Carcass appearance does not influence scavenger avoidance of carnivore carrion
DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
Google Scholar
Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed
Google Scholar
Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS
PubMed
Google Scholar
Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, e01331 (2019).
Google Scholar
Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).ADS
PubMed
CAS
Google Scholar
Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).PubMed
Google Scholar
Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution, and Their Applications (eds Benbow, E. M. et al.) 107–127 (CRC Press, 2015).
Google Scholar
DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
Google Scholar
Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
Google Scholar
Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed
Google Scholar
Selva, N. The Role of Scavenging in the Predator Community of Białowieża Primeval Forest (E Poland) (Univeristy of Sevilla, 2004).
Google Scholar
Moleón, M. et al. Carnivore carcasses are avoided by carnivores. J. Anim. Ecol. 86, 1179–1191 (2017).PubMed
Google Scholar
Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
Google Scholar
Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7, e01496 (2016).
Google Scholar
DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).
Google Scholar
Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed
PubMed Central
Google Scholar
Muñoz-Lozano, C. et al. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS ONE 14, e0221890 (2019).PubMed
PubMed Central
Google Scholar
Peers, M. J. L. et al. Vertebrate scavenging dynamics differ between carnivore and herbivore carcasses in the northern boreal forest. Ecosphere 12, e03691 (2021).
Google Scholar
Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: A trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).PubMed
Google Scholar
Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).
Google Scholar
Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).
Google Scholar
Fouilloux, C., Ringler, E. & Rojas, B. Cannibalism. Curr. Biol. 29, R1295–R1297 (2019).PubMed
CAS
Google Scholar
Oliva-Vidal, P., Tobajas, J. & Margalida, A. Cannibalistic necrophagy in red foxes: Do the nutritional benefits offset the potential costs of disease transmission?. Mamm. Biol. https://doi.org/10.1007/s42991-021-00184-5 (2021).Article
Google Scholar
Mateo, J. M. Recognition systems and biological organization: The perception component of social recognition. Ann. Zool. Fenn. 41, 729745 (2004).
Google Scholar
Dangles, O., Irschick, D., Chittka, L. & Casas, J. Variability in sensory ecology: Expanding the bridge between physiology and evolutionary biology. Q. Rev. Biol. 84, 51–74 (2009).PubMed
Google Scholar
Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).CAS
Google Scholar
Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).PubMed
CAS
Google Scholar
Gonzálvez, M., Martínez-Carrasco, C., Sánchez-Zapata, J. A. & Moleón, M. Smart carnivores think twice: red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl. Anim. Behav. Sci. 243, 105462 (2021).PubMed
PubMed Central
Google Scholar
Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Écoscience 10, 303–311 (2003).
Google Scholar
Carr, W. J., Hirsch, J. T., Campellone, B. E. & Marasco, E. Some determinants of a natural food aversion in Norway rats. J. Comp. Physiol. Psychol. 93, 899–906 (1979).
Google Scholar
Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed
Google Scholar
Moleón, M. & Sánchez-Zapata, J. A. The role of carrion in the landscapes of fear and disgust: a review and prospects. Diversity 13, 28 (2021).
Google Scholar
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (Springer, 2022).
Google Scholar
Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A. & Zeileis, A. Coin: Conditional Inference Procedures in a Permutation Test Framework (Springer, 2021).
Google Scholar
Owings, C. G., Gilhooly, W. P. & Picard, C. J. Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects. PLoS ONE 16, e0249422 (2021).PubMed
PubMed Central
CAS
Google Scholar
Matuszewski, S., Konwerski, S., Frątczak, K. & Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 128, 1039–1048 (2014).PubMed
PubMed Central
Google Scholar
Cunningham, C. X. et al. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proc. R. Soc. B. 285, 1–10 (2018).
Google Scholar
Huang, S., Bininda-Emonds, O. R. P., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671–680 (2014).PubMed
Google Scholar
Hill, D. E., Chirukandoth, S. & Dubey, J. P. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim. Health Res. Rev. 6, 41–61 (2005).PubMed
Google Scholar
Hill, D. E. et al. Trichinella murrelli in scavenging mammals from south-central Wisconsin, USA. J. Wildl. Dis. 44, 629–635 (2008).PubMed
CAS
Google Scholar
Sandfoss, M., DePerno, C., Patton, S., Flowers, J. & Kennedy-Stoskopf, S. Prevalence of antibody to Toxoplasma gondii and Trichinella spp. in feral pigs (Sus scrofa) of eastern North Carolina. J. Wildl. Dis. 47, 338–343 (2011).PubMed
Google Scholar
Butler, J. R. A., du Toit, J. T. & Bingham, J. Free-ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats of competition and disease to large wild carnivores. Biol. Conserv. 115, 369–378 (2004).
Google Scholar
Mendenhall, I. H. et al. Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Health 2, 122–125 (2016).PubMed
PubMed Central
Google Scholar
Han, B. A., Castellanos, A. A., Schmidt, J. P., Fischhoff, I. R. & Drake, J. M. The ecology of zoonotic parasites in the Carnivora. Trends Parasitol. 37, 1096–1110 (2021).PubMed
Google Scholar
Malmberg, J. L., White, L. A. & VandeWoude, S. Bioaccumulation of pathogen exposure in top predators. Trends Ecol. Evol. 36, 411–420 (2021).PubMed
Google Scholar
Mammal Diversity Database (Version 1.9). https://doi.org/10.5281/zenodo.6407053 (2022).Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed
PubMed Central
Google Scholar
Digby, Z. et al. Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Rep. 36, 109614 (2021).PubMed
PubMed Central
CAS
Google Scholar
Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).PubMed
CAS
Google Scholar
Hart, B. L. & Hart, L. A. How mammals stay healthy in nature: The evolution of behaviours to avoid parasites and pathogens. Philos. Trans. R. Soc. B 373, 20170205 (2018).
Google Scholar
Brown, C. J. & Plug, I. Food choice and diet of the bearded vulture Gypaetus barbatus in southern Africa. S. Afr. J. Zool. 25, 169–177 (1990).
Google Scholar
Rossi, L., Interisano, M., Deksne, G. & Pozio, E. The subnivium, a haven for Trichinella larvae in host carcasses. Int. J. Parasitol. Parasit. Wildl. 8, 229–233 (2019).
Google Scholar
Micozzi, M. S. Experimental study of postmortem change under field conditions: Effects of freezing, thawing, and mechanical injury. J. Forensic Sci. 31, 953–961 (1986).PubMed
CAS
Google Scholar
Mayntz, D. & Toft, S. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J. Anim. Ecol. 75, 288–297 (2006).PubMed
Google Scholar
Margalida, A. Bearded vultures (Gypaetus barbatus) prefer fatty bones. Behav. Ecol. Sociobiol. 63, 187–193 (2008).
Google Scholar
Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
Google Scholar
Evans, B. E., Mosby, C. E. & Mortelliti, A. Assessing arrays of multiple trail cameras to detect North American mammals. PLoS ONE 14, 1–18 (2019).
Google Scholar
Ivan, J. S. & Newkirk, E. S. CPW Photo Warehouse: A custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods Ecol. Evol. 7, 499–504 (2016).
Google Scholar
Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).MATH
Google Scholar
Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2’ (Springer, 2020).
Google Scholar
Nenadic, O. & Greenacre, M. Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J. Stat. Softw. 20, 1–13 (2007).
Google Scholar
Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (Springer, 2020).
Google Scholar
Greenacre, M. The contributions of rare objects in correspondence analysis. Ecology 94, 241–249 (2013).PubMed
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Google Scholar More