More stories

  • in

    Impacts of the US southeast wood pellet industry on local forest carbon stocks

    European Commission Directorate General for Research and Innovation. A sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment: Updated Bioeconomy Strategy (Directorate General for Research and Innovation, 2018).
    Google Scholar 
    Teitelbaum, L., Boldt, C. & Patermann, C. Global Bioeconomy Policy Report (IV): A Decade of Bioeconomy policy (International Advisory Council on Global Bioeconomy, 2020).
    Google Scholar 
    European Parliament; European Council. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018). (Online). http://data.europa.eu/eli/dir/2018/2001/oj.European Parliament; European Council. Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources (2009). (Online). http://data.europa.eu/eli/dir/2009/28/oj.Glasenapp, S., & McCusker, A. Wood energy data: the joint wood, in Wood Energy in the ECE Region: Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America, Geneva, United Nations’ Economic Commission for Europe: ECE/TIM/SP/42, 12–29 (2018).Eurostat. Wood Products—Production and Trade (2021). (Online). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade#Wood-based_industries. Accessed 10 9 2021.Food and Agriculture Organization of the United Nations. FAOSTAT: Forestry Production and Trade (2021). (Online). http://www.fao.org/faostat/en/#data. Accessed 13 September 2021.The Intergovernmental Panel on Climate Change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (PCC Task Force on National Greenhouse Gas Inventories, 2019).
    Google Scholar 
    European Parliament; European Council. Commission Delegated Regulation (EU) 2019/807 of 13 March 2019 Supplementing Directive (EU) 2018/2001 of the European Parliament and of the Council as Regards the Determination of High Indirect Land-Use Change-Risk (2018) (Online). fttps://eur-lex.europa.eu/eli/reg_del/2019/807/oj.de Oliveira Garcia, W., Amann, T. & Hartmann, J. Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. 8, 5280 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Searchinger, T. et al. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 9, 3741 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galik, C. S. & Abt, R. C. Sustainability guidelines and forest market response: An assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8, 658–669 (2016).
    Google Scholar 
    Favero, A. D. & Sohngen, B. Forests: Carbon sequestration, biomass energy, or both?. Sci. Adv. 6(13), eaay6792 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowie, A. et al. Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB-Bioenergy 13, 1210–1231 (2021).
    Google Scholar 
    Camia, A, Jonsson, G. J. R., Robert, N., Cazzaniga, N., Jasinevičius, G., Avitabile, V., Grassi, G., Barredo, J., & Mubareka, S. The Use of Woody Biomass for Energy Production in the EU (European Commission, Joint Research Center, 2021).Aguilar, F. X., Mirzaee, A., McGarvey, R., Shifley, S. & Burtraw, D. Expansion of US wood pellet industry points to positive trends but the need for continued monitoring. Sci. Rep. 10, 18607 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dale, V., Parish, E., Kline, K. & Tobin, E. How is wood-based pellet production affecting forest conditions in the southeastern United States?. For Ecol Manag 396, 143–14 (2017).
    Google Scholar 
    Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    FORISK Consulting. U.S. Wood Bioenergy Database (2020). (Online). https://forisk.com/. Accessed 2020.Domke, G. et al. Toward inventory-based estimates of soil organic carbon in forests of the United States. Ecol. Appl. 27(4), 1223–1235 (2017).CAS 
    PubMed 

    Google Scholar 
    Python Org. Python Programming Language (2022) (Online). https://www.python.org/. Accessed 1 January 2018.STATA. Stata: statistical software for data science (2022) (Online). https://www.stata.com/. Accessed 1 January 2018.QGIS. Free and Open Source Geographic Information System (2021). (Online). https://qgis.org/en/site/.US Department of Agriculture, Forest Service. Forest Inventory and Analysis National Program (2020). (Online). https://www.fia.fs.fed.us/.Burrill, E. A., Wilson, A. M., Turner, J. A., Pugh, S. A., Menlove, J., Christiansen, G., Conkling, B., & David, W. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2 (US Department of Agriculture, US Forest Service, 2018).Ahmed, M. et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 199, 158–171 (2017).
    Google Scholar 
    Timilsina, N. et al. A framework for identifying carbon hotspots and forest management drivers. J. Environ. Manag. 114, 293–302 (2012).
    Google Scholar 
    Coulston, J., Ritters, K., McRoberts, R., Reams, G. & Smith, W. True versus perturbed forest inventory plot locations for modeling: A simulation study. Can. J. For. Res. 36, 801–807 (2006).
    Google Scholar 
    Anselin, L. Spatial effects in econometric practice in environmental and resource economics. Am. J. Agric. Econ. 83(3), 705–710 (2001).MathSciNet 

    Google Scholar 
    Strange-Olesen, A., Bager, S., Kittler, B., Price, W., & Aguilar, F. Environmental Implications of Increased Reliance of the EU on Biomass from the South East US (European Commission Report ENV.B.1/ETU/2014/0043, 2015).Spelter, H., & Toth, D. North America’s Wood Pellet Sector (U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2009).Goerndt, M., Aguilar, F. & Skog, K. Drivers of biomass co-firing in US coal-fired power plants. Biomass Bioenerg. 58, 158–167 (2013).
    Google Scholar 
    US Department of Agriculture, Forest Service. Forest Inventory and Analysis National Program: Timber Products Output Studies (2022). (Online). https://www.fia.fs.fed.us/program-features/tpo/. Accessed 2022.Sonter, L. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8(1013), 66. https://doi.org/10.1038/s41467-017-00557-w (2017).CAS 

    Google Scholar 
    Mirzaee, A., McGarvey, R., Aguilar, F. & Schliep, E. Impact of biopower generation on eastern US forests. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-022-02235-4 (2022).
    Google Scholar 
    Brandeis, C., Taylor, M., Abt, K., & Alderman, D. Status and Trends for the U.S. Forest Products Sector: A Technical Document Supporting the Forest Service 2020 RPA Assessment (US Department of Agriculture, Forest Service Southern Research Station, Forest Inventory and Analysis, 2021).US Environmental Protection Agency. Emissions & Generation Resource Integrated Database (eGRID) (2021) (Online). https://www.epa.gov/egrid.US Department of Transportation. Ports: ArcGIS Online (2021) (Online). https://data-usdot.opendata.arcgis.com/datasets/usdot::ports/about.US Census Bureau. TIGER/Line Shapefiles (2021) (Online). https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.US Census Bureau. Population and Housing Units Estimates Datasets (2021) (Online). https://www.census.gov/programs-surveys/popest/data/data-sets.html.McCann, P. The Economics of Industrial Location: A Logistics-Costs Approach (Springer, 1998).Singh, D., Cubbage, F., Gonzalez, R. & Abt, R. Locational determinants for wood pellet plants: A review and case study of North and South America. BioResources 11(3), 7928–7952 (2016).
    Google Scholar 
    Boukherroub, T., LeBel, L. & Lemieux, S. An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales. Appl. Energy 198, 385–400 (2017).
    Google Scholar 
    Heckman, J., Ichimura, H. & Todd, P. Matching as an econometric evaluation estimator: Evidence from evaluating a JobTraining Programme. Rev. Econ. Stud. 64(4), 605–654 (1997).MATH 

    Google Scholar 
    Caliendo, M. & Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22(1), 31–72 (2008).
    Google Scholar 
    Woo, H., Eskelson, B. & Monleon, V. Matching methods to quantify wildfire effects on forest carbon mass in the U.S. Pacific Northwest. Ecol. Appl. 31(3), e02283 (2021).PubMed 

    Google Scholar 
    Morreale, L., Thompson, J., Tang, X., Reinmann, A. & Hutyra, L. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12(7181), 66 (2021).
    Google Scholar 
    Isard, W. The general theory of location and space-economy. Q. J. Econ. 63(4), 476–506 (1949).
    Google Scholar 
    Aguilar, F. X. Spatial econometric analysis of location drivers in a renewable resource-based industry: The U.S. South Lumber Industry. For. Policy Econ. 11(3), 184–193 (2009).
    Google Scholar 
    Aguilar, F. X. Conjoint analysis of industry location preferences: evidence from the softwood lumber industry in the US. Appl. Econ. 66, 3265–3274 (2010).
    Google Scholar 
    Aguilar, F. X., Goerndt, M., Song, N. & Shifley, S. Internal, external and location factors influencing cofiring of biomass with coal in the US northern region. Energy Econ. 34, 1790–1798 (2012).
    Google Scholar 
    Ferraro, P. J. et al. Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proc. Natl. Acad. Sci. 112(24), 7420–7425 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, D. & Pearse, P. Forest Economics 412 (UBC Press, 2011).
    Google Scholar 
    Villalobos, L., Coria, J. & Nordén, L. Has forest certification reduced forest degradation in Sweden?. Land Econ. 94, 220–238 (2018).
    Google Scholar 
    Wooldridge, J. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2010).Blackman, A., Corral, L., Lima, E. & Asner, G. Titling indigenous communities protects forests in the Peruvian Amazon. PNAS 114(16), 4123–4128 (2016).ADS 

    Google Scholar 
    Abt, K. L., Abt, R. C., Galik, C. S., & Skog, K. E. Effect of Policies on Pellet Production and Forests in the U.S. South: A Technical Document Supporting the Forest Service Update of the 2010 RPA Assessment USDA (Forest Service GTR Srs-202, 2014).Hardie, P. Parks, P. Gottleib and D. Wear, “Responsiveness of rural and urban land uses to land rent determinants in the U.S. South,” Land Economics, vol. 76, no. 4, pp. 659–673, 2000.Parish, E., Herzberger, A., Phifer, C. & Dale, V. Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecol. Soc. 23(1), 28 (2018).
    Google Scholar 
    Titus, B. et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 11, 66. https://doi.org/10.1186/s13705-021-00281-w (2021).
    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration?. Geoderma 137(3), 253–268 (2007).ADS 
    CAS 

    Google Scholar 
    Nave, L., Vance, E., Swanston, C. & Cepas, P. S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 259, 857–866 (2010).
    Google Scholar 
    Mayer, M. et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 466, 118127 (2020).
    Google Scholar 
    Berryman, E., Hatten, J., Page-Dumroese, D. S., Heckman, K. A., D’Amore, D. V., Puttere, J., & Domke, G. M. Soil carbon in Forest and Rangeland Soils of the United States Under Changing Conditions 9–31 (Springer, 2020).Nave, L. E. et al. Land use and management effects on soil carbon in US Lake States, with emphasis on forestry, fire, and reforestation. Ecol. Appl. 66, 2356 (2021).
    Google Scholar 
    Cao, B., Domke, G. M., Russell, M. B. & Walters, B. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 654, 94–106 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coulston, J. & Wear, D. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 66. https://doi.org/10.1038/srep16518 (2015).
    Google Scholar 
    Röder, M., Whittaker, C. & Thornley, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenerg. 79, 50–63 (2015).
    Google Scholar 
    Hanssen, S., Duden, A., Junginger, M., Dale, D. & D. vander Hilst,. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GC-Bioenergy 9(9), 1406–1422 (2017).CAS 

    Google Scholar 
    Picciano, P., Aguilar, F., Burtraw, D. & Mirzaee, A. Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants. Resour. Energy Econ. 6, 66 (2022).
    Google Scholar 
    Hetchner, S., Schelhas, J., & Brosius, J. Forests as Fuel: Energy, Landscape, Climate, and Race in the U.S. South (Lexington Books, 2022).Coulston, J., Wear, D. & Vose, J. Complex forest dynamics indicate potential for slowing carbon accumulation in the southeastern United States. Sci. Rep. 5, 8002 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palahí, M. et al. Concerns about reported harvests in European forests. Nature 592, E15–E17 (2021).PubMed 

    Google Scholar  More

  • in

    Metagenome-assembled genome extraction and analysis from microbiomes using KBase

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    Tully, B. J. & Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Stewart, R. D. et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 9, 870 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography and lifestyle. Cell 176, 649–662 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509, https://doi.org/10.1038/s41587-020-0718-6 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol 12, 69 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saheb Kashaf, S., Almeida, A., Segre, J. A. & Finn, R. D. Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nat. Protoc. 16, 2520–2541 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 49, D10–D17 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Kluyver, T., et al. Jupyter Notebooks – a publishing format for reproducible computational workflows. In: Loizides F, Schmidt B, editors. Positioning and Power in Academic Publishing: Players, Agents and Agendas. p. 87–90 (2016).Banfield, J. Development of a Knowledgebase to Integrate, Analyze, Distribute, and Visualize Microbial Community Systems Biology Data. (2015). Report number: DOE-UCB-4918, OSTI ID: 1167269.Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47, D666–D677 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44, W3–W10 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Devisetty, U. K., Kennedy, K., Sarando, P., Merchant, N. & Lyons, E. Bringing your tools to CyVerse discovery environment using Docker. F1000Res. 5, 1442 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L., Lu, Z., Van Buren, P. & Ware, D. SciApps: a bioinformatics workflow platform powered by XSEDE and CyVerse. in Proceedings of the Practice and Experience on Advanced Research Computing 1–5 (Association for Computing Machinery, 2018).Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45, D535–D542 (2017).Article 
    PubMed 
    CAS 

    Google Scholar 
    Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).PubMed 
    CAS 

    Google Scholar 
    Wu, Y.-W. et al. Ionic liquids impact the bioenergy feedstock-degrading microbiome and transcription of enzymes relevant to polysaccharide hydrolysis. mSystems 1, e00120–16 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7, 2178–2191 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Foster, I. Globus Online: accelerating and democratizing science through cloud-based services. IEEE Internet Comput 15, 70–73 (2011).Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46, W95–W101 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma 10, 421 (2009).Article 

    Google Scholar 
    Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42, D26–D31 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Freitas, T. A. K., Li, P.-E., Scholz, M. B. & Chain, P. S. G. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res 43, e69 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 2014 (2019).Article 

    Google Scholar 
    Youngblut, N. D. & Ley, R. E. Struo2: efficient metagenome profiling database construction for ever-expanding microbial genome datasets. Peer J 9, e12198 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform 12, 385 (2011).Article 

    Google Scholar 
    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol 22, 178 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).Article 
    PubMed 
    CAS 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. Chapter 10, Unit 10.3 (2003).
    Google Scholar 
    Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394–1403 (2004).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50, D785–D794 (2022).Article 
    PubMed 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Overbeek, R. et al. The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42, D206–D214 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11, 119 (2010).Article 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Haft, D. H. et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46, D851–D860 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 48, 8883–8900 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43, D261–D269 (2015). (Database Issue).Article 
    PubMed 
    CAS 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res 41, D387–D395 (2013). (Database issue).Article 
    PubMed 
    CAS 

    Google Scholar 
    Eddy, S. R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490–D495 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Chivian, D., Dehal, P. S., Keller, K. & Arkin, A. P. MetaMicrobesOnline: phylogenomic analysis of microbial communities. Nucleic Acids Res 41, D648–D654 (2013).Article 
    PubMed 
    CAS 

    Google Scholar 
    Karaoz, U. & Brodie, E. L. microTrait: a toolset for a trait-based representation of microbial genomes. Front. Bioinform. https://doi.org/10.3389/fbinf.2022.918853 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood-Charlson, E. M. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Hofmeyr, S. et al. Terabase-scale metagenome coassembly with MetaHipMer. Sci. Rep. 10, 10689 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res 30, 315–333 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lui, L. M., Nielsen, T. N. & Arkin, A. P. A method for achieving complete microbial genomes and improving bins from metagenomics data. PLoS Comput Biol 17, e1008972 (2021).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12, R44 (2011).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Chivian, D. et al. Genome extraction from shotgun metagenome sequence data. KBase n/33233/628 https://doi.org/10.25982/33233.606/1831502 (2022).Article 

    Google Scholar 
    Chivian, D., et al. Moab desert crust – sample 4E. KBase n/62384/334 (2022). https://doi.org/10.25982/62384.253/1831503Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform 11, 538 (2010).Article 

    Google Scholar 
    Benson, D. A. et al. GenBank. Nucleic Acids Res 46, D41–D47 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).Article 
    PubMed 
    CAS 

    Google Scholar 
    Teiling, C. BaseSpace: Simplifying metagenomic analysis. 26th European Congress of Clinical Microbiology and Infectious Diseases (2016) 10.26226/morressier.56d5ba2ed462b80296c9509dReich, M. et al. The GenePattern notebook environment. Cell Syst 5, 149–151.e1 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karp, P. D. et al. A comparison of microbial genome web portals. Front. Microbiol. 10, 208 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yue, Y. et al. Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets. BMC Bioinform 21, 334 (2020).Article 
    CAS 

    Google Scholar 
    Nelson, W. C., Tully, B. J. & Mobberley, J. M. Biases in genome reconstruction from metagenomic data. PeerJ 8, e10119 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11, 2864–2868 (2017).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Li, L., Stoeckert, C. J. Jr & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189 (2003).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumari, S. et al. A KBase case study on genome-wide transcriptomics and plant primary metabolism in response to drought stress in sorghum. Curr. Plant Biol. 28, 100229 (2021).Article 
    CAS 

    Google Scholar 
    Seaver, S. M. D. et al. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res 49, D575–D588 (2021).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar  More

  • in

    Current global population size, post-whaling trend and historical trajectory of sperm whales

    Selection of surveys and extraction of dataWe selected published surveys that produced estimates of sperm whale population size or density (see Supplementary Information for methodology; surveys listed in Table 1). We extracted: the type of survey (ship, aerial; acoustic, visual), the years of data collection; the coordinates of the boundary of the study area; the estimates of g(0) and CV (g(0)) used to correct for availability bias, if given; and an estimate of sperm whale population or density in study area with CV. From these we calculated for each survey the survey area with waters greater than 1000 m deep (typical shallow depth limit of sperm whales3). When no value of g(0) was used (8 ship visual surveys) we corrected the population/density estimate using an assumed generic value of g(0) and recalculated the CV to include uncertainty in g(0) (as in Eq. 1 of8). Three ship visual surveys did calculate a single g(0) estimate: 0.62 (CV 0.35)32; 0.57 (CV 0.28)35; 0.61 (CV 0.25)37. These are consistent and suggest a generic g(0) = 0.60 (CV 0.29), also agreeing with g(0) = 0.60 estimated from pooled surveys in the California Current10.Global habitat of sperm whalesTo extrapolate sperm whale densities from surveyed study areas to the sperm whales’ global habitat, we created a one-degree latitude by one-degree longitude grid. We removed the following grid points as not being prime sperm whale habitat1,3,40: points on land or with central depths less than 1000 m; largely ice-covered points in the Beaufort Sea, and the waters north of Svalbard and Russia; the Black Sea and Red Sea both of which have shallow entrances that appear not to be traversable by sperm whales.Generally, food abundance is a good predictor of species distribution. However, this is not possible for sperm whales as we have no good measures of the abundance or distribution of most of their prey, deep-water squid57. Instead, oceanographic measures have been used to describe sperm whale distributions over various spatial scales with a moderate level of success13,14. We follow this approach. Measures that might predict sperm whale density were collected for each grid point, some at just the surface, others at the surface, 500 m depth, 1000 m depth or an average of the measures at the different depths (Supplementary Table S2). Water depth was the strongest predictor in Mediterranean encounters, when compared to slope and distance to shore13. Temperature and salinity have been used as predictors for the distribution of fish and larger marine animals, which could translate into prey availability and thus density for sperm whales58,59. Primary productivity and dissolved oxygen generally dictate the biomass of wildlife in an area, while nitrate and phosphate levels limit the amount of primary productivity in an area60. Eddy kinetic energy is a measure of the dynamism of physical oceanography which is becoming a commonly used predictor of cetacean habitat61. We did not use: latitude and longitude as these primarily describe the general geographic distribution of the study areas, and geographic aggregates of sperm whale catches62 as these proved to have no predictive power. The mean values of the 14 predictor measures were calculated over calendar months for each grid point, and then over the grid points in each study area.To obtain predictors of the sperm whale density at each grid point, we then made quadratic regressions of the density of sperm whales in each study area (i), d(i), on the mean values of the predictor measures, weighting each study area by its surface area. Because the surveys were conducted over different time periods, the densities were corrected based on the estimated trajectory of global sperm whale populations by multiplying d(i) by the ratio of the global population in 1993 over that in the mid-year of the survey (as in Fig. 4). Predictor variables were selected using forward stepwise selection based upon reduction in AIC.Sperm whale population sizeThe population of sperm whales globally, N, was then calculated as follows:$$N=sum_{k}dleft(kright)cdot aleft(kright),$$
    (1)
    where a{k} are the parameters of the regression; the summation is over k, the grid points; d(k) is the estimated sperm whale density at grid point k from the habitat suitability model; and a(k) is the area of the 1° cell centred on grid point k. Population estimates for other ocean areas (North Atlantic, North Pacific, Southern Hemisphere) were calculated similarly.The CVs of these population estimates were calculated following the methodology in8, (although there is an error in Eq. (3) of8 such that the squareroot symbol covers both the numerator and denominator rather than just the numerator). The error due to uncertain density estimates for the different surveys is:$$CVleft({D}_{T}right)=frac{sqrt{sum_{i}{left(CV({n}_{i})cdot {n}_{i}right)}^{2}}}{sum_{i}{n}_{i}}.$$
    (2)
    This is combined with the uncertainty in the extrapolation process (output from the linear models), CV(extrap.), to give an overall CV for the population estimate:$$CVleft(Nright)=sqrt{{CV({D}_{T})}^{2}+{CV(mathrm{extrap}.)}^{2}.}$$
    (3)
    Post-whaling trend in population sizeWe compiled a database of series of surveys producing population estimates of the same study area during the period 1978 (by which time most commercial sperm whaling had ceased) and 2022. Each series had to span at least 10 years, and all of the surveys in the series had to be comparable in terms of area covered throughout the time span. There also had to have been at least 3 surveys for a data set to be included.The data consisted of the survey area, A, the estimated population in area A in year y (for multi-year surveys, y would be the midpoint of the data collection years), nE(A,y), and the provided CV of that estimate, CV(nE(A,y)). The data series used for these analyses are summarized in Table 3.For each survey area, A, we calculated the trend in logarithmic population size, r(A), over time using weighted linear regression:$${text{Log}}left( {n_{E} left( {A,y} right)} right) , sim {text{ constant}}left( A right) , + rleft( A right) cdot y. left[ {{text{weight }} = { 1}/left( {{1} + {text{ CV}}left( {n_{E} left( {A,y} right)} right)} right)^{{2}} } right]$$
    (4)
    Table 3 also includes other published estimates of sperm whale population trends, from sighting rates or mark-recapture analyses of photoidentification data, with these estimates also having to span at least 10 years of data collection, and include data collected in three or more different years.Population trajectoryTo examine possible trajectories of the global sperm whale population following the start of commercial whaling in 1712, we used a variant of the theta-logistic, a population model that has been employed in other recent analyses of the population trajectories of large cetaceans45,63. The theta-logistic model is:$$nleft(y+1right)=nleft(yright)+rcdot nleft(yright)left(1-{left(frac{nleft(yright)}{nleft(1711right)}right)}^{theta }right)-fleft(yright)cdot cleft(yright).$$
    (5)

    Here, n(y) is the population of sperm whales in year y, r is the maximum potential rate of increase of a sperm whale population, and θ describes how the rate of increase varies with population size relative to its basal level before whaling in 1711, n(1711). The recorded catch in year y is c(y) and f(y) is a correction for bias in recorded catches.Whaling reduced the proportion of large breeding males64, likely disrupted the social cohesion of the females3, and may have had other lingering effects which reduced pregnancy or survival, and thus the rate of increase. Poaching has been found to reduce the reproductive output of African elephants, Loxodonta Africana, which have a similar social system to the sperm whales3, and this effect lingers well beyond the effective cessation of poaching46. There is some evidence for these effects of what we call “social disruption” on sperm whale population dynamics20,46,65. We added a term to the theta-logistic to account for such effects:$$nleft(y+1right)=nleft(yright)left[1+rcdot left(1-{left(frac{nleft(yright)}{nleft(1711right)}right)}^{theta }right)-qcdot frac{sum_{t=y-T}^{y}f(t)cdot c(t)}{nleft(y-Tright)}right]-f(y)cdot c(y).$$
    (6)

    Here, (frac{sum_{t=y-T}^{y}f(t)cdot c(t)}{nleft(y-Tright)}) is the proportion of the population killed over the last T years, and q is the reduction in the rate of increase when almost all the whales have been killed. This reduction is modelled to fall linearly as the proportion killed declines to zero.The global sperm whale population has some geographic structure18. Females appear to rarely move between ocean basins, and males seem to largely stay within one basin. Furthermore, sperm whaling was progressive, moving from ocean area to ocean area as numbers were depleted4. We model this by assuming K largely separate sperm whale subpopulations of equal size. Exploitation in 1712 starts in subpopulation 1 and moves to subpopulations 1 and 2 when the population 1 falls to α% of its initial value, and so on for the other ocean areas. The catch in each year in each area being exploited is pro-rated by the sizes of the different subpopulations being exploited. The population model for subpopulation k, which is one of the KE subpopulations being exploited in year y, is:$$nleft(k,y+1right)=nleft(k,yright)left[1+rcdot left(1-{left(frac{nleft(k,yright)}{nleft(k,1711right)}right)}^{theta }right)-qcdot frac{sum_{t=y-T}^{y}C(k,t)}{nleft(k,y-Tright)}right]-Cleft(k,yright),$$
    (7)
    where the estimated catch in year y in subpopulation k is given by: (Cleft(k,yright)=f(y)cdot c(y)cdot n(k,y)/sum_{{k}^{mathrm{^{prime}}}= More

  • in

    Surprising effects of cascading higher order interactions

    Study siteWe conducted laboratory studies at the field site in Finca Irlanda, which is a 300-hectare organic shaded coffee farm located at 1100-m altitude, in the municipality of Tapachula, the state of Chiapas in Southern Mexico (92° 20′ 29″ W and 15° 10′ 65″ N). For the laboratory experiments, all organisms were freshly collected from Finca Irlanda or reared in the lab from insects collected from the field close by. The lab and field work was performed with a permit from the farm owner the Peters family.Ant aggression testTo examine the effect of phorid flies (P. lascinosus) on the aggressivity of ants (A. sericeasur) towards the parasitoids of the beetle larvae (A. orbigera), we conducted an ant aggression test with two treatments: with and without phorids. In the first treatment, a small coffee branch containing two leaves with scale insects (C. viridis) and 20 ant workers were both introduced into a one-liter plastic container. This was done to mimic as much as possible field conditions where the ants are tending scale insects. After waiting for at least 15 min for the ants to calm down and start tending the scale insects, one third- or fourth-instar larva of the beetle was introduced. In the second treatment, all settings were the same except for the addition of 3–4 phorid flies. Once the two treatments were established, one female parasitoid wasp (H. shuvakhinae) was released into each container. During a forty-minute trial, each time that a parasitoid wasp encountered an ant worker, the response of the ant individual was recorded. Ant responses to parasitoids were classified into two categories: (1) the ant ignores the wasp; (2) the ant attacks the wasp. All insects were used for a single replicate and then discarded. A total of four replicates were completed for both the presence and absence of phorids. For each trial, we calculated the proportion of actions (either aggressive or none) by ants when encountering the parasitoid wasp in the treatments with and without phorid flies. We used R36 to conduct a two-sample Mann–Whitney U test on the proportion of ant actions.Parasitism experiments and analysesTo examine the parasitoid wasp’s host preference and the effect of the 1st degree and the 2nd degree HOIs on the beetle’s parasitism and sex ratio, we conducted a laboratory experiment in insect tents (60 cm × 60 cm × 60 cm) with three treatments: (1) no ants (no HOIs but only the wasp and the beetle larvae), (2) ants (1st degree HOI), and (3) ants and phorids (1st and 2nd degree HOIs) (Fig. 1-B). We randomly assigned insect tents to each treatment in each trial, and the tents for each treatment were also shuffled in each trial. All beetle larvae used for these experiments were reared in the laboratory for at least two generations from freshly collected beetle adults. In each tent we placed a coffee branch with 4–6 leaves infested with approximately 100 scale insects inside a plastic container at the center of an insect tent. The set up for the three treatments of species combinations were as follows: (1) 4–5 third or fourth instar beetle larvae and a parasitoid wasp; (2) 4–5 third or fourth instar beetle larvae, a parasitoid wasp, and about 60–80 ant workers; (3) 4–5 third or fourth instar beetle larvae, a parasitoid wasp, about 60–80 ant workers and 3–4 phorid flies. Organism densities in these treatments were close to those observed in the field. To allow for acclimation, we introduced organisms into the tents in the following order: first, we introduced the coffee branch containing scales, immediately followed by the ants (in treatments 2 and 3). After the ants settled down and started tending the scale insects, we introduced the beetle larvae. Once the larvae began moving on the coffee leaves, we introduced the phorids (in treatment 3). When the three treatments were established, and the organisms exhibit normal behavior, we released one lab-reared female parasitoid wasp (H. shuvakhinae) in each tent (treatments 1, 2, and 3). We allowed the organisms to interact for 24 h. After 24 h, we collected all beetle larvae in each treatment and reared them with sufficient scale insects as food, until beetle adults emerged or parasitism symptoms appeared (parasitized larvae turned into hardened black mummies). The treatments of no HOI and 1st + 2nd degree HOI were repeated for 10 consecutive times, and the treatment of 1st degree HOI was repeated for 11 consecutive times, with new individuals of each organism. We recorded parasitism instances and beetle sexes upon emergence. To estimate the sex ratio without parasitoid influence, 78 randomly selected beetle individuals were reared on coffee leaves with scale insects without any interaction with other organisms.To analyze the effect of the parasitoid, the ant and the phorid fly on the parasitism rate and the sex ratio of the beetle, we developed a nested model, starting from$$logitleft(widehat{P}(S)right)=a+bA$$where (widehat{P}(S)) is the probability of an individual being parasitized, A is a binary variable, standing for the absence (0) and presence (1) of ants, a is the baseline probability of parasitism, and b is the magnitude of parasitism altered by ants in the logistic function. We further hypothesized that phorid attacks modify the strength of the interaction modification that ants exert upon the host-parasitoid interaction. Therefore,$$b=g+hP$$where P is another binary variable, standing for the presence (1) and absence (0) of phorids. Substituting b, we obtain the following function,$$logitleft(widehat{P}(S)right)=a+gA+hAP$$where g represents the effect of ants on the parasitism rate of A. orbigera larvae, and h represents the effect of the fly’s facilitation, via interfering with the ant’s interference on the parasitism rate of A. orbigera larvae. We used binary responses (1: survival; 0: parasitized) of all available beetle individuals across the three treatments. We performed model selection based on the Akaike Information Criterion (AIC) and likelihood ratio tests. For the latter, we started model selection by fitting the full model and preceding each step by eliminating the term that had the least significance (the greatest p-value) on the explanation of the dependent variable. The analysis was performed with the application of the bbmle package in R. By doing this, we determined the maximum likelihood estimates of survival probability of the beetle, (widehat{P}(S)), in the three treatments: (1) A = 0, AP = 0 (no HOI); (2) A = 1, AP = 0 (one HOI: ant interference) and (3) A = 1, AP = 1 (interacting HOIs: phorid interference with ant interference), and errors associated with these estimates.The same idea applies to the sex ratio of the beetle under the influence of various organisms. We developed the following equation,$$logitleft(widehat{P}(F|S)right)= r+mA+nAP$$where (widehat{P}(F|S)) is the probability of a parasitism survivor being female. A and P are both binary variables. Respectively, they represent the ant and the phorid fly, and the numeric attributes, 0 and 1, denote their absence and presence. As before, model selection and parameter estimates were conducted with AIC. By doing this, we determined (widehat{P}(F|S)), the estimate of being a female beetle given survival, for the three treatments: (1) A = 0, AP = 0 (no HOI); (2) A = 1, AP = 0 (one HOI: ant interference) and (3) A = 1, AP = 1 (interacting HOIs: phorid interference with ant interference), and errors associated with these estimates. We employed the mle2 function in the bbmle package in R to estimate the female probability (1) in the absence of HOI (the beetle and the parasitoid alone), (2) in the presence of the 1st degree HOI (the beetle, the parasitoid and the ant), and (3) in the presence of the 1st and the 2nd degree HOIs (the beetle, the parasitoid, the ant and the phorid fly).Probabilities of per capita female and per capita male survival from parasitism under the influence of ant and the phorid flyTo test whether the sex ratio of beetle survivors’ population is due to sex-differential survival probability, Bayes’ theorem was employed. Per capita female survival probability from parasitism in each treatment of the parasitism experiment was derived based on (widehat{P}(F)), (widehat{P}left(F|Sright),) and (widehat{P}(S)), and per capita male survival probability was derived based on (widehat{P}(M)), (widehat{P}left(M|Sright),) and (widehat{P}(S)). According to the Central Limit Theorem, the estimates of proportions, (widehat{P}left(S|Fright)) and (widehat{P}left(S|Mright)), are approximately normally distributed,$$widehat{P}left(S|Fright)sim Nleft(widehat{P}left(S|Fright), sqrt{frac{widehat{P}(S|F)times left(1-widehat{P}left(S|Fright)right)}{{n}^{*}}}right)$$$$widehat{P}left(S|Mright)sim Nleft(widehat{P}left(S|Mright), sqrt{frac{widehat{P}(S|M)times left(1-widehat{P}left(S|Mright)right)}{{n}^{*}}}right)$$with means (widehat{P}left(S|Fright)) and (widehat{P}(S|M)), and standard deviations (sqrt{frac{widehat{P}left(S|Fright)times (1-widehat{P}left(S|Fright))}{{n}^{*}}}) and (sqrt{frac{widehat{P}left(S|Mright)times (1-widehat{P}left(S|Mright))}{{n}^{*}}}), where (widehat{P}(S|F)) and (widehat{P}(S|M)), respectively, are the population proportions of females and males. Here we employ n*, the smallest sample size among those of the three variables in the Bayesian formulas for males and females. Since the three variables have different sample sizes, n* guarantees a conservative estimate of standard error, and thus confidence interval, of each derived probability. More

  • in

    Source apportionment of soil heavy metals with PMF model and Pb isotopes in an intermountain basin of Tianshan Mountains, China

    The plots of Igeo, PERI, and PLI of HMs in the topsoil of the tourist area of Sayram Lake (Fig. 5) reveal the degree of HM pollution and eco-risk in this study area on the one hand and, on the other hand, indicate the direction for the relevant agencies to target soil environmental protection and HM pollution prevention and control measures. In this study, the Igeo results showed that Cd was the most highly enriched HM, and Pb, Zn, Cd, and Ni were slightly enriched in a few sample sites. The unnatural accumulation of these elements is usually closely associated with human activities in the area34. Tourism is the main economic activity in the district, and published studies have reported that tourism infrastructure construction (e.g., roads, buildings, etc.) and tourism wastes (e.g., plastic bags, batteries, hotel wastewater) release Cd into the soil35. Additionally, the accumulation of Pb, Zn, Cu and Ni in soils is usually associated with traffic emissions36. The PERI showed that the study area was at low risk overall, with only point ss04 exhibiting medium risk; however, this result was caused by the abnormally high Cd concentration value (Fig. 4) at point ss04 (Cd (concentration): 1.08 mg/kg, Cd (background): 0.34 mg/kg). This anomalous concentration value has a large influence on the PERI calculated based on the measured concentration, the background value and the toxicity coefficient. Therefore, references to this point can be appropriately removed when considering eco-risk. The PLI of each sampling point was greater than 1 and less than 2, which means that the area was in a moderately contaminated state. In general, the degree of soil HM contamination in this area was low; however, due to HM toxicity, bioaccumulation, and persistence37, the HM contamination of this area still requires sustained attention.Figure 5Contamination and ecological risk indices: (a) geoaccumulation index (Igeo) of HMs; (b) ecological risk of individual HMs; (c) potential ecological risk index (PERI) of HMs; (d) pollution load index (PLI) of HMs.Full size imageCorrelation analysis is an efficient way to reveal correlations among HMs through Pearson correlation coefficients, and HMs with significant correlations may originate from the same source38. As shown in Table S5, the elemental pairs Cd-Cu (p  More

  • in

    Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 

    Google Scholar 
    Kaiser, M. I. & Müller, C. What is an animal personality?. Biol. Philos. 36, 1 (2021).
    Google Scholar 
    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 

    Google Scholar 
    Gosling, S. D. From mice to men: What can we learn about personality from animal research?. Psychol. Bull. 127, 45–86 (2001).PubMed 

    Google Scholar 
    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 

    Google Scholar 
    Koolhaas, J. M. Coping style and immunity in animals: Making sense of individual variation. Brain Behav. Immun. 22, 662–667 (2008).PubMed 

    Google Scholar 
    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).
    Google Scholar 
    Stamps, J. A. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett. 10, 355–363 (2007).PubMed 

    Google Scholar 
    Finkemeier, M. A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front Vet. Sci. 10(5), 355–363 (2018).
    Google Scholar 
    Murphy, E., Nordquist, R. E. & van der Staay, F. J. A review of behavioural methods to study emotion and mood in pigs. Sus. Scrofa. Appl. Anim. Behav. Sci 159, 9–28 (2014).
    Google Scholar 
    Lauber, M. C. Y., Hemsworth, P. H. & Barnett, J. L. The effects of age and experience on behavioural development in dairy calves. Appl. Anim. Behav. Sci. 99, 41–52 (2006).
    Google Scholar 
    Neave, H. W., Costa, J. H. C., Weary, D. M. & von Keyserlingk, M. A. G. Personality is associated with feeding behavior and performance in dairy calves. J. Dairy Sci. 101, 7437–7449 (2018).PubMed 

    Google Scholar 
    Foris, B., Zebunke, M., Langbein, J. & Melzer, N. Evaluating the temporal and situational consistency of personality traits in adult dairy cattle. Plos One 13, e0204619 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dingemanse, N. J. & Dochtermann, N. A. Quantifying individual variation in behaviour: Mixed-effect modelling approaches. J. Anim. Ecol. 82, 39–54 (2013).PubMed 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).Article 
    PubMed 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Neave, H. W., Costa, J. H. C., Benetton, J. B., Weary, D. M. & von Keyserlingk, M. A. G. Individual characteristics in early life relate to variability in weaning age, feeding behavior, and weight gain of dairy calves automatically weaned based on solid feed intake. J. Dairy Sci. 102, 10250–10265 (2019).PubMed 

    Google Scholar 
    Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. OIE 33, 189–196 (2014).
    Google Scholar 
    Carslake, C., Vázquez-Diosdado, J. A. & Kaler, J. Machine learning algorithms to classify and quantify multiple behaviours in dairy calves using a sensor: Moving beyond classification in precision livestock. Sensors 21, 88 (2020).ADS 
    PubMed Central 

    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8(1), 1–18 (2020).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, 212019 (2022).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carslake, C., Occhiuto, F., Vázquez-Diosdado, J. A. & Kaler, J. Repeatability and predictability of calf feeding behaviors—quantifying between- and within-individual variation for precision livestock farming. Front. Vet. Sci. https://doi.org/10.3389/fvets.2022.827124 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tolkamp, B. J. & Kyriazakis, I. To split behaviour into bouts, log-transform the intervals. Anim. Behav. 57, 807–817 (1999).PubMed 

    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R. Preprint at (2021).Bürkner, P.-C. Advanced bayesian multilevel modeling with the R package brms. R. J. 10, 395 (2018).
    Google Scholar 
    Dancey, C. P. & Reidy, J. Statistics without maths for psychology (Pearson education, 2007).
    Google Scholar 
    von Keyserlingk, M. A. G., Brusius, L. & Weary, D. M. Competition for teats and feeding behavior by group-housed dairy calves. J. Dairy Sci. 87, 4190–4194 (2004).
    Google Scholar 
    Fraley, R. C. & Roberts, B. W. Patterns of continuity: A dynamic model for conceptualizing the stability of individual differences in psychological constructs across the life course. Psychol. Rev. 112, 60–74 (2005).PubMed 

    Google Scholar 
    Ashcroft, J., Semmler, C., Carnell, S., van Jaarsveld, C. H. M. & Wardle, J. Continuity and stability of eating behaviour traits in children. Eur. J. Clin. Nutr. 62, 985–990 (2008).PubMed 

    Google Scholar 
    Neave, H. W., Costa, J. H. C., Weary, D. M. & von Keyserlingk, M. A. G. Long-term consistency of personality traits of cattle. R. Soc. Open Sci. 7, 191849 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, R. & von Keyserlingk, M. A. G. Consistency of flight speed and its correlation to productivity and to personality in Bos taurus beef cattle. Appl. Anim. Behav. Sci. 99, 193–204 (2006).
    Google Scholar 
    Neja, W., Sawa, A., Jankowska, M., Bogucki, M. & Krężel-Czopek, S. Effect of the temperament of dairy cows on lifetime production efficiency. Arch. Anim. Breed 58, 193–197 (2015).
    Google Scholar 
    Haskell, M. J., Simm, G. & Turner, S. P. Genetic selection for temperament traits in dairy and beef cattle. Front Genet. https://doi.org/10.3389/fgene.2014.00368 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whalin, L., Neave, H. W., Føske Johnsen, J., Mejdell, C. M. & Ellingsen-Dalskau, K. The influence of personality and weaning method on early feeding behavior and growth of Norwegian red calves. J. Dairy Sci. 105, 1369–1386 (2022).PubMed 

    Google Scholar 
    Dammhahn, M., Dingemanse, N. J., Niemelä, P. T. & Réale, D. Pace-of-life syndromes: A framework for the adaptive integration of behaviour, physiology and life history. Behav. Ecol. Sociobiol. 72(3), 1–8 (2018).
    Google Scholar 
    Kelly, D. N. et al. Large variability in feeding behavior among crossbred growing cattle. J. Anim. Sci. 98, 1–10 (2020).
    Google Scholar 
    Neave, H. W., Weary, D. M. & von Keyserlingk, M. A. G. Review: Individual variability in feeding behaviour of domesticated ruminants. Animal 12, S419–S430 (2018).PubMed 

    Google Scholar 
    DeVries, T. J., von Keyserlingk, M. A. G., Weary, D. M. & Beauchemin, K. A. Measuring the feeding behavior of lactating dairy cows in early to peak lactation. J. Dairy Sci. 86, 3354–3361 (2003).PubMed 

    Google Scholar 
    Kelly, D. N., Sleator, R. D., Murphy, C. P., Conroy, S. B. & Berry, D. P. Phenotypic and genetic associations between feeding behavior and carcass merit in crossbred growing cattle. J. Anim. Sci. 99, skab285 (2021).PubMed 

    Google Scholar 
    Weary, D. M., Huzzey, J. M. & von Keyserlingk, M. A. G. Board-invited review: Using behavior to predict and identify ill health in animals. J. Anim. Sci. 87, 770–777 (2009).PubMed 

    Google Scholar 
    Carter, A. J., Feeney, W. E., Marshall, H. H., Cowlishaw, G. & Heinsohn, R. Animal personality: What are behavioural ecologists measuring?. Biol. Rev. 88, 465–475 (2013).PubMed 

    Google Scholar 
    Biro, P. A. Do rapid assays predict repeatability in labile (behavioural) traits?. Anim Behav 83, 1295–1300 (2012).
    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. Plos Biol. 18, e3000411 (2020).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Crop diversification and parasitic weed abundance: a global meta-analysis

    Chauhan, B. S. Grand challenges in weed management. Front. Agron. https://doi.org/10.3389/fagro.2019.00003 (2020).Article 

    Google Scholar 
    Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).
    Google Scholar 
    Samejima, H. & Sugimoto, Y. Recent research progress in combatting root parasitic weeds. Biotechnol. Biotechnol. Equip. 32(2), 221–240 (2018).CAS 

    Google Scholar 
    Aly, R. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell. Dev. Biol. Plant 43(4), 304–317 (2007).
    Google Scholar 
    Fernández-Aparicio, M., Delavault, P. & Timko, M. P. Management of infection by parasitic weeds: A review. Plants 9(9), 1184 (2020).PubMed Central 

    Google Scholar 
    Rodenburg, J., Demont, M., Zwart, S. J. & Bastiaans, L. Parasitic weed incidence and related economic losses in rice in Africa. Agric. Ecosyst. Environ. 235, 306–317 (2016).
    Google Scholar 
    Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 14(7), e0219847 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ejeta, G. The Striga scourge in Africa: A growing pandemic. In Integrating New Technologies for Striga Control: Towards Ending the Witch-hunt 3–16 (World Scientific, 2007). https://doi.org/10.1142/9789812771506_0001.Chapter 

    Google Scholar 
    Netting, R. M. & Stone, M. P. Agro-diversity on a farming frontier: Kofyar smallholders on the Benue plains of central Nigeria. Africa 66(1), 52–70 (1996).
    Google Scholar 
    Pimentel, D. et al. Conserving biological diversity in agricultural and forestry systems. Bioscience 42, 354–362 (1992).
    Google Scholar 
    Khoshbakht, K. & Hammer, K. How many plant species are cultivated?. Genet. Resour. Crop Evol. 55(7), 925–928. https://doi.org/10.1007/s10722-008 (2008).Article 

    Google Scholar 
    Hajjar, R., Jarvis, D. I. & Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 123(4), 261–270 (2008).
    Google Scholar 
    He, H. M. et al. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 18(9), 1945–1952 (2019).
    Google Scholar 
    Ofori, F. & Stern, W. R. Cereal–legume intercropping systems. Adv. Agron. 41, 41–90 (1987).
    Google Scholar 
    Tanveer, M., Anjum, S. A., Hussain, S., Cerdà, A. & Ashraf, U. Relay cropping as a sustainable approach: Problems and opportunities for sustainable crop production. Environ. Sci. Pollut. Res. 24(8), 6973–6988 (2017).
    Google Scholar 
    Hartwig, N. L. & Ammon, H. U. Cover crops and living mulches. Weed Sci. 50(6), 688–699 (2002).CAS 

    Google Scholar 
    Raseduzzaman, M. D. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).
    Google Scholar 
    Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M. & Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One 7(10), e47149 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Himmelstein, J., Ares, A., Gallagher, D. & Myers, J. A meta-analysis of intercropping in Africa: Impacts on crop yield, farmer income, and integrated pest management effects. Int. J. Agric. Sustain. 15(1), 1–10 (2017).
    Google Scholar 
    Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: A portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2(1), 1–15 (2013).
    Google Scholar 
    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571(7764), 257–260 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gaudin, A. C. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS One 10(2), e0113261 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2(3), 284–293 (2020).ADS 

    Google Scholar 
    Chauhan, B. S., Singh, R. G. & Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 38, 57–65 (2012).
    Google Scholar 
    Nichols, V., Verhulst, N., Cox, R. & Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop Res. 183, 56–68 (2015).
    Google Scholar 
    Banik, P., Midya, A., Sarkar, B. K. & Ghose, S. S. Wheat and chickpea intercropping systems in an additive series experiment: Advantages and weed smothering. Eur. J. Agron. 24(4), 325–332 (2006).
    Google Scholar 
    Workayehu, T. & Wortmann, C. S. Maize–bean intercrop weed suppression and profitability in Southern Ethiopia. Agron. J. 103(4), 1058–1063 (2011).
    Google Scholar 
    Haugaard-Nielsen, H., Ambus, P. & Jensen, E. S. Interspecific competition, N use and interference with weeds in pea barley intercropping. Field Crop Res. 70, 101–109 (2001).
    Google Scholar 
    Jensen, E. S. Intercropping of Cereals and Grain Legumes for Increased Production, Weed Control, Improved Product Quality and Prevention of N-losses in European Organic Farming Systems, Final Report on Intercrop Project (QLK5-CT-2002-02352) (Risø National Laboratory, 2006).Arlauskienė, A., Šarūnaitė, L., Kadžiulienė, Ž, Deveikytė, I. & Maikštėnienė, S. Suppression of annual weeds in pea and cereal intercrops. Agron. J. 106(5), 1765–1774 (2014).
    Google Scholar 
    Szumigalski, A. & van Acker, R. Weed suppression and crop production in annual intercrops. Weed Sci. 53(6), 813–825 (2005).CAS 

    Google Scholar 
    Stoltz, E. & Nadeau, E. Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crop Res. 169, 21–29 (2014).
    Google Scholar 
    Sauerborn, J., Müller-Stöver, D. & Hershenhorn, J. The role of biological control in managing parasitic weeds. Crop Prot. 26(3), 246–254 (2007).
    Google Scholar 
    Jamil, M., Rodenburg, J., Charnikhova, T. & Bouwmeester, H. J. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 192(4), 964–975. https://doi.org/10.1111/j.1469-8137.2011.03850.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoneyama, K. et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227(1), 125–132. https://doi.org/10.1007/s00425-007-0600-5 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sauerborn, J. Legumes used for weed control in agroecosystems in the tropics. Plant Res. Dev. 50, 74–82 (1999).
    Google Scholar 
    Ejeta, G. & Butler, L. G. Host-parasite interactions throughout the Striga life cycle, and their contributions to Striga resistance. Afr. Crop Sci. J. 1(2), 75–80. https://doi.org/10.4314/acsj.v1i2.69889 (1993).Article 

    Google Scholar 
    Carsky, R. J., Singh, L. & Ndikawa, R. Suppression of Striga hermonthica on sorghum using a cowpea intercrop. Exp. Agric. 30(3), 349–358. https://doi.org/10.1017/s0014479700024467 (1994).Article 

    Google Scholar 
    Hsiao, A. I., Worsham, A. D. & Moreland, D. E. Effects of temperature and dl-strigol on seed conditioning and germination of witchweed (Striga asiatica). Ann. Bot. 61(1), 65–72. https://doi.org/10.1093/oxfordjournals.aob.a087528 (1988).Article 
    CAS 

    Google Scholar 
    Patterson, D. T. Effects of Environment on Growth and Reproduction of Witchweed and the Ecological Range of Witchweed (Monograph Series of the Weed Science Society of America, 1990).Stewart, G. R. & Press, M. C. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Biol. 41(1), 127–151. https://doi.org/10.1146/annurev.pp.41.060190.001015 (1990).Article 
    CAS 

    Google Scholar 
    Anil, L., Park, R. H. P. & Miller, F. A. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 53, 301–317 (1998).
    Google Scholar 
    Mamolos, A. & Kalburtji, K. Significance of allelopathy in crop rotation. J. Crop Prod. 4, 197–218 (2001).
    Google Scholar 
    Khan, T. D., Chung, M. I., Xuan, T. D. & Tawata, S. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 191(3), 172–184 (2005).
    Google Scholar 
    Cissoko, M., Boisnard, A., Rodenburg, J., Press, M. C. & Scholes, J. D. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. New Phytol. 192(4), 952–963 (2011).CAS 
    PubMed 

    Google Scholar 
    Rodenburg, J. et al. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze under field conditions?. Field Crop Res. 170, 83–94 (2015).
    Google Scholar 
    Randrianjafizanaka, M. T., Autfray, P., Andrianaivo, A. P., Ramonta, I. R. & Rodenburg, J. Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems. Agric. Ecosyst. Environ. 256, 23–33 (2018).
    Google Scholar 
    Rodenburg, J. et al. Genetic variation and host–parasite specificity of Striga resistance and tolerance in rice: The need for predictive breeding. New Phytol. 214(3), 1267–1280. https://doi.org/10.1111/nph.14451 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nickrent, D. L. & Musselman, L. J. Introduction to parasitic flowering plants. Plant Health Instr. 13(6), 300–315 (2004).
    Google Scholar 
    Parker, C. Parasitic weeds: A world challenge. Weed Sci. 60(2), 269–276 (2012).CAS 

    Google Scholar 
    Shai Vaingast 2014. im2graph. Retrieved from: https://www.im2graph.co.il/free-downloads/windows-3264bit/ (2014).Google Maps 2021. https://maps.google.com [Accessed February 2021–December 2022].Kambach, S. et al. Consequences of multiple imputation of missing standard deviations and sample sizes in meta-analysis. Ecol. Evol. 10(20), 11699–11712 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. & Freckleton, R. P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 23(11), 592–596 (2008).PubMed 

    Google Scholar 
    Idris, N. R. N. & Robertson, C. The effects of imputing the missing standard deviations on the standard error of meta analysis estimates. Commun. Stat. Simul. Comput. 38(3), 513–526. https://doi.org/10.1080/03610910802556106 (2009).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
    Google Scholar 
    van Buuren, S. Flexible Imputation of Missing Data (CRC Press, 2018).MATH 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691(10), 4–9 (2012).
    Google Scholar 
    Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21(9), 983–1008 (2007).
    Google Scholar 
    CGIAR—Consortium for Spatial Information. http://srtm.csi.cgiar.org © 2004–2021. Accessed September 19, 2021, via: http://srtm.csi.cgiar.org/srtmdata/.QGIS Development Team. QGIS Geographic Information System http://qgis.osgeo.org (Open Source Geospatial Foundation Project, 2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    Song, C., Peacor, S. D., Osenberg, C. W. & Bence, J. R. An assessment of statistical methods for non-independent data in ecological meta-analyses. Ecology 101(12), e03184. https://doi.org/10.1002/ecy.3184 (2020).Article 
    PubMed 

    Google Scholar 
    Del Rey, A. C. compute.es: Compute Effect Sizes. R package version 0.2-2. https://cran.r-project.org/package=compute.es (2013).R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3 (2015)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Liebman, M. & Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3(1), 92–122 (1993).PubMed 

    Google Scholar 
    Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16(7), 573–582 (2015).
    Google Scholar 
    Kuyah, S., Whitney, C. W., Jonsson, M., Sileshi, G. W., Öborn, I., Muthuri, C. W. & Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis (2019).Evidente, A., Fernandez-Aparicio, M., Andolfi, A., Rubiales, D. & Motta, A. Trigoxazonane, a mono-substituted trioxazonane from Trigonella foenum-graecum root exudates, inhibits Orobanche crenata seed germination. Phytochemistry 68, 2487–2492 (2007).CAS 
    PubMed 

    Google Scholar 
    Khan, Z. R. et al. Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J. Chem. Ecol. 28(9), 1871–1885 (2002).CAS 
    PubMed 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13(1), 4–21 (2022).
    Google Scholar 
    Bakker, A. et al. Beyond small, medium, or large: Points of consideration when interpreting effect sizes. Educ. Stud. Math. 102(1), 1–8 (2019).
    Google Scholar 
    Scott, D. et al. Mapping the drivers of parasitic weed abundance at a national scale: A new approach applied to Striga asiatica in the mid-west of Madagascar. Weed Res. 60(5), 323–333 (2020).
    Google Scholar 
    Scott, D. et al. Identifying existing management practices in the control of Striga asiatica within rice–maize systems in mid-west Madagascar. Ecol. Evol. 11(19), 13579–13592 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Rubiales, D. & Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 32(2), 433–449 (2012).CAS 

    Google Scholar 
    Bir, M. S. H. et al. Weed population dynamics under climatic change. Weed Turfgrass Sci. 3(3), 174–182 (2014).
    Google Scholar 
    Mohamed, K. I., Bolin, J. F., Musselman, L. J. & Townsend, P. A. Genetic diversity of Striga and implications for control and modelling future distributions. In Integrating New Technologies for Striga Control—Towards Ending the Witch-Hunt (eds Ejeta, G. & Gressel, J.) 71–84 (World Scientific, 2007).
    Google Scholar 
    Mandumbu, R., Mutengwa, C. S., Mabasa, S. & Mwenje, E. Predictions of the Striga scourge under new climate in southern Africa. J. Biol. Sci. 17, 192–201. https://doi.org/10.3923/jbs.2017.194.201 (2017).Article 

    Google Scholar 
    Mudereri, B. T. et al. Multi-source spatial data-based invasion risk modelling of Striga (Striga asiatica) in Zimbabwe. GIScience Remote Sens. 57(4), 553–571. https://doi.org/10.1080/15481603.2020.1744250 (2020).Article 

    Google Scholar  More

  • in

    Diversity of soil faunal community as influenced by crop straw combined with different synthetic fertilizers in upland purple soil

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Sci. 42, S3–S15 (2006).
    Google Scholar 
    Nielsen, U. N. et al. Response of belowground communities to short-term phosphorus addition in a phosphorus-limited woodland. Plant Soil 391, 321–331 (2015).
    Google Scholar 
    Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).
    Google Scholar 
    Lu, P. et al. Composition and structure of soil fauna communities and their relationships with environmental factors in copper mine waste rock after re-vegetation. Glob. Ecol. Conserv. 32, e01889 (2021).
    Google Scholar 
    Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).
    Google Scholar 
    Shao, Y., Zhang, W., Liu, S., Wang, X. & Fu, S. Diversity and function of soil fauna. Acta Ecol. Sin. (in Chinese) 35, 6614–6625 (2015).
    Google Scholar 
    Voronin, A. N. & Kotyak, P. A. Influence of different agricultural practices on the number of soil fauna and productivity of agricultural crops. Taurida Herald Agrar. Sci. 3, 49–56 (2019).
    Google Scholar 
    Zhu, X. & Zhu, B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Sci. Agric. Sin. (in Chinese) 45, 911–920 (2015).
    Google Scholar 
    Islam, M. U., Guo, Z., Jiang, F. & Peng, X. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop Res. 279, 108447 (2022).
    Google Scholar 
    Cui, H. et al. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 133, 126436 (2022).
    Google Scholar 
    Wang, X. et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res. 218, 11–17 (2018).
    Google Scholar 
    Gai, X. et al. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 650, 2251–2259 (2019).ADS 
    PubMed 

    Google Scholar 
    Wang, W. et al. Effects of different fertility-building practices on the meso-micro soil fauna communities in a black soil area. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 1344–1351 (2019).
    Google Scholar 
    Kautz, T., López-Fando, C. & Ellmer, F. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol. 33, 278–285 (2006).
    Google Scholar 
    Zhang, T. et al. Effects of straw returning on soil meso-and micro-arthropod community diversity in wheat-maize fields in North China. Chin. J. Appl. Environ. Biol. (in Chinese) 25, 70–75 (2019).
    Google Scholar 
    Yang, P., Wang, H. & Yue, J. Ecological distribution of middle-small-size soil faunas under conservation tillage and straw mulch conditions. Res. Soil Water Conserv. (in Chinese) 20, 145–150 (2013).
    Google Scholar 
    Zhu, Q., Zhu, A., Zhang, J., Zhang, H. & Zhang, C. Effect of conservation tillage on soil fauna in wheat field of Huang-huai-hai Plain. J. Agro Environ. Sci. (in Chinese) 28, 1766–1772 (2009).
    Google Scholar 
    Cao, Z. et al. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl. Soil Ecol. 49, 131–138 (2011).
    Google Scholar 
    Li, Y., Xu, Z., Xu, H., Chen, Y. & Ruan, H. Review of the effect of fertilizer application on the soil fauna in soil ecosystems. J. Nanjing For. Univ. Nat. Sci. Ed. (in Chinese) 42, 179–184 (2018).
    Google Scholar 
    McGee, K. M. & Eaton, W. D. A comparison of the wet and dry season DNA-based soil invertebrate community characteristics in large patches of the bromeliad Bromelia pinguin in a primary forest in Costa Rica. Appl. Soil Ecol. 87, 99–107 (2015).
    Google Scholar 
    Zhu, B., Wang, T., You, X. & Gao, M. Nutrient release from weathering of purplish rocks in the Sichuan Basin, China. Pedosphere 18, 257–264 (2008).
    Google Scholar 
    Zhu, B. et al. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 73, 1419–1426 (2009).ADS 

    Google Scholar 
    He, Y. Purple Soil of China Part (II) (Science Press, 2003).
    Google Scholar 
    Huang, R. et al. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 265, 576–586 (2018).
    Google Scholar 
    Zhu, X., Dong, Z., Kuang, F. & Zhu, B. Effects of fertilization regimes on soil faunal communities in cropland of purple soil. Acta Ecol. Sin. (in Chinese) 33, 464–474 (2013).
    Google Scholar 
    Querner, P. & Bruckner, A. Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. Appl. Soil. Ecol. 45, 293–297 (2010).
    Google Scholar 
    Smith, M. A. et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. PNAS 105, 12359–12364 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Müller, C. A. et al. Meiofaunal diversity in the Atlantic Forest soil: A quest for nematodes in a native reserve using eukaryotic metabarcoding analysis. For. Ecol. Manag. 453, 117591 (2019).
    Google Scholar 
    Ding, J. et al. Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biol. Biochem. 130, 141–149 (2019).
    Google Scholar 
    Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).
    Google Scholar 
    McGee, K. M., Porter, T. M., Wright, M. & Hajibabaei, M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 10, 18429 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Porter, T. M. et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 9, 18218 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morise, H., Miyazaki, E., Yoshimitsu, S. & Eki, T. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS One 7, e51785 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 46 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Dopheide, A. et al. Estimating the biodiversity of terrestrial invertebrates on a forested island using DNA barcodes and metabarcoding data. Ecol. Appl. 29, e01877 (2019).PubMed 

    Google Scholar 
    Watts, C. et al. DNA metabarcoding as a tool for invertebrate community monitoring: A case study comparison with conventional techniques. Austral Entomol. 58, 675–686 (2019).
    Google Scholar 
    Kvist, S. Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol. Phylogenet. Evol. 69, 39–45 (2013).PubMed 

    Google Scholar 
    Shao, Y. et al. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biol. Biochem. 40, 2040–2046 (2008).
    Google Scholar 
    Neher, D. A., Wu, J., Barbercheck, M. E. & Anas, O. Ecosystem type affects interpretation of soil nematode community measures. Appl. Soil Ecol. 30, 47–64 (2005).
    Google Scholar 
    Yang, C., Ji, Y., Wang, X., Yang, C. & Yu, D. W. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity. Sci. China Life Sci. 56, 73–81 (2013).ADS 
    PubMed 

    Google Scholar 
    Horton, D. J., Kershner, M. W. & Blackwood, C. B. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. Eur. J. Soil Biol. 80, 43–48 (2017).
    Google Scholar 
    Geisen, S., Laros, I., Vizcaino, A., Bonkowski, M. & de Groot, G. A. Not all are free-living: High-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol. Ecol. 24, 4556–4569 (2015).PubMed 

    Google Scholar 
    Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).PubMed 

    Google Scholar 
    Kitagami, Y. & Matsuda, Y. High-throughput sequencing covers greater nematode diversity than conventional morphotyping on natural cedar forests in Yakushima Island, Japan. Eur. J. Soil Biol. 112, 103432 (2022).
    Google Scholar 
    Juliet, W. K., Lisa, B. F., Lamers, J. P. A., Till, S. & Christian, B. Soil fertility and biodiversity on organic and conventional smallholder farms in Kenya. Appl. Soil Ecol. 134, 85–97 (2019).
    Google Scholar 
    Li, Q., Zhou, D. & Chen, X. The accumulation decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecol. Sin. (in Chinese) 34, 3807–3819 (2014).
    Google Scholar 
    Tie, L. et al. Phosphorus addition reverses the negative effect of nitrogen addition on soil arthropods during litter decomposition in a subtropical forest. Sci. Total. Environ. 781, 146786 (2021).ADS 

    Google Scholar 
    Nottingham, A. T., Turner, B. L., Stott, A. W. & Tanner, E. V. J. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80, 26–33 (2015).
    Google Scholar 
    Xiao, Q. et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin. Agric. Ecosyst. Environ. 311, 107266 (2021).
    Google Scholar 
    Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).
    Google Scholar 
    Wei, K., Wang, J., Dong, Z., Tang, J. & Zhu, B. The combined application of organic materials and chemical fertilizer mitigates the deterioration of the trophic structure of nematode community by increasing soil N concentration. J. Soil Sci. Plant Nutr. 21, 2530–2537 (2021).
    Google Scholar 
    Kuo, S. Phosphorus. In Methods of Soil Analysis (ed. Sparks, D. L.) 869–919 (Soil Science Society of America, 1996).
    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis (ed. Sparks, D. L.) 960–1010 (ASA and SSSA, 1996).
    Google Scholar 
    Lu, R. Analysis of Soil Agro-Chemistry (Chinese Agricultural Science and Technology Press, 2000).
    Google Scholar 
    Page, A. L., Miller, R. H. & Keeney, D. R. Chemical and microbiological properties. In Methods of Soil Analysis (ASA and SSSA, 1982).
    Google Scholar 
    Olsen, S. R., Cole, C. U., Watanabe, F. S. & Deen, L. A. Estimation of Available Phosphorus in Soil by Extracting with Sodium Bicarbonate (USDA Circular 939, 1954).
    Google Scholar 
    Townshend, J. L. A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica 9, 106–110 (1963).
    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).PubMed 

    Google Scholar 
    Yang, T., Song, X., Xu, X., Zhou, C. & Shi, A. A comparative analysis of spider prey spectra analyzed through the next-generation sequencing of individual and mixed DNA samples. Ecol. Evol. 11, 15444–15454 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, H. & Jiang, W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front. Microbiol. 5, 508 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).PubMed 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. http://www.r-project.org (2020).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    MATH 

    Google Scholar 
    Margalef, R. Perspectives in Ecological Theory 111–119 (The University of Chicago Press, 1970).
    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 88, 131–144 (1966).ADS 

    Google Scholar 
    Zhou, Y. et al. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecol. Evol. 8, 8930–8939 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol. Biochem. 127, 22–30 (2018).
    Google Scholar 
    Yang, K. et al. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization: Relationships with soil environmental variables and plant community diversity. Soil Biol. Biochem. 145, 107795 (2020).
    Google Scholar 
    Zhang, S., Li, Q., Lü, Y., Zhang, X. & Liang, W. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol. Biochem. 62, 147–156 (2013).
    Google Scholar  More