More stories

  • in

    Optimization of adult mosquito trap settings to monitor populations of Aedes and Culex mosquitoes, vectors of arboviruses in La Reunion

    Randolph, S. E. & Rogers, D. J. The arrival, establishment and spread of exotic diseases: Patterns and predictions. Nat. Rev. Microbiol. 8, 361–371 (2010).Article 
    PubMed 

    Google Scholar 
    Boussès, P., Dehecq, J. S., Brengues, C. & Fontenille, D. Inventaire actualisé des moustiques (Diptera : Culicidae) de l’île de La Réunion, océan Indien. Bulletin de la Société de pathologie exotique 106, 113–125 (2013).Article 
    PubMed 

    Google Scholar 
    Delatte, H. et al. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a Chikungunya epidemic event. Vector-Borne Zoonotic Dis. 8, 25–34 (2008).Article 
    PubMed 

    Google Scholar 
    Gomard, Y., Lebon, C., Mavingui, P. & Atyame, C. M. Contrasted transmission efficiency of Zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Reunion Island. Parasites Vectors https://doi.org/10.1186/s13071-020-04267-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazeille, M., Dehecq, J.-S. & Failloux, A.-B. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Réunion Island for Zika virus: Ae. Albopictus of la réunion island. Med. Vet. Entomol. 32, 251–254 (2018).Article 
    PubMed 

    Google Scholar 
    Youssouf, H. et al. Rift valley fever outbreak, Mayotte, France, 2018–2019. Emerg. Infect. Dis. 26, 769–772 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sang, R. et al. Rift valley fever virus epidemic in Kenya, 2006/2007: The entomologic investigations. Am. J. Trop. Med. Hyg. 83, 28–37 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, E. et al. West Nile virus infection in horses, Indian ocean. Comp. Immunol. Microbiol. Infect. Dis. 53, 45–49 (2017).Article 
    PubMed 

    Google Scholar 
    Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336 (2020).Article 
    PubMed 

    Google Scholar 
    Lees, R. S., Carvalho, D. O. & Bouyer, J. Potential Impact of Integrating the Sterile Insect Technique into the Fight against Disease-Transmitting Mosquitoes 1081–1118 (CRC Press, 2021). https://doi.org/10.1201/9781003035572-33.Book 

    Google Scholar 
    Gouagna, L. C. et al. Strategic approach, advances, and challenges in the development and application of the SIT for area-wide control of Aedes albopictus mosquitoes in Reunion Island. Insects 11, 770 (2020).Article 
    PubMed Central 

    Google Scholar 
    Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273 (2014).Article 
    PubMed 

    Google Scholar 
    Soghigian, J. et al. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 29, 3593–3606 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).Article 
    PubMed 

    Google Scholar 
    Owino, E. A. et al. Field evaluation of natural human odours and the biogent-synthetic lure in trapping Aedes aegypti, vector of dengue and chikungunya viruses in Kenya. Parasites Vectors 7, 451 (2014).
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kröckel, U., Andreas, R., Eiras, Á. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238 (2006).Article 
    PubMed 

    Google Scholar 
    Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002 (2020).Article 

    Google Scholar 
    Farajollahi, A. et al. Field efficacy of BG-sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile Virus Surveillance. J. Med. Entomol. 46, 919–925 (2009).Article 
    PubMed 

    Google Scholar 
    Roiz, D. et al. Trapping the Tiger: Efficacy of the novel BG-sentinel 2 with several attractants and carbon dioxide for collecting Aedes albopictus (Diptera: Culicidae) in Southern France. J. Med. Entomol. 53, 460–465 (2016).Article 
    PubMed 

    Google Scholar 
    Wilke, A. B. B. et al. Assessment of the effectiveness of BG-sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in miami-dade County Florida. PLoS ONE 14, e0212688 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Staunton, K. M. et al. Effect of BG-lures on the male aedes (Diptera: Culicidae) sound trap capture rates. J. Med. Entomol. 58, 2425–2431 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visser, T. M. et al. Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo Suriname. Parasites Vectors 13, 121 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Owino, E. A. et al. An improved odor bait for monitoring populations of Aedes aegypti-vectors of dengue and chikungunya viruses in Kenya. Parasites Vectors 8, 253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le Goff, G. et al. Comparison of efficiency of BG-sentinel traps baited with mice, mouse-litter, and CO2 lures for field sampling of male and female aedes albopictus mosquitoes. Insects 8, 95 (2017).Article 
    PubMed Central 

    Google Scholar 
    Nielsen, G. D., Petersen, S. H., Vinggaard, A. M., Hansen, L. F. & Wolkoff, P. Ventilation, CO2 production, and CO2 exposure effects in conscious, restrained CF-1 mice. Pharmacol. Toxicol. 72, 163–168 (1993).
    Article 
    PubMed 

    Google Scholar 
    Gouagna, L. C., Dehecq, J.-S., Fontenille, D., Dumont, Y. & Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark–release–recapture experiments in an urban area on Reunion Island. Acta Trop. 143, 89–96 (2015).Article 
    PubMed 

    Google Scholar 
    Dekker, T., Geier, M. & Cardé, R. T. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208, 2963–2972 (2005).Article 
    PubMed 

    Google Scholar 
    Grant, A. J. & O’Connell, R. J. Age-related changes in female mosquito carbon dioxide detection. J. Med. Entomol. 44, 617–623 (2007).Article 
    PubMed 

    Google Scholar 
    Bohbot, J. & Vogt, R. G. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 35, 961–979 (2005).Article 
    PubMed 

    Google Scholar 
    Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847 (1971).PubMed 
    PubMed Central 

    Google Scholar 
    Cator, L. J., Arthur, B. J., Ponlawat, A. & Harrington, L. C. Behavioral observations and sound recordings of free-flight mating swarms of Ae. aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 48, 941–946 (2011).Article 
    PubMed 

    Google Scholar 
    Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and survival of male and female Aedes albopictus(Diptera: Culicidae) on Réunion Island. J. Med. Entomol. 46, 1117–1124 (2009).Article 
    PubMed 

    Google Scholar 
    Pombi, M. et al. Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasites Vectors 7, 580 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cilek, J. E., Hallmon, C. F. & Johnson, R. Semi-field comparison of the Bg Lure, nonanal, and 1-Octen-3-OL to attract adult mosquitoes in northwestern Florida. J. Am. Mosq. Control Assoc. 27, 393–397 (2011).Article 
    PubMed 

    Google Scholar 
    Bagny Beilhe, L., Delatte, H., Juliano, S. A., Fontenille, D. & Quilici, S. Ecological interactions in Aedes species on Reunion Island. Med. Vet. Entomol. 27, 387–397 (2013).Article 
    PubMed 

    Google Scholar 
    Golstein, C., Boireau, P. & Pagès, J.-C. Benefits and limitations of emerging techniques for mosquito vector control. Comptes Rendus Biol. 342, 270–272 (2019).Article 

    Google Scholar 
    Maïga, H., Gilles, J. R. L., Lees, R. S., Yamada, H. & Bouyer, J. Demonstration of resistance to satyrization behavior in Aedes aegypti from La Réunion island. Parasite 27, 22 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Soft. https://doi.org/10.18637/jss.v027.i08 (2008).Article 

    Google Scholar 
    Fawaz, E. Y., Allan, S. A., Bernier, U. R., Obenauer, P. J. & Diclaro, J. W. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 39, 347–354 (2014).Article 
    PubMed 

    Google Scholar 
    Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).Article 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 399 (CRC Press/Chapman & Hall, 2006). https://doi.org/10.1201/9781315273075.Book 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).Barton, K. MuMIn: Multi-Model Inference. (R-Forge, 2022).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 496 (Springer-Verlag, 2002).MATH 

    Google Scholar 
    Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman; Hall/CRC, 2020). https://doi.org/10.1201/9781003097471.Book 

    Google Scholar  More

  • in

    Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion

    Sket, B. Can we agree on an ecological classification of subterranean animals?. J. Nat. Hist. 42, 1549–1563. https://doi.org/10.1080/00222930801995762 (2008).Article 

    Google Scholar 
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650. https://doi.org/10.1093/biosci/biz064 (2019).Article 

    Google Scholar 
    Boulton, A. J., Fenwick, G. D., Hancock, P. J. & Harvey, M. S. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr. Syst. 22, 103–116. https://doi.org/10.1071/IS07024 (2008).Article 

    Google Scholar 
    Danielopol, D. L. & Griebler, C. Changing paradigms in groundwater ecology—From the ‘living fossils’ tradition to the ‘new groundwater ecology’. Int. Rev. Hydrobiol. 93, 565–577. https://doi.org/10.1002/iroh.200711045 (2008).Article 

    Google Scholar 
    Griebler, C., Malard, F. & Lefébure, T. Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Curr. Opin. Biotechnol. 27, 159–167. https://doi.org/10.1016/j.copbio.2014.01.018 (2014).Article 
    PubMed 

    Google Scholar 
    Fišer, C. Niphargus—A model system for evolution and ecology. In Encyclopedia of Caves (eds Culver, D. C. et al.) 746–755 (Academic Press, 2019).Chapter 

    Google Scholar 
    Riddle, M. R. et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555, 647–651. https://doi.org/10.1038/nature26136 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibert, J. et al. Assessing and conserving groundwater biodiversity: Synthesis and perspectives. Freshw. Biol. 54, 930–941. https://doi.org/10.1111/j.1365-2427.2009.02201.x (2009).Article 

    Google Scholar 
    Trontelj, P. et al. A molecular test for cryptic diversity in ground water: How large are the ranges of macro stygobionts?. Freshw. Biol. 54, 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x (2009).Article 

    Google Scholar 
    Cooper, J. E. Ecological and Behavioral Studies in Shelta Cave, Alabama, with Emphasis on Decapod Crustaceans (University of Kentucky, 1975).
    Google Scholar 
    Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7, 105–107. https://doi.org/10.1098/rsbl.2010.0539 (2011).Article 
    PubMed 

    Google Scholar 
    Poulson, T. L. Cave adaptation in amblyopsid fishes. Am. Midl. Nat. 70, 257–290. https://doi.org/10.2307/2423056 (1963).Article 

    Google Scholar 
    Venarsky, M. P., Huryn, A. D. & Benstead, J. P. Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: A lesson on the limitations of iterative size-at-age models. Freshw. Biol. 57, 1471–1481. https://doi.org/10.1111/j.1365-2427.2012.02812.x (2012).Article 

    Google Scholar 
    Culver, D. C., Kane, T. C. & Fong, D. W. Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus (Harvard University Press, 1995).Book 

    Google Scholar 
    Niemiller, M. L. & Poulson, T. L. Subterranean fishes of North America: Amblyopsidae. In Biology of Subterranean Fishes (eds Trajano, E. et al.) 169–280 (CRC Press, 2010).Chapter 

    Google Scholar 
    Fišer, C., Zagmajster, M. & Zakšek, V. Coevolution of life history traits and morphology in female subterranean amphipods. Oikos 122, 770–778. https://doi.org/10.1111/j.1600-0706.2012.20644.x (2013).Article 

    Google Scholar 
    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. Biol. Sci. 267, 1947–1952. https://doi.org/10.1098/rspb.2000.1234 (2000).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221. https://doi.org/10.1038/nclimate2113 (2014).Article 
    ADS 

    Google Scholar 
    Niemiller, M. L., Bichuette, E. & Taylor, S. J. Conservation of cave fauna in Europe and the Americas. In Ecological Studies: Cave Ecology (eds Moldovan, O. T. et al.) 451–478 (Springer, 2018).Chapter 

    Google Scholar 
    Niemiller, M. L. & Taylor, S. J. Protecting cave life. In Encyclopedia of Caves (eds Culver, D. C. et al.) 822–829 (Academic Press, 2019).Chapter 

    Google Scholar 
    Niemiller, M. L., Taylor, S. J., Slay, M. E. & Hobbs, H. H. III. Biodiversity in the United States and Canada. In Encyclopedia of Caves (eds Culver, D. C. et al.) 163–176 (Academic Press, 2019).Chapter 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–529. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Academic Press, 2018).MATH 

    Google Scholar 
    Roberto, P. & Pietro, B. Species rediscovery or lucky endemic? Looking for the supposed missing species Leistus punctatissimus through a biogeographer’s eye (Coleoptera, Carabidae). ZooKeys 740, 97–108. https://doi.org/10.3897/zookeys.740.23495 (2018).Article 

    Google Scholar 
    Chu, C., Mandrak, N. E. & Minns, C. K. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11, 299–310. https://doi.org/10.1111/j.1366-9516.2005.00153.x (2005).Article 

    Google Scholar 
    Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110. https://doi.org/10.1111/j.1523-1739.2010.01462.x (2010).Article 
    PubMed 

    Google Scholar 
    Filipe, A. F. et al. Selection of priority areas for fish conservation in Guadiana River Basin, Iberian Peninsula. Conserv. Biol. 18, 189–200. https://doi.org/10.1111/j.1523-1739.2004.00620.x (2004).Article 

    Google Scholar 
    Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872. https://doi.org/10.1111/brv.12642 (2020).Article 
    PubMed 

    Google Scholar 
    Domínguez-Domínguez, O., Martínez-Meyer, E., Zombrano, L. & de León, G. P. Using ecological-niche modeling as a conservation tool for freshwater species: Live-bearing fishes in central Mexico. Conserv. Biol. 20, 1730–1739. https://doi.org/10.1111/j.1523-1739.2006.00588.x (2006).Article 
    PubMed 

    Google Scholar 
    Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. Ecography 41, 1194–1208. https://doi.org/10.1111/ecog.03464 (2018).Article 

    Google Scholar 
    Castellarini, F., Malard, F., Dole-Olivier, M. & Gibert, J. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Divers. Distrib. 13, 213–224. https://doi.org/10.1111/j.1472-4642.2006.00317.x (2007).Article 

    Google Scholar 
    Foulquier, A., Malard, F., Lefébure, T., Douady, C. J. & Gibert, J. The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). J. Biogeogr. 35, 552–564. https://doi.org/10.1111/j.1365-2699.2007.01795.x (2008).Article 

    Google Scholar 
    Johns, T. et al. Regional-scale drivers of groundwater faunal distributions. Freshw. Sci. 34, 316–328. https://doi.org/10.1086/678460 (2015).Article 

    Google Scholar 
    Camp, C. D., Wooten, J. A., Jensen, J. B. & Bartek, D. F. Role of temperature in determining relative abundance in cave twilight zones by two species of lungless salamander (family Plethodontidae). Can. J. Zool. 92, 119–127. https://doi.org/10.1139/cjz-2013-0178 (2014).Article 

    Google Scholar 
    Korbel, K. L., Hancock, P. J., Serov, P., Lim, R. P. & Hose, G. C. Groundwater ecosystems vary with land use across a mixed agricultural landscape. J. Environ. Qual. 42, 380–390. https://doi.org/10.2134/jeq2012.0018 (2013).Article 
    PubMed 

    Google Scholar 
    Español, C. et al. Does land use impact on groundwater invertebrate diversity and functionality in floodplains?. Ecol. Eng. 103, 394–403. https://doi.org/10.1016/j.ecoleng.2016.11.061 (2017).Article 

    Google Scholar 
    Christman, M. C. et al. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11, e0160408. https://doi.org/10.1371/journal.pone.0160408 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145. https://doi.org/10.1111/geb.12200 (2014).Article 

    Google Scholar 
    Poff, N. L. Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 16, 391–409. https://doi.org/10.2307/1468026 (1997).Article 

    Google Scholar 
    Stevenson, R. J. Scale-dependent determinants and consequences of benthic algal heterogeneity. J. North Am. Benthol. Soc. 16, 248–262. https://doi.org/10.2307/1468255 (1997).Article 
    ADS 

    Google Scholar 
    U.S. Geological Survey. NLCD 2011 land cover. Multi-Resolution Land Characteristics. https://www.mrlc.gov/data/nlcd-2011-land-cover-conus (2011).Adamski, J. C. Geochemistry of the Springfield Plateau Aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA. Hydrol. Process. 14, 849–866. https://doi.org/10.1002/(SICI)1099-1085(20000415)14:5%3c849::AID-HYP973%3e3.0.CO;2-7 (2000).Article 
    ADS 

    Google Scholar 
    Woods, A. J. et al. Ecoregions of Oklahoma (Color Poster with Map, Descriptive Text, Summary Tables, and Photographs) (U.S. Geological Survey, 2005).
    Google Scholar 
    Unklesbay, A. G. & Vineyard, J. D. Missouri Geology: Three Billion Years of Volcanoes, Seas, Sediments, and Erosion (University of Missouri Press, 1992).
    Google Scholar 
    Eigenmann, C. H. A new blind fish. In Proceedings of the Indiana Academy of Science 1897 (ed Waldo, C. A.) 231 (1898).Graening, G. O., Fenolio, D. B., Niemiller, M. L., Brown, A. V. & Beard, J. B. The 30-year recovery effort for the Ozark cavefish (Amblyopsis rosae): Analysis of current distribution, population trends, and conservation status of this threatened species. Environ. Biol. Fish. 87, 55–88. https://doi.org/10.1007/s10641-009-9568-2 (2010).Article 

    Google Scholar 
    Niemiller, M. L., Near, T. J. & Fitzpatrick, B. M. Delimiting species using multilocus data: Diagnosing cryptic diversity in the southern cavefish, Typhlichthys subterraneus (Teleostei: Amblyopsidae). Evolution 66, 846–866. https://doi.org/10.1111/j.1558-5646.2011.01480.x (2012).Article 
    PubMed 

    Google Scholar 
    Hobbs, H. H. Jr. & Brown, A. V. A new troglobitic crayfish from northwestern Arkansas (Decapoda: Cambaridae). Proc. Biol. Soc. Wash. 100, 1040–1048 (1987).
    Google Scholar 
    Graening, G. O., Slay, M. E., Brown, A. V. & Koppelman, J. B. Status and distribution of the endangered Benton cave crayfish, Cambarus aculabrum (Decapoda: Cambaridae). Southwest. Nat. 51, 376–381. https://doi.org/10.1894/0038-4909(2006)51[376:SADOTE]2.0.CO;2 (2006).Article 

    Google Scholar 
    Faxon, W. Cave animals from southwestern Missouri. Bull. Mus. Comp. Zool. 17, 225–240 (1889).
    Google Scholar 
    Graening, G. O., Hobbs, H. H. III., Slay, M. E., Elliott, W. R. & Brown, A. V. Status update for bristly cave crayfish, Cambarus setosus (Decapoda: Cambaridae), and range extension into Arkansas. Southwest. Nat. 51, 382–392. https://doi.org/10.1894/0038-4909(2006)51[382:SUFBCC]2.0.CO;2 (2006).Article 

    Google Scholar 
    Hobbs, H. H. III. Cambarus (Jugicambarus) subterraneus, a new cave crayfish (Decapoda: Cambaridae) from northeastern Oklahoma, with a key to the troglobitic members of the subgenus Jugicambarus. Proc. Biol. Soc. Wash. 106, 719–727 (1993).
    Google Scholar 
    Graening, G. O. & Fenolio, D. B. Status update of the Delaware County cave crayfish, Cambarus subterraneus (Decapoda: Cambaridae). Proc. Okla. Acad. Sci. 85, 85–89 (2005).
    Google Scholar 
    Hobbs, H. H. Jr. & Cooper, M. R. A new troglobitic crayfish from Oklahoma (Decapoda: Astacidae). Proc. Biol. Soc. Wash. 85, 49–56 (1972).
    Google Scholar 
    Graening, G. O. et al. Range extension and status update for the Oklahoma cave crayfish, Cambarus tartarus (Decapoda: Cambaridae). Southwest. Nat. 51, 94–99 (2006).Article 

    Google Scholar 
    Hobbs, H. H. III. A new cave crayfish of the genus Orconectes, subgenus Orconectes, from southcentral Missouri, USA, with a key to the stygobitic species of the genus (Decapoda, Cambaridae). Crustaceana 74, 635–646. https://doi.org/10.1163/156854001750377911 (2001).Article 

    Google Scholar 
    Miller, B. V. The Hydrology of the Carroll Cave-Toronto Springs System: Identifying and Examining Source Mixing Through Dye Tracing, Geochemical Monitoring, Seepage Runs, and Statistical Methods (Western Kentucky University, 2010).
    Google Scholar 
    Mouser, J. B., Brewer, S. K., Niemiller, M. L., Mollenhauer, R. & Van Den Bussche, R. Comparing visual and environmental DNA surveys for detection of stygobionts. Subterr. Biol. 39, 79–105. https://doi.org/10.3897/subtbiol.39.64279 (2021).Article 

    Google Scholar 
    Longmire, J. L., Maltbie, M. & Baker, R. J. Use of “Lysis Buffer” in DNA Isolation and Its Implication for Museum Collections (Museum of Texas Tech University, 1997).Book 

    Google Scholar 
    Mouser, J. B., Mollenhauer, R. & Brewer, S. K. Relationships between landscape constraints and a crayfish assemblage with consideration of competitor presence. Divers. Distrib. 25, 61–73. https://doi.org/10.1111/ddi.12840 (2019).Article 

    Google Scholar 
    U.S. Geological Survey. 1 Arc-second digital elevation models (DEMs)—USGS national map 3DEP downloadable data collection. https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b (U.S. Geological Survey, 2017).Oak Ridge National Laboratory Distributed Active Archive Center. MODIS and VIIRS land products global subsetting and visualization tool. Oak Ridge National Laboratory Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1379 (2018).Horton, J. D., San Juan, C. A. & Stoeser, D. B. The state geologic map compilation (SGMC) geodatabase of the conterminous United States. U.S. Geol. Surv. https://doi.org/10.3133/ds1052 (2017).Article 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 (2002).Article 

    Google Scholar 
    Tyre, A. J. et al. Improving precision and reducing bias in biological surveys: Estimating false negative error rates. Ecol. Appl. 13, 1790–1801. https://doi.org/10.1890/02-5078 (2003).Article 

    Google Scholar 
    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar 
    Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS (Academic Press, 2016).MATH 

    Google Scholar 
    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (eds Hornik, K. et al.) 1–10 (Austrian Science Foundation, 2003).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Kellner, J. jagsUI: A wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. https://CRAN.R-project.org/package=jagsUI (R-project, 2019).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.1080/10618600.1998.10474787 (1998).Article 
    MathSciNet 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2015).MATH 

    Google Scholar 
    Hobbs, N. T. & Hooten, M. B. Bayesian Models (Princeton University Press, 2015). https://doi.org/10.1515/9781400866557.Book 

    Google Scholar 
    Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542. https://doi.org/10.1002/ecm.1314 (2018).Article 

    Google Scholar 
    Allan, J. D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).Article 

    Google Scholar 
    Paul, M. J. & Meyer, J. L. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst. 32, 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 (2001).Article 

    Google Scholar 
    Wicks, C., Kelley, C. & Peterson, E. Estrogen in a karstic aquifer. Groundwater 42, 384–389. https://doi.org/10.1111/j.1745-6584.2004.tb02686.x (2004).Article 

    Google Scholar 
    Buřič, M., Kouba, A., Máchová, J., Mahovská, I. & Kozák, P. Toxicity of the organophosphate pesticide diazinon to crayfish of differing age. Int. J. Environ. Sci. Technol. 10, 607–610. https://doi.org/10.1007/s13762-013-0185-4 (2013).Article 

    Google Scholar 
    Sohn, L., Brodie, R. J., Couldwell, G., Demmons, E. & Sturve, J. Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology 27, 900–907. https://doi.org/10.1007/s10646-018-1950-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noltie, D. B. & Wicks, C. M. How hydrogeology has shaped the ecology of Missouri’s Ozark cavefish, Amblyopsis rosae, and southern cavefish, Typhlichthys subterraneus: Insights on the sightless from understanding the underground. Environ. Biol. Fish. 62, 171–194. https://doi.org/10.1023/A:1011815806589 (2001).Article 

    Google Scholar 
    Kuhajda, B. R. & Mayden, R. L. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and surrounding caves, Alabama. Environ. Biol. Fish. 62, 215–222. https://doi.org/10.1023/A:1011817023749 (2001).Article 

    Google Scholar 
    Hutchins, B. T. The conservation status of Texas groundwater invertebrates. Biodivers. Conserv. 27, 475–501. https://doi.org/10.1007/s10531-017-1447-0 (2018).Article 

    Google Scholar 
    Niemiller, M. L. et al. Discovery of a new population of the federally endangered Alabama cave shrimp, Palaemonias alabamae Smalley, 1961, in northern Alabama. Subterr. Biol. 32, 43–59. https://doi.org/10.3897/subtbiol.32.38280 (2019).Article 

    Google Scholar 
    Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63. https://doi.org/10.1016/j.biocon.2006.08.017 (2007).Article 

    Google Scholar 
    Liu, Y. et al. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 601–602, 580–593. https://doi.org/10.1016/j.scitotenv.2017.05.212 (2017).Article 
    ADS 
    PubMed 

    Google Scholar  More

  • in

    Publisher Correction: Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    These authors contributed equally: Yannick Garcin, Enno Schefuß, Greta C. Dargie, Simon L. LewisAix Marseille University, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, FranceYannick Garcin & Ghislain GassierInstitute of Geosciences, University of Potsdam, Potsdam, GermanyYannick GarcinMARUM—Center for Marine Environmental Sciences, University of Bremen, Bremen, GermanyEnno SchefußSchool of Geography, University of Leeds, Leeds, UKGreta C. Dargie, Bart Crezee, Dylan M. Young, Andy J. Baird, Paul J. Morris & Simon L. LewisSchool of Geography and Sustainable Development, University of St Andrews, St Andrews, UKDonna Hawthorne, Ian T. Lawson & George E. BiddulphIFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, FranceDavid SebagInstitute of Earth Surface Dynamics, Geopolis, University of Lausanne, Lausanne, SwitzerlandDavid SebagFaculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the CongoYannick E. Bocko & Y. Emmanuel Mampouya WeninaÉcole Normale Supérieure, Université Marien Ngouabi, Brazzaville, Republic of the CongoSuspense A. IfoÉcole Normale Supérieure d’Agronomie et de Foresterie, Université Marien Ngouabi, Brazzaville, Republic of the CongoMackline MbembaFaculté de Gestion des Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. Ewango & Joseph Kanyama TabuFaculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of the CongoCorneille E. N. EwangoInstitut Supérieur Pédagogique de Mbandaka, Mbandaka, Democratic Republic of the CongoOvide Emba & Pierre BolaSchool of Geography, Geology and the Environment, University of Leicester, Leicester, UKGenevieve Tyrrell, Arnoud Boom & Susan E. PageSchool of Water, Energy and Environment, Cranfield University, Bedford, UKNicholas T. GirkinBritish Geological Survey, Centre for Environmental Geochemistry, Keyworth, UKChristopher H. VaneInstitute of Earth Sciences, University of Lausanne, Lausanne, SwitzerlandThierry AdatteNEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre (SUERC), Glasgow, UKPauline GulliverSchool of Biosciences, University of Nottingham, Nottingham, UKSofie SjögerstenDepartment of Geography, University College London, London, UKSimon L. Lewis More

  • in

    Low net carbonate accretion characterizes Florida’s coral reef

    Survey sites and data collectionBenthic and fish surveys were conducted at randomly stratified sites throughout the entirety of the FRT by NOAA’s National Coral Reef Monitoring Program (NCRMP). Sites were categorized into three biogeographic regions, including Dry Tortugas (DRTO, n = 228), Florida Keys (FLKs, n = 322), and Southeast Florida (SEFL, n = 173) (Fig. 1). The Florida Keys were further classified into the following four sub-regions: Lower Keys (LK, n = 103), Middle Keys (MK, n = 46), Upper Keys (UK, n = 140), Biscayne (BISC, n = 33). Within each region/sub-region (except for SEFL), reefs were categorized according to reef types. For DRTO, this included bank, forereef, and lagoon reef sites. For the LK, MK, UK, and BISC, reef types were categorized as inshore, mid-channel, and offshore. Data were collected throughout the region in 2014, 2016, and 2018.Fish and benthic surveys were conducted in accordance with NCRMP methodologies34 (Table S2). The protocol used for the fish surveys was developed from a modified Reef Visual Census (RVC) method35 and was performed using a stratified random sampling design. Divers surveyed two 15 m diameter cylinders, spaced 15 m apart. Fish species were identified to the lowest taxonomic level for a period of five minutes. This was followed by an additional five minutes dedicated to recording species abundances and sizes (10 cm bins).Surveys were used to quantify the benthic cover at each site. The protocol for these surveys followed a standard line point-intercept sampling design. At each site, a 15 m weighted transect was draped along the reef surface. Surveyors recorded benthic composition at 15 cm intervals along the transect (i.e., 100 equidistant points). The benthic composition from these 100 points was then transformed to percent cover of ecologically important functional groups (scleractinian coral [species-specific], gorgonians, hydrocoral, CCA, macroalgae, turf algae, sponges, bare/dead substrate, sand/sediment).Carbonate budget analysisPlanar benthic surveys were adjusted to account for the three-dimensional complexity (i.e., rugosity) of each site using light detection and ranging (LiDAR) data (1 m horizontal resolution; 15 cm vertical resolution) from topobathymetric mapping surveys of the South Florida eastern coastline conducted by NOAA’s National Geodetic Survey. A 15 m x 15 m region of interest (ROI) was placed around the GPS coordinates of each site using ArcGIS Pro with 3D and Spatial Analyst extensions (ESRI). The ROI was then overlaid with existing multibeam echosounder (MBES) and LiDAR bathymetry data. Within the ROI, LiDAR was extracted using the Clip Raster function from ArcPy (ArcGIS’s python coding interface), and the Surface Volume tool was used to calculate the 3D surface area. Rugosity was calculated by dividing the 3D surface area by the 2D surface area of the ROI.The methodology for standardizing reef carbonate budgets to topographic complexity (i.e., rugosity) diverged from that of the ReefBudget approach by using site-specific rugosity rather than species-specific rugosity17. This was a necessary limitation of this analysis as transect rugosity at 1 m increments was not measured using the NCRMP benthic survey protocol. To ensure that reef topographic complexity was still accounted for, however, rugosity of the entire reef site, calculated from LiDAR bathymetry data, was used in this analysis. While rugosity of the site rather than of each benthic component, specifically for corals, can lead to an under or overestimation of carbonate production rates, we note that site and species rugosity (i.e., encrusting and massive coral morphologies) was low for the vast majority of sites and species surveyed, thereby reducing the probability of an under or overestimation.Reef carbonate budget analysis was performed following a modified version of the ReefBudget approach17. Coral carbonate production was derived from species-specific linear extension rates (cm year−1), skeletal density (g cm−3), coral morphology (branching, massive, sub-massive, encrusting/plating), and percent cover. Carbonate production by CCA and other calcareous encrusters was similarly calculated as a function of surface area, literature reported linear extension rates, and skeletal density17. Gross carbonate production at each survey site was measured as the sum total of carbonate production by all calcareous organisms found at each site and was standardized to site-specific reef rugosity.Gross carbonate erosion for each survey-site was calculated as the sum total of erosion by four bioeroding groups: parrotfish, microborers, macroborers, and urchins. The calculations roughly followed the ReefBudget methodologies17 (Table 1). Parrotfish size frequency distributions from NCRMP surveys were multiplied by size and species-specific bite rates (bites min−1), volume removed per bite (cm3), and proportion of bites leaving scars to calculate total parrotfish erosion17. The substrate density (1.72 g cm−3) used in these calculations followed that of the ReefBudget protocol17. Microbioerosion was calculated from the percent cover of dead coral substrate, which was multiplied by a literature-derived rate17 of − 0.240 kg CaCO3 m−2 year−1. Macroboring was calculated as the percent cover of clionid sponges multiplied by the average erosion rate of all Caribbean/Atlantic clionid sponges17 (-6.05 kg CaCO3 m−2 year−1). External bioerosion by urchins was calculated using Diadema urchin abundance collected from the benthic surveys. Due to the lack of test size data from the NCRMP benthic surveys, urchin abundance was multiplied by the bioerosion rate of an average test sized36 (66 mm) Caribbean/Atlantic Diadema urchin (-0.003 kg CaCO3 m-2 year−1). While using an average test sized Diadema urchin for this analysis may have led to an under or overestimation of urchin erosion, the abundance of Diadema urchins measured in the surveys was minimal, as they appeared to be functionally irrelevant across the FRT.Model validationAs the survey methodologies and data sources employed in this analysis were modified from that of the standard ReefBudget approach17, we chose to validate our model through a fine scale temporal comparison of annual ReefBudget surveys conducted by NOAA at Cheeca Rocks (UK) to three nearby NCRMP sites used in our analysis. Since the NCRMP surveys were performed in 2014, 2016, and 2018, this study focused exclusively on these three survey years from the NOAA Cheeca Rocks dataset. Temporal trends related to reef growth/erosion were visually compared to see if survey types provided comparable results (SI Figure S6).Statistical analysisAll model calculations and statistical analyses were performed using R37 with the R Studio extension38. Generalized linear models (GLMs) were run on response variables involved in habitat production (i.e., net carbonate production, gross carbonate production, and gross carbonate erosion) to evaluate spatial trends related to reef development across sub-regions and reef types. Each GLM was performed with reef type being nested within sub-region. The best fit distribution for each variable was determined using the fitdistrplus R package39. Linear regression analysis was used to evaluate the relationship between net carbonate production and both live coral cover and parrotfish biomass. All plots were created using ggplot2 R package40 and edited for style with Adobe Illustrator41. More

  • in

    Two simple movement mechanisms for spatial division of labour in social insects

    Automated tracking of four social insect speciesFifty queenright colonies were used in the tracking experiments (Table 1). Honeybee colonies (subspecies A. mellifera carnica) were housed in the campus apiary of the University of Lausanne. Colonies of L. niger were raised from single mated queens collected on campus. T. nylanderi colonies were collected from the University of Lausanne campus, and L. acervorum colonies collected from Anzeindaz, Switzerland. These four species were chosen because of their abundance and easy availability in Switzerland, and because they – or closely-related species – have previously been used as model systems for the study of spatial organisation in social insects20,21,23,27,44. The colony sizes used in our experiments (Table 1) fell within the natural range of sizes experienced by these species in nature, either as recently founded colonies (L. niger colonies are founded by a single queen and progressively grow from a few workers to mature sizes of up to 40,000 workers over the course of several years; new honeybee colonies are founded by swarms counting 2400–41,000 bees61) or as mature colonies (all colonies of T. nylanderi and L. acervorum used in our experiments were mature colonies collected whole from the field).In all species, a paper tag bearing a unique two-dimensional barcode was glued to the thorax of individuals to allow automated tracking of their movements (Fig. S1). In the ants, tagging of all individuals was performed in a single session two days before the beginning of the experiment, whilst in the bees, newly-emerged workers (one-day-old or less) were tagged every 3 days over the 21 days prior to the beginning of the experiment (Supplementary Note 1).Tagged colonies were kept in glass observation nests with a single entrance (internal nest dimensions, A. mellifera: 69 × 45 × 4 cm, L. niger: 70 × 40 × 8 mm; L. acervorum: 63 × 42 × 2 mm, T. nylanderi: 63 × 42 × 1.5 mm). The honeybee observation nests also included a 64 × 44 cm wooden frame enclosing a double-sided wax comb containing honey, pollen, and developing brood20. Bees were free to move between both sides of the comb. In all species, individuals were allowed to freely exit and enter the nest. Ants were provided with ad libitum food (Drosophila, sugar solution) and water in a foraging arena, while bees foraged on natural resources outside. Both the ant and honeybee observation nests were exposed to diurnal cycles of temperature and light (Supplementary Note 1).High resolution digital video cameras operating at two frames per second were used to identify the location and orientation of each tag across successive images22. All colonies were continuously tracked for three days, which corresponded to the inter-cohort time in the honeybee colonies. The trajectories of each worker, and the physical contacts between workers (Fig. S18 and Supplementary Note 14) were extracted using an existing software pipeline62.Building bipartite site-visit networksTo quantify the spatial preferences of individual ants and bees, the interior of the nest was discretised into a regular hexagonal lattice (Fig. 1a, b). Because the worker body lengths of our four study species span an order of magnitude (from ~ 1.5 mm for T. nylanderi to ~ 15 mm for A. mellifera), the width of the hexagonal bins were defined as 1/4 of the mean worker body-length.To characterise the spatial preferences of different individuals to different parts of the nest, we counted the number of times ({n}_{i}^{s}) that each individual i visited each hexagonal site s. A visit by individual i to site s began when i crossed the border into s, and was terminated when i crossed the border out of s, regardless of the amount of time spent inside. To prevent stationary individuals located on the border between two adjacent sites from rapidly accumulating many single-frame visits to the two sites, successive visits to a same site were only counted when at least 20s elapsed between the end of the previous visit and the start of the next.The site-visit data were used to construct a bipartite network, in which individuals (layer 1) were connected by undirected edges to the sites (layer 2) they visited (Fig. 1c, d). Because individuals typically made multiple visits to the same sites, each edge i–s was weighted according to the total number of times individual i visited site s, that is, ({n}_{i}^{s}).Partitioning site-visit networks into modulesThe extent to which the site-visit networks were partitioned into discrete ‘modules’ (i.e., set of workers with similar space-use patterns and the set of sites that they exhibit strong ties to) was assessed using the DIRTLPAwb+ algorithm for partitioning weighted bipartite networks39. This algorithm searches for the partition that maximises the number and strength of the links within modules, whilst minimizing connections between modules. The number of modules was not specified a priori by the user, but was identified by the algorithm. All site-visit networks had positive modularity (Fig. S3), indicating that they could be partitioned into a set of well-separated modules (Figs. 1e–h, S2, and S4–S5). The modules in each partition were then assigned functional labels according to the following rules. First, the module whose sites were on average closest to the nest entrance was labelled ‘forager’ module. Second, the module or modules with the greatest spatial overlap with the brood pile in the ant colonies or the broodnest(s) in the honeybee colonies were labelled ‘nurse’ module(s). After defining the forager and nurse modules, the remaining modules (if any) were labelled as follows. If there was only one module remaining after identifying the nurse and forager modules, as was typically the case in honeybee colonies, it was labelled ‘peripheral’. If there were two modules remaining, as was typically the case in ant colonies, then the module whose sites were on average closer to the nest borders (i.e., to the periphery of the nest) was labelled ‘peripheral’, and the remaining module labelled ‘intermediate’. In some cases, the DIRTLPAwb+ algorithm identified five or more modules (9.0% of all iterations across all species and colonies). In these cases, the supernumerary modules never contained more than 1 or 2 individuals, and as they could not be unequivocally assigned using our labelling scheme, they were left unclassified for these iterations.Validating network modulesAs a network constructed by a purely random process could exhibit apparent modular structure by chance, we tested whether the discovered modules represent statistically significant entities. To do so, we produced 1000 null model random networks for each observed network using an established permutation method for bipartite networks63 (Supplementary Note 2). Comparisons between the maximum modularity of the observed networks with that of the corresponding random networks showed that, in all four species, the observed modularity was significantly greater than expected by chance (Fig. S3).Constructing worker task profilesA unique labour profile for each ant and each honeybee was constructed by estimating the activity of each worker in the following four tasks:1. Entrance guarding: workers were classed as guarding when they were (i) within two body lengths of the entrance, (ii) roughly facing the entrance, i.e., with a body alignment diverging from the direct heading to the entrance by no more than π/2 radians, and (iii) ‘on station’ at the entrance, as defined by trajectory coordinates with an associated first passage time (ref. 64; time taken for the individual to pass beyond a circle centred on its current location with a radius of two body-lengths) in excess of 500s.2. Patrolling: workers were classed as patrolling65 when they were (i) active, and (ii) ‘roaming’, as defined by first passage times of More

  • in

    Manatee calf call contour and acoustic structure varies by species and body size

    Podos, J. Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409, 185–188 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bradbury, J. W. & Vehrencamp, S. Principles of Animal Communication (Sinauer Associated, 1998).
    Google Scholar 
    Podos, J. & Warren, P. S. The evolution of geographic variation in birdsong. Adv. Study Behav. 37, 403–458 (2007).
    Google Scholar 
    Charlton, B. D., Owen, M. A. & Swaisgood, R. R. Coevolution of vocal signal characteristics and hearing sensitivity in forest mammals. Nat. Commun. 10, 1–7 (2019).CAS 

    Google Scholar 
    Soltis, J. Vocal communication in African elephants (Loxodonta africana). Zoo Biol. 29, 192–209 (2010).PubMed 

    Google Scholar 
    King, S. L. & Janik, V. M. Bottlenose dolphins can use learned vocal labels to address each other. Proc. Natl. Acad. Sci. 110, 13216–13221 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ravignani, A. et al. Ontogeny of vocal rhythms in harbor seal pups: An exploratory study. Curr. Zool. 65, 107–120 (2019).PubMed 

    Google Scholar 
    Rauber, R. & Manser, M. B. Effect of group size and experience on the ontogeny of sentinel calling behaviour in meerkats. Anim. Behav. 171, 129–138 (2021).
    Google Scholar 
    Janik, V. M. & Slater, P. J. Vocal learning in mammals. Adv. Study Behav. 26, 59–100 (1997).
    Google Scholar 
    Fitch, W. T. Production of vocalizations in mammals. In Encyclopedia of Language and Linguistics 2nd edn, Vol. 1 115–121 (Elsevier, 2006).
    Google Scholar 
    Fletcher, N. H. A frequency scaling rule in mammalian vocalization. In Handbook of Behavioral Neuroscience Vol. 19 51–56 (Elsevier, 2010).
    Google Scholar 
    Fant, G. Acoustic Theory of Speech Production (Mouton, 1960).
    Google Scholar 
    Taylor, A. & Reby, D. The contribution of source–filter theory to mammal vocal communication research. J. Zool. 280, 221–236 (2010).
    Google Scholar 
    Fitch, W. T., Neubauer, J. & Herzel, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 63, 407–418 (2002).
    Google Scholar 
    Domning, D. P. & Hayek, L. A. C. Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus). Mar. Mamm. Sci. 2, 87–144 (1986).
    Google Scholar 
    Anderson, P. K. & Barclay, R. M. R. Acoustic signals of solitary Dugongs: Physical characteristics and behavioral correlates. J. Mamm. 76, 1226–1237 (1995).
    Google Scholar 
    Sousa-Lima, R., Paglia, A. P. & Da Fonseca, G. Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia). Anim. Behav. 63, 301–310 (2002).
    Google Scholar 
    Sousa-Lima, R. S., Paglia, A. P. & Fonseca, G. A. B. Gender, age, and identity in the isolation calls of Antillean manatees (Trichechus manatus manatus). Aquat. Mamm. 34, 109–122 (2008).
    Google Scholar 
    O’Shea, T. J. & Poché, L. B. Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J. Mamm. 87, 1061–1071 (2006).
    Google Scholar 
    Rosas, F. C. W. Biology, conservation and status of the Amazonian manatee Trichechus inunguis. Mamm. Rev. 24, 49–59 (1994).
    Google Scholar 
    Meirelles, A. C. O. & Carvalho, V. L. Peixe-boi marinho: biologia e conservação no Brasil. Aquasis, Bambu Editora e Artes Gráficas, São Paulo (2016).Alvarez-Alemán, A., Beck, C. A. & Powell, J. A. First report of a Florida manatee (Trichechus manatus latirostris) in Cuba. Aquat. Mamm. 36, 148 (2010).
    Google Scholar 
    Castelblanco-Martínez, D. N. et al. First documentation of long-distance travel by a Florida manatee to the Mexican Caribbean. Ethol. Ecol. Evol. 1–12 (2021).Packard, J. M. & Wetterqvist, O. F. Evaluation of manatee habitat systems on the northwestern Florida coast. Coast. Manag. 14, 279–310 (1986).
    Google Scholar 
    Luna, F. D. O. et al. Genetic connectivity of the West Indian manatee in the southern range and limited evidence of hybridization with Amazonian manatees. Front. Mar. Sci. 7, 1089 (2021).
    Google Scholar 
    Hartman, D. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Spec. Publ. Am. Soc. Mammal. 5, 153 (1979).
    Google Scholar 
    D’AffonsecaNeto, J. A. & Vergara-Parente, J. E. Sirenia (peixe-boi-da-Amazônia, Peixe-boi-marinho). In Tratado de Animais Selvagens: medicina veterinária (eds Cubas, Z. S. et al.) 701–714 (Roca, 2006).
    Google Scholar 
    Deutsch, C. J., Reid, J. P., Bonde, R. K., Easton, D. E., Kochman, H. I. & O’Shea, T. J. Seasonal movements, migratory behavior, and site fidelity of West Indian manatees along the Atlantic coast of the United States. Wildl. Monogr. 1–77 (2003).Laist, D. W. & Reynolds, J. E. III. Influence of power plants and other warm-water refuges on Florida manatees. Mar. Mamm. Sci. 21, 739–764 (2005).
    Google Scholar 
    Reynolds, J. E. Aspects of the social behaviour and herd structure of a semi-isolated colony of West Indian manatees, Trichechus manatus. Mammalia 45, 431–452 (1981).
    Google Scholar 
    Dantas, G. A. Ontogenia do padrão vocal individual do peixe-boi da Amazônia Trichechus inunguis (Sirenia, trichechidae). Dissertação (Instituto Nacional de Pesquisas da Amazônia, 2009).
    Google Scholar 
    Brady, B., Moore, J. & Love, K. Behavior related vocalizations of the Florida manatee (Trichechus manatus latirostris). Mar. Mamm. Sci. 1–15 (2021).Nowacek, D. P., Casper, B. M., Wells, R. S., Nowacek, S. M. & Mann, D. A. Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations. J. Acoust. Soc. Am. 114, 66–69 (2003).ADS 
    PubMed 

    Google Scholar 
    Rycyk, A. M. et al. First characterization of vocalizations and passive acoustic monitoring of the vulnerable African manatee (Trichechus senegalensis). J. Acoust. Soc. Am. 150, 3028–3037 (2021).ADS 
    PubMed 

    Google Scholar 
    Landrau-Giovannetti, N., Mignucci-Giannoni, A. A. & Reidenberg, J. S. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees. Anat. Rec. 297, 1896–1907 (2014).
    Google Scholar 
    Morton, E. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am. Nat. 111, 855–869 (1977).
    Google Scholar 
    Borges, J. C. et al. Growth pattern differences of captive born Antillean manatee (Trichechus manatus) calves and those rescued in the Brazilian northeastern coast. J. Zoo Wildl. Med. 43, 494–500 (2012).PubMed 

    Google Scholar 
    Lima, D. S., Vergara-Parente, J. E., Young, R. J. & Paszkiewicz, E. Training of Antillean manatee Trichechus manatus manatus Linnaeus, 1758 as a management technique for individual welfare. Lat. Am. J. Mar. Mamm. 4, 61–68 (2005).
    Google Scholar 
    K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology. Raven Pro: Interactive Sound Analysis Software (Version 1.5) [Computer software]. https://ravensoundsoftware.com/ (The Cornell Lab of Ornithology, 2022).Zollinger, S. A., Podos, J., Nemeth, E., Goller, F. & Brumm, H. On the relationship between, and measurement of, amplitude and frequency in birdsong. Anim. Behav. 84, e1–e9 (2012).
    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry (W. H. Freeman and Co., 1995).MATH 

    Google Scholar 
    Charrier, I. & Harcourt, R. G. Individual vocal identity in mother and pup Australian sea lions (Neophoca cinerea). J. Mamm. 87, 929–938 (2006).
    Google Scholar 
    Green, S. & Salkind, N. J. Using SPSS for Windows and Macintosh: Analyzing and Understanding Data 4th edn. (Prentice Hall, 2003).
    Google Scholar 
    Charlton, B. D. et al. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: Honesty in an exaggerated trait. J. Exp. Biol. 214(20), 3414–3422 (2011).PubMed 

    Google Scholar 
    IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0.Best, R. C. The aquatic mammals and reptiles of the Amazon. In The Amazon 371–412 (Springer, 1984).
    Google Scholar 
    Gerhardt, H. C. The evolution of vocalization in frogs and toads. Annu. Rev. Ecol. Syst. 25, 293–324 (1994).
    Google Scholar 
    Mendoza, P. et al. Growth curve of Amazonian manatee (Trichechus inunguis) in captivity. Aquat. Mamm. 45 (2019).Schwarz, L. K. Methods and models to determine perinatal status of Florida manatee carcasses. Mar. Mamm. Sci. 24, 881–898 (2008).
    Google Scholar 
    Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: What is it, who has it, and how did it evolve?. Science 298, 1569–1579 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Marler, P. & Peters, S. Developmental overproduction and selective attrition: New processes in the epigenesis of birdsong. Dev. Psychol. J. Int. Soc. Dev. Psychol. 15.4, 369–378 (1982).
    Google Scholar 
    Casey, C., Reichmuth, C., Costa, D. P. & Le Boeuf, B. The rise and fall of dialects in northern elephant seals. Proc. R. Soc. B 285, 2018–2176 (2018).
    Google Scholar 
    Hunter, M. E. et al. Puerto Rico and Florida manatees represent genetically distinct groups. Conserv. Genet. 13, 1623–1635 (2012).
    Google Scholar 
    Castelblanco-Martínez, D. N. et al. Analysis of body condition indices reveals different ecotypes of the Antillean manatee. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    McCracken, K. G. & Sheldon, F. H. Avian vocalizations and phylogenetic signal. Proc. Natl. Acad. Sci. 94, 3833–3836 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moron, J. R. et al. Whistle variability of Guiana dolphins in South America: Latitudinal variation or acoustic adaptation? Mar. Mamm. Sci. 1–32 (2018)Luís, A. R. et al. Vocal universals and geographic variations in the acoustic repertoire of the common bottlenose dolphin. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Ey, E. & Fisher, J. The ‘Acoustic adaptations hypothesis’ a review of the evidence from birds, anurans and mammals. Bioacoustics 19, 21–48 (2009).
    Google Scholar 
    Miksis-Olds, J. L. & Tyack, P. L. Manatee (Trichechus manatus) vocalization usage in relation to environmental noise levels. J. Acoust. Soc. Am. 125, 1806–1815 (2009).ADS 
    PubMed 

    Google Scholar 
    Sun, W., Wang, Z., Jamalabdollahi, M. & Reza Zekavat, S. A. Experimental study on the difference between acoustic communication channels in freshwater rivers/lakes and in oceans. In 2014 48th Asilomar Conference on Signals, Systems and Computers, 333–337 (2004)Rivera Chavarría, M., Castro, J. & Camacho, A. The relationship between acoustic habitat, hearing and tonal vocalizations in the Antillean manatee (Trichechus manatus manatus, Linnaeus, 1758). Biol. Open 4, 1237–1242 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gaspard, J. C. III. et al. Audiogram and auditory critical ratios of two Florida manatees (Trichechus manatus latirostris). J. Exp. Biol. 215, 1442–1447 (2012).PubMed 

    Google Scholar 
    Gerstein, E. R., Gerstein, L., Forsythe, S. E. & Blue, J. E. The underwater audiogram of the West Indian manatee (Trichechus manatus). J. Acoust. Soc. Am. 105, 3575–3583 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Klishin, V., Pezo, R., Popov, V., Ya, A. & Supin. Some characteristics of hearing of the Brazilian manatee, Trichechus inunguis. Aquat. Mamm. 16 (1990).Johnson, M., de Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: A review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).ADS 

    Google Scholar  More

  • in

    The supply of multiple ecosystem services requires biodiversity across spatial scales

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).Article 

    Google Scholar 
    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 
    PubMed 

    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, E2549–E2549 (2016).
    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).Article 
    PubMed 

    Google Scholar 
    Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).Article 

    Google Scholar 
    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).Article 
    PubMed 

    Google Scholar 
    Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).Article 
    PubMed 

    Google Scholar 
    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).Article 
    PubMed 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hagan, J. G., Vanschoenwinkel, B. & Gamfeldt, L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol. Lett. 24, 2537–2548 (2021).Article 
    PubMed 

    Google Scholar 
    Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B 371, 20150267 (2016).Article 

    Google Scholar 
    Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 
    PubMed 

    Google Scholar 
    Ricotta, C. On beta diversity decomposition: trouble shared is not trouble halved. Ecology 91, 1981–1983 (2010).Article 
    PubMed 

    Google Scholar 
    Kraft, N. J. B. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B 281, 20141358 (2014).
    Google Scholar 
    Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).Article 
    PubMed 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).Article 

    Google Scholar 
    Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, L. A. Legacy effects. Oxford Bibliographies in Environmental Science https://doi.org/10.1093/OBO/9780199363445-0019 (2015).Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11, 124017 (2016).Article 

    Google Scholar 
    Alsterberg, C. et al. Habitat diversity and ecosystem multifunctionality—the importance of direct and indirect effects. Sci. Adv. 3, e1601475 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).Article 
    PubMed 

    Google Scholar 
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).Article 
    PubMed 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).Article 

    Google Scholar 
    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).Article 
    PubMed 

    Google Scholar 
    Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).Article 

    Google Scholar 
    Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article 

    Google Scholar 
    Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).Article 
    PubMed 

    Google Scholar 
    Vickery, J. A. et al. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J. Appl. Ecol. 38, 647–664 (2001).Article 

    Google Scholar 
    López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird. Conserv. Int. 21, 328–341 (2011).Article 

    Google Scholar 
    Wells, K., Böhm, S. M., Boch, S., Fischer, M. & Kalko, E. K. Local and landscape-scale forest attributes differ in their impact on bird assemblages across years in forest production landscapes. Basic Appl. Ecol. 12, 97–106 (2011).Article 

    Google Scholar 
    Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20, 591–599 (2014).Article 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 
    PubMed 

    Google Scholar 
    Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).Article 
    CAS 

    Google Scholar 
    Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 20, 2708–2711 (2014).Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).Article 
    PubMed 

    Google Scholar 
    Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).Article 

    Google Scholar 
    Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, B. J. et al. Spatial covariance between biodiversity and other ecosystem service priorities. J. Appl. Ecol. 46, 888–896 (2009).Article 

    Google Scholar 
    Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).Article 

    Google Scholar 
    Metzger, J. P. et al. Considering landscape-level processes in ecosystem service assessments. Sci. Total Environ. 796, 149028 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article 
    PubMed 

    Google Scholar 
    Schenk, N. et al. Assembled ecosystem measures from grassland EPs (2008–2018) for multifunctionality synthesis—June 2020. Version 40. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27087 (2022).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, HAI, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27568 (2020).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, Alb, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27569 (2020).Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, SCH, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27570 (2020).Penone, C. et al. Assembled RAW diversity from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27707 (2021).Penone, C. et al. Assembled species information from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 3. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27706 (2021).Junge, X., Schüpbach, B., Walter, T., Schmid, B. & Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 133, 67–77 (2015).Article 

    Google Scholar 
    Lindemann-Matthies, P., Junge, X. & Matthies, D. The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 143, 195–202 (2010).Article 

    Google Scholar 
    Haines-Young, R. & Potschin, M. B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (2018)Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).Article 

    Google Scholar 
    Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).Article 

    Google Scholar 
    Ferraro, D. M. et al. The phantom chorus: birdsong boosts human well-being in protected areas. Proc. R. Soc. B 287, 20201811 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chan, K. M. A., Satterfield, T. & Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 74, 8–18 (2012).Article 

    Google Scholar 
    Villamagna, A. M., Angermeier, P. L. & Bennett, E. M. Capacity, pressure, demand, and flow: a conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 15, 114–121 (2013).Article 

    Google Scholar 
    Bolliger, R., Prati, D., Fischer, M., Hoelzel, N. & Busch, V. Vegetation Records for Grassland EPs, 2008–2018. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24247 (2020).Le Provost, G. & Manning, P. Cover of all vascular plant species in representative 2×2 quadrats of the major surrounding homogeneous vegetation zones in a 75-m radius of the 150 grassland EPs, 2017–2018. Version 4. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27846 (2021).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).Thiele, J., Weisser, W. & Scherreiks, P. Historical land use and landscape metrics of grassland EP. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/25747 (2020).Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).Article 

    Google Scholar 
    Westphal, C., Steckel, J. & Rothenwöhrer, C. InsectScale / LANDSCAPES – Landscape heterogeneity metrics (grassland EPs, radii 500 m–2000 m, 2009) – shape files. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24046 (2019).Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).Article 
    PubMed 

    Google Scholar 
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gessler, P. E., Moore, I. D., Mckenzie, N. J. & Ryan, P. J. Soil–landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article 

    Google Scholar 
    Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. Plant species numbers predicted by a topography-based groundwater flow index. Ecosystems 8, 430–441 (2005).Article 
    CAS 

    Google Scholar 
    Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article 

    Google Scholar 
    Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).Article 

    Google Scholar 
    Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).Article 

    Google Scholar 
    Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).Article 

    Google Scholar 
    Schöning, I., Klötzing, T., Schrumpf, M., Solly, E. & Trumbore, S. Mineral soil pH values of all experimental plots (EP) of the Biodiversity Exploratories project from 2011, Soil (core project). Version 8. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/14447 (2021).Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).Article 

    Google Scholar 
    Le Provost, G. et al. Aggregated environmental and land-use covariates of the 150 grassland EPs used in ‘Contrasting responses of above- and belowground diversity to multiple components of land-use intensity’. Version 5. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/31018 (2021).R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Grace, J. B. Structural equation modeling for observational studies. J. Wildl. Manag. 72, 14–22 (2008).Article 

    Google Scholar 
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).Article 

    Google Scholar 
    Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Evolution of cross-tolerance in Drosophila melanogaster as a result of increased resistance to cold stress

    Prasad, N. G. & Joshi, A. What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us?. J. Genet. 82, 45–76 (2003).CAS 
    PubMed 

    Google Scholar 
    MacMillan, H. A., Walsh, J. P. & Sinclair, B. J. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 16, 263–276 (2009).
    Google Scholar 
    Flatt, T. Life-history evolution and the genetics of fitness components in drosophila melanogaster. Genetics 214(1), 3–48. https://doi.org/10.1534/genetics.119.300160 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A. & Parsons, P. A. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses. Genetics 122, 837–845 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nghiem, D., Gibbs, A. G., Rose, M. R. & Bradley, T. J. Postponed aging and desiccation resistance in Drosophila melanogaster. Exp. Gerontol. 35, 957–969 (2000).CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A., Scott, M., Partridge, L. & Hallas, R. Overwintering in Drosophila melanogaster: Outdoor field cage experiments on clinal and laboratory selected populations help to elucidate traits under selection. J. Evol. Biol. 16, 614–623 (2003).CAS 
    PubMed 

    Google Scholar 
    Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 

    Google Scholar 
    Bourg, É. L. & Le Bourg, É. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12, 185–193 (2011).PubMed 

    Google Scholar 
    Sejerkilde, M., Sørensen, J. G. & Loeschcke, V. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719–726 (2003).CAS 
    PubMed 

    Google Scholar 
    Coulson, S. C. & Bale, J. S. Effect of rapid cold hardening on reproduction and survival of offspring in the housefly Musca domestica. J. Insect Physiol. 38, 421–424 (1992).
    Google Scholar 
    Bayley, M., Petersen, S. O., Knigge, T., Köhler, H.-R. & Holmstrup, M. Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J. Insect Physiol. 47, 1197–1204 (2001).CAS 
    PubMed 

    Google Scholar 
    Wu, B. S. et al. Anoxia induces thermotolerance in the locust flight system. J. Exp. Biol. 205, 815–827 (2002).CAS 
    PubMed 

    Google Scholar 
    Phelan, J. P. et al. Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57, 527–535 (2003).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Harshman, L. G. Desiccation and starvation resistance in Drosophila: Patterns of variation at the species, population and intrapopulation levels. Heredity 83(Pt 6), 637–643 (1999).PubMed 

    Google Scholar 
    Sinclair, B. J., Nelson, S., Nilson, T. L., Roberts, S. P. & Gibbs, A. G. The effect of selection for desiccation resistance on cold tolerance of Drosophila melanogaster. Physiol. Entomol. 32, 322–327 (2007).
    Google Scholar 
    Anderson, A. R., Hoffmann, A. A. & McKechnie, S. W. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: Physiology and life-history traits. Genet. Res. 85, 15–22 (2005).PubMed 

    Google Scholar 
    Kellett, M., Hoffmann, A. A. & Mckechnie, S. W. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct. Ecol. 19, 853–858 (2005).
    Google Scholar 
    Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschcke, V. & Holmstrup, M. Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiol. Entomol. 31, 328–335 (2006).CAS 

    Google Scholar 
    Hoffmann, A. A., Hallas, R., Anderson, A. R. & Telonis-Scott, M. Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. J. Evol. Biol. 18, 804–810 (2005).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Kochar, E. & Prasad, N. G. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. PLoS ONE 10, e0129992 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Singh, K., Kochar, E., Gahlot, P., Bhatt, K. & Prasad, N. G. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol. Evol. 21, 1–4 (2021).
    Google Scholar 
    Salehipour-Shirazi, G., Ferguson, L. V. & Sinclair, B. J. Does cold activate the Drosophila melanogaster immune system?. J. Insect Physiol. 96, 29–34 (2017).CAS 
    PubMed 

    Google Scholar 
    Singh, K., Zulkifli, M. & Prasad, N. G. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp. Microbes Infect. 18, 813–821 (2016).PubMed 

    Google Scholar 
    Singh, K., Samant, M. A., Tom, M. T. & Prasad, N. G. Evolution of Pre- and Post-Copulatory Traits in Male Drosophila melanogaster as a Correlated Response to Selection for Resistance to Cold Stress. PLoS ONE 11, e0153629 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lefevre, G. J. & Jonsson, U. B. The effect of cold shock on D. melanogaster sperm. Drosophila Inf. Serv. 1962(36), 86–876 (1962).
    Google Scholar 
    Novitski, E. & Rush, G. Viability and fertility of Drosophila exposed to sub-zero temperatures. Biol. Bull. 97, 150–157 (1949).CAS 
    PubMed 

    Google Scholar 
    Arbogast, R. T. Mortality and Reproduction of Ephestia cautella and Plodia interpunctella 1 Exposed as Pupae to High Temperatures. Environ. Entomol. 10, 708–711 (1981).
    Google Scholar 
    Saxena, B. P., Sharma, P. R., Thappa, R. K. & Tikku, K. Temperature induced sterilization for control of three stored grain beetles. J. Stored Prod. Res. 28, 67–70 (1992).
    Google Scholar 
    Collett, J. I. & Jarman, M. G. Adult female Drosophila pseudoobscura survive and carry fertile sperm through long periods in the cold: Populations are unlikely to suffer substantial bottlenecks in overwintering. Evolution 55, 840–845 (2001).CAS 
    PubMed 

    Google Scholar 
    Schnebel, E. M. & Grossfield, J. Mating-temperature range in drosophila. Evolution 38, 1296–1307 (1984).PubMed 

    Google Scholar 
    Chakir, M., Chafik, A., Moreteau, B., Gibert, P. & David, J. R. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114, 195–205 (2002).PubMed 

    Google Scholar 
    David, J. R. et al. Male sterility at extreme temperatures: A significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).CAS 
    PubMed 

    Google Scholar 
    Dolgin, E. S., Whitlock, M. C. & Agrawal, A. F. Male Drosophila melanogaster have higher mating success when adapted to their thermal environment. J. Evol. Biol. 19, 1894–1900 (2006).CAS 
    PubMed 

    Google Scholar 
    David, J. R. Male sterility at high and low temperatures in Drosophila. J. Soc. Biol. 202, 113–117 (2008).PubMed 

    Google Scholar 
    Zhang, W., Zhao, F., Hoffmann, A. A. & Ma, C.-S. A single hot event that does not affect survival but decreases reproduction in the diamondback moth, plutella xylostella. PLoS ONE 8, e75923 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tucić, N. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350–358 (1979).PubMed 

    Google Scholar 
    Chen, C.-P. & Walker, V. K. Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecol. Entomol. 18, 184–190 (1993).
    Google Scholar 
    Ring, R. A. & Danks, H. V. Desiccation and cryoprotection: Overlapping adaptations. Cryo Lett. 15, 181–190 (1994).
    Google Scholar 
    Ring, R. A. & Danks, H. The role of trehalose in cold-hardiness and desiccation. Cryo Lett. 19, 275–282 (1998).CAS 

    Google Scholar 
    Singh, K. & Prasad, N. G. Cold stress upregulates the expression of heat shock proteins and Frost genes, but evolution of cold stress resistance is apparently not mediated through either heat shock proteins or Frost genes in the cold stress selected population. bioRxiv https://doi.org/10.1101/2022.03.07.483305 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bubliy, O. A., Kristensen, T. N., Kellermann, V. & Loeschcke, V. Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Funct. Ecol. 26, 245–253 (2012).
    Google Scholar 
    Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. Biol. Sci. 274, 771–778 (2007).PubMed 

    Google Scholar 
    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).
    Google Scholar 
    Yi, S.-X. & Lee, R. E. Jr. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999–1004 (2003).CAS 
    PubMed 

    Google Scholar 
    Macmillan, H. A. & Sinclair, B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011).CAS 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J. Exp. Biol. 214, 1205–1212 (2011).PubMed 

    Google Scholar 
    Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).PubMed 

    Google Scholar 
    Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Mikonranta, L., Mappes, J., Kaukoniitty, M. & Freitak, D. Insect immunity: Oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front. Zool. 11, 23 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ramløv, H. & Lee, R. E. Jr. Extreme resistance to desiccation in overwintering larvae of the gall fly Eurosta solidaginis (Diptera, tephritidae). J. Exp. Biol. 203, 783–789 (2000).PubMed 

    Google Scholar 
    Holmstrup, M., Bayley, M. & Ramløv, H. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc. Natl. Acad. Sci. 99, 5716–5720 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chippindale, A. K. et al. Resource acquisition and the evolution of stress resistance in drosophila melanogaster. Evolution 52, 1342 (1998).PubMed 

    Google Scholar 
    Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).ADS 
    PubMed 

    Google Scholar 
    Crill, W. D., Huey, R. B. & Gilchrist, G. W. Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50, 1205–1218 (1996).PubMed 

    Google Scholar 
    Kwan, L., Bedhomme, S., Prasad, N. G. & Chippindale, A. K. Sexual conflict and environmental change: Trade-offs within and between the sexes during the evolution of desiccation resistance. J. Genet. 87, 383–394 (2008).PubMed 

    Google Scholar  More