More stories

  • in

    The emergence and development of behavioral individuality in clonal fish

    All animal care and experimental protocols complied with local and federal laws and guidelines and were approved by the appropriate governing body in Berlin, Germany, the Landesamt fur Gesundheit und Soziales (LaGeSo G-0224/20).Experimental breeding and designThe all-female Amazon molly (Poecilia formosa) is a naturally clonal, live-bearing fish species that gives birth to broods of genetically identical offspring. Like all unisexual vertebrates, Amazon mollies are the result of inter-specific hybridization44,45. As such, this ‘frozen hybrid’ has a heterozygous genome from its ancestral P. mexicana mother and P. latipinna father alleviating concerns about reduced genetic variation and the resulting inbreeding depression often associated with artificially selected isogenic animals. Additionally, despite their clonal nature, the Amazon’s genome shows no evidence of increased mutation accumulation, genomic decay or transposable element activity suggesting the genomes of these animals are evolving in similar ways as sexual species46. They reproduce through gynogenesis where the meiotic process is disrupted so that the eggs contain a full maternal genome. The egg must be fused with a sperm from one of their ancestral species to stimulate embryogenesis, but this paternal DNA is not incorporated into the egg. This provides the opportunity to control when reproduction occurs by controlling the females’ access to male sperm donors.We placed adult females, as potential mothers of experimental fish, in individual (5-gallon) breeding tanks with two Atlantic molly (P. mexicana) males for one week to act as sperm donors. Amazon mollies give birth to broods of generally ~8-30 individuals. A brood is born at once (i.e. all individuals are born within minutes of each other) and birth generally happens early in the day close to dawn. These parental fish were lab-bred and themselves sisters, so of the same age and lineage, and were kept at similar social densities and under standardized environmental conditions throughout their lives to further minimize potential variation in maternal experience. Each breeding tank contained an artificial plant as refuge and was checked frequently each day for the presence of offspring, especially during the morning hours when births are most likely. Newborn mollies were always found in the morning and then singly netted by trained animal caretakers, into individual experimental tanks where their behavior was automatically recorded for the next 70 days (see below). Moving the fish from the maternal tank to the experimental tanks was done in a standardized manner (i.e. individual fish were netted and placed into small dishes of water and then placed in the tracking tanks to limit exposure to the air) by the same caretakers to minimize variation in experience among individual fish. Altogether, eight mothers provided offspring that completed the entire 10-week experiment (Supplementary Table 1).Experimental tanks (27 x 27 cm), made of white Perspex, consisted of four equally sized compartments, and were evenly lit from below using 6500K-LEDs. Environmental conditions were highly standardized across tanks: all tanks were on the same 11:13 (L:D) light schedule, water depth was maintained at 10 cm depth, temperature was maintained at 25 ± 1 °C by a room air conditioning system, and fish received a standardized amount of powdered flake fish food (TetraMin™) twice daily. Opaque blinds surrounded the tanks to further limit outside disturbances. All experimental tanks were connected to the same filtration system where water could mix in the sump tank, allowing chemical cues to be shared across all experimental fish. Previous work has shown exposure to just chemical cues of conspecifics is sufficient in preventing the developmental of pathological behavior that could be associated with development in complete isolation14. We initially placed a total of 40 newborn individuals into the tracking tanks. At the end of the 10-week experiment, we were able to achieve complete tracking data on 26 individuals; camera malfunctions prevented data collection on four individuals, two individuals jumped into neighboring tanks causing the loss of data of all four individuals as we could not verify their identity; four newborn individuals escaped through holes in the water outlet of the tanks; and four individuals died as newborns. All results in the manuscript are on these 26 animals, though including data from all 40 (e.g. patterns of individual variation on the first day post birth) did not change the results or their interpretation (see Supplementary Table 2).Behavioral trackingWe developed a custom recording system using Raspberry Pi computers, which are an upcoming low-cost, highly adaptable solution for many applications in the biological sciences25. Specifically, we created a local network of Raspberry Pi 3B + ’s, each connected to a Raspberry Pi camera positioned exactly above an experimental tank, commanded by a lab computer, and connected to the server on the institute network (Supplementary Fig. 1). We programmed the Raspberry Pi’s using pirecorder26 to take timestamped photos every 3 s across the daily light period, each day, for 10 weeks, and store them automatically in dedicated, automatically named folders on the server. Image settings and resolution were thereby optimized to minimize file size while assuring image quality. After the experimental period, we created videos of all the recorded images of each fish of each day. These videos were subsequently tracked with the Biotracker software27, using background subtraction, providing the x, y coordinates of each fish in each frame. We then processed the data, including scaling and converting the coordinates to mm, and, for each frame, computed fish’s swimming speed (cm/s) and distance from the tank walls (cm). We then summarized these variables both on an hourly and daily basis to compute fish’s median swimming speed, inter-quartile range of swimming speeds, activity (proportion of time spent moving >0.5 cm/s), and median border distance. To quantify fish’s body size over time, we randomly selected five photos per week of each compartment, making sure the fish was away from the compartment walls and did not show strong body curvature, and then used ImageJ software to measure total body length (mm) from the tip of the snout to the end of the body. By averaging the measurements of the five images, we acquired one body size measurement per week.Error checkingWe collected up to 924,000 photos on each individual throughout the experimental period resulting in a total of over 24 million data points collected on our experimental animals (N = 26 individuals). To ensure that our tracking software accurately captured the behavior of our fish, we checked for potential tracking errors in two ways. First, we estimated overall error rates. To do this, we selected at random a starting frame from within a day; then we manually checked each of the subsequent 200 frames and identified whether an error was made (fish was not properly located by BioTracker) or not (fish was properly located) by visual inspection of the videos. We estimated the error rate as the number of errors divided by the total number of checked frames. The overall median error rate over the entire observation period was estimated to be 7%. Error rates increased earlier in the observation period when the fish were smaller (Supplementary Note I). As such, as a second step, we manually went through and corrected all frames for the very first day of tracking (i.e. day 1 post-birth) for all fish (~13,200 frames per individual) as this is a critical time period for one of our research questions. This ensured that the resulting behavioral data were completely accurate for this day. This manual correction allowed us the additional opportunity to compare how well our automatically tracked (i.e. not manually corrected) data performed compared to the manually corrected data. We found that the automatically tracked data re-created near identical estimates of among- and within-individual variance components and most importantly the among-individual correlation between the automatically tracked and manually corrected data was over 0.98 for our behavioral variables (Supplementary Note I). This strongly suggests that any errors introduced by our automated tracking software have minimal influence of our behavioral variables at best and do not affect our interpretation of the results.Statistical analysesWe used linear mixed, or hierarchical, models to partition the behavioral variation across different times periods into its among- and within-individual components. Throughout we focused our analysis on the 26 individuals for which we had complete data for the entire 10-week observation period to ensure comparable variation over time and across models.Our first question of interest was to test when individual differences in behavior first appeared over the course of the experiment. We started by investigating behavior on the first day post birth (Fig. 1A, Supplementary Table 2) and then planned to proceed in a day-by-day fashion until significant repeatability in behavior was apparent (Supplementary Table 3). We used hourly median swimming speed (11 observations for each of 26 individuals) as our response variable and included ‘hour’ and ‘total length (TL)’ as fixed effects and ‘individual’ was included as our random effect of interest. Including TL as a covariate allowed us to test whether behavior was related to an offspring’s body size on its first day of life. We set the first hour of the day as 0 and mean-centered TL as this would allow the among- (and within-) individual variance components to be estimated at these values (i.e. the earliest possible moment from when we could record behavior in the fish). We estimated the adjusted repeatability of median swimming speed as the variance attributable to individual identity over the total variance not explained by the fixed effects. We additionally estimated both marginal and conditional R-squared values which estimate the variance explained by the fixed effects only and the variance explained by the fixed and random effects combined, respectively. As our individual experimental fish came from different mothers, we first explored a number of different variance structures including random intercepts and slopes for both individual ID and maternal ID. This allowed us to test whether maternal identity explained variation in individual behavior. However, the most supported model included random intercepts and slopes for individual ID and not for mother ID, indicating that our methods to reduce variation among mothers were successful (Table 1). We used median swimming speed as our behavioral variable of interest throughout the main manuscript, as this behavior was tightly correlated with most of our other behavioral variables (Supplementary Fig. 2); though results using the other behavioral variables yielded the same interpretation (i.e. that significant individuality in (any) behavior was present on the very first day post-birth; Supplementary Table 2).Our second research question was to investigate how individual behavioral variance changed over the course of the entire observation period (70 days). Again, we first explored several different variance structures to test the importance of maternal identity and/or individual identity on behavioral variation. We found support for the inclusion of random slopes at the individual level, but not maternal level (Table 1). This indicates that levels of among- (and within-) individual variation may differ throughout the observation period. To investigate patterns of change in the variance components, we ran a series of models where we centered the observation covariate on different days. Individual intercepts are estimated when all covariates are set to zero, so this allowed us to ‘slice’ the data to estimate the among- and within-individual variance at different time points over the ten weeks. We ran 11 models as we chose to center the data every 7 days (first model was centered on observation 1; 11th model was centered on observation 70). The predicted individual intercepts (best linear unbiased predictors) and estimated variance components from each model are plotted in Fig. 3.We also closely investigated any potential influence of body size and/or growth rate differences on behavioral expression and individual behavioral variation in this entire 10-week data set. First, we estimated the repeatability of both weekly total length and weekly growth rates to determine if individuals consistently differed in these traits. Then, we ran a series of models with median weekly swimming speed as the response variable and included either weekly total length, weekly growth rate, and/or overall growth rate (estimated over the entire 10 weeks), as our fixed effects of interest. Each model also included the random effects of individual intercepts and slopes. Finally, because body size varies both among individuals (some individuals are on average larger than others) and within individuals (as they grow), we also performed within-individual centering of total length. In this fifth model, we included each individual’s average total length and their weekly deviation from their average length as the two fixed effects of interest. Individual identity and slopes were included as random effects. For all models, we estimated the variance explained by the fixed effects (marginal R2) and the fixed and random effects together (conditional R2). These results are reported in Table 2.For our third and final research question, we tested whether early-life behavior predicted later-life behavior. To test this, we estimated the among-individual correlation (including ‘individual ID’ as our random effect) in behavior using multivariate mixed models where the daily median swimming speeds in each week were the response variables (7 observations per week per individual; 10 weeks total; Fig. 4A). Then to investigate how the strength of these correlations may change over development, we used a linear model to test whether the correlation strength was predicted by the interaction between the first week included in the correlation and distance to the next week in the correlation (1, 2, 3, 4 or 5 weeks away in time; Fig. 4B).All models were performed using Markov Chain Monte Carlo estimation with the MCMCglmm package38 in R v3.6.139. We set our models to run 510,000 iterations with a 10,000 burn-in and thinning every 200 iterations. To ensure proper model mixing and convergence, we initially ran 5 independent chains and inspected posterior trace plots of parameter estimates (Supplementary Note II). In a preliminary analysis we tested three different prior settings (Supplementary Note II); results did not change with prior settings so we chose parameter-expanded priors for all models reported here as these are generally considered to be more robust. An R Markdown file with all the results presented here is included in Supplementary Note II.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis

    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).
    Google Scholar 
    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).
    Google Scholar 
    McCauley, D. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 

    Google Scholar 
    Pereira, H. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oliver, S., Braccini, M., Newman, S. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).
    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–574 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gilman, E. et al. Shark interactions in pelagic longline fisheries. Mar. Policy 32, 1–18 (2008).
    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Google Scholar 
    Bowlby, H. & Gibson, A. Implications of life history uncertainty when evaluating status in the Northwest Atlantic population of white shark (Carcharodon carcharias). Ecol. Evol. 10, 4990–5000 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Dulvy, N. et al. Overfishing drives over one third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773-4787.e8 (2021).CAS 
    PubMed 

    Google Scholar 
    Heino, M., Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).
    Google Scholar 
    Mitchell, J., McLean, D., Collins, S. & Langlois, T. Shark depredation in commercial and recreational fisheries. Rev. Fish Biol. Fish 28, 715–748 (2018).
    Google Scholar 
    Jaiteh, V. F., Loneragan, N. & Warren, C. The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar. Policy 82, 224–233 (2017).
    Google Scholar 
    Seidu, I. et al. Fishing for survival: Importance of shark fisheries for the livelihoods of coastal communities in Western Ghana. Fish. Res. 246, 106157 (2022).
    Google Scholar 
    Gilman, E., Weijerman, M. & Suuronen, P. Ecological data from observer programs underpin ecosystem-based fisheries management. ICES J. Mar. Sci. 74, 1481–1495 (2017).
    Google Scholar 
    Melnychuk, M. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. https://doi.org/10.1038/s41893-020-00668-1 (2021).Article 

    Google Scholar 
    Musyl, M. & Gilman, E. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 20, 466–500 (2019).
    Google Scholar 
    Clarke, S. A status snapshot of key shark species in the western and central pacific and potential management options. in WCPFC-SC7-2011/EB-WP-04. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2011).Dapp, D., Walker, T., Huveneers, C. & Reina, R. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. 17, 507–524 (2016).
    Google Scholar 
    ICES. Report of the working group on elasmobranch fishes. in ICES CM 2018/ACOM:16. International Council for the Exploration of the Sea, Copenhagen (2018).Dicks, L. et al. A transparent process for “evidence-informed” policy making. Conserv. Lett. 7, 119–125 (2014).
    Google Scholar 
    Nichols, J., Kendall, W. & Boomer, G. Accumulating evidence in ecology: Once is not enough. Ecol. Evol. 9, 13991–14004 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).
    Google Scholar 
    Pfaller, J., Chaloupka, M., Bolten, A. & Bjorndal, K. Phylogeny, biogeography and methodology: A meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci. Rep. 8, 5852. https://doi.org/10.1038/s41598-018-24262-w (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godin, A., Carlson, J. & Burgener, V. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bull. Mar. Sci. 88, 469–483 (2012).
    Google Scholar 
    Reinhardt, J. et al. Catch rate and at-vessel mortality of circle hooks versus J-hooks in pelagic longline fisheries: A global meta-analysis. Fish Fish. 19, 413–430 (2018).
    Google Scholar 
    Rosa, D., Santos, C. & Coelho, R. Assessing the effects of hook, bait and leader type as potential mitigation measures to reduce bycatch and mortality rates of shortfin mako: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in ICCAT Collective Volume of Scientifics Papers 76, 247–278 (2020).Santos, C., Rosa, D. & Coelho, R. Hook, bait and leader type effects on surface pelagic longline retention and mortality rates: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in IOTC-2019-WPEB15-39. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Santos, C., Rosa, D. & Coelho, R. Progress on a meta-analysis for comparing hook, bait and leader effects on target, bycatch and vulnerable fauna interactions. in Collective Volume of Scientifics Papers ICCAT 77, 182–217 (2020).Condamine, F., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. PNAS 116, 20584–20590 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).MathSciNet 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
    Google Scholar 
    Lajeunesse, M. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).PubMed 

    Google Scholar 
    Chamberlain, S. et al. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627–636 (2012).PubMed 

    Google Scholar 
    Burns, J. & Strauss, S. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cachera, M. & Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 7, 6292–6303 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bazzi, M., Campione, N., Kear, B., Pimiento, C. & Ahlberg, P. Feeding ecology has shaped the evolution of modern sharks. Curr. Biol. 31, 5138–5148 (2021).CAS 
    PubMed 

    Google Scholar 
    Sepulveda, C., Wegner, N., Bernal, D. & Graham, J. The red muscle morphology of the thresher sharks (family Alopiidae). J. Exp. Biol. 208, 4255–4261 (2005).CAS 
    PubMed 

    Google Scholar 
    Wosnick, N. et al. Multispecies thermal dynamics of air-exposed ectothermic sharks and its implications for fisheries conservation. J. Exp. Mar. Biol. Ecol. 513, 1–9 (2019).
    Google Scholar 
    French, R. et al. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (Isurus oxyrinchus). Conserv. Physiol. https://doi.org/10.1093/conphys/cov044 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59, 1834–1843 (2002).
    Google Scholar 
    Massey, Y., Sabarros, P., Rabearisoa, N. & Bach, P. Drivers of at-haulback mortality of sharks caught during pelagic longline fishing experiments. in IOTC-2019-WPEB15-14_Rev1. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Musyl, M., Moyes, C., Brill, R. & Fragoso, N. Factors influencing mortality estimates in post-release survival studies: Comment on Campana et al. (2009). Mar. Ecol. Prog. Ser. 396, 157–159 (2009).Pimiento, C., Cantalapiedra, J., Shimada, K., Field, D. & Smaers, J. Evolutionary pathways towards gigantism in sharks and rays. Evolution 73, 588–599 (2019).PubMed 

    Google Scholar 
    Musyl, M. & Gilman, E. Post-release fishing mortality of blue (Prionace glauca) and silky shark (Carcharhinus falciformes) from a Palauan-based commercial longline fishery. Rev. Fish Biol. Fish. 28, 567–658 (2018).
    Google Scholar 
    Childs, D., Sheldon, B. & Rees, M. The evolution of labile traits in sex- and age-structured populations. J. Anim. Ecol. 85, 329–342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 5053 (2014).ADS 
    PubMed Central 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. ISSN 2307-8235 (International Union for the Conservation of Nature, Gland, Switzerland, 2022).García, V., Lucifora, L. & Ransom, M. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed 

    Google Scholar 
    Cortes, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).
    Google Scholar 
    Ellis, J. et al. A review of capture and post-release mortality of elasmobranchs. J. Fish Biol. 90, 653–722 (2017).CAS 
    PubMed 

    Google Scholar 
    Gallagher, A., Orbesen, E., Hammerschlag, N. & Serafy, J. Vulnerability of oceanic sharks as pelagic longline bycatch. Glob. Ecol. Conserv. 1, 50–59 (2014).
    Google Scholar 
    Afonso, A., Santiago, R., Hazin, H. & Hazin, F. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fish. Res. 131–133, 9–14 (2012).
    Google Scholar 
    Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish Biol. Fish. 28, 417–433 (2018).
    Google Scholar 
    Epperly, S., Watson, J., Foster, D. & Shah, A. Anatomical hooking location and condition of animals captured with pelagic longlines: The grand banks experiments 2002–2003. Bull. Mar. Sci. 88, 513–527 (2012).
    Google Scholar 
    Amorim, S., Santos, M., Coelho, R. & Fernandez-Carvalho, J. Effects of 17/0 circle hooks and bait on fish catches in a southern Atlantic swordfish longline fishery. Aquat. Conserv. 25, 518–533 (2014).
    Google Scholar 
    Coelho, R., Fernandez-Carvalho, J., Lino, P. & Santos, M. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat. Living Resour. 25, 311–319 (2012).
    Google Scholar 
    Gilman, E. et al. A decision support tool for integrated fisheries bycatch management. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09693-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).
    Google Scholar 
    Somers, K., Pfeiffer, L., Miller, S. & Morrison, W. Using incentives to reduce bycatch and discarding: Results under the west coast catch share program. Coast. Manag. 46, 1–17 (2019).
    Google Scholar 
    Abbott, J. & Wilen, J. Regulation of fisheries bycatch with common-pool output quotas. J. Environ. Econ. Manag. 57, 195–204 (2009).MATH 

    Google Scholar 
    Gilman, E. et al. Increasing the functionalities and accuracy of fisheries electronic monitoring systems. Aquat. Conserv. 29, 901–926 (2019).
    Google Scholar 
    Watling, J. Fishing observers ‘intimidated and bribed by EU crews’. Quota checks allegedly being compromised aboard Northwest Atlantic fishery boats, as observers report surveillance and theft. The Guardian (2012, accessed 21 July 2022). https://www.theguardian.com/environment/2012/may/18/fishing-inspectors-intimidated-bribed-crews.Clarke, S., Harley, S., Hoyle, S. & Rice, J. Population trends in Pacific oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 

    Google Scholar 
    Tolotti, M. T. et al. Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7 (2015).
    Google Scholar 
    Gilman, E., Chaloupka, M., Merrifield, M., Malsol, N. & Cook, C. Standardized catch and survival rates, and effect of a ban on shark retention, Palau pelagic longline fishery. Aquat. Conserv. 26, 1031–1062 (2016).
    Google Scholar 
    CITES. Appendices I, II and III. Valid from 22 June 2021. Convention on International Trade in Endangered Species of Wild Fauna and Flora, United Nations Environment Program, Geneva (2021).Ward-Paige, C. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
    Google Scholar 
    E.U. Regulation (E.U.) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union L354, 22–61 (2013).FAO. International Guidelines on Bycatch Management and Reduction of Discards (Food and Agriculture Organization of the United Nations, Rome, 2011).CCSBT. Resolution to Align CCSBT’s Ecologically Related Species Measures with those of other Tuna RFMOs (Commission for the Conservation of Southern Bluefin Tuna, Deakin West, Australia, 2021).IATTC. Active Resolutions and Recommendations (Inter-American Tropical Tuna Commission, La Jolla, 2022).ICCAT. Compendium. Management Recommendations and Resolutions Adopted by ICCAT for the Conservation of Atlantic Tunas and Tuna-like Species (International Commission for the Conservation of Atlantic Tunas, Madrid, 2021).IOTC. Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission (Indian Ocean Tuna Commission, Mahe, 2021).WCPFC. Conservation and Management Measures and Resolutions of the Western and Central Pacific Fisheries Commission. Compiled 31 August 2021 (Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia, 2021).Faith, D. Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).PubMed 

    Google Scholar 
    Dolce, J. & Wilga, C. Evolutionary and ecological relationships of gill slit morphology in extant sharks. Bull. Mus. Comp. 161, 79–109 (2013).
    Google Scholar 
    MacLeod, N. & Forey, P. Morphology, Shape and Phylogeny (CRC Press, 2002).
    Google Scholar 
    Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. https://doi.org/10.1186/s13750-018-0121-7 (2018).Article 

    Google Scholar 
    Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G., Eds. Section 5. Conducting a Search. Key CEE Standards for Conduct and Reporting. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G., Eds. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2020).Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G. (eds) Section 3. Planning a CEE Evidence Synthesis. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G. (eds) Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2021).Page, M. et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ https://doi.org/10.1136/bmj.n.71 (2020).Article 
    PubMed 

    Google Scholar 
    Tuyl, F., Gerlach, R. & Mengersen, K. Comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. Am. Stat. 62, 40–44 (2008).MathSciNet 

    Google Scholar 
    Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom (2014).van Lissa, C. Small sample meta-analyses: Exploring heterogeneity using MetaForest. Chapter 13. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (eds Van De Schoot, R. & Miočević, M.) 186–202 (Routledge, Oxford, 2020).
    Google Scholar 
    Wright, M. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar 
    Janitza, S., Celik, E. & Boulesteix, A. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Mayer, M. missRanger: Fast imputation of missing values. R package version 2.1.3. https://CRAN.R-project.org/package=missRanger (2021).Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis. Methods 2, 61–76 (2011).
    Google Scholar 
    Amaral, C., Pereira, F., Silva, D., Amorim, A. & de Carvalho, E. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A 29, 867–878 (2017).
    Google Scholar 
    Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).PubMed 

    Google Scholar 
    Naylor, G. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. 367, 1–262 (2012).
    Google Scholar 
    Stein, R. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).PubMed 

    Google Scholar 
    Maddison, D., Swofford, D., Maddison, W. & Cannatella, D. Nexus: An extensible file format for systematic information. Syst. Biol. 46, 590–621 (1997).CAS 
    PubMed 

    Google Scholar 
    Upham, N., Esselstyn, J. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol 23, 494–508 (2010).CAS 
    PubMed 

    Google Scholar 
    Lin, L. & Chu, H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 31, 713–717 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).PubMed 

    Google Scholar 
    Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).PubMed 

    Google Scholar 
    Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 2.1.1. https://doi.org/10.5281/zenodo.1308151 (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS 

    Google Scholar 
    Searle, S., Speed, F. & Milliken, G. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221 (1980).MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans (2020).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Lazic, S., Mellor, J., Ashby, M. & Munafo, M. A Bayesian predictive approach for dealing with pseudoreplication. Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-59384-7 (2020).Article 
    CAS 

    Google Scholar 
    Page, M., Sterne, J., Higgins, J. & Egger, M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Res. Synth. Methods 12, 248–259 (2021).PubMed 

    Google Scholar 
    Peters, J., Sutton, A., Jones, D., Abrams, K. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Growth characteristics of Cunninghamia lanceolata in China

    FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development (FAO, 2018).
    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993. https://doi.org/10.1126/science.1201609 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luyssaert, S. et al. Tradeoffs in using European forests to meet climate objectives. Nature 562(7726), 259–262. https://doi.org/10.1038/s41586-018-0577-1 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. https://doi.org/10.1038/s41467-019-10174-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).Article 
    CAS 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580(7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–599. https://doi.org/10.1126/science.aad7270 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. https://doi.org/10.1038/s41467-019-13798-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, K. et al. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of Southern China. CATENA 178, 313–321. https://doi.org/10.1016/j.catena.2019.03.038 (2019).Article 
    CAS 

    Google Scholar 
    Mei, G., Sun, Y. & Sajjad, S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China. PLoS ONE 12, e0169747. https://doi.org/10.1371/journal.pone.0169747 (2017).Article 
    CAS 

    Google Scholar 
    Wu, H. et al. Soil phosphorus bioavailability and recycling increasedwith stand age in Chinese fir plantations. Ecosystems 23, 973–988. https://doi.org/10.1007/s10021-019-00450-1 (2019).Article 

    Google Scholar 
    State Forestry Administration. General situation of forest resources in China. The 8th National Forest Inventory (State Forestry Administration, 2014).Wang, X. et al. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 12(1), 13–16 (2001) (in Chinese with English Abstract).ADS 
    CAS 

    Google Scholar 
    Kang, H. et al. Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China. NZ J. For. Sci. 47(1), 20. https://doi.org/10.1186/s40490-017-0102-6 (2017).Article 

    Google Scholar 
    Lu, Y. et al. A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6, 360–379. https://doi.org/10.3390/f6020360 (2015).Article 

    Google Scholar 
    Zhang, X. et al. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: Long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. https://doi.org/10.1016/j.foreco.2020.118103 (2020).Article 

    Google Scholar 
    You, R. et al. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci. Rep. https://doi.org/10.1038/s41598-021-83500-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djomo, A. N., Ibrahima, A., Saborowski, J. & Gravenhorst, G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manag. 260(10), 1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034 (2010).Article 

    Google Scholar 
    Peng, D. et al. Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sens. 11(19), 2270. https://doi.org/10.3390/rs11192270 (2019).Article 
    ADS 

    Google Scholar 
    Zhou, X. et al. Dynamic allometric scaling of tree biomass and size. Nat. Plants. 7(1), 42–49. https://doi.org/10.1038/s41477-020-00815-8 (2021).Article 
    PubMed 

    Google Scholar 
    Li, L. Study on the tree volume table compilation of Chinese fir in Kaihua Forest Farm (Beijing Forestry University, 2011) http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134655.htm (in Chinese).Wang, J. P. et al. Study on the effect of Chinese fir volume formula on estimating the volume of fir standing trees in different sites. Guizhou For. Technol. 19(1), 26–29 (1991) (in Chinese).
    Google Scholar 
    Zeng, W. S. et al. Compatible tree volume and aboveground biomass equations for Chinese fir plantation in Guizhou. J. Beijing For. Univ. 33(4), 1–6 (2011) (in Chinese).
    Google Scholar 
    Xia, Z. S. et al. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China. J. Beijing For. Univ. 34(1), 1–5 (2012) (in Chinese).
    Google Scholar 
    Lin, H. Study on biomass and carbon storage of main coniferous forest in Jiangle state-owned forestry farm. J. Fujian For. Sci. Technol. 45(1), 30–34. https://doi.org/10.13428/j.cnki.fjlk.2018.01.007 (2018) (in Chinese with English Abstract).Article 
    ADS 

    Google Scholar 
    Cai, Z. A study on biomass models of Cunninghamia lanceolata plantation in Fujian. (Beijing Forestry University, 2014), http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327550.htm (in Chinese).Chen, G. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76. https://doi.org/10.1016/j.foreco.2012.07.046 (2013).Article 

    Google Scholar 
    Zhang, G. et al. Biomass Characteristics of dominant tree species (group) at Lingnan forest farm in Anhui province. Scientia Silvae Sinicae. 48(5), 136–140. https://doi.org/10.1007/s11783-011-0280-z (2012) (in Chinese with English abstract).Article 
    ADS 
    CAS 

    Google Scholar 
    Shi, W. et al. Biomass model and carbon storage of Chinese fir plantation in Dabieshan Mountains in Anhui. Resour. Environ. Yangtze Basin. 24(5), 758–764. https://doi.org/10.11870/cjlyzyyhj201505007 (2015) (in Chinese with English abstract).Article 

    Google Scholar 
    Li, H. & Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 289, 153–163. https://doi.org/10.1016/j.foreco.2012.10.002 (2013).Article 

    Google Scholar 
    Zeng, W. & Tang, S. A new general allometric biomass model. Nat. Precedings. https://doi.org/10.1038/npre.2011.6704.1 (2011).Article 

    Google Scholar 
    Schumacher, F. X. & Hall, F. D. S. Logarithmic expression of timber-tree volume. J. Agric. Res. 47(9), 719–734 (1933).
    Google Scholar 
    Honer, T. G. A new total cubic foot volume function. For. Chron. 41(4), 476–493. https://doi.org/10.5558/tfc41476-4 (1965).Article 

    Google Scholar 
    Burkhart, H. E. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 2, 7–9. https://doi.org/10.1093/sjaf/1.2.7 (1977).Article 

    Google Scholar 
    Lee, D., Seo, Y. & Choi, J. Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. For. Sci. Technol. 13(2), 77–82. https://doi.org/10.1080/21580103.2017.1315963 (2017).Article 

    Google Scholar 
    Chen, B. H. & Chen, C. Y. A preliminary study on the biomass and productivity of Picea koraiensis forests in the dunes. Scientia Silvae Sinicae 4, 269–278 (1980) (in Chinese).
    Google Scholar 
    Niklas, K. J. Plant Allometry: The Scaling of Form and Process (University of Chicago Press, 1994).
    Google Scholar 
    Ketterings, Q. M. et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6 (2001).Article 

    Google Scholar 
    Chen, X. G. The biomass and allometric equation of a 20-years-old Cunninghamia lanceolata plantation. Prot. For. Sci. Technol. 4, 28–29, 40. https://doi.org/10.3969/j.issn.1005-5215.2007.04.010.(inChinese) (2007).Article 

    Google Scholar 
    Wang, X. P. et al. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 234, 264–274. https://doi.org/10.1016/j.foreco.2006.07.007 (2006).Article 

    Google Scholar 
    Peng, C. et al. Developing and evaluating tree height–diameter models at three geographic scales for black spruce in Ontario. N. J. Appl. For. 21(2), 83–92. https://doi.org/10.1093/njaf/21.2.83 (2004).Article 

    Google Scholar 
    López-Serrano, F. R. et al. Site and weather effects in allometries: A simple approach to climate change effect on pines. For. Ecol. Manag. 215(1–3), 251–270. https://doi.org/10.1016/j.foreco.2005.05.014 (2005).Article 

    Google Scholar 
    Zhang, C. et al. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single trees in Poplar plantations in Jiangsu Province, China. Forests 7, 32. https://doi.org/10.3390/f7020032 (2016).Article 

    Google Scholar 
    Liu, J. C. et al. Comparing non-destructive methods to estimate volume of three tree taxa in Beijing, China. Forests 10, 92. https://doi.org/10.3390/f10020092 (2019).Article 

    Google Scholar 
    Thangjam, U. et al. Developing tree volume equation for Parkia timoriana grown in home gardens and shifting cultivation areas of North-East India. For. Trees Livelihoods 28(12), 1–13. https://doi.org/10.1080/14728028.2019.1624200 (2019).Article 

    Google Scholar 
    Dutcă, I. et al. Does slope aspect affect the aboveground tree shape and volume allometry of European Beech (Fagus sylvatica L.) trees?. Forests 13, 1071. https://doi.org/10.3390/f13071071 (2022).Article 

    Google Scholar 
    Segura, M. & Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1), 2–8. https://doi.org/10.2307/30045500 (2005).Article 

    Google Scholar 
    Wang, X. W. et al. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann. For. Sci. 75, 60. https://doi.org/10.1007/s13595-018-0738-2 (2018).Article 

    Google Scholar 
    Niklas, K. J. & Enquist, B. J. Canonical rules for plant organ biomass partitioning and annual allocation. Am. J. Bot. 89(5), 812–819. https://doi.org/10.3732/ajb.89.5.812 (2002).Article 
    PubMed 

    Google Scholar 
    Xiang, W. H. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 697–711. https://doi.org/10.1007/s11284-011-0829-0 (2011).Article 

    Google Scholar 
    Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 116, 363–372. https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brassard, B. W. et al. Influence of environmental variability on root dynamics in northern forests. Crit. Rev. Plant Sci. 28, 179–197. https://doi.org/10.1080/07352680902776572 (2009).Article 

    Google Scholar 
    Montagu, K. D. et al. Developing general allometric relationship for regional estimates of carbon sequestration—An example using Eucalyptus pilularis from seven contrasting sites. For. Ecol. Manag. 204, 113–127. https://doi.org/10.1016/j.foreco.2004.09.003 (2005).Article 

    Google Scholar 
    Williams, R. J. et al. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: Towards general predictive equations. Aust. J. Bot. 53, 607–619. https://doi.org/10.1071/BT04149 (2005).Article 

    Google Scholar 
    Ouimet, R. et al. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can. J. For. Res. 38, 92–100. https://doi.org/10.1139/x07-134 (2008).Article 

    Google Scholar 
    Peichl, M. & Arain, M. A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80. https://doi.org/10.1016/j.foreco.2007.07.003 (2007).Article 

    Google Scholar 
    Bond-Lamberty, B. et al. Aboveground and below-ground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450. https://doi.org/10.1139/x02-063 (2002).Article 

    Google Scholar 
    King, J. S. et al. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can. J. For. Res. 37(1), 93–102. https://doi.org/10.1139/x06-217 (2007).Article 

    Google Scholar 
    Ziania, D. & Mencuccini, M. Aboveground biomass relation-ships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60(5), 439–448. https://doi.org/10.1051/forest:2003036 (2003).Article 

    Google Scholar 
    Martin, J. G. et al. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can. J. For. Res. 28(11), 1648–1659. https://doi.org/10.1139/x98-146 (1998).Article 

    Google Scholar 
    Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 222, 9–16. https://doi.org/10.1016/j.foreco.2005.10.074 (2006).Article 

    Google Scholar  More

  • in

    The point of no return for species facing heatwaves

    Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).
    Google Scholar 
    Hesketh, A. V. & Harley, C. D. G. Glob. Change Biol. https://doi.org/10.1111/gcb.16390 (2022).Article 

    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Nature https://doi.org/10.1038/s41586-022-05334-4 (2022).Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Nature Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman & Hall, 1987).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).Article 
    PubMed 

    Google Scholar 
    Dillon, M. E. et al. Integr. Comp. Biol. 56, 14–30 (2016).Article 
    PubMed 

    Google Scholar 
    Stillman, J. H. Physiology 34, 86–100 (2019).Article 
    PubMed 

    Google Scholar 
    MacMillan, H. A. J. Exp. Biol. 222, jeb191593 (2019).Article 
    PubMed 

    Google Scholar 
    Kingsolver, J. G. & Umbanhowar, J. J. Exp. Biol. 221, jeb167858 (2018).Article 
    PubMed 

    Google Scholar  More

  • in

    Temporal change in plant communities and its relationship to soil salinity and microtopography on the Caspian Sea coast

    Shomurodov, K. F. & Adilov, B. A. Current state of the flora of Vozrozhdeniya Island (Uzbekistan). Arid Ecosyst. 9, 97–103 (2019).
    Google Scholar 
    Adilov, B. et al. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. J. Arid Land 13, 71–87 (2020).
    Google Scholar 
    Kuz’mina, Z. V. & Treshkin, S. E. Soil salinization and dynamics of Tugai vegetation in the southeastern Caspian Sea region and in the Aral Sea coastal region. Eurasian Soil Sci. 30, 642–649 (1997).
    Google Scholar 
    Kuz’mina, Z. V., Shinkarenko, S. S. & Solodovnikov, D. A. Main tendencies in the dynamics of floodplain ecosystems and landscapes of the lower reaches of the Syr Darya river under modern changing conditions. Arid Ecosyst. 9, 226–236 (2019).
    Google Scholar 
    Dimeyeva, L. A. Phytogeography of the northeastern coast of the Caspian Sea: Native flora and recent colonizations. J. Arid Land 5, 439–451 (2013).
    Google Scholar 
    Goryaev, I. A. & Korablev, A. P. Halophytic vegetation in the west caspian lowland. Contemp. Probl. Ecol. 13, 514–521 (2020).
    Google Scholar 
    Novikova, N. M., Volkova, N. A., Ulanova, S. S. & Chemidov, M. M. Change in vegetation on meliorated solonetcic soils of the Peri-Yergenian plain over 10 years (Republic of Kalmykia). Arid Ecosyst. 10, 194–202 (2020).
    Google Scholar 
    Ravanbakhsh, M., Amini, T. & Hosseini, S. M. N. Plant species diversity among ecological species groups in the Caspian Sea coastal sand dune; Case study: Guilan Province, North of Iran. Biodiversitas 16, 16–21 (2015).
    Google Scholar 
    Yan, S., Mu, G., Xu, Y. & Zhao, Z. Quarternary environmental evolution of the Lop Nur region, China. Dili Xuebao/Acta Geogr. Sin. 53, 332–340 (1998).
    Google Scholar 
    Hao, H., Ferguson, D. K., Chang, H. & Li, C. S. Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Clim. Change 113, 323–338 (2012).ADS 

    Google Scholar 
    Li, C. et al. Growth and sustainability of Suaeda salsa in the Lop Nur, China. J. Arid Land 10, 429–440 (2018).
    Google Scholar 
    Barrett, G. Vegetation communities on the shores of a salt lake in semi-arid Western Australia. J. Arid Environ. 67, 77–89 (2006).ADS 

    Google Scholar 
    Neffar, S., Chenchouni, H. & Si Bachir, A. Floristic composition and analysis of spontaneous vegetation of Sabkha Djendli in north-east Algeria. Plant Biosyst. 150, 396–403 (2016).
    Google Scholar 
    Yanina, T. A. The Ponto-Caspian region: Environmental consequences of climate change during the Late Pleistocene. Quat. Int. 345, 88–99 (2014).
    Google Scholar 
    Rychagov, G. I. Pleistocene History of the Caspian Sea (Moscow State University, 1977).
    Google Scholar 
    Rychagov, G. I. The level mode of the Caspian Sea during the last 10000. Vestn. Mosk. Univ. Seriya 5 Geogr. 2, 38–49 (1993).
    Google Scholar 
    Kroonenberg, S. B. et al. Solar-forced 2600 BP and Little Ice Age highstands of the Caspian Sea. Quat. Int. 173–174, 137–143 (2007).
    Google Scholar 
    Kasimov, N. S., Lychagin, M. Y. & Kroonenberg, S. B. Geochemical indication of cyclic fluctuations of the caspian sea level. Vestn. Mosk. Univ. Seriya Geogr. 2, 72–77 (2011).
    Google Scholar 
    Kroonenberg, S. B., Badyukova, E. N., Storms, J. E. A., Ignatov, E. I. & Kasimov, N. S. A full sea-level cycle in 65 years: Barrier dynamics along Caspian shores. Sediment. Geol. 134, 257–274 (2000).ADS 

    Google Scholar 
    Bolikhovskaya, N. & Kasimov, N. The evolution of climate and landscapes of the Lower Volga region during the Holocene. Geogr. Environ. Sustain. 3, 78–97 (2010).
    Google Scholar 
    Magomedov, M.M.-R. & Gasanov, S. M. Features of soil changes under crowns of the shrubberies tamarisk (Tamarix meyeri boiss, T. ramosissima zedeb). South Russ. Ecol. Dev. 6, 12–21 (2014).
    Google Scholar 
    Du, N. et al. Facilitation or competition? The effects of the shrub species tamarix chinensis on herbaceous communities are dependent on the successional stage in an impacted coastal wetland of North China. Wetlands 37, 899–911 (2017).
    Google Scholar 
    Jiang, L., Jiapaer, G., Bao, A., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).ADS 
    PubMed 

    Google Scholar 
    Burke, I. C. et al. Plant–soil interactions in temperate grasslands. In Plant-Induced Soil Changes: Processes and Feedbacks (ed. van Breemen, N.) 121–143 (Springer, 1998). https://doi.org/10.1007/978-94-017-2691-7_7.Chapter 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Abaturov, B. D. Microdepression microrelief of Caspian Lowland and mechanisms of its formation. Arid. Ecosistemy 16, 31–45 (2010).
    Google Scholar 
    Sapanov, M. K. The results of soil water investigations in Djanybek stationary. Dokuchaev Soil Bull. 83, 22–40 (2016).
    Google Scholar 
    Bolshakov, A. F. & Bazykina, G. S. Natural biogeocenoses and the conditions of their existence. In Biogeocenotic Basis of the Reclamation of Semidesert in the Northern Caspain Lowland (ed. Rode, A. A.) 6–34 (Nauka, 1974).
    Google Scholar 
    Konyushkova, M. V., Nukhimovskaya, Y. D., Gasanova, Z. U. & Stepanova, N. Y. The temporal change in variability of soil salinity and phytodiversity at the coastal plain of the Caspian Sea. Arid Ecosyst. 10, 312–321 (2020).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A., Nukhimovskaya, Y. & Klink, G. Data on the soilscape and vegetation properties at the key site in the NW Caspian Sea coast, Russia. Data Br. 31, 105972 (2020).
    Google Scholar 
    Konyushkova, M. V. et al. Spatial and seasonal salt translocation in the young soils at the coastal plains of the Caspian Sea. Quat. Int. 590, 15–25 (2021).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A. & Nikolaev, E. Chemical differentiation of recent fine-textured soils on the Caspian Sea coast: A case study in Golestan (Iran) and Dagestan (Russia). Quat. Int. 590, 48–55 (2021).
    Google Scholar 
    Haghani, S. et al. An early ‘Little Ice Age’ brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people. Holocene 26, 3–16 (2016).ADS 

    Google Scholar 
    Panin, G. N., Mamedov, R. M. & Mitrofanov, I. V. Present State of the Caspian Sea (Nauka, 2005).
    Google Scholar 
    Konyushkova, M. V. et al. The spatial differentiation of soil salinity at the young saline coastal plain of the Caspian region. Dokuchaev Soil Bull. 95, 41–57 (2018).
    Google Scholar 
    Cherepanov, S. K. Vascular Plants of Russia and Adjacent States (Within the Former USSR) (Cambridge University Press, 1995).
    Google Scholar 
    Takhtajan, A. Flowering Plants (Springer Science+Business Media B.V, 2009). https://doi.org/10.1007/978-1-4020-9609-9.Book 

    Google Scholar 
    Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew (Board of Trustees of the Royal Botanic Gardens, 2022).Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Google Scholar 
    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
    Google Scholar 
    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 
    Semenkov, I. N. et al. The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula. Sci. Rep. 11, 11077 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R Packag. version 1.0.0 (2019).Goryaev, I. A. Regularities of distribution of halophytic vegetation on the Caspian Lowland. Bot. Zhurnal 104, 1072–1089 (2019).
    Google Scholar 
    Soltanmuradova, Z. I. & Teimurov, A. A. Taxonomic structure of the flora of the Primorskaya Lowland of the Republic of Dagestan. South Russ. Ecol. Dev. 3, 38 (2010).
    Google Scholar 
    Zörb, C., Sümer, A., Sungur, A., Flowers, T. J. & Özcan, H. Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance. Turk. J. Botany 37, 1125–1133 (2013).
    Google Scholar 
    Zhao, Y., Yu, H., Zhang, T. & Guo, J. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China. J. Arid Land 9, 143–152 (2017).
    Google Scholar 
    Podar, D. et al. Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiol. Mol. Biol. Plants 25, 1335–1347 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayyar, H. & Gupta, D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Exp. Bot. 58, 106–113 (2006).CAS 

    Google Scholar 
    Way, D. A., Katul, G. G., Manzoni, S. & Vico, G. Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. J. Exp. Bot. 65, 3683–3693 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Atia, A. et al. Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia. J. Arid Land 6, 762–770 (2014).
    Google Scholar 
    Pickett, S. T. A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology 110–135 (1989) https://doi.org/10.1007/978-1-4615-7358-6_5.Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Dimeeva, L. A. Dynamics of vegetation in deserts of Aral and Caspian regions. (2011).Yu, K. et al. Late quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 77–91 (2019).
    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 

    Google Scholar 
    Zhang, D. et al. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quat. Sci. Rev. 229, 106138 (2020).
    Google Scholar 
    Lu, K. Q. et al. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 551, 109762 (2020).
    Google Scholar 
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    Ziffer-Berger, J., Weisberg, P. J., Cablk, M. E. & Osem, Y. Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient. J. Arid Environ. 102, 27–33 (2014).ADS 

    Google Scholar 
    Vinogradov, B. V. Plant Indicators and Their Use in the Study of Natural Resources (Visshaya shkola, 1964).
    Google Scholar 
    Luo, C. et al. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev. Palaeobot. Palynol. 153, 282–295 (2009).
    Google Scholar 
    Zhao, Y. & Herzschuh, U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veg. Hist. Archaeobot. 18, 245–260 (2009).
    Google Scholar  More

  • in

    Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases

    World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).Global Vector Control Response 2017–2030 (World Health Organization & UNICEF, 2017).Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).Article 

    Google Scholar 
    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, J. E. et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B Biol. Sci. 278, 2446–2454 (2011).Article 

    Google Scholar 
    Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. & Galvani, A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 6, e1799 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cavany, S. M. et al. Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Comput. Biol. 16, e1007743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefopoulou, Α et al. Reducing Aedes albopictus breeding sites through education: a study in urban area. PLoS ONE 13, e0202451 (2018).Article 

    Google Scholar 
    Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W.Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Echaubard, P. et al. Fostering social innovation and building adaptive capacity for dengue control in Cambodia: a case study. Infect. Dis. Poverty 9, 126 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazquez-Prokopec, G. M., Lenhart, A. & Manrique-Saide, P. Housing improvement: a novel paradigm for urban vector-borne disease control? Trans. R. Soc. Trop. Med. Hyg. 110, 567–569 (2016).Article 
    PubMed 

    Google Scholar 
    Malone, R. W. et al. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10, e0004530 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 11, e0005640 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).Article 
    PubMed 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juliano, S. A., Westby, K. M. & Ower, G. D. Know your enemy: effects of a predator on native and invasive container mosquitoes. J. Med. Entomol. 56, 320–328 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahendra, A. & Seto, K. C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South (World Resources Institute, 2019).Moretto, L. et al. Challenges of water and sanitation service co-production in the global South. Environ. Urban. 30, 425–443 (2018).Article 

    Google Scholar 
    Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35, 167–194 (2010).Article 

    Google Scholar 
    Estallo, E. L. et al. A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon 6, e04858 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaufman, M. G. & Fonseca, D. M.Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu. Rev. Entomol. 59, 31–49 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kache, P. A. et al. Environmental determinants of Aedes albopictus abundance at a northern limit of its range in the United States. Am. J. Trop. Med. Hyg. 102, 436–447 (2020).Article 
    PubMed 

    Google Scholar 
    Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biehler, D. et al. in The Palgrave Handbook of Critical Physical Geography 295–318 (Springer, 2018).Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis. 3, e481 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and Chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, P. P.-Y., Lai, P.-C., Low, C.-T., Chen, S. & Hart, M. The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 95, 199–208 (2016).Article 

    Google Scholar 
    Rey, J. R. & O’Connell, S. M. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. J. Vector Ecol. 39, 190–196 (2014).Article 
    PubMed 

    Google Scholar 
    Leisnham, P. T. & Juliano, S. Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160, 343–352 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paploski, I. A. D. et al. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit. Vectors 9, 419 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zainon, N., Rahim, F. A. M., Roslan, D. & Abd Samat, A. H. Prevention of Aedes breeding habitats for urban high-rise building in Malaysia. Plan. Malay. 14, 115–128 (2016).
    Google Scholar 
    Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrington, L. C. et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72, 209–220 (2005).Article 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: a mark–release–recapture study using self-marking units. Parasit. Vectors 12, 583 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, H., Wu, W., Li, T. & Yang, Z. Urban villages as transfer stations for dengue fever epidemic: a case study in the Guangzhou, China. PLoS Negl. Trop. Dis. 13, e0007350 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charron, D. F. in Ecohealth Research in Practice 255–271 (Springer, 2012).Lippi, C. A. et al. Exploring the utility of social–ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Negl. Trop. Dis. 15, e0009257 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wijayanti, S. P. et al. The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl. Trop. Dis. 10, e0004964 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zellweger, R. M. et al. Socioeconomic and environmental determinants of dengue transmission in an urban setting: an ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 11, e0005471 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, S. J. et al. Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int. J. Environ. Res. Public Health 16, 682 (2019).Article 
    PubMed Central 

    Google Scholar 
    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez, L. et al. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 12, 800–806 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cromwell, E. A. et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl. Trop. Dis. 11, e0005429 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Honório, N. A. et al. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3, e545 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chadee, D. Dengue cases and Aedes aegypti indices in Trinidad, West Indies. Acta Trop. 112, 174–180 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fustec, B. et al. Complex relationships between Aedes vectors, socio-economics and dengue transmission—lessons learned from a case-control study in northeastern Thailand. PLoS Negl. Trop. Dis. 14, e0008703 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scarpino, S. V. & Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 10, 898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Batty, M. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 1041–1071 (Springer, 2009).McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Rus, K., Kilar, V. & Koren, D. Resilience assessment of complex urban systems to natural disasters: a new literature review. Int. J. Disaster Risk Reduct. 31, 311–330 (2018).Article 

    Google Scholar 
    Bettencourt, L. M. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).Handbook for Integrated Vector Management (World Health Organization, 2012).Kolimenakis, A. et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Negl. Trop. Dis. 15, e0009631 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V., Bhatnagar, S., Drake, J. M., Murdock, C. C. & Mukherjee, S.Socio‐ecological dynamics in urban systems: an integrative approach to mosquito‐borne disease in Bengaluru, India. People Nat. 4, 730–743 (2022).Article 

    Google Scholar 
    Cook, E. M., Hall, S. J. & Larson, K. L. Residential landscapes as social–ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 15, 19–52 (2012).Article 

    Google Scholar 
    Bai, X., McAllister, R. R., Beaty, R. M. & Taylor, B. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Curr. Opin. Environ. Sustain. 2, 129–135 (2010).Article 

    Google Scholar 
    Batty, M. Inventing Future Cities (MIT Press, 2018).McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).Article 

    Google Scholar 
    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. in The Routledge Handbook of Urbanization and Global Environmental Change 227–236 (Routledge, 2015).Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Filatova, T., Parker, D. & Van der Veen, A. Agent-based urban land markets: agent’s pricing behavior, land prices and urban land use change. J. Artif. Soc. Soc. Simul. 12, 3 (2009).
    Google Scholar 
    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).Article 

    Google Scholar 
    Collins, M. & Kapucu, N. Early warning systems and disaster preparedness and response in local government. Disaster Prev. Manag. 17, 587–600 (2008).Article 

    Google Scholar 
    Ahern, J. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan. 100, 341–343 (2011).Article 

    Google Scholar 
    Gordon-Larsen, P., Nelson, M. C., Page, P. & Popkin, B. M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 117, 417–424 (2006).Article 
    PubMed 

    Google Scholar 
    Zhou, S. & Lin, R. Spatial–temporal heterogeneity of air pollution: the relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. D Transp. Environ. 76, 305–322 (2019).Article 

    Google Scholar 
    Frank, L. D. & Engelke, P. Multiple impacts of the built environment on public health: walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 28, 193–216 (2005).Article 

    Google Scholar 
    Diuk-Wasser, M. A., VanAcker, M. C. & Fernandez, M. P. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol. 58, 1546–1564 (2021).Article 
    PubMed 

    Google Scholar 
    Sengupta, U., Rauws, W. S. & De Roo, G.Planning and complexity: engaging with temporal dynamics, uncertainty and complex adaptive systems. Environ. Plann. B Plann. Des. 43, 970–974 (2016).Article 

    Google Scholar 
    Shi, Y. et al. Assessment methods of urban system resilience: from the perspective of complex adaptive system theory. Cities 112, 103141 (2021).Article 

    Google Scholar 
    Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2012).Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23, 46–61 (2018).Article 

    Google Scholar 
    Levin, S. et al. Social–ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).Article 

    Google Scholar 
    Waldrop, M. M. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, 1993).Nel, D., du Plessis, C. & Landman, K. Planning for dynamic cities: introducing a framework to understand urban change from a complex adaptive systems approach. Int. Plan. Stud. 23, 250–263 (2018).Article 

    Google Scholar 
    Sharifi, A. Resilient urban forms: a macro-scale analysis. Cities 85, 1–14 (2019).Article 

    Google Scholar 
    Borgström, S. T., Elmqvist, T., Angelstam, P. & Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 11, 16 (2006).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S. & Peterson, G. D. Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17, 30 (2012).Article 

    Google Scholar 
    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).Article 

    Google Scholar 
    Peters, D. P., Bestelmeyer, B. T. & Turner, M. G. Cross-scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10, 790–796 (2007).Article 

    Google Scholar 
    Crépin, A.-S. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36, 191–213 (2007).Article 

    Google Scholar 
    Soranno, P. A. et al. Cross‐scale interactions: quantifying multi‐scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Pickett, S. T. et al. Theoretical perspectives of the Baltimore Ecosystem Study: conceptual evolution in a social–ecological research project. BioScience 70, 297–314 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunderson, L. H., Holling, C. S. & Light, S. S. Barriers and Bridges to the Renewal of Ecosystems and Institutions (Columbia Univ. Press, 1995).Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).Article 

    Google Scholar 
    Wu, J. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).Article 

    Google Scholar 
    Flores, A., Pickett, S. T., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308 (1998).Article 

    Google Scholar 
    Fauchald, P. & Tveraa, T. Hierarchical patch dynamics and animal movement pattern. Oecologia 149, 383–395 (2006).Article 
    PubMed 

    Google Scholar 
    Linton, J. & Budds, J. The hydrosocial cycle: defining and mobilizing a relational–dialectical approach to water. Geoforum 57, 170–180 (2014).Article 

    Google Scholar 
    Knox, P. & Pinch, S. Urban Social Geography: an Introduction (Routledge, 2014).Geels, F. W. From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory. Res. Policy 33, 897–920 (2004).Article 

    Google Scholar 
    West, S., Haider, L. J., Stålhammar, S. & Woroniecki, S. A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325 (2020).Article 

    Google Scholar 
    Jones, M. Phase space: geography, relational thinking, and beyond. Prog. Hum. Geogr. 33, 487–506 (2009).Article 

    Google Scholar 
    Wohl, S. Considering how morphological traits of urban fabric create affordances for complex adaptation and emergence. Prog. Hum. Geogr. 40, 30–47 (2016).Article 

    Google Scholar 
    Herold, M., Scepan, J. & Clarke, K. C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A 34, 1443–1458 (2002).Article 

    Google Scholar 
    Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).Article 
    PubMed 

    Google Scholar 
    LaCon, G. et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 8, e3038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai, S. et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl. Trop. Dis. 12, e0006743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gergel, S. E. & Turner, M. G. Learning Landscape Ecology: a Practical Guide to Concepts and Techniques (Springer, 2017).Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Phil. Trans. R. Soc. B Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector‐borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowley, W. A. & Graham, C. L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14, 1251–1257 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am. J. Trop. Med. Hyg. 101, 362–370 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Streutker, D. R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23, 2595–2608 (2002).Article 

    Google Scholar 
    Fikrig, K. et al. Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking. PLoS Negl. Trop. Dis. 14, e0008244 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samson, D. M. et al. Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida. J. Am. Mosq. Control Assoc. 29, 231–236 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grove, J. M., Locke, D. H. & O’Neil-Dunne, J. P. An ecology of prestige in New York City: examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manag. 54, 402–419 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronson, M. F. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Hemme, R. R., Thomas, C. L., Chadee, D. D. & Severson, D. W. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 4, e634 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Betancourt, T., Higuera-Mendieta, D. R., González-Uribe, C., Cortés, S. & Quintero, J. Understanding water storage practices of urban residents of an endemic dengue area in Colombia: perceptions, rationale and socio-demographic characteristics. PLoS ONE 10, e0129054 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, R., de Loë, R. & Armitage, D. A systematic review of water vulnerability assessment tools. Water Resour. Manag. 26, 4327–4346 (2012).Article 

    Google Scholar 
    Ledogar, R. J. et al. Mobilising communities for Aedes aegypti control: the SEPA approach. BMC Public Health 17, 103–114 (2017).Article 

    Google Scholar 
    Michalos, A. C. Encyclopedia of Quality of Life and Well-being Research (Springer Netherlands, 2014).Reiner, R. C. Jr, Stoddard, S. T. & Scott, T. W. Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics 6, 30–36 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whiteford, L. M. The ethnoecology of dengue fever. Med. Anthropol. Q. 11, 202–223 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ibarra, A. M. S. et al. A social–ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 14, 1135 (2014).Article 

    Google Scholar 
    Mitchell-Foster, K. L. Interdisciplinary Knowledge Translation and Evaluation Strategies for Participatory Dengue Prevention in Machala, Ecuador. PhD thesis, Univ. British Columbia (2013).Kropf, K.Aspects of urban form. Urban Morphol. 13, 105–120 (2009).Article 

    Google Scholar 
    Rose, L. A. Topographical constraints and urban land supply indexes. J. Urban Econ. 26, 335–347 (1989).Article 

    Google Scholar 
    Liu, F. “Interrupted Development”: The Effects of Blighted Neighborhoods and Topographic Barriers on Cities. PhD thesis, George Washington Univ. (2006).Durand-Lasserve, A. & Selod, H. in Urban Land Markets 101–132 (Springer, 2009).Talen, E. City Rules: How Regulations Affect Urban Form (Island Press, 2012).Scheer, B. C. The Evolution of Urban Form: Typology for Planners and Architects (Routledge, 2017).Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C. & Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 64, 1–9 (2013).Article 

    Google Scholar 
    Middel, A., Häb, K., Brazel, A. J., Martin, C. A. & Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc. Urban Plan. 122, 16–28 (2014).Article 

    Google Scholar 
    Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).Article 
    PubMed 

    Google Scholar 
    Seto, K. C. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 923–1000 (Cambridge Univ. Press, 2014).Romeo-Aznar, V., Freitas, L. P., Cruz, O. G., King, A. & Pascual, M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat. Commun. 13, 996 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lafferty, K. D. et al. Local extinction of the Asian tiger mosquito (Aedes albopictus) following rat eradication on Palmyra Atoll. Biol. Lett. 14, 20170743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, M. C., Dupont-Courtade, L. & Oueslati, W. Air pollution and urban structure linkages: evidence from European cities. Renew. Sustain. Energy Rev. 53, 1–9 (2016).Article 

    Google Scholar 
    Venter, Z. S., Krog, N. H. & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 709, 136193 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Little, E., Barrera, R., Seto, K. C. & Diuk-Wasser, M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. EcoHealth 8, 365–375 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban–forest interface in Brazil. Emerg. Microbes Infect. 7, 191 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, J. et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 16, 1918–1924 (2010).Article 
    PubMed Central 

    Google Scholar 
    Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015–2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tonkiss, F. Cities by Design: the Social Life of Urban Form (John Wiley & Sons, 2014).Hillier, B., Greene, M. & Desyllas, J. Self-generated neighbourhoods: the role of urban form in the consolidation of informal settlements. Urban Des. Int. 5, 61–96 (2000).Article 

    Google Scholar 
    Li, X., Mou, Y., Wang, H., Yin, C. & He, Q. How does polycentric urban form affect urban commuting? Quantitative measurement using geographical big data of 100 cities in China. Sustainability 10, 4566 (2018).Article 

    Google Scholar 
    Wen, T.-H., Lin, M.-H., Teng, H.-J. & Chang, N.-T. Incorporating the human–Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Appl. Geogr. 62, 256–266 (2015).Article 

    Google Scholar 
    Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, T. W. & Morrison, A. C. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr. Top. Microbiol. Immunol. 338, 115–128 (2010).PubMed 

    Google Scholar 
    Delmelle, E., Kim, C., Xiao, N. & Chen, W. Methods for space–time analysis and modeling: an overview. Int. J. Appl. Geospat. Res. 4, 1–18 (2013).Article 

    Google Scholar 
    Kua, K. P. & Lee, S. W. H. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: a systematic review and meta-analysis. PLoS ONE 16, e0244284 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chareonviriyaphap, T. et al. The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. J. Vector Ecol. 30, 344–346 (2005).PubMed 

    Google Scholar 
    Maneerat, S. & Daudé, E. A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecol. Model. 333, 66–78 (2016).Article 

    Google Scholar 
    Barbu, C. M. et al. The effects of city streets on an urban disease vector. PLoS Comput. Biol. 9, e1002801 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mesch, G. S. & Manor, O. Social ties, environmental perception, and local attachment. Environ. Behav. 30, 504–519 (1998).Article 

    Google Scholar 
    Matthews, L. & Haydon, D. Introduction. Cross-scale influences on epidemiological dynamics: from genes to ecosystems. J. R. Soc. Interface 4, 763–765 (2007).Article 
    PubMed Central 

    Google Scholar 
    Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).Article 
    PubMed 

    Google Scholar 
    Schreiber, S. J. et al. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol. 7, veaa105 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramalho, C. E. & Hobbs, R. J. Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27, 179–188 (2012).Article 
    PubMed 

    Google Scholar 
    Waggoner, J. J. et al. Homotypic dengue virus reinfections in Nicaraguan children. J. Infect. Dis. 214, 986–993 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezeakacha, N. F. & Yee, D. A. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit. Vectors 12, 123 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit. Vectors 11, 426 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, S.-C. et al. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci. Total Environ. 408, 4069–4075 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Elsinga, J. et al. Knowledge, attitudes, and preventive practices regarding dengue in Maracay, Venezuela. Am. J. Trop. Med. Hyg. 99, 195–203 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, L. P., Shakir, S. M. M., Atefi, N. & AbuBakar, S. Factors affecting dengue prevention practices: nationwide survey of the Malaysian public. PLoS ONE 10, e0122890 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).Article 
    PubMed 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    Combs, M. A. et al. Socio‐ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob. Change Biol. 28, 1705–1724 (2022).Article 
    CAS 

    Google Scholar 
    Zhou, Q.A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6, 976–992 (2014).Article 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Co-developing climate services for public health: stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Negl. Trop. Dis. 13, e0007772 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).Article 
    PubMed 

    Google Scholar 
    Lippi, C. A. et al. A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. Int. J. Health Geogr. 19, 3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Projection of the Ecuadorian Population, per Calendar Years, by Cantons 2010–2020 (National Institute of Statistics and Census, 2012).Pertumbuhan Ekonomi Indonesia Triwulan II (Badann Pusat Statistik, 2021).Rašić, G. et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasit. Vectors 8, 610 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L. et al. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian tiger mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0006009 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L., Filipović, I., Hoffmann, A. A. & Rašić, G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120, 386–395 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tantowijoyo, W. et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 14, e0008157 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. The spread of dengue in an endemic urban milieu—the case of Delhi, India. PLoS ONE 11, e0146539 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. Social and environmental risk factors for dengue in Delhi city: a retrospective study. PLoS Negl. Trop. Dis. 15, e0009024 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, E. C. & Seto, K. C. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett. 14, 045002 (2019).Article 

    Google Scholar 
    Jackson-Smith, D. B. et al. Differentiating urban forms: a neighborhood typology for understanding urban water systems. Cities Environ. 9, 5 (2016).
    Google Scholar 
    Population Census by Age (Department of Provincial Administration, accessed March 2022); https://stat.bora.dopa.go.th/new_stat/webPage/statByAge.phpSalje, H. et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc. Natl Acad. Sci. USA 109, 9535–9538 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salje, H. et al. Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nat. Commun. 12, 1810 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chai, B. & Seto, K. C. Conceptualizing and characterizing micro-urbanization: a new perspective applied to Africa. Landsc. Urban Plan. 190, 103595 (2019).Article 

    Google Scholar 
    Zhu, G., Liu, J., Tan, Q. & Shi, B. Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLoS Negl. Trop. Dis. 10, e0004633 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Hamid, N. et al. Vertical infestation profile of Aedes in selected urban high-rise residences in Malaysia. Trop. Med. Infect. Dis. 5, 114 (2020).Article 
    PubMed Central 

    Google Scholar 
    Sun, H. et al. Spatio-temporal analysis of the main dengue vector populations in Singapore. Parasit. Vectors 14, 41 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ho, C.-M. et al. Surveillance for dengue fever vectors using ovitraps at Kaohsiung and Tainan in Taiwan. Formos. Entomol. 25, 159–174 (2005).
    Google Scholar 
    McKenzie, D. & Ray, I. Urban water supply in India: status, reform options and possible lessons. Water Policy 11, 442–460 (2009).Article 

    Google Scholar 
    Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G. & Reckhow, K. H. On the application of multilevel modeling in environmental and ecological studies. Ecology 91, 355–361 (2010).Article 
    PubMed 

    Google Scholar 
    Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130551 (2015).Article 

    Google Scholar 
    Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L. & Taylor, W. Effect of climate on wildfire size: a cross-scale analysis. Ecosystems 13, 828–840 (2010).Article 

    Google Scholar 
    Chiu, C.-H., Wen, T.-H., Chien, L.-C. & Yu, H.-L. A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLoS ONE 9, e106334 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higuera-Mendieta, D. R., Cortés-Corrales, S., Quintero, J. & González-Uribe, C. KAP surveys and dengue control in Colombia: disentangling the effect of sociodemographic factors using multiple correspondence analysis. PLoS Negl. Trop. Dis. 10, e0005016 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. H., Yuan, J. & Wang, T. Direct cost of dengue hospitalization in Zhongshan, China: associations with demographics, virus types and hospital accreditation. PLoS Negl. Trop. Dis. 11, e0005784 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tam, C. C. et al. Estimates of dengue force of infection in children in Colombo, Sri Lanka. PLoS Negl. Trop. Dis. 7, e2259 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. & Castillo-Chavez, C. The role of residence times in two-patch dengue transmission dynamics and optimal strategies. J. Theor. Biol. 374, 152–164 (2015).Article 
    PubMed 

    Google Scholar 
    Adams, B. & Kapan, D. D. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS ONE 4, e6763 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M., Schweigmann, N. & Solari, H. G. A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol. 70, 1297–1325 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M. & Solari, H. G. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 223, 32–46 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. & Liu, X. Embedding sustainable development strategies in agent‐based models for use as a planning tool. Int. J. Geogr. Inf. Sci. 22, 21–45 (2008).Article 

    Google Scholar 
    Mozaffaree Pour, N. & Oja, T. Urban expansion simulated by integrated cellular automata and agent-based models; an example of Tallinn, Estonia. Urban Sci. 5, 85 (2021).Article 

    Google Scholar 
    Gilbert, N. Agent-Based Models Vol. 153 (Sage Publications, 2019).Roster, K. & Rodrigues, F. A. Neural networks for dengue prediction: a systematic review. Preprint at https://arxiv.org/abs/2106.12905 (2021).Zhao, N. et al. Machine learning and dengue forecasting: comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl. Trop. Dis. 14, e0008056 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhai, Y. et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 34, 1475–1499 (2020).Article 

    Google Scholar 
    Verma, D. & Jana, A. LULC classification methodology based on simple Convolutional Neural Network to map complex urban forms at finer scale: evidence from Mumbai. Preprint at https://arxiv.org/abs/1909.09774 (2019).Djenontin, I. N. S. & Meadow, A. M. The art of co-production of knowledge in environmental sciences and management: lessons from international practice. Environ. Manag. 61, 885–903 (2018).Article 

    Google Scholar 
    Meschede, C. & Mainka, A. Including citizen participation formats for drafting and implementing local sustainable development strategies. Urban Sci. 4, 13 (2020).Article 

    Google Scholar 
    Mansfield, R. G., Batagol, B. & Raven, R. “Critical agents of change?”: opportunities and limits to children’s participation in urban planning. J. Plan. Lit. 36, 170–186 (2021).Article 

    Google Scholar 
    Curtis, A., Quinn, M., Obenauer, J. & Renk, B. M. Supporting local health decision making with spatial video: dengue, Chikungunya and Zika risks in a data poor, informal community in Nicaragua. Appl. Geogr. 87, 197–206 (2017).Article 

    Google Scholar 
    Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    Dickens, L. & Butcher, M. Going public? Re‐thinking visibility, ethics and recognition through participatory research praxis. Trans. Inst. Br. Geogr. 41, 528–540 (2016).Article 

    Google Scholar 
    Wallerstein, N. et al. Power dynamics in community-based participatory research: a multiple-case study analysis of partnering contexts, histories, and practices. Health Educ. Behav. 46, 19S–32S (2019).Article 
    PubMed 

    Google Scholar 
    Parra, C. et al. Synergies between technology, participation, and citizen science in a community-based dengue prevention program. Am. Behav. Sci. 64, 1850–1870 (2020).Article 

    Google Scholar 
    Lozano–Fuentes, S. et al. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J. Med. Entomol. 50, 879–889 (2013).Article 
    PubMed 

    Google Scholar 
    Kelvin, A. A. et al. ZIKATracker: a mobile app for reporting cases of ZIKV worldwide. J. Infect. Dev. Ctries. 10, 113–115 (2016).Article 
    PubMed 

    Google Scholar 
    Fernandez, M. P. et al. Usability and feasibility of a smartphone app to assess human behavioral factors associated with tick exposure (The Tick App): quantitative and qualitative study. JMIR mHealth uHealth 7, e14769 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).Article 
    PubMed 

    Google Scholar 
    Van Leeuwen, J. P., Hermans, K., Jylhä, A., Quanjer, A. J. & Nijman, H. Effectiveness of virtual reality in participatory urban planning: a case study. In Proc. Media Architecture Biennale 128–136 (Association for Computing Machinery, 2018).Kahila-Tani, M. Reshaping the Planning Process Using Local Experiences: Utilising PPGIS in Participatory Urban Planning. PhD thesis, Aalto Univ. (2015).Iwaniec, D. M. et al. The co-production of sustainable future scenarios. Landsc. Urban Plan. 197, 103744 (2020).Article 

    Google Scholar 
    Dickin, S. K., Schuster-Wallace, C. J. & Elliott, S. J. Mosquitoes & vulnerable spaces: mapping local knowledge of sites for dengue control in Seremban and Putrajaya Malaysia. Appl. Geogr. 46, 71–79 (2014).Article 

    Google Scholar 
    Chircop, A., Bassett, R. & Taylor, E. Evidence on how to practice intersectoral collaboration for health equity: a scoping review. Crit. Public Health 25, 178–191 (2015).Article 

    Google Scholar 
    Gamache, S., Diallo, T. A., Shankardass, K. & Lebel, A. The elaboration of an intersectoral partnership to perform health impact assessment in urban planning: the experience of Quebec City (Canada). Int. J. Environ. Res. Public Health 17, 7556 (2020).Article 
    PubMed Central 

    Google Scholar 
    Herdiana, H., Sari, J. F. K. & Whittaker, M. Intersectoral collaboration for the prevention and control of vector borne diseases to support the implementation of a global strategy: a systematic review. PLoS ONE 13, e0204659 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. A., Economou, T., de Castro Catão, R., Barcellos, C. & Lowe, R. The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl. Trop. Dis. 15, e0009773 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johansson, M. A., Cummings, D. A. & Glass, G. E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 6, e1000168 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5, e1378 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hess, G. Disease in metapopulation models: implications for conservation. Ecology 77, 1617–1632 (1996).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol. 4, 113–114 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Masui, H. et al. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities. Theor. Biol. Med. Model. 13, 12 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Negl. Trop. Dis. 13, e0007479 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Reilly, K. M. et al. Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Med. 16, 180 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santé, I., García, A. M., Miranda, D. & Crecente, R. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan. 96, 108–122 (2010).Article 

    Google Scholar 
    Yang, J., Gong, J., Tang, W. & Liu, C. Patch-based cellular automata model of urban growth simulation: integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 79, 101402 (2020).Article 

    Google Scholar 
    Rozos, E., Butler, D. & Makropoulos, C. An integrated system dynamics–cellular automata model for distributed water-infrastructure planning. Water Sci. Technol. Water Supply 16, 1519–1527 (2016).Article 

    Google Scholar 
    Enduri, M. K. & Jolad, S. Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018).Article 
    PubMed 

    Google Scholar 
    Medeiros, L. C. et al. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl. Trop. Dis. 5, e942 (2011).Article 
    PubMed Central 

    Google Scholar 
    Ali, A. M., Shafiee, M. E. & Berglund, E. Z. Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain. Cities Soc. 28, 420–434 (2017).Article 

    Google Scholar 
    Philippon, D. et al. in Multi-Agent Based Simulation XVII. MABS 2016. Lecture Notes in Computer Science Vol 10399 (eds Nardin, L. & Antunes, L.) 111–127 (Springer, 2016).Agyemang, F. S., Silva, E. & Fox, S.Modelling and simulating ‘informal urbanization’: an integrated agent-based and cellular automata model of urban residential growth in Ghana. Urban Anal. City Sci. 0, 1–15 (2022).
    Google Scholar 
    Chouhan, S. S., Kaul, A. & Singh, U. P. Image segmentation using computational intelligence techniques. Arch. Comput. Methods Eng. 26, 533–596 (2019).Article 

    Google Scholar 
    Andersson, V. O., Birck, M. A. F. & Araujo, R. M. Towards predicting dengue fever rates using convolutional neural networks and street-level images. Proc. 2018 Int. Jt Conf. Neural Netw. 1–8 (IEEE, 2018).Chrysler, A., Gunarso, R., Puteri, T. & Warnars, H. A Literature Review of Crowd-Counting System on Convolutional Neural Network 012029 (IOP Conference Series: Earth and Environmental Science Volume 729, IOP Publishing, 2021).Bharambe, A., Chandorkar, A. A. & Kalbande, D. A deep learning approach for dengue tweet classification. Proc. 3rd Int. Conf. Invent. Res. Comput. Appl. 1043–1047 (IEEE, 2021).Kumar, A. & Garg, G. Sentiment analysis of multimodal twitter data. Multimed. Tools Appl. 78, 24103–24119 (2019).Article 

    Google Scholar 
    Marin, A. & Wellman, B. in The SAGE Handbook of Social Network Analysis Ch. 2 (2011).Snijders, T. A. & Steglich, C. E. Representing micro–macro linkages by actor-based dynamic network models. Sociol. Methods Res. 44, 222–271 (2015).Article 
    PubMed 

    Google Scholar 
    Warren, C. R., Burton, R., Buchanan, O. & Birnie, R. V. Limited adoption of short rotation coppice: the role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 45, 175–183 (2016).Article 

    Google Scholar 
    Beal Cohen, A. A., Muneepeerakul, R. & Kiker, G. Intra-group decision-making in agent-based models. Sci. Rep. 11, 17709 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frederiks, E. R., Stenner, K. & Hobman, E. V. Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 41, 1385–1394 (2015).Article 

    Google Scholar 
    Spiegel, J. et al. Barriers and bridges to prevention and control of dengue: the need for a social–ecological approach. EcoHealth 2, 273–290 (2005).Article 

    Google Scholar 
    Arellano, C. et al. Knowledge and beliefs about dengue transmission and their relationship with prevention practices in Hermosillo, Sonora. Front. Public Health 3, 142 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gertler, M. S. & Wolfe, D. A. Local social knowledge management: community actors, institutions and multilevel governance in regional foresight exercises. Futures 36, 45–65 (2004).Article 

    Google Scholar 
    Brown, R. R., Farrelly, M. A. & Loorbach, D. A. Actors working the institutions in sustainability transitions: the case of Melbourne’s stormwater management. Glob. Environ. Change 23, 701–718 (2013).Article 

    Google Scholar 
    Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. & Kelly, B. F. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ. Model. Softw. 73, 305–323 (2015).Article 

    Google Scholar 
    Sabatier, P. A. Toward better theories of the policy process. PS Polit. Sci. Polit. 24, 147–156 (1991).Article 

    Google Scholar 
    Abrantes, P. et al. Modelling urban form: a multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 46, 47–65 (2019).Article 

    Google Scholar 
    McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure Vol. 351 (US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995).Vazquez-Prokopec, G. M. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE 8, e58802 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ligtenberg, A., van Lammeren, R. J., Bregt, A. K. & Beulens, A. J. Validation of an agent-based model for spatial planning: a role-playing approach. Comput. Environ. Urban Syst. 34, 424–434 (2010).Article 

    Google Scholar  More

  • in

    Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts

    Molecular Phylogeny of Paramecium bursaria and Identification of its EndosymbiontsThe SSU and ITS rDNA of the nuclear ribosomal operon were sequenced to infer the genetic variability of the investigated strains. The SSU and ITS rDNA sequences were aligned according to their secondary structure (examples are presented for the strain SAG 27.96; Fig. 1 and Supplementary Fig. 1). Additional sequences acquired from GenBank were incorporated into a dataset, which included all syngens also from references known for P. bursaria. The phylogenetic analyses revealed five highly supported lineages among the P. bursaria strains, which corresponded to their syngen assignment. As demonstrated in Fig. 2, all investigated strains belonging to the syngens R1, R2 and R5 originated from Europe, whereas the others of the syngens R3-R4 showed a worldwide distribution. The three known green algal endosymbionts, i.e., Chlorella variabilis (Cvar), Chlorella vulgaris (Cvul) and Micractinium conductrix (Mcon) showed no or only little affiliation to specific syngens.Figure 1ITS‐1 (A) and ITS-2 (B) secondary structures of Paramecium protobursaria, SAG 27.96 (syngen R1).Full size imageFigure 2Molecular phylogeny of the Paramecium bursaria species complex based on SSU and ITS rDNA sequence comparisons. The phylogenetic tree shown was inferred using the maximum likelihood method based on the datasets (2197 aligned positions of 19 taxa) using the computer program PAUP 4.0a169. For the analyses, the best model was calculated by PAUP 4.0a169. The setting of the best model was given as follows: TVM + I (base frequencies: A 0.2983, C 0.1840, G 0.2271, T 0.2906; rate matrix A–C 2.6501, A–G 8.6851, A–U 5.3270, C–G 0.91732, C–U 8.6851, G–U 1.0000) with the proportion of invariable sites (I = 0.9544). The branches in bold are highly supported in all bootstrap analyses (bootstrap values  > 50% calculated with PAUP using the maximum likelihood, neighbour—joining, and maximum parsimony). The clades are named after the syngens (color‐coded) proposed by Greczek‐Stachura et al.10 and Bomford9 in brackets. The accession numbers are given after the strain numbers. The endosymbiotic green algae identified are highlighted (Mcon—Micractinium conductrix, Cvar—Chlorella variabilis and Cvul—Chlorella vulgaris) after the origin of the P. bursaria strains. The reference strain of each syngen is marked with an asterisk. The strains used for morphological comparisons are marked with a green dot next to the strain number.Full size imageSynapomorphies of the Paramecium bursaria SyngensAs demonstrated in Fig. 2, the subdivision of the P. bursaria strains into syngens is supported by the phylogenetic analyses of the SSU and ITS rDNA sequences. To figure out if these splits were also supported by characteristic molecular signatures, we studied the secondary structures of both SSU and ITS of all available sequences. We discovered 30, respectively 23 variable positions among the SSU and ITS sequences (numbers of these positions in the respective alignments are given in Fig. 3). All syngens showed characteristic patterns among the SSU and ITS. Only the syngens R1 and R2 could not be distinguished using the SSU only, however, in combination with the ITS, each syngen is characterized by unique synapomorphies as highlighted in yellow (Fig. 3). In addition, few variable base positions within syngens (marked in blue in Fig. 3) have been recognized in the ITS regions. For comparison with literature data, we also analyzed all available sequences of the mitochondrial COI gene to find synapomorphies for the five syngens. Within this gene, only 18 variable positions at the amino acid level could be discovered of which 13 are diagnostic for the five syngens (Fig. 3).Figure 3Variable base positions among the SSU, ITS rRNA, and COI sequences of the five syngens among the Paramecium bursaria species complex. The unique synapomorphies are highlighted in yellow, variable positions marked in blue.Full size imageThe synapomorphies discovered above were used to get insights into the geographical distribution of each P. bursaria syngen. Despite the complete SSU and ITS rDNA sequences included in the phylogeny presented in Fig. 2, records of the partial SSU or ITS rDNA sequences are available in GenBank (BLASTn search; 100% identity;13). Considering the metadata of our investigated strains and of the entries in GenBank (Supplementary Table 1), we constructed three haplotype networks using the Templeton-Crandall-Sing (TCS) approach. The SSU haplotype network (Fig. 4) containing 84 records showed that the syngens R1, R2 and R5 were only found in Europe, whereas the other three syngens have been discovered around the world. A similar distribution pattern occurred when using the ITS (101 entries in GenBank). Records of syngens R1 and R5 have only been found in Europe, whereas all other syngens were distributed around the world. The 132 COI records found in GenBank by the BLASTn search were used for the haplotype network, which also showed the similar pattern (Fig. 4).Figure 4TCS haplotype networks of the five syngens inferred from SSU, ITS rRNA, and COI sequences of the Paramecium bursaria species complex. This network was inferred using the algorithm described by Clement et al.40,41. Sequence nodes corresponding to samples collected from different geographical regions.Full size imageCiliate TaxonomyConsidering all our findings, P. bursaria is morphologically highly variable, and obviously represents a cryptic species complex (Figs. 5, 6; Supplementary Table 2). The known five syngens most likely represent biological species according to Mayr14 and can be attributed to the cryptic species described by Greczek-Stachura et al.11. As mentioned above, the assignments of these cryptic species by Greczek-Stachura et al.11 have not been validly described according to the ICZN. In addition, the naming using a mixture of Latin prefix and Greek suffix is also not appropriate (the epithet bursa derived from the Greek word byrsa). Therefore, we describe the five syngens as new species as follows. The general morphological features of these species are summarized in Table 1.Figure 5Ventral views of Paramecium bursaria morphotypes in vivo: P. protobursaria (syngen R1), i.e., strains SAG 2645 (A) and PB-25 (B); P. deuterobursaria (syngen R2), i.e., strains CCAP 1660/36 (C) and CCAP 1660/34 (D); P. tritobursaria (syngen R3), i.e., strains CCAP 1660/28 (E), CCAP 1660/26 (F) and CCAP 1660/31 (G); P. tetratobursaria (syngen R4), i.e., strains CCAP 1660/25 (H) and CCAP 1660/33 (I); P. pentobursaria (syngen R5), i.e., strain CCAP 1660/30 (J). Scale bar 20 µm.Full size imageFigure 6Morphological details of the Paramecium bursaria species complex from specimens of strains PB-25 (A), CCAP 1660/30 (B), SAG 2645 (C, F, G, I, L–N), CCAP 1660/36 (D), CCAP 1660/26 (E, H), CCAP 1660/30 (J, O), CCAP 1660/16 (K) in vivo (A–F, H–O) and after silver nitrate staining (G). Adoral membranelles (A, B), endosymbiotic algae Micractinium conductrix (C), caudal and somatic cilia (D), arrows denote excretory pores of the contractile vacuoles: extruded extrusomes are shown and caudal cilia (E), ventral views showing the preoral suture and the oral opening (F), the ciliary pattern (G), arrows denote excretory pores of the contractile vacuoles (H), trichocysts and symbiotic algae underneath the pellicula (I, J), cell size variations (K), radial collecting channels (white arrows) and excretory pores (black arrows) of contractile vacuoles (L), macro- and micronucleus (M), cytopyge and characteristic rectangular pellicular pattern (N), pattern of the pellicula (O). AS anterior suture, CC caudal cilia, CP cytopyge (cell after), CV contractile vacuole, EP excretory pore of a contractile vacuole, EX extrusomes, M1–M3 membranelles 1–3, MA macronucleus, MI micronucleus, OO oral opening, S symbiotic algae, SC somatic cilia, SK somatic kineties, UM undulating membrane. Scale bars 10 µm (A, I), 20 µm (B, D–H, J, L–O), 50 µm (K).Full size imageTable 1 Main morphometric and morphological characteristics of the Paramecium bursaria syngens (min and max values).Full size table
    Paramecium protobursaria sp. nov.Synonym: Paramecium primabursaria nom. inval.Description: The strains SAG 27.96 and PB-25 belong to syngen R1 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231333). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 70–164 × 44–65 µm; the single macronucleus is located around mid-cell and measures 25–38 × 11–22 µm; the adjacent single compact micronucleus measures 11–20 × 5–8 µm; the usually two (rarely one) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–22; the length of the caudal cilia is 9–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 4–7 × 4–7 µm; the smaller algal cells measure 2–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R1 were found in Europe: Göttingen, Germany; Lake Mondsee, Austria. In addition, this species has been reported from different places in Europe, Asia and North America (see details in Supplementary Table 1).Reference material: Strain SAG 27.96 and the clonal strain SAG 2645 derived from SAG 27.96 are available at the Culture Collection of Algae (SAG), University of Göttingen, Germany.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the clonal culture SAG 2645, which derived from the reference material SAG 27.96, isolated from the pond of the Old Botanical Garden of the University of Göttingen (Germany), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: AFD967ED-BC2A-43FD-847E-5DF588BB025C.
    Paramecium deuterobursaria sp. nov.Synonym: Paramecium bibursaria nom. inval.Description: The strains CCAP 1660/34 and CCAP 1660/36 belong to syngen R2 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (OK318487). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 81–167 × 35–83 µm; the single macronucleus is located around mid-cell and measures 24–46 × 10–32 µm; the adjacent single compact micronucleus measures 10–18 × 5–9 µm, no micronucleus seen in live cells of strain CCAP 1660/34; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 13–22; the length of the caudal cilia is 11–20 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 5–7 × 4–7 µm; the smaller algal cells measure 3–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R2 were found in Europe: Zurich, Switzerland; Lake Piburg, Austria. In addition, this species has been reported from different places in Europe, Asia and Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/36 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/36, isolated from Lake Piburg (Tyrol, Austria), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: D1C20BE6-9A15-4A3D-A7E5-DFC31FF04679.
    Paramecium tritobursaria sp. nov.Synonym: Paramecium tribursaria nom. inval.Description: The strains CCAP 1660/26, CCAP 1660/28 and CCAP 1660/31 belong to syngen R3 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231339). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 80–153 × 49–73 µm; the single macronucleus is located around mid-cell and measures 21–53 × 12–31 µm; the adjacent single compact micronucleus measures 9–17 × 3–6 µm; no micronucleus seen in live cells of strain CCAP 1660/28; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 12–20; the length of the caudal cilia is 8–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 4–7 × 3–6 µm; the smaller algal cells measure 3–5 × 2–4 µm.Geographic distribution: The investigated strains of syngen R3 were found in Europe and Asia: Lake Piburg, Austria; Tokyo, Japan; Khabarovsk region, Amur River, Russia. In addition, this species has been reported from different places in Europe, Asia, North and South America as well as in Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/26 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/26, isolated from Japan, have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: CC0FBA7E-9E3A-4C37-B424-C9BFF2018EC0.
    Paramecium tetratobursaria sp. nov.Synonym: Paramecium tetrabursaria nom. inval.Description: The strains CCAP 1660/25 and CCAP 1660/33 belong to syngen R4 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231347). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 65–179 × 37–79 µm; the single macronucleus is located around mid-cell and measures 18–53 × 10–29 µm; the adjacent single compact micronucleus measures 8–18 × 4–10 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–19; the length of the caudal cilia is 12–20 µm; the numerous trichocysts located in the cell cortex are 4–7 µm in length. The symbiotic algae belong to C. variabilis (CCAP 1660/25) and M. conductrix (CCAP 1660/33); the larger algae measure 3–6 × 3–6 µm; the smaller algal cells measure 2–5 × 1–4 µm.Geographic distribution: The investigated strains of syngen R4 are found in North- and South America: Burlington, North Carolina, USA; San Pedro de la Paz, Laguna Grande, Chile. In addition, this species has been reported from Europe (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/25 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/25, isolated from a pond in Burlington (North Carolina, USA), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 78BA9923-07A9-4918-AD7C-9E5E15CC9CDB.
    Paramecium pentobursaria sp. nov.Synonym: Paramecium pentabursaria nom. inval.Description: The strain CCAP 1660/30 belongs to syngen R5 according to Greczek-Stachura et al.10,11 and differs from other syngens by their SSU and ITS rDNA sequences (MT231348). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 161–194 × 76–99 µm; the single macronucleus is located around mid-cell and measures 24–47 × 19–31 µm; the adjacent single compact micronucleus measures 13–20 × 4–9 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–4 excretory pores each; the number of ciliary rows/20 µm is 13–19; the length of the caudal cilia is 14–25 µm; the numerous trichocysts located in the cell cortex are 5–7 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 5–6 × 5–6 µm; the smaller algal cells measure 4–5 × 3–4 µm.Geographic distribution: The investigated strain of Syngen R5 was found in Europe: Astrakhan Nature Reserve, Russia.Reference material: Strain CCAP 1660/30 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/30, isolated from Astrakhan Nature Reserve (Russia), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 6629FA71-E00F-48C6-83AB-61C0CA4823B6.Syngen Affiliation related to Ciliate Morphology, Endosymbionts and Geographic DistributionPearson-correlations of morphometric, syngen-specific and endosymbiont datasets of the P. bursaria strains revealed four significant positive correlations (p  r  > 0.75) between ciliate cell length (BLEN) and width (BWID), BWID and macronucleus width (MACWID), as well as length and width of large symbiotic algae (LSALEN and LSAWID; Fig. 7).Figure 7Pearson-correlations of morphometric, symbiont and syngen data of Paramecium strains under study. Colored dots indicate the strength of correlation, and the size of dots represent p-values. Bold squares highlight significant correlations, with − 0.75  > r  > 0.75 and p  1, accounting for 73.1% variation in total (Supplementary Table 3). Principal component axis 1 (PC1) appears to be most negatively weighted by syngen (SYN) and width of the macronucleus (MACWID), separating CCAP 1660/30 and CCAP 1660/33 from the other strains. Principal component axis 2 (PC2) is primarily positively influenced by symbiotic algae characteristics (LSALEN, LSAWID, small symbiotic algal length (SSALEN) and width (SSAWID)) and, ciliate cell length (BLEN) and width (BWID; Supplementary Table 4), partitioning strain PB-25, CCAP 1660/26 and CCAP 1660/36 from CCAP 1660/31 and SAG 27.96 (Fig. 8).Figure 8PCA of morphometric data of Paramecium bursaria strains. Only the top eight contributing variables are shown.Full size imageThe redundancy analysis (RDA; Fig. 9) revealed a large difference between morphometric features and the tested set of explanatory variables (i.e., algal species (ALSPEC), LSAWID, SSALEN, SYN and GEO) as only 26.9% of the total variation could be explained.Figure 9Ordination diagram for redundancy analysis (RDA) of morphometric data and shown syngen (SYN), geographic region (GEO), and algal features (ALSPEC, LSAWID and SSALEN) as explanatory features.Full size image More

  • in

    Smaller birds with warmer temperatures

    Gill, J. A. et al. Proc. R. Soc. B 281, 20132161 (2014).Article 

    Google Scholar 
    Tomotani, B. M. et al. Glob. Chang. Biol. 24, 823–835 (2018).Article 

    Google Scholar 
    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Proc. Natl Acad. Sci. USA 105, 13492–13496 (2008).Article 
    CAS 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Youngflesh, C., Saracco, J. F., Siegel, R. B. & Tingley, M. W. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01893-x (2022).Article 

    Google Scholar 
    Hughes, E. C. et al. Ecol. Lett. 25, 598–610 (2022).Article 

    Google Scholar 
    Tobias, J. A. et al. Ecol. Lett. 25, 581–597 (2022).Article 

    Google Scholar 
    Shine, R. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    Dubiner, S. & Meiri, S. Glob. Ecol. Biogeogr. 31, 791–801 (2022).Article 

    Google Scholar 
    Jirinec, V. et al. Sci. Adv. 7, eabk1743 (2021).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Parmesan, C. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phil. Trans. R. Soc. Lond. B 374, 20180178 (2019).Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. Glob. Change Biol. 12, 450–455 (2006).Article 

    Google Scholar 
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Conserv. Biol. 25, 163–171 (2011).Article 

    Google Scholar 
    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).Berg, M. P. & Ellers, J. Evol. Ecol. 24, 617–629 (2010).Article 

    Google Scholar  More