More stories

  • in

    Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists

    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, Princeton, NJ, 2013).Cordeiro, N. J. & Howe, H. F. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proc. Natl Acad. Sci. USA 100, 14052–14056 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wandrag, E. M., Dunham, A. E., Duncan, R. P. & Rogers, H. S. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114, 10689–10694 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fricke, E. C. & Svenning, J. C. Accelerating homogenization of the global plant-frugivore meta-network. Nature 585, 74–78 (2020).CAS 
    PubMed 

    Google Scholar 
    Fontúrbel, F. E. et al. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob. Change Biol. 21, 3951–3960 (2015).
    Google Scholar 
    Poisot, T. et al. Global knowledge gaps in species interaction networks data. J. Biogeogr. 48, 1552–1563 (2021).
    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    Magrach, A., Laurance, W. F., Larrinaga, A. R. & Santamaria, L. Meta-analysis of the effects of forest fragmentation on interspecific interactions. Conserv. Biol. 28, 1342–1348 (2014).PubMed 

    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 

    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    de Assis Bomfim, J., Guimarães, P. R. Jr., Peres, C. A., Carvalho, G. & Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41, 1899–1909 (2018).
    Google Scholar 
    Emer, C. et al. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).
    Google Scholar 
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).PubMed 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).PubMed 

    Google Scholar 
    Neff, F. M. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci. Adv. 7, eabf3985 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Google Scholar 
    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).CAS 
    PubMed 

    Google Scholar 
    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).PubMed 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).CAS 
    PubMed 

    Google Scholar 
    Liu, H. et al. Geographic variation in the robustness of pollination networks is mediated by modularity. Glob. Ecol. Biogeogr. 30, 1447–1460 (2021).
    Google Scholar 
    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).CAS 
    PubMed 

    Google Scholar 
    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B. 271, 2605–2611 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 9, 16–36 (2019).
    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).PubMed 

    Google Scholar 
    Song, C., Rohr, R. P. & Saavedra, S. Why are some plant-pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).PubMed 

    Google Scholar 
    Schleuning, M., Böhning-Gaese, K., Dehling, D. M. & Burns, K. C. At a loss for birds: insularity increases asymmetry in seed-dispersal networks. Glob. Ecol. Biogeogr. 23, 385–394 (2014).
    Google Scholar 
    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 

    Google Scholar 
    Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).
    Google Scholar 
    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).PubMed 

    Google Scholar 
    Traveset, A. et al. Bird-flower visitation networks in the Galápagos unveil a widespread interaction release. Nat. Commun. 6, 6376 (2015).CAS 
    PubMed 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 

    Google Scholar 
    Monteiro, E. C. S., Pizo, M. A., Vancine, M. H. & Ribeiro, M. C. Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. Oikos 2022, e08240 (2022).
    Google Scholar 
    Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).PubMed 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 

    Google Scholar 
    Diamond, J. Dammed experiments! Science 294, 1847–1848 (2001).CAS 
    PubMed 

    Google Scholar 
    Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).
    Google Scholar 
    Wu, J., Huang, J., Han, X., Xie, Z. & Gao, X. Three-Gorges dam–experiment in habitat Fragmentation? Science 300, 1239–1240 (2003).CAS 
    PubMed 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).
    Google Scholar 
    Trøjelsgaard, K. et al. Island biogeography of mutualistic interaction networks. J. Biogeogr. 40, 2020–2031 (2013).
    Google Scholar 
    Emer, C., Venticinque, E. M. & Fonseca, C. R. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks. Conserv. Biol. 27, 763–773 (2013).PubMed 

    Google Scholar 
    Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv. 8, 92–104 (2022).
    Google Scholar 
    Zhu, C., Li, W., Wang, D., Ding, P. & Si, X. Plant-frugivore interactions revealed by arboreal camera trapping. Front. Ecol. Environ. 19, 149–151 (2021).
    Google Scholar 
    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).PubMed 

    Google Scholar 
    Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sugiura, S. Species interactions-area relationships: biological invasions and network structure in relation to island area. Proc. R. Soc. B. 277, 1807–1815 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Galiana, N. et al. Ecological network complexity scales with area. Nat. Ecol. Evol. 6, 307–314 (2022).PubMed 

    Google Scholar 
    Santos, M., Cagnolo, L., Roslin, T., Marrero, H. J. & Vázquez, D. P. Landscape connectivity explains interaction network patterns at multiple scales. Ecology 100, e02883 (2019).PubMed 

    Google Scholar 
    Si, X., Pimm, S. L., Russell, G. J. & Ding, P. Turnover of breeding bird communities on islands in an inundated lake. J. Biogeogr. 41, 2283–2292 (2014).
    Google Scholar 
    Si, X. et al. Functional and phylogenetic structure of island bird communities. J. Anim. Ecol. 86, 532–542 (2017).PubMed 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).
    Google Scholar 
    Sebastián-González, E. Drivers of species’ role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).PubMed 

    Google Scholar 
    Donoso, I. et al. Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat. Commun. 11, 1582 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 

    Google Scholar 
    Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant-frugivore interaction systems. Ecography 40, 1395–1401 (2017).
    Google Scholar 
    Borrvall, C., Ebenman, B. & Jonsson, T. Biodiversity lessens the risk of cascading extinction in model food webs. Ecol. Lett. 3, 131–136 (2000).
    Google Scholar 
    Liao, J. et al. Robustness of metacommunities with omnivory to habitat destruction: disentangling patch fragmentation from patch loss. Ecology 98, 1631–1639 (2017).PubMed 

    Google Scholar 
    Rumeu, B. et al. Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct. Ecol. 31, 1910–1920 (2017).
    Google Scholar 
    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).CAS 
    PubMed 

    Google Scholar 
    Menke, S., Böhning-Gaese, K. & Schleuning, M. Plant-frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121, 1553–1566 (2012).
    Google Scholar 
    Redhead, J. W. et al. Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol. Lett. 21, 1821–1832 (2018).PubMed 

    Google Scholar 
    Si, X. et al. The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology 99, 2103–2112 (2018).PubMed 

    Google Scholar 
    Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).
    Google Scholar 
    Liu, J. et al. The distribution of plants and seed dispersers in response to habitat fragmentation in an artificial island archipelago. J. Biogeogr. 46, 1152–1162 (2019).
    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).
    Google Scholar 
    Li, H.-D. et al. The functional roles of species in metacommunities, as revealed by metanetwork analyses of bird-plant frugivory networks. Ecol. Lett. 23, 1252–1262 (2020).PubMed 

    Google Scholar 
    Snow, B. & Snow, D. Birds and berries: a study of an ecological interaction (T & AD Poyser, Calton, 1988).Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).
    Google Scholar 
    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).PubMed 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open. Sci. 3, 140536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Modell. Softw. 26, 173–178 (2011).
    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).CAS 
    PubMed 

    Google Scholar 
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Rogers, H. S., Donoso, I., Traveset, A. & Fricke, E. C. Cascading impacts of seed disperser loss on plant communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 52, 641–666 (2021).
    Google Scholar 
    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
    Google Scholar 
    Patefield, W. M. Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).
    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar 
    Kabacoff, R. R in Action: Data Analysis and Graphics with R (Manning Publications Co, 2015).R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    Living on the sea-coast: ranging and habitat distribution of Asiatic lions

    Study areaSituated in western India’s southwestern part of the Gujarat state, the Saurashtra region typically represents the semi-arid Gujarat-Rajputana province 4B23, which covers 11 out of 33 districts of the state. The region forms a rocky tableland (altitude 300–600 m) fringed by coastal plains with an undulating central plain broken by hills and dissected by various rivers that flow in all directions24. With the longest coastline (~ 1600 km) in India, Gujarat is endowed with rich coastal biodiversity25,26. The Saurashtra coast in Gujarat is encircled by the open sea between two Gulfs (68° 58′–71° 30′ N and 22° 15′–20° 50′ E) and divided into two segments, viz. the southwestern coast from Dwarka to Diu (~ 300 km stretch) and south-eastern coast from Diu to Bhavnagar (~ 250 km stretch)26.The Asiatic Lion Landscape covers an area of ~ 30,000 km2 (permanent lion distribution range: ~ 16,000 km2; visitation record range: ~ 14,000 km2) of varied habitat types within Saurashtra. The landscape includes five protected areas (Gir National Park, Gir Wildlife Sanctuary, Paniya Wildlife Sanctuary, Mitiyala Wildlife Sanctuary, and Girnar Wildlife Sanctuary) and other forest classes (reserved forests, protected forests, and unclassed forests).The coastal habitats extend across the districts of Bhavnagar, Amreli, Gir-Somnath, and Junagadh (Fig. 1). Within these districts (Fig. 1), the tehsils (sub-divisions/taluka) of Mangrol, Malia, Patan-Veraval, Sutrapada, Kodinar and Una are categorized under the southwestern coast (hereafter western coastal habitat), Jafrabad, Rajula, form the south-eastern coast and Mahuva and Talaja constitute the Bhavnagar coast and represent distinct lion range units (Fig. 1). The total area covered in the study is 2843 km2 on the eastern coast and 1413 km2 on the western coast (Fig. 1).The Saurashtra region is bestowed with three distinct seasons, viz. dry and hot summer (March–June), monsoon (July–October), and primarily dry winter (November–February). It receives a mean annual rainfall of ~ 600 mm, with most rainfall during the southwest monsoon27. The mean maximum and minimum temperatures are 34 °C and 19 °C, respectively28. There is a 110 km2 stretch of forests along the coast. The rest of the areas are multi-use consisting of private, industrial, pastoral and wastelands of varied ownerships. The natural vegetation primarily consists of Prosopis juliflora and Casuarina equistsetifolia. On the beach and dune areas, vegetation such as Ipomea pescaprae, Sporobolus trinules, Fimrystylis sp., Crotalaria sp., and Euphorbia nivuleria29. The mudflats along the coast are restricted to Talaja, Mahuva, Pipavav Port, Jafrabad creek, and Porbandar, sparsely covered by the Avicennia marina29. Fisheries, agriculture, horticulture, livestock rearing, and some large- and small-scale industries are the leading economies in the coastal belt.Coastal segments are characterized by the variety of vegetation, sandy beaches, small cliffs, wave-cut platforms, open and submerged dunes, minor estuaries, embankments, and transition from the open sea to gulf environment with tidal mud26,29 and also support a diverse assemblage of biodiversity25. This biodiversity is further enriched by several perennial/ephemeral rivers originating from the Gir PA (Shetrunji, Machundari, Raval, Ardak, Bhuvatirth, Shinghoda, Hiran, Saraswati, etc.)12. These rivers meet the sea at different sections of the coast, forming prominent coastal ecosystems25. The riverine tracts act as important corridors for wildlife movement9,12,30. Dispersing through these corridors, lions have started inhabiting these coastal habitats30,31.MethodsAll the research activities involved in this study on Asiatic lions were carried out after taking due permission from the Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India (Letter No.: F. No. 1-50/2018 WL) and Principal Chief Conservator of Forests (Wildlife) & Chief Wildlife Warden, Gujarat State, Gandhinagar (Letter No.: WLP 26B 781-83/2019-20). Procedures and protocols were followed as per the Standard Operating Procedures of the Gujarat Forest Department, Government of Gujarat, concerning the handling of wild animals. Qualified and experienced veterinarians and their team carried out all procedures related to radio-collaring. Moreover, the study is reported in accordance with ‘Animal Research: Reporting of In Vivo Experiments’ (ARRIVE) guidelines as applicable.A long-term lion monitoring project was initiated in 2019 by the Gujarat Forest Department to understand the movement patterns and ecology of lions in the Asiatic Lion Landscape. Looking at the heterogeneity and vastness of the coastal areas, ten individuals were carefully selected for satellite radio-collaring based on their frequent movement in different coastal habitats and monitored from 2019 to 2021.The lions were deployed with Vertex Plus GPS Collars (Vectronics Aerospace GmbH, Berlin, Germany) that weighed less than three per cent of the individual’s body weight, irrespective of age and sex. The lions were immobilized using a combination of Ketamine hydrochloride (2.2 mg per kg body weight; Ketamine, Biowet, Pulawy) and Xylazine hydrochloride (1.1 mg per kg body weight; Xylaxil, Brilliant Bio Pharma Pvt. Ltd., Telangana)32 administered intramuscularly using a gas-powered Telinject™ G.U.T 50 (Telinject Inc., Dudenhofen, Germany) dart delivery system. A blindfold was placed to protect the eyes and decrease visual stimuli33,34. Each sedated individual was sexed, aged, and measured as per the standard operating procedure (SOP) of the Gujarat Forest Department, Government of Gujarat, and recorded the data in the trapping datasheet. The radio-collars were deployed considering the neck girth of the individual, ensuring free movement of it so as not to hamper the individual’s routine activities. After deploying the radio-collar, we used the specific antidote for Xylazine, i.e., Yohimbine hydrochloride (0.1–0.15 mg per kg body weight; Yohimbe, Equimed, USA) intravenously, resulting in the total recovery of immobilized individuals32 within 5–10 min. The individuals were intensively monitored for 72 h and, after that, regularly monitored throughout the functional period of the radio-collars. The entire radio-collaring exercise was carried out by trained and experienced veterinary officers and their teams that constituted wildlife health care personnel and field staff.Each collar had a unique VHF and UHF frequency. The radio-collars were equipped with a programmable GPS schedule and configured to record the location fixes at every hour and provided the data through the constellation of low-earth-orbit Iridium satellite data service (Iridium Communications Inc., Virginia, USA) at four-hour intervals after getting activated. The data logs included location fixes in degree decimal format (latitude/longitude), speed (km/hour), altitude (meters above mean sea level), UTC timestamp (dd-mm-yyyy h:m:s), direction (degrees), and temperature (Celsius). Radio-collars were equipped with mortality sensors and a programmable drop-off activation system. Gir Hi-Tech Monitoring Unit, Sasan-Gir, Gujarat, monitored and coordinated these activities. The location data from each radio-collar was downloaded using the GPS Plus X software (Vectronics Aerospace GmbH, Berlin, Germany) in the Gir Hi-Tech Monitoring Unit (a technology-driven scientific monitoring initiative in the landscape established in 2019 at Sasan-Gir, Gujarat).Data analysisIn this study, we calculated the home range of lions resident in the coastal region using the Fixed Kernel method. We expressed them as 90% and 50% Fixed Kernel (FK) to summarize the overall home range and core area, respectively35,36,37. Additionally, the home range of lions categorized as “link lions” and lions of the protected area was summarized for comparison (Table 1).MaxEnt (version 3.4.1) stand-alone software38 was applied for fine-scaled lion distribution modelling39,40. The logistic output format was set for the MaxEnt output. 30% random lion occurrence points were used as test data to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the discriminative ability of the model based on the values of sensitivity (correct discrimination of true positive location points) and specificity (correct discrimination of true negative absence points)41. The Jackknife regularised training gain for the species was used to understand the effect of each variable in model building. The logical output by the MaxEnt was presented in a table format as “percent contribution” and “permutation importance” values (from 0 to 100%). Spatial inputs were prepared on the GIS platform using ArcMap (version 10.8.1, ESRI, Redlands, USA)42. Input data for MaxEnt were categorized as (i) lion occurrence data, (ii) model variables were prepared as described below:

    i.

    Occurrence data
    At the first level, inconsistent location fixes (records with missing coordinates, time stamps, and elevation) and outliers were filtered out. Next, each lion’s hourly GPS location fixes obtained from remotely monitored radio-telemetry data were randomized to overcome spatial and temporal biases. The data was reduced by taking every three-hour location fix43,44. The data was further categorized season-wise, viz. summer, monsoon and winter. This consolidated data was then subject to spatial thinning of one kilometre using SDMtoolbox (version 2.0)45,46.

    ii.

    Model variables

    The variables used for distribution modelling broadly included different categories of land use, including both natural habitats and anthropogenic factors, namely, roads and human settlement areas. All variables were rasterized at 10 m spatial resolution.Land Use Land Cover (LULC) data of Saurashtra was obtained from Bhaskaracharya National Institute for Space Applications and Geo-informatics (BISAG-N), Gandhinagar, Gujarat. The data was then further classified into 18 sub-classes—Forest, Sandy areas, Salt-affected, Saltpan, open scrub, dense scrub (Wastelands), Waterlogged, River/Stream/Drain, Lakes and Ponds, Mining/Industrial areas, Reservoir/Tanks, Mangrove/Swamp Area, Crop Land, Agriculture Plantation (horticulture and agro-forestry), Core urban, Mixed settlement, Peri-urban, Village (Fig. 2).Roads and highways were also analyzed as separate variables in the model. Roads were classified as village roads, major district roads, and state and national highways and digitized individually to estimate Euclidean distance further (Table 2). Euclidean distance from the human settlement (Core-urban, Peri-urban, villages and mixed settlement) was analyzed and taken as a separate input variable for the model. More

  • in

    Microbiome diversity and metabolic capacity determines the trophic ecology of the holobiont in Caribbean sponges

    Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.CAS 
    PubMed 

    Google Scholar 
    Knowlton N. The future of coral reefs. Proc Natl Acad Sci USA. 2001;98:5419–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, et al. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–90.CAS 
    PubMed 

    Google Scholar 
    Dudgeon SR, Aronson RB, Bruno JF, Precht WF. Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser. 2010;413:201–16.
    Google Scholar 
    Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. Could some coral reefs become sponge reefs as our climate changes? Glob Climate Change. 2013;19:2613–24.
    Google Scholar 
    McMurray SE, Henkel TP, Pawlik JR. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology. 2010;91:560–70.PubMed 

    Google Scholar 
    Bell JJ. The functional roles of marine sponges. Est Coast Shelf Sci. 2008;79:341–53.
    Google Scholar 
    Lesser MP, Slattery M. Will coral reef sponges be winners in the Anthropocene? Glob Change Biol. 2020;26:3202–11.
    Google Scholar 
    Pankey MS, Plachetzki DC, Macartney KJ, Gastaldi M, Slattery M, Gochfeld DJ, et al. Co-phylogeny and convergence shape holobiont evolution in sponge-microbe symbioses. Nat Ecol Evol. 2022;6:750–62.
    Google Scholar 
    Lesser MP, Slattery M, Mobley CD. Biodiversity and functional ecology of mesophotic coral reefs. Ann Rev Ecol Syst. 2018;49:49–71.
    Google Scholar 
    Diaz MC, Rützler K. Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci. 2001;69:535–46.
    Google Scholar 
    Wulff JL. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv Mar Biol. 2012;61:273–344.PubMed 

    Google Scholar 
    Lesser MP. Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol. 2006;328:277–88.
    Google Scholar 
    Perea-Blazquez A, Davy SK, Bell JJ. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS One. 2012;7:e29569.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lesser MP, Slattery M. Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS One. 2013;8:e79799.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pawlik JR. The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. BioScience. 2011;61:888–98.
    Google Scholar 
    Slattery M, Gochfeld DJ. Chemical interactions among marine competitors, and host-pathogens. In: Fattorusso, E, Gerwick, WH, Taglialatela-Scafati, O (eds). Handbook of Marine Natural Products. Springer, 2012. pp. 824–59.Thacker RW, Freeman CJ. Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol. 2012;62:57–112.PubMed 

    Google Scholar 
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Biol Rev. 2007;71:295–347.CAS 

    Google Scholar 
    Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, et al. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 2012;6:564–76.CAS 
    PubMed 

    Google Scholar 
    Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, et al. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull. 2014;227:78–88.PubMed 

    Google Scholar 
    Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, et al. Microbial diversity of marine sponges. Prog Mol Subcell Biol. 2003;37:59–88.CAS 
    PubMed 

    Google Scholar 
    Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformation in marine symbioses. Trends Microbiol. 2010;18:455–63.CAS 
    PubMed 

    Google Scholar 
    Zhang F, Jonas L, Lin H, Hill RT. Microbially mediated nutrient cycles in marine sponges. FEMS Microbiol Ecol. 2019;95:115.
    Google Scholar 
    Schläppy M-L, Schöttner SI, Lavik G, Kuypers MMM, de Beer D, Hoffmann F. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol. 2010;157:593–602.PubMed 

    Google Scholar 
    Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol. 2013;83:232–41.CAS 
    PubMed 

    Google Scholar 
    Weisz JB, Lindquist N, Martens CS. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities. Oecologia. 2008;155:367–76.PubMed 

    Google Scholar 
    de Goeij JM, van Oevelen D, Vermiej MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.PubMed 

    Google Scholar 
    de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo, J, Bell, J eds. Climate Change, Ocean Acidification and Sponges. Springer, 2017. pp 373–410.Tanaka Y, Miyajima T, Wtanabe A, Nadaoka K, Yamamoto T, Ogawa H. Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs. 2011;30:533–41.
    Google Scholar 
    Lesser MP, Slattery M, Laverick JH, Macartney KJ, Bridge TC. Global community breaks at 61 m on mesophotic coral reefs. Global Ecol Biogeogr. 2019;28:1403–16.
    Google Scholar 
    Lønborg C, Álvarez-Salgado XA, Duggan S, Carreira C. Organic matter bioavailability in tropical coastal waters: The Great Barrier Reef. Limnol Oceanogr. 2018;63:1015–35.
    Google Scholar 
    Macartney KJ, Abraham AC, Slattery M, Lesser MP. Growth and feeding in the sponge Agelas tubulata from shallow to mesophotic depths on Grand Cayman Island. Ecosphere. 2021;12:e03764.
    Google Scholar 
    Ribes M, Coma R, Atkinson MJ, Kinzie RA. Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser. 2003;257:13–23.
    Google Scholar 
    Ribes M, Coma R, Atkinson MJ, Kinzie RA. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr. 2005;50:1480–9.CAS 

    Google Scholar 
    Maldonado M, Ribes M, van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:113–82.PubMed 

    Google Scholar 
    Seutin G, White BN, Boag PT. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool. 1991;69:82–90.CAS 

    Google Scholar 
    Abraham AC, Gochfeld DJ, Macartney K, Mellow A, Lesser MP, Slattery M. Biochemical variability in sponges across the Caribbean basin. Invertebr Biol. 2021;140:e12341.
    Google Scholar 
    Sunagawa S, Woodley CM, Medina M. Threatened corals provide underexplored microbial habitats. PLoS One. 2010;5:e9554.PubMed 
    PubMed Central 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
    Google Scholar 
    Simion P, Phillippe H, Baurain D, Jager M, Richter RJ, Di Franco A, et al. A Large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol. 2017;27:958–67.CAS 
    PubMed 

    Google Scholar 
    Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan. Released May, 2019.Pinheiro J, Bates D, DebRoy S, Sarkar D, EISPACK Authors, Heisterkamp S, et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-155. https://svn.r-project.org/R-packages/trunk/nlme/. Released Jan, 2022.Kindt R, Coe R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, ICRAF, 2005. https://www.worldagroforestry.org/publication/tree-diversity-analysis-manual-and-software-common-statistical-methods-ecological-and.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbrook A, Ramsdell J, Schuelke T, Normington L, Bergeron RD, Thomas WK, et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics. 2017;33:1473–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson MD, McCarthy DG, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 

    Google Scholar 
    Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blin K, Shaw S, Kautsar SA, Medema MH, Weber T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res. 2009;49:D639–43.
    Google Scholar 
    Conte-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, et al. Trophic strategy and bleaching resistance in reef-building corals. Sci Adv. 2020;6:eaaz5443.
    Google Scholar 
    Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses. Anim Ecol. 2011;80:595–602.
    Google Scholar 
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Comm. 2016;7:11870.CAS 

    Google Scholar 
    Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M. Stable symbionts across the HMA-LMA dichotomy: low seasonal and inter-annual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol. 2015;91:fiv115.PubMed 

    Google Scholar 
    Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu Y-C, McCormack GP. Predicting the HMA-LMA status in marine sponges by machine learning. Front Microbiol. 2017;8:752.PubMed 
    PubMed Central 

    Google Scholar 
    Campana S, Demey C, Busch K, Hentschel U, Muyzer G, de Goeij J. Marine sponges maintain stable bacterial communities between reef sites with different coral to algae cover ratios. FEMS Microbiol Ecol. 2021;97:fiab115.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeman CJ, Thacker RW. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr. 2011;56:1577–86.
    Google Scholar 
    Siegel A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, et al. Single-cell genomic reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J. 2011;5:61–70.
    Google Scholar 
    Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: genomic insights and high resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:e00150–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fan L, Reynolds D, Liu M, Thomas T. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci USA. 2012;109:1878–87.
    Google Scholar 
    Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B, Massana R, et al. Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol. 2012;14:1224–39.CAS 
    PubMed 

    Google Scholar 
    Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.CAS 
    PubMed 

    Google Scholar 
    Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.PubMed 
    PubMed Central 

    Google Scholar 
    Engel S, Pawlik JR. Allelopathic activities of sponge extracts. Mar Ecol Prog Ser. 2000;207:273–82.
    Google Scholar 
    Gochfeld DJ, Kamel HN, Olson JB, Thacker RW. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges. J Chem Ecol. 2012;38:451–62.CAS 
    PubMed 

    Google Scholar 
    van Duyl FC, Mueller B, Meesters EH. Spatio-temporal variation in stable isotopic signatures (δ13C and δ15N) of sponges on the Saba Bank. PeerJ. 2018;6:e5460.PubMed 
    PubMed Central 

    Google Scholar 
    Fiore CL, Baker DM, Lesser MP. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One. 2013;8:e72961.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hudspith M, de Goeij JM, Streekstra M, Kornder NA, Bougoure J, Guagliardo P, et al. Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge. ISME J. 2022; https://doi.org/10.1038/s41396-022-01254-3.Shih JL, Selph KE, Wall CB, Wallsgrove NJ, Lesser MP, Popp BN. Trophic ecology of the tropical Pacific sponge Mycale gradis inferred from amino acid compound-specific isotopic analyses. Microb Ecol. 2020;79:495–510.CAS 
    PubMed 

    Google Scholar 
    Macartney KJ, Slattery M, Lesser MP. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol Oceanogr. 2021;66:1113–24.CAS 

    Google Scholar 
    Southwell MW, Popp BN, Martens CS. Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem. 2008;108:96–108.CAS 

    Google Scholar 
    Lamb K, Swart PK. The carbon and nitrogen isotopic values of particulate organic material from the Florida Keys: a temporal and spatial study. Coral Reefs. 2008;27:351–62.
    Google Scholar 
    Ferrier-Pagès C, Leal MG. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol. 2019;9:723–40.PubMed 

    Google Scholar 
    McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.CAS 

    Google Scholar 
    Freeman CJ, Easson CG, Baker DM. Metabolic diversity and niche structure in sponges from the Miskito Cays, Honduras. PeerJ. 2014;2:e695.PubMed 
    PubMed Central 

    Google Scholar 
    Freeman CJ, Easson CG, Matterson KO, Thacker RW, Baker DM, Paul VJ. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 2020;14:1571–83.PubMed 
    PubMed Central 

    Google Scholar 
    Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M. Sponge heterotrophic capacity and bacterial community structure in high‐and low‐microbial abundance sponges. Mar Ecol. 2014;35:414–24.
    Google Scholar 
    Morganti TM, Ribes M, Yahel G, Coma R. Size is the major determinant of pumping rates in marine sponges. Front Physiol. 2019;10:1474.PubMed 
    PubMed Central 

    Google Scholar 
    Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien PA, Tan S, Yang C, Frade PR, Andreakis N, Smith HA, et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 2020;14:2211–22.PubMed 
    PubMed Central 

    Google Scholar 
    Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK. 2007;87:1683–92.CAS 

    Google Scholar 
    Palumbi SR. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science. 1984;225:1478–80.CAS 
    PubMed 

    Google Scholar 
    Slattery M, Gochfeld DJ, Diaz MC, Thacker RW, Lesser MP. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus. Coral Reefs. 2016;35:11–22.
    Google Scholar 
    Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co‐existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.CAS 

    Google Scholar 
    Maldonado M. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol. 2016;37:477–91.
    Google Scholar  More

  • in

    Acoustic and visual cetacean surveys reveal year-round spatial and temporal distributions for multiple species in northern British Columbia, Canada

    Williams, R. et al. Prioritizing global marine mammal habitats using density maps in place of range maps. Ecography 37, 212–220 (2014).
    Google Scholar 
    Tyack, P. L. & Clark, C. W. Communication and acoustic behavior of dolphins and whales in Hearing by whales and dolphins 156–224 (Springer, 2000).Davis, G. E. et al. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Change Biol. 26, 4812 (2020).ADS 

    Google Scholar 
    Lomac-MacNair, K. S. et al. Marine mammal visual and acoustic surveys near the Alaskan Colville River Delta. Polar Biol. 42, 441–448 (2018).
    Google Scholar 
    Keen, E., Hendricks, B., Wray, J., Alidina, H. & Picard, C. Integrating passive acoustic and visual surveys for marine mammals in coastal habitats in 176th Meeting of Acoustical Society of America. 1 edn.Gregr, E. J., Baumgartner, M. F., Laidre, K. L. & Palacios, D. M. Marine mammal habitat models come of age: The emergence of ecological and management relevance. Endang. Species Res. 22, 205–212 (2013).
    Google Scholar 
    Hastie, G. D., Wilson, B., Wilson, L., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: Hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).
    Google Scholar 
    Lambert, C., Mannocci, L., Lehodey, P. & Ridoux, V. Predicting cetacean habitats from their energetic needs and the distribution of their prey in two contrasted tropical regions. PLoS ONE 9, e105958 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huot, Y. et al. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?. Biogeosci. Discuss. 4, 707–745 (2007).ADS 

    Google Scholar 
    Etnoyer, P. et al. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico. Deep Sea Res. II 53, 340–358 (2006).ADS 

    Google Scholar 
    Shabangu, F. W. et al. Seasonal occurrence and diel calling behaviour of Antarctic blue whales and fin whales in relation to environmental conditions off the west coast of South Africa. J. Mar. Syst. 190, 25–39 (2019).
    Google Scholar 
    Haida Nation & Parks Canada Agency. Gwaii Haanas Gina ’Waadluxan Kilguhlga. Land-Sea-People Management Plan. 33 (© Council of the Haida Nation and Her Majesty the Queen in Right of Canada, represented by the Chief Executive Officer of Parks Canada, 2018).Ford, J. K. B. Marine Mammals of British Columbia. (Royal BC Museum, 2014).Allen, A. S., Yurk, H., Vagle, S., Pilkington, J. & Canessa, R. The underwater acoustic environment at SGaan Kinghlas-Bowie Seamount Marine Protected Area: Characterizing vessel traffic and associated noise using satellite AIS and acoustic datasets. Mar. Pollut. Bull. 128, 82–88 (2018).CAS 
    PubMed 

    Google Scholar 
    Ainslie, M. A. Principles of Sonar Performance Modeling. (Springer, 2010).Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).ADS 

    Google Scholar 
    Porter, M. B. & Bucker, H. P. Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am. 82, 1349–1359 (1987).ADS 

    Google Scholar 
    Mouy, X., MacGillivray, A. O., Vallarta, J. H., Martin, B. & Delarue, J. J.-Y. Ambient Noise and Killer Whale Monitoring near Port Metro Vancouver’s Proposed Terminal 2 Expansion Site: July–September 2012. (Technical report by JASCO Applied Sciences for Hemmera, 2012).Ford, J. et al. Distribution and relative abundance of cetaceans in western Canadian waters from ship surveys, 2002–2008. Can. Tech. Rep. Fish. Aquat. Sci. 2913, 51 (2010).
    Google Scholar 
    Wright, B. M., Nichol, L. M. & Doniol-Valcroze, T. Spatial density models of cetaceans in the Canadian Pacific estimated from 2018 ship-based surveys. DFO Can. Sci. Advis. Sec. Res. Doc. 2021, 49 (2021).
    Google Scholar 
    Devred, E., Hardy, M. & Hannah, C. Satellite observations of the Northeast Pacific Ocean. Can. Tech. Rep. Hydrogr. Ocean Sci. 335, 46 (2021).
    Google Scholar 
    Saha, K. et al. NOAA National centers for environmental information. Dataset https://doi.org/10.7289/v52j68xx (2018).Article 

    Google Scholar 
    NASA Goddard Space Flight Center, Ocean Ecology Laboratory & Ocean Biology Processing Group. (NASA OB.DAAC, Greenbelt, MD, USA. https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018. Accessed 3 Feb 2021.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.32. https://github.com/droglenc/FSA (2021).Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rekdahl, M. L. et al. Non-song social call bouts of migrating humpback whales. J. Acoust. Soc. Am. 137, 3042–3053 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oswald, J. N., Rankin, S. & Barlow, J. To whistle or not to whistle? Geographic variation in the whistling behavior of small odontocetes. Aquat. Mamm. 34, 288–302 (2008).
    Google Scholar 
    Rankin, S., Oswald, J., Barlow, J. P. & Lammers, M. Patterned burst-pulse vocalizations of the northern right whale dolphin, Lissodelphis borealis. J. Acoust. Soc. Am. 121, 1213–1218. https://doi.org/10.1121/1.2404919 (2007).Article 
    ADS 
    PubMed 

    Google Scholar 
    Arranz, P. et al. Discrimination of fast click-series produced by tagged Risso’s dolphins (Grampus griseus) for echolocation or communication. J. Exp. Biol. 219, 2898–2907. https://doi.org/10.1242/jeb.144295 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Halpin, L. R., Towers, J. R. & Ford, J. K. First record of common bottlenose dolphin (Tursiops truncatus) in Canadian Pacific waters. Mar. Biodivers. Rec. 11, 1–5 (2018).
    Google Scholar 
    Nikolich, K. & Towers, J. R. Vocalizations of common minke whales (Balaenoptera acutorostrata) in an eastern North Pacific feeding ground. Bioacoustics 29, 97–108 (2020).
    Google Scholar 
    Money, J. H. & Trites, A. W. A preliminary assessment of the status of marine mammal populations and associated research needs for the west coast of Canada. Report No. Final Report, 80 (Fisheries and Oceans Canada, 1998).Gregr, E. J. & Trites, A. W. Predictions of critical habitat for five whale species in the waters of coastal British Columbia. Can. J. Fish. Aquat. Sci. 58, 1265–1285 (2001).
    Google Scholar 
    Ou, H., Au, W. W. L., Van Parijs, S., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated Baleen whale downsweep calls with overlapping frequencies. J. Acoust. Soc. Am. 137, 3024–3032. https://doi.org/10.1121/1.4919304 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Mellinger, D. K., Stafford, K. M., Moore, S. E., Dziak, R. P. & Matsumoto, H. An overview of fixed passive acoustic observation methods for cetaceans. Oceanography 20, 36–45 (2007).
    Google Scholar 
    Stafford, K. M., Citta, J. J., Moore, S. E., Daher, M. A. & George, J. E. Environmental correlates of blue and fin whale call detections in the North Pacific Ocean from 1997 to 2002. Mar. Ecol. Prog. Ser. 395, 37–53 (2009).ADS 

    Google Scholar 
    Burnham, R., Duffus, D. & Mouy, X. The presence of large whale species in Clayoquot Sound and its offshore waters. Cont. Shelf Res. 177, 15–23 (2019).ADS 

    Google Scholar 
    Burtenshaw, J. C. et al. Acoustic and satellite remote sensing of blue whale seasonality and habitat in the Northeast Pacific. Deep Sea Res. II 51, 967–986 (2004).ADS 

    Google Scholar 
    Calambokidis, J., Barlow, J., Ford, J. K. B., Chandler, T. E. & Douglas, A. B. Insights into the population structure of blue whales in the Eastern North Pacific from recent sightings and photographic identification. Mar. Mamm. Sci. 25, 816–832 (2009).
    Google Scholar 
    Jackson, J. M., Thomson, R. E., Brown, L. N., Willis, P. G. & Borstad, G. A. Satellite chlorophyll off the British Columbia Coast, 1997–2010. J. Geophys. Res. Oceans 120, 4709–4728 (2015).ADS 

    Google Scholar 
    Evans, R., English, P. A., Anderson, S. C., Gauthier, S. & Robinson, C. L. Factors affecting the seasonal distribution and biomass of E. pacifica and T. spinifera along the Pacific coast of Canada: A spatiotemporal modelling approach. PLoS ONE 16, e0249818 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, S. E., Watkins, W. A., Daher, M. A., Davies, J. R. & Dahlheim, M. E. Blue whale habitat associations in the Northwest Pacific: Analysis of remotely-sensed data using a Geographic Information System. Oceanography 15, 1–10 (2002).
    Google Scholar 
    Lockyer, C. Review of Baleen Whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn Spec. Issue 6, 27–50 (1984).
    Google Scholar 
    Ohsumi, S. M. N. Growth of fin whale in the Northern Pacific Ocean. Sci. Rep. Whale Res. Inst. 13, 97–133 (1958).
    Google Scholar 
    Watkins, W. A. et al. Seasonality and distribution of whale calls in the North Pacific. Oceanography 13, 62–67 (2000).
    Google Scholar 
    Watkins, W. A., Tyack, P., Moore, K. E. & Bird, J. E. The 20-Hz signals of finback whales (Balaenoptera physalus). J. Acoust. Soc. Am. 82, 1901–1912 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stafford, K. M., Mellinger, D. K., Moore, S. E. & Fox, C. G. Seasonal variability and detection range modeling of baleen whale calls in the Gulf of Alaska, 1999–2002. J. Acoust. Soc. Am. 122, 3378–3390 (2007).ADS 
    PubMed 

    Google Scholar 
    Koot, B. Winter Behaviour and Population Structure of Fin Whales (Balaenoptera physalus) in British Columbia inferred from passive acoustic data (University of British Columbia, 2015).
    Google Scholar 
    Pilkington, J. F., Stredulinsky, E. H., Abernethy, R. M. & Ford, J. K. B. Patterns of Fin whale (Balaenoptera physalus) Seasonality and Relative Distribution in Canadian Pacific Waters Inferred from Passive Acoustic Monitoring. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Best, B. D., Fox, C. H., Williams, R., Halpin, P. H. & Paquet, P. C. Updated Marine Mammal Distribution and Abundance Estimates in British Columbia (Springer, 2015).
    Google Scholar 
    Clarke, C. & Jamieson, G. Identification of ecologically and biologically significant areas in the Pacific North Coast integrated management area: Phase II: Final report. Can. Tech. Rep. Fish. Aquat. Sci. 2678, 59 (2006).
    Google Scholar 
    Nichol, L. M. et al. Distribution, movements and habitat fidelity patterns of Fin Whales (Balaenoptera physalus) in Canadian Pacific Waters. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Nichol, L. M. & Ford, J. K. B. Information in Support of the Identification of Habitat of Special Importance to Fin Whales (Balaenoptera physalus) in Canadian Pacific Waters. DFO Can. Sci. Advis. Sec. Res. Doc. (2018).Mizroch, S. A., Rice, D. W., Zwiefelhofer, D., Waite, J. & Perryman, W. L. Distribution and movements of fin whales in the North Pacific Ocean. Mammal Rev. 39, 193–227 (2009).
    Google Scholar 
    Širović, A., Williams, L. N., Kerosky, S. M., Wiggins, S. M. & Hildebrand, J. A. Temporal separation of two fin whale call types across the eastern North Pacific. Mar. Biol. 160, 47–57 (2013).PubMed 

    Google Scholar 
    Flinn, R. D., Trites, A. W., Gregr, E. J. & Perry, R. I. Diets of fin, sei, and sperm whales in British Columbia: an analysis of commercial whaling records, 1963–1967. Mar. Mamm. Sci. 18, 663–679 (2002).
    Google Scholar 
    Barnes, R. S. K. & Hughes, R. N. An Introduction to Marine Ecology (Wiley, 1999).
    Google Scholar 
    Romagosa, M. et al. Food talks: 40-hz fin whale calls are associated with prey biomass. Proc. R. Soc. B 288, 20211156 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Gregr, E. J., Nichol, L., Ford, J. K., Ellis, G. & Trites, A. W. Migration and population structure of northeastern Pacific whales off coastal British Columbia: An analysis of commercial whaling records from 1908–1967. Mar. Mamm. Sci. 16, 699–727 (2000).
    Google Scholar 
    Williams, R. & Thomas, L. Distribution and abundance of marine mammals in the coastal waters of British Columbia, Canada. J. Cetac. Res. Manage. 9, 15 (2007).
    Google Scholar 
    Dalla Rosa, L., Ford, J. K. & Trites, A. W. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Contin. Shelf Res. 36, 89–104 (2012).ADS 

    Google Scholar 
    Winn, H. E. & Winn, L. K. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114. https://doi.org/10.1007/BF00395631 (1978).Article 

    Google Scholar 
    Baker, C. S. et al. Population characteristics and migration of summer and late-season humpback whales (Megaptera novaeangliae) in southeastern Alaska. Mar. Mamm. Sci. 1, 304–323 (1985).ADS 

    Google Scholar 
    McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).
    Google Scholar 
    Norris, T. F., McDonald, M. & Barlow, J. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration. J. Acoust. Soc. Am. 106, 506–514 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. Lond. B 271, 1051–1057 (2004).
    Google Scholar 
    Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).
    Google Scholar 
    Nichol, L. M., Abernethy, R., Flostrand, L., Lee, T. S. & Ford, J. K. B. Information relevant for the identification of critical habitats of north pacific humpback whales (Megaptera novaeangliae) in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. (2010).Williams, R., Erbe, C., Ashe, E. & Clark, C. W. Quiet (er) marine protected areas. Mar. Pollut. Bull. 100, 154–161 (2015).CAS 
    PubMed 

    Google Scholar 
    Gaston, A. J., Pilgrim, N. G. & Pattison, V. Humpback Whale (Megaptera novaeangliae) observations in Laskeek Bay, western Hecate Strait, in spring and early summer, 1990–2018. Can. Field Nat. 133, 263–269 (2019).
    Google Scholar 
    Robinson, C. L., Gower, J. F. & Borstad, G. Twenty years of satellite observations describing phytoplankton blooms in seas adjacent to Gwaii Haanas National Park Reserve, Canada. Can. J. Remote Sens. 30, 36–43 (2004).ADS 

    Google Scholar 
    Swartz, S. L., Taylor, B. L. & Rugh, D. J. Gray whale Eschrichtius robustus population and stock identity. Mamm. Rev. 36, 66–84 (2006).
    Google Scholar 
    Gaston, A. J. & Heise, K. Results of cetacean observations in Laskeek Bay, 1990–2003. Laskeek Bay Res. 55, 1–10 (2004).
    Google Scholar 
    Ford, J. K. et al. New insights into the northward migration route of gray whales between Vancouver Island, British Columbia, and southeastern Alaska. Mar. Mamm. Sci. 29, 325–337 (2013).
    Google Scholar 
    Burnham, R. E. & Duffus, D. A. The use of passive acoustic monitoring as a census tool of gray whale (Eschrichtius robustus) migration. Ocean Coast. Manag. 188, 105070 (2020).
    Google Scholar 
    Best, P. B. Social organization in sperm whales. In Physeter macrocephalus in Behavior of Marine Animals (eds Winn, H. E. & Olla, B. L.) 227–289 (Springer, 1979).
    Google Scholar 
    Jaquet, N. & Gendron, D. Distribution and relative abundance of sperm whales in relation to key environmental features, squid landings and the distribution of other cetacean species in the Gulf of California, Mexico. Mar. Biol. 141, 591–601 (2002).
    Google Scholar 
    Rice, D. W. Sperm whale Physeter macrocephalus Linnaeus, 1758. Handb. Mar. Mamm. 4, 177–233 (1989).
    Google Scholar 
    Whitehead, H. & Arnbom, T. Social organization of sperm whales off the Galapagos Islands, February–April 1985. Can. J. Zool. 65, 913–919 (1987).
    Google Scholar 
    Whitehead, H. Sperm whale: Physeter macrocephalus. In Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B. et al.) 919–925 (Academic Press, 2018).
    Google Scholar 
    Mizroch, S. A. & Rice, D. W. Ocean nomads: Distribution and movements of sperm whales in the North Pacific shown by whaling data and Discovery marks. Mar. Mamm. Sci. 29, E136–E165 (2013).
    Google Scholar 
    Diogou, N. et al. Sperm whale (Physeter macrocephalus) acoustic ecology at Ocean Station PAPA in the Gulf of Alaska-Part 2: Oceanographic drivers of interannual variability. Deep Sea Res. I 150, 103044 (2019).
    Google Scholar 
    Ford, J. K. & Ellis, G. M. You are what you eat: Foraging specializations and their influence on the social organization and behavior of killer whales. in Primates and Cetaceans 75–98 (Springer, 2014).Ford, J. K. B. et al. Habitats of special importance to resident killer whales (Orcinus orca) off the West Coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. (2017).Ford, J. K. B., Stredulinsky, E. H., Ellis, G. M., Durban, J. W. & Pilkington, J. F. Offshore Killer whales in Canadian pacific waters: Distribution, seasonality, foraging ecology, population status and potential for recovery. DFO Can. Sci. Advis. Sec. Res. Doc. (2014).Nichol, L. M. & Shackleton, D. M. Seasonal movements and foraging behaviour of northern resident killer whales (Orcinus orca) in relation to the inshore distribution of salmon (Oncorhynchus spp.) in British Columbia. Can. J. Zool. 74, 983–991 (1996).
    Google Scholar 
    Olesiuk, P. F., Ellis, G. M. & Ford, J. K. Life History and Population Dynamics of Northern Resident Killer Whales (Orcinus orca) in British Columbia (Canadian Science Advisory Secretariat Ottawa, 2005).
    Google Scholar 
    Newman, K. & Springer, A. Nocturnal activity by mammal-eating killer whales at a predation hot spot in the Bering Sea. Mar. Mamm. Sci. 24, 990 (2008).
    Google Scholar 
    Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).
    Google Scholar 
    Barrett-Lennard, L. G., Ford, J. K. B. & Heise, K. A. The mixed blessing of echolocation: Differences in sonar use by fish-eating and mammal-eating killer whales. Anim. Behav. 51, 553–565 (1996).
    Google Scholar 
    Deecke, V. B., Ford, J. K. B. & Slater, P. J. B. The vocal behaviour of mammal-eating killer whales: Communicating with costly calls. Anim. Behav. 69, 395–405 (2005).
    Google Scholar 
    Ford, J. K. B. Call traditions and vocal dialects of killer whales (Orcinus orca) in British Columbia Ph.D. thesis, University of British Columbia (1984).Baird, R. W. Status of killer whales, Orcinus orca, Canada. Can. Field. Nat. 115, 676–701 (2001).
    Google Scholar 
    Ford, J. K. B., Stredulinsky, E. H., Towers, J. R. & Ellis, G. M. Information in Support of the Identification of Critical Habitat for Transient Killer Whales (Orcinus orca) off the West Coast of Canada. DFO Can. Sci. Advis. Sec. Res. Doc. (2013).Tyack, P. L., Johnson, M., Soto, N. A., Sturlese, A. & Madsen, P. T. Extreme diving of beaked whales. J. Exp. Biol. 209, 4238–4253 (2006).PubMed 

    Google Scholar 
    Baumann-Pickering, S. et al. Species-specific beaked whale echolocation signals. J. Acoust. Soc. Am. 134, 2293–2301 (2013).ADS 
    PubMed 

    Google Scholar 
    Pike, G. C. Two records of Berardius bairdi from the coast of British Columbia. J. Mammal. 34, 98–104 (1953).
    Google Scholar 
    Pike, G. C. & MacAskie, I. Marine mammals of British Columbia. Fish. Res. Board Can. Bull. 171, 1–10 (1969).
    Google Scholar 
    Willis, P. M. & Baird, R. W. Sightings and strandings of beaked whales on the west coast of. Aquat. Mamm. 24, 21–25 (1998).
    Google Scholar 
    Jefferson, T. A. Phocoenoides dalli. Mamm. Spec. https://doi.org/10.2307/3504170 (1988).Article 

    Google Scholar 
    Boyd, C. et al. Estimation of population size and trends for highly mobile species with dynamic spatial distributions. Divers. Distrib. 24, 1–12 (2018).
    Google Scholar 
    Carretta, J. V., Taylor, B. L. & Chivers, S. J. Abundance and depth distribution of harbor porpoise (Phocoena phocoena) in northern California determined from a 1995 ship survey. Fish. Bull. 99, 29–29 (2001).
    Google Scholar 
    Willis, P. M. & Baird, R. W. Status of the dwarf sperm whale, Kogia simus, with special reference to Canada. Can. Field Nat. 112, 114–125 (1998).
    Google Scholar 
    Kyhn, L. A. et al. Clicking in a killer whale habitat: Narrow-band, high-frequency biosonar cliks of harbour porpoise (Phocoena phocoena) and Dall’s porpoise (Phocoenoides dalli). PLoS ONE 8, e63763 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madsen, P., Carder, D., Bedholm, K. & Ridgway, S. Porpoise clicks from a sperm whale nose—Convergent evolution of 130 kHz pulses in toothed whale sonars?. Bioacoustics 15, 195–206 (2005).
    Google Scholar 
    Merkens, K. et al. Clicks of dwarf sperm whales (Kogia sima). Mar. Mamm. Sci. 34, 963–978 (2018).
    Google Scholar 
    Griffiths, E. T. et al. Detection and classification of narrow-band high frequency echolocation clicks from drifting recorders. J. Acoust. Soc. Am. 147, 3511–3522 (2020).ADS 
    PubMed 

    Google Scholar 
    Baird, R. W. & Stacey, P. J. Status of Risso’s Dolphin, Grampus griseus, in Canada. Naturalist 5, 233142 (1991).
    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales. Behav. Ecol. Sociobiol. 53, 364–373 (2003).
    Google Scholar 
    Benoit-Bird, K. J., Würsig, B. & Mfadden, C. J. Dusky dolphin (Lagenorhynchus obscurus) foraging in two different habitats: active acoustic detection of dolphins and their prey. Mar. Mamm. Sci. 20, 215–231 (2004).
    Google Scholar 
    Soldevilla, M. S., Wiggins, S. M. & Hildebrand, J. A. Spatial and temporal patterns of Risso’s dolphin echolocation in the Southern California Bight. J. Acoust. Soc. Am. 127, 124–132 (2010).ADS 
    PubMed 

    Google Scholar 
    Soldevilla, M. S., Wiggins, S. M. & Hildebrand, J. A. Spatio-temporal comparison of Pacific white-sided dolphin echolocation click types. Aquat. Biol. 9, 49–62 (2010).
    Google Scholar 
    Taylor, F. The relationship of midwater trawl catches to sound scattering layers off the coast of northern British Columbia. J. Fish. Board Can. 25, 457–472 (1968).
    Google Scholar 
    Curtis, K. R., Howe, B. M. & Mercer, J. A. Low-frequency ambient sound in the North Pacific: Long time series observations. J. Acoust. Soc. Am. 106, 3189–3200 (1999).ADS 

    Google Scholar 
    Aroyan, J. L. et al. Acoustic models of sound production and propagation in Hearing by whales and dolphins 409–469 (Springer, 2000).
    Google Scholar 
    Cummings, W. C. & Thompson, P. O. Underwater sounds from the blue whale, Balaenoptera musculus. J. Acoust. Soc. Am. 50, 1193–1198 (1971).ADS 

    Google Scholar 
    McDonald, M. A., Calambokidis, J., Teranishi, A. M. & Hildebrand, J. A. The acoustic calls of blue whales off California with gender data. J. Acoust. Soc. Am. 109, 1728–1735 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weirathmueller, M. J., Wilcock, W. S. D. & Soule, D. C. Source levels of fin whale 20 Hz pulses measured in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 133, 741–749 (2013).ADS 
    PubMed 

    Google Scholar 
    Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ‘ggplot2’. R package version 1.2.14. https://mikkovihtakari.github.io/ggOceanMaps/ (2022). More

  • in

    The African Development Corridors Database: a new tool to assess the impacts of infrastructure investments

    The African Development Corridors database is publicly available. The visualisation of the database that can be explored interactively here: https://dcp-unep-wcmc.opendata.arcgis.com/. The data is deposited in the Dryad Digital Repository referenced as Thorn, J. P.R., Mwangi, B.; Juffe Bignoli, D., The African Development Corridors Database, Dryad, Dataset, https://doi.org/10.5061/dryad.9kd51c5hw (2022)43. The final data were compiled into an online Master database spreadsheet, using the project code data as the merging attribute of the spatial and tabular database (AfricanDevelopmentCorridorsDatabase2022.csv). The African Development Corridor Database is presented as a GeoPackage file (.gpkg) and ESRI file Geodatabase (.gdb) composed by line and point feature datasets with the 22 associated attributes for all mapped corridors, a table with corridors that could not be mapped (also with the attributes), and a table with all sources consulted for each project code.We created a data standard to ensure a systematic and standardised data collection (Supplementary Table 2). Each data record in the database represents a project within a development corridor. To group all projects within the same development corridor we used a unique identifier composed by three letters that identified the corridor plus a number unique for each project or record. For example, the Lamu port project in Kenya within the Lamu Port South Sudan Ethiopia Transport Corridor (LAPSSET) was represented as LAP000. In this corridor we identified 20 projects, from LAP0001 which is the Lamu Port to LAP0020 which is the Isiolo-Lokichar-Lodwar-Nadapal Highway in Kenya. In addition to the unique identifier for each project, the data standard includes data attributes that provide detailed information about each project. Table 1 describes the attributes included in the database. Supplementary Table 3 summarises the 79 corridors included in the database.Table 1 List of the attributes included in the African Development Corridors Database.Full size tableInfrastructure types and status of development corridors in AfricaThe data consists of a total of 79 corridors consisting of 184 projects (Fig. 2). Of the 12 infrastructure types, the most predominant form of infrastructure in Africa’s development corridors is roads (n = 64, 34.8%), followed by wet ports (n = 38, 20.7%), passenger and freight railways (n = 33, 17.9%), and airports (n = 14, 7.6%). Fewer resort cities, electricity transmission lines, dry ports, industrial parks, and water pipelines comprise development corridors (all ≤ n = 3, 1.6%) (Fig. 3). We acknowledge our study might not include many infrastructure developments that are components projects of larger programmes but are not yet labelled as corridors. A total of 107 (58.7%) projects are operational, 35 (19%) are in progress, 25 (13.6%) are planned, 25 (13.9%) are being upgraded, and 2(1%) are on hold.Fig. 2Map showing the distribution of all the development corridors included in the African Development Corridors Database and their infrastructure type.Full size imageFig. 3Subset of highest frequencies of key attributes captured in the database.Full size imageSpatial distributionThe linear distance of development corridors in Africa is 122,294 km – which approximates to three times the Earth’s circumference, with an average of 1703.84 ± 213.19 km (mean, SE), ranging from 4–11,141 km. In terms of number of projects per country, Kenya has the most projects (n = 34, 18.5%), followed by Tanzania (n = 18, 9.8%), South Africa and Democratic Republic of the Congo (n = 17, 9.2% ea.), Ethiopia (n = 15, 8.2%), Mozambique and Zambia (n = 14, 7.6%), Angola, Uganda, Guinea and Cameroon (n = 12, 6.5%), Namibia (n = 11, 6.0%), Republic of Congo (n = 10, 5.4%), Burundi and Chad (n = 9, 4.9%), Malawi, Senegal, and Zimbabwe (n = 8, 4.4%), and Burkina Faso and Ghana (n = 7, 3.8%). Due to differences in the frequency and quality that countries publish data on infrastructure and development corridor investments, coverage may be lower for some regions, or some periods (i.e., recent, or further in the past).Investments in development corridorsAdjusting for inflation, the total investment of development corridors that is captured in the database ranges between USD 547.29–658.62 billion. The average cost of a corridor ranges between USD 3.46 ± 1.92 billion and USD 4.17 ± 2.04 billion. This is a notable sum, considering the average GDP in sub-Saharan Africa is USD 1.48 billion44. The most expensive development corridor project is the first of the nine Trans African Highway projects at USD 78.20 billion (when adjusted for inflation) – comprising transcontinental roads across Africa. We were able to capture the budget (or at least a proportion of the budget) for 84.7% of all projects.Temporal evolution of growth of development corridorsInvestments started in the 1800s and have increased exponentially (Fig. 4). Over a fifty-year period, the greatest number of investments took place between 1950 and 2000. Spikes in investments occurred particularly around 1900, which was when there was a wave of new imperialism across the continent, followed in the 1960s when many countries across sub-Saharan Africa gained independence. The third spike in investment was in the last decade, particularly since 2013, when we have seen rapid growth in foreign direct investment in Africa under initiatives such as the Belt and Road Initiative. According to the Ernst and Young Africa Attractiveness Survey (2019)45, the largest foreign direct investment (in terms of capital) between 2014–2018 came from China (USD 72,235 million), France (USD 34,172 million), USA (USD 30,885 million), the United Arab Emirates (USD 25,278 million) and the United Kingdom (USD 17,768 million).Fig. 4(a) Temporal evolution of investment in development corridors in Africa. (b) Annual investments per annum in development corridors in Africa (USD maximum, before adjusting for inflation).Full size imageDonors that are funding development corridorsAcross Africa, regional development banks invested the most in development corridors (30.8%), with the African Development Bank funding the majority (24.3%) of all projects. Outside of Africa, the regional development banks that invested in the most projects are the Export-Import Bank of China (n = 13, 3.8%), the European Investment Bank (n = 10, 2.8%) and the Arab Bank for Economic Development in Africa (n = 4, 1.2% ea.). National governments funded about 29.8% of all projects. The Government of Kenya funded the most projects (n = 26; 7.5%), followed by the Governments of Tanzania (n = 7, 2.0%) and South Africa (n = 4, 1.2%). Multilateral banks funded 10.9% of projects – mostly from the World Bank (n = 33, 9.54%) and a few from the International Finance Corporation (n = 4, 1.6%). The international development community funded only 6.1% – of which the OPEC Fund for International Development funded four projects. Private companies continue to invest in a small percentage of development corridors (3.5%), but this is higher than national banks that invest in 3.2%. Regional Economic Community bodies have invested in 15 (4.8%) of all 184 projects. The average number of donors per corridor ranged from one to 12.Weighting of investments by donor typeIn terms capital funded per donor type, Regional Development Banks invested the most (totalling USD 30.72 billion), followed by national governments (USD 20.45 billion). The figure then drops substantially to international development agencies (USD6.17 billion) and multilateral banks (USD 3.76 billion). These results are limited by the fact that we were only able to capture the amount funded delineated by donor type for 22.58% (or USD 70.24 billion) of the minimum of all investments (USD 311.14 billion) before adjusting for inflation.Commodities transportedA total of 147 commodities were captured. The top twenty commodities traded were rice (n = 52, 28.7% of all projects), sugar (27.0%), fish and petroleum (24.3% ea.), passengers (21.6%), textiles (21.1%), maize (19.5%), coffee (18.9%), cement and timber (17.8% ea.) followed by cotton, crude petroleum, vehicle spare parts, beverages, copper, fruit, fertilisers, gold, pharmaceutical products, and tobacco.Beneficiaries and net supplier or receiverApproximately 213 different beneficiaries were identified – predominantly local communities (n = 134 of projects, 72.8%), followed by national and local governments (63.0%), traders (51.1%), agricultural farmers and livestock producers (27.7%), ports (27.2%), industries (25.5%), truck drivers (22.3%), tourists (17.4%), entrepreneurs (12.0%), and logistics companies (11.4%). Almost all (89.1%) of corridors are net receivers and suppliers of commodities, while only 13 (7.1%) are net suppliers and seven are net receivers (3.8%). More

  • in

    Essential oils of plants and their combinations as an alternative adulticides against Anopheles gambiae (Diptera: Culicidae) populations

    WHO. Global plan for insecticide management. (World Health Organisation, Geneva, Switzerland 130, 2012).WHO. Paludisme: situation mondiale. vol. 2507. World Health Organisation, Geneva, Switzerland, (2020).WHO. Procédures pour tester la résistance aux insecticides chez les moustiques vecteurs du paludisme Seconde édition. (World Health Organisation, Geneva, Switzerland, 2017).WHO. Guidelines for Malaria Vector Control. (World Health Organisation, Geneva, Switzerland, 2019).Churcher, T. S., Lissenden, N., Griffin, J. T., Worrall, E. & Ranson, H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. Elife 5, 16090 (2016).
    Google Scholar 
    Hemingway, J. et al. Averting a malaria disaster: Will insecticide resistance derail malaria control?. Lancet 387, 1785–1788 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Dabiré, K. R. et al. Trends in insecticide resistance in natural populations of malaria vectors in Burkina Faso, West Africa: 10 Years surveys K. INTECH 32, 479–502 (2012).
    Google Scholar 
    WHO. WHO Global Malaria Programme: Global Plan for insecticide resistance management. (World Health Organisation, Geneva, Switzerland, 2012).Toe, K. H. et al. Do bednets including piperonyl butoxide offer additional protection against populations of Anopheles gambiae s.l. that are highly resistant to pyrethroids? An experimental hut evaluation in Burkina Faso. Med. Vet. Entomol. 32, 407–416 (2018).CAS 
    PubMed 

    Google Scholar 
    Hien, A. S. et al. Evidence supporting deployment of next generation insecticide treated nets in Burkina Faso: Bioassays with either chlorfenapyr or piperonyl butoxide increase mortality of pyrethroid-resistant Anopheles gambiae. Malar. J. 20, 1–12 (2021).
    Google Scholar 
    Zoubiri, S. & Baaliouamer, A. Potentiality of plants as source of insecticide principles. J. Saudi Chem. Soc. 18, 925–938 (2014).
    Google Scholar 
    Tripathi, A. K., Upadhyay, S., Bhuiyan, M. & Bhattacharya, P. R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother. 1, 52–63 (2009).CAS 

    Google Scholar 
    Isman, M. B. Plant essential oils for pest and disease management. Crop Prot. 19, 603–608 (2000).ADS 
    CAS 

    Google Scholar 
    Mossa, A. T. H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 9, 354–378 (2016).CAS 

    Google Scholar 
    Lucia, A. et al. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 23, 299–303 (2007).CAS 
    PubMed 

    Google Scholar 
    Singh, R., Koul, O. & Rup, P. J. Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus (Lepidoptera: Pyralidae). Int. J. Tropical Insect Sci. 29, 93–101 (2009).CAS 

    Google Scholar 
    Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9, 1–13 (2019).ADS 

    Google Scholar 
    Mansour, S. A., Foda, M. S. & Aly, A. R. Mosquitocidal activity of two Bacillus bacterial endotoxins combined with plant oils and conventional insecticides. Ind. Crops Prod. 35, 44–52 (2012).CAS 

    Google Scholar 
    Yaméogo, F., Wendgida, D. W., Sombié, A., Sanon, A. & Badolo, A. Insecticidal activity of essential oils from six aromatic plants against Aedes aegypti, dengue vector from two localities of Ouagadougou Burkina Faso. Arthropod. Plant. Interact. 15, 627–634 (2021).
    Google Scholar 
    Wangrawa, D. W. et al. Essential oils and their binary combinations have synergistic and antagonistic insecticidal properties against Anopheles gambiae s l. (Diptera: Culicidae). Biocatal. Agric. Biotechnol. 42, 102347 (2022).CAS 

    Google Scholar 
    Drabo, S. F., Olivier, G., Bassolé, I. H. N., Nébié, R. C. & Laurence, M. Susceptibility of MED-Q1 and MED-Q3 biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) populations to essential and seed oils. J. Econ. Entomol. 110, 1031–1038 (2017).
    Google Scholar 
    N’Guessan, R., Corbel, V., Akogbéto, M. & Rowland, M. Treated nets and indoor residual reduced efficacy of insecticide-pyrethroid resistance area benin. Emerg. Infect. Dis. 13, 199–206 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    WHO. Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO tube tests. (World Health Organisation, Geneva, Switzerland 2022).Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).CAS 

    Google Scholar 
    Schelz, Z., Molnar, J. & Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77, 279–285 (2006).CAS 
    PubMed 

    Google Scholar 
    Bassolé, I. H. N. & Juliani, H. R. Essential oils in combination and their antimicrobial properties. Molecules 17, 3989–4006 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes Second edition. (World Health Organisation, Geneva, Switzerland 2016).Tchoumbougnang, F. et al. Activité larvicide sur Anopheles gambiae giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun. Biotechnol. Agron. Soc. Environ. 13, 77–84 (2009).CAS 

    Google Scholar 
    Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196 (2016).CAS 
    PubMed 

    Google Scholar 
    Wangrawa, D. et al. Insecticidal activity of local plants essential oils against laboratory and field strains of Anopheles gambiae s. L. (Diptera: Culicidae) from Burkina Faso. J. Econ. Entomol. 111, 2844–2853 (2018).CAS 
    PubMed 

    Google Scholar 
    Gbolade, A. A. & Lockwood, G. B. Toxicity of Ocimum sanctum L. essential oil to Aedes aegypti larvae and its chemical composition. J. Essent. Oil Bearing Plants 11, 148–153 (2008).CAS 

    Google Scholar 
    Vani, R. S., Cheng, S. F. & Chuah, C. H. Comparative study of volatile compounds from genus Ocimum. Am. J. Appl. Sci. 6, 523–528 (2009).CAS 

    Google Scholar 
    Bassolé, et al. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parasitologia 45, 23–26 (2003).
    Google Scholar 
    Peerzada, N. Chemical composition of the essential oil of Hyptis Suaveolens. Molecules 2, 165–168 (1997).CAS 

    Google Scholar 
    Ilboudo, Z. et al. Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 46, 124–128 (2010).CAS 

    Google Scholar 
    Zulfikar, A. & Sitepu, F. Y. The effect of lemongrass (Cymbopogon nardus) extract as insecticide against Aedes aegypti. Int. J. Mosq. Res. 6, 101–103 (2019).
    Google Scholar 
    Ojewumi, E. M., Oladipupo, A. A. & Ojewumi, O. E. Oil extract from local leaves an alternative to synthetic mosquito repellants. Pharmacophore 9, 1–6 (2018).
    Google Scholar 
    Gnankiné, O. & Bassolé, I. H. N. Essential oils as an alternative to pyrethroids resistance against Anopheles species complex giles (Diptera: Culicidae). Molecules 22, 1321 (2017).PubMed Central 

    Google Scholar 
    Bossou, A. D. et al. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasit. Vectors 6, 337 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Balboné, et al. Essential oils from five local plants: An alternative larvicide for Anopheles gambiae s. I. (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae) control in Western Burkina Faso. Front. Trop. Dis. 3, 853405 (2022).
    Google Scholar 
    Bekele, J. & Hassanali, A. Blend effects in the toxicity of the essential oil constituents of Ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post-harvest insect pests. Phytochemistry 57, 385–391 (2001).CAS 
    PubMed 

    Google Scholar 
    Pavela, R. Acute and synergistic effects of some monoterpenoid essential oil compounds on the house fly (Musca domestica). J. Essent. Oil Bearing Plants 11, 451–459 (2008).CAS 

    Google Scholar 
    Tanprasit, P. Biological control of dengue fever mosquitoes (Aedes aegypti Linn.) using leaf extracts of Chan (Hyptis suaveolens (L) poit.) and hedge flower Lantana camara Linn.). (2005).Park, H. M. et al. Larvicidal activity of myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J. Med. Entomol. 48, 405–410 (2011).CAS 
    PubMed 

    Google Scholar 
    Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 94, 223–253 (2004).CAS 
    PubMed 

    Google Scholar 
    Abbassy, M. A., Abdelgaleil, S. A. M. & Rabie, R. Y. A. Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol. Exp. Appl. 131, 225–232 (2009).CAS 

    Google Scholar 
    Chiasson, H., Bélanger, A., Bostanian, N., Vincent, C. & Poliquin, A. Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J. Econ. Entomol. 94, 167–171 (2001).CAS 
    PubMed 

    Google Scholar 
    Luz, T. R. S. A., deMesquita, L. S. S., Amaral, F. M. M. & Coutinho, D. F. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Trop. 212, 105705 (2020).CAS 
    PubMed 

    Google Scholar 
    Deletre, E., Mallent, M., Menut, C., Chandre, F. & Martin, T. Behavioral response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 plant extracts. J. Econ. Entomol. 108, 1890–1901 (2015).
    Google Scholar 
    Berenbaum, M. A. Y. & Neal, J. J. Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J. Chem. Ecol. 11, 1349–1358 (1985).CAS 
    PubMed 

    Google Scholar 
    Intirach, J. et al. Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera: Culicidae). Psyche (London) https://doi.org/10.1155/2012/591616 (2012).
    Google Scholar 
    Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 60, 247–258 (2014).CAS 

    Google Scholar 
    Muturi, E. J., Ramirez, J. L., Doll, K. M. & Bowman, M. J. Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae. J. Med. Entomol. 54, 1684–1691 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Immune-mediated competition benefits protective microbes over pathogens in a novel host species

    Alizon S, de Roode JC, Michalakis Y (2013) Multiple infections and the evolution of virulence. Ecol Lett 16(4):556–67PubMed 

    Google Scholar 
    Bian G, Zhou G, Lu P, Xi Z (2013) Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis 7(6):e2250PubMed 
    PubMed Central 

    Google Scholar 
    Bjørnstad ON, Harvill ET (2005) Evolution and emergence of Bordetella in humans. Trends Microbiol 13(8):355–9PubMed 

    Google Scholar 
    Bosch TC (2013) Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67:499–518CAS 
    PubMed 

    Google Scholar 
    Bull JJ, Turelli M (2013) Wolbachia versus dengue: Evolutionary forecasts. Evol Med Public Health 2013(1):197–207PubMed 
    PubMed Central 

    Google Scholar 
    Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5(9):1300–10CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen F, Krasity BC, Peyer SM, Koehler S, Ruby EG, Zhang X et al. (2017) Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8:e00040–17CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL (2017) Horizontal Transmission of Intracellular Insect Symbionts via Plants. Front Microbiol 8:2237PubMed 
    PubMed Central 

    Google Scholar 
    Chrostek E, Teixeira L (2015) Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 13(2):e1002065PubMed 
    PubMed Central 

    Google Scholar 
    Cisani G, Varaldo PE, Grazi G, Soro O (1982) High-level potentiation of lysostaphin anti-staphylococcal activity by lysozyme. Antimicrob Agents Chemother 21(4):531–5CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark LC, Hodgkin J (2014) Commensals, probiotics and pathogens in the Caenorhabditis elegans model. Cell Microbiol 16(1):27–38CAS 
    PubMed 

    Google Scholar 
    Coolon JD, Jones KL, Todd TC, Carr BC, Herman MA (2009) Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLOS Genet 5:e1000503PubMed 
    PubMed Central 

    Google Scholar 
    Dierking K, Yang W, Schulenburg H (2016) Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Philos Trans R Soc Lond B Biol Sci 371:1695
    Google Scholar 
    Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423PubMed 
    PubMed Central 

    Google Scholar 
    Drew GC, King KC (2022) More or less? The effect of symbiont density in protective mutualisms. Am Nat 199(4):443–54PubMed 

    Google Scholar 
    Ford SA, Kao D, Williams D, King KC (2016) Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat Commun 7:13430CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford SA, King KC (2016) Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control. PLoS Pathog 12(4):e1005465PubMed 
    PubMed Central 

    Google Scholar 
    Ford SA, King KC (2021) In Vivo Microbial Coevolution Favors Host Protection and Plastic Downregulation of Immunity. Mol Biol Evol 38(4):1330–1338CAS 
    PubMed 

    Google Scholar 
    Frank SA (1996) Models of parasite virulence. Q Rev Biol 71(1):37–78CAS 
    PubMed 

    Google Scholar 
    Félix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20(22):R965–9PubMed 

    Google Scholar 
    Garsin DA, Sifri CD, Mylonakis E, Qin X, Singh KV, Murray BE et al. (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98(19):10892–7CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerardo NM, Parker BJ (2014) Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Curr Opin Insect Sci 4:8–14PubMed 

    Google Scholar 
    Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7(6):741–51CAS 
    PubMed 

    Google Scholar 
    Habets MG, Rozen DE, Brockhurst MA (2012) Variation in Streptococcus pneumoniae susceptibility to human antimicrobial peptides may mediate intraspecific competition. Proc Biol Sci 279(1743):3803–11CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9(6):313–6CAS 
    PubMed 

    Google Scholar 
    Heikkilä MP, Saris PE (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 95(3):471–8PubMed 

    Google Scholar 
    Hoffmann AA, Ross PA, Rašić G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8(8):751–68PubMed 
    PubMed Central 

    Google Scholar 
    Hope IA (1999) C. elegans: a practical approach. Oxford University Press, Oxford
    Google Scholar 
    Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc Biol Sci 271(1538):509–15CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3(1):23–5CAS 
    PubMed 

    Google Scholar 
    Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28(2):315–27
    Google Scholar 
    King KC (2019) Quick guide: defensive symbionts. Curr Biol 29:R78–R80CAS 
    PubMed 

    Google Scholar 
    King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA et al. (2016) Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J 10(8):1915–24CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong C, Tan MW, Nathan S (2014) Orthosiphon stamineus protects Caenorhabditis elegans against Staphylococcus aureus infection through immunomodulation. Biol Open 3(7):644–55PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova E, Noé L, Touzet H (2012) SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 14(24):3211–17
    Google Scholar 
    Koziel J, Potempa J (2013) Protease-armed bacteria in the skin. Cell Tissue Res 351:325–37CAS 
    PubMed 

    Google Scholar 
    Lysenko ES, Ratner AJ, Nelson AL, Weiser JN (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1(1):e1PubMed 
    PubMed Central 

    Google Scholar 
    Magalhaes T, Bergren NA, Bennett SL, Borland EM, Hartman DA, Lymperopoulos K et al. (2019) Induction of RNA interference to block Zika virus replication and transmission in the mosquito Aedes aegypti. Insect Biochem Mol Biol 111:103169CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10:59PubMed 
    PubMed Central 

    Google Scholar 
    Marra A, Hanson MA, Kondo S, Erkosar B, Lemaitre B (2021) Drosophila Antimicrobial Peptides and Lysozymes Regulate Gut Microbiota Composition and Abundance. mBio 12(4):e0082421CAS 
    PubMed 

    Google Scholar 
    Martinez J, Cogni R, Cao C, Smith S, Illingworth CJ, Jiggins FM (2016) Addicted? Reduced host resistance in populations with defensive symbionts. Proc Biol Sci 283:1833
    Google Scholar 
    Martín-Platero AM, Valdivia E, Ruíz-Rodríguez M, Soler JJ, Martín-Vivaldi M, Maqueda M et al. (2006) Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl Environ Microbiol 72(6):4245–9PubMed 
    PubMed Central 

    Google Scholar 
    Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, Rush JS et al. (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2(3):e00065–11PubMed 
    PubMed Central 

    Google Scholar 
    Matthews AC, Mikonranta L, Raymond B (2019) Shifts along the parasite-mutualist continuum are opposed by fundamental trade-offs. Proc Biol Sci 286(1900):20190236CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    May G, Nelson P (2014) Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Funct Ecol 28(2):356–63
    Google Scholar 
    Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA et al. (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479PubMed 
    PubMed Central 

    Google Scholar 
    Mergaert P (2018) Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat prod Rep. 35(4):336–56CAS 
    PubMed 

    Google Scholar 
    Metcalf CJE, Koskella B (2019) Protective microbiomes can limit the evolution of host pathogen defense. Evol Lett 3:534–43PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz S, Huang H, Appel MD, Berg M, Shapira M (2013) Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect Immun 81(2):514–20CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7):1268–78PubMed 

    Google Scholar 
    O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I et al. (2018) Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res 2:36PubMed 

    Google Scholar 
    Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275(1632):293–9PubMed 

    Google Scholar 
    Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world ‘96 advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28(2):341–55
    Google Scholar 
    Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P et al. (2018) The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J 12(1):277–88CAS 
    PubMed 

    Google Scholar 
    Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol 26(5):242–8PubMed 

    Google Scholar 
    Pastar I, O’Neill K, Padula L, Head CR, Burgess JL, Chen V et al. (2020) Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Front Immunol 11:550946CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pees B, Kloock A, Nakad R, Barbosa C, Dierking K (2017) Enhanced behavioral immune defenses in a C. elegans C-type lectin-like domain gene mutant. Dev Comp Immunol 74:237–42CAS 
    PubMed 

    Google Scholar 
    Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105(38):14585–90CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen C, Dirksen P, Schulenburg H (2015) Why we need more ecology for genetic models such as C. elegans. Trends Genet 31(3):120–7CAS 
    PubMed 

    Google Scholar 
    Pimentel H, Bray NL, Puente S, Melsted P, Pachter L (2017) Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods 14(7):687–90CAS 
    PubMed 

    Google Scholar 
    Portal-Celhay C, Blaser MJ (2012) Competition and resilience between founder and introduced bacteria in the Caenorhabditis elegans gut. Infect Immun 80(3):1288–99CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF (2006) The role of immune-mediated apparent competition in genetically diverse malaria infections. Am Nat 168(1):41–53PubMed 

    Google Scholar 
    Rafaluk-Mohr C, Ashby B, Dahan DA, King KC (2018) Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol Lett 2(3):246–56PubMed 
    PubMed Central 

    Google Scholar 
    Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog 13(9):e1006512PubMed 
    PubMed Central 

    Google Scholar 
    Rancès E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8(2):e1002548PubMed 
    PubMed Central 

    Google Scholar 
    Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H et al. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol 15(3):e2001861PubMed 
    PubMed Central 

    Google Scholar 
    Rossouw W, Korsten L (2017) Cultivable microbiome of fresh white button mushrooms. Lett Appl Microbiol 64(2):164–70CAS 
    PubMed 

    Google Scholar 
    Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71(12):7987–94CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryu H, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW et al. (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–82CAS 
    PubMed 

    Google Scholar 
    Sellegounder D, Liu Y, Wibisono P, Chen CH, Leap D, Sun J (2019) Neuronal GPCR NPR-8 regulates C. elegans defense against pathogen infection. Sci Adv 5(11):eaaw4717CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71(4):2208–17CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh UB, Malviya D, Wasiullah, Singh S, Pradhan JK, Singh BP et al. (2016) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–12CAS 
    PubMed 

    Google Scholar 
    Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci 286(1895):20182448PubMed 
    PubMed Central 

    Google Scholar 
    Ulrich Y, Schmid-Hempel P (2012) Host modulation of parasite competition in multiple infections. Proc Biol Sci 279(1740):2982–9PubMed 
    PubMed Central 

    Google Scholar 
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al. (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(653):255–8CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varahan S, Iyer VS, Moore WT, Hancock LE (2013) Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J Bacteriol 195(14):3125–34CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visvikis O, Ihuegbu N, Labed SA, Luhachack LG, Alves AF, Wollenberg AC et al. (2014) Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40(6):896–909CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorburger C, Ganesanandamoorthy P, Kwiatkowski M (2013) Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol Evol 3(3):706–13PubMed 
    PubMed Central 

    Google Scholar 
    Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G et al. (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357(6358):1399–1402CAS 
    PubMed 

    Google Scholar 
    Wilke AB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8:342PubMed 
    PubMed Central 

    Google Scholar 
    Wong D, Bazopoulou D, Pujol N, Tavernarakis J, Ewbank J (2007) Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8:R194PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Addressing the dichotomy of fishing and climate in fishery management with the FishClim model

    DataSea Surface temperature (1850–2019)Sea Surface Temperature (SST, °C) from 1850 to 2019 originated from the COBE SST2 1° × 1° gridded dataset74, https://psl.noaa.gov/data/gridded/data.cobe2.html. SST data were interpolated on a 0.25° latitude × 0.25° longitude grid on a monthly scale from 1850 to 2019.BathymetryBathymetry (m) came from GEBCO Bathymetric Compilation Group 2019 (The GEBCO_2019 Grid—a continuous terrain model of the global oceans and land). Data are provided by the British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. doi:10/c33m. (https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e/). These data were interpolated on a 0.25° latitude × 0.25° longitude grid.Biological dataDaily mass concentration of chlorophyll-a in seawater (mg/m3) originated from the Glob Colour project (http://www.globcolour.info/). The product merges together all the daily data from satellites (MODIS, SeaWIFS, VIIRS) available from September 1997 to December 2019, on a 4 km resolution spatial grid. These data were interpolated on a daily scale on a 0.25° latitude × 0.25° longitude grid. These data were only used to map the average maximum standardised SSB (mdSSB) around the North Sea (Fig. 1a). When long-term changes in mdSSB were examined, we used modelled chlorophyll data (see section “Climate projections” below).Cod recrutment at age 1, Spawning Stock Biomass (SSB) and fishing effort F for 1963–2019 originated from ICES35.We used a plankton index of larval cod survival, which was an update of the index proposed by Beaugrand and colleagues33. Based on data from the Continuous Plankton Recorder (CPR)75, the index is based on the simultaneous consideration of six key biological parameters important for the diet and growth of cod larvae and juveniles in the North Sea:76,77 (i) Total calanoid copepod biomass as a quantitative indicator of food for larval cod, (ii) mean size of calanoid copepods as a qualitative indicator of food, (iii-iv) the abundance of the two dominant congeneric species Calanus finmarchicus and C. helgolandicus, (v) the genus Pseudocalanus and (vi) the taxonomic group euphausiids. A standardised Principal Component Analysis (PCA) is performed on the six plankton indicators for each month from March to September for the period 1958–2017 (table 60 years × 7 months-6 indicators). The plankton index is simply the first principal component of the PCA33.Climate projectionsClimate projections for SST and mass concentration of chlorophyll in seawater (kg m−3) originated from the Coupled Model Intercomparison Project Phase 6 (CMIP6)5 and were provided by the Earth System Grid Federation (ESGF). We used the projections known as Shared Socioeconomic Pathways (SSP) 245 and 585 corresponding respectively to a medium and a high radiative forcing by 2100 (2.5 W m−2 and 8.5 W m−2)78. The daily simulations of four different models (i.e. CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, and UKESM1-0-LL) covering the time period 1850–2014 (historical simulation) and 2015–2100 (future projections for the two SSPs scenarios) were used. All the data were interpolated on a 0.25° by 0.25° regular grid. Key references (i.e. DOI and dataset version) are provided in Supplementary Text 1. Long-term changes in modelled SSB were based on these data (including modelled daily chlorophyll data).The FishClim modelLet Kt be the maximum standardised Spawning Stock Biomass (mdSSB hereafter) that can be reached by a fish stock at time t for a given environmental regime φt. Xt+1, standardised SSB (dSSB hereafter) at time t+1 was calculated from dSSB at time t as follows:$${X}_{t+1}={X}_{t}+r{X}_{t}left(1-frac{{X}_{t}}{{K}_{t}}right)-alpha {X}_{t}$$
    (1)
    α is the fishing intensity that varies between 0 (i.e. no fishing) and 1 (i.e. 100% of SSB fished in a year). It is important to note that α (see Eq. (10)) should not be mistaken with ICES fishing effort F79 (calculated from SSB). The second term of Eq. (1) is the intrinsic growth rate of the fish stock that is a function of both Kt and the population growth rate r (r was fixed to 0.5 in most analyses, but see Fig. 3d however where r varied from 0.25 to 0.75). The population growth rate r is highly influenced by the life history traits of a species80 but also by environmental variability54,55,81. Here, the population growth rate was assumed to be constant in space and time and the influence of environmental variability occurred exclusively through its effects on Kt. We made this choice to not multiply the sources of complexity and errors (i.e. population growth rate is very difficult to assess and varies with age80). The third term reflects the part of dSSB that is lost by fishing. Note that natural mortality is not explicitly integrated in Eq. (1) because this process is difficult to assess with confidence at the scale of our study. Here, we assumed that the second term of Eq. (1) implicitly considered this process; when K increases, it is likely that natural mortality diminishes, especially at age 134. We tested this assumption below. Most of the time when fishing occurs, Xt {y}_{{{{rm{opt}}}}}$$
    (3)
    Here yopt= 5.4 °C and t1 and t2 were fixed to 5.7 °C and 4 °C, respectively, so that the thermal niche was close to that assessed by Beaugrand and colleagues31 (Supplementary Fig. 2). This Supplementary Figure compares the thermal response curve we chose in the present study with the data analysed in Beaugrand and colleagues31. The figure shows that the response curve (red curve) is close to the histogram showing the number of geographical cells with a cod occurrence as a function of temperature varying between −2 °C (frozen seawater) and 20 °C.Because t1  > t2, the niche was slightly negative asymmetrical (Supplementary Fig. 1). U1(y) was the first component of mdSSB along the thermal gradient y. c was the maximum value of mdSSB; c was fixed to 1 so that mdSSB varied between 0 and 184,85. y was the value of SST. Slight variations in the different parameters of the niche did not alter either the spatial patterns in the distribution of mdSSB nor the correlations with recruitment.To model the bathymetric niche of cod, we used a trapezoidal function. Changes in mdSSB, U2, along bathymetry, were assessed using four points (θ1, θ2, θ3, θ4):$$begin{array}{cc}{{U}}_2({{z}})=0 & {{{{{{{rm{When}}}}}}; z}}le {{{{rm{theta }}}}}_{1}end{array}$$
    (4)
    $$begin{array}{cc}{{U}}_2({{z}})=frac{z-{theta }_{1}}{{theta }_{2}-{theta }_{1}}c & {{{{{rm{When}}}}}},{{{{rm{theta }}}}}_{1} < {{z}}le {{{{rm{theta }}}}}_{2}end{array}$$ (5) $$begin{array}{cc}{{U}}_2({{z}})={{c}} & {{{rm{When}}}},{{{{rm{theta }}}}}_{2} < {{z}} < {{{{rm{theta }}}}}_{3}end{array}$$ (6) $${{U}}_2begin{array}{cc}(z)=frac{{theta }_{4}-z}{{theta }_{4}-{theta }_{3}}c & {{{rm{When}}}},{{{{rm{theta }}}}}_{3}le {{z}} < {{{{rm{theta }}}}}_{4}end{array}$$ (7) $$begin{array}{cc}{{{rm{U}}}}_2({{z}})=0 & {{{rm{When}}}}; {{{rm{z}}}}ge {{{theta }}}_{4}end{array}$$ (8) With θ2 ≥ θ1, θ3 ≥ θ2 and θ4≥ θ3 and y the bathymetry; θ1 = 0, θ2 = 10−4, θ3 = 200 and θ4 = 600 m (Supplementary Fig. 1). These parameters were retrieved from the litterature86,87. Here also c, the maximum abundance reached by the target species was fixed to 1 and U2 varied between 0 and 1. Trapezoidal niches have been used frequently to model the spatial distribution of fish and marine mammals88,89.The trophic niche was modelled by a rectangular function on a daily basis. To the best of our knowledge, no information on the trophic niche is available. We modelled the trophic niche by fixing U3 to 1 when chlorophyll-a concentration was higher than 0.05 mg m−3 during a minimum period of 15 days and 0 otherwise (Supplementary Fig. 1). This minimum of chlorophyll was implemented as a proxy for suitable food, which has been shown to be important in the North Atlantic for cod recruitment and distribution6,33.There exists two ways to combine the different ecological dimensions of a niche: (i) use an additive or (ii) a multiplicative model82,90. We used a multiplicative model because when one dimension is associated to a nil abundance, the resulting abundance combining all dimensions is also nil in contrast to an additive model; therefore only one unsuitable environmental value may explain a nil abundance. All dimensions were associated to abundance values that varied between 0 and 190.Therefore, maximum dSSB, K, for a given environmental regime E was given by multiplying the three niches (thermal, bathymetric and trophic):$$K=mathop{prod }limits_{i=1}^{p}{U}_{i}$$ (9) where p = 3, the three dimensions of the niche.AnalysesMapping of maximum standardised SSBmdSSB is close to the “dynamic B0” approach; B0 is the SSB in the absence of fishing (generally expressed in tonnes)51 whereas mdSSB is the SSB in the absence of fishing standardised between 0 and 1 and assessed from the knowledge of the niche of the species. We first assessed mdSSB in the North-east Atlantic (around UK) at a spatial resolution of 0.25° latitude × 0.25° longitude on a daily basis from 1850 to 2019. For this analysis, FishClim was run on monthly COBE SST (1850–2019), mean bathymetry and a climatology of daily mass concentration of chlorophyll-a in seawater from the Glob Colour project (see Data section). We then calculated an annual average based on the main seasonal productive period around UK, i.e. from March to October90. Finally, we averaged all years to examine spatial patterns in mean mdSSB (Fig. 1a).Temporal changes in maximum standardised SSBWe assessed average long-term changes in mdSSB in the North Sea (51°N–62°N and 3°W–9.5°E); the annual average was calculated from March to October because this is a period of high production90 . We compared long-term changes in mdSSB with cod recruitment at age 1, a plankton index of larval cod survival based on the period March to October33, and ICES-based SSB35 for 1963-2019 (Fig. 1b–d).Correlation analyses with modelled maximum standardised SSBPearson correlations between long-term changes in mdSSB (average for the North Sea, 51°N–62°N and 3°W–9.5°E) and cod recruitment at age 1 in decimal logarithm35, a plankton index of larval cod survival in the North Sea33, and observed ICES SSB in decimal logarithm35 for the period 1963–2019 were calculated (Fig. 1b–d). The same analysis was performed between assessed fishing intensity α from our FishClim model and fishing effort F35 in the North Sea (Fig. 1e). The probability of significance of the coefficients of correlation was adjusted to correct for temporal autocorrelation91.Assessment of fishing intensity from ICES spawning stock biomassUsing North Sea ICES SSB, we applied Eq. (1) to assess fishing intensity α:$$alpha =1+rleft(1-frac{{X}_{t}}{{K}_{t}}right)-frac{{X}_{t+1}}{{X}_{t}}$$ (10) With Xt+1 and Xt the ICES dSSB (in decimal logarithm). Standardisation of ICES SSB, necessary for this analysis, was complicated because many different kinds of standardisation were achievable so long as X remained strictly above 0 (i.e. full cod extirpation, not observed so far35) and strictly below min(K) (i.e. all black curves always below all points of the blue curve were possible, Supplementary Fig. 3). Indeed, ICES SSB includes exploitation and environmental fluctuations whereas K (i.e. mdSSB) integrates only environmental forcing; the difference is mainly caused by the negative influence of fishing. We chose the black curve (ICES SSB) that maximised the correlation between α (fishing intensity in the FishClim model) and F (ICES fishing effort)35.Reconstruction of long-term changes in ICES spawning stock biomassThe estimation of α allowed us to reconstruct long-term changes in cod (ICES) dSSB and to examine the respective influence of fishing and CIEC by means of Eq. (1) (“Methods”) using four hypothetical scenarios (Fig. 1f). First, we fixed fishing intensity and considered exclusively environmental variations through its influence on dSSB. (i–ii) We assessed long-term changes in dSSB from long-term variation in observed mdSSB (called Kt in Eq. (1)) with a constant level of exploitation fixed to (i) minimum (upper blue curve, i.e. the lowest fishing intensity observed in 1963–2019) or (ii) maximum (lower blue curve, i.e. the highest fishing intensity observed in 1963–2019).Second, we fixed the environmental influence on dSSB and considered variations in fishing intensity. We estimated long-term changes in dSSB from long-term variation in estimated α with a constant mdSSB fixed to (iii) minimum (lower red curve, i.e. the lowest mdSSB observed in 1963–2019) or (iv) maximum (upper red curve, i.e. the highest mdSSB observed in 1963–2019). It was possible to compare long-term changes in reconstructed (ICES) dSSB (thick black curve in Fig. 1f) with these four hypothetical scenarios (Fig. 1f); note that these comparisons were not affected by the choice we made earlier on the standardisation of (ICES) SSB.Quantification of the respective influence of fishing and climate/environment on spawning stock biomassUsing the previous curves, we examined the respective influence of fishing and CIEC on reconstructed (ICES) dSSB (Fig. 2). First, the influence of fishing was investigated by estimating the residuals between reconstructed (ICES) dSSB based on long-term changes in mdSSB (i.e. Kt in Eq. (1)) and α (thick black curves in Fig. 1f) and modelled dSSB based on fluctuating fishing intensity α and invariant K (average of the two red curves in Fig. 1f). This calculation led to the red curve in Fig. 2b. Next, we performed the opposite procedure to examine the influence of CIEC on dSSB (i.e. invariant fishing intensity α based on the two blue curves in Fig. 1f). This calculation led to the blue curve in Fig. 2b.A cluster analysis, based on a matrix years × three time series with (i) long-term changes in reconstructed standardised (ICES) SSBs, (ii) fishing and (iii) CIEC, was performed to identify key periods (vertical dashed lines in Fig. 2). We standardised each variable between 0 and 1 and used an Euclidean distance to assess the year (1963–2019) × year (1963–2019) square matrix so that each variable contributed equally to each association coefficient. We used an agglomerative hierarchical clustering technique using average linkage, which was a good compromise between the two extreme single and complete clustering techniques92. In this paper, we were only interested in the timing between the different time periods (i.e. the groups of years) revealed by the cluster analysis (Fig. 2).We also calculated an index of fishing influence (ε, expressed in percentage) by means of two indicators γ and δ, which were slightly different to the ones we used above. The first one, γ, was modelled dSSB with fluctuating fishing intensity and a constant mdSSB based on the best suitable environment observed during 1963–2019 (only the upper red curve in Fig. 1f; fishing influence). The second one, δ, was modelled dSSB based on fluctuating environment and fishing intensity (black curve in Fig. 1f) on modelled dSSB based on a fluctuating environment but a constant fishing intensity fixed to the lowest value of the time series (only the upper blue curve in Fig. 1f; environmental influence). The index of fishing influence (ε, expressed in percentage) was calculated as follows:$$varepsilon =frac{100gamma }{gamma +delta }$$ (11) For each period of 1963–2019 identified by the cluster analysis, we quantified the influence of fishing (and therefore the environment) using a Jackknife procedure93,94. The resampling procedure recalculated ε by removing each time 1 year of the time period, which allowed us to provide a range of values (i.e. minimum and maximum) in addition to the average value (bar{varepsilon }) calculated for each interval, including the whole period (Fig. 2c).Long-term changes in modelled spawning stock biomass (1850–2019, 2020–2100 and 2020-2300)We modelled mdSSB (Kt in Eq. (1)) using outputs from four Earth System models (ESMs) based on two scenarios of SST/Chlorophyll changes (i.e. SSP245 and SSP585) for the period 1850–2100 (and for one scenario and one ESM until 2300; Fig. 3).For the period 1850–2019, we used daily SST/Chlorophyll changes from the four ESMs to estimate potential changes in mdSSB (thin dashed black curves in Fig. 3a). An average of mdSSB was also calculated (thick green curve in Fig. 3a).For the period 2020–2100, we showed all potential changes in mdSSB based on the four ESMs and both scenarios SSP245 (thin dashed blue curves in Fig. 3a) and SSP585 (thin dashed red curves). An average of mdSSB was also calculated for scenarios SSP245 (thick continuous blue curve) and SSP585 (thick continuous red curve). In addition, we assessed dSSB based on a constant standardised catch fixed to the average of 2008–2019, the last period identified by the cluster analysis (G5, i.e. (alpha X) = 0.03 in Eq. (1)), and the average values of all ESMs for SSP245 (thick dashed blue curve in Fig. 3a) and SSP585 (thick dashed red curve). This analysis was performed to show how a constant catch might alter long-term changes in mdSSB. When Xt (Eq. (1)) reached 0.1, the stock was considered as fully extirpated.Understanding how fishing and climate/environment interact now and in the futureWe modelled dSSB as a function of fishing intensity α and CIEC to show how fishing and the environment interact (Fig. 3b, c). We calculated dSSB for fishing intensity between α = 0 and α = 0.5 every step Ɵ = 0.001 and for mdSSB between K = 0 and K = 1 every step Ɵ = 0.001 to represent values of dSSB as a function of fishing and CIEC. We then superimposed reconstructed ICES dSSB (1963–2019) on the diagram for three periods: 1963–1985 (high SSB), 1986–1999 (pronounced reduction in SSB), and 2000–2019 (low SSB). Maximum standardised SSB for 2020–2100 (or 2300 exclusively for Scenario SSP 585 of IPSL ESM) assessed from four ESMs and scenarios SSP245 and SSP585 were also superimposed. Fishing intensity is unpredictable for 2020–2100 and so we arbitrarily fixed it constant between 0.08 and 0.17 in increments of 0.1 for display purposes, starting by ESMs based on scenario SSP 245 followed by scenario SSP 585 (Fig. 3b). When Xt (Eq. (1)) reached 0.1, the stock was considered as fully extirpated.We calculated an index of sensitivity of dSSB as a function of fishing intensity and CIEC. To do so, we first calculated sensitivity of dSSB to fishing intensity α. Index ζi was calculated at point i from dSSB X and fishing intensity α at i−1 and i+1 (see also Eq. (1)):$$begin{array}{cc}{zeta }_{i}=frac{left|{X}_{i+1}-{X}_{i-1}right|}{left|{alpha }_{i+1}-{alpha }_{i-1}right|} & {{{rm{with}}}},{{{rm{min }}}}(alpha )+{{uptheta }}le ile {{{rm{max }}}}(alpha )-{{uptheta }}end{array}$$ (12) With min(α) = 0, max(α) = 0.5 and Ɵ = 0.001.Similarly, we calculated sensitivity of dSSB to K. Index ηj was calculated at point j from dSSB X and mdSSB K at j−1 and j+1 (see also Eq. (1)):$$begin{array}{cc}{eta }_{j}=frac{left|{X}_{j+1}-{X}_{j-1}right|}{left|{K}_{j+1}-{K}_{j-1}right|} & {{{rm{with}}}},{{{rm{min }}}}left(Kright)+{{{rm{theta }}}}le {{j}}le {{{rm{max }}}}({{{rm{K}}}})-{{uptheta }}end{array}$$ (13) With min(K) = 0, max(K) = 1 and Ɵ = 0.001.Then, we summed the two indices to assess the joint sensitivity of dSSB to fishing intensity Z and mdSSB H:$${{{{bf{I}}}}}_{{{i}},{{j}}}={{{bf{Z}}}}({{{{rm{zeta }}}}}_{{{i}}})+{{{bf{H}}}}({eta }_{{{j}}})$$ (14) Matrix I was subsequently standardised between 0 and 1:$${{{{boldsymbol{I}}}}}^{{{{boldsymbol{* }}}}}=frac{{{{boldsymbol{I}}}}-min ({{{boldsymbol{I}}}})}{max left({{{boldsymbol{I}}}}right)-min ({{{boldsymbol{I}}}})}$$ (15) With I* the matrix of sensitivity of dSSB to fishing intensity and mdSSB standardised between 0 and 1 (Fig. 3c).Number of years needed for recovery after stock collapseWe investigated how the number of years needed for a stock to recover after stock collapse (i.e. dSSB=0.05 in Eq. (1); i.e. 10% of mdSSB) varied as a function of mdSSB (between 0 and 1 by increment of 0.001); this was only influenced by the environmental regime φt and population growth rate r. For this analysis, we fixed a target dSSB of 0.4 (vertical dashed green vertical line in Fig. 3d) and three different values of r: 0.25, 0.5 and 0.75. We simulated a hypothetical moratorium with a fishing intensity α = 0 in Eq. (1).Here, stock collapse was defined as dSSB ≤ 0.1 × mdSSB, i.e. when the dSSB reached less than 10% of the unfished biomass mdSSB. This threshold corresponds to values usually defined in the literature; e.g. Pinsky and colleagues95 defined a collapse when landings are below 10% the average of the five highest landings recorded for more than 2 years, Worm and colleagues69 defined stock collapse when the biomass becomes lower than 10% of the unfished biomass, Andersen96 when it is lower than 20% and Thorpe and De Oliveira67 when it is lower than 10–20%.Potential consequences of fisheries management and climate-induced environmental changesWe examined how fishing and CIEC may affect cod stocks and their exploitation around UK with a focus in the North Sea (Figs. 4, 5). For these analyses, we averaged long-term changes in modelled dSSB corresponding to each scenario (all thin dashed blue and thin red curves in Fig. 3a for SSP245 and 585, respectively). In these analyses, the stock was considered fully extirpated when Xt (Eq. (1)) reached 0.1.Year of cod extirpation for 2020–2100 We estimated year of cod extirpation from 2020 to 2100 in each geographical cell based on (i) a constant fishing intensity (α = 0.04) in time and space, and (ii) an adjusted fishing intensity using the concept of Mean Sustainable Yield (MSY). The choice of α = 0.04 did not alter our conclusions; a lower or a higher value delayed or speed cod extirpation in a predictable way, respectively. In fisheries, MSY is defined as the maximum catch (abundance or biomass) that can be removed from a population over an indefinite period with dX/dt = 0, with X for dSSB and t for time. Despite some criticisms about MSY66, the concept remains a key paradigm in fisheries management35,63. We used this concept to show that controlling fishing intensity delayed cod extirpation. From Eq. (1), we calculated fishing intensity, called αMSYt, so that X remained above XMSYt at all time t:$${alpha }_{{{{{rm{MSY}}}}t}}=rleft(1-frac{{X}_{{{{{rm{MSY}}}}t}}}{{K}_{t}}right)$$ (16) In this analysis, we fixed XMSY t = Kt/2. We assessed ({alpha }_{{{{{rm{MSY}}}}t}}) from Eq. (16) and then estimated dSSB from ({alpha }_{{{{{rm{MSY}}}}t}}) and Kt (based on averaged SSP245 and SSP585) by means of Eq. (1). Although results were displayed at the scale of the north-east Atlantic (around UK), we calculated the difference in year of cod extirpation between scenarios of warming (SSP245 and SSP585) and between scenarios of cod management (constant versus adjusted—MSY— fishing intensity). Differences were presented by means of histograms (Fig. 4). From each histogram, we calculated the median of the differences in year of cod extirpation E97. Pooled standardised catch by 2100 (2020–2100) In term of fishing exploitation, we assessed pooled standardised catch (i.e. pooled dSSB) in 2100 (2020–2100), again for two scenarios of CIEC (SSP245 and 585) and two scenarios of cod management (constant versus adjusted—MSY—fishing intensity; Fig. 5). We then calculated the percentage of reduction in pooled standardised catch caused by fishing or the intensity of warming. Finally, we assessed the median of the percentage of reduction in pooled standardised catch for the North Sea area (51°N–62°N and 3°W–9.5°E). The goal of this analysis was to demonstrate that controlling fishing intensity optimises cod exploitation. Statistics and reproducibilityAll statistical analyses can be reproduced from the equations provided in the text, the cited references or the data available in Supplementary Data.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More