More stories

  • in

    Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology

    DataWe tested our models on ten publicly available datasets. In Fig. 4 we show examples of images from each of the datasets. When applicable, the training and test splits were kept the same as in the original dataset. For example, the ZooScan, Kaggle, EILAT, and RSMAS datasets lack a specific training and test set; in these cases, benchmarks come from k-fold cross-validation51,52, and we followed the exact same procedures in order to allow for a fair comparison.Figure 4Examples of images from each of the datasets.(a) RSMAS (b) EILAT (c) ZooLake (d) WHOI (e) Kaggle (f) ZooScan (g) NA-Birds (h) Stanford dogs (i) SriLankan Beetles (j) Florida Wildtrap.Full size imageRSMAS This is a small coral dataset of 766 RGB image patches with a size of (256times 256) pixels each53. The patches were cropped out of bigger images obtained by the University of Miami’s Rosenstiel School of Marine and Atmospheric Sciences. These images were captured using various cameras in various locations. The data is separated into 14 unbalanced groups and whose labels correspond to the names of the coral species in Latin. The current SOTA for the classification of this dataset is by52. They use the ensemble of best performing 11 CNN models. The best models were chosen based on sequential forward feature selection (SFFS) approach. Since an independent test is not available, they make use of 5-fold cross-validation for benchmarking the performances.EILAT This is a coral dataset of 1123 64-pixel RGB image patches53 that were created from larger images that were taken from coral reefs near Eilat in the Red sea. The image dataset is partitioned into eight classes, with an unequal distribution of data. The names of the classes correspond to the shorter version of the scientific names of the coral species. The current SOTA52 for the classification of this dataset uses the ensemble of best performing 11 CNN models similar to RSMAS dataset and 5-fold cross-validation for benchmarking the performances.ZooLake This dataset consists of 17943 images of lake plankton from 35 classes, acquired using a Dual-magnification Scripps Plankton Camera (DSPC) in Lake Greifensee (Switzerland) between 2018 and 2020 14,54. The images are colored, with a black background and an uneven class distribution. The current SOTA22 on this dataset is based on a stacking ensemble of 6 CNN models on an independent test set.WHOI This dataset 55 contains images of marine plankton acquired by Image FlowCytobot56, from Woods Hole Harbor water. The sampling was done between late fall and early spring in 2004 and 2005. It contains 6600 greyscale images of different sizes, from 22 manually categorized plankton classes with an equal number of samples for each class. The majority of the classes belonging to phytoplankton at genus level. This dataset was later extended to include 3.4M images and 103 classes. The WHOI subset that we use was previously used for benchmarking plankton classification models51,52. The current SOTA22 on this dataset is based on average ensemble of 6 CNN models on an independent test set.Kaggle-plankton The original Kaggle-plankton dataset consists of plankton images that were acquired by In-situ Ichthyoplankton Imaging System (ISIIS) technology from May to June 2014 in the Straits of Florida. The dataset was published on Kaggle (https://www.kaggle.com/c/datasciencebowl) with images originating from the Hatfield Marine Science Center at Oregon State University. A subset of the original Kaggle-plankton dataset was published by51 to benchmark the plankton classification tasks. This subset comprises of 14,374 greyscale images from 38 classes, and the distribution among classes is not uniform, but each class has at least 100 samples. The current SOTA22 uses average ensemble of 6 CNN models and benchmarks the performance using 5-fold cross-validation.ZooScan The ZooScan dataset consists of 3771 greyscale plankton images acquired using the Zooscan technology from the Bay of Villefranche-sur-mer57. This dataset was used for benchmarking the classification models in previous plankton recognition papers51,52. The dataset consists of 20 classes with a variable number of samples for each class ranging from 28 to 427. The current SOTA22 uses average ensemble of 6 CNN models and benchmarks the performance using 2-fold cross-validation.NA-Birds NA-Birds58 is a collection of 48,000 captioned pictures of North America’s 400 most often seen bird species. For each species, there are over 100 images accessible, with distinct annotations for males, females, and juveniles, totaling 555 visual categories. The current SOTA59 called TransFG modifies the pure ViT model by adding contrastive feature learning and part selection module that replaces the original input sequence to the transformer layer with tokens corresponding to informative regions such that the distance of representations between confusing subcategories can be enlarged. They make use of an independent test set for benchmarking the model performances.Stanford Dogs The Stanford Dogs dataset comprises 20,580 color images of 120 different dog breeds from all around the globe, separated into 12,000 training images and 8,580 testing images60. The current SOTA59 makes use of modified ViT model called TransFG as explained above in NA-Birds dataset. They make use of an independent test set for benchmarking the model performances.Sri Lankan Beetles The arboreal tiger beetle data61 consists of 380 images that were taken between August 2017 and September 2020 from 22 places in Sri Lanka, including all climatic zones and provinces, as well as 14 districts. Tricondyla (3 species), Derocrania (5 species), and Neocollyris (1 species) were among the nine species discovered, with six of them being endemic . The current SOTA61 makes use of CNN-based SqueezeNet architecture and was trained using pre-trained weights of ImageNet. The benchmarking of the model performances was done on an independent test set.Florida Wild Traps The wildlife camera trap62 classification dataset comprises 104,495 images with visually similar species, varied lighting conditions, skewed class distribution, and samples of endangered species, such as Florida panthers. These were collected from two locations in Southwestern Florida. These images are categorized in to 22 classes. The current SOTA62 makes use of CNN-based ResNet-50 architecture and the performance of the model was benchmarked on an independent test set.ModelsVision transformers (ViTs)31 are an adaptation to computer vision of the Transformers, which were originally developed for natural language processing30. Their distinguishing feature is that, instead of exploiting translational symmetry, as CNNs do, they have an attention mechanism which identifies the most relevant part of an image. ViTs have recently outperformed CNNs in image classification tasks where vast amounts of training data and processing resources are available30,63. However, for the vast majority of use cases and consumers, where data and/or computational resources are limiting, ViTs are essentially untrainable, even when the network architecture is defined and no architectural optimization is required. To settle this issue, Data-efficient Image Transformers (DeiTs) were proposed32. These are transformer models that are designed to be trained with much less data and with far less computing resources32. In DeiTs, the transformer architecture has been modified to allow native distillation64, in which a student neural network learns from the results of a teacher model. Here, a CNN is used as the teacher model, and the pure vision transformer is used as the student network. All the DeiT models we report on here are DeiT-Base models32. The ViTs are ViT-B16, ViT-B32, and ViT-L32 models31.ImplementationTo train our models, we used transfer learning65: we took a model that was already pre-trained on the ImageNet43 dataset, changed the last layers depending on the number of classes, and then fine-tuned the whole network with a very low learning rate. All the models were trained with two Nvidia GTX 2080Ti GPUs.DeiTs We used DeiT-Base32 architecture, using the Python package TIMM66, which includes many of the well-known deep learning architectures, along with their pre-trained weights computed from the ImageNet dataset43. We resized the input images to 224 x 224 pixels and then, to prevent the model from overfitting at the pixel level and help it generalize better, we employed typical image augmentations during training such as horizontal and vertical flips, rotations up to 180 degrees, small zoom up’s to 20%, a small Gaussian blur, and shearing up to 10%. To handle class imbalance, we used class reweighting, which reweights errors on each example by how present that class is in the dataset67. We used sklearn utilities68 to calculate the class weights which we employed during the training phase.The training phase started with a default pytorch69 initial conditions (Kaiming uniform initializer), an AdamW optimizer with cosine annealing70, with a base learning rate of (10^{-4}), and a weight decay value of 0.03, batch size of 32 and was supervised using cross-entropy loss. We trained with early stopping, interrupting training if the validation F1-score did not improve for 5 epochs. The learning rate was then dropped by a factor of 10. We iterated until the learning rate reached its final value of (10^{-6}). This procedure amounted to around 100 epochs in total, independent of the dataset. The training time varied depending on the size of the datasets. It ranged between 20min (SriLankan Beetles) to 9h (Florida Wildtrap). We used the same procedure for all the datasets: no extra time was needed for hyperparameter tuning.ViTs We implemented the ViT-B16, ViT-B32 and ViT-L32 models using the Python package vit-keras (https://github.com/faustomorales/vit-keras), which includes pre-trained weights computed from the ImageNet43 dataset and the Tensorflow library71.First, we resized input images to 128 × 128 and employed typical image augmentations during training such as horizontal and vertical flips, rotations up to 180 degrees, small zooms up to 20%, small Gaussian blur, and shearing up to 10%. To handle class imbalance, we calculated the class weights and use them during the training phase.Using transfer learning, we imported the pre-trained model and froze all of the layers to train the model. We removed the last layer, and in its place we added a dense layer with (n_c) outputs (being (n_c) the number of classes), was preceded and followed by a dropout layer. We used the Keras-tuner72 with Bayesian optimization search73 to determine the best set of hyperparameters, which included the dropout rate, learning-rate, and dense layer parameters (10 trials and 100 epochs). After that, the model with the best hyperparameters was trained with a default tensorflow71 initial condition (Glorot uniform initializer) for 150 epochs using early stopping, which involved halting the training if the validation loss did not decrease after 50 epochs and retaining the model parameters that had the lowest validation loss.CNNs CNNs included DenseNet38, MobileNet39, EfficientNet-B240, EfficientNet-B540, EfficientNet-B640, and EfficientNet-B740 architectures. We followed the training procedure described in Ref.22, and carried out the training in tensorflow.Ensemble learningWe adopted average ensembling, which takes the confidence vectors of different learners, and produces a prediction based on the average among the confidence vectors. With this procedure, all the individual models contribute equally to the final prediction, irrespective of their validation performance. Ensembling usually results in superior overall classification metrics and model robustness74,75.Given a set of n models, with prediction vectors (vec c_i~(i=1,ldots ,n)), these are typically aggregated through an arithmetic average. The components of the ensembled confidence vector (vec c_{AA}), related to each class (alpha ) are then$$begin{aligned} c_{AA,alpha } = frac{1}{n}sum _{i=1}^n c_{i,alpha },. end{aligned}$$
    (2)
    Another option is to use a geometric average,$$begin{aligned} c_{GA,alpha } = root n of {prod _{i=1}^n c_{i,alpha }},. end{aligned}$$
    (3)
    We can normalize the vector (vec c_g), but this is not relevant, since we are interested in its largest component, (displaystyle max _alpha (c_{GA,alpha })), and normalization affects all the components in the same way. As a matter of fact, also the nth root does not change the relative magnitude of the components, so instead of (vec c_{GA}) we can use a product rule: (displaystyle max _alpha (c_{GA,alpha })=max _alpha (c_{PROD,alpha })), with (displaystyle c_{PROD,alpha } = prod _{i=1}^n c_{i,alpha }).While these two kinds of averaging are equivalent in the case of two models and two classes, they are generally different in any other case33. For example, it can easily be seen that the geometric average penalizes more strongly the classes for which at least one learner has a very low confidence value, a property that was termed veto mechanism36 (note that, while in Ref.36 the term veto is used when the confidence value is exactly zero, here we use this term in a slightly looser way). More

  • in

    The arrival of millets to the Atlantic coast of northern Iberia

    Buxó, R. & Piqué, R. Arqueobotánica: Los Usos de las Plantas en la Península Ibérica. (Grupo Planeta GBS, 2008).Miller, N. F., Spengler, R. N. & Frachetti, M. Millet cultivation across Eurasia: Origins, spread, and the influence of seasonal climate. Holocene 26, 1566–1575 (2016).ADS 

    Google Scholar 
    James, T. K., Rahman, A., McGill, C. R. & Trivedi, P. D. Biology and survival of broomcorn millet (Panicum miliaceum) seed. N. Z. Plant Prot. 64, 142–148 (2011).
    Google Scholar 
    Kirleis, W., Dal Corso, M. & Filipović, D. Millet and What Else?: The Wider Context of the Adoption of Millet Cultivation in Europe. vol. 14 (Sidestone Press, 2022).Sherratt, A. Water, soil and seasonality in early cereal cultivation. World Archaeol. 11, 313–330 (1980).
    Google Scholar 
    Rachie, K. O. The Millets: Importance, Utilization and Outlook. 74 (International Crops Research Institute for the Semi-Arid Tropics, 1975).Moreno-Larrazabal, A., Teira-Brión, A., Sopelana-Salcedo, I., Arranz-Otaegui, A. & Zapata, L. Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Veg. Hist. Archaeobot. 24, 541–554 (2015).
    Google Scholar 
    Liu, L. et al. The origins of specialized pottery and diverse alcohol fermentation techniques in Early Neolithic China. Proc. Natl. Acad. Sci. USA 116, 12767–12774 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tereso, J. P. et al. Agriculture in NW Iberia during the Bronze Age: A review of archaeobotanical data. J. Archaeol. Sci. Rep. 10, 44–58 (2016).
    Google Scholar 
    Liu, C., Kong, Z. & Lang, S. D. A discussion on agricultural and botanical remains and the human ecology of Dadiwan site, in Chinese. Zhongyuan Wenwu 4, 25–29 (2004).
    Google Scholar 
    Zhao, Z. New archaeobotanic data for the study of the origins of agriculture in China. Curr. Anthropol. 52, S295–S306 (2011).
    Google Scholar 
    Crawford, G. W., Xuexiang, C., Fengshi, L. & Jianhua, W. A Preliminary analysis on plant remains of the Yuezhuang site in Changqing District, Jinan City, Shandong Province. Jianghan Archaeol. 2, 107–113 (2013).
    Google Scholar 
    Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38. https://doi.org/10.1086/663692 (2012).Article 

    Google Scholar 
    Ventresca Miller, A. R. & Makarewicz, C. A. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Sci. Rep. 9, 8363 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. et al. Food globalisation in prehistory: The agrarian foundations of an interconnected continent. J. Br. Acad. 4, 73–87 (2016).
    Google Scholar 
    Spengler, R. et al. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc. Biol. Sci. 281, 20133382 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Hermes, T. R. et al. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. Proc. Biol. Sci. 286, 20191273 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frachetti, M. D., Spengler, R. N., Fritz, G. J. & Maryashev, A. N. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84, 993–1010 (2010).
    Google Scholar 
    Motuzaite-Matuzeviciute, G., Richard, A. S., Hunt, H. V., Liu, X. & Jones, M. K. The early chronology of broomcorn millet (Panicum Miliaceum) in Europe. Antiquity 338, 1073–1085 (2013).
    Google Scholar 
    Filipović, D. et al. New AMS 14C dates track the arrival and spread of broomcorn millet cultivation and agricultural change in prehistoric Europe. Sci. Rep. 10, 13698 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt, H. V. et al. Millets across Eurasia: Chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg. Hist. Archaeobot. 17, 5–18 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Brudenell, M., Fosberry, R., Phillips, T. & Kwiatkowska, M. Early cultivation of broomcorn millet in southern Britain: Evidence from the Late Bronze Age settlement site of Old Catton, Norfolk. Antiquity 2022, 1–6 (2022).
    Google Scholar 
    Weber, S. A. & Fuller, D. Q. Millets and their role in early agriculture. Pragdhara 18, 69–90 (2007).
    Google Scholar 
    Shelton, C. P. & White, C. E. The hand-pump flotation system: A new method for archaeobotanical recovery. J. Field Archaeol. 35, 316–326 (2010).
    Google Scholar 
    Barboff, M. Le millet au Portugal. In Millet– Hirse–Millet. Actes du Congres d’Aizenay (ed. Hörandner, E.) 113–122 (Grazer Beitra¨ge zur 731 europa¨ischen Ethnologie, 1995).Reddy, S. N. If the Threshing Floor Could Talk: Integration of Agriculture and Pastoralism during the Late Harappan in Gujarat, India. J. Anthropol. Archaeol. 16, 162–187 (1997).
    Google Scholar 
    Dayakar Rao, B. et al. Nutritional and health benefits of millets. In ICAR_Indian Institute of Millets Research (IIMR), Rajendranagar, Hyderabad 112 (2017).Mariotti-Lippi, M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in Central Italy: Plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
    Google Scholar 
    Lu, H. et al. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum). PLoS ONE 4, e4448 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on ground stone tools from the Farafra Oasis, Egypt. Quat. Int. 410, 77–92 (2016).
    Google Scholar 
    Madella, M., Lancelotti, C. & García-Granero, J. J. Millet microremains—an alternative approach to understand cultivation and use of critical crops in Prehistory. Archaeol. Anthropol. Sci. 8, 17–28 (2016).
    Google Scholar 
    Yang, X. et al. From the modern to the archaeological: Starch grains from millets and their wild relatives in China. J. Archaeol. Sci. 39, 247–254 (2012).
    Google Scholar 
    Lightfoot, E., Liu, X. & Jones, M. K. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World Archaeol. 45, 574–623 (2013).
    Google Scholar 
    Armendariz, A. In Las cuevas sepulcrales del País Vasco. (Tesis Doctoral Inédita, Universidad del País Vasco-Euskal Herriko Unibertsitatea, 1992).Vazquez-Varela, J. M. El cultivo del mijo, (Panicum miliaceum, L.), en la cultura castreña del noroeste de la peninsula iberica. Cuad. Estud. Gallegos 1, 65–73 (1994).
    Google Scholar 
    Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arias, P. & Armendariz, A. Aproximación a la Edad del Bronce en la región cantábrica. A Idade do Bronce en Galicia: novas perspectivas. Cadernos Semin. Sargadelos 77, 47–80 (1998).
    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 

    Google Scholar 
    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
    Google Scholar 
    van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
    Google Scholar 
    Nehlich, O. & Richards, M. P. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 59–75 (2009).
    Google Scholar 
    Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqā’I, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).
    Google Scholar 
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).ADS 
    CAS 

    Google Scholar 
    Hedges, R. E. M. & Reynard, L. M. Nitrogen isotopes and the trophic level of humans in archaeology. J. Archaeol. Sci. 34, 1240–1251 (2007).
    Google Scholar 
    López-Costas, O., Müldner, G. & Martínez-Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218 (2015).
    Google Scholar 
    Jones, J. R. et al. Investigating prehistoric diet and lifeways of early farmers in central northern Spain (3000–1500 CAL BC) using stable isotope techniques. Archaeol. Anthropol. Sci. 11, 3979–3994 (2019).
    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    CAS 

    Google Scholar 
    O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).
    Google Scholar 
    Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216, 1131–1132 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Blas Cortina, M. Á. De la caverna al lugar fortificado: Una mirada a la edad del bronce en el territorio Astur-Cántabro. Quad. Prehist. Arqueol. Castelló 29, 105–134 (2011).
    Google Scholar 
    Nehlich, O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 142, 1–17 (2015).ADS 
    CAS 

    Google Scholar 
    Richards, M. P., Fuller, B. T. & Hedges, R. E. M. Sulphur isotopic variation in ancient bone collagen from Europe: Implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth Planet. Sci. Lett. 191, 185–190 (2001).ADS 
    CAS 

    Google Scholar 
    González-Rabanal, B. et al. Diet, mobility and death of Late Neolithic and Chalcolithic groups of the Cantabrian Region (northern Spain). A multidisciplinary approach towards studying the Los Avellanos I and II burial caves. J. Archaeol. Sci. Rep. 34, 1–13 (2020).
    Google Scholar 
    McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 101, 17593–17598 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Crespo, T., Ordoño, J., Bogaard, A., Llanos, A. & Schulting, R. A snapshot of subsistence in Iron Age Iberia: The case of La Hoya village. J. Archaeol. Sci. Rep. 28, 1–10 (2019).
    Google Scholar 
    Hedges, R. E. M. On bone collagen?apatite-carbonate isotopic relationships. Int. J. Osteoarchaeol. 13, 66–79 (2003).
    Google Scholar 
    Arias, P. Determinaciones de isótopos estables en restos humanos de la región Cantábrica. Aportación al estudio de la dieta de las poblaciones del Mesolítico y el Neolítico. Munibe Antropol.-Arkeol. 57, 359–374 (2005).
    Google Scholar 
    Palencia-Madrid, L. et al. Ancient mitochondrial lineages support the prehistoric maternal root of Basques in Northern Iberian Peninsula. Eur. J. Hum. Genet. 25, 631–636 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Crespo, T., Mujika, J. A. & Ordoño, J. Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab. Prehist. 73, 325–334 (2016).
    Google Scholar 
    Higuero Pliego, A. In Análisis Isotópico de Carbono y Nitrógeno en Secuencias de Dentina y de Estroncio en Esmalte Procedente de Restos Humanos Prehistóricos de la Cueva de Los Canes (Cabrales, Asturias). (Tesis Doctoral Inédita, Universidad de Cantabria, 2020).Teira-Brión, A. Traditional millet cultivation in the Iberian Peninsula: Ethnoarchaeological reflections through the lens of social relations and economic concerns. In (eds. Kirleis, W. et al.) Millet and What Else?: The Wider Context of the Adoption of Millet Cultivation in Europe vol. 14 263–278 (Sidestone Press, 2022).Pechenkina, E. A., Ambrose, S. H., Xiaolin, M. & Benfer, R. A. Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis. J. Archaeol. Sci. 32, 1176–1189 (2005).
    Google Scholar 
    Hu, Y. et al. Palaeodietary study of Sanxingcun Site, Jintan, Jiangsu. Chin. Sci. Bull. 52, 660–664 (2007).
    Google Scholar 
    Motuzaite-Matuzeviciute, G., Ananyevskaya, E., Sakalauskaite, J., Soltobaev, O. & Tabaldiev, K. The integration of millet into the diet of Central Asian populations in the third millennium BC. Antiquity 96, 560–574 (2022).
    Google Scholar 
    Herrscher, E. et al. The origins of millet cultivation in the Caucasus: Archaeological and archaeometric approaches. Préhistoires Méditerr. 2018, 6 (2018).
    Google Scholar 
    Tafuri, M. A., Craig, O. E. & Canci, A. Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. Am. J. Phys. Anthropol. 139, 146–153 (2009).PubMed 

    Google Scholar 
    Varalli, A., Moggi-Cecchi, J., Moroni, A. & Goude, G. Dietary variability during bronze age in central Italy: First results. Int. J. Osteoarchaeol. 26, 431–446 (2016).
    Google Scholar 
    Goude, G., Rey, L., Toulemonde, F., Cervel, M. & Rottier, S. Dietary changes and millet consumption in northern France at the end of Prehistory: Evidence from archaeobotanical and stable isotope data. Environ. Archaeol. 22, 268–282 (2017).
    Google Scholar 
    Fernández-Crespo, T., Ordoño, J., Llanos, A. & Schulting, R. J. Make a desert and call it peace: Massacre at the Iberian Iron Age village of La Hoya. Antiquity 94, 1245–1262 (2020).
    Google Scholar 
    Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 106, 7367–7372 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, M. et al. Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province. Sci. China Earth Sci. 53, 694–699 (2010).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Lu, H., Wu, N., Yang, X. & Diao, X. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and Green Foxtail (Setaria viridis). PLoS ONE 6, e19726 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ge, Y. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol. Anthropol. Sci. 10, 61–73 (2018).
    Google Scholar 
    Tao, D., Zhang, G., Zhou, Y. & Zhao, H. Investigating wheat consumption based on multiple evidences: Stable isotope analysis on human bone and starch grain analysis on dental calculus of humans from the Laodaojing cemetery, Central Plains, China. Int. J. Osteoarchaeol. 30, 594–606 (2020).
    Google Scholar 
    Bucchi, A., Burguet-Coca, A., Expósito, I., Aceituno-Bocanegra, F. J. & Lozano, M. Comparisons between methods for analyzing dental calculus samples from El Mirador cave (Sierra de Atapuerca, Spain). Archaeol. Anthropol. Sci. 11, 6305–6314 (2019).
    Google Scholar 
    Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, 1–37 (2021).
    Google Scholar 
    Bocanegra, F. J. A. & Sáez, J. A. L. Caracterización morfológica de almidones de los géneros Triticum y Hordeum en la Península Ibérica. Trabprehist 69, 332–348 (2012).
    Google Scholar 
    Hardy, K., Buckley, S. & Copeland, L. Pleistocene dental calculus: Recovering information on Paleolithic food items, medicines, paleoenvironment and microbes. Evol. Anthropol. 27, 234–246 (2018).PubMed 

    Google Scholar 
    López-Dóriga, I. In The use of plants during the Mesolithic and the Neolithic in the Atlantic coast of the Iberian peninsula. (Tesis Doctoral Inédita, Universidad de Cantabria, 2016).Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Pyankov, V. I., Ziegler, H., Akhani, H., Deigele, C. & Lüttge, U. European plants with C4 photosynthesis: Geographical and taxonomic distribution and relations to climate parameters. Bot. J. Linn. Soc. 163, 283–304 (2010).
    Google Scholar 
    Zapata, L. In La explotación de los recursos vegetales y el origen de la agricultura en el País Vasco. (Tesis Doctora Inédita, Universidad del País Vasco, 2002).Figueiral, I., de-Jesus-Sanches, M. & Cardoso, J. L. Crasto de Palheiros (Murça, NE Portugal, 3rd – 1st millennium BC): From archaeological remains to ordinary life. Estudos Quat. 17, 13–28 (2017).
    Google Scholar 
    Bettencourt, A. M. S. O povoado da Idade do Bronze da Sola, Braga, norte de Portugal. Cadernos Arqueol. 9, 29–44 (2000).
    Google Scholar 
    Jesus, A., Tereso, J. P. & Gaspar, R. Interpretative trajectories towards the understanding of negative features using Terraço das Laranjeiras Bronze Age site as a case study. J. Archaeol. Sci. Rep. 30, 1–14 (2020).
    Google Scholar 
    Alonso-Martínez, N. Registro arqueobotánico de Cataluña occidental durante el II y I milenio a.n.e.. Complutum 11, 221–238 (2000).
    Google Scholar 
    Tarongi-Chavarri, M. Análisis comparativo de los estudios carpológicos de la Depresión del Ebro durante el III y I milenio a. C. Un estado de la cuestión. Rev. d’arqueologia Ponent 27, 41–59 (2017).
    Google Scholar 
    Stika, H.-P. & Heiss, A. G. Plant cultivation in the Bronze Age. In The Oxford Handbook of the European Bronze Age (eds. Fokkens, H. & Harding, A.) 348–369 (2013).González-y-Fernández-Valles, J. M. Temas de toponimia asturiana. Archivum 21, 121–140 (1971).
    Google Scholar 
    de Carvallo, L. A. In Antiguedades y Cosas Memorables del Principado de Asturias. (Julian de Paredes, 1695).MacKinnon, A. T., Passalacqua, N. V. & Bartelink, E. J. Exploring diet and status in the Medieval and Modern periods of Asturias, Spain, using stable isotopes from bone collagen. Archaeol. Anthropol. Sci. 11, 3837–3855. https://doi.org/10.1007/s12520-019-00819-2 (2019).Article 

    Google Scholar 
    Renfrew, J. M. Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe (Columbia University Press, 1973).
    Google Scholar 
    Bronk Ramsey, C. Bayesian Analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 

    Google Scholar 
    Richards, M. P. & Hedges, R. E. M. Stable isotope evidence for similarities in the types of marine foods used by late mesolithic humans at sites along the Atlantic Coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).
    Google Scholar 
    Sabin, S. & James, A. In Dental Calculus Field-Sampling Protocol (Sabin version) v2 (protocols.io.bqecmtaw). (2020). https://doi.org/10.17504/protocols.io.bqecmtaw.Cristiani, E. et al. Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean. Sci. Rep. 8, 8147 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fiorin, E. et al. Combining dental calculus with isotope analysis in the Alps: New evidence from the Roman and medieval cemeteries of Lamon. Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.022 (2021).Article 

    Google Scholar  More

  • in

    Tree diversity in a tropical agricultural-forest mosaic landscape in Honduras

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381. https://doi.org/10.1038/nature10425 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845. https://doi.org/10.1038/35002708 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    ​FAO. Global Forest Resources Assessment 2020: Main report. 184p (Rome, Italy, 2020).Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22, 8–15 (2008).Article 
    PubMed 

    Google Scholar 
    Brouwer, F. & McCarl, B. Agriculture and climate beyond 2015: A New Perspective on Future Land Use Patterns. (2006).Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. 109, 8839–8844. https://doi.org/10.1073/pnas.1201664109 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Declerck, F. et al. Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biol. Conserv. 143, 2301–2313. https://doi.org/10.1016/j.biocon.2010.03.026 (2010).Article 

    Google Scholar 
    Miller, K., Chang, E. & Johnson, N. Defining Common Ground for the Mesoamerican Biological Corridor (World Resources Institute, Washington, 2001).
    Google Scholar 
    Fischer, J. et al. Conservation: Limits of land sparing. Science 334, 593–593. https://doi.org/10.1126/science.334.6056.593-a (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Morecroft, M. D. et al. Agricultural lands key to mitigation and adaptation—Response. Science 367, 518–519. https://doi.org/10.1126/science.aba7577 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vidal, A., Kumar, C., Zinngrebe, Y., Dobie, P. & Gassner, A. Trees on farms as a nature-based solution for
    biodiversity conservation in agricultural landscapes. Report number: ICRAF Policy brief No 47. 12p. World
    Agroforestry Centre. https://doi.org/10.13140/RG.2.2.14852.07045 (2020).César, R. et al. Forest and landscape restoration: A review emphasizing principles, concepts, and practices. Land 10, 28. https://doi.org/10.3390/land10010028 (2020).Article 

    Google Scholar 
    Stanturf, J. A. et al. Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Ann. For. Sci. https://doi.org/10.1007/s13595-019-0833-z (2019).Article 

    Google Scholar 
    VilchezMendoza, S. et al. Consistency in bird use of tree cover across tropical agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 24, 158–168. https://doi.org/10.1890/13-0585.1 (2014).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020. https://doi.org/10.1126/science.aau6020 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaver, I. et al. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob. Environ. Change 32, 74–86. https://doi.org/10.1016/j.gloenvcha.2015.02.006 (2015).Article 

    Google Scholar 
    Zermeño-Hernández, I., Pingarroni, A. & Martínez-Ramos, M. Agricultural land-use diversity and forest regeneration potential in human- modified tropical landscapes. Agric. Ecosyst. Environ. 230, 210–220. https://doi.org/10.1016/j.agee.2016.06.007 (2016).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773. https://doi.org/10.1111/conl.12773 (2021).Article 

    Google Scholar 
    Estrada-Carmona, N., Martínez-Salinas, A., DeClerck, F. A. J., Vílchez-Mendoza, S. & Garbach, K. Managing the farmscape for connectivity increases conservation value for tropical bird species with different forest-dependencies. J. Environ. Manag. 250, 109504. https://doi.org/10.1016/j.jenvman.2019.109504 (2019).Article 
    CAS 

    Google Scholar 
    Vandermeer, J. & Perfecto, I. The agroecosystem: A need for the conservation biologist’s lens. Conserv. Biol. 11, 591–592 (1997).Article 

    Google Scholar 
    Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agr. Ecosyst. Environ. 247, 98–111. https://doi.org/10.1016/j.agee.2017.06.018 (2017).Article 
    CAS 

    Google Scholar 
    Nair, P. R. The coming of age of agroforestry. J. Sci. Food Agric. 87, 1613–1619. https://doi.org/10.1002/jsfa.2897 (2007).Article 
    CAS 

    Google Scholar 
    Chatterjee, N., Nair, P. K. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67. https://doi.org/10.1016/j.agee.2018.07.014 (2018).Article 

    Google Scholar 
    Toledo-Hernández, M., Wanger, T. C. & Tscharntke, T. Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agr. Ecosyst. Environ. 247, 137–148. https://doi.org/10.1016/j.agee.2017.05.021 (2017).Article 

    Google Scholar 
    Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16, 573–582. https://doi.org/10.1016/j.baae.2015.08.006 (2015).Article 

    Google Scholar 
    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).Article 

    Google Scholar 
    Martínez-Fonseca, J. G., Chávez-Velásquez, M., Williams-Guillen, K. & Chambers, C. L. Bats use live fences to move between tropical dry forest remnants. Biotropica 52, 5–10. https://doi.org/10.1111/btp.12751 (2020).Article 

    Google Scholar 
    Prevedello, J. A., Almeida-Gomes, M. & Lindenmayer, D. B. The importance of scattered trees for biodiversity conservation: A global meta-analysis. J. Appl. Ecol. 55, 205–214. https://doi.org/10.1111/1365-2664.12943 (2018).Article 

    Google Scholar 
    INE. Ministerio de Agricultura, Pesca y Alimentación (MAPA)- Gobierno de España-. 2021. Ficha de sectores. Sectores Agricultura y Pesquero. Honduras (2022).MinAmbiente-ICF. Tipologías de Bosques de Honduras. Programa ONU-REDD. Forest Carbon Partnership Facility. Tegucigalpa, Honduras. Secretaria de Energía, Recursos Naturales, Ambiente y Minas (Min Ambiente)/Instituto Nacional de Conservación y Desarrollo Forestal, Areas Protegidas y Vida Silvestre (ICF). (2017).Godinot, F., Somarriba, E., Finegan, B. & Delgado-Rodríguez, D. Secondary tropical dry forests are important to cattle ranchers in Northwestern Costa Rica. Trop. J. Environ. Sci. 54, 20–50 (2020).
    Google Scholar 
    Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded Areas in the Tropics. Restor. Ecol. 13, 92–102. https://doi.org/10.1111/j.1526-100X.2005.00011.x (2005).Article 

    Google Scholar 
    Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 16, 1986–1999. https://doi.org/10.1890/1051-0761(2006)016[1986:poadid]2.0.co;2 (2006).Article 

    Google Scholar 
    Miceli-Mèndez, C. L., Ferguson, B. G. & Ramìrez-Marcial, N. in Post-Agricultural Succession in the Neotropics (ed Randall W. Myster) 165–191 (Springer New York, 2008).Gaoue, O. G. & Ticktin, T. Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: Variation across ecological regions and its impacts on population structure. Biol. Conserv. 137, 424–436. https://doi.org/10.1016/j.biocon.2007.02.020 (2007).Article 

    Google Scholar 
    Daily, G., Ceballos, G., Pacheco, J., Suzan, G. & Anchez-Azofeifa, A. Countryside biogeography of neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2003.00298.x (2003).Article 

    Google Scholar 
    Mayfield, M. M. & Daily, G. C. Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol. Appl. 15, 423–439. https://doi.org/10.1890/03-5369 (2005).Article 

    Google Scholar 
    Sánchez-Merlos, D. et al. Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Rev. Biol. Trop. https://doi.org/10.15517/rbt.v53i3-4.14601 (2005).Article 

    Google Scholar 
    Sekercioglu, C. H., Loarie, S. R., Oviedo Brenes, F., Ehrlich, P. R. & Daily, G. C. Persistence of forest birds in the Costa Rican agricultural countryside. Conserv. Biol. 21, 482–494. https://doi.org/10.1111/j.1523-1739.2007.00655.x (2007).Article 
    PubMed 

    Google Scholar 
    Wallace, G., Barborak, J. & MacFarland, C. Land use planning and regulation in and around protected areas: A study of best practices and capacity building needs in Mexico and Central America. Nat Conserv 3 (2005).
    Rozendaal Danaë, M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114. https://doi.org/10.1126/sciadv.aau3114 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests:
    Towards climate change mitigation through sustainable timber harvesting. Forest Ecology and Management 496,
    119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article 

    Google Scholar 
    Gillespie, T. W., Grijalva, A. & Farris, C. N. Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol. 147, 37–47. https://doi.org/10.1023/A:1009848525399 (2000).Article 

    Google Scholar 
    Ngo Bieng, M. A. et al. Relevance of secondary tropical forest for landscape restoration. For. Ecol. Manag. 493, 119265. https://doi.org/10.1016/j.foreco.2021.119265 (2021).Article 

    Google Scholar 
    Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests: Towards climate change mitigation through sustainable timber harvesting. For. Ecol. Manag. 496, 119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article 

    Google Scholar 
    Chacón, L. M. & Harvey, C. A. Live fences and landscape connectivity in a neotropical agricultural landscape. Agrofor. Syst. 68, 15. https://doi.org/10.1007/s10457-005-5831-5 (2006).Article 

    Google Scholar 
    Harvey, C. A. et al. Conservation value of dispersed tree cover threatened by pasture management. For. Ecol. Manag. 261, 1664–1674. https://doi.org/10.1016/j.foreco.2010.11.004 (2011).Article 

    Google Scholar 
    Suding, K. N. Toward an Era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).Article 

    Google Scholar 
    Moguel, P. & Toledo, V. M. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13, 11–21. https://doi.org/10.1046/j.1523-1739.1999.97153.x (1999).Article 

    Google Scholar 
    Harrison, R. D., Harrison, S., Laumonier, Y., Somarriba, E. & Suber, M. Biodiversity monitoring for agricultural landscapes. A protocol using biodiversity metrics to monitor agricultural sustainability under Aichi Target 7. (2019).Heck, K. L. Jr., van Belle, G. & Simberloff, D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461. https://doi.org/10.2307/1934716 (1975).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, New Jersey, 2004).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439. https://doi.org/10.1890/06-1736.1 (2007).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. XXII, 574 (Springer New York, NY, 2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.2-1 2, 1–2 (2015).Hsieh, T. C., Ma, K. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12613 (2016).Article 

    Google Scholar 
    Venables, W. N & Ripley, B. D Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-
    95457-0 (2002)Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2009).Book 
    MATH 

    Google Scholar 
    gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. (2017). More

  • in

    Mountain- and brown hare genetic polymorphisms to survey local adaptations and conservation status of the heath hare (Lepus timidus sylvaticus, Nilsson 1831)

    Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 1–11, https://doi.org/10.2307/3504302 (1995).Bergengren, A. On genetics, evolution and history of distribution of the heath-hare, a distinct population of the Arctic hare, Lepus timidus Lin. Swed. Wildl. (Viltrevy) 6, 381–460 (1969).
    Google Scholar 
    Thulin, C.-G. The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus? Mamm. Rev. 33, 29–42 (2003).Article 

    Google Scholar 
    Mills, L. S. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Nat.Acad. Sci. 110, 7360–7365 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zimova, M. et al. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc.Royal Soc. B: Biol. Sci. 287, 20201786 (2020).Article 

    Google Scholar 
    Levänen, R., Kunnasranta, M. & Pohjoismäki, J. Mitochondrial DNA introgression at the northern edge of the brown hare (Lepus europaeus) range. Ann Zool Fennici 55, 15–24 (2018).Article 

    Google Scholar 
    Thulin, C.-G., Winiger, A., Tallian, A. G. & Kindberg, J. Hunting harvest data in Sweden indicate precipitous decline in the native mountain hare subspecies Lepus timidus sylvaticus (heath hare). J. Nat. Conserv. 64, 126069 (2021).Article 

    Google Scholar 
    Thulin, C.-G., Jaarola, M. & Tegelström, H. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6, 463–467 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pohjoismäki, J. L. O., Michell, C., Levänen, R. & Smith, S. Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci. Rep. 11, 15771 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb) 97, 222–234 (2006).Article 
    CAS 

    Google Scholar 
    Hamill, R. M., Doyle, D. & Duke, E. J. Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity (Edinb) 97, 355–365 (2006).Article 
    CAS 

    Google Scholar 
    Leach, K., Montgomery, W. I. & Reid, N. Biogeography, macroecology and species’ traits mediate competitive interactions in the order Lagomorpha. Mamm. Rev. 45, 88–102 (2015).Article 

    Google Scholar 
    Marques, J. P. et al. Data Descriptor: Mountain hare transcriptome and diagnostic markers as resources to monitor hybridization with European hares. Sci. Data 4, 1–11 (2017).Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP358660 (2022).Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Preprint at http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Marques, J. P. et al. An annotated draft genome of the mountain hare (Lepus timidus). Genome Biol. Evol. 12, 3656–3662 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broad Institute. Picard toolkit. Broad Institute, GitHub repository. Preprint at https://broadinstitute.github.io/picard/ (2019).Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 1207.3907 (2012).Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Michell, C. T., Pohjoismäki, J. L. O., Spong, G. & Thulin, C.-G. Mountain- and brown hare genetic polymorphisms to survey local adaptations and conservation status of the heath hare (Lepus timidus sylvaticus, Nilsson 1831), Dryad, https://doi.org/10.5061/dryad.3bk3j9kmp (2022).Khan, A. & Mathelier, A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45 (2017).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30 (2013).Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44 (2016).Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levänen, R., Thulin, C.-G., Spong, G. & Pohjoismäki, J. L. O. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PloS One 13, e0191790 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giska, I. et al. The evolutionary pathways for local adaptation in mountain hares. Mol. Ecol. 31, 1487–1503 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thulin, C.-G., Isaksson, M. & Tegelström, H. The origin of Scandinavian mountain hares (Lepus timidus). Gibier Faune Savage/Game and Wildlife 14, 463–475 (1997).
    Google Scholar 
    Ferreira, M. S. et al. The legacy of recurrent introgression during the radiation of hares. Syst. Biol. 70, 593–607 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Effects of different pioneer and exotic species on the changes of degraded soils

    Sacristán, D., Peñarroya, B., Recatalá, L. Increasing the Knowledge on the Management of Cu-Contaminated Agricultural Soils by Cropping Tomato (Solanum Lycopersicum L.). Land Degrad. Dev. 26, 587–595 (2015).FAO. Land Degradation Assessment in Drylands. Manual for Local Level Assessment of Land Degradation and Sustainable Land Management. Part 1: Planning and Methodological Approach, Analysis and Reporting. https://www.fao.org/3/i6362e/i6362e.pdf (Food and Agriculture Organization of the United Nations, 2011).Vlachodimos, K., Papatheodorou, E. M., Diamantopoulos, J. & Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit. Assess. 185, 6921–6932 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Misano, G. & Di Pietro, R. Habitat 9250 “Quercus trojana woods” in Italy. Fitosociologia 44, 235–238 (2007).
    Google Scholar 
    Biondi, E. et al. A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41(1), 3–28 (2004).MathSciNet 

    Google Scholar 
    Brunetti, G. et al. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad. Dev. 29, 91–104 (2017).Article 

    Google Scholar 
    Poblador, S. et al. The influence of the invasive alien nitrogen-fixing Robinia pseudoacacia L. on soil nitrogen availability in a mixed Mediterranean riparian forest. Eur. J. For. Res. 138, 1083–1093 (2019).Article 
    CAS 

    Google Scholar 
    Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).Article 

    Google Scholar 
    Doran, J.W., Parkin, T.B. Quantitative indicators of soil quality: a minimum data set. in Methods for Assessing Soil Quality (eds. Doran, J.W., Jones, A.J.). 25–37 (Soil Science Society of America, 1996).Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887 (2005).Article 
    CAS 

    Google Scholar 
    Andriani, G. F. & Walsh, N. An example of the effects of anthropogenic changes on natural environment in the Apulian karst (southern Italy). Environ. Geol. 58, 313–325 (2009).Article 
    ADS 

    Google Scholar 
    Bisantino, T., Pizzo, V., Polemio, M. & Gentile, F. Analysis of the flooding event of October 22–23, 2005 in a small basin in the province of Bari (Southern Italy). J. Agric. Eng. 531, 197–204 (2016).Article 

    Google Scholar 
    Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
    Google Scholar 
    Tartarino, P. Inventario dei Boschi Spontanei e dei Rimboschimenti delle Provincie BAT e Bari e Stima del Loro Volume Legnoso e della sua Frazione Prelevabile nel Prossimo Ventennio. (Rapporto Tecnico Scientifico, 2011).Ismail, A. et al. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils. Chem. Biodivers. 11, 150–160 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Navarro, A. et al. Feasibility of SRC Species for growing in Mediterranean conditions. Bioenerg. Res. 9, 208–223 (2015).Article 

    Google Scholar 
    Perrino, E. V., Brunetti, G. & Farrag, K. Plant communities in multi-metal contaminated soils: A case study in the National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediat. 16, 871–888 (2014).Article 
    CAS 

    Google Scholar 
    VV AA Perizia Studi per il Riequilibrio Socio-Economico dell’area Interessata dall’invaso sul Torrente Locone. Consorzio Di Bonifica Apulo Lucano (1986).Lavarra, P. et al. Il Sistema Carta della Natura della Regione Puglia. (ISPRA, Serie Rapporti 204, 2014).Sparks, D. L. et al. Method of Soil Analysis: Part 3 (American Society of Agronomy Inc, 1996).Book 

    Google Scholar 
    Brink, R. H. Jr., Dubach, P. & Lynch, D. L. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89, 157–166 (1960).Article 
    ADS 
    CAS 

    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    García, C., Hernandez, T. & Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 28, 123–134 (1997).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).Article 
    CAS 

    Google Scholar 
    Gregorich, E. G., Wen, G., Voroney, R. P. & Kachanoski, R. G. Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 22, 1009–1011 (1990).Article 
    CAS 

    Google Scholar 
    Nannipieri, P., Ceccanti, B., Cervelli, S. & Matarese, E. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Tabatabai, M.A. (1994) Soil enzymes. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (eds. Weaver, R.W. et al.). 775–833 (Soil Science Society of America, Inc., 1996)Traversa, A., Said-Pullicino, D., D’Orazio, V., Gigliotti, G., & Senesi, N. Properties of humic acids in Mediterranean forest soils (Southern Italy): Influence of different plant covering. Eur. J. For. Res. 130, 1045–1054 (2011)De Marco, A. et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 51, 1–15 (2012).Article 
    CAS 

    Google Scholar 
    Wei, G. et al. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol. Ecol. 68, 320–328 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, E. D., Gebauer, G., Ziegler, H. & Lange, O. L. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88, 451–455 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zahran, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veste, M. & Kriebitzsch, W. U. Influence of drought stress on photosynthesis, transpiration, and growth of juvenile black locust (Robinia pseudoacacia L.). Forstarchiv 84, 35–42 (2013).
    Google Scholar 
    Nicolescu, V. N. et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 31, 1081–1101 (2020).Article 
    CAS 

    Google Scholar 
    Sposito, G. The Chemistry of Soil (Oxford University Press, 2008).
    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337. https://doi.org/10.1038/s41598-017-01418-8 (2017).Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Frankenberger, W. T. & Dick, W. A. Relationships between enzyme, activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945–951 (1983).Article 
    ADS 
    CAS 

    Google Scholar 
    Frankenberger, W.T., Tabatabai, M.A. Amidase activity in soils III. Stability and distribution. Soil Sci. Soc. Am. J. 45, 333–338 (1981).Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018).Article 
    CAS 

    Google Scholar 
    Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L. & Ros, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem. 32, 1877–1883 (2000).Article 
    CAS 

    Google Scholar 
    García-Gil, J. C., Plaza, C., Solker-Rovira, P. & Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913 (2000).Article 

    Google Scholar 
    Insam, H. & Domsch, K. H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15, 177–188 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 31, 85–91 (2000).Article 
    CAS 

    Google Scholar 
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210, 21–32 (1999).Article 
    CAS 

    Google Scholar 
    De Marco, A., Esposito, F., Berg, B., Zarrelli, A. & Virzo De Santo, A. Litter inhibitory effects on soil microbial biomass activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. Forest 9, 766. https://doi.org/10.3390/f9120766 (2018).Article 

    Google Scholar 
    Haghverdi, K. & Kooch, Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. CATENA 178, 335–344 (2019).Article 
    CAS 

    Google Scholar 
    Anderson, H. T. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).Article 

    Google Scholar 
    Jenkinson, D.S., Ladd, J.N. Microbial biomass in soil: Measurement and turnover. in Soil Biochemistry (eds. Paul, E.A., Ladd, J.N.). 415–471 (Marcel Dekker Inc., 1981) More

  • in

    Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes

    Cohort demographicsA total of 206 female participants were enrolled in the study and passed our quality control standards. All participants were required to be between the ages of 18–26 years old (22.5 ± 2.1) and to be born and at the time living in one of four geographically distinct regions of the world: Barbados; Santiago, Chile; Pretoria, S. Africa; and Bangkok, Thailand. The regions do, however, differ by an order of magnitude in their geographic spread as the intra-distance separating the residence neighborhood of participants ranged from 34 (Barbados) to 681 km (Pretoria, S. Africa) (Fig. S2). The Chilean and the South African datasets are further divided into two contiguous sub-regions, or neighborhoods, to allow for a micro-geographic analysis. The study population is largely dominated by individuals with self-identified Thai heritage (33%), followed by Black African (16%), Afro-Caribbean (14%) and white (14%) descent, although 19% of the Chilean population did not report ethnicity.Study participants, despite the divergent geographies, mostly have similar dietary and lifestyle habits (Table S1). Over half the study population (62%) have a normal BMI, with the mean BMI in this range (22.6 ± 5.5). The diets of the different cohorts are also similar as of the total cohort, 78% consume a starch heavy diet (≥ 4 days a week) of rice, bread and pasta, followed by 66% who frequently consume (≥ 4 days a week) vegetables and fruit and 49% who frequently consume dairy products. The study population is split by level of tobacco exposure, with 51% of the population having never smoked, and 43% being exposed to second-hand smoke through living with a smoker. Over half (56%) of the study population own one or more pets.Stool microbiomeThe OTUs identified using the UPARSE pipeline17 were used to compute the alpha diversity of the microbial communities using the Chao1 (species richness) and Shannon (species evenness) indices. The mean Shannon indices reveal that the microbiota diversity is only significant between Thailand-Chile with FDR  More

  • in

    Improving quantitative synthesis to achieve generality in ecology

    Houlahan, J. E., McKinney, S. T., Anderson, T. M. & McGill, B. J. The priority of prediction in ecological understanding. Oikos 126, 1–7 (2017).Article 

    Google Scholar 
    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).Article 

    Google Scholar 
    Elliott-Graves, A. Generality and causal interdependence in ecology. Philos. Sci. 85, 1102–1114 (2018).Article 

    Google Scholar 
    Fox, J. W. The many roads to generality in ecology. Philos. Top. 9, 83–104 (2019).Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).Article 
    PubMed 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).Article 

    Google Scholar 
    Gurevitch, J., Fox, G. A., Wardle, G. M., Inderjit & Taub, D. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14, 407–418 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anderson, S. C. et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 19, 274–282 (2021).Article 

    Google Scholar 
    Kneale, D., Thomas, J., O’Mara-Eves, A. & Wiggins, R. How can additional secondary data analysis of observational data enhance the generalisability of meta-analytic evidence for local public health decision making? Res. Synth. Methods 10, 44–56 (2019).Article 
    PubMed 

    Google Scholar 
    Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R. & Dalton, C. M. Debunking myths and urban legends about meta-analysis. Organ. Res. Methods 14, 306–331 (2011).Article 

    Google Scholar 
    Polit, D. F. & Beck, C. T. Generalization in quantitative and qualitative research: myths and strategies. Int. J. Nurs. Stud. 47, 1451–1458 (2010).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Lundberg, I., Johnson, R. & Stewart, B. M. What is your estimand? Defining the target quantity connects statistical evidence to theory. Am. Sociol. Rev. 86, 532–565 (2021).Article 

    Google Scholar 
    Lawrance, R. et al. What is an estimand & how does it relate to quantifying the effect of treatment on patient-reported quality of life outcomes in clinical trials? J. Patient-Rep. Outcomes 4, 68 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Findley, M. G., Kikuta, K. & Denly, M. External validity. Annu. Rev. Polit. Sci. 24, 365–393 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. External validity: from do-calculus to transportability across populations. Stat. Sci. 29, 579–595 (2014).Article 

    Google Scholar 
    Westreich, D., Edwards, J. K., Lesko, C. R., Cole, S. R. & Stuart, E. A. Target validity and the hierarchy of study designs. Am. J. Epidemiol. 188, 438–443 (2019).Article 
    PubMed 

    Google Scholar 
    Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2020).Article 

    Google Scholar 
    Rohrer, J. M. & Arslan, R. C. Precise answers to vague questions: issues with interactions. Adv. Methods Pract. Psychol. Sci. 4, 1–19 (2021).
    Google Scholar 
    Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).
    Google Scholar 
    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).Article 

    Google Scholar 
    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be avoided. Int. J. Epidemiol. 42, 1012–1014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spake, R. et al. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2021).Article 
    PubMed 

    Google Scholar 
    Spake, R. & Doncaster, C. P. Use of meta-analysis in forest biodiversity research: key challenges and considerations. For. Ecol. Manag. 400, 429–437 (2017).Article 

    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).Article 
    PubMed 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol. Evol. 13, 1214–1223 (2022).Article 

    Google Scholar 
    Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2021).Article 
    PubMed 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-Scale Assess. Educ. 6, 8 (2018).Article 

    Google Scholar 
    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).Article 

    Google Scholar 
    Ojha, M., Naidu, D. G. T. & Bagchi, S. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. J. Ecol. 110, 799–816 (2022).Dodds, K. C. et al. Material type influences the abundance but not richness of colonising organisms on marine structures. J. Environ. Manag. 307, 114549 (2022).Article 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta- analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).Article 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).Article 
    PubMed 

    Google Scholar 
    Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).Article 

    Google Scholar 
    Glass, G. V. Meta‐analysis at 25: a personal history. Education in Two Worlds https://ed2worlds.blogspot.com/2022/07/meta-analysis-at-25-personal-history.html (2000).Cooper, H. M. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988).
    Google Scholar 
    Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).Article 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Simons, D. J., Shoda, Y. & Lindsay, D. S. Constraints on Generality (CoG): a proposed addition to all empirical papers. Perspect. Psychol. Sci. 12, 1123–1128 (2017).Article 
    PubMed 

    Google Scholar 
    Yarkoni, T. The generalizability crisis. Behav. Brain Sci. https://doi.org/10.1017/S0140525X20001685 (2020).Lopez, P. M., Subramanian, S. V. & Schooling, C. M. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J. Clin. Epidemiol. 113, 123–128 (2019).Article 
    PubMed 

    Google Scholar 
    Campbell, D. T. in Advances in QuasiExperimental Design and Analysis (ed. Trochim, W.) 67–77 (Jossey-Bass, 1986).Spake, R. et al. Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conserv. Sci. Pract. 1, e14 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forest Ecosystem Diversity Basic Survey (in Japanese) (Forestry Agency of Japan, 2019); https://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/index.htmlIto, S., Ishigamia, S., Mizoue, N. & Buckley, G. P. Maintaining plant species composition and diversity of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu, southern Japan. For. Ecol. Manag. 231, 234–241 (2006).Article 

    Google Scholar 
    Utsugi, E. et al. Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests. For. Ecol. Manag. 237, 15–28 (2006).Article 

    Google Scholar 
    Kominami, Y. et al. Classification of bird-dispersed plants by fruiting phenology, fruit size, and growth form in a primary lucidophyllous forest: an analysis, with implications for the conservation of fruit–bird interactions. Ornthological Sci. 2, 3–23 (2003).Article 

    Google Scholar 
    Tsujino, R. & Matsui, K. Forest regeneration inhibition in a mixed broadleaf-conifer forest under sika deer pressure. J. For. Res. 27, 230–235 (2021).Article 

    Google Scholar 
    Spake, R., Soga, M., Catford, J. A. & Eigenbrod, F. Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. J. Appl. Ecol. 58, 1993–2003 (2021).Article 

    Google Scholar 
    Mize, T. D. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol. Sci. 6, 81–117 (2019).Article 

    Google Scholar 
    Karaca-Mandic, P., Norton, E. C. & Dowd, B. Interaction terms in nonlinear models. Health Serv. Res. 47, 255–274 (2012).Article 
    PubMed 

    Google Scholar 
    Spake, R. et al. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57, 1376–1390 (2020).McCabe, C. J., Kim, D. S. & King, K. M. Improving present practices in the visual display of interactions. Adv. Methods Pract. Psychol. Sci. 1, 147–165 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, A. P. et al. Innovation and forward‐thinking are needed to improve traditional synthesis methods: a response to Pescott and Stewart. J. Appl. Ecol. 59, 1191–1197 (2022).Article 

    Google Scholar 
    Haddaway, N. R. et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 8, 22 (2019).Delory, B. M., Li, M., Topp, C. N. & Lobet, G. archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7, 22 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkel, J. M. The future of scientific figures. Nature 554, 133–134 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Weaver, S. & Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26, 1315–1326 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sutton, C. et al. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: a formal approach. In 2011 IEEE 11th International Conference on Data Mining Workshops https://doi.org/10.1109/ICDMW.2011.169 (IEEE, 2011).Munthe-Kaas, H., Nøkleby, H. & Nguyen, L. Systematic mapping of checklists for assessing transferability. Syst. Rev. 8, 22 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A. & Vandenbroucke, J. P. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloemer, T. & Schröder-Bäck, P. Criteria for evaluating transferability of health interventions: a systematic review and thematic synthesis. Implement. Sci. 13, 88 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Hermida, J. R., Calafat, A., Becoña, E., Tsertsvadze, A. & Foxcroft, D. R. Assessment of generalizability, applicability and predictability (GAP) for evaluating external validity in studies of universal family-based prevention of alcohol misuse in young people: systematic methodological review of randomized controlled trials. Addiction 107, 1570–1579 (2012).Article 
    PubMed 

    Google Scholar 
    Avellar, S. A. et al. External validity: the next step for systematic reviews? Eval. Rev. 41, 283–325 (2017).Article 
    PubMed 

    Google Scholar 
    Bareinboim, E. & Pearl, J. A general algorithm for deciding transportability of experimental results. J. Causal Inference 1, 107–134 (2013).Article 

    Google Scholar 
    Degtiar, I. & Rose, S. A review of generalizability and transportability. Preprint at https://doi.org/10.48550/arXiv.2102.11904 (2021).Bareinboim, E. & Pearl, J. Meta-transportability of causal effects: a formal approach. J. Mach. Learn. Res. 31, 135–143 (2013).
    Google Scholar 
    Jamieson, D. Scientific uncertainty: how do we know when to communicate research findings to the public? Sci. Total Environ. 184, 103–107 (1996).Article 
    CAS 

    Google Scholar 
    Burchett, H. E. D., Mayhew, S. H., Lavis, J. N. & Dobrow, M. J. When can research from one setting be useful in another? Understanding perceptions of the applicability and transferability of research. Health Promot. Int. 28, 418–430 (2013).Article 
    PubMed 

    Google Scholar 
    Forscher, P. et al. Build up big-team science. Nature 601, 505–507 (2022).Article 

    Google Scholar 
    Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Moshontz, H. et al. The Psychological Science Accelerator: advancing psychology through a distributed collaborative network. Adv. Methods Pract. Psychol. Sci. 1, 501–515 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, I. C. A general framework for the analysis of adaptive experiments. Stat. Sci. 36, 465–492 (2021).Article 

    Google Scholar 
    Clark, M. Shrinkage in Mixed Effects Models https://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/ (2019).Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).Article 

    Google Scholar 
    Mengersen, K., Gurevitch, J. & Schmid, C. H. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, U. et al.) 300–312 (Princeton Univ. Press, 2013).Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salguero-Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).Article 

    Google Scholar  More

  • in

    Mixotrophy in depth

    Rippka, R. et al. J. Gen. Microbiol. https://doi.org/10.1099/00221287-111-1-1 (1979).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. ISME J. 14, 1065–1073 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yelton, A. P. et al. ISME J. 10, 2946–2957 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, B. A. & Follows, M. J. Proc. Natl Acad. Sci. USA 113, 2958–2963 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Z. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01250-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zubkov, M. et al. Appl. Environ. Microbiol. 69, 1299–1304 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vila-Costa, M. et al. Science 314, 652–654 (2006).Article 
    PubMed 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Proc. Natl Acad. Sci. USA 110, 8597–8602 (2013).Article 
    PubMed Central 

    Google Scholar 
    Gómez-Baena, G. et al. PLoS ONE 3, e3416 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coe, A. et al. Limnol. Oceanogr. 71, 1375–1388 (2016).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Microbiol. Spectr. https://doi.org/10.1101/2021.10.04.462702 (2022).Article 
    PubMed 

    Google Scholar  More