More stories

  • in

    Mixotrophy in depth

    Rippka, R. et al. J. Gen. Microbiol. https://doi.org/10.1099/00221287-111-1-1 (1979).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. ISME J. 14, 1065–1073 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yelton, A. P. et al. ISME J. 10, 2946–2957 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, B. A. & Follows, M. J. Proc. Natl Acad. Sci. USA 113, 2958–2963 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Z. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01250-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zubkov, M. et al. Appl. Environ. Microbiol. 69, 1299–1304 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vila-Costa, M. et al. Science 314, 652–654 (2006).Article 
    PubMed 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Proc. Natl Acad. Sci. USA 110, 8597–8602 (2013).Article 
    PubMed Central 

    Google Scholar 
    Gómez-Baena, G. et al. PLoS ONE 3, e3416 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coe, A. et al. Limnol. Oceanogr. 71, 1375–1388 (2016).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Microbiol. Spectr. https://doi.org/10.1101/2021.10.04.462702 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Ecological transition and sustainable development: integrated statistical indicators to support public policies

    The link between SDGs and NRRPThe Italian National Recovery and Resilience Plan (NRRP) is part of the Next Generation EU (NGEU) program, the 750-billion-euro package, consisting of about half of grants, agreed by the European Union in response to the pandemic crisis. The main component of the NGEU program is the Recovery and Resilience Facility (RRF), which has a duration of six years, from 2021 to 2026, and a total size of €672.5 billion (€312.5 billion grants, the remaining €360 billion loans at subsidized rates).The Plan is developed around three strategic axes shared at European level: digitalization and innovation, ecological planning and social inclusion.The missions of the NRRP are as follows:

    Mission 1: Digitalization, innovation, competitiveness, culture and tourism

    Mission 2: Green revolution and ecological transition

    Mission 3: Infrastructure for sustainable mobility

    Mission 4: Education and research

    Mission 5: Cohesion and inclusion

    Mission 6: Health.

    With the aim of encouraging the debate on the use of sustainability indicators for monitoring the progress of the PNRR, a mapping of the correspondences between the 17 Sustainable Development Goals and the 6 Missions provided for by the NRRP is proposed (Fig. 1). In this way it is possible to identify the SDGs indicators that can be useful tools for achieving the missions of the NRRP.Figure 1Relationships between SDGs indicators and NRRP missions.Full size imageOf particular interest for the purposes of our work is Mission 2 (Green Revolution and Ecological Transition) of NRRP. It provides for investments and reforms for the circular economy and to improve waste management, strengthen separate collection infrastructure and modernize or develop new waste treatment plants. Substantial tax incentives are provided to increase the energy efficiency of buildings, to achieve progressive decarbonization, to increase the use of renewable energy sources. In addition, the Mission devotes resources to enhancing the capacity of electricity grids, their reliability, security, and flexibility (Smart Grid) and water infrastructure. The Mission also includes the issues of territorial security, with prevention and restoration interventions in the face of significant hydrogeological risks, the protection of green areas and biodiversity, and those related to the elimination of water and soil pollution, and the availability of water resources.The main components of this mission are:

    M2C1: Circular economy and sustainable agriculture

    M2C2: Renewable energy, hydrogen, grid, and sustainable mobility

    M2C3: Energy efficiency and upgrading of buildings

    M2C4: Protection of land and water resources.

    The analysis of Mission 2 (Green Revolution and Ecological Transition) finds ample space in the SDGs creating important interconnections between the different indicators present in the individual Goals and the objectives of the Mission itself.The SDGs indicators to support the NRRPThe SDGs indicators selected for the analysis of Mission 2 (Green Revolution and Ecological Transition) of the NRRP, are descripted in Table 1. We considered 13 indicators, selected from Goals 2, 6, 7, 11, 12 and 15 which may be of significant interest for the achievement of Mission 2. These indicators will then be attributed to the individual components of the mission.Table 1 Goal, indicators, measures e source of SDGs data.Full size tableThe indicators were chosen based on their relevance to the objectives of the mission and on the availability of data on a regional basis. For each main component we can use the following indicators:

    M2C1: Circular economy and sustainable agriculture:

    – Share of utilized agricultural area invested by organic crops

    – Growth rate of organic crops

    – Delivery of municipal waste to landfill.

    – Separate waste collection

    M2C2: Renewable energy, hydrogen, grid and sustainable mobility:

    M2C3: Energy efficiency and upgrading of buildings

    M2C4: Protection of land and water resources

    – Irregularities in water distribution

    – Sealing and soil consumption per capita

    – Soil sealing from artificial cover

    – Fragmentation of the natural and agricultural territory

    – Incidence of urban green areas on the urbanized surface of cities.

    The SDGs indicators at the level of territorial distribution in ItalyWe carry out a first analysis by territorial distribution for the different sets of main components of Mission 2.From a first analysis of the M2C1 indicators (Circular Economy and Sustainable Agriculture) it emerges that the share of agricultural area destined for organic crops is greater, especially in the Center and in the South of Italy. In 2019, the extent of organic farming in Italy reached 15.8% of the utilized agricultural area, almost double the EU average. However, the annual growth rate of the areas converted to organic farming or in the process of conversion (+ 1.8%) is the lowest since 2012 and is negative in the South, where for the second consecutive year there is a decrease (− 2.1% in the 2-year period 2017–2019). The dynamics of organic farming is an index of the spread of sustainable agricultural practices, which must be accompanied by measures that also consider the pressure on the environment generated by agriculture (Table 2).Table 2 M2C1 indicators—Circular economy and sustainable agriculture by territorial distribution (year 2019).Full size tableAlso, in the Central and Southern Italy area there is the greatest delivery of waste to landfills. Waste cycle management is crucial for living conditions and global health. The share of municipal waste landfilled is steadily decreasing at national level. In 2019, in fact, the part sent to landfill is equal to 20.9% of the total, down compared to the previous year (21.5%). The separate collection of municipal waste represents a further important step in view of the objective of reducing the amount of waste returned to the environment and, more specifically, of the delivery of waste to landfills. The 18.5 million tons of differentiated RU in 2019 represent 61.3% of national production, a share almost doubled compared to ten years ago and up from last year by 3.1 percentage points. Despite the evident progress, Italy is still marked by a considerable delay compared to the regulatory objectives, having not yet reached, in 2019, the target of 65% of separate collection planned for 2012. Critical issues are also observed in relation to the substantial territorial gaps, which disadvantage the Center and the South compared to the North, despite the distances have been reduced in recent years.
    Regarding the M2C2 Mission (Renewable Energy, Hydrogen, Network and Sustainable Mobility), national and international energy policies have been committed for years to the enhancement of renewable energy sources, with the aim of decarbonizing the economy and guaranteeing the commitments made in the field of climate change. In 2019, one year after the expiry of the objectives of the European Union’s Climate-Energy Package, fourteen Member States, including Italy, exceeded the target assigned at national level. In Italy, the overall share of energy from renewable sources in gross final consumption (CFL) of energy, equal to 18.2% (Table 3), a percentage slightly lower than the average of the EU27 (19.7%), is placed for the sixth consecutive year above the 17% target set for our country. However, for Italy to achieve the ambitious programs defined by the 2020 National Integrated Energy and Climate Plan, which set a 30% target for renewables by 2030, a further boost to production from renewable sources is necessary. The resources introduced by the National Recovery and Resilience Plan (NRRP) to achieve the “green revolution and ecological transaction” include significant investments in the energy field, focusing, among other components, on a further strengthening of the Sources from Renewable energy (FER).Table 3 M2C2 indicators—Renewable energy, hydrogen, network and sustainable mobility by territorial distribution (year 2019).Full size tableThe M2C3 Mission (Energy Efficiency and Upgrading of Buildings) devotes resources to enhancing the capacity of electricity grids, their reliability, safety, and flexibility (Smart Grid). Consistent with the objectives of reducing energy consumption pursued by European policies, the Italian figure for 2019 confirms the process of reducing Italian energy intensity, which marks a further contraction of 1.3%, reaching an overall negative balance compared to the last decade of 11.8%, with an average annual rate of change of − 1.2% (Table 4). The reduction in energy intensity is largely attributable to the effect of the measures in favor of energy efficiency, which, between 2011 and 2019, resulted in energy savings of 12 Mtoe/year, equal to 77% of the 2020 target set by the National Action Plan for Energy Efficiency 2017. A further acceleration of energy efficiency is expected, in the coming years, because of the investment plan envisaged by the NRRP, also linked to the redevelopment of the public and private building stock. At the sectoral level, the reduction in energy intensity is driven by improvements in industry, which, despite the slight increase in the last year, in 2019, with 92 toes per million euros, shows a decrease compared to 2009 of 17%, with an average annual rate of change of − 1.8%.Table 4 M2C3 indicators—Energy efficiency and requalification of buildings by territorial distribution (year 2019).Full size tableThe M2C4 Mission (Protection of the territory and water resources) also includes the issues of territorial safety, with prevention and recovery interventions, the protection of green areas and those related to the elimination of water and soil pollution.Italy is among the European countries of the Mediterranean area that use groundwater, springs and wells the most; these represent the most important resource of fresh water for drinking water use on the Italian territory (84.8% of the total withdrawn). The efficiency of municipal drinking water distribution networks has been steadily deteriorating since 2008 for more than half of the regions. The share of families who complain of irregularities in the water supply service in their home is stable (equal to 8.6% in 2019) with more accentuated values in the Center and South of Italy (Table 5).Table 5 M2C4 indicators—Protection of land and water resources by territorial distribution (year 2019).Full size tableLand degradation, understood as loss of ecological functionality, is monitored through the dynamics of land consumption, which Italy has committed to zero by 2030 with the National Strategy for Sustainable Development (2017). The “consumed” soil is that occupied by urbanization and made impermeable by artificial roofing (soil sealing). Excessive fragmentation of open spaces, however, is also a factor of degradation, since the barriers made up of buildings and infrastructures interrupt the continuity of ecosystems, making even unoccupied but not large enough spaces ecologically inert and unproductive. Moreover, in a fragile territory such as Italy, land consumption is also a significant factor of hydrogeological risk and deterioration of the landscape. The index of sealing and land consumption per capita in 2019 increases for the fifth consecutive year, resulting in 357 m2 per inhabitant. The soil sealed by artificial covers is equal to 7.1% of the national territory (8.5% in the North, 6.7% in the Center, 5.9% in the South).According to Ispra estimates, 44.3% of Italy’s natural and agricultural land has a high or very high degree of fragmentation. A joint representation of the variations in fragmentation and soil sealing over the last two years summarizes recent trends in land consumption and their impact on the environment and landscape.A further objective for 2030 is to provide universal access to safe, inclusive, and accessible public green spaces, for women and children, the elderly, and people with disabilities. In 2019 the incidence of urban green areas on the urbanized surface of cities is equal to 8.5% in Italy with slightly higher values in the North and less elevated in the South. More

  • in

    Investigation of the spermathecal morphology, reproductive strategy and fate of stored spermatozoa in three important thysanopteran species

    Cavalleri, A., Masumoto, M., Minaei, K., Mound, L. & Ulitzka, M. R. ThripsWiki – providing information on the World’s thrips. https://thrips.info/wiki/Main_Page (2022).Kirk, W. D. J., de Kogel, W. J., Koschier, E. H. & Teulon, D. A. J. Semiochemicals for thrips and their use in pest management. Annu. Rev. Entomol. 66, 101–119. https://doi.org/10.1146/annurev-ento-022020-081531 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mota-Sanchez, D. & Wise, C. J. The Arthropod Pesticide Resistance Database. Available at http://www.pesticideresistance.org (2022).von Kèler, S. Entomologisches Wörterbuch. mit besonderer Berücksichtigung der morphologischen Terminologie. 3rd edn. (Akademie, Berlin, 1963).
    Google Scholar 
    Pascini, T. V. & Martins, G. F. The insect spermatheca: an overview. Zoology Jena (Germany) 121, 56–71. https://doi.org/10.1016/j.zool.2016.12.001 (2017).Article 

    Google Scholar 
    Bode, W. Der Ovipositor und die weiblichen Geschlechtswege der Thripiden (Thysanoptera, Terebrantia). Z. Morph. Tiere (Zeitschrift für Morphologie der Tiere) 81, 1–53; https://doi.org/10.1007/BF00290072 (1975).Moritz, G. Zur Morphologie und Anatomie des Fransenflüglers Aeolothrips intermedius Bagnall, 1934 (Aeolothripidae, Thysanoptera, Insecta) III. Mitteilung: Das Abdomen. Investigation on the Morphology and Anatomy in Aeolothrips intermedius Bagnall, 1934 (Aeolothripidae, Thysanoptera, Insecta) 3. The Abdomen. Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 108, 293–340 (1982).Moritz, G. Die Ontogenese der Thysanoptera (lnsecta) unter besonderer Berücksichtigung des Fransenflüglers Hercinothrips femoralis (O. M. REUTER, 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago – Abdomen. The Ontogenesis of Thysanoptera (Insecta) with Special Reference to the Panchaetothripine Hercinothrips femoralis (O. M. REUTER, 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago – Abdomen. Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 119, 157–217 (1989).Heming, B. S. Postembryonic development of the female reproductive system in Frankliniella fusca (Thripidae) and Haplothrips verbasci (Phlaeothripidae) (Thysanoptera). Misc. Publ. Entomol. Soc. Am. 7, 197–234 (1970).
    Google Scholar 
    Heming, B. S. History of the germ line in male and female thrips. In Thrips Biology and Management. International conference on Thysanoptera: Towards Understanding Thrips Management, Vermont, edited by B. L. Parker, M. Skinner & T. Lewis (Springer, Berlin, 1995), pp. 505–535.Dallai, R., Del Bene, G. & Lupetti, P. Fine structure of spermatheca and accessory gland of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Int. J. Insect Morphol. Embryol. 25, 317–330; https://doi.org/10.1016/0020-7322(95)00018-6 (1996).Jordan, K. Anatomie und Biologie der Physapoda. Zeitschrift für wissenschaftliche Zoologie 47, 541–620 (1888).
    Google Scholar 
    Bournier, A. L`appareil gènital femelle de Caudothrips buffai Karny et sa pompe spermatige (Thysan.). Bulletin de la Sociètè Entomologique de France 67, 203–207 (1962).Dhileepan, K. & Ananthakrishnan, T. Impact of sex-limited and alary polymorphism on spermathecal diversity and reproductive behaviour in some mycophagous Tubulifera. Proc. Indian Natl. Acad. Sci. 4, 329–336 (1987).
    Google Scholar 
    Bhatti, J. S. The spermatheca as a useful character for species differentiation in Coleothrips Haliday (Insecta: Terebrantia: Aeolothripidae). J. Pure Appl. Zool. 1, 111–116 (1988).
    Google Scholar 
    Klocke, F. Beiträge zur Anatomie und Histologie der Thysanopteren. Zeitschrift für wissenschaftliche Zoologie 128, 1 (1926).
    Google Scholar 
    Priesner, H. Die Thysanopteren Europas (F. Wagner Verlag, Wien, 1926–1928).Bode, W. Spermienstruktur und Spermatohistogenese bei Thrips validus Uzel (Insecta, Thysanoptera). Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 109, 301–318 (1983).
    Google Scholar 
    Moritz, G. Thripse. Fransenflügler, Thysanoptera. 1st ed. (Westarp Wissenschaften, Hohenwarsleben, 2006).Bournier, A. Contribution à l’étude de la parthénogénèse des thysanoptères et de sa cytologie. Archives de Zoologie expérimentale et générale 93, 219–318 (1956).
    Google Scholar 
    Heming, B. S. Postembryonic development of the male reproductive system in Frankliniella fusca (Thripidae) and Haplothrips verbasci (Phlaeothripidae) (Thysanoptera). Misc. Publ. Entomol. Soc. Am. 7, 235–272 (1970).
    Google Scholar 
    Krueger, S., Jilge, M., Mound, L. & Moritz, G. B. Reproductive behavior of Echinothrips americanus (Thysanoptera: Thripidae). J. Insect Sci. 17; https://doi.org/10.1093/jisesa/iex043 (2017).Krueger, S. & Moritz, G. Sperm ultrastructure in arrhenotokous and thelytokous Thysanoptera. Arthropod Struct. Dev. 64, 101084; https://doi.org/10.1016/j.asd.2021.101084 (2021).Lewis, T. Thrips. Their biology, ecology and economic importance (Academic Press, London, 1973).Jacobs, W. & Seidel, F. Systematische Zoologie, Insekten (Fischer, 1975).
    Google Scholar 
    Gotoh, A., Ito, F. & Billen, J. Vestigial spermatheca morphology in honeybee workers, Apis cerana and Apis mellifera, from Japan. Apidologie 44, 133–143; https://doi.org/10.1007/s13592-012-0165-6 (2013).Gotoh, A., Billen, J., Hashim, R. & Ito, F. Degeneration patterns of the worker spermatheca during morphogenesis in ants (Hymenoptera: Formicidae). Evol. Dev. 18, 96–104; https://doi.org/10.1111/ede.12182 (2016).Schoeters, E. & Billen, J. The importance of the spermathecal duct in bumblebees. J. Insect Physiol. 46, 1303–1312; https://doi.org/10.1016/S0022-1910(00)00052-4 (2000).Gobin, B., Ito, F., Peeters, C. & Billen, J. Queen-worker differences in spermatheca reservoir of phylogenetically basal ants. Z. Zellforsch (Zeitschrift für Zellforschung und Mikroskopische Anatomie) 326, 169–178; https://doi.org/10.1007/s00441-006-0232-2 (2006).Gobin, B., Ito, F., Billen, J. & Peeters, C. Degeneration of sperm reservoir and the loss of mating ability in worker ants. Die Naturwissenschaften 95, 1041–1048; https://doi.org/10.1007/s00114-008-0420-x (2008).Gotoh, A., Billen, J., Hashim, R., Ito, F. Comparison of spermatheca morphology between reproductive and non-reproductive females in social wasps. Arthropod. Struct. Dev. 37, 199–209; https://doi.org/10.1016/j.asd.2007.11.001 (2008).Gotoh, A., Billen, J., Tsuji, K., Sasaki, T. & Ito, F. Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale (Hymenoptera: Formicidae). Acta Zool. 93, 200–207; https://doi.org/10.1111/j.1463-6395.2010.00498.x (2012).Buffa, P. Studi intorno al ciclo partenogenetico dell´ Heliothrips haemorrhoidales (Boúche). REDIA 7, 71–109 (1911).
    Google Scholar 
    Bene, G. D., Cavallo, V., Lupetti, P. & Dallai, R. Ultrastructure of the accessory gland in the parthenogenetic thrips Heliothrips haemorrhoidalis (Bouché) (Thysanoptera. Thripidae). Int. J. Insect Morphol. Embryol. 27, 255–261; https://doi.org/10.1016/S0020-7322(98)00018-X (1998).Nakao, S. & Yabu, S. Ethological and chemical discrimination between thelytokous and arrhenotokous Thrips nigropilosus Uzel, with discussion of taxonomy. Jpn. J. Appl. Entomol. Zool. 42, 77–83; https://doi.org/10.1303/jjaez.42.77 (1998).Article 
    CAS 

    Google Scholar 
    Arakaki, N., Miyoshi, T. & Noda, H. Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc. R. Soc. B Biol. Sci. 268, 1011–1016; https://doi.org/10.1098/rspb.2001.1628 (2001).Kumm, S. & Moritz, G. First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. Environ. Entomol. 37, 1422–1428. https://doi.org/10.1603/0046-225X-37.6.1422 (2008).Article 
    PubMed 

    Google Scholar 
    Moritz, G. The biology of thrips is not the biology of their adults: a developmental view. In Thrips and Tospovirus: Proceedings of the 7th International Symposium on Thysanoptera, edited by L. A. Mound & R. Marullo (Australian National Insect Collection CSIRO, Canberra, 2002), pp. 259–267.Moritz, G., Schäfer, E., Kumm, S., Steller, A. & Tschuch, G. D. Alien-Thrips: Suocerathrips linguis – Biologie und Verhalten. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 14, 177–181 (2004).
    Google Scholar 
    Gehlsen, U. Ernährungssystem, Verhalten und Wehrsekret des subsozialen Phlaeothripinen Suocerathrips linguis MOUND & MARULLO, 1994 (Insecta, Thysanoptera, Tubulifera). PhD-thesis (Martin-Luther University Halle-Wittenberg, Germany, 2009).Kumm, S. Reproduction, progenesis and embryogenesis of thrips (Thysanoptera, Insecta). Dissertation. Martin-Luther-Universität Halle-Wittenberg, 2002.Krueger, S., Mound, L. A. & Moritz, G. B. Offspring sex ratio and development are determined by copulation activity in Echinothrips americanus MORGAN 1913 (Thysanoptera: Thripidae). J. Appl. Entomol. 140, 462–473; https://doi.org/10.1111/jen.12280 (2016).Oetting, R. D., Beshear, R. J., Liu, T.-X., Braman S. K., & Baker, J. R. Biology and identification of thrips on greenhouse ornamentals. Univ. Ga. Res. Bull. 414, 20 (1993).Mound, L. A., Nielsen, M.-C. & Hastings, A. Thysanoptera Aotearoa. Thrips of New Zealand. Available at https://keys.lucidcentral.org/keys/v3/nz_thrips/index.html.Schindelin, J. et al. Fiji an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Uzel, H. Monographie der Ordnung Thysanoptera (Nabu Oress, Charleston SC, United States, 1895).Marzo L. De. Dettagli anatomici dei genitali interni in Melanthrips fuscus (Sulzer) e altri tisanotteri. Entomologica 36, 109–119. https://doi.org/10.15162/0425-1016/747 (2002).Melis, A. Nuove osservazioni anatomo-istologiche sui diversi stati postembrionali del Liothrips oleae Costa. REDIA 21, 263–334 (1934).
    Google Scholar 
    van der Kooi, C. J. & Schwander, T. On the fate of sexual traits under asexuality. Biol. Rev. 89, 805–819. https://doi.org/10.1111/brv.12078 (2014).Article 
    PubMed 

    Google Scholar 
    Sloan, N. S. & Simmons, L. W. The evolution of female genitalia. J. Evol. Biol. 32, 882–899. https://doi.org/10.1111/jeb.13503 (2019).Article 
    PubMed 

    Google Scholar 
    Buffa, P. Tisanotteri esotici esistenti nel Museo Civico di Storia Naturale di Genova. REDIA 5, 157–172 (1909).
    Google Scholar 
    Osborn, H. Note on a New Species of Phloeothrips, with description. Proc. Iowa Acad. Sci. 3, 228 (1895).
    Google Scholar 
    Mound, L. A. & Marullo, R. New thrips on mother-in-law`s tongue. Entomol. Mon. Mag. 130, 95–98 (1994).
    Google Scholar 
    Zur Strassen, R. Die terebranten Thysanopteren Europas und des Mittelmeer-Gebietes (Goecke und Evers, Keltern, 2003).Davies, R. G. The postembryonic development of the female reproductive system in Limothrips cerealium Haliday (Thysanoptera: Thripidae). Proc. Zool. Soc. Lond. 136, 411–437. https://doi.org/10.1111/j.1469-7998.1961.tb05883.x (1961).Article 

    Google Scholar 
    Gerber, G. H. Evolution of the methods of spermatophore formation in pterygotan insects. Can. Entomol. 102, 358–362 (1970).Article 

    Google Scholar 
    Dallai, R., Afzelius, B. A., Lanzavecchia, S. & Bellon, P. L. Bizarre flagellum of thrips spermatozoa (Thysanoptera, Insecta). J. Morphol. 209, 343–347. https://doi.org/10.1002/jmor.1052090309 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paccagnini, E., Mencarelli, C., Mercati, D., Afzelius, B. A. & Dallai, R. Ultrastructural analysis of the aberrant axoneme morphogenesis in thrips (Thysanoptera, Insecta). Cell Mot. Cytoskel. 64, 645–661. https://doi.org/10.1002/cm.20212 (2007).Article 

    Google Scholar 
    Paccagnini, E., Lupetti, P., Afzelius, B. A. & Dallai, R. New findings on sperm ultrastructure in thrips (Thysanoptera, Insecta). Arthropod. Struct. Dev. 38, 70–83. https://doi.org/10.1016/j.asd.2008.07.004 (2009).Article 
    PubMed 

    Google Scholar 
    Paccagnini, E., Mercati, D., Giusti, F., Conti, B. & Dallai, R. The spermatogenesis and the sperm structure of Terebrantia (Thysanoptera, Insecta). Tissue & cell 42, 247–258. https://doi.org/10.1016/j.tice.2010.04.008 (2010).Article 

    Google Scholar 
    Pitnick, S., Wolfner, M. F. & Dorus, S. Post-ejaculatory modifications to sperm (PEMS). Biol. Rev. Camb. Philos. Soc. 95, 365–392. https://doi.org/10.1111/brv.12569 (2020).Article 
    PubMed 

    Google Scholar 
    Karr, T. L., Swanson, W. J. & Snook, R. R. The evolutionary significance of variation in sperm–egg interactions. In Sperm biology. An evolutionary perspective, edited by T. R. Birkhead. 1st ed. (Academic Press/Elsevier, Amsterdam, 2009), pp. 305–365.Friedländer, M., Jeshtadi, A. & Reynolds, S. E. The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J. Insect Physiol. 47, 245–255. https://doi.org/10.1016/s0022-1910(00)00109-8 (2001).Article 
    PubMed 

    Google Scholar 
    Hughes, M. & Davey, K. G. The activity of spermatozoa of Periplaneta. J. Insect Physiol. 15, 1607–1616. https://doi.org/10.1016/0022-1910(69)90181-4 (1969).Article 

    Google Scholar 
    Longo, G. et al. Ultrastructural changes in sperm of Eyprepocnemis plorans (Charpentier) (Orthoptera: Acrididae) during storage of gametes in female genital tract. Inverteb. Reprod. Dev. 24, 1–6. https://doi.org/10.1080/07924259.1993.9672325 (1993).Article 

    Google Scholar 
    Makielski, S. K. The structure and maturation of the spermatozoa of Sciara coprophila. J. Morphol. 118, 11–41. https://doi.org/10.1002/jmor.1051180103 (1966).Article 
    CAS 
    PubMed 

    Google Scholar 
    Giuffrida, A. & Rosati, F. Changes in sperm tail of Eyprepocnemis plorans (Insects, Orthoptera) as a result of in vitro incubation in spermathecal extract. Inverteb. Reprod. Dev. 24, 47–52. https://doi.org/10.1080/07924259.1993.9672330 (1993).Article 

    Google Scholar 
    Giuffrida, A., Focarelli, R., Lampariello, R., Thole, H. & Rosati, F. Purification and properties of a 35 kDa glycoprotein from spermathecal extract of Eyprepocnemis plorans (Insecta, Orthoptera) with axonemal cytoskeleton disassembly activity. Insect Biochem. Mol. Biol. 26, 347–354. https://doi.org/10.1016/0965-1748(95)00095-X (1996).Article 
    CAS 

    Google Scholar 
    Arakaki, N., Noda, H. & Yamagishi, K. Wolbachia-induced parthenogenesis in the egg parasitoid Telenomus nawai. Entomol. Exp. Appl. 96, 177–184. https://doi.org/10.1046/j.1570-7458.2000.00693.x (2000).Article 

    Google Scholar 
    Pannebakker, B. A. et al. Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. J. Evol. Biol. 18, 1019–1028. https://doi.org/10.1111/j.1420-9101.2005.00898.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stouthamer, R., Russell, J. E., Vavre, F. & Nunney, L. Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evol. Biol. 10, 229. https://doi.org/10.1186/1471-2148-10-229 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sänger, K. & Helfert, B. Comparative studies on number and position of the micropyles and the shape of the eggs of Saga pedo, S. natoliae and S. ephippigera (Orthoptera: Tettigoniidae). Entomologia 19, 49–56. https://doi.org/10.1127/ENTOM.GEN/19/1994/049 (1994).Article 

    Google Scholar 
    Gottlieb, Y. & Zchori-Fein, E. Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomol. Exp. Appl. 100, 271–278. https://doi.org/10.1046/j.1570-7458.2001.00874.x (2001).Article 

    Google Scholar 
    Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. WOLBACHIA PIPIENTIS. Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71–102. https://doi.org/10.1146/annurev.micro.53.1.71 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schwander, T., Crespi, B. J., Gries, R. & Gries, G. Neutral and selection-driven decay of sexual traits in asexual stick insects. Proc. Biol. Sci. 280, 20130823. https://doi.org/10.1098/rspb.2013.0823 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Micro. 6, 741–751. https://doi.org/10.1038/nrmicro1969 (2008).Article 
    CAS 

    Google Scholar  More

  • in

    Small rainfall changes drive substantial changes in plant coexistence

    Schimper, A. F. W. Plant Geography upon a Physiological Basis (Clarendon Press, 1903).Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).PubMed 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Loarie, S. R., Weiss, S. B., Hamilton, H., Branciforte, R. & Kraft, N. J. B. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).Article 

    Google Scholar 
    Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dybzinski, R. & Tilman, D. Resource use patterns predict long‐term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318 (2007).Article 
    PubMed 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sandel, B. et al. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol. 188, 565–575 (2010).Article 
    PubMed 

    Google Scholar 
    Esch, E. H., Ashbacher, A. C., Kopp, C. W. & Cleland, E. E. Competition reverses the response of shrub seedling mortality and growth along a soil moisture gradient. J. Ecol. 106, 2096–2108 (2018).Article 

    Google Scholar 
    Alon, M. & Sternberg, M. Effects of extreme drought on primary production, species composition and species diversity of a Mediterranean annual plant community. J. Veg. Sci. 30, 1045–1061 (2019).Article 

    Google Scholar 
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).Article 
    ADS 
    PubMed 

    Google Scholar 
    Adler, P., Hillerislambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 
    PubMed 

    Google Scholar 
    Germain, R. M., Mayfield, M. M. & Gilbert, B. The ‘filtering’ metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biol. Lett. 14, 20180460 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17, 3633–3643 (2011).Article 
    ADS 

    Google Scholar 
    Fargione, J. & Tilman, D. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143, 598–606 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).Article 
    ADS 

    Google Scholar 
    Chesson, P. Geometry, heterogeneity and competition in variable environments. Phil. Trans. R. Soc. Lond. B 330, 165–173 (1990).Article 
    ADS 

    Google Scholar 
    Aronson, J., Kigel, J., Shmida, A. & Klein, J. Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia 89, 17–26 (1992).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Santa Barbara County Public Works water resources hydrology: historical rainfall data: daily and monthly rainfall. County of Santa Barbara http://www.countyofsb.org/pwd/water/downloads/hydro/421dailys.pdf (2019).Kandlikar, G. S., Kleinhesselink, A. R. & Kraft, N. J. B. Functional traits predict species responses to environmental variation in a California grassland annual plant community. J. Ecol. 110, 833–844 (2022).Article 
    CAS 

    Google Scholar 
    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 
    PubMed 

    Google Scholar 
    Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Kleinhesselink, A. R., Kraft, N. J. B., Pacala, S. W. & Levine, J. M. Detecting and interpreting higher order interactions in ecological communities. Ecol. Lett. 25, 1604–1617 (2022).Article 
    PubMed 

    Google Scholar 
    Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).Article 

    Google Scholar 
    Levine, J. I., Levine, J. M., Gibbs, T. & Pacala, S. W. Competition for water and species coexistence in phenologically structured annual plant communities. Ecol. Lett. 25, 1110–1125 (2022).Article 
    PubMed 

    Google Scholar 
    Farrior, C. E. et al. Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology 94, 2505–2517 (2013).Article 
    PubMed 

    Google Scholar 
    Harrison, S., Grace, J. B., Davies, K. F., Safford, H. D. & Viers, J. H. Invasion in a diversity hotspot: exotic cover and native richness in the Californian serpentine flora. Ecology 87, 695–703 (2006).Article 
    PubMed 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Godoy, O. & Levine, J. M. Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology 95, 726–736 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).Runge, J. in Large Rivers (ed. Gupta, A.) 293–309 (Wiley, 2008).Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).Article 
    ADS 

    Google Scholar 
    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2018).Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 17939 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebag, D. et al. Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur. J. Soil Sci. 57, 344–355 (2006).Article 
    CAS 

    Google Scholar 
    Sebag, D. et al. Dynamics of soil organic matter based on new Rock-Eval indices. Geoderma 284, 185–203 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dargie, G. C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, Univ. Leeds (2015).Spiker, E. C. & Hatcher, P. G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Org. Geochem. 5, 283–290 (1984).Article 
    CAS 

    Google Scholar 
    Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).Article 
    ADS 

    Google Scholar 
    Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. 120, 617–640 (2015).Article 
    CAS 

    Google Scholar 
    Wotzka, H.-P. in Grundlegungen: Beiträge zur europäischen und afrikanischen Archäologie fűr Manfred K. H. Eggert (ed. Wotzka, H.-P.) 271–289 (Francke, 2006).Saulieu, G. D. et al. Archaeological evidence for population rise and collapse between ~2500 and ~500 cal. yr BP in Western Central Africa. Afr. Archéol. Arts 17, 11–32 (2021).
    Google Scholar 
    Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013).Article 
    ADS 

    Google Scholar 
    Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).Article 

    Google Scholar 
    Swindles, G. T. et al. Ecosystem state shifts during long-term development of an Amazonian peatland. Global Change Biol. 24, 738–757 (2018).Article 
    ADS 

    Google Scholar 
    Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).Article 
    ADS 

    Google Scholar 
    Lottes, A. L. & Ziegler, A. M. World peat occurrence and the seasonality of climate and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106, 23–37 (1994).Article 

    Google Scholar 
    Moutsamboté, J. M. Ecological, Phytogeographic and Phytosociological Study of Northern Congo (Plateaus, Bowls, Likouala and Sangha). PhD thesis, Univ. Marien Ngouabi (2012).Dingman, S. L. Fluvial Hydrology (W. H. Freeman, 1984).Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Lett. 39, L11401 (2012).Article 
    ADS 

    Google Scholar 
    Morris, P. J., Baird, A. J., Young, D. M. & Swindles, G. T. Untangling climate signals from autogenic changes in long-term peatland development. Geophys. Res. Lett. 42, 10,788–10,797 (2015).Article 

    Google Scholar 
    Young, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510–6522 (2017).Article 
    ADS 

    Google Scholar 
    Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. Centennial scale climate instabilities in a wet early Holocene West African monsoon. Geophys. Res. Lett. 34, L24702 (2007).Article 
    ADS 

    Google Scholar 
    Collins, J. A. et al. Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl. Acad. Sci. USA 115, 3261–3266 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l’assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris Sér. II 318, 1521–1526 (1994).
    Google Scholar 
    Elenga, H. et al. Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. C. R. Acad. Sci. Paris Sér. II 323, 403–410 (1996).CAS 

    Google Scholar 
    Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).Article 

    Google Scholar 
    Maley, J. et al. Late Holocene forest contraction and fragmentation in central Africa. Quat. Res. 89, 43–59 (2018).Article 

    Google Scholar 
    Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giresse, P., Maley, J. & Chepstow-Lusty, A. Understanding the 2500 yr BP rainforest crisis in West and Central Africa in the framework of the Late Holocene: pluridisciplinary analysis and multi-archive reconstruction. Global Planet. Change 192, 103257 (2020).Article 

    Google Scholar 
    Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).Article 
    ADS 

    Google Scholar 
    Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).Article 
    ADS 

    Google Scholar 
    Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change 9, 617–622 (2019).Article 

    Google Scholar 
    Cook, K. H., Liu, Y. & Vizy, E. K. Congo Basin drying associated with poleward shifts of the African thermal lows. Clim. Dyn. 54, 863–883 (2020).Article 

    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl. Acad. Sci. USA 118, e2003169118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 585–585 (2021).Article 
    ADS 

    Google Scholar 
    Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).Article 
    ADS 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).Article 
    ADS 

    Google Scholar 
    Blaauw, M. & Christen, J. A. Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Blaauw, M. et al. rbacon: age–depth modelling using Bayesian statistics. R package version 2.5.7 (2021); https://cran.r-project.org/web/packages/rbacon/index.html.Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).Article 
    CAS 

    Google Scholar 
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725–757 (2020).Article 
    CAS 

    Google Scholar 
    Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).Article 

    Google Scholar 
    Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta 64, 1013–1027 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Biester, H., Knorr, K. H., Schellekens, J., Basler, A. & Hermanns, Y. M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Leifeld, J., Klein, K. & Wüst-Galley, C. Soil organic matter stoichiometry as indicator for peatland degradation. Sci. Rep. 10, 7634 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol. Manage. 13, 671–684 (2005).Article 

    Google Scholar 
    Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Technol. 53, 421–437 (1998).CAS 

    Google Scholar 
    Behar, F., Beaumont, V. & Penteado, H. L. D. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56, 111–134 (2001).Article 
    CAS 

    Google Scholar 
    Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org. Geochem. 34, 327–343 (2003).Article 
    CAS 

    Google Scholar 
    Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem. 20, 1303–1306 (1993).Article 
    CAS 

    Google Scholar 
    Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1334 (1967).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).Article 
    ADS 

    Google Scholar 
    Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl. Acad. Sci. U.S.A. 64, 436–443 (1969).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, T. et al. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27, 15–24 (1998).Article 

    Google Scholar 
    Stone, B. C. A synopsis of the African Species of Pandanus. Ann. Missouri Bot. Gard. 60, 260–272 (1973).Article 

    Google Scholar 
    African Plant Database (version 3.4.0) (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, accessed January 2022); http://africanplantdatabase.ch.Polhill, R. M., Nordal, I., Kativu, S. & Poulsen, A. D. Flora of Tropical East Africa 1st edn (CRC Press, 1997).Hawthorne, D. et al. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3–17 (2018).Article 

    Google Scholar 
    Stevenson, J. & Haberle, S. Macro Charcoal Analysis: A Modified Technique Used by the Department of Archaeology and Natural History. Palaeoworks Technical Paper No. 5 (PalaeoWorks, Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, 2005).Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Ladd, S. N. et al. Leaf wax hydrogen isotopes as a hydroclimate proxy in the Tropical Pacific. J. Geophys. Res. 126, e2020JG005891 (2021).
    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).Article 
    ADS 

    Google Scholar 
    Munksgaard, N. C. et al. Data Descriptor: daily observations of stable isotope ratios of rainfall in the tropics. Sci. Rep. 9, 14419 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aggarwal, P. K. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624–629 (2016).Article 
    CAS 

    Google Scholar 
    Zwart, C. et al. The isotopic signature of monsoon conditions, cloud modes, and rainfall type. Hydrol. Processes 32, 2296–2303 (2018).Article 
    ADS 

    Google Scholar 
    Jackson, B., Nicholson, S. E. & Klotter, D. Mesoscale convective systems over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Weather Rev. 137, 1272–1294 (2009).Article 
    ADS 

    Google Scholar 
    Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dynam. 8, 653–675 (2017).Article 
    ADS 

    Google Scholar 
    International Atomic Energy Agency–World Meteorological Organization Global Network of Isotopes in Precipitation: The GNIP Database (accessed May 2020); https://nucleus.iaea.org/wiser/index.aspx.Sachse, D., Dawson, T. E. & Kahmen, A. Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isotopes Environ. Health Stud. 51, 124–142 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang, X., Zhao, B., Wang, K., Hu, Y. & Meyers, P. A. Seasonal variations of leaf wax n-alkane molecular composition and δD values in two subtropical deciduous tree species: results from a three-year monitoring program in central China. Org. Geochem. 118, 15–26 (2018).Article 
    CAS 

    Google Scholar 
    Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Albrecht, R., Sebag, D. & Verrecchia, E. Organic matter decomposition: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR). Biogeochemistry 122, 101–111 (2015).Article 
    CAS 

    Google Scholar 
    Matteodo, M. et al. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 330, 41–51 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Malou, O. P. et al. The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? Agr. Ecosyst. Environ. 301, 107030 (2020).Article 
    CAS 

    Google Scholar 
    Thoumazeau, A. et al. A new in-field indicator to assess the impact of land management on soil carbon dynamics. Geoderma 375, 114496 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Cranwell, P. A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3, 79–89 (1981).Article 
    CAS 

    Google Scholar 
    Ofiti, N. O. E. et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol. Biochem. 156, 108185 (2021).Article 
    CAS 

    Google Scholar 
    Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).Article 

    Google Scholar  More

  • in

    Taxonomic response of bacterial and fungal populations to biofertilizers applied to soil or substrate in greenhouse-grown cucumber

    All the results were reported relative to the control, unless specifically stated to the contrary or for clarity.Growth of cucumber plants in response to different biofertilizersSoilThere was no significant difference in cucumber growth before microbial fertilizer was applied. However, some microbial fertilizers significantly increased cucumber height and stem diameter when they were applied within 4 weeks from when the seedlings were planted (Fig. 1a,b,e,f). In the second week, SHZ and SMF increased plant height by 11.2 and 9.5%, respectively. In the third week, S267, SBS, SBH, SM and SHZ increased plant height by 12.0, 13.8, 15.0, 20.5 and 26.9%, respectively (Fig. 1a). In the fourth and fifth weeks, some treatments significantly increased cucumber height. In the second and third weeks, S267 significantly increased stem diameter by 21.2 and 16.8% (Fig. 1b).Figure 1Effect of different biofertilizer treatments on the growth of cucumber seedlings produced in soil or substrate in a greenhouse. S267 = Trichoderma Strain 267 added to soil; SBH = Bacillus subtilis and T. harzianum biofertilizers added to soil; SBS = B. subtilis biofertilizer added to the soil; SM = Compound biofertilizer added to soil; SHZ = T. harzianum biofertilizer added to soil; SCK = Untreated soil. US267 = T.267 biofertilizer added to substrate; USBH = B. subtilis and T. harzianum biofertilizers added to substrate; USBS = B. subtilis biofertilizer added to substrate; USM = Compound biofertilizer added to substrate; USHZ = T. harzianum biofertilizer added to substrate; USCK = Untreated substrate.Full size imageOver the subsequent 5 weeks, some microbial fertilizer treatments decreased cucumber height and stem diameter (Fig. 1g,h).SubstrateThere were no significant differences in cucumber growth before microbial fertilizer microbial fertilizer was applied (Fig. 1c,d,g,h). However, within 4 weeks of applying the microbial fertilizer, each biofertilizer treatment applied significantly increased cucumber height (Fig. 1c). US267 and USHZ significantly increased cucumber height by 39.8–75.4% and 56.1–86.1%, respectively. US267, USM and USHZ significantly increased the stem diameter by 76.8–108.9%, 71.1–97.6% and 80.4–122.4%, respectively (Fig. 1d).Over the subsequent 5 weeks, US267, USM and USHZ treatments continued to significantly increase cucumber height and stem diameter (Fig. 1g,h).Changes in the taxonomic composition of soil-borne fungal pathogensSoilBiofertilizers application significantly reduced the taxonomic composition of soil-borne fungal pathogens at different times during the cucumber growth period (Tables 1 and 2). Fusarium spp. were significantly reduced (T, 63.8% reduction, P  More

  • in

    Gender quotas and no-fishing zones

    Last year, female researchers received Aus$95 million less than male researchers in investigator grants from the Australian National Health and Medical Research Council.Credit: Lisa Maree Williams/Getty

    Australian research agency introduces ‘Game-changing’ gender quotasIn an attempt to achieve gender equity, Australia’s leading health and medical research funding organization plans to award half of its research grants for its largest funding programme to women and non-binary applicants, starting next year.The National Health and Medical Research Council (NHMRC) announced the move last month. It will apply to researchers at the mid-career and senior level applying for the agency’s investigator grants, which fund research and salaries. Grants will also be fixed at Aus$400,000 (US$252,000) per year for five years. Many countries struggle to achieve gender equity in research funding, and the NHMRC will be one of the first agencies to introduce gender quotas at this scale, say researchers.“It’s game-changing,” says Anna-Maria Arabia, chief executive of the Australian Academy of Science in Canberra. The plan “directly removes a barrier that’s historically led to attrition in the research workforce and has led to the significant under-representation of women at senior levels”, she says.In 2021, 254 investigator grants were awarded, worth Aus$400 million in total. But when two researchers in Melbourne reviewed the data, they found that men had received 23% more of the grants, worth an extra Aus$95 million, than had women. There was an outcry from researchers. This year, the agency conducted its own review of investigator-grant outcomes from the past three years and found that the biggest gap was among the most senior researchers. A subsequent discussion paper and consultations with researchers informed the latest decision.The NHMRC has been working for a decade to address gender inequity in its grant funding. For example, in 2017, it introduced ‘structural priority funding’, which reserves extra money — around 8% of the overall grant budget — for high-quality ‘near-miss’ research applications led by women.But this did not address the gender imbalance among the most established researchers. In 2021, only 20% of the applicants in this group were women.The council will be looking to see whether awarding equal numbers of grants by gender leads to an increase in the number of senior women applying for leadership grants.No-fishing zone boosts tuna catch ratesLarge no-fishing areas can drive the recovery of commercially valuable fish species, a study suggests. Researchers examined ten years’ worth of fisheries data from the vicinity of Papahānaumokuākea Marine National Monument, a 1.5-million-square-kilometre protected area off the northwestern Hawaiian islands.They found that after the area expanded in 2016, catch rates — the number of fish caught for every 1,000 hooks deployed — went up (S. Medoff et al. Science 378, 313–316; 2022). The increases were greater the closer the boats were to the no-fishing zone. At up to 100 nautical miles, the catch rate for yellowfin tuna (Thunnus albacares) increased by 54%, and that for bigeye tuna (Thunnus obesus) by 12%. The size of the protected area probably played a part in the positive effects, as did the fact that it runs from west to east, allowing tropical fish to move in their preferred temperature range without leaving the zone.

    SOURCE: S. Medoff et al. More

  • in

    Shedding light on declines in diversity of grassland plants

    Bobbink, R. et al. Ecol. Appl. 20, 30–59 (2010).Article 
    PubMed 

    Google Scholar 
    Olff, H. & Ritchie, M. E. Trends Ecol. Evol. 13, 261–265 (1998).Article 
    PubMed 

    Google Scholar 
    DeMalach, N., Zaady, E. & Kadmon, R. Ecol. Lett. 20, 60–69 (2017).Article 
    PubMed 

    Google Scholar 
    Borer, E. T. et al. Nature 508, 517–520 (2014).Article 
    PubMed 

    Google Scholar 
    Harpole, W. S. et al. Nature 537, 93–96 (2016).Article 
    PubMed 

    Google Scholar 
    Eskelinen, A., Harpole, W. S., Jessen, M.-T., Virtanen, R. & Hautier, Y. Nature https://doi.org/10.1038/s41586-022-05383-9 (2022).Article 

    Google Scholar 
    Koerner, S. E. et al. Nature Ecol. Evol. 2, 1925–1932 (2018).Article 
    PubMed 

    Google Scholar 
    Chesson, P. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Coley, P. D., Bryant, J. P. & Chapin, F. S. Science 230, 895–899 (1985).Article 
    PubMed 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Science 324, 636–638 (2009).Article 
    PubMed 

    Google Scholar 
    Allan, E. & Crawley, M. J. Ecol. Lett. 14, 1246–1253 (2011).Article 
    PubMed 

    Google Scholar  More