More stories

  • in

    Spotting hopeful signs for coral health in Barbados’s backyard

    I’m a coral-reef ecologist at the University of the West Indies at Cave Hill in Barbados. Every five years, as often as our funding allows, my team and I survey coral reefs for the government. I was born in Spain and earned my PhD at McGill University in Montreal, Canada. But I decided to work in the Caribbean, where I think I am more useful.We monitor the abundance and diversity of corals, algae, sponges and fish. Barbados no longer has populations of large fish, such as groupers and snappers, because of overfishing. The populations of parrotfish, Barbados’s most important species ecologically and economically, have seemed stable for the past decade.Reefs are under threat globally, and the biggest losses of corals here occurred in the 1970s and 1980s. Since the 1990s, the shallow reefs have stabilized, but the deeper reefs have continued to deteriorate. And numbers of sponges and algae, which can damage corals when too abundant, have gradually increased in the deeper reefs. Still, there are positive signs. Staghorn corals (Acropora cervicornis), which nearly went extinct here in the 1970s, are making a slow comeback.This photo was taken in early September and the water was 28 °C or 29 °C. But I still wore a wetsuit with a hood, because after 90 minutes of scuba diving, you get cold.We survey 43 sites in two months, doing one or two dives a day, three times a week. Four of us dive together; we are like a well-oiled machine.I wish we could do surveys more frequently; in a rapidly changing environment, we need to know what is happening. But there’s not enough money. Still, new technology can model reefs in 3D. Those tools are becoming more affordable, and I think we’ll be using them in the next decade. Then, we could monitor more sites more often with the same resources.I’ve wanted to be a biologist since I was a young boy. And it doesn’t get any better than studying coral reefs in your backyard. More

  • in

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Surface energy fluxes and componentsIn our study, we focused on the circumpolar land north of 60° latitude, and specifically on the extent of the circumpolar Arctic vegetation map (CAVM20, Supplementary Fig. 1–3). We obtained half-hourly and hourly in situ observations of energy fluxes and meteorological variables from the monitoring networks FLUXNET28 (fluxnet.org; FLUXNET2015 dataset), AmeriFlux29 (ameriflux.lbl.gov), AON31,32 (aon.iab.uaf.edu), ICOS (icos-cp.eu), GEM35,36 (g-e-m.dk), GC-Net33,34 (cires1.colorado.edu/steffen/gcnet) and PROMICE30; (promice.dk; Supplementary Table 3). We did not include observations from the Baseline Surface Radiation Network (BSRN; bsrn.awi.de) and Global Energy Balance Archive (GEBA; geba.ethz.ch) because they typically lack information on non-radiative energy fluxes. Finally, we did not include observations from the European Flux Database Cluster (EFDC, europe-fluxdata.eu) because these data are largely located outside the domain of the CAVM20.We aggregated surface energy fluxes and components (Supplementary Table 1) to daily resolution as follows: (i) we extracted only directly measured data and excluded gap-filled data by filtering according to quality information; (ii) we performed a basic outlier filtering (excluding shortwave and longwave radiation flux values >1400 Wm−2 and in case of incoming/outgoing radiation More

  • in

    Honey compositional convergence and the parallel domestication of social bees

    Allsop, K. A. & Miller, J. B. Honey revisited: A reappraisal of honey in pre-industrial diets. Br. J. Nutr. 75, 513–520 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dams, M. & Dams, L. Spanish rock art depicting honey gathering during the Mesolithic. Nature 268, 228–230 (1977).Article 
    ADS 

    Google Scholar 
    Bradbear, N. Bees and their role in forest livelihoods: A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Non-Wood Forests Products Series, Vol. 19 (FAO, Rome, 2009).
    Google Scholar 
    Crane, E. The World History of Beekeeping and Honey Hunting (Routledge, 1999).Book 

    Google Scholar 
    Kritsky, G. Beekeeping from Antiquity through the middle ages. Annu. Rev. Entomol. 62, 249–264 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grüter, C. Stingless Bees: Their Behaviour, Ecology and Evolution (Springer International Publishing, 2020).Book 

    Google Scholar 
    Weaver, N. & Weaver, E. C. Beekeeping with the stingless bee Melipona beecheii, by the Yucatecan Maya. Bee World 62, 7–19 (1981).Article 

    Google Scholar 
    Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).Book 

    Google Scholar 
    Medellín Morales, S. Meliponicultura Maya: Perspectivas para su sostenibilidad. Reporte de sostenibilidad Maya no. 2; 67 pp. (1991).González-Acereto, J. A. La meliponicultura yucateca en crisis: Una actividad indígena a punto de desaparecer, 1er Seminario Nacional sobre Abejas sin Aguijón. Boca Río Ver México 9–12 (1999).Russell, P. The History of Mexico: From Pre-conquest to Present (Routledge, 2010).
    Google Scholar 
    Quezada-Euan, J. J., May-Itzá, W. & González-Acereto, J. Meliponiculture in Mexico: Problems and perspective for development. Bee World 82, 160–167 (2001).Article 

    Google Scholar 
    Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).Article 

    Google Scholar 
    Toledo-Hernández, E. et al. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 53, 8 (2022).Article 

    Google Scholar 
    Guzman-Novoa, E. et al. The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Front. Ecol. Evol. 8, 404 (2020).Article 

    Google Scholar 
    Fletcher, M. et al. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 10, 12128 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rao, P. V., Krishnan, K. T., Salleh, N. & Gan, S. H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 26, 657–664 (2016).Article 
    CAS 

    Google Scholar 
    Rattanawannee, A. & Duangphakdee, O. Southeast Asian meliponiculture for sustainable livelihood. In Modern Beekeeping – Bases for Sustainable Production (ed. Ranz, R. E. R.) (IntechOpen, 2019).
    Google Scholar 
    Heard, T. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S. & Hofstede, F. E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 37, 293–315 (2006).Article 

    Google Scholar 
    Kendall, L. K., Stavert, J. R., Gagic, V., Hall, M. & Rader, R. Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2022.02.009 (2022).Article 

    Google Scholar 
    Kiatoko, N. et al. Effective pollination of greenhouse Galia musk melon (Cucumis melo L. var. reticulatus ser.) by afrotropical stingless bee species. J. Apic. Res. https://doi.org/10.1080/00218839.2021.2021641 (2022).Article 

    Google Scholar 
    Nkoba, K. et al. African endemic stingless bees as an efficient alternative pollinator to honey bees in greenhouse cucumber (Cucumis sativus L.). J. Apic. Res. https://doi.org/10.1080/00218839.2021.2013421 (2022).Article 

    Google Scholar 
    FAO, A. Good beekeeping practices for sustainable apiculture. (FAO, IZSLT, Apimondia and CAAS, 2020). doi:https://doi.org/10.4060/cb5353en.Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 
    PubMed 

    Google Scholar 
    Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. 111, 6147–6152 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purugganan, M. D. An evolutionary genomic tale of two rice species. Nat. Genet. 46, 931–932 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleisner, K. & Stella, M. Monsters we met, monsters we made: On the parallel emergence of phenotypic similarity under domestication. Σημειωτκή – Sign Syst. Stud. 37, 454–476 (2009).Article 

    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The, “Domestication Syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lecocq, T. Insects: The disregarded domestication histories. In Animal Domestication (ed. Teletchea, F.) (IntechOpen, 2018).
    Google Scholar 
    Pollan, M. The botany of desire: A plant’s-eye view of the world. Econ. Bot. 57(1), 146–147 (2002).
    Google Scholar 
    Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192, 149–155 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Spivak, M. & Danka, R. G. Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie 52, 1–16 (2021).Article 

    Google Scholar 
    Breed, M. D., Guzmán-Novoa, E. & Hunt, G. J. 3. Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49, 271–298 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, G. J. et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94, 247–267 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faegri, K. & van der Pijl,. Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. In Nectaries and Nectar (eds Nicolson, S. W. et al.) (Springer Netherlands, 2007).Chapter 

    Google Scholar 
    Abrahamczyk, S. et al. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 30, 112–127 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123, 247–261 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 99, 206–232 (2010).Article 

    Google Scholar 
    Bantle, J. P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 139, 1263S-1268S (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erejuwa, O. O., Sulaiman, S. A. & Wahab, M. S. A. fructose might contribute to the hypoglycemic effect of honey. Molecules 17, 1900–1915 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwakman, P. H. S. & Zaat, S. A. J. Antibacterial components of honey. IUBMB Life 64, 48–55 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J. & Pérez-Álvarez, J. A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73, R117–R124 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Machado De-Melo, A. A., de Almeida-Muradian, L. B., Sancho, M. T. & Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 57, 5–37 (2018).Article 

    Google Scholar 
    Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73, 91–102 (2018).Article 
    CAS 

    Google Scholar 
    Viteri, R., Zacconi, F., Montenegro, G. & Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 86, 1552–1582 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bueno, F. G. B. et al. Stingless bee floral visitation in the global tropics and subtropics. BioRxiv. https://doi.org/10.1101/2021.04.26.440550 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Syst. Entomol. 32, 26–39 (2007).Article 

    Google Scholar 
    Mokaya, H. O., Nkoba, K., Ndunda, R. M. & Vereecken, N. J. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366, 130597 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Souza, E. C. A., Menezes, C. & Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 52, 113–132 (2021).Article 

    Google Scholar 
    Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. & Lachenmeier, D. W. Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. ISRN Anal. Chem. 2013, 1–9 (2013).Article 

    Google Scholar 
    Mazzoni, V., Bradesi, P., Tomi, F. & Casanova, J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: Application to honey. Magn. Reson. Chem. 35, S81–S90 (1997).Article 
    CAS 

    Google Scholar 
    Consonni, R. & Cagliani, L. R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J. Agric. Food Chem. 56, 6873–6880 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schievano, E., Peggion, E. & Mammi, S. H1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 58, 57–65 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. Rstudio, PBC, Boston, MA. URL http://www.rstudio.com (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).Oksanen J., et al. Vegan: Community ecology package. McGlinn lab URL https://CRAN.R-project.org/package=vegan (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 
    PubMed 

    Google Scholar  More

  • in

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Battaglini, L., Bovolenta, S., Gusmeroli, F., Salvador, S. & Sturaro, E. Environmental sustainability of alpine livestock farms. Ital. J. Anim. Sci. 13, 3155 (2014).
    Google Scholar 
    Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).PubMed Central 

    Google Scholar 
    Pan, Y., Wu, J. & Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 17, 79–86 (2014).
    Google Scholar 
    Rossi, M. et al. A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens. 11, 296 (2019).ADS 

    Google Scholar 
    Körner, C. Plant ecology at high elevations. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 1–7 (Springer, 2003). https://doi.org/10.1007/978-3-642-18970-8_1.Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113 (2008).Körner, C. Impact of atmospheric changes on high mountain vegetation. In Mountain Environments in Changing Climates 155–166 (Routledge, 1994).Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).ADS 

    Google Scholar 
    Schirmer, M., Wirz, V., Clifton, A. & Lehning, M. Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res. 47, 09516 (2011).ADS 

    Google Scholar 
    Revuelto, J., Jonas, T. & López-Moreno, J.-I. Backward snow depth reconstruction at high spatial resolution based on time-lapse photography. Hydrol. Process. 30, 2976–2990 (2016).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 55, 40–52 (2013).ADS 

    Google Scholar 
    Clark, M. P. et al. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 47, (2011).Wayand, N. E., Hamlet, A. F., Hughes, M., Feld, S. I. & Lundquist, J. D. Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the north fork american river basin in northern sierra Nevada, California. J. Hydrometeorol. 14, 677–699 (2013).ADS 

    Google Scholar 
    Revuelto, J., López-Moreno, J. I., Azorin-Molina, C. & Vicente-Serrano, S. M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. Cryosphere 8, 1989–2006 (2014).ADS 

    Google Scholar 
    Winkler, D. E., Butz, R. J., Germino, M. J., Reinhardt, K. & Kueppers, L. M. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front. Plant Sci. (2018).Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
    Google Scholar 
    Billings, W. D. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. Bioscience 23, 697–704 (1973).
    Google Scholar 
    Hua, X., Ohlemüller, R. & Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 8, 100234 (2022).
    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).ADS 
    CAS 

    Google Scholar 
    Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J.-P. & Thuiller, W. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Ann. Bot. 116, 1023–1034 (2015).PubMed Central 

    Google Scholar 
    Beniston, M. et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).ADS 

    Google Scholar 
    Stöckli, R. & Vidale, P. L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 25, 3303–3330 (2004).
    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).ADS 
    CAS 

    Google Scholar 
    Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H. & Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 136, 169–184 (2019).ADS 

    Google Scholar 
    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).ADS 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).ADS 

    Google Scholar 
    Qiao, D. & Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 8, 42 (2019).
    Google Scholar 
    Zong, S. et al. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change. Remote Sens. Environ. 268, 112773 (2022).ADS 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).ADS 

    Google Scholar 
    Zheng, J., Jia, G. & Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 315, 108828 (2022).ADS 

    Google Scholar 
    Dedieu, J.-P. et al. On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sens. 8, 481 (2016).ADS 

    Google Scholar 
    Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12 (2014).ADS 

    Google Scholar 
    Fontana, F., Rixen, C., Jonas, T., Aberegg, G. & Wunderle, S. Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—A comparison with in situ measurements. Sensors 8, 2833–2853 (2008).ADS 
    PubMed Central 

    Google Scholar 
    Carlson, B. Z. et al. Observed long-term greening of alpine vegetation—A case study in the French Alps. Environ. Res. Lett. 12, 114006 (2017).ADS 

    Google Scholar 
    Tomaszewska, M. A., Nguyen, L. H. & Henebry, G. M. Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 240, 111675 (2020).ADS 

    Google Scholar 
    Rumpf, S. B. et al. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 376, 1119–1122 (2022).ADS 
    CAS 

    Google Scholar 
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).ADS 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
    Google Scholar 
    Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—An earth observation-based analysis. Remote Sens. 10, 1757 (2018).ADS 

    Google Scholar 
    Rossini, M. et al. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 9, 2565–2584 (2012).ADS 

    Google Scholar 
    Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS 

    Google Scholar 
    Hall, D. K. & Riggs, G. A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 21, 1534–1547 (2007).ADS 

    Google Scholar 
    Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).ADS 

    Google Scholar 
    Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecol. Ind. 115, 106455 (2020).
    Google Scholar 
    Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).ADS 
    CAS 

    Google Scholar 
    Revuelto, J. et al. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017. Earth Syst. Sci. Data 9, 993–1005 (2017).ADS 

    Google Scholar 
    Nadal Romero, E. et al. Sediment balance in four small catechumen’s with different land cover in the Central Pyrenes (Spain). (2009).Gartzia, M., Alados, C. L. & Pérez-Cabello, F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Progr. Phys. Geogr. Earth Environ. 38, 201–217 (2014).
    Google Scholar 
    Fillat, F., González, R. G., García, D. G., Gómez, D. & Reiné, R. Pastos del Pirineo. (Editorial CSIC-CSIC Press, 2008).Gómez-García, D., Ferrández, J. V., Tejero, P. & Font, X. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees. Pirineos 172, e027–e027 (2017).
    Google Scholar 
    Gascoin, S. et al. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 19, 2337–2351 (2015).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 12, 074006 (2017).ADS 

    Google Scholar 
    Cernusca, A. Standörtliche Variabilität in Mikroklima und Energiehaushalt Alpiner Zwergstrauchbestände. In Verhandlungen der Gesellschaft für Ökologie Wien 1975: 5. Jahresversammlung vom 22. bis 24. September 1975 in Wien (ed. Müller, P.) 9–21 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-015-7168-5_2.Cernusca, A. & Seeber, M. C. Canopy structure, microclimate and the energy budget in different alpine plant communities. In Symposium—British Ecological Society (1981).Kudo, G., Nordenhäll, U. & Molau, U. Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Écoscience 6, 439–450 (1999).
    Google Scholar 
    Baptist, F. & Choler, P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann. Bot. 101, 549–559 (2008).PubMed Central 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).CAS 

    Google Scholar 
    Wipf, S., Rixen, C. & Mulder, C. P. H. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob. Change Biol. 12, 1496–1506 (2006).ADS 

    Google Scholar 
    Sierra-Almeida, A. & Cavieres, L. A. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163, 267–276 (2010).ADS 

    Google Scholar 
    Camarero, J. J., Gutiérrez, E. & Fortin, M.-J. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manag. 134, 1–16 (2000).
    Google Scholar 
    Dadic, R., Mott, R., Lehning, M. & Burlando, P. Parameterization for wind-induced preferential deposition of snow. Hydrol. Process. 24, 1994–2006 (2010).
    Google Scholar 
    Vionnet, V. et al. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 8, 395–415 (2014).ADS 

    Google Scholar 
    Burns, S. F., Tonkin, P. J. & Thorn, C. E. Soil-geomorphic models and the spatial distribution and development of alpine soils. In Space and Time in Geomorphology: Binghamton Geomorphology Symposium, vol. 12 (2020).Lana-Renault, N. et al. Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surf. Proc. Land. 39, 581–592 (2014).ADS 

    Google Scholar 
    Freppaz, M., Williams, B. L., Edwards, A. C., Scalenghe, R. & Zanini, E. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Appl. Soil. Ecol. 35, 247–255 (2007).
    Google Scholar 
    López-Moreno, J. I. et al. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Int. J. Climatol. 40, 6122–6136 (2020).
    Google Scholar 
    López-Moreno, J. I., Vicente-Serrano, S. M. & Lanjeri, S. Mapping snowpack distribution over large areas using GIS and interpolation techniques. Clim. Res. 33, 257–270 (2007).
    Google Scholar 
    Revuelto, J., López-Moreno, J. I. & Alonso-González, E. Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resour. Res. 57, e2020WR028980 (2021).ADS 

    Google Scholar 
    Eberhard, L. A. et al. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere 15, 69–94 (2021).ADS 

    Google Scholar 
    Harder, P., Schirmer, M., Pomeroy, J. & Helgason, W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere 10, 2559–2571 (2016).ADS 

    Google Scholar 
    Stanton, M. L., Rejmánek, M. & Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arct. Alp. Res. 26, 364–374 (1994).
    Google Scholar 
    Winkler, D. E., Chapin, K. J. & Kueppers, L. M. Soil moisture mediates alpine life form and community productivity responses to warming. Ecology 97, 1553–1563 (2016).
    Google Scholar 
    Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. Biogeosci. 113, (2008).Keller, F., Kienast, F. & Beniston, M. Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg. Environ. Change 1, 70–77 (2000).
    Google Scholar 
    Running, S. W. Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In Remote Sensing of Biosphere Functioning (eds. Hobbs, R. J. & Mooney, H. A.) 65–86 (Springer, 1990). https://doi.org/10.1007/978-1-4612-3302-2_4.Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).ADS 

    Google Scholar 
    Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32, 1–6 (2021).
    Google Scholar 
    Floyd, D. A. & Anderson, J. E. A comparison of three methods for estimating plant cover. J. Ecol. 75, 221–228 (1987).
    Google Scholar 
    Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).
    Google Scholar 
    Mouillot, D. & Leprêtre, A. A comparison of species diversity estimators. Res. Popul. Ecol. 41, 203–215 (1999).
    Google Scholar  More

  • in

    Future biological control

    The success of biological control agents — organisms used to reduce the success of other, usually non-native invasive species — is complicated by ongoing climate change. Chosen for their host-specificity and introduced into new locations, biological agents can succumb to both direct and indirect climate-related stressors, compromising their biology and activity against target organisms. Adding to this is the fact that environmental stressors often occur in concert, making it hard to predict the efficacy of biological control programs. More

  • in

    El Niño enhances wildfire emissions

    Lerato Shikwambana from the South African National Space Agency and the University of the Witwatersrand, South Africa, and colleagues also from South Africa compared the wildfire emissions of a strong El Niño event in 2015–2016 and a pronounced La Niña event in 2010–2011. They find that both a strong El Niño and La Niña event can increase emissions from wildfires compared with average years, but they affect different regions, with the effect of La Niña reaching farther south than El Niño. Overall, emissions are stronger during the El Niño phase, mainly driven by higher air temperatures. ENSO variability is expected to increase with future warming, which would also make strong El Niño events more likely. Therefore, these findings indicate that the exposure to wildfire air pollution could grow in southern Africa. More

  • in

    Mechanisms of prey division in striped marlin, a marine group hunting predator

    Jolles, J. W., King, A. J. & Killen, S. S. The Role of Individual Heterogeneity in Collective Animal Behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 
    PubMed 

    Google Scholar 
    Lang, S. D. J. & Farine, D. R. A multidimensional framework for studying social predation strategies. Nat. Ecol. Evol. 1, 1230–1239 (2017).Article 
    PubMed 

    Google Scholar 
    Kissui, B. M. & Packer, C. Top–down population regulation of a top predator: lions in the Ngorongoro Crater. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 1867–1874 (2004).Article 

    Google Scholar 
    Atwood, T. C. & Gese, E. M. Coyotes and recolonizing wolves: social rank mediates risk-conditional behaviour at ungulate carcasses. Anim. Behav. 75, 753–762 (2008).Article 

    Google Scholar 
    Pitman, R. L. & Durban, J. W. Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, in Antarctic Peninsula waters. Mar. Mammal. Sci. 28, 16–36 (2012).Article 

    Google Scholar 
    Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).Article 
    PubMed 

    Google Scholar 
    Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 1–13 (2016).Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Schaller, G. B. The Serengeti Lion.,(University of Chicago Press: Chicago, IL.). (1972).Packer, C., Pusey, A. E. & Eberly, L. E. Egalitarianism in female African lions. Science 293, 690–693 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilson, R. L. & Hamilton, W. J. III Social dominance and feeding patterns of spotted hyaenas. Anim. Behav. 32, 715–724 (1984).Article 

    Google Scholar 
    Frank, L. G. Social organization of the spotted hyaena Crocuta crocuta. II. Dominance and reproduction. Anim. Behav. 34, 1510–1527 (1986).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Frame, L. H., Malcolm, J. R., Frame, G. W. & Van Lawick, H. Social Organization of African Wild Dog on the Serengeti Plains. Z. Tierpsychol. 50, 225–249 (1979).Article 

    Google Scholar 
    Bertram, B. C. R. Social factors influencing reproduction in wild lions. J. Zool. 177, 463–482 (1975).Article 

    Google Scholar 
    Packer, C. & Pusey, A. Asymmetric contests in social mammals: respect, manipulation and age-specific aspects. Evol. essays honour John Maynard Smith 173–186 (1985).Domenici, P., Batty, R. S., Similä, T. & Ogam, E. Killer whales (Orcinus orca) feeding on schooling herring (Clupea harengus) using underwater tail-slaps: Kinematic analyses of field observations. J. Exp. Biol. 203, 283–294 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. L. Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J. Acoust. Soc. Am. 125, 125–137 (2009).Article 
    PubMed 

    Google Scholar 
    Gazda, S. K. Driver-barrier feeding behavior in bottlenose dolphins (Tursiops truncatus): New insights from a longitudinal study. Mar. Mammal. Sci. 32, 1152–1160 (2016).Article 

    Google Scholar 
    Herbert-Read, J. E. et al. Proto-Cooperation: Group hunting sailfish improve hunting success by alternating attacks on grouping prey. Proc. R. Soc. B Biol. Sci. 283, 1–14 (2016).
    Google Scholar 
    Rieucau, G., Holmin, A. J., Castillo, J. C., Couzin, I. D. & Handegard, N. O. School level structural and dynamic adjustments to risk promote information transfer and collective evasion in herring. Anim. Behav. 117, 69–78 (2016).Article 

    Google Scholar 
    Rieucau, G., Fernö, A., Ioannou, C. C. & Handegard, N. O. Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Rev. Fish. Biol. Fish. 25, 21–37 (2014).Article 

    Google Scholar 
    Ford, J. K. B. & Ellis, G. M. Transients: mammal-hunting killer whales of British Columbia, Washington, and southeastern Alaska. (UBC Press, 1999).Bailey, I., Myatt, J. P. & Wilson, A. M. Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behav. Ecol. Sociobiol. 67, 1–17 (2013).Article 

    Google Scholar 
    Packer, C., Scheel, D. & Pusey, A. E. Why Lions Form Groups: Food is Not Enough. Am. Nat. 136, 1–19 (1990).Article 

    Google Scholar 
    Creel, S. & Creel, N. M. The African wild dog: behavior, ecology, and conservation. (Princeton University Press, 2002).Carbone, C. et al. Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: The effects of group size and kleptoparasitism. J. Zool. 266, 153–161 (2005).Article 

    Google Scholar 
    Chakrabarti, S. & Jhala, Y. V. Selfish partners: Resource partitioning in male coalitions of Asiatic lions. Behav. Ecol. 28, 1532–1539 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amorós, M., Gil-Sánchez, J. M., López-Pastor, B., de las, N. & Moleón, M. Hyaenas and lions: how the largest African carnivores interact at carcasses. Oikos 129, 1820–1832 (2020).Article 

    Google Scholar 
    Wilmers, C. C. & Stahler, D. R. Constraints on active-consumption rates in gray wolves, coyotes, and grizzly bears. Can. J. Zool. 80, 1256–1261 (2002).Article 

    Google Scholar 
    Schmidt, P. A. & Mech, L. D. Wolf pack size and food acquisition. Am. Nat. 150, 513–517 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major, P. F. Predator-prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus. Anim. Behav. 26, 760–777 (1978).Article 

    Google Scholar 
    Thiebault, A., Semeria, M., Lett, C. & Tremblay, Y. How to capture fish in a school? Effect of successive predator attacks on seabird feeding success. J. Anim. Ecol. 85, 157–167 (2016).Article 
    PubMed 

    Google Scholar 
    Handegard, N. O. et al. The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr. Biol. 22, 1213–1217 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding Collective Behaviour: An Ecological Perspective. Trends Ecol. Evol. 33, 347–357 (2018).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J. et al. Linking hunting weaponry to attack strategies in sailfish and striped marlin. Proc. R. Soc. B Biol. Sci. 287, 20192228 (2020).Rieucau, G. et al. Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: a case study on reef sharks Carcharhinus melanopterus shoaling behaviour. J. Fish. Biol. 93, 119–127 (2018).Article 
    PubMed 

    Google Scholar 
    Krause, J. The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia 93, 356–359 (1993).Article 
    PubMed 

    Google Scholar 
    DeBlois, E. M. & Rose, G. A. Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua). Oecologia 108, 192–196 (1996).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M. & Ward, A. J. W. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M., Krause, J. & Ward, A. J. W. Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement. PLoS One 11, 1–17 (2016).Article 

    Google Scholar 
    McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Domenici, P. et al. How sailfish use their bills to capture schooling prey. Proc. R. Soc. B Biol. Sci. 281, 20140444 (2014).Kurvers, R. H. J. M. et al. The Evolution of Lateralization in Group Hunting Sailfish. Curr. Biol. 27, 521–526 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, A. & Webster, M. Sociality: The behaviour of group-living animals. (Springer, 2016).Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour Published by: Brill Stable URL: http://www.jstor.org/stable/23034261 REFERENCES Linked references are available on JSTOR for this article: You may need to log in to JSTOR to access th. 148, 575–602 (2017).D’Vincent, C. G., Nilson, R. M. & Hanna, R. E. Vocalization and coordinated feeding behavior of the humpback whale Megaptera novaeangliae in Southeastern Alaska, USA. Sci. Rep. Whale Res. Inst. Tokyo 36, 41–47 (1985).
    Google Scholar 
    Jurasz, C. M. & Jurasz, V. P. Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci. Rep. Whales Res. Inst. 31, 69–83 (1979).
    Google Scholar 
    Similä, T. & Ugarte, F. Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Can. J. Zool. 71, 1494–1499 (1993).Article 

    Google Scholar 
    Clua, É. & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).Article 

    Google Scholar 
    Uchiyama, J. H. & Kazama, T. K. Updated weight-on-length relationships for pelagic fishes caught in the central North Pacific Ocean and bottomfishes from the northwestern Hawaiian Islands. (2003).Ponce-Díaz, G., Ortega-García, S. & González-Ramírez, P. G. Analysis of sizes and weight-length relation of the striped marlin, Tetrapturus sudax (Philippi, 1887) in Baja California Sur, Mexico. Cienc. Mar. 17, 69–82 (1991).Article 

    Google Scholar 
    Abitı́a-Cárdenas, L. A., Muhlia-Melo, A., Cruz-Escalona, V. & Galván-Magaña, F. Trophic dynamics and seasonal energetics of striped marlin Tetrapturus audax in the southern Gulf of California, Mexico. Fish. Res. 57, 287–295 (2002).Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Hansen, Matthew Mechanisms prey Div. a Mar. group-Hunt. Predat., Dryad, Dataset https://doi.org/10.5061/dryad.b2rbnzshx (2022).Article 

    Google Scholar  More

  • in

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    Hayes, S. M. & McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 59, 192–199 (2018).
    Google Scholar 
    Saatz, J., Vetterlein, D., Mattusch, J., Otto, M. & Daus, B. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ. Pollut. 204, 32–38 (2015).CAS 
    PubMed 

    Google Scholar 
    Gonzalez, V., Vignati, D. A. L., Leyval, C. & Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 71, 148–157 (2014).CAS 
    PubMed 

    Google Scholar 
    Kovarikova, M., Tomaskova, I. & Soudek, P. Rare earth elements in plants. Biol. Plant. 63, 20–32 (2019).CAS 

    Google Scholar 
    Thomas, P. J., Carpenter, D., Boutin, C. & Allison, J. E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 96, 57–66 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramos, S. J. et al. Rare earth elements in the soil environment. Curr. Pollut. Rep. 2, 28–50 (2016).CAS 

    Google Scholar 
    Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 10, e0129936 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kotelnikova, A., Fastovets, I., Rogova, O. & Volkov, D. S. La, Ce and Nd in the soil-plant system in a vegetation experiment with barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 206, 111193 (2020).CAS 
    PubMed 

    Google Scholar 
    Hu, Z., Richter, H., Sparovek, G. & Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 27, 183–220 (2004).CAS 

    Google Scholar 
    Tao, Y. et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ. Pollut. 298, 118540 (2022).CAS 
    PubMed 

    Google Scholar 
    Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 267, 191–206 (2004).CAS 

    Google Scholar 
    Ding, S. et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: An application for metal accumulation by plants. Environ. Sci. Technol. 40, 2686–2691 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grosjean, N. et al. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 9, 18458 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yuan, M. et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int. J. Phytoremediat. 20, 415–423 (2018).CAS 

    Google Scholar 
    Yuan, M. et al. The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L.. Plant Soil 421, 67–82 (2017).CAS 

    Google Scholar 
    Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (eds Van der Ent, A. et al.) 297–308 (Springer, 2018).
    Google Scholar 
    Purwadi, I., Nkrumah, P. N., Paul, A. L. D. & van der Ent, A. Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology 31, 335–342 (2021).CAS 

    Google Scholar 
    Shan, X. et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165, 1343–1353 (2003).CAS 

    Google Scholar 
    Wu, J., Chen, A., Peng, S., Wei, Z. & Liu, G. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 373, 329–338 (2013).CAS 

    Google Scholar 
    Zhenggui, W. et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut. 114, 345–355 (2001).
    Google Scholar 
    Okoroafor, P. U., Ogunkunle, C. O., Heilmeier, H. & Wiche, O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. Int. J. Phytoremediat. 24, 1310–1320 (2022).CAS 

    Google Scholar 
    Taggart, R. K. et al. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environ. Sci. Process. Impacts 20, 1390–1403 (2018).CAS 
    PubMed 

    Google Scholar 
    Fehlauer, T. et al. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. Chemosphere 287, 132315 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, W.-S. et al. Spatially resolved localization of lanthanum and cerium in the rare earth element hyperaccumulator fern Dicranopteris linearis from China. Environ. Sci. Technol. 54, 2287–2294 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saatz, J. et al. Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS. Environ. Pollut. 216, 245–252 (2016).CAS 
    PubMed 

    Google Scholar 
    Mantienne, J. L. Minéralisation thallifère de Jas Roux (Hautes-Alpes)—Alpes françaises (Université Pierre et Marie Curie—Paris VI, 1974).
    Google Scholar 
    Kabata-Pendias, A. Trace Elements in Soils and Plants (CRC Press, 2011).
    Google Scholar 
    Kastori, R., Maksimovic, I., Zeremski-Skoric, T. & Putnik-Delic, M. Rare earth elements: Yttrium and higher plants. Zb. Matice Srp. Za Prir. Nauke 118, 87–98 (2010).Salminen, R., Vos, W. D. & Tarvainen, T. Geochemical Atlas of Europe—Part 1: Background Information, Methodology and Maps (Geological Survey of Finland, 2005).
    Google Scholar 
    Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil-Like Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 l/kg Dry Matter. https://doi.org/10.31030/3069638 (2020).R Core Team. R: A Language and Environment for Statistical Computing (2021).RStudio Team. RStudio: Integrated Development Environment for R (RStudio, PBC, 2020).
    Google Scholar 
    Radziemska, M., Vaverková, M. & Baryła, A. Phytostabilization—Management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 14, 958 (2017).PubMed Central 

    Google Scholar 
    Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil. J. Synchrotron Radiat. 22, 1118–1129 (2015).CAS 
    PubMed 

    Google Scholar 
    Sancho-Tomás, M. et al. Geochemical evidence for arsenic cycling in living microbialites of a high altitude Andean Lake (Laguna Diamante, Argentina). Chem. Geol. 549, 11 (2020).
    Google Scholar 
    Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. J. Synchrotron Radiat. 20, 293–299 (2013).CAS 
    PubMed 

    Google Scholar 
    Aubineau, J. et al. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat. Commun. 10, 2670 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 

    Google Scholar 
    Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62, 63–68 (2007).ADS 

    Google Scholar 
    Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: Fast density-based clustering with R. J. Stat. Softw. 91, 1 (2019).
    Google Scholar 
    Hennig, C. fpc: Flexible Procedures for Clustering (2020).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2021).Wei, T. & Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix (2021).van der Ent, A. et al. (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants (Springer, 2021).
    Google Scholar 
    Liu, C. et al. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere 282, 131096 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Han, F. et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165, 481–492 (2005).CAS 
    PubMed 

    Google Scholar 
    Ruíz-Herrera, L. F., Sánchez-Calderón, L., Herrera-Estrella, L. & López-Bucio, J. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353, 231–247 (2012).
    Google Scholar 
    González-Guerrero, M., Escudero, V., Saéz, Á. & Tejada-Jiménez, M. Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7, 1088 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Jogawat, A., Yadav, B., Chhaya, & Narayan, O. P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 173, 259–275. https://doi.org/10.1111/ppl.13370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Krämer, U., Talke, I. N. & Hanikenne, M. Transition metal transport. FEBS Lett. 581, 2263–2272 (2007).PubMed 

    Google Scholar 
    Tuduri, J. et al. Lumière sur la géologie des terres rares, pourquoi tant d’attraits? Géologues 204, 48–54 (2020).
    Google Scholar 
    Tiziani, R. et al. Root handling affects carboxylates exudation and phosphate uptake of white lupin roots. Front. Plant Sci. 11, 584568 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).CAS 
    PubMed 

    Google Scholar 
    Wen, Z. et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. Plant Soil 465, 31–46 (2021).CAS 

    Google Scholar 
    Wiche, O., Kummer, N.-A. & Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402, 235–245 (2016).CAS 

    Google Scholar 
    Chen, A., Husted, S., Salt, D. E., Schjoerring, J. K. & Persson, D. P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol. 181, 729–742 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rengel, Z. et al. (eds) Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012).
    Google Scholar 
    Brioschi, L. et al. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 366, 143–163 (2013).CAS 

    Google Scholar 
    Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1767 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    St-Cyr, L. & Campbell, P. G. C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33, 969 (1996).
    Google Scholar 
    Tripathi, R. D. et al. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6, 1789–1800 (2014).CAS 
    PubMed 

    Google Scholar 
    Pourret, O. et al. The ‘europium anomaly’ in plants: Facts and fiction. Plant Soil 476, 721–728 (2022).CAS 

    Google Scholar 
    Liu, C. et al. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Sci. Total Environ. 805, 150335 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Poschenrieder, C., Busoms, S. & Barceló, J. How plants handle trivalent (+3) elements. Int. J. Mol. Sci. 20, 3984 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Ma, J. F. & Hiradate, S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360 (2000).CAS 
    PubMed 

    Google Scholar 
    Rellán-Álvarez, R. et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51, 91–102 (2010).PubMed 

    Google Scholar 
    Ding, S. et al. Role of ligands in accumulation and fractionation of rare earth elements in plants: Examples of phosphate and citrate. Biol. Trace Elem. Res. 107, 073–086 (2005).CAS 

    Google Scholar 
    Wu, J., Wei, Z., Zhao, H., Li, H. & Hu, F. The role of amino acids in the long-distance transport of La and Y in the xylem sap of tomato. Biol. Trace Elem. Res. 129, 239–250 (2009).CAS 
    PubMed 

    Google Scholar 
    Singh, S. Guttation: New insights into agricultural implications. In Advances in Agronomy Vol. 128 (ed. Sparks, D. L.) 97–135 (Elsevier, 2014).
    Google Scholar 
    Hossain, Md. B., Sawada, A., Noda, K. & Kawasaki, M. Hydathode function and changes in contents of elements in eddo exposed to zinc in hydroponic solution. Plant Prod. Sci. 20, 423–433 (2017).CAS 

    Google Scholar 
    Singh, S. Guttation: Path, principles and functions. Aust. J. Bot. 61, 497 (2013).
    Google Scholar 
    Wightman, R., Wallis, S. & Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 241, 27–34 (2018).
    Google Scholar 
    Brüggemann, W., Maas-Kantel, K. & Moog, P. R. Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 196606 (1993).
    Google Scholar 
    Ma, J. F., Ryan, P. R. & Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278 (2001).CAS 
    PubMed 

    Google Scholar 
    Tolrà, R. et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J. Plant Res. 124, 165–172 (2011).PubMed 

    Google Scholar  More