More stories

  • in

    Numerical analysis of the relationship between mixing regime, nutrient status, and climatic variables in Lake Biwa

    Model validationBased on the time-series validations of water temperature and DO concentration, model accuracy improved gradually, despite several discrepancies at the beginning of the simulation (Supplementary Fig. S1). The model is primarily driven by a set of boundary data, including wind speed, solar radiation, and precipitation data24,25. From this perspective, more high-quality boundary data promotes better numerical reproducibility. However, meteorological data collection was challenging due to the early observation equipment limitations and low observational accuracy compared to current data. The temporal inconsistency of accuracy in observational data has been eliminated to a large extent by fitting a regression curve24. Spatial resolution is the other issue. Possessing spatially constant values for all boundary conditions complicates the numerical reproducibility of variations on finer scales.The relationship between turnovers and the curve shape of water temperature versus DO concentration is theoretically sound27,28. In the last stage of stratification in the lake, water temperature and DO concentration near the bottom are more likely to slightly increase due to thermal diffusion and DO supplies from the upper water. If a turnover occurs, the whole column of water is mixed strongly (Supplementary Fig. S3). Bottom water temperature decreases due to surface water cooling, and DO concentration increases, due to surface water replenishment and increased oxygen solubility. If the turnover fails, only the partial column of water is mixed, causing a delay in the timing of deep-water renewal (Supplementary Fig. S3). However, the upper water in later months, like that in March, has been rapidly warmed, resulting in an increase in the bottom water temperature. For example, in 2007 and 2016, the simulated water temperature and DO concentration fluctuated within a limited range in February and then skyrocketed in March, after mixing with the warmed surface water (blue points in Supplementary Fig. S4). On the other hand, explicit definitions of turnover timing are challenging. The threshold used to judge turnover timing is reliable because the results matched the observation. The turnover timing varied by 36 days in Lake Biwa during the simulation period, which is comparable to that observed in other lakes, such as approximately 21 days in Heiligensee, Germany over a 17-year timespan29, 16 days in Lake Washington over a 40-year timespan30, and 28 days in Blelham Tarn over a 41-year timespan31.Variables affecting the mixing regimeDetermining variables that affect the mixing regime is essential to improve understanding and enable future projections16,17,18. Air temperature, wind speed, cloud cover, precipitation, water density, and lake transparency are all potential variables. We, here, compared the above variables to the turnover timing in Lake Biwa. The meteorological inputs in this study provided data for air temperature, wind speed, cloud cover, and precipitation. Water density and particulate organic carbon (POC) concentration representing lake transparency were the model’s outputs. The annual averages and cold season (November–April) values of the above variables were calculated over the simulation period (Supplementary Fig. S6). Annual averages illustrate general long-term warming trends18, while cold season values particularly determine the timing of turnover17. However, in Lake Biwa, air temperature during the cold season fluctuated greatly compared to the annual averages. A random forest analysis17 has been conducted between the turnover timing and the above two variable sets (cold season values versus annual averages) in Lake Biwa, and the cold season values better explained the turnover timing (35.39% versus 18.48%). The results agree with the conclusion drawn from the previous sensitivity tests, which indicated the relative importance of air temperature and solar radiation during winter based on 40 scenarios32.The importance of variables was estimated based on the random forest analysis using the cold season data (Fig. 4a). Wind speed dominates the timing of turnover, which is consistent with the previous studies17,25. The POC concentration, the difference in water density between the surface and bottom, and cloud cover have moderate effects on the timing of turnover. However, air temperature is less important, which is contrary to the turnover mechanism17,24,32. A re-confirmation was conducted of the relationship between turnover timing and air temperature (Fig. 4b and Supplementary Fig. S7). The cool air generally encourages an early turnover, albeit with several anomalies. The turnover timing between 1976 and 1990 remained constant independent of climate change, and the period coincidently had a substantial nutrient fluctuation (Fig. 3). As a result, it is essential to investigate the nutrient status further.Figure 4Analysis results of the relationship between potential variables and turnover timing: (a) the importance of variables importance using a random forest analysis, and (b) the relationship between the cold season air temperature and the timing of turnover. Variable importance is calculated using the percentage increase in mean square error (MSE) and the increase in node purity. Higher values illustrate the greater importance of the variable. Variables include air temperature (AT), precipitation (pptn.), cloud cover (CC), the difference in density (DD), POC, and wind speed (WS).Full size imageLake nutrient concentrationsBecause phosphorus is the limiting nutrient in Lake Biwa and DIP concentrations can be effectively limited by regulating external loadings as practiced (Fig. 3), DIP concentrations become the focus of this discussion for nutrient status. However, the DIP concentrations disproportionately responded to the external loadings of total phosphorus (TP) in Lake Biwa. Although external TP loading itself fails to determine lake phosphorus concentrations due to the hydrodynamics of lakes33, Lake Biwa exhibited insignificant changes in the inflow rate or the retention time (and see an example of the surface flow in Supplementary Fig. S8). Therefore, it can be assumed that the hydraulic loading remained constant, and the input nutrient concentrations were proportionate to the external nutrient loadings in Lake Biwa. This finding contradicts a recent meta-analysis that highlighted a deterministic relationship between input nutrient concentrations and lake nutrient concentrations, based on steady-state mass balance models6. The possible reason is the dynamics of the lake’s ecosystem22, which have been considered in this study. For example, the surface DIP concentrations were almost nonexistent regardless of the external TP loadings in Lake Biwa, supporting that phosphorus is the limiting nutrient in Lake Biwa34,35. The low DIP concentrations at the surface may be caused by the rapid recycling of phosphorus because the amount of phosphorus available for phytoplankton is easily affected by the feedback mechanism between phytoplankton photosynthesis and the phosphorus released from the water35,36.Hypoxia and strategiesThe variations in DO concentration are the public’s top concern as it relates to hypoxia, a key indicator of water quality. Lake bottom, among all water depths, is more sensitive to small changes in oxygen conditions12. In Lake Biwa, the annual minimum DO concentrations ranged from 2 to 5.5 mg/L over the last 60 years (Supplementary Fig. S9). The decrease in DO concentrations in the early period, typically till the 1980s, was mainly caused by nutrient enrichments (Fig. 3). The nutrient enrichment-induced heavy eutrophication eventually accelerates the rate of DO depletion2. After eutrophication was controlled in the 1980s, climate change became the dominant stressor23. There remains much uncertainty surrounding the relationship between climatic variables-related turnover timing and hypoxia in Lake Biwa12. We, therefore, first investigate the relationship between hypoxia and turnover timing, and then concentrate on nutrients to alleviate hypoxia.Although the relationship between turnover timing and DO concentrations is quite weak (R2 = 0.10), there is a general decrease in DO concentrations with increasing turnover timing (Fig. 5a). On the other hand, a linear relationship has been found between DIP concentrations and DO concentrations, with an R2 of 0.67 (Fig. 5b). The slope of –0.841 μgP/mgDO means an increase in DIP concentrations by approximately 0.841 μgP/L causes a decrease in DO concentrations by 1 mg/L. Note that the simulation results were compared over the whole period, and eutrophication-induced hypoxia differs theoretically from climate-induced hypoxia. Additional testing has been conducted to distinguish the effects of two stressors (eutrophication- and climate-induced hypoxia; Supplementary Fig. S10). Before 1980 when eutrophication progressed, the annual minimum DO concentrations and the DIP concentrations had a stronger linear relationship (R2 = 0.89). Although waste-water treatment has improved conditions in the lake, climate change induced alteration of turnover timing may adversely influence water quality. However, the relationship weakened dramatically with an R2 of 0.10 after 1980, when climate change dominated hypoxia. The lower R2 value indicates that climate-related hypoxia is more complex as concluded previously37,38. The two possibilities are as follows. First, there can be a legacy of hypoxia related to eutrophication. The DO recovery at the bottom of Lake Biwa was complicated by the low DO concentration in 1980 and the delayed timing of turnover; similar phenomena have been observed in the Lake of Zurich22. Second, ecosystem dynamics could help explain the difficulty in predicting hypoxia at the bottom. Phytoplankton fully exploits phosphorus at the surface, as explained above, then the death and sinking of the surface phytoplankton are accompanied by the sedimentation of phosphorus to the bottom as modeled. Bacteria break down the sinking phytoplankton, releasing phosphorus and consuming DO in the process. Additional DO consumption lowers the bottom DO concentration, which in turn encourages phosphorus release from the sediment in a low DO environment22. Such unfavorable feedback between DIP and DO concentrations are strengthened by prolonged stratification and eventually accelerates the development of hypoxia. However, future research is necessary because this numerical model simplified the relationship between water and sediment. The sinking of organic carbon into sediment is integrated in the model, and due to the decomposition of organic carbon in the sediment, nutrients are released into and oxygen is depleted in the water. Despite that, the trends between DO and DIP concentrations stay the same under climate change (Fig. 5b), and thus controlling lake phosphorus is beneficial to the Lake Biwa hypoxia.Figure 5The linear regression results of the relationship: (a) between turnover timing and annual minimum concentration of DO, (b) between the annual minimum concentration of DO and annual average concentration of DIP. The simulation results at the monitoring station were used for analysis.Full size image More

  • in

    Asynchronous responses of microbial CAZymes genes and the net CO2 exchange in alpine peatland following 5 years of continuous extreme drought events

    The effects of extreme drought on soil biochemical propertiesAs shown in Fig. 1A, the range of SOC during the early, midterm and late extreme drought experiments, were 73.53–251.44 g kg−1, 54.75–256.16 g kg−1, and 66.37–282.16 g kg−1, respectively. Concomitantly, DOC was 171.85–323.74 mg kg−1, 158.15 – 504.62 mg kg−1, and 166.63–418.43 mg kg−1, MBC was 247.80 – 461.69 mg kg−1, 257.90–450.98 mg kg−1, and 264.10–458.15 mg kg−1, respectively (Fig. 1B, C). The variation ranges of soil TN were 3.50–16.60 g kg−1, 4.70–34.5 g kg−1, and 6.70–32.50 g kg−1, respectively (Fig. 1D). Similarly, the variation ranges of NH4+ were 5.96–12.03 g kg−1, 5.39–12.59 g kg−1, and 5.74–13.03 g kg−1, NO3− were 2.27–8.79 mg kg−1, 5.07–9.62 mg kg−1, and 5.09–9.52 mg kg−1, respectively (Fig. 1E, F). The changes of SOC and NH4+ with soil depth were significantly different in different extreme drought periods and decreased significantly with the increase of soil depth (Table 1, P  More

  • in

    The control of malaria vectors in rice fields: a systematic review and meta-analysis

    We investigated whether ricefield mosquito larval control and/or rice cultivation practices are associated with malaria vector densities through a systematic review and meta-analysis. Forty-seven experimental studies were eligible for inclusion in the qualitative analysis and thirty-three studies were eligible for the meta-analysis. It was demonstrated that the use of fish, chemical and biological larvicides in rice fields were effective in controlling larval malaria vector densities at all developmental stages. Intermittent irrigation, however, could only significantly reduce late-stage larvae. Based on a limited number of studies, meta-analyses on other forms of larval control such as monomolecular surface films (MSFs), neem, copepods and Azolla failed to demonstrate any consistent reduction in anopheline numbers. Similarly, rice cultivation practices such as plant variety and density, type of levelling and pesticide application were not generally associated with reduced malaria vectors. Nonetheless, in one study, minimal tillage was observed to reduce average numbers of larvae throughout a cropping season. In another study, herbicide application increased larval abundance over a 4-week period, as did one-time drainage in a third study.
    Despite their different modes of action, the use of chemical and bacterial larvicides and MSFs were all relatively effective measures of larval control in rice fields, varying between a 57% to 76% reduction in vector abundance compared to no larviciding. Their effects were highest (often reaching 100% reduction) only shortly following application but did not persist for longer than two weeks. These larvicides mostly had short residual half-lives because they were applied to paddy water which was naturally not completely stagnant: there was a small but constant process of water loss (through drainage, evapotranspiration and percolation) and replacement through irrigation. Hence, even with a residual formulation, weekly re-application would be needed for sustained control47,40,41,50. This would be very labour- and cost-intensive to scale-up, to ensure that larvicides are evenly distributed across vast areas (even at plot/sub-plot level) throughout at least one 5-month long rice-growing season per year42,51. Aerial application (including unmanned aerial vehicles), although widely used in the US and Europe, is unlikely to be a feasible delivery system for smallholders in SSA, even in large irrigation schemes26,27,48,49. Furthermore, if synthetic organic chemicals were to be considered for riceland malaria vector control, their management in the current landscape of insecticide resistance across Africa must be considered.Biological control using fish was found to be, in general, slightly more effective than (chemical, bacterial and MSF) larviciding. The degree of effectiveness was dependent on the fish species and their feeding preferences: surface-feeding, larvivorous species provided better anopheline control than bottom-feeding selective feeders4,43. Selecting the most suitable fish for local rice fields is not straightforward; many criteria need to be considered4,52,53. Generally, fish were well-received by rice farmers, perceived to contribute to increased yield by reducing weeds and pests and providing fertiliser through excrement43,44. This was reportedly also observed in Guangxi, China, where a certain proportion of the field had to be deepened into a side-trench where the fish could take shelter when the fields were drained. Even with this reduction in rice production area, carp rearing still increased yields by 10% and farmer’s income per hectare by 70%53. Unfortunately, none of the eligible studies in this review had included yield or water use as an outcome. Future entomological studies need to measure these critical agronomic variables so that studies of vector control in rice can be understood by, and transferred to, agronomists. In SSA, irrigated rice-fish farming can be scaled up provided that an inventory of fish species suitable for specific locations is available and that water is consistently available in fields (an important limiting factor in African irrigation schemes)54. Lessons can be learnt from successful large-scale rice-fish systems in Asia, where they have served as win–win solutions for sustainable food production and malaria control16,55.Overall, there was only limited evidence that intermittent irrigation is effective at reducing late-instar anopheline larvae in rice fields. This finding contrasts with prior reviews, which found mixed results (regardless of larval stage) but emphasised that success was site-specific4,17,56. This contrast is presumably due to the inclusion criteria of our systematic review. These reviews excluded studies in various geographical settings and some older studies that reported successful anopheline control with intermittent irrigation but lacked either a contemporaneous control arm, adequate replication or adequate differentiation between culicines and anophelines16,57,50,51,52,61. It seems, from our review, that intermittent irrigation does not prevent the recruitment of early instars (and in one case, may have encouraged oviposition31) but tends to prevent their development into late-stage immatures. This important conclusion is, however, based only on four studies; more evidence is urgently needed where future trials should consider the basic principles of modern trials with adequate replication, controls and differentiation between larval instars and species.Generally, it is observed that drainage, passive or active, did not reliably reduce overall numbers of mosquito immatures. In India and Kenya, closer inspection revealed that soils were not drying sufficiently, so any stranded larvae were not killed31,46. Highlighted by van der Hoek et al.29 and Keiser et al.17, water management in rice fields is very dependent on the physical characteristics of the soil and the climate and is most suited to places that not only favour rapid drying, but also have a good control of water supply17,56. Moreover, repeated drainage, although directed against mosquitoes, can also kill their aquatic predators62. Since mosquitoes can re-establish themselves in a newly flooded rice field more quickly than their predators, intermittent irrigation with more than a week between successive drying periods can permit repeated cycles of mosquito breeding without any predation pressure. Its efficacy against malaria vectors is therefore highly reliant on the timing of the wetting and drying periods. Further site-specific research on timing, especially with regards to predator–prey interactions within the rice agroecosystem, is required to find the perfect balance.Another limitation in intermittent irrigation is that it cannot be applied during the first two to three weeks following transplanting, because rice plants must remain flooded to recover from transplanting shock. Unfortunately, this time coincides with peak vector breeding. Thus, other methods of larval control would be required to fill this gap. To agronomists, intermittent irrigation provides benefits to farmers, as it does not penalise yield but significantly reduces water consumption. Nonetheless, farmer compliance seems to be variable, especially in areas where water availability is inconsistent and intermittent irrigation would potentially require more labour31,32,39. Importantly, rice farmers doubted their ability to coordinate water distribution evenly amongst themselves, suggesting that there may be sharing issues, as in the “tragedy of the commons”63. Instead, they said that they preferred to have an agreed authority to regulate water46.No general conclusions could be made on the effect on malaria vectors of other rice cultivation practices (apart from water management) because only one study was eligible for each practice. Nevertheless, these experiments on pesticide application, tillage and weed control, as well as another study on plant spacing (not eligible since glass rods were used to simulate rice plants), do illustrate that small changes in agronomic inputs and conditions can have considerable effects on mosquito densities, not just rice yield36,38,64. Moreover, in partially- or shallowly-flooded plots, the larvae are often concentrated in depressions (usually footprints), suggesting that rice operations which leave or remove footprints (e.g. hand-weeding, drum seeders, levelling) will influence vector breeding4.Our study has some important limitations. First, in most trials, the units of intervention were replicate plots of rice, and success was measured as a reduction in larval densities within treated plots. This design focuses on the identification of effective and easy-to-implement ways of growing rice without growing mosquitoes, on the assumption that higher vector densities are harmful. However, from a public health perspective, the need for epidemiological outcomes is often, and reasonably, stressed22,65. Nonetheless, from a farmers’ perspective, it is also important to consider whether the vectors emerging from their rice fields significantly contribute to the local burden of malaria and to determine how this contribution can be minimised. There is evidence that riceland vectors do increase malaria transmission, since human biting rates are much higher in communities living next to rice schemes than their non-rice counterparts66 and that additional riceland vectors may intensify transmission and malaria prevalence in rice communities15. Hence, when investigating how rice-attributed malaria risk can be minimised, mosquito abundance as measured in the experimental rice trials is a useful indicator of potential impact on epidemiological outcomes.Second, larval density was not always separated into larval developmental stages. This can be misleading because some interventions work by reducing larval survival (but not by preventing oviposition) and development to late instars and pupae. Therefore, an intervention could completely eliminate late-stage larvae and pupae but have little effect on the total number of immatures. This was illustrated in our meta-analyses of intermittent irrigation in Table 3 and Supplementary Table 5, and could have been the case for some studies that failed to demonstrate consistent reductions in overall anopheline numbers but did not differentiate between larval instars34,45,67,60,69. We infer that when monitoring mosquito immatures in rice trials, it is important to distinguish between larval instars and pupae. Pupae should always be counted separately since its abundance is the most direct indicator of adult productivity70.Third, experimental trials rarely reported the timing of intervention application or accounted for different rice-growing phases, or “days after transplantation”, in the outcome. Both aspects are important to consider since an intervention may be suited to control larvae during certain growth phases but not others. This is illustrated by Djegbe et al.38, where, compared to deep tillage, minimal tillage could significantly reduce larvae during the early stages of rice cultivation but not during tillering and maturation38. In contrast, other interventions, such as Azolla and predatory copepods, took time to grow and accumulate, and were more effective during the later stages of a rice season45,67,71. This differentiation is important because it can identify components that could potentially form a complementary set of interventions against riceland malaria vectors, each component being effective at different parts of the season. Since rice fields, and hence the dynamics of riceland mosquito populations, vary from place to place, this set of interventions must also be robust. Special attention must be paid to the early stages of rice cultivation, particularly the first few weeks after transplanting (or sowing), since, with many vector species, a large proportion of adult mosquitoes are produced during this time.Fourth, the analysis of entomological counts is often inadequate. Many studies failed to provide the standard deviation (or any other measure of error) for larval counts and could not be included in the quantitative analysis. Often, due to the extreme (and not unexpected) variability of larval numbers, sample sizes were insufficient to calculate statistically significant differences between treatments. Fifth, a high risk of bias was found across both CTS and CITS studies, including high heterogeneity and some publication bias. Study quality was, in general, a shortcoming and limited the number of eligible studies for certain interventions, including intermittent irrigation. Moreover, there are conspicuous a priori reasons for bias in such experimental trials: trial locations are frequently chosen to maximise the probability of success.Finally, few studies were conducted in African countries, where the relationship between rice and malaria is most important because of the efficiency, and the “rice-philic” nature, of the vector An. gambiae s.l.15. In particular, there was a lack of studies on the effectiveness and scalability of biological control and rice cultivation practices. There is also very little information (particularly social science studies) on the views and perspectives of African rice farmers on mosquitoes in rice and interventions to control them72,73.In the future, as malaria declines (particularly across SSA), the contribution of rice production to increased malaria transmission is likely to become more conspicuous15. Unless this problem is addressed, rice growing will probably become an obstacle to malaria elimination. Current default methods of rice production provide near-perfect conditions for the larvae of African malaria vectors. Therefore, we need to develop modified rice-growing methods that are unfavourable to mosquitoes but still favourable for the rice. Although larviciding and biological control may be appropriate, their unsustainable costs remain the biggest barrier to uptake amongst smallholder farmers. Future investigations into riceland vector control should pay more attention to interventions that may be useful to farmers.Supported by medical entomologists, agronomists should lead the research task of identifying cultivation methods that achieve high rice productivity whilst suppressing vector productivity. Rice fields are a major global source of greenhouse gases, and agronomists have responded by successfully developing novel cultivation methods that minimise these emissions while maintaining yield. We need the same kind of response from agronomists, to achieve malaria control co-benefits within rice cultivation. At present, only a few aspects of rice cultivation have been investigated for their effects on mosquitoes, and the potential of many other practices for reducing anopheline numbers are awaiting study. Due to the spatial and temporal heterogeneity of rice agroecosystems, it is likely that no single control method can reduce mosquito numbers throughout an entire cropping season and in all soil types and irrigation methods. Thus, effective overall control is likely to come from a combination of local, site-specific set of complementary methods, each of which is active and effective during a different phase of the rice-growing season. More

  • in

    High-yield dairy cattle breeds improve farmer incomes, curtail greenhouse gas emissions and reduce dairy import dependency in Tanzania

    Meat, Milk and More: Policy Innovations to Shepherd Inclusive and Sustainable Livestock Systems in Africa (Malabo Montpellier Panel, 2020).Value of Agricultural Production (FAO, accessed August 25, 2022); https://www.fao.org/faostat/en/#data/QVJayne, T. & Sanchez, P. A. Agricultural productivity must improve in sub-Saharan Africa. Science 372, 1045–1047 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dangal, S. R. S. et al. Methane emission from global livestock sector during 1890–2014: magnitude, trends and spatiotemporal patterns. Glob. Change Biol. 23, 4147–4161 (2017).Article 
    ADS 

    Google Scholar 
    Mottet, A. et al. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg. Env. Change 17, 129–141 (2016).Article 

    Google Scholar 
    Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    González-Quintero, R. et al. Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia. Agric. Syst. 195, 103303 (2022).Article 

    Google Scholar 
    Crops and Livestock Products (FAO, accessed August 17,2022); https://www.fao.org/faostat/en/#data/QCLLedo, J. et al. Persistent challenges in safety and hygiene control practices in emerging dairy chains: the case of Tanzania. Food Control 105, 164–173 (2019).Article 

    Google Scholar 
    Häsler, B. et al. Integrated food safety and nutrition assessments in the dairy cattle value chain in Tanzania. Glob. Food Sec. 18, 102–113 (2018).Article 

    Google Scholar 
    Supply Utilization Accounts (FAO, accessed August 26, 2022); https://www.fao.org/faostat/en/#data/SCLMichael, S. et al. Tanzania Livestock Master Plan (International Livestock Research Institute, 2018).Tanzania Livestock Sector Analysis (2016/2017–2030/2031) (United Republic of Tanzania Ministry of Livestock and Fisheries, 2017); https://www.mifugouvuvi.go.tz/uploads/projects/1553602287-LIVESTOCK%20SECTOR%20ANALYSIS.pdfNicholson, C. et al. Assessment of Investment Priorities for Tanzania’s Dairy Sector: Report on Activities and Accomplishments (International Livestock Research Institute, 2021).Chagunda, M. G. C., Romer, D. A. M. & Roberts, D. J. Effect of genotype and feeding regime on enteric methane, non-milk nitrogen and performance of dairy cows during the winter feeding period. Livest. Sci. 122, 323–332 (2009).Article 

    Google Scholar 
    Notenbaert, A. et al. Towards environmentally sound intensification pathways for dairy development in the Tanga region of Tanzania. Reg. Environ. Change 20, 138 (2020).Yesuf, G. A. et al. Embedding stakeholders’ priorities into the low-emission development of the East African dairy sector. Env. Res. Lett. 16, 064032 (2021).Article 
    CAS 

    Google Scholar 
    GLS (Greening Livestock Survey) (International Livestock Research Institute, 2019); https://data.ilri.org/portal/dataset/greeninglivestockIntended Nationally Determined Contributions (United Republic of Tanzania, 2021); https://unfccc.int/sites/default/files/NDC/2022-06/TANZANIA_NDC_SUBMISSION_30%20JULY%202021.pdfNdung’u, P. W. et al. Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal 16, 100445 (2022).Article 
    PubMed 

    Google Scholar 
    Goopy, J. P. et al. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br. J. Nutr. 123, 1239–1246 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goopy, J. P. et al. A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa—results for Nyando, Western Kenya. Agric. Syst. 161, 72–80 (2018).Article 

    Google Scholar 
    Supporting Low Emissions Development in the Tanzanian Dairy Cattle Sector—Reducing Enteric Methane for Food Security and Livelihoods (FAO, 2019).Gerssen-Gondelach, S. J. et al. Intensification pathways for beef and dairy cattle production systems: impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 240, 135–147 (2017).Article 

    Google Scholar 
    Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).Article 
    ADS 

    Google Scholar 
    Dizyee, K., Baker, D. & Omore, A. Upgrading the smallholder dairy value chain: a system dynamics ex-ante impact assessment in Tanzania’s Kilosa district. J. Dairy Res. 86, 440–449 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simões, A. R. P., Nicholson, C. F., Novakovicc, A. M. & Protil, R. M. Dynamic impacts of farm-level technology adoption on the Brazilian dairy supply chain. Int. Food Agribus. Manag. Rev. 23, 71–84 (2020).Article 

    Google Scholar 
    Rahimi, J. et al. Heat stress will detrimentally impact future livestock production in East Africa. Nat. Food. 2, 88–96 (2021).Article 

    Google Scholar 
    Mbululo, Y. & Nyihirani, F. Climate characteristics over southern highlands Tanzania. Atmos. Clim. Sci. 2, 454–463 (2012).
    Google Scholar 
    Kihoro, E. M., Schoneveld, G. C. & Crane, T. A. Pathways toward inclusive low-emission dairy development in Tanzania: producer heterogeneity and implications for intervention design. Agric. Syst. 190, 103073 (2021).Mruttu, H. et al. Animal Genetics Strategy and Vision for Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).Agricultural Sample Survey 2018/19 Report on Livestock and Livestock Characteristics (Private Peasant Holdings) (Central Statistical Agency, 2019).2019/20 National Sample Census of Agriculture Main Report (Tanzania National Bureau of Statistics, 2022).Robinson, T. P. et al. Global Livestock Production Systems (FAO, 2011).Herrero, M. et al. Biomass use, production, feed efficiencies and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baseline Study of the Tanzania Dairy Value Chain (United Republic of Tanzania Ministry of Agriculture, Livestock and Fisheries, 2016).Mbwambo, N., Nandonde, S., Ndomba, C. & Desta, S. Assessment of Animal Feed Resources in Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., & Borriello, G. Open data kit: tools to build information services for developing regions. Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (Association for Computing Machinery, 2010).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).https://www.r-project.orgRufino, M. C. et al. Lifetime productivity of dairy cows in smallholder farming systems of the central highlands of Kenya. Animal 3, 1044–1056 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hawkins, J. et al. Feeding efficiency gains can increase the greenhouse gas mitigation potential of the Tanzanian dairy sector. Sci. Rep. 11, 4190 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Python Software Foundation (Python Software Foundation, 2019); https://www.python.org/psf/Kashoma, I. P. B. et al. Predicting body weight of Tanzania shorthorn zebu cattle using heart girth measurements. Livest. Res. Rural. Dev. 23, Table 1 (2011).Galukande, E. B., Mahadevan, P. & Black, J. G. Milk production in East African zebu cattle. Anim. Sci. 4, 329–336 (1962).Article 

    Google Scholar 
    Gillah, K. A., Kifaro, G. C. & Madsen, J. Effects of pre partum supplementation on milk yield, reproduction and milk quality of crossbred dairy cows raised in a peri urban farm of Morogoro town Tanzania. Livest. Res. Rural. Dev. 26 (2014).Njau, F. B. C., Lwelamira, J. & Hyandye, C. Ruminant livestock production and quality of pastures in the communal grazing land of semi-arid central Tanzania. Livest. Res. Rural. Dev. 8, Table 4 (2013).Mwambene, P. L. et al. Selecting indigenous cattle populations for improving dairy production in the Southern Highlands and Eastern Tanzania. Livest. Res. Rural. Dev. 26 (2014).Rege, J. E. O. et al. Cattle of Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity and Options for Improved Use (International Livestock Research Institute, 2001).Beffa, L. M. Genotype × Environment Interaction in Afrikaner Cattle. PhD thesis, Univ. of the Free State (2005).Meaker, H. J., Coetsee, T. P. N. & Lishman, A. W. The effects of age at 1st calving on the productive and reproductive-performance of beef-cows. S. Afr. J. Anim. Sci. 10, 105–113 (1980).
    Google Scholar 
    Chenyambuga, S. W. & Mseleko, K. F. Reproductive and lactation performances of Ayrshire and Boran crossbred cattle kept in smallholder farms in Mufindi district, Tanzania. Livest. Res. Rural. Dev. 21, 100 (2009).
    Google Scholar 
    Ojango, J. M. K. et al. Dairy production systems and the adoption of genetic and breeding technologies in Tanzania, Kenya, India and Nicaragua. Anim. Genet. Resour. 59, 81–95 (2016).Article 

    Google Scholar 
    Feedipedia—Animal Feed Resources Information System (FAO, accessed 2021); https://www.feedipedia.org/Lukuyu, B. et al. (eds) Feeding Dairy Cattle in East Africa (East Africa Dairy Development Project, 2012).Rubanza, C. D. K. et al. Biomass production and nutritive potential of conserved forages in silvopastoral traditional fodder banks (Ngitiri) of Meatu District of Tanzania. Asian-Aust. J. Anim. Sci. 19, 978–983 (2006).Article 

    Google Scholar 
    Food Balances (2010-) (FAO, accessed September 29, 2021); http://www.fao.org/faostat/en/#data/FBSCrop Data for the United Republic of Tanzania (FAO, accessed September 22, 2021); http://www.fao.org/faost at/en/#data/QCGilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data. 5, 180227 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2014/15 Annual Agricultural Sample Survey Report (The United Republic of Tanzania, 2016).Basic Data for Livestock and Fisheries (The United Republic of Tanzania Ministry of Livestock and Fisheries, 2013).IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 Agriculture, Forestry and Other Land Use (IPCC, 2006).2019 Refinement to the IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2019).Fertilizers by Nutrient (FAO, accessed July 6, 2022); https://www.fao.org/faostat/en/#data/RFNHutton, M. O. et al. Toward a nitrogen footprint calculator for Tanzania. Env. Res. Lett. 12, 034016 (2017).Article 

    Google Scholar 
    Tanzania Fertilizer Assessment (International Fertilizer Development Center, 2012); http://tanzania.countrystat.org/fileadmin/user_upload/countrystat_fenix/congo/docs/Tanzania%20Fertilizer%20Assessment%202012.pdfA Common Carbon Footprint Approach for the Dairy Sector: The IDF Guide to Standard Life Cycle Methodology (International Dairy Federation, 2015); https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdfBruzzone, L., Bovolo, F. & Arino, O. European Space Agency land cover climate change initiative. ESA LC CCI data: high resolution land cover data via Centre for Environmental Data Analysis; https://climate.esa.int/en/projects/high-resolution-land-cover/ (2021)Characteristics of Markets for Animal Feeds Raw Materials in the East African Community: Focus on Maize Bran and Sunflower Seed Cake (Kilimo Trust, 2017).Ngunga, D. & Mwendia, S. Forage Seed System in Tanzania: A Review Report (Alliance of Biodiversity and CIAT, 2020).Nkombe, B.M. Investigation of the Potential for Forage Species to Enhance the Sustainability of Degraded Rangeland and Cropland Soils. MSc thesis, Ohio State Univ. (2016).Producer Prices (FAO, accessed 2021); http://www.fao.org/faostat/en/#data/PP More

  • in

    Tidal effects on periodical variations in the occurrence of singing humpback whales in coastal waters of Chichijima Island, Ogasawara, Japan

    Morrison, M. A., Francis, M. P., Hartill, B. W. & Parkinson, D. M. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat. Estuar. Coast. Shelf Sci. 54, 793–807 (2002).Article 
    ADS 

    Google Scholar 
    Ribeiro, J. et al. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuar. Coast. Shelf Sci. 67, 461–474 (2006).Article 
    ADS 

    Google Scholar 
    Takemura, A., Rahman, M. S. & Park, Y. J. External and internal controls of lunar-related reproductive rhythms in fishes. J. Fish Biol. 76, 7–26 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mendes, S., Turrell, W., Lütkebohle, T. & Thompson, P. Influence of the tidal cycle and a tidal intrusion front on the spatio-temporal distribution of coastal bottlenose dolphins. Mar. Ecol. Prog. Ser. 239, 221–229 (2002).Article 
    ADS 

    Google Scholar 
    Johnston, D. W., Thorne, L. H. & Read, A. J. Fin whales Balaenoptera physalus and minke whales Balaenoptera acutorostrata exploit a tidally driven island wake ecosystem in the Bay of Fundy. Mar. Ecol. Prog. Ser. 305, 287–295 (2005).Article 
    ADS 

    Google Scholar 
    Ichikawa, K. et al. Dugong (Dugong dugon) vocalization patterns recorded by automatic underwater sound monitoring systems. J. Acoust. Soc. Am. 119, 3726–3733 (2006).Article 
    ADS 
    PubMed 

    Google Scholar 
    Akamatsu, T. et al. Seasonal and diurnal presence of finless porpoises at a corridor to the ocean from their habitat. Mar. Biol. 157, 1879–1887 (2010).Article 

    Google Scholar 
    Li, S. et al. Seasonal, lunar and tidal influences on habitat use of indo-pacific humpback dolphins in Beibu gulf, China. Zool. Stud. https://doi.org/10.6620/ZS.2018.57-01 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zamon, J. E. Seal predation on salmon and forage fish schools as a function of tidal currents in the San Juan Islands, Washington, USA. Fish. Oceanogr. 10, 353–366 (2001).Article 

    Google Scholar 
    Van Parijs, S. M., Hastie, G. D. & Thompson, P. M. Geographical variation in temporal and spatial vocalization patterns of male harbour seals in the mating season. Anim. Behav. 58, 1231–1239 (1999).Article 
    PubMed 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227 (2017).Article 
    ADS 

    Google Scholar 
    Johnson, J. H. & Wolman, A. A. The humpback whale, Megaptera novaeangliae. Mar. Fish. Rev. 46, 30–37 (1984).
    Google Scholar 
    Kobayashi, N. et al. Spatial distribution and habitat use patterns of humpback whales in Okinawa, Japan. Mammal Study 41, 207–214 (2016).Article 

    Google Scholar 
    Mori, K., Sata, F., Yamaguchi, M., Suganuma, H. & Ueyanagi, S. Distribution, migration and local movements of humpback whale (Megaptera novaeangliae) in the adjacent waters of the Ogasawara (Bonin) Islands Japan. J. Fac. Mar. Sci. Technol. Tokai Univ. 45, 197–213 (1998).
    Google Scholar 
    Rasmussen, K., Calambokidis, J. & Steiger, G. H. Distribution and migratory destinations of humpback whales off the Pacific coast of Central America during the boreal winters of 1996–2003. Mar. Mammal Sci. 28, 1–13 (2012).Article 

    Google Scholar 
    Calambokidis, J. et al. SPLASH: structure of populations, levels of abuncance and status of humpback whales in the North Pacific. Final report for Contract AB133F-03-RP-00078, to U.S. Dept. of Comm. Western Administrative Center, Seattle, WA. https://cascadiaresearch.org/files/SPLASH-contract-Report-May08.pdf (2008).Hill, M. et al. Found: A missing breeding ground for endangered western North Pacific humpback whales in the Mariana Archipelago. Endanger. Species Res. 41, 91–103 (2020).Article 

    Google Scholar 
    Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Winn, H. E. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    Tyack, P. Interactions between singing Hawaiian humpback whales and conspecifics nearby. Behav. Ecol. Sociobiol. 8, 105–116 (1981).Article 

    Google Scholar 
    Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).Article 
    PubMed 

    Google Scholar 
    Au, W. W. L., Mobley, J., Burgess, W. C., Lammers, M. O. & Nachtigall, P. E. Seasonal and diurnal trends of chorusing humpback whales wintering in waters off western Maui. Mar. Mammal Sci. 16, 530–544 (2000).Article 

    Google Scholar 
    Cerchio, S., Collins, T., Strindberg, S., Bennett, C. & Rosenbaum, H. Humpback whale singing activity off northern Angola: An indication of the migratory cycle, breeding habitat and impact of seismic surveys on singer number in Breeding. Int. Whal. Comm. P. SC/62/SH12 (2010).Kobayashi, N., Okabe, H., Higashi, N., Miyahara, H. & Uchida, S. Diel patterns in singing activity of humpback whales in a winter breeding area in Okinawan (Ryukyuan) waters. Mar. Mammal Sci. 37, 982–992 (2021).Article 

    Google Scholar 
    Munger, L. M., Lammers, M. O., Fisher-Pool, P. & Wong, K. Humpback whale (Megaptera novaeangliae) song occurrence at American Samoa in long-term passive acoustic recordings, 2008–2009. J. Acoust. Soc. Am. 132, 2265–2272 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Barlow, D. R., Fournet, M. & Sharpe, F. Incorporating tides into the acoustic ecology of humpback whales. Mar. Mammal Sci. 35, 234–251 (2019).Article 

    Google Scholar 
    Chenoweth, E., Gabriele, C. & Hill, D. Tidal influences on humpback whale habitat selection near headlands. Mar. Ecol. Prog. Ser. 423, 279–289 (2011).Article 
    ADS 

    Google Scholar 
    Sousa-Lima, R. S., Clark, C. W. & Road, S. W. Modeling the effect of boat traffic on singing activity of humpback whales (Megaptera novaeangliae) in the abrolhos national marine park, Brazil. Can. Acoust 36, 174–181 (2008).
    Google Scholar 
    Cerchio, S., Strindberg, S., Collins, T., Bennett, C. & Rosenbaum, H. Seismic surveys negatively affect humpback whale singing activity off Northern Angola. PLoS ONE 9, e86464. https://doi.org/10.1371/journal.pone.0086464 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darling, J. D. & Mori, K. Recent observations of humpback whales (Megaptera novaeangliae) in Japanese waters off Ogasawara and Okinawa. Can. J. Zool. 71, 325–333 (1993).Article 

    Google Scholar 
    Calambokidis, J. et al. Movements and population structure of humpback whales in the North Pacific. Mar. Mammal Sci. 17, 769–794 (2001).Article 

    Google Scholar 
    Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. & Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 94, 409–410 (2013).Article 
    ADS 

    Google Scholar 
    Helweg, D. A. & Herman, L. M. Diurnal patterns of behaviour and group membership of humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Ethology 98, 298–311 (1994).Article 

    Google Scholar 
    Darling, J. D. & Berube, M. Interactions of singing humpback whales with other males. Mar. Mammal Sci. 17, 570–584 (2001).Article 

    Google Scholar 
    Whitlow, W. L. et al. Acoustic properties of humpback whale songs. J. Acoust. Soc. Am. 120, 1103–1110 (2006).Article 

    Google Scholar 
    Japan Coast Guard. Sailing Directions for South and East Coasts of Honshu. (1981).Tsujii, K. et al. Change in singing behavior of humpback whales caused by shipping noise. PLoS ONE 13, e0204112. https://doi.org/10.1371/journal.pone.0204112 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, J. P. et al. Humpback whale song occurrence reflects ecosystem variability in feeding and migratory habitat of the northeast Pacific. PLoS ONE 14, e0222456. https://doi.org/10.1371/journal.pone.0222456 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. 4.0.0 version. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).Wood, S.N. Generalized Additive Models: An Introduction with R 2nd edn, (Chapman and Hall/CRC, 2017). More

  • in

    The effects of visitors and social isolation from a peer on the behavior of a mixed-species pair of captive gibbons

    Kazarov, E. The Role of Zoos in Creating a Conservation Ethic in Visitors. SIT Digital Collections (2022). at https://digitalcollections.sit.edu/isp_collection/584.Hosey, G. How does the zoo environment affect the behaviour of captive primates?. Appl. Anim. Behav. Sci. 90, 107–129 (2005).
    Google Scholar 
    Morgan, K. & Tromborg, C. Sources of stress in captivity. Appl. Anim. Behav. Sci. 102, 262–302 (2007).
    Google Scholar 
    Sherwen, S. & Hemsworth, P. The visitor effect on zoo animals: Implications and opportunities for zoo animal welfare. Animals 9, 366 (2019).PubMed Central 

    Google Scholar 
    Chamove, A., Hosey, G. & Schaetzel, P. Visitors excite primates in zoos. Zoo Biol. 7, 359–369 (1988).
    Google Scholar 
    Tetley, C. L. & O’Hara, S. J. Ratings of animal personality as a tool for improving the breeding, management and welfare of zoo mammals. Anim. Welf. UFAW J. 21(4), 463 (2012).CAS 

    Google Scholar 
    Stoinski, T. S., Jaicks, H. F. & Drayton, L. A. Visitor effects on the behavior of captive western lowland gorillas: The importance of individual differences in examining welfare. Zoo Biol. 31(5), 586–599 (2012).PubMed 

    Google Scholar 
    Queiroz, M. B. & Young, R. J. The different physical and behavioural characteristics of zoo mammals that influence their response to visitors. Animals 8(8), 139 (2018).PubMed Central 

    Google Scholar 
    Fanson, K. V. & Wielebnowski, N. C. Effect of housing and husbandry practices on adrenocortical activity in captive Canada lynx (Lynx canadensis). Anim. Welf. 22, 159–165 (2013).CAS 

    Google Scholar 
    Pirovino, M. et al. Fecal glucocorticoid measurements and their relation to rearing, behavior, and environmental factors in the population of pileated gibbons (Hylobates pileatus) held in European zoos. Int. J. Primatol. 32(5), 1161–1178 (2011).
    Google Scholar 
    Williams, I., Hoppitt, W. & Grant, R. The effect of auditory enrichment, rearing method and social environment on the behavior of zoo-housed psittacines (Aves: Psittaciformes); implications for welfare. Appl. Anim. Behav. Sci. 186, 85–92 (2017).
    Google Scholar 
    Fernandez, E., Tamborski, M., Pickens, S. & Timberlake, W. Animal–visitor interactions in the modern zoo: Conflicts and interventions. Appl. Anim. Behav. Sci. 120, 1–8 (2009).
    Google Scholar 
    Hosey, G. & Skyner, L. Self-injurious behavior in zoo primates. Int. J. Primatol. 28, 1431–1437 (2007).
    Google Scholar 
    Mallapur, A., Sinha, A. & Waran, N. Influence of visitor presence on the behaviour of captive lion-tailed macaques (Macaca silenus) housed in Indian zoos. Appl. Anim. Behav. Sci. 94, 341–352 (2005).
    Google Scholar 
    Davey, G. Visitors’ Effects on the Welfare of Animals in the Zoo: A Review. J. Appl. Anim. Welf. Sci. 10, 169–183 (2007).CAS 
    PubMed 

    Google Scholar 
    Jones, H., McGregor, P., Farmer, H. & Baker, K. The influence of visitor interaction on the behavior of captive crowned lemurs (Eulemur coronatus) and implications for welfare. Zoo Biol. 35, 222–227 (2016).CAS 
    PubMed 

    Google Scholar 
    Cook, S. & Hosey, G. R. Interaction sequences between chimpanzees and human visitors at the zoo. Zoo Biol. 14(5), 431–440 (1995).
    Google Scholar 
    Baker, K. C. Benefits of positive human interaction for socially-housed chimpanzees. Anim. Welf. (South Mimms, Engl.nd) 13(2), 239 (2004).CAS 

    Google Scholar 
    Carder, G. & Semple, S. Visitor effects on anxiety in two captive groups of western lowland gorillas. Appl. Anim. Behav. Sci. 115, 211–220 (2008).
    Google Scholar 
    Wood, W. Interactions among environmental enrichment, viewing crowds, and zoo chimpanzees (Pantroglodytes). Zoo Biol. 17, 211–230 (1998).
    Google Scholar 
    Todd, P., Macdonald, C. & Coleman, D. Visitor-associated variation in captive Diana monkey (Cercopithecus diana diana) behaviour. Appl. Anim. Behav. Sci. 107, 162–165 (2007).
    Google Scholar 
    Davis, N., Schaffner, C. & Smith, T. Evidence that zoo visitors influence HPA activity in spider monkeys (Ateles geoffroyii rufiventris). Appl. Anim. Behav. Sci. 90, 131–141 (2005).
    Google Scholar 
    Sherwen, S. L. et al. Effects of visual contact with zoo visitors on black-capped capuchin welfare. Appl. Anim. Behav. Sci. 167, 65–73 (2015).
    Google Scholar 
    Choo, Y., Todd, P. & Li, D. Visitor effects on zoo orangutans in two novel, naturalistic enclosures. Appl. Anim. Behav. Sci. 133, 78–86 (2011).
    Google Scholar 
    Sherwen, S., Magrath, M., Butler, K., Phillips, C. & Hemsworth, P. A multi-enclosure study investigating the behavioural response of meerkats to zoo visitors. Appl. Anim. Behav. Sci. 156, 70–77 (2014).
    Google Scholar 
    Hosey, G. & Druck, P. The influence of zoo visitors on the behaviour of captive primates. Appl. Anim. Behav. Sci. 18, 19–29 (1987).
    Google Scholar 
    Mitchell, G. et al. More on the ‘influence’of zoo visitors on the behaviour of captive primates. Appl. Anim. Behav. Sci. 35(2), 189–198 (1992).
    Google Scholar 
    Sellinger, R. & Ha, J. The effects of visitor density and intensity on the behavior of two captive jaguars (Panthera onca). J. Appl. Anim. Welfare Sci. 8, 233–244 (2005).CAS 

    Google Scholar 
    Azevedo, C., Lima, M., Silva, V., Young, R. & Rodrigues, M. Visitor Influence on the Behavior of Captive Greater Rheas (Rhea americana, Rheidae Aves). J. Appl. Anim. Welfare Sci. 15, 113–125 (2012).
    Google Scholar 
    Das Gupta, M., Das, A., Sumy, M. C. & Islam, M. M. An explorative study on visitor’s behaviour and their effect on the behaviour of primates at Chittagong zoo. Bangladesh J. Vet. Anim. Sci. 5(2), 24–32 (2017).
    Google Scholar 
    Hemsworth, P. Human–animal interactions in livestock production. Appl. Anim. Behav. Sci. 81, 185–198 (2003).
    Google Scholar 
    Stoinski, T., Czekala, N., Lukas, K. & Maple, T. Urinary androgen and corticoid levels in captive, male Western lowland gorillas (Gorilla g. gorilla): Age- and social group-related differences. Am. J. Primatol. 56, 73–87 (2002).CAS 
    PubMed 

    Google Scholar 
    Stoinski, T., Lukas, K., Kuhar, C. & Maple, T. Factors influencing the formation and maintenance of all-male gorilla groups in captivity. Zoo Biol. 23, 189–203 (2004).
    Google Scholar 
    Olsson, I. & Westlund, K. More than numbers matter: The effect of social factors on behaviour and welfare of laboratory rodents and non-human primates. Appl. Anim. Behav. Sci. 103, 229–254 (2007).
    Google Scholar 
    Martin, J. E. Early life experiences: Activity levels and abnormal behaviours in resocialised chimpanzees. Anim Welf. 11(4), 419–436 (2002).CAS 

    Google Scholar 
    Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6(6), e20101 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ballen, C., Shine, R. & Olsson, M. Effects of early social isolation on the behaviour and performance of juvenile lizards Chamaeleo calyptratus. Anim. Behav. 88, 1–6 (2014).
    Google Scholar 
    Coe, C., Mendoza, S., Smotherman, W. & Levine, S. Mother-infant attachment in the squirrel monkey: Adrenal response to separation. Behav. Biol. 22, 256–263 (1978).CAS 
    PubMed 

    Google Scholar 
    Mendoza, S., Smotherman, W., Miner, M., Kaplan, J. & Levine, S. Pituitary-adrenal response to separation in mother and infant squirrel monkeys. Dev. Psychobiol. 11, 169–175 (1978).CAS 
    PubMed 

    Google Scholar 
    Gilbert, M. & Baker, K. Social buffering in adult male rhesus macaques (Macaca mulatta): Effects of stressful events in single vs. pair housing. J. Med. Primatol. 40, 71–78 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Schapiro, S. Effects of social manipulations and environmental enrichment on behavior and cell-mediated immune responses in rhesus macaques. Pharmacol. Biochem. Behav. 73, 271–278 (2002).CAS 
    PubMed 

    Google Scholar 
    Chen, W. et al. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice. PeerJ 4, e2306 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Glatston, A., Geilvoet-Soeteman, E., Hora-Pecek, E. & Van Hooff, J. The influence of the zoo environment on social behavior of groups of cotton-topped tamarins Saguinus oedipus oedipus. Zoo Biol. 3, 241–253 (1984).
    Google Scholar 
    Mitchell, G. et al. Effects of visitors and cage changes on the behaviors of mangabeys. Zoo Biol. 10, 417–423 (1991).
    Google Scholar 
    Geissmann, T. & Orgeldinger, M. The relationship between duet songs and pair bonds in siamangs Hylobates syndactylus. Anim. Behav. 60, 805–809 (2000).CAS 
    PubMed 

    Google Scholar 
    Palombit, R. Pair bonds in monogamous apes: A comparison of the siamang hylobates syndactylus and the white-handed gibbon hylobates lar. Behaviour 133, 321–356 (1996).
    Google Scholar 
    Rutberg, A. The evolution of monogamy in primates. J. Theor. Biol. 104, 93–112 (1983).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giorgi, A., Montebovi, G., Vitale, A. & Alleva, E. A behavioural case study of early social isolation of a subadult white-handed gibbon (Hylobates lar). Folia Primatol. 89, 287–294 (2018).
    Google Scholar 
    Skynner, L. A., Amory, J. R. & Hosey, G. The effect of visitors on the self-injurious behaviour of a male pileated gibbon (Hylobates pileatus). Zool. Garten 74(1), 38–41 (2004).
    Google Scholar 
    Smith, K. & Kuhar, C. Siamangs (Hylobates syndactylus) and white-cheeked gibbons (Hylobates leucogenys) show few behavioral differences related to zoo attendance. J. Appl. Anim. Welfare Sci. 13, 154–163 (2010).CAS 

    Google Scholar 
    Lukas, K. E. et al. Longitudinal study of delayed reproductive success in a pair of white-cheeked gibbons (Hylobates leucogenys). Zoo Biol. 21, 413–434 (2002).
    Google Scholar 
    Cooke, C. & Schillaci, M. Behavioral responses to the zoo environment by white handed gibbons. Appl. Anim. Behav. Sci. 106, 125–133 (2007).
    Google Scholar 
    Mootnick, A. & Baker, E. Masturbation in captiveHylobates (gibbons). Zoo Biol. 13, 345–353 (1994).
    Google Scholar 
    Geissmann, T. Reassessment of age of sexual maturity in gibbons (hylobates spp.). American Journal of Primatology 23, 11–22 (1991).Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49(3–4), 227–266 (1974).CAS 
    PubMed 

    Google Scholar 
    Pomerantz, O. & Terkel, J. Effects of positive reinforcement training techniques on the psychological welfare of zoo-housed chimpanzees (Pan troglodytes). Am. J. Primatol. 71, 687–695 (2009).PubMed 

    Google Scholar 
    Orgeldinger, M. Protective and territorial behavior in captive siamangs (Hylobates syndactylus). Zoo Biol. 16, 309–325 (1997).
    Google Scholar 
    Fox, J. et al. Package ‘car’. Vienna: R Foundation for Statistical Computing, 16 https://cran.uni-muenster.de/web/packages/car/car.pdf (2012).Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Bolker, B., Brooks, M. & Brooks, M. M. Package ‘glmmtmb’. R Package Version 0.2. 0 (2017).Hartig, F., & Hartig, M. F. Package ‘DHARMa’. Vienna, Austria: R Development Core Team (2017).Troisi, A. Displacement activities as a behavioral measure of stress in nonhuman primates and human subjects. Stress 5, 47–54 (2002).PubMed 

    Google Scholar 
    Baker, K. & Aureli, F. Behavioural indicators of anxiety: An empirical test in chimpanzees. Behaviour 134, 1031–1050 (1997).
    Google Scholar 
    Vick, S. J. & Paukner, A. Variation and context of yawns in captive chimpanzees (Pan troglodytes). Am. J. Primatol. Off. J. Am. Soc. Primatol. 72(3), 262–269 (2010).
    Google Scholar 
    Norscia, I. & Palagi, E. When play is a family business: Adult play, hierarchy, and possible stress reduction in common marmosets. Primates 52, 101–104 (2010).PubMed 

    Google Scholar 
    Held, S. & Špinka, M. Animal play and animal welfare. Anim. Behav. 81, 891–899 (2011).
    Google Scholar 
    Davey, G. Visitor behavior in zoos: A review. Anthrozoös 19, 143–157 (2006).
    Google Scholar 
    Nimon, A. & Dalziel, F. Cross-species interaction and communication: a study method applied to captive siamang (Hylobates syndactylus) and long-billed corella (Cacatua tenuirostris) contacts with humans. Appl. Anim. Behav. Sci. 33, 261–272 (1992).
    Google Scholar 
    Suomi, S. Early determinants of behaviour: Evidence from primate studies. Br. Med. Bull. 53, 170–184 (1997).CAS 
    PubMed 

    Google Scholar 
    Anderson, J. & Chamove, A. Self-aggression and social aggression in laboratory-reared macaques. J. Abnorm. Psychol. 89, 539–550 (1980).CAS 
    PubMed 

    Google Scholar 
    Mallapur, A. & Choudhury, B. Behavioral abnormalities in captive nonhuman primates. J. Appl. Anim. Welfare Sci. 6, 275–284 (2003).CAS 

    Google Scholar 
    Barlow, C., Caldwell, C. & Lee, P. Individual differences and response to visitors in zoo-housed diana monkeys (Cercopithecus diana diana). Cabdirect.org (2022). at https://www.cabdirect.org/cabdirect/abstract/20123180753.Gartner, M. & Weiss, A. Studying primate personality in zoos: Implications for the management, welfare and conservation of great apes. International Zoo Yearbook 52, 79–91 (2018).
    Google Scholar 
    Mitchell, G., Raymond, E., Ruppenthal, G. & Harlow, H. Long-term effects of total social isolation upon behavior of rhesus monkeys. Psychol. Rep. 18, 567–580 (1966).
    Google Scholar 
    Martín, O., Vinyoles, D., García-Galea, E. & Maté, C. Improving the welfare of a zoo-housed male drill (Mandrillus leucophaeus poensis) aggressive toward visitors. J. Appl. Anim. Welfare Sci. 19, 323–334 (2016).
    Google Scholar 
    Ross, S., Melber, L., Gillespie, K. & Lukas, K. The impact of a modern, naturalistic exhibit design on visitor behavior: A cross-facility comparison. Visitor Stud. 15, 3–15 (2012).
    Google Scholar 
    Quadros, S., Goulart, V., Passos, L., Vecci, M. & Young, R. Zoo visitor effect on mammal behaviour: Does noise matter?. Appl. Anim. Behav. Sci. 156, 78–84 (2014).
    Google Scholar 
    Bonnie, K., Ang, M. & Ross, S. Effects of crowd size on exhibit use by and behavior of chimpanzees (Pan troglodytes) and Western lowland gorillas (Gorilla gorilla) at a zoo. Appl. Anim. Behav. Sci. 178, 102–110 (2016).
    Google Scholar  More

  • in

    Community context and pCO2 impact the transcriptome of the “helper” bacterium Alteromonas in co-culture with picocyanobacteria

    We aimed to understand the impact of changing pCO2 (400 vs. 800 ppm, representing current and projected year 2100 concentrations) on Prochlorococcus and Synechococcus and its effects on their interactions with the co-cultured heterotrophic “helper” bacterium Alteromonas sp. EZ55. Consistent with our previous research [7], EZ55 was more strongly affected by year 2100 pCO2 than any of the photoautotrophs in our study despite the primary dependence of the latter organisms’ metabolism on CO2. Strikingly, elevated pCO2 tended to reduce or eliminate the effect of co-culture on EZ55, with far fewer genes being significantly differentially transcribed relative to axenic EZ55 at the same pCO2. Thus, pCO2 strongly impacted the metabolic conversation between cyanobacteria and EZ55. Our detailed analysis of differentially regulated metabolic pathways suggested three mutually reinforcing mechanisms underlying this dynamic interaction: (i) pCO2 impacts on the release of ‘leaky’ cyanobacteria-derived metabolites, (ii) alteration of the dynamics of competition over inorganic nutrients between the co-cultured organisms, and (iii) modulation of bacterial and phytoplankton stress states. We explore each of these mechanisms in further detail below.Carbon cycling of “leaky” metabolites in co-cultureThe media we used for coculturing phytoplankton and bacteria contained no exogenous carbon sources; therefore, EZ55 was dependent on cyanobacterial exudates to grow, and it is likely that much of its changed transcription reflected changing availability of extracellular metabolites in the medium. The significant upregulation of carbon catabolism and transport genes as well as chemotaxis genes in co-cultures relative to axenic EZ55 supports the view that bacterial remineralization of cyanobacteria-secreted organic compounds is a driving force in these simple ecosystems. Additionally, changes in transcription of carbohydrate catabolism and transport genes provide clues as to which metabolites were being secreted under different experimental conditions (Fig. 5).Fig. 5: Proposed reconstruction of Alteromonas EZ55 ecophysiology.Reconstructions are shown for four different community contexts (axenic culture, or co-culture with Prochlorococcus MIT9312, Synechococcus WH8102, or Synechococcus CC9311) at 400 or 800 ppm pCO2, reflecting possible changes in the availability of C compounds, growth limiting factors, and stress conditions consistent with differential gene transcription observations. EZ55 image was obtained by cryoelectron microscopy from the sessions reported in Hennon et al. [7]. Background colors for each partner correspond to the bar colors in Fig. 3.Full size imageLike all oxygenic phototrophs, the cyanobacteria studied here fix carbon using the enzyme rubisco, which also catalyzes the undesirable photorespiration reaction leading to the production of 2PG instead of photosynthate. Phytoplankton in the field and in culture have been observed to excrete low molecular weight carboxylic acids including glycolate [39,40,41]. Photorespiratory glycolate is one of the most abundant sources of carbon in the oceans [38] and a preferred growth substrate for some marine heterotrophic bacteria [42]. Moreover the bacterial glcD gene for converting glycolate to glyoxylate is ubiquitously transcribed in the ocean [41, 43]. Although EZ55 lacks a specific transporter for glycolate, it can be taken up by the cell using the same transporters used for acetate and lactate uptake [44, 45], both of which were upregulated in co-culture conditions at 400 ppm (Fig. 3). Our data also showed differential regulation of enzymes involved in glycolate catabolism pathways, with at least one pathway upregulated in co-culture with each cyanobacterial strain (Fig. 3). We further demonstrated that EZ55 cultures were capable of growth on glycolate as a sole source of carbon, possibly using a novel GlcDF fusion protein (Fig. S11) and/or a plant-like LOX/GOX enzyme (Fig. 4). Thus, photorespiratory byproducts are likely a source of carbon for EZ55 in these cultures, particularly in the presence of MIT9312, which has no detectable enzymes for reclaiming 2PG on its own.There was also evidence that EZ55 utilized amino acids, organic acids, and fatty acids produced by phytoplankton under certain conditions in these cultures (Fig. S9). Lactate, acetate, and propanoate transporters and catabolism pathways were upregulated in co-culture with all cyanobacteria, as was pyruvate dehydrogenase with MIT9312, but only at 400 ppm. Both valine and glycine catabolism were also upregulated at 400 ppm in co-culture with the two Synechococcus strains, and fatty acid catabolism was upregulated in co-culture with MIT9312 and CC9311 at 400 ppm pCO2. Most of these substances have been directly or indirectly observed in cyanobacterial cultures in previous studies. For example, glycolate, lactate, acetate, and pyruvate have been directly measured in Prochlorococcus spent media [39], and co-culture with Prochlorococcus can fulfill the SAR11 growth requirement for glycine and pyruvate [46]. Fatty acid catabolism genes may have targeted membrane vesicles which are abundantly released by Prochlorococcus and other marine bacteria and may be a significant source of carbon for heterotrophs in the ocean [47, 48]; if so, future studies should investigate if WH8102 produces fewer vesicles than the other two cyanobacteria, explaining the differential transcription of beta-oxidation genes observed here.Valine, fatty acid, and propanoate catabolic pathways intersect with the formation of propanoyl-coA which in bacteria is generally fed into the TCA cycle through the methylcitrate pathway [49], which was significantly downregulated at 400 ppm in co-culture with all cyanobacteria even though other genes in these pathways were upregulated. Therefore, it is not clear what the ultimate fate of carbon from these sources is, although it is possible that EZ55 may be able to convert propanoyl-coA into a TCA cycle intermediate through another alternative pathway (e.g. as has been described in Mycobacterium tuberculosis via the methylmalonyl pathway [50]).Notably, gene transcription related to the utilization of all these products declined at 800 ppm pCO2 (Figs. 3, S8, S9). This was not unexpected for enzymes in the glycolate utilization pathways, as the increased CO2/O2 ratio at 800 ppm should decrease the rate of photorespiration relative to carbon fixation and therefore the availability of photorespiratory metabolites like glycolate [51, 52]. It is not clear, however, why organic and fatty acids would be less abundant in cyanobacterial exudates at 800 ppm. One possibility is that cyanobacteria release fewer of these compounds into the medium at high pCO2 because of a change in their internal redox state under these conditions favoring full oxidation of photosynthate. If future pCO2 conditions fundamentally alter the character of phytoplankton exudates, this could have profound implications for evolution and ecosystem functioning in future oceans.Evidence for inorganic nutrient limitation and competitionAutotrophic cyanobacteria and heterotrophic EZ55 were unlikely to compete over carbon under our experimental conditions, but we observed evidence of competition over inorganic nutrients such as N, P, and Fe. EZ55 phosphate, ammonium, and iron transporters, nitrogen regulatory protein P-II, and glutamine synthetase (the primary gateway for N assimilation in bacteria) were all more highly transcribed for all co-cultures compared to axenic cultures at 400 ppm pCO2 (Fig. S6), suggesting a switch from axenic carbon limitation to nutrient limitation in the presence of a continual supply of photosynthetically derived carbon (Fig. 5). On the other hand, few nutrient transporters were upregulated compared to axenic under 800 ppm pCO2. Although gene transcription data alone is not sufficient to conclude whether Alteromonas is limited by inorganic or organic nutrients, the reduced importance of nutrient acquisition suggests that EZ55 is carbon limited under these conditions just as it is in the absence of cyanobacteria.There were comparatively few species-specific changes in EZ55 nutrient transporter gene transcription. One example was an ammonium transporter, which was strongly upregulated in co-culture with both open ocean cyanobacteria (MIT9312 and WH8102) at 400 ppm pCO2. This may reflect a response to a comparatively high affinity for N in cyanobacteria adapted to the permanently oligotrophic open ocean, making them much stronger competitors for limiting N than coastal CC9311. N competition with EZ55 has been observed to increase the relative competitive fitness of Prochlorococcus vs. Synechococcus (coastal strain WH7803) in 3-way co-cultures [53]. In contrast, WH8102 appears to have higher N demand under 800 ppm pCO2, significantly upregulating a nitrate transporter and several genes related to urea utilization (Fig. S2). This may be explained by the enhanced transcription of carbon fixation genes and faster exponential growth rates observed in WH8102 at elevated pCO2, increasing N demand, and may indicate that WH8102 was C limited at 400 ppm.It is important to note that different N sources were provided in PEv medium (in which axenic EZ55 and MIT9312 co-cultures were grown) and SEv medium (in which CC9311 and WH8102 co-cultures were grown), with NH4+ in the former and NO3- in the latter. However, we do not think this difference can explain the observed changes in gene regulation, since EZ55 is capable of growth using either N source. It is interesting to note, however, that EZ55’s ammonium transporter was upregulated in both media types (Fig. S6), suggesting it may be benefitting from ammonium excreted by Synechococcus in SEv co-cultures.Impacts of co-culture and pCO2 on stress conditionsEZ55 showed less transcription of stress-related genes at 400 than 800 ppm pCO2, and also less evidence of stress in co-culture with any cyanobacterium than in axenic culture by itself. Nearly every gene in the EZ55 genome related to protection from H2O2 was downregulated in co-culture at 400 ppm, as were a suite of other stress-related genes (Fig. 2); on the other hand, many of these genes were significantly upregulated relative to axenic conditions at 800 ppm. Additionally, at 800 ppm there was a pronounced difference in EZ55 H2O2 defense gene transcription between cyanobacterial partners. As we described previously [7], both monofunctional catalases were downregulated at 800 ppm in co-culture with MIT9312, as were 2 of 3 alkylhydroperoxide reductase genes (although the third was significantly upregulated). In contrast, the monofunctional catalase genes were significantly upregulated in co-culture with WH8102 at 800 ppm. Elevated transcription of genes involved in the biosynthesis of glycine betaine, an osmoprotectant which has also been shown to function as an antioxidant [54, 55], provides further evidence for increased oxidative stress in co-culture with Synechococcus at 800 ppm in EZ55.Some indication of the mechanism behind EZ55’s changing stress level under co-culture and elevated pCO2 can be seen in the dynamics of three stress-related RNA polymerase sigma factors. Both rpoE and rpoH, responsible for controlling envelope and heat stress regulons, respectively, were downregulated at 400 ppm in co-culture relative to axenic and 800 ppm conditions; rpoE was significantly upregulated at 800 ppm pCO2. These trends are consistent with starvation-induced oxidative stress under both axenic and 800 ppm conditions, as discussed above. In contrast, rpoS was upregulated at 400 ppm pCO2, strongly so in co-culture with MIT9312. RpoS is a specialized sigma factor that accumulates under conditions of nutrient deprivation or as cells enter the stationary phase and serves to increase general stress resistance [56, 57]. For example, in Escherichia coli RpoS was shown to play a crucial role for survival during nitrogen deprivation [58]. While the decoupling of the transcription of oxidative stress genes like catalase from rpoS transcription was unexpected, rpoS trends are consistent with EZ55 being nutrient limited at 400 ppm pCO2 (Fig. S6) and with the upregulation of catalase in co-culture with MIT9312, but not WH8102 or CC9311, at 400 ppm (Fig. 2).In contrast to EZ55, differentially transcribed genes related to stress responses were rare in cyanobacteria at 800 ppm. While both MIT9312 and WH8102 had significant growth impairments at 800 ppm (Fig. S1), there was little evidence of a stress-specific gene transcription response in either strain. DNA mismatch repair genes were enriched as a group at 800 ppm in Prochlorococcus, although the only individual stress-related protein that was differentially transcribed was a HLI protein that was strongly downregulated at 800 ppm. No stress-related genes or gene sets were enriched in WH8102, and the small number of differentially transcribed stress genes in CC9311 (e.g., heat-shock and HLI proteins) were all downregulated at 800 ppm. This could indicate a dependence of both MIT9312 and WH8102 on their co-cultured EZ55 partner for protection, as neither of these cyanobacterial genomes contains catalase or several other stress-response genes common in heterotrophic bacteria. It could also indicate that they have different stress response mechanisms than those that have been characterized in heterotrophic bacteria; for instance, several hypothetical proteins of unknown function were differentially regulated in each cyanobacterium between the pCO2 conditions. Finally, it is possible that the stresses experienced by MIT9312 and WH8102 occurred in the initial days after transfer into fresh media (i.e., the significantly extended lag period observed for both), and were alleviated by the late log phase when the cultures were sampled for RNA sequencing.Summary overview of metabolic responsesWe have shown that the response to elevated pCO2 in our algal:bacterial co-cultures was driven more by interspecies interactions than by CO2-specific responses themselves. While it is important to note that we do not have direct culture-based evidence for some of these claims, we feel that gene transcription evidence is strong for several conclusions regarding the interactions in our cultures (Fig. 5).First, increased pCO2 appears to have fundamentally altered the amount and/or types of carbon compounds secreted by all three cyanobacterial strains examined, placing EZ55 into a stationary-phase metabolic state nearly indistinguishable to being in culture media with no added carbon source at all. We suggest that this is driven directly by the higher CO2:O2 ratio, which lowered the rate of photorespiration and subsequent release of 2PG and/or glycolate and indirectly may have reduced the amount of incompletely oxidized carbon released by cyanobacteria by changing the intracellular redox state [59]. Possibly because of the changing supply of carbon, EZ55 also appeared to transition away from a state of nutrient competition with its cyanobacterial partners, exemplified by decreased transcription of nutrient transporters at elevated pCO2 (Fig. S6).Second, co-culture at 400 ppm clearly reduced stress on EZ55 relative to either axenic growth or co-culture growth at 800 ppm, possibly due to the provision of a more reliable source of C as described above by the cyanobacterial partner under these conditions. In contrast, both MIT9312 and WH8102 clearly experienced elevated stress, potentially related to the changes in EZ55’s metabolism under these conditions. One of the major conclusions from our previous work [7] was the finding that EZ55 reduced catalase transcription at 800 ppm pCO2, eliminating the “helper” effect that Prochlorococcus depends on to grow in culture [13, 14]. In this work we see that the catalase response in co-culture with MIT9312 was opposite that in co-culture with the two Synechococcus strains. One possible explanation for this lies in the fact that MIT9312, unlike the other three strains in this study, did not possess a complete 2PG catabolism pathway and therefore likely excreted this product where it was subsequently catabolized by EZ55. We confirmed by genomic analysis (Figs. S10–S13) and culture experiments (Fig. 4) that EZ55 was able to grow on glycolate as a sole carbon source, and that its intracellular H2O2 concentration was elevated compared to growth on glucose. We suggest that more 2PG was secreted by MIT9312 at 400 ppm pCO2 due to the lower CO2:O2 ratio, and that growth on this carbon source increased EZ55’s internal oxidative stress load, resulting in higher transcription of H2O2 defenses such as catalase (Fig. 2). If true, this provides one possible explanation of why the “helper” relationship broke down at elevated pCO2 – by leaking 2PG as a readily available growth substrate for EZ55 at 400 ppm, MIT9312 forced EZ55 to maintain a high degree of intracellular ROS defense, leading to the well-characterized ability of EZ55 to cross-protect Prochlorococcus strains from the relatively lower H2O2 concentrations in the bulk environment, and allowing MIT9312 to eliminate two energetically costly enzymatic pathways. When higher pCO2 reduced the rate of photorespiration, EZ55’s need to produce excess catalase decreased, resulting in lower levels of protection, and concomitant growth impairments, for MIT9312.This is an example of how leaky Black Queen functions allow organisms like Prochlorococcus to streamline their metabolism while simultaneously creating stable interdependencies within their communities. However, it also shows how Black Queen-stabilized exchanges can break down. If our hypothesized relationship between pCO2 and catalase production is correct, then this system depends on the passive release of a metabolic by-product that evolved under a set of atmospheric pCO2 conditions that have been largely stable for thousands of years – but this leaves the system particularly vulnerable to the rapid changes in pCO2 currently taking place and may leave Prochlorococcus with no protection at all in the future ocean. If Prochlorococcus is outcompeted by less-streamlined competitors, this could reduce the overall efficiency of primary production in the open ocean gyres with possible positive feedbacks on CO2 accumulation in the atmosphere. Subsequent experiments should examine whether Prochlorococcus can overcome this imbalance through adaptive evolution quickly enough to avoid serious disruptions of its current niche.In conclusion, these results provide further support for the observation that axenic cultures do not provide a good window into the behavior of natural communities. The metabolism of Alteromonas sp. EZ55, a ubiquitous consumer in the ocean, was strongly dependent on its community context, and relatively subtle shifts in the chemical environment induced by elevated pCO2 were sufficient to significantly remodel its physiology. Moreover, the transcriptional response of EZ55 to changing pCO2 was much greater than that of any of the photoautotrophs examined, suggesting that more work is needed to understand the often-ignored heterotrophic bacteria associated with marine primary producers and how they will respond to global ocean change. Thus, further research is indicated on some of our core findings and hypotheses (e.g., the role of 2PG, and the nature of the carbon exchanged between the cyanobacteria and Alteromonas) via metabolomics or direct substrate measurements. These results further highlight the importance of laboratory experiments using co-cultures as an experimentally tractable intermediate between oversimplified axenic cultures and overly complicated natural communities. They also highlight the dominant role that primary producers play in determining the metabolism and interactions of the organisms that depend on them for sustenance. More

  • in

    Optimization of adult mosquito trap settings to monitor populations of Aedes and Culex mosquitoes, vectors of arboviruses in La Reunion

    Randolph, S. E. & Rogers, D. J. The arrival, establishment and spread of exotic diseases: Patterns and predictions. Nat. Rev. Microbiol. 8, 361–371 (2010).Article 
    PubMed 

    Google Scholar 
    Boussès, P., Dehecq, J. S., Brengues, C. & Fontenille, D. Inventaire actualisé des moustiques (Diptera : Culicidae) de l’île de La Réunion, océan Indien. Bulletin de la Société de pathologie exotique 106, 113–125 (2013).Article 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a Chikungunya epidemic event. Vector-Borne Zoonotic Dis. 8, 25–34 (2008).Article 
    PubMed 

    Google Scholar 
    Gomard, Y., Lebon, C., Mavingui, P. & Atyame, C. M. Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasites Vectors https://doi.org/10.1186/s13071-020-04267-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazeille, M., Dehecq, J.-S. & Failloux, A.-B. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Réunion Island for Zika virus: Ae. Albopictus of la réunion island. Med. Vet. Entomol. 32, 251–254 (2018).Article 
    PubMed 

    Google Scholar 
    Youssouf, H. et al. Rift valley fever outbreak, Mayotte, France, 2018–2019. Emerg. Infect. Dis. 26, 769–772 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sang, R. et al. Rift valley fever virus epidemic in Kenya, 2006/2007: The entomologic investigations. Am. J. Trop. Med. Hyg. 83, 28–37 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, E. et al. West Nile virus infection in horses, Indian ocean. Comp. Immunol. Microbiol. Infect. Dis. 53, 45–49 (2017).Article 
    PubMed 

    Google Scholar 
    Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336 (2020).Article 
    PubMed 

    Google Scholar 
    Lees, R. S., Carvalho, D. O. & Bouyer, J. Potential Impact of Integrating the Sterile Insect Technique into the Fight against Disease-Transmitting Mosquitoes 1081–1118 (CRC Press, 2021). https://doi.org/10.1201/9781003035572-33.Book 

    Google Scholar 
    Gouagna, L. C. et al. Strategic approach, advances, and challenges in the development and application of the SIT for area-wide control of Aedes albopictus mosquitoes in Reunion Island. Insects 11, 770 (2020).Article 
    PubMed Central 

    Google Scholar 
    Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273 (2014).Article 
    PubMed 

    Google Scholar 
    Soghigian, J. et al. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).Article 
    PubMed 

    Google Scholar 
    Owino, E. A. et al. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasites Vectors 7, 451 (2014).
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kröckel, U., Andreas, R., Eiras, Á. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238 (2006).Article 
    PubMed 

    Google Scholar 
    Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002 (2020).Article 

    Google Scholar 
    Farajollahi, A. et al. Field efficacy of BG-sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile Virus Surveillance. J. Med. Entomol. 46, 919–925 (2009).Article 
    PubMed 

    Google Scholar 
    Roiz, D. et al. Trapping the Tiger: Efficacy of the novel BG-sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera: Culicidae) in Southern France. J. Med. Entomol. 53, 460–465 (2016).Article 
    PubMed 

    Google Scholar 
    Wilke, A. B. B. et al. Assessment of the effectiveness of BG-sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in miami-dade County Florida. PLoS ONE 14, e0212688 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staunton, K. M. et al. Effect of BG-lures on the male aedes (Diptera: Culicidae) sound trap capture rates. J. Med. Entomol. 58, 2425–2431 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visser, T. M. et al. Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo Suriname. Parasites Vectors 13, 121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Owino, E. A. et al. An improved odor bait for monitoring populations of Aedes aegypti-vectors of dengue and chikungunya viruses in Kenya. Parasites Vectors 8, 253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le Goff, G. et al. Comparison of efficiency of BG-sentinel traps baited with mice, mouse-litter, and CO2 lures for field sampling of male and female aedes albopictus mosquitoes. Insects 8, 95 (2017).Article 
    PubMed Central 

    Google Scholar 
    Nielsen, G. D., Petersen, S. H., Vinggaard, A. M., Hansen, L. F. & Wolkoff, P. Ventilation, CO2 production, and CO2 exposure effects in conscious, restrained CF-1 mice. Pharmacol. Toxicol. 72, 163–168 (1993).
    Article 
    PubMed 

    Google Scholar 
    Gouagna, L. C., Dehecq, J.-S., Fontenille, D., Dumont, Y. & Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark–release–recapture experiments in an urban area on Reunion Island. Acta Trop. 143, 89–96 (2015).Article 
    PubMed 

    Google Scholar 
    Dekker, T., Geier, M. & Cardé, R. T. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208, 2963–2972 (2005).Article 
    PubMed 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    PubMed 

    Google Scholar 
    Bohbot, J. & Vogt, R. G. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 35, 961–979 (2005).Article 
    PubMed 

    Google Scholar 
    Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847 (1971).PubMed 
    PubMed Central 

    Google Scholar 
    Cator, L. J., Arthur, B. J., Ponlawat, A. & Harrington, L. C. Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 48, 941–946 (2011).Article 
    PubMed 

    Google Scholar 
    Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and survival of male and female Aedes albopictus(Diptera: Culicidae) on Réunion Island. J. Med. Entomol. 46, 1117–1124 (2009).Article 
    PubMed 

    Google Scholar 
    Pombi, M. et al. Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites Vectors 7, 580 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cilek, J. E., Hallmon, C. F. & Johnson, R. Semi-field comparison of the Bg Lure, nonanal, and 1-Octen-3-OL to attract adult mosquitoes in northwestern Florida. J. Am. Mosq. Control Assoc. 27, 393–397 (2011).Article 
    PubMed 

    Google Scholar 
    Bagny Beilhe, L., Delatte, H., Juliano, S. A., Fontenille, D. & Quilici, S. Ecological interactions in Aedes species on Reunion Island. Med. Vet. Entomol. 27, 387–397 (2013).Article 
    PubMed 

    Google Scholar 
    Golstein, C., Boireau, P. & Pagès, J.-C. Benefits and limitations of emerging techniques for mosquito vector control. Comptes Rendus Biol. 342, 270–272 (2019).Article 

    Google Scholar 
    Maïga, H., Gilles, J. R. L., Lees, R. S., Yamada, H. & Bouyer, J. Demonstration of resistance to satyrization behavior in Aedes aegypti from La Réunion island. Parasite 27, 22 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Soft. https://doi.org/10.18637/jss.v027.i08 (2008).Article 

    Google Scholar 
    Fawaz, E. Y., Allan, S. A., Bernier, U. R., Obenauer, P. J. & Diclaro, J. W. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 39, 347–354 (2014).Article 
    PubMed 

    Google Scholar 
    Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).Article 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 399 (CRC Press/Chapman & Hall, 2006). https://doi.org/10.1201/9781315273075.Book 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Barton, K. MuMIn: Multi-Model Inference. (R-Forge, 2022).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 496 (Springer-Verlag, 2002).MATH 

    Google Scholar 
    Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman; Hall/CRC, 2020). https://doi.org/10.1201/9781003097471.Book 

    Google Scholar  More