Tree diversity in a tropical agricultural-forest mosaic landscape in Honduras
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381. https://doi.org/10.1038/nature10425 (2011).Article
ADS
CAS
PubMed
Google Scholar
Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845. https://doi.org/10.1038/35002708 (2000).Article
ADS
CAS
PubMed
Google Scholar
FAO. Global Forest Resources Assessment 2020: Main report. 184p (Rome, Italy, 2020).Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22, 8–15 (2008).Article
PubMed
Google Scholar
Brouwer, F. & McCarl, B. Agriculture and climate beyond 2015: A New Perspective on Future Land Use Patterns. (2006).Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. 109, 8839–8844. https://doi.org/10.1073/pnas.1201664109 (2012).Article
ADS
PubMed
PubMed Central
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).Article
ADS
CAS
PubMed
Google Scholar
Declerck, F. et al. Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biol. Conserv. 143, 2301–2313. https://doi.org/10.1016/j.biocon.2010.03.026 (2010).Article
Google Scholar
Miller, K., Chang, E. & Johnson, N. Defining Common Ground for the Mesoamerican Biological Corridor (World Resources Institute, Washington, 2001).
Google Scholar
Fischer, J. et al. Conservation: Limits of land sparing. Science 334, 593–593. https://doi.org/10.1126/science.334.6056.593-a (2011).Article
ADS
CAS
PubMed
Google Scholar
Morecroft, M. D. et al. Agricultural lands key to mitigation and adaptation—Response. Science 367, 518–519. https://doi.org/10.1126/science.aba7577 (2020).Article
ADS
CAS
PubMed
Google Scholar
Vidal, A., Kumar, C., Zinngrebe, Y., Dobie, P. & Gassner, A. Trees on farms as a nature-based solution for
biodiversity conservation in agricultural landscapes. Report number: ICRAF Policy brief No 47. 12p. World
Agroforestry Centre. https://doi.org/10.13140/RG.2.2.14852.07045 (2020).César, R. et al. Forest and landscape restoration: A review emphasizing principles, concepts, and practices. Land 10, 28. https://doi.org/10.3390/land10010028 (2020).Article
Google Scholar
Stanturf, J. A. et al. Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Ann. For. Sci. https://doi.org/10.1007/s13595-019-0833-z (2019).Article
Google Scholar
VilchezMendoza, S. et al. Consistency in bird use of tree cover across tropical agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 24, 158–168. https://doi.org/10.1890/13-0585.1 (2014).Article
Google Scholar
Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020. https://doi.org/10.1126/science.aau6020 (2018).Article
CAS
PubMed
Google Scholar
Shaver, I. et al. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob. Environ. Change 32, 74–86. https://doi.org/10.1016/j.gloenvcha.2015.02.006 (2015).Article
Google Scholar
Zermeño-Hernández, I., Pingarroni, A. & Martínez-Ramos, M. Agricultural land-use diversity and forest regeneration potential in human- modified tropical landscapes. Agric. Ecosyst. Environ. 230, 210–220. https://doi.org/10.1016/j.agee.2016.06.007 (2016).Article
Google Scholar
Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773. https://doi.org/10.1111/conl.12773 (2021).Article
Google Scholar
Estrada-Carmona, N., Martínez-Salinas, A., DeClerck, F. A. J., Vílchez-Mendoza, S. & Garbach, K. Managing the farmscape for connectivity increases conservation value for tropical bird species with different forest-dependencies. J. Environ. Manag. 250, 109504. https://doi.org/10.1016/j.jenvman.2019.109504 (2019).Article
CAS
Google Scholar
Vandermeer, J. & Perfecto, I. The agroecosystem: A need for the conservation biologist’s lens. Conserv. Biol. 11, 591–592 (1997).Article
Google Scholar
Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agr. Ecosyst. Environ. 247, 98–111. https://doi.org/10.1016/j.agee.2017.06.018 (2017).Article
CAS
Google Scholar
Nair, P. R. The coming of age of agroforestry. J. Sci. Food Agric. 87, 1613–1619. https://doi.org/10.1002/jsfa.2897 (2007).Article
CAS
Google Scholar
Chatterjee, N., Nair, P. K. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67. https://doi.org/10.1016/j.agee.2018.07.014 (2018).Article
Google Scholar
Toledo-Hernández, M., Wanger, T. C. & Tscharntke, T. Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agr. Ecosyst. Environ. 247, 137–148. https://doi.org/10.1016/j.agee.2017.05.021 (2017).Article
Google Scholar
Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16, 573–582. https://doi.org/10.1016/j.baae.2015.08.006 (2015).Article
Google Scholar
Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).Article
Google Scholar
Martínez-Fonseca, J. G., Chávez-Velásquez, M., Williams-Guillen, K. & Chambers, C. L. Bats use live fences to move between tropical dry forest remnants. Biotropica 52, 5–10. https://doi.org/10.1111/btp.12751 (2020).Article
Google Scholar
Prevedello, J. A., Almeida-Gomes, M. & Lindenmayer, D. B. The importance of scattered trees for biodiversity conservation: A global meta-analysis. J. Appl. Ecol. 55, 205–214. https://doi.org/10.1111/1365-2664.12943 (2018).Article
Google Scholar
INE. Ministerio de Agricultura, Pesca y Alimentación (MAPA)- Gobierno de España-. 2021. Ficha de sectores. Sectores Agricultura y Pesquero. Honduras (2022).MinAmbiente-ICF. Tipologías de Bosques de Honduras. Programa ONU-REDD. Forest Carbon Partnership Facility. Tegucigalpa, Honduras. Secretaria de Energía, Recursos Naturales, Ambiente y Minas (Min Ambiente)/Instituto Nacional de Conservación y Desarrollo Forestal, Areas Protegidas y Vida Silvestre (ICF). (2017).Godinot, F., Somarriba, E., Finegan, B. & Delgado-Rodríguez, D. Secondary tropical dry forests are important to cattle ranchers in Northwestern Costa Rica. Trop. J. Environ. Sci. 54, 20–50 (2020).
Google Scholar
Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded Areas in the Tropics. Restor. Ecol. 13, 92–102. https://doi.org/10.1111/j.1526-100X.2005.00011.x (2005).Article
Google Scholar
Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 16, 1986–1999. https://doi.org/10.1890/1051-0761(2006)016[1986:poadid]2.0.co;2 (2006).Article
Google Scholar
Miceli-Mèndez, C. L., Ferguson, B. G. & Ramìrez-Marcial, N. in Post-Agricultural Succession in the Neotropics (ed Randall W. Myster) 165–191 (Springer New York, 2008).Gaoue, O. G. & Ticktin, T. Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: Variation across ecological regions and its impacts on population structure. Biol. Conserv. 137, 424–436. https://doi.org/10.1016/j.biocon.2007.02.020 (2007).Article
Google Scholar
Daily, G., Ceballos, G., Pacheco, J., Suzan, G. & Anchez-Azofeifa, A. Countryside biogeography of neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2003.00298.x (2003).Article
Google Scholar
Mayfield, M. M. & Daily, G. C. Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol. Appl. 15, 423–439. https://doi.org/10.1890/03-5369 (2005).Article
Google Scholar
Sánchez-Merlos, D. et al. Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Rev. Biol. Trop. https://doi.org/10.15517/rbt.v53i3-4.14601 (2005).Article
Google Scholar
Sekercioglu, C. H., Loarie, S. R., Oviedo Brenes, F., Ehrlich, P. R. & Daily, G. C. Persistence of forest birds in the Costa Rican agricultural countryside. Conserv. Biol. 21, 482–494. https://doi.org/10.1111/j.1523-1739.2007.00655.x (2007).Article
PubMed
Google Scholar
Wallace, G., Barborak, J. & MacFarland, C. Land use planning and regulation in and around protected areas: A study of best practices and capacity building needs in Mexico and Central America. Nat Conserv 3 (2005).
Rozendaal Danaë, M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114. https://doi.org/10.1126/sciadv.aau3114 (2019).Article
ADS
PubMed
PubMed Central
Google Scholar
Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests:
Towards climate change mitigation through sustainable timber harvesting. Forest Ecology and Management 496,
119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article
Google Scholar
Gillespie, T. W., Grijalva, A. & Farris, C. N. Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol. 147, 37–47. https://doi.org/10.1023/A:1009848525399 (2000).Article
Google Scholar
Ngo Bieng, M. A. et al. Relevance of secondary tropical forest for landscape restoration. For. Ecol. Manag. 493, 119265. https://doi.org/10.1016/j.foreco.2021.119265 (2021).Article
Google Scholar
Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests: Towards climate change mitigation through sustainable timber harvesting. For. Ecol. Manag. 496, 119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article
Google Scholar
Chacón, L. M. & Harvey, C. A. Live fences and landscape connectivity in a neotropical agricultural landscape. Agrofor. Syst. 68, 15. https://doi.org/10.1007/s10457-005-5831-5 (2006).Article
Google Scholar
Harvey, C. A. et al. Conservation value of dispersed tree cover threatened by pasture management. For. Ecol. Manag. 261, 1664–1674. https://doi.org/10.1016/j.foreco.2010.11.004 (2011).Article
Google Scholar
Suding, K. N. Toward an Era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).Article
Google Scholar
Moguel, P. & Toledo, V. M. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13, 11–21. https://doi.org/10.1046/j.1523-1739.1999.97153.x (1999).Article
Google Scholar
Harrison, R. D., Harrison, S., Laumonier, Y., Somarriba, E. & Suber, M. Biodiversity monitoring for agricultural landscapes. A protocol using biodiversity metrics to monitor agricultural sustainability under Aichi Target 7. (2019).Heck, K. L. Jr., van Belle, G. & Simberloff, D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461. https://doi.org/10.2307/1934716 (1975).Article
Google Scholar
Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, New Jersey, 2004).
Google Scholar
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article
Google Scholar
Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439. https://doi.org/10.1890/06-1736.1 (2007).Article
PubMed
Google Scholar
Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article
Google Scholar
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. XXII, 574 (Springer New York, NY, 2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.2-1 2, 1–2 (2015).Hsieh, T. C., Ma, K. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12613 (2016).Article
Google Scholar
Venables, W. N & Ripley, B. D Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-
95457-0 (2002)Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2009).Book
MATH
Google Scholar
gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. (2017). More