More stories

  • in

    Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes

    Cohort demographicsA total of 206 female participants were enrolled in the study and passed our quality control standards. All participants were required to be between the ages of 18–26 years old (22.5 ± 2.1) and to be born and at the time living in one of four geographically distinct regions of the world: Barbados; Santiago, Chile; Pretoria, S. Africa; and Bangkok, Thailand. The regions do, however, differ by an order of magnitude in their geographic spread as the intra-distance separating the residence neighborhood of participants ranged from 34 (Barbados) to 681 km (Pretoria, S. Africa) (Fig. S2). The Chilean and the South African datasets are further divided into two contiguous sub-regions, or neighborhoods, to allow for a micro-geographic analysis. The study population is largely dominated by individuals with self-identified Thai heritage (33%), followed by Black African (16%), Afro-Caribbean (14%) and white (14%) descent, although 19% of the Chilean population did not report ethnicity.Study participants, despite the divergent geographies, mostly have similar dietary and lifestyle habits (Table S1). Over half the study population (62%) have a normal BMI, with the mean BMI in this range (22.6 ± 5.5). The diets of the different cohorts are also similar as of the total cohort, 78% consume a starch heavy diet (≥ 4 days a week) of rice, bread and pasta, followed by 66% who frequently consume (≥ 4 days a week) vegetables and fruit and 49% who frequently consume dairy products. The study population is split by level of tobacco exposure, with 51% of the population having never smoked, and 43% being exposed to second-hand smoke through living with a smoker. Over half (56%) of the study population own one or more pets.Stool microbiomeThe OTUs identified using the UPARSE pipeline17 were used to compute the alpha diversity of the microbial communities using the Chao1 (species richness) and Shannon (species evenness) indices. The mean Shannon indices reveal that the microbiota diversity is only significant between Thailand-Chile with FDR  More

  • in

    Improving quantitative synthesis to achieve generality in ecology

    Houlahan, J. E., McKinney, S. T., Anderson, T. M. & McGill, B. J. The priority of prediction in ecological understanding. Oikos 126, 1–7 (2017).Article 

    Google Scholar 
    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).Article 

    Google Scholar 
    Elliott-Graves, A. Generality and causal interdependence in ecology. Philos. Sci. 85, 1102–1114 (2018).Article 

    Google Scholar 
    Fox, J. W. The many roads to generality in ecology. Philos. Top. 9, 83–104 (2019).Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).Article 
    PubMed 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).Article 

    Google Scholar 
    Gurevitch, J., Fox, G. A., Wardle, G. M., Inderjit & Taub, D. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14, 407–418 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anderson, S. C. et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 19, 274–282 (2021).Article 

    Google Scholar 
    Kneale, D., Thomas, J., O’Mara-Eves, A. & Wiggins, R. How can additional secondary data analysis of observational data enhance the generalisability of meta-analytic evidence for local public health decision making? Res. Synth. Methods 10, 44–56 (2019).Article 
    PubMed 

    Google Scholar 
    Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R. & Dalton, C. M. Debunking myths and urban legends about meta-analysis. Organ. Res. Methods 14, 306–331 (2011).Article 

    Google Scholar 
    Polit, D. F. & Beck, C. T. Generalization in quantitative and qualitative research: myths and strategies. Int. J. Nurs. Stud. 47, 1451–1458 (2010).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Lundberg, I., Johnson, R. & Stewart, B. M. What is your estimand? Defining the target quantity connects statistical evidence to theory. Am. Sociol. Rev. 86, 532–565 (2021).Article 

    Google Scholar 
    Lawrance, R. et al. What is an estimand & how does it relate to quantifying the effect of treatment on patient-reported quality of life outcomes in clinical trials? J. Patient-Rep. Outcomes 4, 68 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Findley, M. G., Kikuta, K. & Denly, M. External validity. Annu. Rev. Polit. Sci. 24, 365–393 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. External validity: from do-calculus to transportability across populations. Stat. Sci. 29, 579–595 (2014).Article 

    Google Scholar 
    Westreich, D., Edwards, J. K., Lesko, C. R., Cole, S. R. & Stuart, E. A. Target validity and the hierarchy of study designs. Am. J. Epidemiol. 188, 438–443 (2019).Article 
    PubMed 

    Google Scholar 
    Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2020).Article 

    Google Scholar 
    Rohrer, J. M. & Arslan, R. C. Precise answers to vague questions: issues with interactions. Adv. Methods Pract. Psychol. Sci. 4, 1–19 (2021).
    Google Scholar 
    Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).
    Google Scholar 
    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).Article 

    Google Scholar 
    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be avoided. Int. J. Epidemiol. 42, 1012–1014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spake, R. et al. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2021).Article 
    PubMed 

    Google Scholar 
    Spake, R. & Doncaster, C. P. Use of meta-analysis in forest biodiversity research: key challenges and considerations. For. Ecol. Manag. 400, 429–437 (2017).Article 

    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).Article 
    PubMed 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol. Evol. 13, 1214–1223 (2022).Article 

    Google Scholar 
    Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2021).Article 
    PubMed 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-Scale Assess. Educ. 6, 8 (2018).Article 

    Google Scholar 
    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).Article 

    Google Scholar 
    Ojha, M., Naidu, D. G. T. & Bagchi, S. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. J. Ecol. 110, 799–816 (2022).Dodds, K. C. et al. Material type influences the abundance but not richness of colonising organisms on marine structures. J. Environ. Manag. 307, 114549 (2022).Article 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta- analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).Article 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).Article 
    PubMed 

    Google Scholar 
    Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).Article 

    Google Scholar 
    Glass, G. V. Meta‐analysis at 25: a personal history. Education in Two Worlds https://ed2worlds.blogspot.com/2022/07/meta-analysis-at-25-personal-history.html (2000).Cooper, H. M. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988).
    Google Scholar 
    Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).Article 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Simons, D. J., Shoda, Y. & Lindsay, D. S. Constraints on Generality (CoG): a proposed addition to all empirical papers. Perspect. Psychol. Sci. 12, 1123–1128 (2017).Article 
    PubMed 

    Google Scholar 
    Yarkoni, T. The generalizability crisis. Behav. Brain Sci. https://doi.org/10.1017/S0140525X20001685 (2020).Lopez, P. M., Subramanian, S. V. & Schooling, C. M. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J. Clin. Epidemiol. 113, 123–128 (2019).Article 
    PubMed 

    Google Scholar 
    Campbell, D. T. in Advances in QuasiExperimental Design and Analysis (ed. Trochim, W.) 67–77 (Jossey-Bass, 1986).Spake, R. et al. Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conserv. Sci. Pract. 1, e14 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forest Ecosystem Diversity Basic Survey (in Japanese) (Forestry Agency of Japan, 2019); https://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/index.htmlIto, S., Ishigamia, S., Mizoue, N. & Buckley, G. P. Maintaining plant species composition and diversity of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu, southern Japan. For. Ecol. Manag. 231, 234–241 (2006).Article 

    Google Scholar 
    Utsugi, E. et al. Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests. For. Ecol. Manag. 237, 15–28 (2006).Article 

    Google Scholar 
    Kominami, Y. et al. Classification of bird-dispersed plants by fruiting phenology, fruit size, and growth form in a primary lucidophyllous forest: an analysis, with implications for the conservation of fruit–bird interactions. Ornthological Sci. 2, 3–23 (2003).Article 

    Google Scholar 
    Tsujino, R. & Matsui, K. Forest regeneration inhibition in a mixed broadleaf-conifer forest under sika deer pressure. J. For. Res. 27, 230–235 (2021).Article 

    Google Scholar 
    Spake, R., Soga, M., Catford, J. A. & Eigenbrod, F. Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. J. Appl. Ecol. 58, 1993–2003 (2021).Article 

    Google Scholar 
    Mize, T. D. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol. Sci. 6, 81–117 (2019).Article 

    Google Scholar 
    Karaca-Mandic, P., Norton, E. C. & Dowd, B. Interaction terms in nonlinear models. Health Serv. Res. 47, 255–274 (2012).Article 
    PubMed 

    Google Scholar 
    Spake, R. et al. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57, 1376–1390 (2020).McCabe, C. J., Kim, D. S. & King, K. M. Improving present practices in the visual display of interactions. Adv. Methods Pract. Psychol. Sci. 1, 147–165 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, A. P. et al. Innovation and forward‐thinking are needed to improve traditional synthesis methods: a response to Pescott and Stewart. J. Appl. Ecol. 59, 1191–1197 (2022).Article 

    Google Scholar 
    Haddaway, N. R. et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 8, 22 (2019).Delory, B. M., Li, M., Topp, C. N. & Lobet, G. archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7, 22 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkel, J. M. The future of scientific figures. Nature 554, 133–134 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Weaver, S. & Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26, 1315–1326 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sutton, C. et al. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: a formal approach. In 2011 IEEE 11th International Conference on Data Mining Workshops https://doi.org/10.1109/ICDMW.2011.169 (IEEE, 2011).Munthe-Kaas, H., Nøkleby, H. & Nguyen, L. Systematic mapping of checklists for assessing transferability. Syst. Rev. 8, 22 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A. & Vandenbroucke, J. P. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloemer, T. & Schröder-Bäck, P. Criteria for evaluating transferability of health interventions: a systematic review and thematic synthesis. Implement. Sci. 13, 88 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Hermida, J. R., Calafat, A., Becoña, E., Tsertsvadze, A. & Foxcroft, D. R. Assessment of generalizability, applicability and predictability (GAP) for evaluating external validity in studies of universal family-based prevention of alcohol misuse in young people: systematic methodological review of randomized controlled trials. Addiction 107, 1570–1579 (2012).Article 
    PubMed 

    Google Scholar 
    Avellar, S. A. et al. External validity: the next step for systematic reviews? Eval. Rev. 41, 283–325 (2017).Article 
    PubMed 

    Google Scholar 
    Bareinboim, E. & Pearl, J. A general algorithm for deciding transportability of experimental results. J. Causal Inference 1, 107–134 (2013).Article 

    Google Scholar 
    Degtiar, I. & Rose, S. A review of generalizability and transportability. Preprint at https://doi.org/10.48550/arXiv.2102.11904 (2021).Bareinboim, E. & Pearl, J. Meta-transportability of causal effects: a formal approach. J. Mach. Learn. Res. 31, 135–143 (2013).
    Google Scholar 
    Jamieson, D. Scientific uncertainty: how do we know when to communicate research findings to the public? Sci. Total Environ. 184, 103–107 (1996).Article 
    CAS 

    Google Scholar 
    Burchett, H. E. D., Mayhew, S. H., Lavis, J. N. & Dobrow, M. J. When can research from one setting be useful in another? Understanding perceptions of the applicability and transferability of research. Health Promot. Int. 28, 418–430 (2013).Article 
    PubMed 

    Google Scholar 
    Forscher, P. et al. Build up big-team science. Nature 601, 505–507 (2022).Article 

    Google Scholar 
    Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Moshontz, H. et al. The Psychological Science Accelerator: advancing psychology through a distributed collaborative network. Adv. Methods Pract. Psychol. Sci. 1, 501–515 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, I. C. A general framework for the analysis of adaptive experiments. Stat. Sci. 36, 465–492 (2021).Article 

    Google Scholar 
    Clark, M. Shrinkage in Mixed Effects Models https://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/ (2019).Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).Article 

    Google Scholar 
    Mengersen, K., Gurevitch, J. & Schmid, C. H. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, U. et al.) 300–312 (Princeton Univ. Press, 2013).Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salguero-Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).Article 

    Google Scholar  More

  • in

    Mixotrophy in depth

    Rippka, R. et al. J. Gen. Microbiol. https://doi.org/10.1099/00221287-111-1-1 (1979).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. ISME J. 14, 1065–1073 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yelton, A. P. et al. ISME J. 10, 2946–2957 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, B. A. & Follows, M. J. Proc. Natl Acad. Sci. USA 113, 2958–2963 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Z. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01250-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flombaum, P. et al. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zubkov, M. et al. Appl. Environ. Microbiol. 69, 1299–1304 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vila-Costa, M. et al. Science 314, 652–654 (2006).Article 
    PubMed 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Proc. Natl Acad. Sci. USA 110, 8597–8602 (2013).Article 
    PubMed Central 

    Google Scholar 
    Gómez-Baena, G. et al. PLoS ONE 3, e3416 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coe, A. et al. Limnol. Oceanogr. 71, 1375–1388 (2016).Article 

    Google Scholar 
    Muñoz-Marín, M. C. et al. Microbiol. Spectr. https://doi.org/10.1101/2021.10.04.462702 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Zebras of all stripes repel biting flies at close range

    The evolutionary origins of zebra stripes have been investigated—and debated—for centuries. The trait is rare, conspicuous, and intensely expressed, and thus appears to beg an adaptationist explanation. However, the utility of a complete coat of densely packed, starkly contrasting black-and-white stripes is not immediately apparent. Unlike many conspicuous visual traits, striped pelage is expressed with comparable intensity in both sexes and is thus unlikely to have arisen through sexual selection alone (although in plains zebras, Equus quagga, males have stripes closer to true black than females). Stripes are clearly not aposematic warning signals, nor do they provide camouflage in either the woodland or savannah habitats common across zebra ranges1,2. So, striping presents an ideal evolutionary puzzle: a trait so refined it seems it must be “for” something, but one that confers no clear advantage upon its bearers and imposes apparent costs (conspicuousness) that cannot be explained in Zahavian terms.Scientists have proposed and investigated several possible explanations for the evolution of zebra stripes (reviewed in3). The hypotheses suggest various ways in which stripes may provide a social function (species or individual recognition or social cohesion1,4), a temperature-regulation benefit5,6, an anti-predator effect7,8, or an anti-parasite effect9,10. There is continued debate over both the merits of individual hypotheses and the likelihood of stripes having arisen via a single driver vs. a confluence or alternation of multiple selective pressures6,11.The present study addresses the hypothesis that has thus far received the most empirical support: the anti-parasite hypothesis (also known as the ectoparasite hypothesis12). Zebras, like most ungulates, are harassed by tabanid, glossinid and Stomoxys species of biting flies, which can inflict significant blood loss, transmit disease, and weaken hosts when fly-avoidance behaviors reduce the host’s feeding rate9,13,14. Yet zebras are attacked far less than sympatric ungulates across their African range15,16, and also less than other equids9,17. Zebras also produce odors that may augment their anti-fly defenses18, but so do other sympatric ungulate species18,19, and a host of observations and experiments have demonstrated that black-and-white stripes alone are unattractive, or actively repellent to tabanid, glossinid, and Stomoxys flies17,20,21,22,23.Though the effect of stripes on flies is well-established, the source of the effect remains unexplained. Since Waage’s foundational studies in the 1970s and 1980s9,24 most hypotheses have suggested ways that stripes might interfere with the visual and navigational systems of flies, making it harder for them to locate, identify, or successfully land on striped targets. These hypothetical mechanisms can be roughly grouped by the distance (and the attendant phase of a fly’s orientation and landing behavior) at which they would likely operate:

    From afar: stripes might make it harder for flies to locate and distinguish zebras from background vegetation, perhaps by breaking up their outline9 or varying the way they polarize or reflect light17,31 especially from distances at which composite eyes support only low-resolution vision and cannot resolve zebra stripes as clear bands of alternating color on a single host (estimated at  > 2.0 m22,  > 4.4 m24, and even  > 20 m25).

    At close range (estimates range from 0.5 to 4.0 m26): stripes might interfere with orientation or landing behavior via any of several disruptive or ‘dazzle’-related visual effects27. For example, stripes might affect ‘optic flow’, or the fly’s perceived relative motion to its target as it approaches, by creating an illusion of false direction or speed of motion (e.g., via variants of the ‘barber pole’ or ‘wagon wheel’ effects28). Alternatively, relative motion to a striped pattern within the visual field may create the perception of self-rotation, inducing the fly’s involuntary ‘optomotor response’ and resulting in an avoidance turn in an effort to stay on a straight course29.

    Finally, stripes might cause confusion in the transition between long- and short-distance orientation. If zebras appear as blurred gray from a distance and then, at closer range, suddenly resolve into a sequence of floating black and white bars, this abrupt ‘visual transformation’26 might disrupt the behavioral sequence that facilitates landing.

    Within these categories, hypotheses have proliferated faster than experimental tests of many of the proposed mechanisms. The very active literature on this question has grown in somewhat haphazard fashion, as curious researchers test new possibilities without eliminating old ones6. Importantly, few experiments have controlled the distance from which flies are first able to view potential landing sites (but see23). While growing evidence supports a mechanism operating at close range22,26, failing to restrict the starting distance of the fly means that the full set of possible mechanisms outlined above all remain plausible contributors to most previous results.Additionally, while many studies have, appropriately, used artificial stimuli to isolate basic effects of color, pattern, brightness, and light polarization of (usually flat) test surfaces, possible contributions of several aspects of natural zebra pelage remain untested. Controlled experiments have used various landing substrates, including striped and solid oil tray traps, sticky plastic, smooth plastic17, cloth (Experiment 2 in22), horse blankets or sheets26, and paint on live animals30. These have all clearly demonstrated a broadly replicable visual effect: stripes, and some other juxtapositions of black and white (e.g., checkerboard patterns26), repel flies. However, insofar as specific features of zebra pelage factor into proposed mechanisms of fly repellence—the reflective properties of “smooth, shiny” coats31; the orientation of the stripes17,32; the light-polarizing effects of black and white hair vs. background vegetation25; and the complex structure of hair25—there is a need for more experiments that present natural targets to wild flies (but see22,33). Similarly, most experiments have compared landing preferences between black-and-white striped, solid black, solid white, and occasionally solid grey substrates, which have served as important controls for determining that light polarization, rather than a combination of polarization and brightness, is sufficient to induce the effect of stripe avoidance17. However, it is now time to refocus on the original question by presenting flies with more realistic choices. Since biting flies seeking a bloodmeal on the African savannah seldom encounter solid black hosts, and even more rarely solid white hosts, landing choices should be compared between zebra stripes and common coat colors of sympatric mammals, namely various shades of brown. Further, tabanid, glossinid, and Stomoxys flies all avoid landing on stripes that are the same width or narrower than the widest zebra stripes 17,23, and there is some evidence that narrower stripes are even more repellent to tabanids17. This pattern is potentially significant in the application of the anti-parasite hypothesis to an adaptive explanation for the striking variation in stripe width across zebra species and between the different areas of the body on individual zebras22, but must first be confirmed with experiments using real zebra pelage.Here, we present a simple experiment designed to address each of these gaps in the literature on the anti-fly benefits of zebra stripes. In this field experiment, the landing choices of flies were tested entirely within the range at which all estimates agree flies should be able to perceive the presented stripes ( More

  • in

    Low levels of sibship encourage use of larvae in western Atlantic bluefin tuna abundance estimation by close-kin mark-recapture

    Our results show that GoM BFT larval survey samples can provide the crucial mark events for eventual CKMR estimates of adult abundance. The adult parents marked by larval samples can be directly recaptured in the fishery many years later as POPs, and indirectly through their progeny in future samples of larvae, as evidenced by the two cross-cohort HSPs (XHSPs) recovered in this study, which imply that a parent survived and spawned in the GoM in consecutive years. As more cohorts are sampled in future, the growing number of XHSPs could be used to estimate average adult survival rates, in addition to helping with the estimation of adult abundance31, as is now done for southern blue tuna40.There is a modest level of sibship within our 2016 samples, and a high level (involving over half the samples) in 2017, but it turns out not to be high enough to cause serious problems for POP-based CKMR. High sibship per se does not lead to bias in CKMR by virtue of the statistical construction of the estimate, but it does increase variance, which can be summarized through a reduction in effective sample size. In a POP-based CKMR model, our effective sample size would be about 75% of nominal for the two years combined, or 66% of nominal for the targeted sampling of 2017. Since it is actually the product of adult and juvenile sample sizes which drives precision in CKMR14, one way to think about the 75% is that we will need about 33% more adult samples to achieve a given precision on abundance estimates than if we had somehow been able to collect the same number of “independent” juvenile samples (i.e. without oversampling siblings). That increase is appreciable but entirely achievable; for WBFT, it is logistically much easier to collect more feeding-ground adult samples than to collect more larvae, and at present there is no known practical way to collect large numbers of older, more dispersed, and thus more independent, juvenile western origin bluefin tuna (WBFT).This study was motivated by the concern that sibship might be a serious impediment to use of WBFT larvae for CKMR. High levels of sibship have been found in larval collections for other taxa despite a pelagic larval phase, suggesting that abiotic factors can impede random mixing of larvae after a spawning event41. Our larval samples were only a few days old (4–11) and thus had little time to disperse since fertilization; our concern beforehand was that each tow might sample the offspring of a very small number of adults (one spawning group in one night), and in 2017 that repeatedly towing the same water mass might simply be resampling the same “family”. In practice, though, the cumulative effect was limited. Samples were not dominated by progeny from just a few adults; the maximum DPG size (i.e., number of offspring from any one adult) was 5, which is under 2% of the larval sample size. There are several possible reasons for this finding. First, plankton sample tows are typically standardized to a ten-minute duration, covering on average about 0.3 nautical miles. Based on continuous plankton cameras42, each tow is likely to tow through multiple patches of zooplankton, and therefore potentially multiple patches of BFT larvae. Second, spawning aggregations of BFT may contain many adults. For example, on the spawning grounds near the Balearic Islands in the Mediterranean, purse seine fisheries target spawning fish and individual net sets routinely capture upwards of 500 mature individuals43. These numbers suggest that BFT spawner aggregations can be quite large, although the number of individuals that contribute gametes to a single spawning event may be lower. The results of this study pose intriguing scenarios for understanding BFT larval ecology and spawning behavior, which could be explored with larger sample sizes paired with data on oceanographic conditions, direct observation of spawning aggregations, and modeling to compare observed and predicted dispersal. The results of this study are based on just two years of sampling, and numerous practical and theoretical challenges remain to fully understand BFT reproduction in the GoM.Our sibship impact calculations assume use of an unmodified adult-size-based CKMR POP model, where each juvenile is compared to each adult taking into account the latter’s size (e.g.,14). That will give unbiased estimates, which we regard as essential in a CKMR model. However, for WBFT the estimates are not fully statistically efficient, in that some adults receive more statistical weight than others because they are marked more often (by having a large DPG), and thus variance might not be the lowest achievable. Modifying the model to fix that would be simple in a “cartoon” CKMR setting where all adults are identical (e.g., Fig. 1 of14), simply by first condensing each DPG to a single representative, then only using those representatives (rather than all the larvae) in POP comparisons. Each marked parent then receives the same weight, giving maximum efficiency. For the cartoon, this condensed-DPG model still gives an unbiased estimate of abundance, because each DPG has one parent of given sex, and the chance of any sampled cartoon adult of that sex being that parent is 1/N. The DPG-condensed effective sample size is simply half the number of distinct parents, which would be a little larger than the effective sample sizes for the unmodified model shown in Table 3; e.g., in 2017, 504/2 = 252 versus 209. However, no such straightforward improvement is available for an adult-size-based CKMR model such as is needed for WABFT. Using condensed DPGs directly would bias the juvenile sampling against larger more-fecund adults, whose DPGs will tend on average to be larger and thus to experience disproportionate condensation. Those adults would be marked less often by the DPG-condensed juveniles than the model assumes, violating the basic requirements for unbiased CKMR in14. A more sophisticated model might be able to combine unbiasedness with higher efficiency but, since the unmodified adult-size-based POP model that we expect to use is unbiased and only mildly inefficient (at worst 209/252 = 83% efficient, in 2017) there seems no particular need for extra complications at present. However, that may not hold true if we eventually move to a POP + XHSP model, where the impact on unmodified CKMR variance is worse (though there is still no bias, for the same reason as with POPs). Intuitively, the biggest impact that a DPG of size 5 can have in a POP model is to suddenly raise the number of POPs by 5 if its parent happens to be sampled; within a useful total of, say, 75 POPs, the influence is not that large. But if two DPGs both of size 5 in different cohorts happen to share a parent, then the total of XHSPs suddenly jumps by 25— likely a substantial proportion of total XHSPs. Supplementary Material B also includes effective sample size formulae for a simplified XHSP-only model, which demonstrate the increased impact of within-cohort sibship; for our WBFT samples, it turns out that the XHSP-effective size is slightly lower for the targeted 2017 samples (110) than for the 2016 samples (130), unlike the POP-only effective size. Dropping from a maximum theoretical effective sample size of 252 (half the number of DPGs) down to 110 would be rather inefficient and would increase the number of years of sampling required to yield a useful XHSP dataset. This motivates developing a modified POP + XHSP model that retains unbiasedness without sacrificing too much efficiency. In principle, that can be done by condensing each DPG but then conditioning its comparison probabilities on the DPG’s original size, in accordance with the framework in14. This is a topic for subsequent research, and the results will inform future sampling strategy decisions for WBFT.One potential difficulty for western BFT CKMR might occur if a substantial proportion of animals reaching maturity are the offspring of “Western” (in genetic terms) adults who persistently spawn in the western North Atlantic but outside the GoM. However, as long as the adults marked by GoM larvae are well mixed at the time of sampling with any western adults that do spawn outside of the GoM, the total POP-based population estimate of genetically-western BFT from CKMR will remain unbiased. Given evidence from tagging of widespread adult movements within the western North Atlantic2, good mixing in the sampled feeding grounds seems likely; so, even if successful non-GoM western BFT spawning really is commonplace, there should not be a problem with relying on GoM larvae for at least the POP component of CKMR14.Studies of fish early life history have long been considered to have great potential to provide novel insight into the unique population dynamics of fishes44,45,46. Sampling efforts aimed at estimating fish recruitment dynamics have spawned a diversity of larval survey programs. Examples of these long-term programs include the California Cooperative Oceanic Fisheries Investigations, International Council for the Exploration of the Sea (ICES) surveys in the North Atlantic and adjacent areas, Southeast Monitoring and Assessment Program (SEAMAP) in the GoM, Ecosystem Monitoring (EcoMon) in the Northeast U.S., and numerous others, many of which provide indices of larval abundance widely used in fisheries and ecosystem assessments. Yet, as a result of the inherent patchiness of larvae42, sampling variability, and highly variable density dependent mortality45, fisheries scientists have often struggled to determine how larval surveys relate to the adult fish populations. Inclusion of estimates of sibship among larvae collected in surveys could refine estimates of adult spawning stock biomass estimated from these surveys.The results of this study also represent products of decades of work and coordination in obtaining high-quality DNA from larval specimens. Key steps to successful genotyping of larvae include ensuring that larvae are preserved, sorted, and handled in 95% non-denatured ethanol. In addition, strict instrument cleaning protocols must be followed, and stomachs should be removed or avoided (this study used larval tails and, when possible, eyes to avoid cross contamination of prey contents, including possible congeners and other BFT individuals). Exposure to hot lamps during the sorting and dissection processes should also be minimized to ensure that DNA quality is sufficiently high for genotyping-by-sequencing. Although the tissues available for genetic analysis were limited by the needs of other experiments that required BFT tissues, otoliths, gut contents, and other information from the same larvae, we were able to successfully genotype most larvae greater than 6 mm SL and identify thousands of informative SNPs. The lower size limit of larvae could likely be decreased if whole specimens were available for genotyping, although the use of younger larvae could increase the incidence of sibship.In summary, while we observed both FSPs and HSPs in larval collections, with elevated sibship overall and with siblings being more prevalent within tows and in nearby tows, the level of sibship was sufficiently low that collections of GoM BFT larvae can still provide the critical genetic mark of parental genotypes required for CKMR. Our results demonstrate a crucial proof of concept and are the first step towards an operational CKMR modelling estimate of spawning stock abundance for western BFT. More

  • in

    Small rainfall changes drive substantial changes in plant coexistence

    Schimper, A. F. W. Plant Geography upon a Physiological Basis (Clarendon Press, 1903).Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).PubMed 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Loarie, S. R., Weiss, S. B., Hamilton, H., Branciforte, R. & Kraft, N. J. B. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).Article 

    Google Scholar 
    Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dybzinski, R. & Tilman, D. Resource use patterns predict long‐term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318 (2007).Article 
    PubMed 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sandel, B. et al. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol. 188, 565–575 (2010).Article 
    PubMed 

    Google Scholar 
    Esch, E. H., Ashbacher, A. C., Kopp, C. W. & Cleland, E. E. Competition reverses the response of shrub seedling mortality and growth along a soil moisture gradient. J. Ecol. 106, 2096–2108 (2018).Article 

    Google Scholar 
    Alon, M. & Sternberg, M. Effects of extreme drought on primary production, species composition and species diversity of a Mediterranean annual plant community. J. Veg. Sci. 30, 1045–1061 (2019).Article 

    Google Scholar 
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).Article 
    ADS 
    PubMed 

    Google Scholar 
    Adler, P., Hillerislambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 
    PubMed 

    Google Scholar 
    Germain, R. M., Mayfield, M. M. & Gilbert, B. The ‘filtering’ metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biol. Lett. 14, 20180460 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17, 3633–3643 (2011).Article 
    ADS 

    Google Scholar 
    Fargione, J. & Tilman, D. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143, 598–606 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).Article 
    ADS 

    Google Scholar 
    Chesson, P. Geometry, heterogeneity and competition in variable environments. Phil. Trans. R. Soc. Lond. B 330, 165–173 (1990).Article 
    ADS 

    Google Scholar 
    Aronson, J., Kigel, J., Shmida, A. & Klein, J. Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia 89, 17–26 (1992).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Santa Barbara County Public Works water resources hydrology: historical rainfall data: daily and monthly rainfall. County of Santa Barbara http://www.countyofsb.org/pwd/water/downloads/hydro/421dailys.pdf (2019).Kandlikar, G. S., Kleinhesselink, A. R. & Kraft, N. J. B. Functional traits predict species responses to environmental variation in a California grassland annual plant community. J. Ecol. 110, 833–844 (2022).Article 
    CAS 

    Google Scholar 
    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 
    PubMed 

    Google Scholar 
    Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Kleinhesselink, A. R., Kraft, N. J. B., Pacala, S. W. & Levine, J. M. Detecting and interpreting higher order interactions in ecological communities. Ecol. Lett. 25, 1604–1617 (2022).Article 
    PubMed 

    Google Scholar 
    Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).Article 

    Google Scholar 
    Levine, J. I., Levine, J. M., Gibbs, T. & Pacala, S. W. Competition for water and species coexistence in phenologically structured annual plant communities. Ecol. Lett. 25, 1110–1125 (2022).Article 
    PubMed 

    Google Scholar 
    Farrior, C. E. et al. Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology 94, 2505–2517 (2013).Article 
    PubMed 

    Google Scholar 
    Harrison, S., Grace, J. B., Davies, K. F., Safford, H. D. & Viers, J. H. Invasion in a diversity hotspot: exotic cover and native richness in the Californian serpentine flora. Ecology 87, 695–703 (2006).Article 
    PubMed 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Godoy, O. & Levine, J. M. Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology 95, 726–736 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Hydroclimatic vulnerability of peat carbon in the central Congo Basin

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).Runge, J. in Large Rivers (ed. Gupta, A.) 293–309 (Wiley, 2008).Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).Article 
    ADS 

    Google Scholar 
    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2018).Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 17939 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebag, D. et al. Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur. J. Soil Sci. 57, 344–355 (2006).Article 
    CAS 

    Google Scholar 
    Sebag, D. et al. Dynamics of soil organic matter based on new Rock-Eval indices. Geoderma 284, 185–203 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dargie, G. C. Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin. PhD thesis, Univ. Leeds (2015).Spiker, E. C. & Hatcher, P. G. Carbon isotope fractionation of sapropelic organic matter during early diagenesis. Org. Geochem. 5, 283–290 (1984).Article 
    CAS 

    Google Scholar 
    Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).Article 
    ADS 

    Google Scholar 
    Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. 120, 617–640 (2015).Article 
    CAS 

    Google Scholar 
    Wotzka, H.-P. in Grundlegungen: Beiträge zur europäischen und afrikanischen Archäologie fűr Manfred K. H. Eggert (ed. Wotzka, H.-P.) 271–289 (Francke, 2006).Saulieu, G. D. et al. Archaeological evidence for population rise and collapse between ~2500 and ~500 cal. yr BP in Western Central Africa. Afr. Archéol. Arts 17, 11–32 (2021).
    Google Scholar 
    Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Collins, J. A. et al. Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. Quat. Sci. Rev. 65, 88–101 (2013).Article 
    ADS 

    Google Scholar 
    Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).Article 

    Google Scholar 
    Swindles, G. T. et al. Ecosystem state shifts during long-term development of an Amazonian peatland. Global Change Biol. 24, 738–757 (2018).Article 
    ADS 

    Google Scholar 
    Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).Article 
    ADS 

    Google Scholar 
    Lottes, A. L. & Ziegler, A. M. World peat occurrence and the seasonality of climate and vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 106, 23–37 (1994).Article 

    Google Scholar 
    Moutsamboté, J. M. Ecological, Phytogeographic and Phytosociological Study of Northern Congo (Plateaus, Bowls, Likouala and Sangha). PhD thesis, Univ. Marien Ngouabi (2012).Dingman, S. L. Fluvial Hydrology (W. H. Freeman, 1984).Swindles, G. T., Morris, P. J., Baird, A. J., Blaauw, M. & Plunkett, G. Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys. Res. Lett. 39, L11401 (2012).Article 
    ADS 

    Google Scholar 
    Morris, P. J., Baird, A. J., Young, D. M. & Swindles, G. T. Untangling climate signals from autogenic changes in long-term peatland development. Geophys. Res. Lett. 42, 10,788–10,797 (2015).Article 

    Google Scholar 
    Young, D. M., Baird, A. J., Morris, P. J. & Holden, J. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resour. Res. 53, 6510–6522 (2017).Article 
    ADS 

    Google Scholar 
    Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. Centennial scale climate instabilities in a wet early Holocene West African monsoon. Geophys. Res. Lett. 34, L24702 (2007).Article 
    ADS 

    Google Scholar 
    Collins, J. A. et al. Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl. Acad. Sci. USA 115, 3261–3266 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l’assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris Sér. II 318, 1521–1526 (1994).
    Google Scholar 
    Elenga, H. et al. Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. C. R. Acad. Sci. Paris Sér. II 323, 403–410 (1996).CAS 

    Google Scholar 
    Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).Article 

    Google Scholar 
    Maley, J. et al. Late Holocene forest contraction and fragmentation in central Africa. Quat. Res. 89, 43–59 (2018).Article 

    Google Scholar 
    Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Giresse, P., Maley, J. & Chepstow-Lusty, A. Understanding the 2500 yr BP rainforest crisis in West and Central Africa in the framework of the Late Holocene: pluridisciplinary analysis and multi-archive reconstruction. Global Planet. Change 192, 103257 (2020).Article 

    Google Scholar 
    Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).Article 
    ADS 

    Google Scholar 
    Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).Article 
    ADS 

    Google Scholar 
    Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change 9, 617–622 (2019).Article 

    Google Scholar 
    Cook, K. H., Liu, Y. & Vizy, E. K. Congo Basin drying associated with poleward shifts of the African thermal lows. Clim. Dyn. 54, 863–883 (2020).Article 

    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl. Acad. Sci. USA 118, e2003169118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 585–585 (2021).Article 
    ADS 

    Google Scholar 
    Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).Article 
    ADS 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, J. R., Morris, P. J., Liu, J. G. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).Article 
    ADS 

    Google Scholar 
    Blaauw, M. & Christen, J. A. Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Blaauw, M. et al. rbacon: age–depth modelling using Bayesian statistics. R package version 2.5.7 (2021); https://cran.r-project.org/web/packages/rbacon/index.html.Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).Article 
    CAS 

    Google Scholar 
    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 62, 725–757 (2020).Article 
    CAS 

    Google Scholar 
    Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).Article 

    Google Scholar 
    Hornibrook, E. R. C., Longstaffe, F. J. & Fyfe, W. S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim. Cosmochim. Acta 64, 1013–1027 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Broder, T., Blodau, C., Biester, H. & Knorr, K. H. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Biester, H., Knorr, K. H., Schellekens, J., Basler, A. & Hermanns, Y. M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Leifeld, J., Klein, K. & Wüst-Galley, C. Soil organic matter stoichiometry as indicator for peatland degradation. Sci. Rep. 10, 7634 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol. Manage. 13, 671–684 (2005).Article 

    Google Scholar 
    Lafargue, E., Marquis, F. & Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil Gas Sci. Technol. 53, 421–437 (1998).CAS 

    Google Scholar 
    Behar, F., Beaumont, V. & Penteado, H. L. D. Rock-Eval 6 technology: performances and developments. Oil Gas Sci. Technol. 56, 111–134 (2001).Article 
    CAS 

    Google Scholar 
    Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. & Sebag, D. Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org. Geochem. 34, 327–343 (2003).Article 
    CAS 

    Google Scholar 
    Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem. 20, 1303–1306 (1993).Article 
    CAS 

    Google Scholar 
    Eglinton, G. & Hamilton, R. J. Leaf epicuticular waxes. Science 156, 1322–1334 (1967).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A. & Sessions, A. L. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Acta 65, 213–222 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).Article 
    ADS 

    Google Scholar 
    Han, J. & Calvin, M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc. Natl. Acad. Sci. U.S.A. 64, 436–443 (1969).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, T. et al. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method. Boreas 27, 15–24 (1998).Article 

    Google Scholar 
    Stone, B. C. A synopsis of the African Species of Pandanus. Ann. Missouri Bot. Gard. 60, 260–272 (1973).Article 

    Google Scholar 
    African Plant Database (version 3.4.0) (Conservatoire et Jardin Botaniques de la Ville de Genève and South African National Biodiversity Institute, accessed January 2022); http://africanplantdatabase.ch.Polhill, R. M., Nordal, I., Kativu, S. & Poulsen, A. D. Flora of Tropical East Africa 1st edn (CRC Press, 1997).Hawthorne, D. et al. Global Modern Charcoal Dataset (GMCD): a tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quat. Int. 488, 3–17 (2018).Article 

    Google Scholar 
    Stevenson, J. & Haberle, S. Macro Charcoal Analysis: A Modified Technique Used by the Department of Archaeology and Natural History. Palaeoworks Technical Paper No. 5 (PalaeoWorks, Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, Australian National University, 2005).Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Ladd, S. N. et al. Leaf wax hydrogen isotopes as a hydroclimate proxy in the Tropical Pacific. J. Geophys. Res. 126, e2020JG005891 (2021).
    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).Article 
    ADS 

    Google Scholar 
    Munksgaard, N. C. et al. Data Descriptor: daily observations of stable isotope ratios of rainfall in the tropics. Sci. Rep. 9, 14419 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aggarwal, P. K. et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9, 624–629 (2016).Article 
    CAS 

    Google Scholar 
    Zwart, C. et al. The isotopic signature of monsoon conditions, cloud modes, and rainfall type. Hydrol. Processes 32, 2296–2303 (2018).Article 
    ADS 

    Google Scholar 
    Jackson, B., Nicholson, S. E. & Klotter, D. Mesoscale convective systems over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Weather Rev. 137, 1272–1294 (2009).Article 
    ADS 

    Google Scholar 
    Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dynam. 8, 653–675 (2017).Article 
    ADS 

    Google Scholar 
    International Atomic Energy Agency–World Meteorological Organization Global Network of Isotopes in Precipitation: The GNIP Database (accessed May 2020); https://nucleus.iaea.org/wiser/index.aspx.Sachse, D., Dawson, T. E. & Kahmen, A. Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isotopes Environ. Health Stud. 51, 124–142 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang, X., Zhao, B., Wang, K., Hu, Y. & Meyers, P. A. Seasonal variations of leaf wax n-alkane molecular composition and δD values in two subtropical deciduous tree species: results from a three-year monitoring program in central China. Org. Geochem. 118, 15–26 (2018).Article 
    CAS 

    Google Scholar 
    Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Albrecht, R., Sebag, D. & Verrecchia, E. Organic matter decomposition: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR). Biogeochemistry 122, 101–111 (2015).Article 
    CAS 

    Google Scholar 
    Matteodo, M. et al. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 330, 41–51 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Malou, O. P. et al. The Rock-Eval® signature of soil organic carbon in arenosols of the Senegalese groundnut basin. How do agricultural practices matter? Agr. Ecosyst. Environ. 301, 107030 (2020).Article 
    CAS 

    Google Scholar 
    Thoumazeau, A. et al. A new in-field indicator to assess the impact of land management on soil carbon dynamics. Geoderma 375, 114496 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Cranwell, P. A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3, 79–89 (1981).Article 
    CAS 

    Google Scholar 
    Ofiti, N. O. E. et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol. Biochem. 156, 108185 (2021).Article 
    CAS 

    Google Scholar 
    Stuiver, M. & Reimer, P. J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–230 (1993).Article 

    Google Scholar  More

  • in

    Taxonomic response of bacterial and fungal populations to biofertilizers applied to soil or substrate in greenhouse-grown cucumber

    All the results were reported relative to the control, unless specifically stated to the contrary or for clarity.Growth of cucumber plants in response to different biofertilizersSoilThere was no significant difference in cucumber growth before microbial fertilizer was applied. However, some microbial fertilizers significantly increased cucumber height and stem diameter when they were applied within 4 weeks from when the seedlings were planted (Fig. 1a,b,e,f). In the second week, SHZ and SMF increased plant height by 11.2 and 9.5%, respectively. In the third week, S267, SBS, SBH, SM and SHZ increased plant height by 12.0, 13.8, 15.0, 20.5 and 26.9%, respectively (Fig. 1a). In the fourth and fifth weeks, some treatments significantly increased cucumber height. In the second and third weeks, S267 significantly increased stem diameter by 21.2 and 16.8% (Fig. 1b).Figure 1Effect of different biofertilizer treatments on the growth of cucumber seedlings produced in soil or substrate in a greenhouse. S267 = Trichoderma Strain 267 added to soil; SBH = Bacillus subtilis and T. harzianum biofertilizers added to soil; SBS = B. subtilis biofertilizer added to the soil; SM = Compound biofertilizer added to soil; SHZ = T. harzianum biofertilizer added to soil; SCK = Untreated soil. US267 = T.267 biofertilizer added to substrate; USBH = B. subtilis and T. harzianum biofertilizers added to substrate; USBS = B. subtilis biofertilizer added to substrate; USM = Compound biofertilizer added to substrate; USHZ = T. harzianum biofertilizer added to substrate; USCK = Untreated substrate.Full size imageOver the subsequent 5 weeks, some microbial fertilizer treatments decreased cucumber height and stem diameter (Fig. 1g,h).SubstrateThere were no significant differences in cucumber growth before microbial fertilizer microbial fertilizer was applied (Fig. 1c,d,g,h). However, within 4 weeks of applying the microbial fertilizer, each biofertilizer treatment applied significantly increased cucumber height (Fig. 1c). US267 and USHZ significantly increased cucumber height by 39.8–75.4% and 56.1–86.1%, respectively. US267, USM and USHZ significantly increased the stem diameter by 76.8–108.9%, 71.1–97.6% and 80.4–122.4%, respectively (Fig. 1d).Over the subsequent 5 weeks, US267, USM and USHZ treatments continued to significantly increase cucumber height and stem diameter (Fig. 1g,h).Changes in the taxonomic composition of soil-borne fungal pathogensSoilBiofertilizers application significantly reduced the taxonomic composition of soil-borne fungal pathogens at different times during the cucumber growth period (Tables 1 and 2). Fusarium spp. were significantly reduced (T, 63.8% reduction, P  More