More stories

  • in

    The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean

    Roemmich, D. & Mcgowan, J. Climatic warming and the decline of zooplankton in the California current. Science 267(5202), 1324–1326 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ware, D. M. & Thomson, R. E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726), 1280–1284 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. 107, 10120–10124 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewald, W. F. Über Orientierung Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biol. Zentralblatt 30, 1–16 (1910).
    Google Scholar 
    Dam, H. G., Roman, M. R. & Youngbluth, M. J. Downward export of respiratory carbon and dissolved nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 1187–1197 (1995).ADS 
    CAS 

    Google Scholar 
    Morales, C. E. Carbon and nitrogen fluxes in the ocean: the contribution by zooplankton migrants to active transport in the North Atlantic during the Joint Global Flux Study. J. Plankton Res. 21, 1799–1808 (1999).
    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55(14–15), 1615–1635 (2008).ADS 

    Google Scholar 
    Brugnano, C., Granata, A., Guglielmo, L. & Zagami, G. Spring diel vertical distribution of copepod abundances and diversity in the open Central Tyrrhenian Sea (Western Mediterranean). J. Mar. Syst. 105, 207–220 (2012).
    Google Scholar 
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35(4), 792–812 (2013).CAS 

    Google Scholar 
    Palmer, M. R. & Pearson, P. N. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean. Science 300(5618), 480–482 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3(6), 391–397 (2010).ADS 
    CAS 

    Google Scholar 
    Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, D. & Smoot, N. C. Distribution of seamounts in the North Atlantic. Nature 337, 254–257 (1989).ADS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res. Part I Oceanogr. Res. Pap. 58(4), 442–453 (2011).ADS 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 Years on. Adv. Mar. Biol. 79, 137–224 (2018).PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).ADS 

    Google Scholar 
    Wilson, R. R. & Kaufmann, R. S. Seamount biota and biogeography. Geophys. Monogr. Ser. 43, 355–377 (2013).ADS 

    Google Scholar 
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7(1), e29232 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlacher, T. A., Rowden, A. A., Dower, J. F. & Consalvey, M. Seamount science scales undersea mountains: new research and outlook. Mar. Ecol. 31, 1–13 (2010).ADS 

    Google Scholar 
    Stocks, K. I. et al. CenSeam, an international program on seamounts within the census of marine life: achievements and lessons learned. PLoS ONE 7(2), e32031 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cascao, I., Domokos, R., Lammers, M. O., Santos, R. S. & Silva, M. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Oceanogr. 175, 1–13 (2019).ADS 

    Google Scholar 
    Denda, A., Stefanowitsch, B. & Christiansen, B. From the epipelagic zone to the abyss: trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic – Part II Benthopelagic fishes. Deep Sea Res I Oceanogr. Res. Pap. 130, 78–92 (2017).ADS 
    CAS 

    Google Scholar 
    Dai, L. et al. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Res. Part I Oceanogr. Res. Pap. 121, 1–13 (2017).ADS 

    Google Scholar 
    Sun, D., Zhang, D. S., Zhang, R. Y. & Wang, C. S. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 38(6), 32–45 (2019).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 
    PubMed 

    Google Scholar 
    Haury, L., Fey, C., Newland, C. & Genin, A. Zooplankton distribution around four eastern North Pacific seamounts. Prog. Oceanogr. 45(1), 69–105 (2000).ADS 

    Google Scholar 
    Genin, A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50(1–2), 3–20 (2004).
    Google Scholar 
    Valle-Levinson, A., Castro, A. T., de Velasco, G. G. & Armas, R. G. Diurnal vertical motions over a seamount of the southern Gulf of California. J. Mar. Syst. 50(1–2), 61–77 (2004).
    Google Scholar 
    Martin, B. & Christiansen, B. Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 2671–2682 (2009).ADS 
    CAS 

    Google Scholar 
    Rawlinson, K. A., Davenport, J. & Barnes, D. K. A. Vertical migration strategies with respect to advection and stratification in a semi-enclosed lough: a comparison of mero- and holozooplankton. Mar. Biol. 144, 935–946 (2004).
    Google Scholar 
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Ann. Rev. 26, 361–393 (1988).
    Google Scholar 
    Tao, Z. C., Wang, Y. Q., Wang, J. J., Liu, M. T. & Zhang, W. C. Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV-B radiation as a function of wavelength and intensity. J. Oceanol. Limnol. 37(4), 1289–1300 (2019).ADS 

    Google Scholar 
    Fragopoulu, N. & Lykakis, J. J. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar. Biol. 104(3), 381–387 (1990).
    Google Scholar 
    Lougee, L. A., Bollens, S. M. & Avent, S. R. The effects of haloclines on the vertical distribution and migration of zooplankton. J. Exp. Mar. Biol. Ecol. 278(2), 111–134 (2002).
    Google Scholar 
    Saltzman, J. & Wishner, K. F. Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of copepods. Deep Sea Res. Part I Oceanogr. Res. Pap. 44(6), 931–954 (1997).ADS 
    CAS 

    Google Scholar 
    Antezana, T. Species-specific patterns of diel migration into the oxygen minimum zone by euphausiids in the Humboldt Current Ecosystem. Prog. Oceanogr. 83, 228–236 (2009).ADS 

    Google Scholar 
    Johnsen, G. H. & Jakobsen, P. J. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873–880 (1987).ADS 

    Google Scholar 
    Spinelli, M. et al. Diel vertical distribution of the larvacean Oikopleura dioica in a North Patagonian tidal frontal system (42 degrees-45 degrees S) of the SW Atlantic Ocean. Mar. Biol. Res. 11(6), 633–643 (2015).
    Google Scholar 
    Guillam, M. et al. Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport. Sci. Rep. 10(1), 1–5 (2020).
    Google Scholar 
    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2(1), 33–37 (2012).ADS 
    CAS 

    Google Scholar 
    Ma, J. et al. The OMZ and its influence on POC in the Tropical Western Pacific Ocean: based on the survey in March 2018. Front. Earth Sci. 9, 632229 (2021).
    Google Scholar 
    Sun, Q. Q., Song, J. M., Li, X. G., Yuan, H. M. & Wang, Q. D. The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1690–1704 (2021).ADS 
    CAS 

    Google Scholar 
    Wang, Q. D. et al. Characteristics and biogeochemical effects of oxygen minimum zones in typical seamount areas, Tropical Western Pacific. J. Oceanol. Limnol. 39(5), 1651–1661 (2021).ADS 
    CAS 

    Google Scholar 
    Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69(2–4), 318–359 (2006).ADS 

    Google Scholar 
    Wishner, K. F., Gowing, M. M. & Gelfman, C. Living in suboxia: Ecology of an Arabian Sea oxygen minimum zone copepod. Limnol. Oceanogr. 45(7), 1576–1593 (2000).ADS 

    Google Scholar 
    Wishner, K. F. et al. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Prog. Oceanogr. 78(2), 163–191 (2008).ADS 

    Google Scholar 
    Ekau, W., Auel, H., Portner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).ADS 
    CAS 

    Google Scholar 
    Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6, 535 (2019).
    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Le Borgne, R. & Rodier, M. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2003–2023 (1997).ADS 

    Google Scholar 
    Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2083–2103 (2001).ADS 
    CAS 

    Google Scholar 
    Ge, R., Chen, H., Zhuang, Y. & Liu, G. Active carbon flux of mesozooplankton in South China Sea and Western Philippine Sea. Front. Mar. Sci. 8, 1324 (2021).
    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53(4), 1327–1338 (2008).ADS 

    Google Scholar 
    Hirch, S., Martin, B. & Christiansen, B. Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56(25), 2656–2670 (2009).ADS 
    CAS 

    Google Scholar 
    Denda, A. & Christiansen, B. Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic. Mar. Ecol. 35(2), 159–179 (2014).ADS 

    Google Scholar 
    Dower, J. F. & Mackas, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep Sea Res. Part I Oceanogr. Res. Pap. 43, 837–858 (1996).ADS 

    Google Scholar 
    Ma, J. et al. Analysis of differences in nutrients chemistry in seamount seawaters in the Kocebu and M5 seamounts in Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1662–1674 (2021).ADS 

    Google Scholar 
    Denda, A., Mohn, C., Wehrmann, H. & Christiansen, B. Microzooplankton and meroplanktonic larvae at two seamounts in the subtropical and tropical NE Atlantic. J. Mar. Biol. Assoc. U. K. 97(1), 1–27 (2017).
    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17(2), 455–473 (2020).ADS 
    CAS 

    Google Scholar 
    Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, 2000).
    Google Scholar 
    Zhang, X. & Dam, H. G. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2191–2202 (1997).ADS 
    CAS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).
    Google Scholar 
    Ikeda, T. Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar. Biol. 161(12), 2753–2766 (2014).CAS 

    Google Scholar 
    Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 47(1), 137–158 (2000).ADS 
    CAS 

    Google Scholar 
    Andersen, V. et al. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). J. Plankton Res. 26(3), 275–293 (2004).
    Google Scholar  More

  • in

    High rates of daytime river metabolism are an underestimated component of carbon cycling

    Study sites and data collectionDuring 2017 and 2018, we carried out 14 experiments in rivers located in temperate, tropical, and subarctic biomes to capture a gradient of river productivity and climatic characteristics (Table 1, Fig. 1). Apart from the Mekong and Sekong rivers in Cambodia that were impacted by plantations, rice cultivation, grassland, and urban areas (56% impacted land cover in the Mekong and 38% in the Sekong), the selected rivers were predominantly in pristine areas (impacted land-use ≤ 8%), although two rivers in Mongolia were affected by livestock grazing (with 26% of land cover at the Khovd and 59% in the two Zavkhan rivers).We conducted traditional O2 concentration metabolic assessments, assessments of isotopic fractionation, and 24 h characterization of δ18O2 at each site. We measured changes in dissolved O2 concentrations and temperature every 10 min over at least 24 h with at least one MiniDOT logger (PME, Vista, California, USA). We calibrated for drift using the average measurement values made in 100% saturated water for at least 30 min before and after each deployment to allow adjustment to temperature and placed sensors in the river for at least 30 min prior to using data to allow equilibration to temperature (following methods detailed in ref. 52).We collected δ18O2 samples by hand every 2 h during the same 24-h period of the O2 concentration measurements in pre-evacuated 100 mL vials loaded with 50 µl HgCl2 as a preservative and sealed with septum stoppers (Bellco Glass Inc., Supelco, Vineland NJ). We analyzed samples for δ18O2 at the Nevada Stable Isotope Lab of the University of Nevada, Reno with a Micromass Isoprime (Middlewich, UK) stable isotope ratio mass spectrometer. We followed the method described by ref. 17 and injected 1.0–2.5 mL of headspace gas taken from the serum bottles using a gastight syringe (SGE, Australia) into a Eurovector (Pavia, Italy) elemental analyzer equipped with a septum injector port, and a 1.5 m long molecular sieve gas chromatography column. Water-δ18O was also collected at each site every 2 h and analyses were performed using a Picarro L2130-i cavity ringdown spectrometer at the Nevada Stable Isotope Lab of the University of Nevada, Reno. δ18O2 values are reported in the usual δ notation vs. VSMOW in units of ‰, with an analytical uncertainty of ±0.2‰ for δ18O2, or an analytical uncertainty of ±0.1‰ for water-δ18O.We characterized physical characteristics at each site to provide parameters to estimate whole-system metabolism. We measured conductivity, slope, and flow velocity and depth at ten transects using a flow meter when wadeable or with an Acoustic Doppler Velocimeter (Sontek, Xylem, San Diego, CA) when rivers were not wadeable. At each site, we measured light as photosynthetically active radiation (PAR) every 10 min, using Odyssey PAR loggers (Data Flow Systems, Christchurch, New Zealand) calibrated with a Li-Cor PAR sensor (Lincoln, Nebraska, USA).At each site, we also directly measured biofilm ash-free dry mass (AFDM) from 8 to 12 rocks (53). The material was scrubbed from the rocks, agitated, filtered (Whatman glass microfiber GF/F filters). Rock area was estimated with calibrated pictures processed with the ImageJ processing program (National Institutes of Health and the Laboratory for Optical and Computational Instrumentation LOCI, University of Wisconsin). For AFDM analyses, samples were dried, and weighed before and after combustion.Additionally, we collected data on the percentage of impacted land use in the watershed above each sampling site: for the Mekong and the Sekong we used Landsat satellite imagery from ref. 54, for the US and Mongolian sites land use characteristics were derived from the National Land Cover Database55 and for Patagonia we used the Chilean national land use inventory maps from ref. 56.δ18O2 stable isotope fractionation during respiration in sealed recirculating chambersModels based on oxygen isotopes are sensitive to the oxygen isotope fractionation factor (αR) during respiration used; αR can vary widely among sites and is influenced by temperature and water velocity30. We used in our models the range of αR values measured by30 using sealed Plexiglas recirculating chambers as in ref. 57. These measurements were done at the same time as the 24 h δ18O2 sample collections in the rivers of this study. We placed rocks, sediment, macrophytes (macrophytes dominated in the Zavkhan 1 site) inside the chambers, depending on the site’s dominant substrata (see ref. 30 for more details on chamber measurements). We collected water samples in the chambers for δ18O2 analyses before and after the incubations and the O2 isotope fractionation factor was calculated using Eq. (2).$$delta =(delta i+1000){F}^{left(alpha -1right)}-1000$$
    (2)
    where δ is the O2 isotopic composition of dissolved oxygen at the end of the dark incubation, δi is the O2 isotopic composition of dissolved oxygen at the beginning of the dark incubation, F the fractional abundance of O2 concentration remaining at the end of the dark incubation, and α is the isotopic fractionation factor during respiration.Ecosystem metabolism O2 single station modelingWe modeled metabolism as a function of GPP, ER, and reaeration with the atmosphere, using the single-station open-channel metabolism method4 using the same approach as15, given in Eq. (3).$${O}_{{2}_{(t)}}={O}_{{2}_{(t-1)}}+left(left(frac{{GPP}}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}right)+frac{{ER}}{z}+{K}_{{O}_{2}}left({O}_{{2}_{{sat}left(t-1right)}}-{O}_{{2}_{left(t-1right)}}right)right)triangle t$$
    (3)
    where GPP is gross primary production in g O2 m−2 d−1, ER is ecosystem respiration in g O2 m−2 d−1, ({K}_{{O}_{2}}) is the reaeration coefficient (d−1). PPFD is photosynthetic photon flux density (µmol m−2 s−1), z is mean stream depth (m), and ∆t is time increment between logging intervals (d). We used Bayesian inverse modeling approach to estimate the probability distribution of parameters GPP and ER that produce the best model fit between observed and modeled O2 data. We fixed site-specific ({K}_{{O}_{2}}) estimates using K600 (d−1) (normalized beyond gas-specific Schmidt number conversions among gases58) based on prior work characterizing K using BASE59, and converted these prior estimates of K600 to ({K}_{{O}_{2}})using appropriate temperature corrections. We estimated daily GPP and ER from diel O2 data only (Eq. (3)) to be used as prior estimates of daily GPPO2 and ERO2 in the coupled O2 and δ18O2 model (Eqs. (4a) and (4b))15, where the mean and SD of GPP and ER from the O2 _only method were used as prior estimates of GPPO2 and ERO2 in the dual O2 and δ18O2 model described below.Ecosystem metabolism: Diel δ18O2 modelingWe also modeled metabolism using an updated version of the model developed by ref. 15 coupling high-frequency O2 concentration data with δ18O2 collected every 2 h throughout the same 24 h period of the O2 concentration measurements. With this model, daily rates of ecosystem metabolism are derived from diel changes in δ18O2 and O2, where values of δ18O2 are converted to g 18O m−3 (18O2 in Eq. 4b) and modeled as a function of water isotope values, isotope fractionation, reaeration with the atmosphere, ER, and GPP. As with Eq. 3, the ratio of light at the previous logging time (({{PPFD}}_{left(t-1right)})) relative to the sum of light over 24 h (({sum {PPFD}}_{24h})) is used to characterize times when GPP is zero and only ER is taking place (Eqs. (4a) and (4b)):$${O}_{{2}_{left(tright)}}= , {O}_{{2}_{left(t-1right)}}+left(frac{{{GPP}}_{O2}}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}right)+left(frac{{{ER}}_{O2},xtriangle t}{z}right)\ +left({K}_{{O}_{2}}xleft({O}_{{2}_{{sat}left(t-1right)}}-{O}_{{2}_{left(t-1right)}}right)xtriangle tright)$$
    (4a)
    $${18O}_{{2}_{(t)}}=, {18O}_{{2}_{(t-1)}}+left(frac{left({{GPP}}_{O2}+{dielMET}right)}{z}xfrac{{{PPFD}}_{left(t-1right)}}{{sum {PPFD}}_{24h}}x,{alpha }_{P},x,{{AF}}_{W}right)\ +left(frac{{{ER}}_{O2},xtriangle t}{z}x,{alpha }_{R},x,{{AF}}_{{DO}}left(t-1right)right)\ +left(frac{left(-{dielMET}right)}{z}xfrac{{{PPFD}}_{left(t-1right)}}{sum {{PPFD}}_{24h}}x,{alpha }_{R},x,{{AF}}_{{DO}}left(t-1right)right)\ +left({K}_{{O}_{2}}x,{alpha }_{g}xtriangle t,xleft(left({O}_{{2}_{{sat}left(t-1right)}}x,{alpha }_{g},x,{{AF}}_{{atm}}right)-{18O}_{{2}_{(t-1)}}right)right)$$
    (4b)
    Where GPPO2 and ERO2 (g O2 m−2 d−1) refer to the values obtained from diel O2 only, dielMET (g O2 m−2 d−1) is the diel metabolism term that allows for the estimation of diel ER and GPP from 18O2, KO2 is the O2 gas exchange rate (d−1), z is mean stream depth (m), PPFD is photosynthetic photon flux density (µmol m−2 s−1), Δt is time step between measurements (d), 18O2 is the concentration of 18O in dissolved O2 (g 18O m−3), AFDO is atomic fraction of dissolved O2 (mol18O:mol O2, measured), AFw is atomic fraction of H2O (mol 18O:mol O2, measured), AFatm is atomic fraction of atmospheric air (mol18O:mol O2, literature), αg is the fractionation factor during air–water gas exchange (0.9972, from ref. 60), αR is the fractionation factor during respiration measured in the chambers (varied by site30; Fig. 1), αp is the fractionation factor during photosynthesis (1.0000 from ref. 60).The inverse modeling approach finds the best estimates of parameters to match measured and modeled dissolved O2. The model assumes that the measured changes in O2 concentration represent the actual net diel changes in O2 concentration and uses an additional parameter, dielMET, that is a function of the isotopic enrichment occurring during respiration, derived from diel 18O2. This parameter increases daily ERO2 and GPPO2 of the same amount, adding and subtracting dielMET, to obtain daily δ18O2-ER and δ18O2-GPP, respectively.We estimated the posterior distributions of unknown parameters (ERO2, GPPO2, and dielMET) using a Bayesian inverse modeling approach15 and Markov chain Monte Carlo sampling with the R metrop function in the mcmc package61,62. Each model was run for at least 200,000 iterations using nominally informative priors based on the range of ERO2 and GPPO2. For dielMET, we used a minimally informative uniform prior distribution (0–100 g O2 m−2 d−1). We removed the first 10,000 iterations of model burn-in and assessed quality of model fit. Model runs using the minimum, average, and maximum αR values measured in the field recirculating chambers were also compared, and we selected the αR and report associated model metabolism estimates that generated the lowest sum of squared differences between the observed and modeled O2 and 18O2 diel values.Temperature-normalized comparisonsTo test the effect of temperature from the daily δ18O2-ER and δ18O2-GPP rates and account for daily variations in temperature, we normalized estimates from models to 20 °C (and report them as 20δ18O2-ER and 20δ18O2-GPP) for comparison with O2-derived metabolism estimates following33 with Eq. (5):$${rate},{at},20,{}^circ C=frac{{2.523* e}^{(0.0552* 20)}}{{2.523* e}^{(0.0552* {t}_{1})},* {rate},{at},{t}_{1}}$$
    (5)
    Where t1 is site temperature and rate is the measured rate (i.e., GPP or ER) at t1.Statistical analysesWe used multiple linear regression to find the best predictor of the magnitude of diel 20δ18O2-ER and differences between sites. To select the best model, we performed a stepwise variable selection and selected the best model based on the lowest AIC. Tested variables included percentage of impacted land use (%), 20δ18O2-GPP (g O2 m−2 d−1), conductivity (µS/cm), ash-free dry mass (AFDM, g), slope (%), water depth (m), and flow velocity (m/s) measured in the field. We used ANOVA to test the relative contribution of each variable selected with the AIC to total variance. Analyses were run with the R software61.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    First report of glyphosate-resistant downy brome (Bromus tectorum L.) in Canada

    Powles, S. B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manage. Sci. 64, 360–365 (2008).CAS 

    Google Scholar 
    Bradshaw, L. D., Padgette, S. R., Kimball, S. L. & Wells, B. J. Perspectives on glyphosate resistance. Weed Technol. 11, 189–198 (1997).CAS 

    Google Scholar 
    Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manage. Sci. 64, 319–325 (2008).CAS 

    Google Scholar 
    Baek, Y., Bobadilla, L. K., Giacomini, D. A., Montgomery, J. S., Murphy, B. P. & Tranel, P. J. Evolution of glyphosate-resistant weeds In Reviews of Environmental Contamination and Toxicology Volume 225 (ed. Knaak, J. B.) 93–128 (Cham, CH: Springer Nature Switzerland AG 2021).Heap, I. The international herbicide-resistant weed database www.weedscience.org (2022).Beckie, H. J. et al. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 61, 1243–1264 (2006).
    Google Scholar 
    Geddes, C. M. Glyphosate overreliance threatens no-till agriculture: Is kochia a canary in the coal mine? In Proceedings of the 2019 ASA-CSSA-SSSA International Annual Meeting https://scisoc.confex.com/scisoc/2019am/meetingapp.cgi/Paper/121120 (San Antonio, TX: ASA-CSSA-SSSA, 2019).Alberta Environment and Parks. Overview of 2018 pesticide sales in Alberta https://open.alberta.ca/publications/9781460148167 (Government of Alberta ISBN 978-1-4601-4816-7, 2020).Statistics Canada. Table 32-10-0359-01: Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210035901 (2022).Brunharo, C. A. C. G. et al. Western United States and Canada perspective: Are herbicide-resistant crops the solution to herbicide-resistant weeds? Weed Sci. 66, 272–286 (2022).
    Google Scholar 
    Canadian Grain Commission. Grain varieties by acreage insured https://www.grainscanada.gc.ca/en/grain-research/statistics/varieties-by-acreage/ (2022).Statistics Canada. Table 32-10-0408-01: Tillage and seeding practices, Census of Agriculture, 2021 and 2016 https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210040801 (2022).Upadhyaya, M. K., McIlvride, D. & Turkington, R. The biology of Canadian weeds: 75. Bromus tectorum L.. Can. J. Plant Sci. 66, 689–709 (1986).
    Google Scholar 
    Hedrick, D. W. History of cheatgrass – present geographical range and importance of cheatgrass in management of rangelands. In Cheatgrass Symposium. 13–16 (Portland, OR: US Dep. Int., Bur. Land Manage., 1965).Mack, R. N. Invasion of Bromus tectorum L. into western North America: An ecological chronicle. Agro-Ecosystems 7, 145–165 (1981).
    Google Scholar 
    Mitich, L. W. Downy brome, Bromus tectorum L. Weed Technol. 13, 664–668 (1999).
    Google Scholar 
    Morrow, L. A. & Stahlman, P. W. The history and distribution of downy brome (Bromus tectorum) in North America. Weed Sci. 32, 2–6 (1984).
    Google Scholar 
    Pellant, M. & Hall, C. Distribution of two exotic grasses on public lands in the Great Basin: status in 1992. In Proceedings–Ecology and Management of Annual Rangelands. (eds. Monsen, S. B. & Kitchen, S. G.) 109–112 (Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report INT-GTR-313, 1994).Leeson, J. Y., Hall, L. M. Neeser, C., Tidemann, B., & Harker, K. N. Alberta survey of annual crops in 2017. (Saskatoon, SK: Agriculture and Agri-Food Canada Weed Survey Series Publ. 19–1, 2019).Douglas, B., Thomas, A. & Derksen, D. Downy brome (Bromus tectorum) invasion into southwestern Saskatchewan. Can. J. Plant Sci. 70, 1143–1151 (1990).
    Google Scholar 
    Miller, Z. J., Menalled, F. D. & Burrows, M. Winter annual grassy weeds increase over-winter mortality in autumn-sown wheat. Weed Res. 53, 102–109 (2013).
    Google Scholar 
    Rydrych, D. J. & Muzik, T. K. Downy brome competition and control in dryland wheat. Agron. J. 60, 279–280 (1968).
    Google Scholar 
    Stahlman, P. W. & Miller, S. D. Downy brome (Bromus tectorum) interference and economic thresholds in winter wheat (Triticum aestivum). Weed Sci. 38, 224–228 (1990).
    Google Scholar 
    Blackshaw, R. E. Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Sci. 41, 551–556 (1993).
    Google Scholar 
    Johnson, E. N. et al. Pyroxasulfone is effective for management of Bromus spp. in winter wheat in Western Canada. Weed Technol. 32, 739–748 (2018).
    Google Scholar 
    Kumar, V., Jha, P. & Jhala, A. J. Using pyroxasulfone for downy brome (Bromus tectorum L.) control in winter wheat. Am. J. Plant Sci. 8, 2367–2378 (2017).CAS 

    Google Scholar 
    Ostlie, M. H. & Howatt, K. A. Downy brome (Bromus tectorum) competition and control in no-till spring wheat. Weed Technol. 27, 502–508 (2013).CAS 

    Google Scholar 
    Steward, G. & Hull, A. C. Cheatgrass (Bromus tectorum L.) – An ecological intruder in southern Idaho. Ecology 30, 57–74 (1949).
    Google Scholar 
    Hulbert, L. C. Ecological studies of Bromus tectorum and other annual brome grasses. Ecol. Monogr. 25, 181–213 (1955).
    Google Scholar 
    Young, J. A. & Evans, R. A. Population dynamics after wildfires in sagebrush grasslands. J. Range. Manag. 31, 283–289 (1978).
    Google Scholar 
    Mack, R. N. & Pyke, D. A. The demography of Bromus tectorum: Variation in time and space. J. Ecol. 71, 69–93 (1983).
    Google Scholar 
    Pyke, A. P. & Novak, S. J. Cheatgrass demography–establishment attributes, recruitment, ecotypes and genetic variability. In Proceedings–Ecology and Management of Annual Rangelands. (eds. Monsen, S. B. & Kitchen, S. G.) 12–21 (Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report INT-GTR-313, 1994).Burnside, O. C., Wilson, R. G., Weisberg, S. & Hubbard, K. G. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 44, 74–86 (1996).CAS 

    Google Scholar 
    Smith, D. C., Meyer, S. E. & Anderson, V. J. Factors affecting Bromus tectorum seed bank carryover in western Utah. Rangel. Ecol. Manag. 61, 430–436 (2008).
    Google Scholar 
    Wicks, G. A. Survival of downy brome (Bromus tectorum) seed in four environments. Weed Sci. 45, 225–228 (1997).CAS 

    Google Scholar 
    Rydrych, D. J. Competition between winter wheat and downy brome. Weed Sci. 22, 211–214 (1974).
    Google Scholar 
    Sebastian, D. J., Nissen, S. J., Sebastian, J. R. & Beck, K. G. Seed bank depletion: The key to long-term downy brome (Bromus tectorum L.) management. Rangel. Ecol. Manage. 70, 477–483 (2017).
    Google Scholar 
    Asthana, P., Zuger, R. J., Brew-Appiah, R., Sanguinet, K. & Burke, I. EPSPS gene amplification confers glyphosate resistance in Bromus tectorum (Downy brome). In Proceedings of the 2020 Weed Science Society of America (WSSA)–Western Society of Weed Science Joint Meeting. 58 (Maui, HI: WSSA, 2020).Zuger, R. J. & Burke, I. C. Testing in Washington identifies widespread postemergence herbicide resistance in annual grasses. Crops Soils Mag. 53, 13–19 (2020).
    Google Scholar 
    Davies, L. R., Hull, R., Moss, S. & Neve, P. The first cases of evolving glyphosate resistance in UK poverty brome (Bromus sterilis) populations. Weed Sci. 67, 41–47 (2019).
    Google Scholar 
    Malone, J. M., Morran, S., Shirley, N., Boutsalis, P. & Preston, C. EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manage. Sci. 72, 81–88 (2016).CAS 

    Google Scholar 
    Vázquez-García, J. G. et al. Glyphosate resistance confirmation and field management of red brome (Bromus rubens L.) in perennial crops grown in southern Spain. Agronomy 11, 535 (2021).
    Google Scholar 
    Park, K. W. & Mallory-Smith, C. A. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44, 71–77 (2004).CAS 

    Google Scholar 
    Kumar, V. & Jha, P. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.). Pest Manag. Sci. 73, 2585–2591 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Baerson, G. T. et al. Glyphosate resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129, 1265–1274 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaines, T. A. et al. Mechanism of resistance of evolved glyphosate-resistant palmer amaranth (Amaranthus palmeri). J. Agric. Food Chem. 59, 5886–5889 (2011).CAS 
    PubMed 

    Google Scholar 
    Jugulam, M. et al. Tandem amplification of a chromosomal segment harboring 5-enolpyruvylshikimate-3-phosphate synthase locus confers glyphosate resistance in Kochia scoparia. Plant Physiol. 166, 1200–1207 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Metier, E. P., Lehnhoff, E. A., Mangold, J., Rinella, M. J. & Rew, L. J. Control of downy brome (Bromus tectorum) and Japanese brome (Bromus japonicus) using glyphosate and four graminicides: Effects of herbicide rate, plant size, species, and accession. Weed Technol. 34, 284–291 (2020).
    Google Scholar 
    Reddy, S., Stahlman, P. & Geier, P. Downy brome (Bromus tectorum L.) and broadleaf weed control in winter wheat with acetolactate synthase-inhibiting herbicides. Agronomy 3, 340–348 (2013).CAS 

    Google Scholar 
    Blackshaw, R. E. Differential competitive ability of winter wheat cultivars against downy brome. Agron. J. 86, 649–654 (1994).
    Google Scholar 
    Blackshaw, R. E. Rotation affects downy brome (Bromus tectorum) in winter wheat (Triticum aestivum). Weed Technol. 8, 728–732 (1994).
    Google Scholar 
    Wicks, G. A. Integrated systems for control and management of downy brome (Bromus tectorum) in cropland. Weed Sci. 32, 26–31 (1984).CAS 

    Google Scholar 
    Anderson, R. L. Timing of nitrogen application affects downy brome (Bromus tectorum) growth in winter wheat. Weed Technol. 5, 582–585 (1991).
    Google Scholar 
    Blackshaw, R. E., Larney, F. J., Lindwall, C. W., Watson, P. R. & Derksen, D. A. Tillage intensity and crop rotation affect weed community dynamics in a winter wheat cropping system. Can. J. Plant Sci. 81, 805–813 (2001).
    Google Scholar 
    Evans, R. A. & Young, J. A. Microsite requirements of downy brome (Bromus tectorum) infestation and control on sagebrush rangelands. Weed Sci. 32, 13–17 (1984).
    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project https://qgis.org/en/site/ (2022).Sheldrake, T. Jr. & Boodley, J. W. Plant growing in light-weight artificial mixes. Acta Hortic. 4, 155–157 (1966).
    Google Scholar 
    Canadian Weed Science Society – Société Canadienne de Malherbologie (CWSS-SCM). Description of 0–100 rating scale for herbicide efficacy and phytotoxicity https://weedscience.ca/cwss_scm-rating-scale/ (2018).Littell, R. C., Milken, G. A., Stroup, W. W., Wolfinger, R. R. & Schabenberger, O. SAS for mixed models 2nd edn. (SAS Institute Inc., 2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (Vienna, Austria: R Foundation for Statistical Computing, 2019).Ritz, C., Baty, F., Streibig, F. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Seefeldt, S. S., Jensen, J. E. & Fuerst, E. P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9, 218–227 (1995).
    Google Scholar  More

  • in

    Characterization of bacterial diversity between two coastal regions with heterogeneous soil texture

    Soil sampling and determination of soil physical properties and synoptic dataSoil samples were taken from two coastal deserts in the north and south of Iran. Details of their geographic distribution and eco-physiological characterization were shown in Table 1. A total of 2 kg of soil samples were collected from 2 distinct sampling locations ranging in depth from 0 to 30 cm, and the samples were dried for 3 days at room temperature and in the dark before sifting. The soil samples were sieved using a 2 mm sieve to remove stones and other inert material before being stored in zip-top bags. Table 1 lists the soil samples’ physical characteristics, including soil texture (sand 2–0.02 mm; silt 0.02–0.002 mm; clay 0.002 mm), pH, and the proportions of clay, silt, and sand. Synoptic data from the past 10 years (2009–2019), including the average annual temperature, maximum temperature, minimum temperature, average rainfall, average annual wind speed, and maximum wind speed, were obtained from the I.R.OF Iran Meteor (http://www.irimo.ir/far/index.php).Bacterial isolation and effect of manure-based medium on their growthAccording to Chen et al. 2005, the soil-borne bacteria were isolated using direct-spreading method. For this essence soil samples were treated through a series of dilutions. The mixture of 1 g of soil sample was vortexed for 1 min after being suspended in 2 ml of sterile physiological saline (0.9% w/v NaCl). The mixture was then diluted serially (typically 10–1 to 10–7), and level 100 μl of the diluted soil samples were scattered on the surface of solidified plates using glass spreaders. The samples were then incubated for 1 to 3 days at 30 °C in an inverted posture without light. For bacterial isolation, we used eleven culture media including Nutrient Agar (NA), Nutrient Agar plus MnSO4 (NA + MnSO4), LB, Moller Hinton Agar (MHA), Acidithiobacillus (APH) medium, Violet Red Bile Lactose (VRB) agar medium, GYM Streptomyces medium, DPM medium, Azospirillum medium, Azotobacter medium and Manure based medium (MB).To prepare MB medium, dry animal manure and distilled water (1:6 w/v) were combined to create MB medium, which was then let to sit at room temperature for 16 h. The resulting mixture was then centrifuged at 5000 rcf for 30 min after being filtered twice. The next stage involved adding Hoagland salts (10% w/v) to the final extract, adjusting the medium’s pH to 5.8 ± 0.02, and autoclaving it for 20 min at 121 °C and 1.5 kPa. Before sterilization, bacteriological agar (1.5 w/v) was employed as a gelling agent to solidify the medium.After bacterial isolation on NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospibrillum media, the growth of all isolates was evaluated on an MB medium. To investigate isolates biomass in the same condition, we elected MB medium. First, the bacteria were grown in the liquid form of NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospirillum and Azotobacter media at 30 °C for 48 h, then 103 cells of each isolate were transferred to 48 wells plates containing MB medium, and plates were incubated at 30 °C for 10 h. Then, the growth of bacteria was read at an optical density (OD) of 630 nm 10 h after inoculation, the experiment was performed with three replicates. In the following step, CFU/ml equivalent to each OD was obtained by inoculating the uniform amount of liquid culture of the isolates on the solid form of MB medium at 30 °C for 16 h.Phenotypic characterization and biochemical identification of bacterial isolatesThe morphological analysis of the cell shape, colony (i.e., shape, color, and size), and biochemical tests were used to identify the bacterial isolates. Biochemical characterization was carried out By using gram staining, KOH27, oxidase, and catalase tests. For this essence, following Bartholomew’s method28, gram staining of bacteria was studied 48 h after inoculation on MHA, and the non-staining KOH method was used to confirm the results. Using 0.5 ml of a 10% hydrogen peroxide solution, a catalase test was conducted, and the generation of gas bubbles was monitored. Using biochemical oxidase discs, the oxidative activity of 27 isolates was investigated.Effect of abiotic stresses on bacterial isolatesTo determine the effect of abiotic stresses on isolates alkaline (MH medium with pH  10), salinity (MH medium supplemented with the final concentration of 100 mM NaCl), osmotic [MH medium supplemented with 25% polyethylene glycol (PEG) Mn6000], and thermal stresses (MH medium incubated at 15 °C for cold stress and 60 °C for heat stress) were screened. For all experiments, the incubation period was 15 h, and plates were kept in a dark condition.MALDI-TOF MS identification of isolatesSoil bacterial isolates were subcultured twice on MHA and incubated at 30 °C for 24 h before MALDI-TOF MS measurement. Then ∼0.1 µg of cell material was directly transferred from a bacterial colony or smear of colonies to a MALDI target spot. After drying at laboratory temperature, sample spots were overlaid with 1 μl of matrix solution (10 mg/mL a-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic acid) and each measurement was carried out in triplicate (technical replicates). MS analysis was performed on an Autoflex MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) using Flex Control 3.4 software (Bruker Daltonics, Germany). Calibration was carried out with the use of the Bacterial Test Standard (Bruker Daltonics, Germany). Soil isolates with a valid MALDI-TOF MS score of 2 were undoubtedly assigned to the genus/species level. For bacterial classification and identification, BioTyper 3.1 software (Bruker Daltonics, Germany) equipped with MBT 6903 MPS Library (released in April 2016), the MALDI Biotyper Preprocessing Standard Method, and the MALDI Biotyper MSP Identification Standard Method adjusted by the manufacturer (Bruker Daltonics, Germany) were used. Only the highest score value of all mass spectra belonging to individual cultures (biological and technical replicates) was recorded25. The score between 2.3 and 3.00 shows highly probable species-level identification and between 2.0 and 2.29 represents genus-level identification and probable species level of identification. A score between 1.7 and 1.99 indicates probable genus-level identification29.Effects of bacterial isolates on plants growthThe Seed and Plant Improvement Institute of Karaj (Karaj, Iran; http://www.spii.ir/homepage.aspx?site=DouranPortal&tabid=1&lang=faIR) provided the maize, canola, and wheat seeds (Zea mays. Var Kosha; Brassica napus Var Nima; Triticum aestivum Var Kalate). In greenhouse trials, 2 × 103 cells/seed of soil-borne isolates cultured in a manure-based medium were inoculated to maize, canola, and wheat plants. During the studies, sand that had been acid washed and autoclaved was used for planting. For three weeks, seedlings were kept under a 16/8 h day/night photoperiod with a 25 °C temperature. Three replications of a complete randomized block design were used for the colonization experiment’s treatments. Under the bacterial treatments, measurements were made of the plant growth parameters including shoot dry biomass (mg), root dry biomass (mg), shoot length (cm), root length (cm), shoot density (mg/cm), root density (mg/cm), and shoot/root weight (mg). Samples were dried at 60 °C for three days to measure dry biomass.Statistical analysisStatistical analysis was done by R software (version 4.1.3). One-way analysis of variance (ANOVA) was used to determine the significance of the experiment, and Fisher’s protected Least Significant Difference (LSD) test with a P-value of 0.01 was performed to separate the means. Furthermore, PCA analysis has been carried out based on the Clustvis package and the SVD imputation approach.Ethics approval and consent to participateAll authors agree to the ethics and consent to participate in this article and declare that this submission follows the policies of Scientific Reports. Accordingly, the material is the author’s original work, which has not been previously published elsewhere. The paper is not being considered for publication elsewhere. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.Ethics for research involving plantsAll authors confirmed that experimental research and field studies on plants, including receiving the seeds from the Seed and Plant Improvement Institute of Karaj, complied with relevant institutional, national, and international guidelines and legislation. Furthermore, methods were conducted according to the relevant guidelines and regulations. More

  • in

    Phototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversity

    All Alteromonas strains support long-term survival of Prochlorococcus under N starvationPrevious research showed that Prochlorococcus, and to some extent Synechococcus depend on co-occurring heterotrophic bacteria to survive various types of stress, including nitrogen starvation [33, 34, 42, 43]. At the first encounter between previously axenic Prochlorococcus and Alteromonas (E1), all co-cultures and axenic controls grew exponentially (Fig. 1B, C). However, all axenic cultures showed a rapid and mostly monotonic decrease in fluorescence starting shortly after the cultures stopped growing, reaching levels below the limit of detection after ~20–30 days. None of the axenic Prochlorococcus cultures were able to re-grow when transferred into fresh media after 60 days (Fig. 1C). In contrast, the decline of co-cultures rapidly slowed, and in some cases was interrupted by an extended “plateau” or second growth stage (Fig. 1B). Across multiple experiments, 92% of the co-cultures contained living Prochlorococcus cells for at least 140 days, meaning that they could be revived by transfer into fresh media. Thus, the ability of Alteromonas to support long-term N starvation in Prochlorococcus was conserved in all analyzed strains.Fig. 1: Experimental designs and overview of the dynamics of Prochlorococcus-Alteromonas co-cultures from first encounter and over multiple transfers.A Schematic illustration of the experimental design. One ml from Experiment E1 was transferred into 20 ml fresh media after 100 days, starting experiment E2. Experiment E2 was similarly transferred into fresh media after 140 days, starting experiment E3. Additional experiments replicating these transfers are described in Supplementary Fig. S1. B Overview of the growth curves of the 25 Prochlorococcus-Alteromonas co-cultures over three transfers spanning ~1.2 years (E1, E2 and E3). Results show mean + standard error from biological triplicates, colored by Prochlorococcus strain as in panel D. C Axenic Prochlorococcus grew exponentially in E1 but failed to grow when transferred into fresh media after 60, 100, or 140 days. Axenic Alteromonas cultures were counted after 60 and 100 days, as their growth cannot be monitored sensitively and non-invasively using fluorescence (optical density is low at these cell numbers). D High reproducibility and strain-specific dynamics of the initial contact between Prochlorococcus and Alteromonas strains (E1). Three biological replicates for each mono-culture and co-culture are shown. Note that the Y axis is linear in panels B, C and logarithmic in panel D. Au: arbitrary units.Full size imageIt has previously been shown that Prochlorococcus MIT9313 is initially inhibited by co-culture with Alteromonas HOT1A3, while Prochlorococcus MED4 is not [12, 32]. This “delayed growth” phenotype was observed here too, was specific to MIT9313 (not observed in other Prochlorococcus strains) and occurred with all Alteromonas strains tested (Fig. 1D). MIT9313 belongs to the low-light adapted clade IV (LLIV), which are relatively distant from other Prochlorococcus strains and differ from them in multiple physiological aspects including the structure of their cell wall [44], the use of different (and nitrogen-containing) compatible solutes [45], and the production of multiple peptide secondary metabolites (lanthipeptides, [46, 47]). LLIV cells also have larger genomes, and are predicted to take up a higher diversity of organic compounds such as sugars and amino acids [48]. It is intriguing that specifically this strain, which has higher predicted metabolic and regulatory flexibilities [49], is the only one initially inhibited in co-culture with Alteromonas.Differences in co-culture phenotype are related to Prochlorococcus and not Alteromonas strains and occur primarily during the decline stageWhile co-culture with all Alteromonas strains had a major effect on Prochlorococcus viability after long-term starvation, there was no significant effect of co-culture on traditional metrics of growth such as maximal growth rate, maximal fluorescence, and lag phase (with the exception of the previously described inhibition of MIT9313; Fig. 2A–C). However, a visual inspection of the growth curves suggested subtle yet consistent differences in the shape of the growth curve, and especially the decline phase, between the different Prochlorococcus strains in the co-cultures (Fig. 1D). To test this, we used the growth curves as input for a principal component analysis (PCA), revealing that the growth curves from each Prochlorococcus strain clustered together, regardless of which Alteromonas strain they were co-cultured with (Fig. 2D). The growth curves of all high-light adapted strains (MED4, MIT9312, and MIT0604) were relatively similar, the low-light I strain NATL2A was somewhat distinct, and the low-light IV strain MIT9313 was a clear outlier (Fig. 2D), consistent with this strain being the only one initially inhibited in all co-cultures. Random forest classification supported the observation that the growth curve shapes were affected more by the Prochlorococcus rather than Alteromonas strains, and also confirmed the visual observation that most of the features differentiating between Prochlorococcus strains occurred during culture decline (random forest is a supervised machine learning algorithm explained in more detail in Supplementary Text S2; see also Supplementary Fig. S2). Thus, co-culture with Alteromonas affects the decline stage of Prochlorococcus in co-culture in a way that differs between Prochlorococcus but not Alteromonas strains.Fig. 2: Growth analysis and principal component analysis (PCA) of the growth curves from all co-cultures during 140 days of E1.A Growth rate, B Maximum fluorescence, and C duration of lag phase during experiment E1. Box-plots represent mean and 75th percentile of co-cultures, circles represent measurements of individual cultures of the axenic controls. The only significant difference between axenic and co-cultures is in the length of the lag phase for MIT9313 (Bonferroni corrected ANOVA, p  More

  • in

    A colonial-nesting seabird shows no heart-rate response to drone-based population surveys

    Ratcliffe, N. et al. A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101 (2015).
    Google Scholar 
    Albores-Barajas, Y. V. et al. A new use of technology to solve an old problem: Estimating the population size of a burrow nesting seabird. PLoS ONE 13, 1–15 (2018).
    Google Scholar 
    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Chabot, D., Craik, S. R. & Bird, D. M. Population census of a large Common tern colony with a small unmanned aircraft. PLoS ONE 10, 1–14 (2015).
    Google Scholar 
    McClelland, G. T. W., Bond, A. L., Sardana, A. & Glass, T. Rapid population estimate of a surface-nesting seabird on a remote island using a low-cost unmanned aerial vehicle. Mar. Ornithol. 44, 215–220 (2016).
    Google Scholar 
    Lynch, H. J., White, R., Black, A. D. & Naveen, R. Detection, differentiation, and abundance estimation of penguin species by high-resolution satellite imagery. Polar Biol. 35, 963–968 (2012).
    Google Scholar 
    Fretwell, P. T. et al. An Emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS ONE 7, e33751 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xue, Y., Wang, T. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 1–16 (2017).
    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 31, 362–371 (2003).
    Google Scholar 
    Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).
    Google Scholar 
    LaRue, M. A., Stapleton, S. & Anderson, M. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv. Biol. 31, 213–220 (2017).PubMed 

    Google Scholar 
    Sardà-Palomera, F., Bota, G., Padilla, N., Brotons, L. & Sardà, F. Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds. J. Avian Biol. 48, 1273–1280 (2017).
    Google Scholar 
    Schofield, G., Katselidis, K. A., Lilley, M. K. S., Reina, R. D. & Hays, G. C. Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol. 31, 2310–2319 (2017).
    Google Scholar 
    Lachman, D., Conway, C., Vierling, K. & Matthews, T. Drones provide a better method to find nests and estimate nest survival for colonial waterbirds: A demonstration with Western grebes. Wetl. Ecol. Manag. 28, 837–845 (2020).
    Google Scholar 
    Torres, L. G., Nieukirk, S. L., Lemos, L. & Chandler, T. E. Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Front. Mar. Sci. 5, 1–14 (2018).
    Google Scholar 
    Jagielski, P. M., Dey, C. J., Gilchrist, H. G., Richardson, E. S. & Semeniuk, C. A. D. Polar bear foraging on common eider eggs: Estimating the energetic consequences of a climate-mediated behavioural shift. Anim. Behav. 171, 63–75 (2021).
    Google Scholar 
    Jagielski, P. M. et al. Polar bears are inefficient predators of seabird eggs. R. Soc. Open Sci. 8, 210391 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callaghan, C. T., Brandis, K. J., Lyons, M. B., Ryall, S. & Kingsford, R. T. A comment on the limitations of UAVS in wildlife research—The example of colonial nesting waterbirds. J. Avian Biol. 49, e01825 (2018).
    Google Scholar 
    Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 1–9 (2017).
    Google Scholar 
    Nowak, M. M., Dziób, K. & Bogawski, P. Unmanned aerial vehicles (UAVs) in environmental biology: A review. Eur. J. Ecol. 4, 56–74 (2019).
    Google Scholar 
    Watts, A. C. et al. Small unmanned aircraft systems for low-altitude aerial surveys. J. Wildl. Manag. 74, 1614–1619 (2010).
    Google Scholar 
    Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).
    Google Scholar 
    Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: A review. N. Z. J. Zool. 36, 367–377 (2009).
    Google Scholar 
    Carney, K. M. & Sydeman, W. J. A review of human disturbance effects on nesting colonial waterbirds. Int. J. Waterbird Biol. 22, 68–79 (1999).
    Google Scholar 
    Barber-Meyer, S. M., Kooyman, G. L. & Ponganis, P. J. Estimating the relative abundance of Emperor penguins at inaccessible colonies using satellite imagery. Polar Biol. 30, 1565–1570 (2007).
    Google Scholar 
    Lyons, M. et al. A protocol for using drones to assist monitoring of large breeding bird colonies. EcolEvol https://doi.org/10.32942/osf.io/p9j3f (2019).Article 

    Google Scholar 
    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).
    Google Scholar 
    Hodgson, J. C., Baylis, S. M., Mott, R., Herrod, A. & Clarke, R. H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).
    Google Scholar 
    Korczak-Abshire, M. et al. Preliminary study on nesting Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Sci. 23, 1–16 (2016).
    Google Scholar 
    Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at a swift breeding colonies due to the visual aspects of a drone: A quasi-experiment study. Curr. Zool. 41, 259–266 (2020).
    Google Scholar 
    Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).
    Google Scholar 
    Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).
    Google Scholar 
    Barnas, A. et al. Evaluating behavioral responses of nesting Lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).PubMed 

    Google Scholar 
    Ellis-felege, S. N. et al. Nesting Common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. https://doi.org/10.1139/juvs-2021-0012 (2021).Article 

    Google Scholar 
    Wilson, R. P., Culik, B., Danfeld, R. & Adelung, D. People in Antarctica—how much do Adélie penguins Pygoscelis adeliae care?. Polar Biol. 11, 363–370 (1991).
    Google Scholar 
    Ricklefs, R. E. An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 9, 1–48 (1969).
    Google Scholar 
    Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).PubMed 

    Google Scholar 
    Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 6, 1–7 (2018).
    Google Scholar 
    Jaatinen, K., Seltmann, M. W. & Öst, M. Context-dependent stress responses and their connections to fitness in a landscape of fear. J. Zool. 294, 147–153 (2014).
    Google Scholar 
    Seltmann, M. W. et al. Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Anim. Behav. 84, 889–896 (2012).
    Google Scholar 
    Cockrem, J. F. Stress, corticosterone responses and avian personalities. J. Ornithol. 148, S169–S178 (2007).
    Google Scholar 
    Criscuolo, F. Does blood sampling during eider incubation induce nest desertion in the female Common eider Somateria mollissima?. Mar. Ornithol. 29, 47–50 (2001).
    Google Scholar 
    Ellenberg, U., Mattern, T. & Seddon, P. J. Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds. Conserv. Physiol. 1, 1–11 (2013).
    Google Scholar 
    DeRose-Wilson, A., Fraser, J. D., Karpanty, S. M. & Hillman, M. D. Effects of overflights on incubating Wilson’s plover behavior and heart rate. J. Wildl. Manag. 79, 1246–1254 (2015).
    Google Scholar 
    de Villiers, M., Bause, M., Giese, M. & Fourie, A. Hardly hard-hearted: Heart rate responses of incubating Northern giant petrels (Macronectes halli) to human disturbance on sub-Antarctic Marion Island. Polar Biol. 29, 717–720 (2006).
    Google Scholar 
    Borneman, T. E., Rose, E. T. & Simons, T. R. Minimal changes in heart rate of incubating American oystercatchers (Haematopus palliatus) in response to human activity. Condor 116, 493–503 (2014).
    Google Scholar 
    Felton, S. K., Pollock, K. H. & Simons, T. R. Response of beach-nesting American oystercatchers to off-road vehicles: An experimental approach reveals physiological nuances and decreased nest attendance. Condor 120, 47–62 (2018).
    Google Scholar 
    Bolduc, F. & Guillemette, M. Human disturbance and nesting success of Common eiders: Interaction between visitors and gulls. Biol. Conserv. 110, 77–83 (2003).
    Google Scholar 
    Hennin, H. L. et al. Plasma mammalian leptin analogue predicts reproductive phenology, but not reproductive output in a capital-income breeding seaduck. Ecol. Evol. 9, 1512–1521 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Culik, B., Adelung, D. & Woakes, A. J. The effect of disturbance on the heart rate and behaviour of Adélie penguins (Pygoscelis adeliae) during the breeding season. In Antarctic Ecosystems. Ecological Change and Conservation (eds Kerry, K. R. & Hempel, G.) 177–182 (Springer, 1990).
    Google Scholar 
    Weimerskirch, H. et al. Heart rate and energy expenditure of incubating Wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. 205, 475–483 (2002).PubMed 

    Google Scholar 
    Egan, C. C., Blackwell, B. F., Fernández-Juricic, E. & Klug, P. E. Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?. Condor 122, 1–15 (2020).
    Google Scholar 
    McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 4, e1831 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).
    Google Scholar 
    Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and Crested terns to drone disturbance to define ethical operating thresholds. PLoS ONE 13, 4–6 (2018).
    Google Scholar 
    Rümmler, M. C., Mustafa, O., Maercker, J., Peter, H. U. & Esefeld, J. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biol. 39, 1329–1334 (2016).
    Google Scholar 
    Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Ecol. Soc. 6, 11 (2002).
    Google Scholar 
    Forbes, M. R. L., Clark, R. G., Weatherhead, P. J. & Armstrong, T. Risk-taking by female ducks: Intra-and interspecific tests of nest defense theory. Behav. Ecol. Sociobiol. 34, 79–85 (1994).
    Google Scholar 
    Viblanc, V. A., Smith, A. D., Gineste, B., Kauffmann, M. & Groscolas, R. Modulation of heart rate response to acute stressors throughout the breeding season in the King penguin Aptenodytes patagonicus. J. Exp. Biol. 218, 1686–1692 (2015).PubMed 

    Google Scholar 
    Montgomerie, R. D. & Weatherhead, P. J. Risks and rewards of nest defence by parent birds. Q. Rev. Biol. 63, 167–187 (1988).
    Google Scholar 
    Criscuolo, F., Gabrielsen, G. W., Gendner, J.-P. & Maho, Y. L. Body mass regulation during incubation in female Common eiders Somateria mollissima. J. Avian Biol. 33, 83–88 (2002).
    Google Scholar 
    Cyr, N. E., Wikelski, M. & Romero, L. M. Increased energy expenditure but decreased stress responsiveness during molt. Physiol. Biochem. Zool. Ecol. Evol. Approaches 81, 452–462 (2008).
    Google Scholar 
    Kralj-Fišer, S., Scheiber, I. B. R., Kotrschal, K., Weiß, B. M. & Wascher, C. A. F. Glucocorticoids enhance and suppress heart rate and behaviour in time dependent manner in Greylag geese (Anser anser). Physiol. Behav. 100, 394–400 (2010).PubMed 

    Google Scholar 
    Hodgson, J. C. & Koh, L. P. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research. Curr. Biol. 26, R404–R405 (2016).PubMed 

    Google Scholar 
    Parker, H. & Holm, H. Patterns of nutrient and energy expenditure in female Common eiders nesting in the high Arctic. Auk 107, 660–668 (1990).
    Google Scholar 
    Mehlum, F. Eider Studies in Svalbard Vol. 195 (Norsk Polarinstitutt Skrifter, 1991).
    Google Scholar 
    Markowitz, E. M., Nisbet, M. C., Danylchuk, A. J. & Engelbourg, S. I. What’s that buzzing noise? Public opinion on the use of drones for conservation science. Bioscience 67, 382–385 (2017).
    Google Scholar 
    Legagneux, P. et al. Unpredictable perturbation reduces breeding propensity regardless of pre-laying reproductive readiness in a partial capital breeder. J. Avian Biol. 47, 880–886 (2016).
    Google Scholar 
    Love, O. P., Gilchrist, H. G., Descamps, S., Semeniuk, C. A. D. & Bêty, J. Pre-laying climatic cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164, 277–286 (2010).ADS 
    PubMed 

    Google Scholar 
    Fast, P. L. F., Gilchrist, H. G. & Clark, R. G. Nest-site materials affect nest-bowl use by Common eiders (Somateria mollissima). Can. J. Zool. 88, 214–218 (2010).
    Google Scholar 
    McKinnon, L., Gilchrist, H. G. & Scribner, K. T. Genetic evidence for kin-based female social structure in Common eiders (Somateria mollissima). Behav. Ecol. 17, 614–621 (2006).
    Google Scholar 
    Descamps, S., Forbes, M. R., Gilchrist, H. G., Love, O. P. & Bêty, J. Avian cholera, post-hatching survival and selection on hatch characteristics in a long-lived bird, the Common eider Somateria mollissima. J. Avian Biol. 42, 39–48 (2011).
    Google Scholar 
    Buttler, E. I. Avian Cholera Among Arctic Breeding Common eiders Somateria mollissima: Temporal Dynamics and the Role of Handling Stress in Reproduction and Survival (Carleton University, 2009).
    Google Scholar 
    Descamps, S., Gilchrist, H. G., Bêty, J., Buttler, E. I. & Forbes, M. R. Costs of reproduction in a long-lived bird: large clutch size is associated with low survival in the presence of a highly virulent disease. Biol. Lett. 5, 278–281 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. A., Gilchrist, H. G., Smith, P. A., Gaston, A. J. & Forbes, M. R. Longer ice-free seasons increase the risk of nest depredation by Polar bears for colonial breeding birds in the Canadian Arctic. Proc. R. Soc. B Biol. Sci. 281, 20133128 (2014).
    Google Scholar 
    Dey, C. J. et al. Increasing nest predation will be insufficient to maintain Polar bear body condition in the face of sea ice loss. Glob. Change Biol. 23, 1821–1831 (2017).ADS 

    Google Scholar 
    Giese, M., Handsworth, R. & Stephenson, R. Measuring resting heart rates in penguins using an artificial egg. J. Field Ornithol. 70, 49–54 (1999).
    Google Scholar 
    Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).
    Google Scholar 
    Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).
    Google Scholar 
    Audacity Team. Audacity(R): Free Audio Editor and Recorder [Computer Application]. Version 2.3.2 retrieved Oct 10th 2019 from https://www.audacityteam.org/ (2019).Nimon, A. J., Schroter, R. C. & Oxenham, R. K. C. Artificial eggs: Measuring heart rate and effects of disturbance in nesting penguins. Physiol. Behav. 60, 1019–1022 (1996).PubMed 

    Google Scholar 
    SAS Institute Inc. SAS® Studio 3.8: User’s Guide (SAS Institute Inc, 2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Breakthroughs in Statistics, Volume I, Foundations and Basic Theory (eds Kotz, S. & Johnson, N. L.) 610–624 (Springer, New York, 1998).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr (2015).Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).
    Google Scholar 
    Hijmans, R. J., Williams, E. & Vennes, C. Geosphere: Spherical Trigonometry. https://CRAN.R-project.org/package=geosphere (2017).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Found. Stat. Comput., Vienna, 2017).
    Google Scholar  More

  • in

    Long term environmental variability modulates the epigenetics of maternal traits of kelp crabs in the coast of Chile

    Gibney, E. R. & Nolan, C. M. Epigenetics and gene expression. Heredity 105, 4–13 (2010).CAS 
    PubMed 

    Google Scholar 
    Vogt, G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: Insights from clonal, invasive, polyploid, and domesticated animals. Environ. Epigenet. 3, 1–17 (2017).
    Google Scholar 
    Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental Epigenomics and Its Applications in Marine Organisms 325–359 (Springer, 2018). https://doi.org/10.1007/13836_2018_28.Book 

    Google Scholar 
    Hofmann, G. E. Ecological epigenetics in marine metazoans. Front. Mar. Sci. 4, 1–7 (2017).CAS 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590 (2017).PubMed 

    Google Scholar 
    Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. & Ravasi, T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat. Clim. Chang. 8, 504–509 (2018).ADS 

    Google Scholar 
    Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, 6 (2018).
    Google Scholar 
    Anastasiadi, D., Díaz, N. & Piferrer, F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. & Hofmann, G. E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Bio. Ecol. 517, 54–64 (2019).
    Google Scholar 
    Rey, O. et al. Linking epigenetics and biological conservation: Towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
    Google Scholar 
    Eirin-Lopez, J. M. & Putnam, H. Editorial: Marine environmental epigenetics. Front. Mar. Sci. 8, 5 (2021).
    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of longterm inequality in herbivory. Mol. Ecol. 20, 1675–1688 (2011).CAS 
    PubMed 

    Google Scholar 
    Varriale, A. DNA methylation, epigenetics, and evolution in vertebrates: Facts and challenges. Int. J. Evol. Biol. 2014, 1–7 (2014).
    Google Scholar 
    Liebl, A. L., Wesner, J. S., Russell, A. F. & Schrey, A. W. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS ONE 16, e0252227 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Metzger, D. C. H. & Schulte, P. M. Persistent and plastic effects of temperature on DNA methylation across the genome of threespine stickleback (Gasterosteus aculeatus). Proc. R. Soc. B Biol. Sci. 284, 5 (2017).
    Google Scholar 
    Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, R. G. A., Baldanzi, S., Pérez-Figueroa, A., Gouws, G. & Porri, F. Morphological and epigenetic variation in mussels from contrasting environments. Mar. Biol. 165, 8 (2018).
    Google Scholar 
    Baldanzi, S., Watson, R., McQuaid, C. D., Gouws, G. & Porri, F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol. Ecol. 31, 77–91 (2017).
    Google Scholar 
    Ardura, A., Zaiko, A., Morán, P., Planes, S. & Garcia-Vazquez, E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci. Rep. 7, 5 (2017).
    Google Scholar 
    Baldanzi, S., Storch, D., Navarrete, S. A., Graeve, M. & Fernández, M. Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Mar. Biol. 165, 1 (2018).
    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).ADS 

    Google Scholar 
    Letelier, J., Pizarro, O. & Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. Ocean. 114, 12009 (2009).ADS 

    Google Scholar 
    Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7 (2017).CAS 

    Google Scholar 
    Pérez, C. A. et al. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central southern Chile: Implications for the carbonate system in river-influenced rocky shore environments. J. Geophys. Res. Biogeosciences 120, 673–692 (2015).ADS 

    Google Scholar 
    Saldías, G. S. et al. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Prog. Oceanogr. 146, 212–222 (2016).ADS 

    Google Scholar 
    Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
    Google Scholar 
    Wieters, E. A. Upwelling control of positive interactions over mesoscales: A new link between bottom-up and top-down processes on rocky shores. Mar. Ecol. Prog. Ser. 301, 43–54 (2005).ADS 

    Google Scholar 
    Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).
    Google Scholar 
    Iranon, N. N. & Miller, D. L. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front. Genet. 3, 5 (2012).
    Google Scholar 
    Ramajo, L., Lagos, N. A. & Duarte, C. M. Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Mar. Pollut. Bull. 146, 247–254 (2019).CAS 
    PubMed 

    Google Scholar 
    Aiken, C. & Navarrete, S. Environmental fluctuations and asymmetrical ­dispersal: Generalized stability theory for studying metapopulation persistence and marine protected areas. Mar. Ecol. Prog. Ser. 428, 77–88 (2011).ADS 

    Google Scholar 
    Baldanzi, S. et al. Combined effects of temperature and hypoxia shape female brooding behaviors and the early ontogeny of the Chilean kelp crab Taliepus dentatus. Mar. Ecol. Prog. Ser. 646, 93–107 (2020).ADS 
    CAS 

    Google Scholar 
    Moran, A. L. & McAlister, J. S. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull. 216, 226–242 (2009).PubMed 

    Google Scholar 
    Doherty-Weason, D. et al. Bioenergetics of parental investment in two polychaete species with contrasting reproductive strategies: The planktotrophic Boccardia chilensis and the poecilogonic Boccardia wellingtonensis (Spionidae). Mar. Ecol. 41, 1 (2020).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Google Scholar 
    Sayols-Baixeras, S., Irvin, M. R., Arnett, D. K., Elosua, R. & Aslibekyan, S. W. Epigenetics of lipid phenotypes. Curr. Cardiovasc. Risk Rep. 10, 1–205 (2016).
    Google Scholar 
    Adam, A. C. et al. Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid. PLoS ONE 14, e0220934 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fernández, P., García-Souto, D., Almansa, E., Morán, P. & Gestal, C. Epigenetic DNA methylation mediating Octopus vulgaris early development: Effect of essential fatty acids enriched diet. Front. Physiol. 8, 1–9 (2017).
    Google Scholar 
    Hearn, J., Pearson, M., Blaxter, M., Wilson, P. J. & Little, T. J. Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics 20, 1–11 (2019).
    Google Scholar 
    Palma, A. T., Henríquez, L. A. & Ojeda, F. P. Phytoplanktonic primary production modulated by coastal geomorphology in a highly dynamic environment of central Chile. Rev. Biol. Mar. Oceanogr. 44, 325–334 (2009).
    Google Scholar 
    Faúndez-Báez, P., Morales, C. E. & Arcos, D. Variabilidad espacial y temporal en la hidrografía invernal del sistema de bahías frente a la VIII región (Chile centro-sur). Rev. Chil. Hist. Nat. 74, 817–831 (2001).
    Google Scholar 
    Osma, N. et al. Response of phytoplankton assemblages from naturally acidic coastal ecosystems to elevated pCO2. Front. Mar. Sci. 1, 323 (2020).
    Google Scholar 
    Rebolledo, L. et al. Siliceous productivity changes in Gulf of Ancud sediments (42°S, 72°W), southern Chile, over the last ∼150 years. Cont. Shelf Res. 31, 356–365 (2011).ADS 

    Google Scholar 
    Sun, Y. et al. Genome-wide analysis of DNA methylation in five tissues of Zhikong Scallop, Chlamys farreri. PLoS ONE 9, e86232 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190454 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Feinberg, A. P. & Irizarry, R. A. Colloquium Paper: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA 107, 1757 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reyna-López, G. E., Simpson, J. & Ruiz-Herrera, J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 253, 703–710 (1997).PubMed 

    Google Scholar 
    Pérez-Figueroa, A. msap: A tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 13, 522–527 (2013).PubMed 

    Google Scholar 
    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 

    Google Scholar 
    Valladares, F., Sanches-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116 (2006).
    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More