220366 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, H. L. Mealybugs of California. (Univ of California Press, 1967).Hamon, A. B. A cactus mealybug, Hypogeococcus festerianus (Lizer y Trelles). Florida (Homoptera Coccoidea Pseudococcidae). Entomol. Circ. Div. Plant Ind. Florida Dep. Agric. Consum. Serv. 263, 2 (1984).Hodges, A. & Hodges, G. Hypogeococcus pungens Granara de Willink (Insecta: Hemiptera: Pseudococcidae), a mealybug. EDIS 2009, (2009).Halbert, S. Entomology section. Triology 35, 2–4 (1996).
    Google Scholar 
    Aguirre, M. B. et al. Analysis of biological traits of Anagyrus cachamai and Anagyrus lapachosus to assess their potential as biological control candidate agents against Harrisia cactus mealybug pest in Puerto Rico. Biocontrol 64, 539–551 (2019).CAS 

    Google Scholar 
    Aguirre, M. B. et al. Influence of competition and intraguild predation between two candidate biocontrol parasitoids on their potential impact against Harrisia cactus mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). Sci. Rep. 11, 13377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eaton, D. A. R. & Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).CAS 
    PubMed 

    Google Scholar 
    Poveda-Martínez, D., Salinas, N., Aguirre, M. B., Sánchez-Restrepo, A. F. & Hight, S., Diaz-Soltero, H. Dataset generated in Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects. https://doi.org/10.6084/m9.figshare.15167082.v2 (2022).Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Gattepaille, L. M., Jakobsson, M. & Blum, M. G. B. Inferring population size changes with sequence and SNP data: Lessons from human bottlenecks. Heredity (Edinb). 110, 409–419 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Born‐Schmidt, G. et al. The implementation of the mexican strategy on invasive species: How far have we come? Invasive Alien Species Obs. Issues from Around World 4, 153–164 (2021).
    Google Scholar 
    McFadyen, R. E. & Tomley, A. J. Preliminary indications of success in the biological control of Harrisia cactus (Eriocereus martinii Lab.) in Queensland. In Proceedings of the First Conference of the Council of Australian Weed Science Societies held at National Science Centre, Parkville, Victoria, Australia, 12–14 April 1978 108–112 (Council of Australian Weed Science Societies, 1978).McFadyen, R. E. & Tomley, A. J. The successful biological control of Harrisia cactus (Eriocereus martinii) in Queensland. In Proceedings of the Sixth Australian Weeds Conference, Volume 1, City of Gold Coast, Queensland, Australia, 13–18 September, 1981 139–143 (Queensland Weed Society, 1981).Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 19, 230–246 (2011).
    Google Scholar 
    Sutton, G. F., Klein, H. & Paterson, I. D. Evaluating the efficacy of Hypogeococcus sp. as a biological control agent of the cactaceous weed Cereus jamacaru in South Africa. Biocontrol 63, 493–503 (2018).
    Google Scholar 
    Paterson, I. D. et al. Biological control of Cactaceae in South Africa. African Entomol. 29, 713–734 (2021).
    Google Scholar 
    McFadyen, R. E. Harrisia (Eriocereus) martinii (Labour.) Britton—Harrisia cactus Acanthocereus tetragonus (L.) Hummelink—sword pear. (ed. Julien, M., McFadyen, R., & Cullen, J.), Biological control of weeds in Australia 274– 281. (CSIRO Publishing, 2012).Julien, M. H. & Griffiths, M. Biological control of weeds: A world catalogue of agents and their target weeds. (Cab International, 1998).Houston, W. A. & Elder, R. Biocontrol of Harrisia cactus Harrisia martinii by the mealybug Hypogeococcus festerianus (Hemiptera: Pseudococcidae) in salt-influenced habitats in Australia. Austral Entomol. 58, 696–703 (2019).
    Google Scholar 
    Hofmeister, N., Werner, S. & Lovette, I. Environmental correlates of genetic variation in the invasive European starling in North America. Mol. Ecol. 30, 1251–1263 (2021).PubMed 

    Google Scholar 
    Driscoe, A. L. et al. Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Mol. Ecol. 28, 4197–4211 (2019).CAS 
    PubMed 

    Google Scholar 
    Vidal, M. C., Quinn, T. W., Stireman, J. O. 3rd., Tinghitella, R. M. & Murphy, S. M. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol. Ecol. 28, 4317–4334 (2019).PubMed 

    Google Scholar 
    Poveda-Martínez, D. et al. Spatial and host related genomic variation in partially sympatric cactophagous moth species. Mol. Ecol. 31, 356–371 (2021).PubMed 

    Google Scholar 
    Cao, L., Wei, S., Hoffmann, A. A., Wen, J. & Chen, M. Rapid genetic structuring of populations of the invasive fall webworm in relation to spatial expansion and control campaigns. Divers. Distrib. 22, 1276–1287 (2016).
    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).
    Google Scholar 
    Yang, Q.-Q. et al. Introgressive hybridization between two non-native apple snails in China: Widespread hybridization and homogenization in egg morphology. Pest Manag. Sci. 76, 4231–4239 (2020).CAS 
    PubMed 

    Google Scholar 
    Cordeiro, E. M. G. et al. Hybridization and introgression between Helicoverpa armigera and H zea: An adaptational bridge. BMC Evol. Biol. 20, 61 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pardo-Diaz, C. et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLOS Genet. 8, e1002752 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caltagirone, L. E. Landmark examples in classical biological control. Annu. Rev. Entomol. 26, 213–232 (1981).
    Google Scholar 
    Goldson, S. L., Phillips, C. B. & Barlow, N. D. The value of parasitoids in biological control. New Zeal. J. Zool. 21, 91–96 (1994).
    Google Scholar 
    Wang, Z., Liu, Y., Shi, M., Huang, J. & Chen, X. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18, 705–715 (2019).
    Google Scholar 
    Miller, G., & Lugo. A. E. Guide to the ecological systems of Puerto Rico. IITF-GTR-35 (2009).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality control tool for high throughput sequence data. (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Linck, E. & Battey, C. J. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol. Ecol. Resour. 19, 639–647 (2019).CAS 
    PubMed 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. St AMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).CAS 
    PubMed 

    Google Scholar 
    Cockerham, C. C. Drift and mutation with a finite number of allelic states. Proc. Natl. Acad. Sci. 81, 530–534 (1984).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 

    Google Scholar 
    Keightley, P. D., Ness, R. W., Halligan, D. L. & Haddrill, P. R. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196, 313–320 (2014).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manage. 38, 541–545 (1974).
    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Informatics 2, 1-10 (2005).Jorge, S. & Miguel, N. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Cobos, M. E., Peterson, A., Barve, N. & Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography (Cop.) 41, 291–307 (2018).
    Google Scholar 
    Warren, B. H. et al. Evaluating alternative explanations for an association of extinction risk and evolutionary uniqueness in multiple insular lineages. Evolution 72, 2005–2024 (2018).PubMed 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evol. Int. J. Org. Evol. 62, 2868–2883 (2008).
    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Van der Vaart, A. W. Asymptotic Statistics (UK Cam, 1998).MATH 

    Google Scholar  More

  • in

    The study of aggression and affiliation motifs in bottlenose dolphins’ social networks

    Subjects and facilityWe observed two groups of Atlantic bottlenose dolphins (six different individuals in total) housed at the marine zoo “Marineland Mallorca”. One of the groups was composed of four individuals (G1) and the other was constituted by five individuals (G2). The two adult males and one of the females were the same in both groups (Table 1). Group composition changed due to the transfer of individuals to another pool of the zoo and due to the arrival of new individuals from another aquatic park.Table 1 Age, sex, group, and identification number in the network of the subject dolphins. M male, F female.Full size tableThe dolphins were kept in three outdoor interconnecting pools: the main performance pool (1.6 million liters of water), a medical pool (37.8 thousand liters of water) and a small pool (636.8 thousand liters of water). During the observational periods, the dolphins had free access to all the pools. Underwater viewing at the main and the small pool was available through the transparent walls around the rim of the pools.Ethics statementThis study was approved by the UIB Committee of Research Ethics and Marineland Mallorca. This research was conducted in compliance with the standards of the European Association of Zoos and Aquaria (EAZA). All subjects tested in this study were housed in Marineland Mallorca following the Directive 1999/22/EC on the keeping of animals in zoos. This study was strictly non-invasive and did not affect the welfare of dolphins.Behavioral observations and data collectionBehavioral data were collected in situ by APM from May to November 2016 for G1 and from November 2017 to February 2018 for G2. All observational periods were also recorded using two waterproof cameras SJCAM SJ4000. Observations were conducted at the main pool between 8:00 a.m. and 11:00 a.m. Due to the schedules and dynamics of the zoo, we were unable to collect data outside this period. Dolphin social behavior was registered and videotaped for 30 min–2 h each day. Only data from sessions that lasted at least 30 min were included in the analysis. We did not collect any data during training or medical procedures and resumed the observational session a few minutes after the end of these events.We recorded all occurrences of affiliative and aggressive interactions, the identities of the involved individuals and the identity of the dolphin initiating the contact. Aggressive contacts were defined by the occurrence of chasing, biting, and hitting, as established in previous studies37,38,39,40,41. Affiliative contacts were defined as contact swimming, synchronous breathing and swimming (at least 30″ of continuous swimming) or flipper-rubbing, as established in previous studies37,39,40,41,43.To assess the strength of the affiliative bonds in both groups, we calculated the index of affiliative relationships (IA) between dolphins following the procedure described in Yamamoto et al. For calculating the IA we recorded the relative frequencies of synchronous swimming since it is a well-defined affiliative behavior in dolphins. Data of synchronous swimming were recorded using group 0–1 sampling44 at 3-min intervals. This method consists of the observation of individuals during short periods and the recording of the occurrence (assigning to that period a 1) or non-occurrence (assigning to that period a 0) of a well-defined behavior44. For calculating the IA for each couple, the number of sampling periods in which synchronous swimming between individuals A and B occurred (XAB) was divided by the number of sampling periods in which individuals A and B were observed (YAB): (IA=frac{{X}_{AB}}{{Y}_{AB}})39,45. Therefore, the IA reflects the level of affiliation for each dolphin dyad based on the pattern of synchronous swimming. This index served to construct the general affiliative social networks of both groups of dolphins.Temporal network constructionTemporal networks can provide insight into social events such as conflicts and post-conflict interactions in which the order of interactions and the timing is crucial. Furthermore, they allow us to calculate the probabilities of the different affiliative and aggressive interactions occurring in the group.We used behavioral observations to construct temporal networks for each group. Each dolphin was treated as a node (N) with their aggressive and affiliative interactions supplying the network links. We divided the daily observations into periods of 3 min. In each period, we assigned a positive (+ 1), negative (− 1) or neutral (0) interaction to each pair of dolphins. That is, if during the period a pair of dolphins displayed affiliative interactions, we assigned a + 1 to the link between that pair of nodes, if they were involved in a conflict, we assigned a − 1, and if the pair did not engage in any interaction, we assigned to that link a 0. If during the same period, the pair displayed both aggressive and affiliative interactions we considered the last observed interaction. Therefore, we obtained an adjacency matrix (an N × N matrix describing the links in the network) for each group of dolphins. Thus, for each day we had a series of different signed networks of the group, each network representing a 3-min period.Social network analysis: time-aggregated networks and network motifsWe collapsed the temporal networks of each day in time-aggregated networks. This procedure consists in aggregating the data collected over time within specific intervals to create weighted networks. The sign and the weight of the links characterize these networks, indicating the valence and duration of the interaction respectively. Thus, they are static representations of the social structure of the group of dolphins. To obtain these time-aggregated networks we proceeded as follows:First, for each day we aggregated the values of each interaction of the temporal networks until one link qualitatively changed. We considered a qualitative change if one interaction passed from being negative (− 1) to positive (+ 1) meaning that the pair of dolphins reconciled after the conflict or vice versa, or if a new affiliation (+ 1) or aggression (− 1) took place, that is the link changed from being neutral (0) to positive or negative. If a link changed from being negative or positive to being neutral, we did not consider that this interaction has changed qualitatively. For example, if dolphins interacted positively during two periods of time, then they ceased to interact (neutral) and finally they engaged in an aggressive interaction, the total weight of the interaction in the resulting time-aggregated network would be of + 2. Therefore, a conflict or an affiliation may extend over multiple periods containing several contacts, and is considered finished when the interaction changes its valence. In this way, we obtained a series of time-aggregated networks for each day, which retain the information on the duration, timing, and ordering of the affiliative and aggressive events in the group.We examined the local-scale structure of the affiliative-aggressive social networks using motif analysis. Thus, for each group, we analyzed the network motif representation of the temporal and time-aggregated networks, identifying and recording the number of occurrences of each motif.Model of affiliative and aggressive interactionsWe built two models (a simple and a complex one) that aim to simulate the dynamics of aggressive and affiliative interactions of a group of four dolphins. These models were created using the observed probabilities of each affiliative or aggressive interaction between individuals in group G1. We only used the data of G1 since we had more hours of video recordings and, thus, more statistics of the pattern of dolphins’ interactions. Both models return affiliative/aggressive temporal networks constituted by four nodes and different aggressive, affiliative, or neutral interactions between the six possible pairs of individuals in the network. We simulated data for 20 periods of 3 min per day for a total of 80 days to mimic the empirical data time structure. We obtained one temporal network for each period (1600 temporal networks in total) and ran 100 realizations of each model.Our models work as follows: At the beginning of the simulations, all the interactions between the four nodes are neutral (0). In each period, we select a pair of nodes randomly and assign to that link a positive (+ 1) or a negative (− 1) interaction with probability p (calculated previously for each type of interaction). These interactions correspond to spontaneous aggressions and affiliations. In the complex model, if in the previous period a conflict took place, before assessing spontaneous interactions we first evaluated the different possible post-conflict contacts that could occur (reconciliation, new aggressions, and affiliations). Therefore, for reconciliations, we change the valence of the interaction from negative to positive with a certain probability. Then, we also randomly choose a pair of nodes including one of the former opponents and assign to that link a positive or negative interaction with the observed probabilities to simulate the occurrence of new affiliations (third party-affiliation) or redirected aggressions arising from the previous conflict. We keep on doing this procedure period by period. Lastly, we obtained the time-aggregated networks for the two models.The simpler model only includes the probability of aggression and affiliation between group members, whereas the complex one also includes the patterns of conflict resolution previously observed. In this way, the complex model serves to assess the influence of post-conflict management mechanisms on the observed pattern of aggressive/affiliative networks. That is, the complex model also keeps track of past actions. Thus, depending on the interaction of the previous step, the probability of the following interaction changes based on the observed pattern of conflict resolution strategies.Calculation of the observed probabilities of affiliative and aggressive interactionsFor the simple model, we calculated the probability of general aggression and affiliation per day without distinguishing between types of positive and negative interactions. Thus, we obtained the number of periods in which an aggressive or affiliative contact took place per day and divided it by the total number of periods of that day (probability of general aggression or affiliation per 3-min period). With these probabilities, we calculated the mean probability of general aggression and affiliation per period.For the complex model, we calculated the probabilities of reconciliation, new affiliations/aggressions, and spontaneous affiliations/aggressions per day. That is, the probability that former opponents exchange affiliative contacts after an aggressive encounter (reconciliation), the probabilities that a conflict may promote new affiliations (third-party affiliation) or new conflicts (redirected aggression) between one of the opponents and a bystander in the same day, and the probability of affiliative or aggressive interactions not derived from a previous conflict (spontaneous interactions). To classify affiliations and aggressions in these categories we used the temporal networks, examining the interactions that took place after a conflict between opponents and between them and bystanders. If the opponents reconciled or affiliated with a bystander after a fight, we assumed that the following affiliative or aggressive interactions were spontaneous and were not a consequence of that conflict. Thus, to calculate the number of spontaneous affiliations, we subtracted the number of reconciliations and new affiliations from the total number of affiliations per day. For spontaneous aggressions, we subtracted the number of new aggressions to the total number of aggressions per day. Then, we obtained the probability of spontaneous affiliation and aggression per period.Using the previous probabilities, we obtained the rate (r) of reconciliation, new aggression and new affiliation per minute with the following formula:({p=1-e}^{-rDelta t}). Using the same formula, we finally calculated the probability of reconciliation, new aggression and affiliation per 3-min period used in the complex model (Supplementary Table 1 for details of probabilities calculation).Network-motif analysisWe also carried out a network-motif analysis. As we did not consider the identities or sex of the nodes in these models, we grouped the obtained motifs into equivalent categories considering the pattern of interactions between nodes. We also classified the motifs obtained from the real data of G1 into those equivalent categories. Finally, we compared the pattern of equivalent network motifs of the observed social network of dolphins and the ones of the two models. To do so we calculated the Spearman’s rank correlation coefficient (rs), defined as a nonparametric measure of the statistical dependence between the rankings of two variables: ({r}_{s}=frac{covleft({rg}_{X}{rg}_{Y}right)}{{sigma }_{{rg}_{X}}}{sigma }_{{rg}_{Y}}); rgX and rgY are the rank variables; cov (rgX rgY) is the covariance of the rank variables, and σrgX and σrgY are the standard deviations of the rank variables. Therefore, this coefficient allows us to assess the statistical dependence between the motif ranking of the real data and the one of each model.Computational implementationsAll the models, network construction, visualization and motif analysis were generated and implemented using MATLAB R2018b. More

  • in

    Pathogen spillover driven by rapid changes in bat ecology

    During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behavior, and viral dynamics. We present 25 years of data on land-use change, bat behavior, and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviors that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of 25 years. Our long-term study identifies the mechanistic connections among habitat loss, climate, and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics. More

  • in

    In vitro study of the modulatory effects of heat-killed bacterial biomass on aquaculture bacterioplankton communities

    Ringø, E. et al. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 129, 116–136 (2020).PubMed 

    Google Scholar 
    Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: The good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).CAS 
    PubMed 

    Google Scholar 
    Aguilar-Toalá, J. E. et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 75, 105–114 (2018).
    Google Scholar 
    Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dash, G. et al. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellf. Immunol. 43, 167–174 (2015).CAS 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of Amberjack, Seriola dumerili Juveniles. Biomed. Res. Int. 2015, 514196 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellf. Immunol. 54, 266–275 (2016).CAS 

    Google Scholar 
    Dawood, M. A. O., Koshio, S., Ishikawa, M. & Yokoyama, S. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellf. Immunol. 45, 33–42 (2015).CAS 

    Google Scholar 
    Tung, H. T. et al. Effects of heat-killed Lactobacillus plantarum supplemental diets on growth performance, stress resistance and immune response of juvenile Kuruma shrimp Marsupenaeus japonicus bate. Aquac. Sci. 57, 175–184 (2009).CAS 

    Google Scholar 
    Van Nguyen, N. et al. Evaluation of dietary heat-killed Lactobacillus plantarum strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 498, 371–379 (2019).
    Google Scholar 
    Yang, H. et al. Effects of dietary heat-killed Lactobacillus plantarum L-137 (HK L-137) on the growth performance, digestive enzymes and selected non-specific immune responses in sea cucumber, Apostichopus japonicus Selenka. Aquac. Res. 47, 2814–2824 (2016).CAS 

    Google Scholar 
    Singh, S. T., Kamilya, D., Kheti, B., Bordoloi, B. & Parhi, J. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish Shelf. Immunol. 66, 35–42 (2017).CAS 

    Google Scholar 
    Kamilya, D., Baruah, A., Sangma, T., Chowdhury, S. & Pal, P. Inactivated probiotic bacteria stimulate cellular immune responses of catla, Catla catla (Hamilton) in vitro. Probiot. Antimicrob. Proteins 7, 101–106 (2015).CAS 

    Google Scholar 
    Wang, J. et al. Supplementation of heat-inactivated Bacillus clausii DE 5 in diets for grouper, Epinephelus coioides, improves feed utilization, intestinal and systemic immune responses and not growth performance. Aquac. Nutr. 24, 821–831 (2018).CAS 

    Google Scholar 
    Giri, S. S. et al. Effects of dietary heat-killed Pseudomonas aeruginosa strain VSG2 on immune functions, antioxidant efficacy, and disease resistance in Cyprinus carpio. Aquaculture 514, 734489 (2020).CAS 

    Google Scholar 
    Shabanzadeh, S. et al. Growth performance, intestinal histology, and biochemical parameters of rainbow trout (Oncorhynchus mykiss) in response to dietary inclusion of heat-killed Gordonia bronchialis. Fish Physiol. Biochem. 42, 65–71 (2016).CAS 
    PubMed 

    Google Scholar 
    Wu, X. et al. Use of a paraprobiotic and postbiotic feed supplement (HWF™) improves the growth performance, composition and function of gut microbiota in hybrid sturgeon (Acipenser baerii × Acipenser schrenckii). Fish Shelf. Immunol. 104, 36–45 (2020).CAS 

    Google Scholar 
    Mora-Sánchez, B., Balcázar, J. L. & Pérez-Sánchez, T. Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol. Lett. 42, 1957–1962 (2020).PubMed 

    Google Scholar 
    Xiong, J. et al. The temporal scaling of bacterioplankton composition: High turnover and predictability during shrimp cultivation. Microb. Ecol. 67, 256–264 (2014).PubMed 

    Google Scholar 
    Martins, P. et al. Seasonal patterns of bacterioplankton composition in a semi-intensive European seabass (Dicentrarchus labrax) aquaculture system. Aquaculture 490, 240–250 (2018).
    Google Scholar 
    Offret, C. et al. Protective efficacy of a Pseudoalteromonas strain in European abalone, Haliotis tuberculata, infected with Vibrio harveyi ORM4. Probiot. Antimicrob. Proteins 11, 239–247 (2019).
    Google Scholar 
    Richards, G. P. et al. Mechanisms for Pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens. Appl. Environ. Microbiol. 83, e00175-e217 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, S.-R., Chen, Y.-H., Tseng, F.-J. & Weng, C.-F. The production and bioactivity of prodigiosin: Quo vadis?. Drug Discov. Today 25, 828–836 (2020).CAS 
    PubMed 

    Google Scholar 
    Vynne, N. G., Månsson, M., Nielsen, K. F. & Gram, L. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Mar. Biotechnol. 13, 1062–1073 (2011).CAS 

    Google Scholar 
    Lovejoy, C., Bowman, J. P. & Hallegraeff, G. M. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franks, A. et al. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl. Environ. Microbiol. 72, 6079–6087 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hjelm, M. et al. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Syst. Appl. Microbiol. 27, 360–371 (2004).PubMed 

    Google Scholar 
    Sorieul, L. et al. Survival improvement conferred by the Pseudoalteromonas sp. NC201 probiotic in Litopenaeus stylirostris exposed to Vibrio nigripulchritudo infection and salinity stress. Aquaculture 495, 888–898 (2018).
    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).CAS 
    PubMed 

    Google Scholar 
    Yan, Y.-Y., Xia, H.-Q., Yang, H.-L., Hoseinifar, S. H. & Sun, Y.-Z. Effects of dietary live or heat-inactivated autochthonous Bacillus pumilus SE5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides. Aquac. Nutr. 22, 698–707 (2016).CAS 

    Google Scholar 
    Louvado, A. et al. Humic substances modulate fish bacterial communities in a marine recirculating aquaculture system. Aquaculture 544, 737121 (2021).CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 1, 5 (2019).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. (2020).R. Core Team. R: A Language and Environment for Statistical Computing (Version 2120) (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer, F. et al. Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 15, 11 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Setiyono, E. et al. An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments. ACS Omega 5, 4626–4635 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 

    Google Scholar 
    Bakenhus, I. et al. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea—roseobacters are the most active component. Front. Microbiol. 8, 1771 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Sieber, C. M. K. et al. Unusual metabolism and hypervariation in the genome of a gracilibacterium (BD1-5) from an oil-degrading community. MBio 10, e02128-e2219 (2022).
    Google Scholar 
    Jaffe, A. L., Castelle, C. J., Matheus Carnevali, P. B., Gribaldo, S. & Banfield, J. F. The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biol. 18, 69 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. N. & Piñeiro, S. Ecology of the predatory Bdellovibrio and like organisms. In Predatory Prokaryotes 213–248 (Springer, 2006).
    Google Scholar 
    Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).CAS 
    PubMed 

    Google Scholar 
    Rice, T. D., Williams, H. N. & Turng, B.-F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).CAS 
    PubMed 

    Google Scholar 
    Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020 (2017).
    Google Scholar 
    Duarte, L. N. et al. Bacterial and microeukaryotic plankton communities in a semi-intensive aquaculture system of sea bass (Dicentrarchus labrax): A seasonal survey. Aquaculture 503, 59–69 (2019).
    Google Scholar 
    Hu, L. et al. Reclassification of the taxonomic framework of orders cellvibrionales, oceanospirillales, pseudomonadales, and alteromonadales in class gammaproteobacteria through phylogenomic tree analysis. mSystems 5, e00543-e620 (2021).
    Google Scholar 
    Garrity, G. M., Bell, J. A. & Lilburn, T. Oceanospirillalesord. Nov. in Bergey’s Manual® of Systematic Bacteriology 270–323 (Springer, 2005).
    Google Scholar 
    Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: The food connection. Front. Microbiol. 2, 93 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Rajilić-Stojanović, M. & De Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).PubMed 

    Google Scholar 
    Rosenberg, E. The family Chitinophagaceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (eds Rosenberg, E. et al.) (Springer, 2014).
    Google Scholar 
    Beckmann, A., Hüttel, S., Schmitt, V., Müller, R. & Stadler, M. Optimization of the biotechnological production of a novel class of anti-MRSA antibiotics from Chitinophaga sancti. Microb. Cell Fact. 16, 1–10 (2017).
    Google Scholar 
    Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, J. D. & Cunliffe, M. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels. Environ. Microbiol. Rep. 9, 151–157 (2017).CAS 
    PubMed 

    Google Scholar 
    González, J. M. & Whitman, W. B. Oceanospirillum and related genera. In The Prokaryotes: A Handbook on the Biology of Bacteria Volume 6: Proteobacteria: Gamma Subclass (eds Dworkin, M. et al.) 887–915 (Springer, 2006).
    Google Scholar 
    Kleindienst, S., Paul, J. H. & Joye, S. B. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nat. Rev. Microbiol. 13, 388–396 (2015).CAS 
    PubMed 

    Google Scholar 
    Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15, 1302–1317 (2013).CAS 
    PubMed 

    Google Scholar 
    Gobet, A. et al. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front. Microbiol. 10, 2740 (2018).
    Google Scholar 
    Beier, S., Rivers, A. R., Moran, M. A. & Obernosterer, I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ. Microbiol. 17, 3466–3480 (2015).CAS 
    PubMed 

    Google Scholar 
    Müller, O., Seuthe, L., Bratbak, G. & Paulsen, M. L. Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front. Mar. Sci. 5, 263 (2018).
    Google Scholar 
    Fernández-Álvarez, C. & Santos, Y. Identification and typing of fish pathogenic species of the genus Tenacibaculum. Appl. Microbiol. Biotechnol. 102, 9973–9989 (2018).PubMed 

    Google Scholar 
    Wirth, J. S. & Whitman, W. B. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal. Int. J. Syst. Evol. Microbiol. 68, 2393–2411 (2018).CAS 
    PubMed 

    Google Scholar 
    Luo, H. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Shahina, M. et al. Luteibaculum oceani gen. nov., sp. Nov., a carotenoid-producing, lipolytic bacterium isolated from surface seawater, and emended description of the genus Owenweeksia Lau et al. 2005. Int. J. Syst. Evol. Microbiol. 63, 4765–4770 (2013).CAS 
    PubMed 

    Google Scholar 
    Davidov, Y. & Jurkevitch, E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int. J. Syst. Evol. Microbiol. 54, 1439–1452 (2004).CAS 
    PubMed 

    Google Scholar 
    Müller, F. D., Beck, S., Strauch, E. & Linscheid, M. W. Bacterial predators possess unique membrane lipid structures. Lipids 46, 1129–1140 (2011).PubMed 

    Google Scholar 
    Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).CAS 
    PubMed 

    Google Scholar 
    Cao, H., Wang, H., Yu, J., An, J. & Chen, J. Encapsulated bdellovibrio powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. Microorganisms 7, 25 (2019).
    Google Scholar 
    Jafarian, N., Sepahi, A. A., Naghavi, N. S., Hosseini, F. & Nowroozi, J. Using autochthonous Bdellovibrio as a predatory bacterium for reduction of Gram-negative pathogenic bacteria in urban wastewater and reuse it. Iran. J. Microbiol. 12, 556–564 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Cosgrove, L., McGeechan, P. L., Handley, P. S. & Robson, G. D. Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl. Environ. Microbiol. 76, 810–819 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cruz, A. et al. Microbial remediation of organometals and oil hydrocarbons in the marine environment. In Marine Pollution and Microbial Remediation 41–66 (Springer, 2017).
    Google Scholar 
    Zhao, J., Chen, M., Quan, C. S. & Fan, S. D. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J. Fish Dis. 38, 771–786 (2015).CAS 
    PubMed 

    Google Scholar 
    Tyc, O., Song, C., Dickschat, J. S., Vos, M. & Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Numerical analysis of the relationship between mixing regime, nutrient status, and climatic variables in Lake Biwa

    Model validationBased on the time-series validations of water temperature and DO concentration, model accuracy improved gradually, despite several discrepancies at the beginning of the simulation (Supplementary Fig. S1). The model is primarily driven by a set of boundary data, including wind speed, solar radiation, and precipitation data24,25. From this perspective, more high-quality boundary data promotes better numerical reproducibility. However, meteorological data collection was challenging due to the early observation equipment limitations and low observational accuracy compared to current data. The temporal inconsistency of accuracy in observational data has been eliminated to a large extent by fitting a regression curve24. Spatial resolution is the other issue. Possessing spatially constant values for all boundary conditions complicates the numerical reproducibility of variations on finer scales.The relationship between turnovers and the curve shape of water temperature versus DO concentration is theoretically sound27,28. In the last stage of stratification in the lake, water temperature and DO concentration near the bottom are more likely to slightly increase due to thermal diffusion and DO supplies from the upper water. If a turnover occurs, the whole column of water is mixed strongly (Supplementary Fig. S3). Bottom water temperature decreases due to surface water cooling, and DO concentration increases, due to surface water replenishment and increased oxygen solubility. If the turnover fails, only the partial column of water is mixed, causing a delay in the timing of deep-water renewal (Supplementary Fig. S3). However, the upper water in later months, like that in March, has been rapidly warmed, resulting in an increase in the bottom water temperature. For example, in 2007 and 2016, the simulated water temperature and DO concentration fluctuated within a limited range in February and then skyrocketed in March, after mixing with the warmed surface water (blue points in Supplementary Fig. S4). On the other hand, explicit definitions of turnover timing are challenging. The threshold used to judge turnover timing is reliable because the results matched the observation. The turnover timing varied by 36 days in Lake Biwa during the simulation period, which is comparable to that observed in other lakes, such as approximately 21 days in Heiligensee, Germany over a 17-year timespan29, 16 days in Lake Washington over a 40-year timespan30, and 28 days in Blelham Tarn over a 41-year timespan31.Variables affecting the mixing regimeDetermining variables that affect the mixing regime is essential to improve understanding and enable future projections16,17,18. Air temperature, wind speed, cloud cover, precipitation, water density, and lake transparency are all potential variables. We, here, compared the above variables to the turnover timing in Lake Biwa. The meteorological inputs in this study provided data for air temperature, wind speed, cloud cover, and precipitation. Water density and particulate organic carbon (POC) concentration representing lake transparency were the model’s outputs. The annual averages and cold season (November–April) values of the above variables were calculated over the simulation period (Supplementary Fig. S6). Annual averages illustrate general long-term warming trends18, while cold season values particularly determine the timing of turnover17. However, in Lake Biwa, air temperature during the cold season fluctuated greatly compared to the annual averages. A random forest analysis17 has been conducted between the turnover timing and the above two variable sets (cold season values versus annual averages) in Lake Biwa, and the cold season values better explained the turnover timing (35.39% versus 18.48%). The results agree with the conclusion drawn from the previous sensitivity tests, which indicated the relative importance of air temperature and solar radiation during winter based on 40 scenarios32.The importance of variables was estimated based on the random forest analysis using the cold season data (Fig. 4a). Wind speed dominates the timing of turnover, which is consistent with the previous studies17,25. The POC concentration, the difference in water density between the surface and bottom, and cloud cover have moderate effects on the timing of turnover. However, air temperature is less important, which is contrary to the turnover mechanism17,24,32. A re-confirmation was conducted of the relationship between turnover timing and air temperature (Fig. 4b and Supplementary Fig. S7). The cool air generally encourages an early turnover, albeit with several anomalies. The turnover timing between 1976 and 1990 remained constant independent of climate change, and the period coincidently had a substantial nutrient fluctuation (Fig. 3). As a result, it is essential to investigate the nutrient status further.Figure 4Analysis results of the relationship between potential variables and turnover timing: (a) the importance of variables importance using a random forest analysis, and (b) the relationship between the cold season air temperature and the timing of turnover. Variable importance is calculated using the percentage increase in mean square error (MSE) and the increase in node purity. Higher values illustrate the greater importance of the variable. Variables include air temperature (AT), precipitation (pptn.), cloud cover (CC), the difference in density (DD), POC, and wind speed (WS).Full size imageLake nutrient concentrationsBecause phosphorus is the limiting nutrient in Lake Biwa and DIP concentrations can be effectively limited by regulating external loadings as practiced (Fig. 3), DIP concentrations become the focus of this discussion for nutrient status. However, the DIP concentrations disproportionately responded to the external loadings of total phosphorus (TP) in Lake Biwa. Although external TP loading itself fails to determine lake phosphorus concentrations due to the hydrodynamics of lakes33, Lake Biwa exhibited insignificant changes in the inflow rate or the retention time (and see an example of the surface flow in Supplementary Fig. S8). Therefore, it can be assumed that the hydraulic loading remained constant, and the input nutrient concentrations were proportionate to the external nutrient loadings in Lake Biwa. This finding contradicts a recent meta-analysis that highlighted a deterministic relationship between input nutrient concentrations and lake nutrient concentrations, based on steady-state mass balance models6. The possible reason is the dynamics of the lake’s ecosystem22, which have been considered in this study. For example, the surface DIP concentrations were almost nonexistent regardless of the external TP loadings in Lake Biwa, supporting that phosphorus is the limiting nutrient in Lake Biwa34,35. The low DIP concentrations at the surface may be caused by the rapid recycling of phosphorus because the amount of phosphorus available for phytoplankton is easily affected by the feedback mechanism between phytoplankton photosynthesis and the phosphorus released from the water35,36.Hypoxia and strategiesThe variations in DO concentration are the public’s top concern as it relates to hypoxia, a key indicator of water quality. Lake bottom, among all water depths, is more sensitive to small changes in oxygen conditions12. In Lake Biwa, the annual minimum DO concentrations ranged from 2 to 5.5 mg/L over the last 60 years (Supplementary Fig. S9). The decrease in DO concentrations in the early period, typically till the 1980s, was mainly caused by nutrient enrichments (Fig. 3). The nutrient enrichment-induced heavy eutrophication eventually accelerates the rate of DO depletion2. After eutrophication was controlled in the 1980s, climate change became the dominant stressor23. There remains much uncertainty surrounding the relationship between climatic variables-related turnover timing and hypoxia in Lake Biwa12. We, therefore, first investigate the relationship between hypoxia and turnover timing, and then concentrate on nutrients to alleviate hypoxia.Although the relationship between turnover timing and DO concentrations is quite weak (R2 = 0.10), there is a general decrease in DO concentrations with increasing turnover timing (Fig. 5a). On the other hand, a linear relationship has been found between DIP concentrations and DO concentrations, with an R2 of 0.67 (Fig. 5b). The slope of –0.841 μgP/mgDO means an increase in DIP concentrations by approximately 0.841 μgP/L causes a decrease in DO concentrations by 1 mg/L. Note that the simulation results were compared over the whole period, and eutrophication-induced hypoxia differs theoretically from climate-induced hypoxia. Additional testing has been conducted to distinguish the effects of two stressors (eutrophication- and climate-induced hypoxia; Supplementary Fig. S10). Before 1980 when eutrophication progressed, the annual minimum DO concentrations and the DIP concentrations had a stronger linear relationship (R2 = 0.89). Although waste-water treatment has improved conditions in the lake, climate change induced alteration of turnover timing may adversely influence water quality. However, the relationship weakened dramatically with an R2 of 0.10 after 1980, when climate change dominated hypoxia. The lower R2 value indicates that climate-related hypoxia is more complex as concluded previously37,38. The two possibilities are as follows. First, there can be a legacy of hypoxia related to eutrophication. The DO recovery at the bottom of Lake Biwa was complicated by the low DO concentration in 1980 and the delayed timing of turnover; similar phenomena have been observed in the Lake of Zurich22. Second, ecosystem dynamics could help explain the difficulty in predicting hypoxia at the bottom. Phytoplankton fully exploits phosphorus at the surface, as explained above, then the death and sinking of the surface phytoplankton are accompanied by the sedimentation of phosphorus to the bottom as modeled. Bacteria break down the sinking phytoplankton, releasing phosphorus and consuming DO in the process. Additional DO consumption lowers the bottom DO concentration, which in turn encourages phosphorus release from the sediment in a low DO environment22. Such unfavorable feedback between DIP and DO concentrations are strengthened by prolonged stratification and eventually accelerates the development of hypoxia. However, future research is necessary because this numerical model simplified the relationship between water and sediment. The sinking of organic carbon into sediment is integrated in the model, and due to the decomposition of organic carbon in the sediment, nutrients are released into and oxygen is depleted in the water. Despite that, the trends between DO and DIP concentrations stay the same under climate change (Fig. 5b), and thus controlling lake phosphorus is beneficial to the Lake Biwa hypoxia.Figure 5The linear regression results of the relationship: (a) between turnover timing and annual minimum concentration of DO, (b) between the annual minimum concentration of DO and annual average concentration of DIP. The simulation results at the monitoring station were used for analysis.Full size image More