More stories

  • in

    Tiger sharks support the characterization of the world’s largest seagrass ecosystem

    Ground-truth surveys of seagrass habitatTo obtain georeferenced field data on benthic cover levels from habitats of the Bahama Banks, we employed two similar, in-water survey and image approaches: (1) swimmer-based photo-transects; and (2) tow board photo transects (Supplementary Fig. 6), resulting in a total of 2542 surveys.For (1), free-divers swam over the bottom of the seafloor at a fixed height with a digital camera (Canon 5D mIV, GoPro Hero) set to capture images manually. Photographs were captured using automatic settings in a 1.0 m × 1.0 m footprint, 1.5 m above the seafloor following [39]. A center console vessel was used to run the transects at distances of 5–7 km, whereby the free-diver would capture successive photos at a horizontal distance of between 400–800 m, and the location was logged using either a handheld GPS (Garmin GPS 73) or a boat-mounted GPS with a depth sounder (Garmin EchoMap DV). Transect locations were chosen based on a priori local expert knowledge of varying benthic cover in the region. Surveyed areas included: southern New Providence (24.948862°, −77.387834°), southeast of New Providence (24.980265°, −77.229168°), south of Rose Island (25.066268°, −77.160063°), the middle Great Bahama Bank (24.735355°, −77.212998°), and the northern Exumas (24.729973°, −76.889488°). For (2), snorkeling observers were pulled from a research vessel on tow boards affixed with underwater action cameras (GoPro Hero 3+) traveling at ~1 m/s. The start and end of a tow were delineated with either a handheld GPS (Garmin eTrex 30) or a boat mounted GPS with depth-finder (Garmin EchoMap DV), and tows proceeded in a straight line recorded by the GPS. Cameras recorded images at 0.5 Hz throughout the tow, starting in conjunction with creating a waypoint. Samples (i.e., paired image and geolocated point) were sub-selected from the tow once movement began, at the midpoint of a tow, and immediately before movement stopped. Images were manually quality controlled such that if a selected image contained obstructions or was out of focus, the nearest clear image was selected to replace it. If no images within 10 s were clear (i.e., 10 m maximum spatial error), the sample was discarded. If the GPS track contained gaps or segments larger than 10 m, only images/point pairs at the start and end waypoints were sampled.Surveys focused on historical fishing grounds for queen conch (Lobatus gigas) between 2015 and 2018 following the sampling design and methods of ref. 32. A stratified random design was used to allocate 6000 m2 of observation effort into each cell of a 1’ by 1’ grid placed over each fishing ground. This effort was split into multiple tows between 200 and 1000 m in length, thus images were separated by at least 100 m.Fishing grounds extended from the edge of a deepwater sound to between 7 and 10 km up the bank and were limited to the depths used by freediving fishers. Surveyed fishing grounds included: the Exumas (24.382207°, −76.631058°), the southwestern Berry Islands (25.455529°, −78.014214°), south of Bimini (25.375592°, −79.187609°), the Grassy Cays (23.666864°, −77.383547°), the Joulter Cays (25.321297°, −78.109251°) and the southeast tip of the Tongue of the Ocean (23.376417°, −76.621943°). For details on image processing, see section on remote sensing below.Sediment coringTo gather the sediment cores analyzed for organic carbon content on the Bahama Banks, we collected samples from various benthic habitats that included varying densities of seagrass habitat (Thalassia testidinum and Syringodium filiforme). We percussed, via SCUBA, an acrylic cylinder tube perpendicular to the seafloor into marine sediment until rejection at various penetration depths up to 30 cm. The sample was then extracted vertically from the marine sediment and capped at the bottom to avoid loss of material. This sample was then transported vertically through the water column to a research vessel where it was removed from the coring device and immediately capped on top with an air-tight cap. Compression rates were negligible (~5 cm) across the first 5 cores, and as such were not subsequently measured. The samples were then labeled, photographed, geotagged, and the first 30 centimeters of each core was extruded. To complete the extrusion process, we placed each sample on top of a capped piston device in the same orientation as collection (deepest portion of collected sediment still on the bottom). The bottom cap was removed to thread the acrylic cylinder tube onto the piston device and then was lowered to various measured lengths to collect corresponding depth sections of the sediment core. These sections were sliced (every 1–5 centimeters), labeled, and placed into whirl pack bags to collect the wet weight of each sample. All samples were then frozen and stored for future laboratory analyses. All samples were dried in a laboratory oven at 55 °C for 48 h until constant dry weights were reached. The samples were then weighed to collect their corresponding dry weights. The dry bulk density (DBD) was calculated by diving the sample dry weight (g) by the sample volume (cm3). The samples were then further ground with a mortar and pestle until a homogeneous fine grain size was achieved. Sediment samples collected from the Exuma Cays (142 samples from 16 cores) were analyzed for Corg content. Sediment samples were weighed accurately into silver capsules and acidified with 4% HCl until no effervescence was detected in two consecutive cycles. The samples were then dried in a 60 °C oven overnight, encapsulated into tin capsules and analyzed using an Organic Elemental Analyzer Flash 2000 (Thermo Fisher Scientific, Massachusetts, USA). We then conducted a standard loss on ignition (LOI) methodology at our laboratory facility (Braintree, Massachusetts, USA) for all the samples. Each sample was subsequently sub sampled with 5–15 grams of representative material and placed into a ceramic crucible to collect its mass. The crucibles were then loaded into a separate muffle laboratory oven and heated at 550 °C for 6 h. Upon completion of this muffle, the crucibles were then immediately weighed to collect the LOI of organic material from each sample, defined as the weight lost in the muffle (g) divided by the subsample dry weight (g). A fitted regression between the Corg and LOI from the Exuma Cays cores was generated (Supplementary Fig. 7), and then used to predict the sediment Corg contents from LOI measurements in the Grand Bahama cores. Sediment Corg stocks were quantified by multiplying Corg and DBD data by soil depth increment (1–5 cm) of the sampled soil cores. The cores from the Exuma Cays (15 cm) and Grand Bahama (30 cm) were collected with different depths, we therefore fitted a regression between Corg stock in 15 cm-depth and Corg stock in 30 cm-depth for the Grand Bahama cores (Supplementary Fig. 8) and used this regression to extrapolate Corg stock of the Exuma Cays cores into 30 cm-depth. Moreover, to allow direct comparison among other studies27, the Corg stock per unit area was standardized to 1 m-thick deposits by multiplying 100/30.Tiger shark taggingThe research and protocols conducted in this study complies with relevant ethical regulations as approved by the Carleton University Animal Care Committee. The shark data used in this paper were collected as part of a multi-year, long-term research program evaluating the interannual behavior and physiology of large sharks throughout the coastal waters of The Commonwealth of The Bahamas23. All sharks were captured using standardized circle-hook drumlines33 on the Great and Little Bahama Banks throughout the country, focusing efforts in three primary locations: off New Providence Island, the Exuma Cays, and off West End, Grand Bahama, from 2011–2019. All sharks were secured alongside center console research vessels and local dive boats, where their sex, morphometric measurements, and blood samples were taken. A mark-recapture identification tag was applied to the shark at the base of the dorsal fin. Some of the sharks sampled in the present study were also tagged with a coded acoustic transmitter which was surgically implanted ventrally into the peritoneal cavity and then sutured, as part of a concurrent study on shark habitat use and residency within the region23.Pop-off archival satellite tags were affixed to eight tiger sharks (seven female, one male; 298 ± 28 cm total length; mean ± SD) in The Bahamas from 2011–2019, permitting measurements of swimming depth and water temperature recorded at either 4-min (Sea-Tag MODS, Desert Star Systems LCC, USA) or 10-s intervals (miniPAT tags, Wildlife Computers, USA). Pop-off satellite tags were inserted into the dorsal musculature of the sharks using stainless steel anchors and tethers. All pop-off satellite tags were either recovered manually, permitting access to the full time-series, or popped-off and transmitted their data to an Earth-orbiting Argos satellite, resulting in a subset of the full time-series (transmission frequencies: 2.5 min [miniPAT], 10 min [PSATGEO], daily average [Sea-Tag MOD]). Tiger shark positions were estimated from the satellite data using tag-specific proprietary state space algorithms from Wildlife Computers (GPE3; based on ref. 34) and Desert Star Systems35. With miniPAT tags, positions were further filtered to remove the least reliable positions ( More

  • in

    Symbiont genotype influences holobiont response to increased temperature

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article 
    ADS 
    PubMed 

    Google Scholar 
    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).Article 
    ADS 
    PubMed 

    Google Scholar 
    terHorst, C. P., Miller, T. E. & Levitan, D. R. Evolution of prey in ecological time reduces the effect size of predators in experimental microcosms. Ecology 91, 629–636 (2010).Article 
    PubMed 

    Google Scholar 
    Duffy, M. A. & Sivars-Becker, L. Rapid evolution and ecological host-parasite dynamics. Ecol. Lett. 10, 44–53 (2007).Article 
    PubMed 

    Google Scholar 
    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. Biol. Sci. 285, 20180036 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 104, 1278–1282 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    terHorst, C. P., Lennon, J. T. & Lau, J. A. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc. R. Soc. B Biol. Sci. 281, 20140028 (2014).Article 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science https://doi.org/10.1126/science.1127000 (2006).Article 
    PubMed 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120404 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 
    PubMed 

    Google Scholar 
    Lau, J. A. & terHorst, C. P. Evolutionary responses to global change in species-rich communities. Ann. N. Y. Acad. Sci. 1476, 43–58 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    Lau, J. A., Shaw, R. G., Reich, P. B. & Tiffin, P. Indirect effects drive evolutionary responses to global change. New Phytol. 201, 335–343 (2014).Article 
    PubMed 

    Google Scholar 
    Tseng, M. & O’Connor, M. I. Predators modify the evolutionary response of prey to temperature change. Biol. Lett. 11, 20150798 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).Article 

    Google Scholar 
    Hussa, E. A. & Goodrich-Blair, H. It takes a village: Ecological and fitness impacts of multipartite mutualism. Annu. Rev. Microbiol. 67, 161–178 (2013).Article 
    PubMed 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109, 17995–17999 (2012).Article 
    ADS 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci Rep 6, 39666 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, J. K., Berkelmans, R. & Eakin, C. M. Coral bleaching in space and time. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds. van Oppen, M. J. H. & Lough, J. M.) 27–49 (Springer, 2018). https://doi.org/10.1007/978-3-540-69775-6_3.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Impacts of 1.5°C global warming on natural and human systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (ed. IPCC) 175–312 (Cambridge University Press, 2022). https://doi.org/10.1017/9781009157940.005.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191 (1990).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).Article 
    ADS 

    Google Scholar 
    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741–741 (2004).Article 
    ADS 
    PubMed 

    Google Scholar 
    Mieog, J. C., Van Oppen, M. J. H., Berkelmans, R., Stam, W. T. & Olsen, J. L. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol. Ecol. Resour. 9, 74–82 (2009).Article 
    PubMed 

    Google Scholar 
    Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 279, 2609–2618 (2012).Article 

    Google Scholar 
    Hoadley, K. D. et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci. Rep. 9, 9985 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkinson, J. E. & Baums, I. B. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front. Microbiol. 5, 445 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karim, W., Nakaema, S. & Hidaka, M. Temperature effects on the growth rates and photosynthetic activities of symbiodinium cells. J. Mar. Sci. Eng. 3, 368–381 (2015).Article 

    Google Scholar 
    Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893 (2017).Article 

    Google Scholar 
    Díaz-Almeyda, E. M. et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc. R. Soc. B Biol. Sci. 284, 20171767 (2017).Article 

    Google Scholar 
    Bayliss, S. L. J., Scott, Z. R., Coffroth, M. A. & terHorst, C. P. Genetic variation in Breviolum antillogorgium, a coral reef symbiont, in response to temperature and nutrients. Ecol. Evol. 9, 2803–2813 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pelosi, J., Eaton, K. M., Mychajliw, S., terHorst, C. P. & Coffroth, M. A. Thermally tolerant symbionts may explain Caribbean octocoral resilience to heat stress. Coral Reefs 40, 1113–1125 (2021).Article 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. Fems Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Chang. 2, 116–120 (2012).Article 
    ADS 

    Google Scholar 
    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chakravarti, L. J. & van Oppen, M. J. H. Experimental evolution in coral photosymbionts as a tool to increase thermal tolerance. Front. Mar. Sci. 5, 227 (2018).Article 

    Google Scholar 
    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. https://doi.org/10.1126/sciadv.aba2498 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hofmann, D. K. & Kremer, B. P. Carbon metabolism and strobilation in Cassiopea andromedea (Cnidaria: Scyphozoa): Significance of endosymbiotic dinoflagellates. Mar. Boil. 65, 25 (1981).Article 

    Google Scholar 
    Welsh, D., Dunn, R. & Meziane, T. Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635, 351 (2009).Article 

    Google Scholar 
    Freeman, C. J., Stoner, E. W., Easson, C. G., Matterson, K. O. & Baker, D. M. Symbiont carbon and nitrogen assimilation in the Cassiopea-Symbiodinium mutualism. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11605 (2016).Article 

    Google Scholar 
    Bigelow, R. P. The Anatomy and Development of Cassiopea xamachana. 1–72 (Pub. by the Boston Society of Natural History, 1900). https://doi.org/10.5962/bhl.title.31420.Colley, N. J. & Trench, R. K. Selectivity in phagocytosis and persistence of symbiotic algae in the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc. R. Soc. Lond. B Biol. Sci. 219, 61–82 (1983).Article 
    ADS 
    PubMed 

    Google Scholar 
    Hofmann, D. K., Fitt, W. K. & Fleck, J. Checkpoints in the life-cycle of Cassiopea spp.: Control of metagenesis and metamorphosis in a tropical jellyfish. Int. J. Dev. Biol. 40, 331–338 (1996).PubMed 

    Google Scholar 
    Stat, M. & Gates, R. D. Clade D symbiodinium in scleractinian corals: A “Nugget” of hope, a selfish opportunist, an ominous sign, or all of the above?. J. Mar. Biol. 2011, e730715 (2010).
    Google Scholar 
    Correa, A. M. S. & Baker, A. C. Disaster taxa in microbially mediated metazoans: how endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Glob. Change Biol. 17, 68–75 (2011).Article 
    ADS 

    Google Scholar 
    Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang. Biol. 21, 236–249 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Leal, M. C. et al. Symbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. 218, 858–863 (2015).Article 
    PubMed 

    Google Scholar 
    Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Cziesielski, M. J. et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. R. Soc. B. 285, 20172654 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cunning, R. & Baker, A. C. Thermotolerant coral symbionts modulate heat stress-responsive genes in their hosts. Mol. Ecol. 29, 2940–2950 (2020).Article 
    PubMed 

    Google Scholar 
    Newkirk, C. R., Frazer, T. K., Martindale, M. Q. & Schnitzler, C. E. Adaptation to bleaching: Are thermotolerant symbiodiniaceae strains more successful than other strains under elevated temperatures in a model symbiotic cnidarian?. Front. Microbiol. 11, 822 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trench, R. K. MICROALGAL-INVERTEBRATESYMBIOSES: A REVIEW. Cell Res. 41 (1993).Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31, 679–694 (2008).Article 
    PubMed 

    Google Scholar 
    Swain, T. D., Chandler, J., Backman, V. & Marcelino, L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct. Ecol. 31, 172–183 (2017).Article 

    Google Scholar 
    Klueter, A., Trapani, J., Archer, F. I., McIlroy, S. E. & Coffroth, M. A. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS ONE 12, e0187707 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. et al. Dispersal, genetic variation, and symbiont interaction network of heat-tolerant endosymbiont Durusdinium trenchii: Insights into the adaptive potential of coral to climate change. Sci. Total Environ. 723, 138026 (2020).Article 
    ADS 
    PubMed 

    Google Scholar 
    van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals?. Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA 112, 2307–2313 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohdera, A. H. et al. Upside-down but headed in the right direction: Review of the highly versatile Cassiopea xamachana system. Front. Ecol. Evol. 6, 35 (2018).Article 

    Google Scholar 
    Fitt, W. K. & Costley, K. The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana. J. Exp. Mar. Biol. Ecol. 222, 79–91 (1998).Article 

    Google Scholar 
    Aljbour, S. M., Zimmer, M. & Kunzmann, A. Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change. Journal of Sea Research 128, 92–97 (2017).Rahat, M. & Adar, O. Effect of symbiotic zooxanthellae and temperature on budding and strobiliation in Cassiopeia andromeda (Eschscholz). Biol. Bull. 159, 394–401 (1980).Article 

    Google Scholar 
    Cole, L. C. The population consequences of life history phenomena. Q. Rev. Biol. 29, 103–137 (1954).Article 
    PubMed 

    Google Scholar 
    Brommer, J. E., Merilä, J. & Kokko, H. Reproductive timing and individual fitness. Ecol. Lett. 5, 802–810 (2002).Article 

    Google Scholar 
    Hofmann, D. K., Neumann, R. & Henne, K. Strobilation, budding and initiation of scyphistoma morphogenesis in the rhizostome Cassiopea andromeda (Cnidaria: Scyphozoa). Mar. Biol. 47, 161–176 (1978).Article 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).Article 

    Google Scholar 
    Mellas, R. E., McIlroy, S. E., Fitt, W. K. & Coffroth, M. A. Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp.. J. Exp. Mar. Biol. Ecol. 459, 38–44 (2014).Article 

    Google Scholar 
    Fransolet, D., Roberty, S. & Plumier, J.-C. Establishment of endosymbiosis: The case of cnidarians and Symbiodinium. J. Exp. Mar. Biol. Ecol. 420–421, 1–7 (2012).Article 

    Google Scholar 
    Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. B Biol. Sci. 275, 1359–1365 (2008).Article 

    Google Scholar 
    Baskett, M. L., Gaines, S. D. & Nisbet, R. M. Symbiont diversity may help coral reefs survive moderate climate change. Ecol. Appl. 19, 3–17 (2009).Article 
    PubMed 

    Google Scholar 
    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).Article 

    Google Scholar 
    Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolfowicz, I. et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6, 32366 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Little, A. F., van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science https://doi.org/10.1126/science.1095733 (2004).Article 
    PubMed 

    Google Scholar 
    Jones, A. & Berkelmans, R. Potential costs of acclimatization to a warmer climate: Growth of a reef coral with heat tolerant vs sensitive symbiont types. PLOS ONE 5, e10437 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz, J. C., González-Rivero, M. & Mumby, P. J. Can a thermally tolerant symbiont improve the future of Caribbean coral reefs?. Glob. Change Biol. 19, 273–281 (2013).Article 
    ADS 

    Google Scholar 
    Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172 (2016).Article 

    Google Scholar  More

  • in

    Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor

    Jeanthon C. Molecular ecology of hydrothermal vent microbial communities. Antonie Van Leeuwenhoek. 2000;77:117–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13oN). Environ Microbiol. 2003;5:492–502.Article 
    PubMed 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol. 2005;7:1619–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol. 2006;72:6257–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Nakagawa S, Reysenbach A-L, Hoek J. Microbial ecology of mid-ocean ridges and back-arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S, editors. Geophysical Monograph Series. 2006. Washington, D. C.: American Geophysical Union; 2006. pp. 185–213.Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol. 2008;65:1–14.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Boetius A. Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–81.Article 
    PubMed 

    Google Scholar 
    Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol. 2006;4:458–68.Article 
    CAS 
    PubMed 

    Google Scholar 
    Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021;71:005056.Article 

    Google Scholar 
    Nakagawa S, Takaki Y. Nonpathogenic Epsilonproteobacteria. Encyclopedia of Life Sciences (eLS). Chichester, UK: John Wiley & Sons, Ltd; 2009.Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K. Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci USA. 2007;104:12146–50.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genom. 2013;14:616.Article 
    CAS 

    Google Scholar 
    Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol. 2014;5:110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, et al. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol. 2015;98:809–30.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiang SC, Kellogg CA, Paul JH. Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol. 1998;64:535–42.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays. 2017;39:1700112.Article 

    Google Scholar 
    Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 2005;3:e15.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang M, He L, Li Q, Sun H, Gu Y, You Y, et al. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 isolate. PLoS ONE. 2010;5:e15060.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller WG, Yee E, Chapman MH, Smith TPL, Bono JL, Huynh S, et al. Comparative genomics of the Campylobacter lari group. Genome Biol Evol. 2014;6:3252–66.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parker CT, Quiñones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol. 2006;44:4125–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Ng L-K. Sequence variability of Campylobacter temperate bacteriophages. BMC Microbiol. 2008;8:49.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quiñones B, Guilhabert MR, Miller WG, Mandrell RE, Lastovica AJ, Parker CT. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa. PLoS ONE. 2008;3:e2015.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Chen C, Berry C, Walker M, McCorrister SJ, Chong PM, et al. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS ONE. 2018;13:e0190836.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CG, Grant CC, Pollari F, Marshall B, Moses J, Tracz DM, et al. Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol. 2012;12:269.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wösten MMSM, van Putten JPM, van der Graaf-van Bloois L, et al. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol. 2009;191:2296–306.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JPM, Parker CT, van der Wal FJ. Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol. 2010;192:936–41.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida-Takashima Y, Takaki Y, Shimamura S, Nunoura T, Takai K. Genome sequence of a novel deep-sea vent epsilonproteobacterial phage provides new insight into the co-evolution of Epsilonproteobacteria and their phages. Extremophiles. 2013;17:405–19.Article 
    PubMed 

    Google Scholar 
    Glasby GP, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev. 2003;23:299–339.Article 

    Google Scholar 
    Yoshida-Takashima Y, Nunoura T, Kazama H, Noguchi T, Inoue K, Akashi H, et al. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl Environ Microbiol. 2012;78:1311–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett. 2003;217:167–74.
    Google Scholar 
    Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y. Rhodothemus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol. 1996;46:1099–104.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Genomic characterization of a temperate phage of the psychrotolerant deep-sea bacterium Aurantimonas sp. Extremophiles. 2015;19:49–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, et al. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol. 2006;72:1239–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leggett RM, Clavijo BJ, Clissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera long mate pair libraries. Bioinformatics. 2014;30:566–8.Article 
    CAS 
    PubMed 

    Google Scholar 
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Corkill JE, Graham R, Hart CA, Stubbs S. Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol. 2000;38:2791–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delcher A. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–41.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.Article 
    CAS 
    PubMed 

    Google Scholar 
    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.Article 
    CAS 
    PubMed 

    Google Scholar 
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017;33:3396–404.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y. Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol. 2005;55:925–33.Article 
    CAS 
    PubMed 

    Google Scholar 
    Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, et al. Origins of highly mosaic mycobacteriophage genomes. Cell. 2003;113:171–82.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, et al. Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol. 2018;20:577–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675–87.Article 
    CAS 
    PubMed 

    Google Scholar 
    Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME J. 2014;8:867–80.Article 
    CAS 
    PubMed 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ramisetty BCM, Sudhakari PA. Bacterial ‘grounded’ prophages: hotspots for genetic renovation and innovation. Front Genet. 2019;10:65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.Article 
    CAS 
    PubMed 

    Google Scholar 
    Piel D, Bruto M, Labreuche Y, Blanquart F, Goudenège D, Barcia-Cruz R, et al. Phage–host coevolution in natural populations. Nat Microbiol. 2022;7:1075–86.Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch KH, Stothard P, Dennis JJ. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics. 2010;11:599.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol. 2006;62:718–29.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nobrega FL, Walinga H, Dutilh BE, Brouns SJJ. Prophages are associated with extensive CRISPR–Cas auto-immunity. Nucleic Acids Res. 2020;48:12074–84.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yi H, Huang L, Yang B, Gomez J, Zhang H, Yin Y. AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses. Nucleic Acids Res. 2020;48:W358–65.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maier L-K, Lange SJ, Stoll B, Haas KA, Fischer SM, Fischer E, et al. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B. RNA Biol. 2013;10:865–74.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, et al. Function of the CRISPR-Cas system of the human pathogen Clostridium difficile. mBio. 2015;6:e01112–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.Article 
    CAS 
    PubMed 

    Google Scholar 
    Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.Article 
    CAS 
    PubMed 

    Google Scholar 
    Nozawa T, Furukawa N, Aikawa C, Watanabe T, Haobam B, Kurokawa K, et al. CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS ONE. 2011;6:e19543.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Grassland coverage change and its humanity effect factors quantitative assessment in Zhejiang province, China, 1980–2018

    Vegetation is the main component of terrestrial ecosystems and as an indicator of ecosystem changes. In the world’s land area, forest land accounts for about 30%, grassland accounts for 26%, and cultivated land accounts for about 12%1. China has the second largest grassland area in the world. The total grassland is 392 million hectares in China, which is about 12% of the world’s grassland area and about 41% of China’s national territorial area, which is about twice of China’s arable land2. In China, the type of grassland ranks first in the world, mainly including northern grasslands, southern grassy hills and slopes, coastal beaches, wetlands, and natural grasslands in agricultural areas. It includes 18 major categories, 38 subcategories, and more than 1,000 types. The grassland resources also contain extremely rich biodiversity, with more than 7,000 pastures and thousands of animals, making it as the largest biological gene pool in Asia and also the world.
    Grassland plays an important role in ecological environment protection and animal husbandry development. Like the grasslands in Europe, China’s land use forms, management objectives, and use systems are becoming increasingly diversified3. Grassland has not only made great contributions to preventing soil erosion, purifying chemical fertilizers and pesticides, regulating groundwater, and promoting biodiversity, but also as a basic nutrient for herbivores and ruminants, providing environmental benefits for ensuring the health of grassland animal products. In addition, grassland has aesthetic and entertainment functions, and it can provide functions that other agricultural land use types do not have. In addition, grassland also has an important ecological function of regulating climate4,5,6, for example, grasslands can significantly contribute to climate mitigation while providing substantial additional ecosystem services7. Grassland is the only land use type that can accomplish so many tasks and meet so many requirements.Grasslands are highly vulnerable to climate change or human activities8, the research on the relationship between grassland coverage change and its human influencing factors can reflect the scope and degree of influence of natural conditions and human activities on grassland coverage change and has a reference significance for balancing economic development and environmental protection. Grassland is not only an important material basis and means of production for the development of animal husbandry but also an important natural barrier to economic development in southeast china. Zhejiang province is located in the Yangtze River Delta, the transportation is quite convenient, the economic foundation is very well and the economy develops very rapid9. Meanwhile, with the rapid development of industrialization and urbanization, the change in land use form has been breathtaking, and human activities have improved the degree of land exploitation and utilization. The natural grassland area in Zhejiang Province is 3 million hm2, about 30% of the total land area of the province, of which the available grassland area is 600,000 hm2, for about 20% of the total area of natural grassland. Accordingly, there is enormous potential for developing the grassland industry in Zhejiang province10.There are three ways to calculate the grassland coverage, (1) field measurement method, (2) remote sensing estimation method, and (3) integrated measurement method of field measurement and remote sensing estimation11. The field measurement method is not suitable for large-scale measurement and measuring alone in various applications, because the measurement range of this method is limited, it is only suitable for the selected field plot. For remote sensing estimation method does not depend on field measurement data, and can reduce the workload and save time, so it is suitable for large-scale grass coverage estimation. At the same time, the field measurement method is an indispensable auxiliary and verification method for modern measurement methods such as remote sensing. Therefore, the comprehensive measurement method of field measurement and remote sensing can obtain more reliable data.With the rapid development of aerospace science and technology, more and more remote sensing data can be used to monitor land use form12. Currently, the most commonly used remote sensing images include Landsat MSS/TM/ETM+, NOAA/AVHRR, and EOS-MODIS. In recent years, satellite SAR, SPOT, CBERS, and other images have also been widely used in research. For global or state-scale land research, NOAA/AVHRR and MODIS data are mainly used. For regional scale, as long as Landsat TM/ETM+ and other high-resolution data are applied.The change of grassland coverage in Zhejiang Province and its effect factors are of great significance to the development of animal husbandry, the rational development and utilization of land, and the balanced development of the economy and environment. However, there are few studies have been done about this. Therefore, we present the following questions: (1) How did the grassland coverage change in Zhejiang Province from 1980 to 2018? (2) What are the main factors that affect the change in grassland coverage? This study aims to make clear grassland coverage Change and quantitative assessment of its effect factors. Meanwhile, the result of this study will provide a more comprehensive knowledge of the grassland of Zhejiang Province as well as useful suggestions for grassland resource management and sustainable development. More

  • in

    Uropygial gland microbiota differ between free-living and captive songbirds

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).Article 

    Google Scholar 
    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cresci, G. A. & Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 30, 734–746 (2015).
    Google Scholar 
    Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L., Raulo, A. & Knowles, S. C. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. 35, 972–980 (2020).Article 
    PubMed 

    Google Scholar 
    Ushida, K., Kock, R. & Sundset, M. A. Wildlife microbiology. Microorganisms 9, 1968 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: Where do we go from here?. BioEssays 36, 847–854 (2014).Article 
    PubMed 

    Google Scholar 
    Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: Microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).Article 
    PubMed 

    Google Scholar 
    Maraci, Ö., Engel, K. & Caspers, B. A. Olfactory communication via microbiota: What is known in birds?. Genes 9, 387 (2018).Article 
    PubMed Central 

    Google Scholar 
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: A meta-analysis. Sci. Rep. 11, 22660 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).Article 

    Google Scholar 
    Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110, 1983219837 (2013).Article 
    ADS 

    Google Scholar 
    Gassett, J. W., Dasher, K. A., Miller, K. V., Osborn, D. A. & Russell, S. M. White-tailed deer tarsal glands: Sex and age-related variation in microbial flora. Mammalia 64, 371–377 (2000).Article 

    Google Scholar 
    Sin, Y. W., Buesching, C. D., Burke, T. & Macdonald, D. W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol. Ecol. 81, 648–659 (2012).Article 
    PubMed 

    Google Scholar 
    Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14, 387–400 (1974).Article 
    PubMed 

    Google Scholar 
    Greene, L. K. et al. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am. J. Primatol. 81, e22974 (2019).Article 
    PubMed 

    Google Scholar 
    Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 3240 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Kelly, T. R., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota of songbirds differ across populations but not sexes. J. Anim. Ecol. 90, 2202–2212 (2021).Article 
    PubMed 

    Google Scholar 
    Whittaker, D. J. et al. Social environment has a primary influence on the microbial and odor profiles of a chemically signaling songbird. Front. Ecol. Evol. 4, 1–15 (2016).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. R. Soc. Open Sci. 8, 210936 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whittaker, D. J. et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 222, jeb202978 (2019).Article 
    PubMed 

    Google Scholar 
    Martín-Vivaldi, M. et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130 (2010).Article 

    Google Scholar 
    Whittaker, D. J. et al. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256–1263 (2011).Article 

    Google Scholar 
    Grieves, L. A., Bernards, M. A. & MacDougall-Shackleton, E. A. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim. Behav. 156, 57–65 (2019).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 158, 131–138 (2019).Article 

    Google Scholar 
    Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S. et al. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 28, 833–846 (2019).PubMed 

    Google Scholar 
    Bisson, I.-A., Marra, P. P., Burtt, E. H. Jr., Sikaroodi, M. & Gillevet, P. M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 58, 212 (2009).Article 
    PubMed 

    Google Scholar 
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588–23593 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arcese, P., Sogge, M. K., Marr, A. B. & Patten, M. A. Song sparrow (Melospiza melodia), version 2.0. In The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002).
    Google Scholar 
    Breton, J. et al. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).Article 
    PubMed 

    Google Scholar 
    Lin, X. et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol. Environ. Saf. 190, 110130 (2020).Article 
    PubMed 

    Google Scholar 
    Grieves, L. A. et al. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. Ecotoxicology 29, 275–285 (2020).Article 
    PubMed 

    Google Scholar 
    Christian, V. J., Miller, K. R. & Martindale, R. G. Food insecurity, malnutrition, and the microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).Article 
    PubMed 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34, 542–551 (2011).Article 
    PubMed 

    Google Scholar 
    Salgado-Flores, A., Tveit, A. T., Wright, A.-D., Pope, P. B. & Sundset, M. A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 14, e0213503 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, R. H. et al. Use of TLC-FID and GC-MS⁄FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152, 782–792 (2010).Article 

    Google Scholar 
    Xie, Y. et al. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6, 33350 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San Juan, P. A., Castro, I. & Dhami, M. K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 3, 48 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, H., Wu, F.-T., Zhou, Q.-H. & Zhao, D.-P. Comparative analysis of gut microbiota in captive and wild oriental white storks: Implications for conservation biology. Front. Microbiol. 12, 649466 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ruano, S. M. et al. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS One 10, e0139734 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xenoulis, P. G. et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146, 320–325 (2010).Article 
    PubMed 

    Google Scholar 
    Kelly, T. R., Vinson, A. E., King, G. M. & Lattin, C. R. No guts about it: Captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr. Org. Biol. 4, obac010 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).Article 

    Google Scholar 
    Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424–434 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).Article 
    PubMed 

    Google Scholar 
    Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. 47, 521–529 (2016).Article 

    Google Scholar 
    Jacob, S. et al. Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol. Biol. 14, 134 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology Vol. 6 (eds Farner, D. S. et al.) 199–324 (Academic Press, 1982).Chapter 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).Article 
    PubMed 

    Google Scholar 
    Egert, M. & Simmering, R. The microbiota of the human skin. Microbiota Hum. Body 902, 61–81 (2016).Article 

    Google Scholar 
    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, B. et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J. Microbiol. Biotechnol. 26, 9–19 (2016).Article 
    PubMed 

    Google Scholar 
    Rosenberg, E. The Prokaryotes (Springer, 2014).Book 

    Google Scholar 
    Tang, J., Huang, J., Qiao, Z., Wang, R. & Wang, G. Mucilaginibacter pedocola sp. Nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038 (2016).Article 
    PubMed 

    Google Scholar 
    Vasconcelos, A. L. et al. Mucilaginibacter sp. strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. Genes 13, 174 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewi, G. & Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 6, 831195 (2022).Article 

    Google Scholar 
    Dworkin, M. The Prokaryotes Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media, 2006).Book 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).Article 
    PubMed 

    Google Scholar 
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).Article 
    PubMed 

    Google Scholar 
    Bottini, C. L., MacDougall-Shackleton, S. A., Branfireun, B. A. & Hobson, K. A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 775, 145739 (2021).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kelly, T. R., Bonner, S. J., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Exposing migratory sparrows to Plasmodium suggests costs of resistance, not necessarily of infection itself. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 5–14 (2018).Article 

    Google Scholar 
    Whittaker, D. J. & Hagelin, J. C. Female-based patterns and social function in avian chemical communication. J. Chem. Ecol. 47, 53–62 (2020).
    Google Scholar 
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).Article 
    PubMed 

    Google Scholar 
    Canadian Council on Animal Care (CCAC). Three Rs | Trois R :: About the Three Rs. https://3rs.ccac.ca/.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gloor, G. B. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5, e15406 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. Msphere 2, e00327-e417 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).Article 
    PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986).Book 
    MATH 

    Google Scholar 
    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).Article 
    PubMed 

    Google Scholar 
    Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palarea-Albaladejo, J. & Martin-Fernandez, J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).Article 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. & Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 51, 375–392 (2002).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Spotting hopeful signs for coral health in Barbados’s backyard

    I’m a coral-reef ecologist at the University of the West Indies at Cave Hill in Barbados. Every five years, as often as our funding allows, my team and I survey coral reefs for the government. I was born in Spain and earned my PhD at McGill University in Montreal, Canada. But I decided to work in the Caribbean, where I think I am more useful.We monitor the abundance and diversity of corals, algae, sponges and fish. Barbados no longer has populations of large fish, such as groupers and snappers, because of overfishing. The populations of parrotfish, Barbados’s most important species ecologically and economically, have seemed stable for the past decade.Reefs are under threat globally, and the biggest losses of corals here occurred in the 1970s and 1980s. Since the 1990s, the shallow reefs have stabilized, but the deeper reefs have continued to deteriorate. And numbers of sponges and algae, which can damage corals when too abundant, have gradually increased in the deeper reefs. Still, there are positive signs. Staghorn corals (Acropora cervicornis), which nearly went extinct here in the 1970s, are making a slow comeback.This photo was taken in early September and the water was 28 °C or 29 °C. But I still wore a wetsuit with a hood, because after 90 minutes of scuba diving, you get cold.We survey 43 sites in two months, doing one or two dives a day, three times a week. Four of us dive together; we are like a well-oiled machine.I wish we could do surveys more frequently; in a rapidly changing environment, we need to know what is happening. But there’s not enough money. Still, new technology can model reefs in 3D. Those tools are becoming more affordable, and I think we’ll be using them in the next decade. Then, we could monitor more sites more often with the same resources.I’ve wanted to be a biologist since I was a young boy. And it doesn’t get any better than studying coral reefs in your backyard. More

  • in

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Surface energy fluxes and componentsIn our study, we focused on the circumpolar land north of 60° latitude, and specifically on the extent of the circumpolar Arctic vegetation map (CAVM20, Supplementary Fig. 1–3). We obtained half-hourly and hourly in situ observations of energy fluxes and meteorological variables from the monitoring networks FLUXNET28 (fluxnet.org; FLUXNET2015 dataset), AmeriFlux29 (ameriflux.lbl.gov), AON31,32 (aon.iab.uaf.edu), ICOS (icos-cp.eu), GEM35,36 (g-e-m.dk), GC-Net33,34 (cires1.colorado.edu/steffen/gcnet) and PROMICE30; (promice.dk; Supplementary Table 3). We did not include observations from the Baseline Surface Radiation Network (BSRN; bsrn.awi.de) and Global Energy Balance Archive (GEBA; geba.ethz.ch) because they typically lack information on non-radiative energy fluxes. Finally, we did not include observations from the European Flux Database Cluster (EFDC, europe-fluxdata.eu) because these data are largely located outside the domain of the CAVM20.We aggregated surface energy fluxes and components (Supplementary Table 1) to daily resolution as follows: (i) we extracted only directly measured data and excluded gap-filled data by filtering according to quality information; (ii) we performed a basic outlier filtering (excluding shortwave and longwave radiation flux values >1400 Wm−2 and in case of incoming/outgoing radiation More

  • in

    Honey compositional convergence and the parallel domestication of social bees

    Allsop, K. A. & Miller, J. B. Honey revisited: A reappraisal of honey in pre-industrial diets. Br. J. Nutr. 75, 513–520 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dams, M. & Dams, L. Spanish rock art depicting honey gathering during the Mesolithic. Nature 268, 228–230 (1977).Article 
    ADS 

    Google Scholar 
    Bradbear, N. Bees and their role in forest livelihoods: A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Non-Wood Forests Products Series, Vol. 19 (FAO, Rome, 2009).
    Google Scholar 
    Crane, E. The World History of Beekeeping and Honey Hunting (Routledge, 1999).Book 

    Google Scholar 
    Kritsky, G. Beekeeping from Antiquity through the middle ages. Annu. Rev. Entomol. 62, 249–264 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grüter, C. Stingless Bees: Their Behaviour, Ecology and Evolution (Springer International Publishing, 2020).Book 

    Google Scholar 
    Weaver, N. & Weaver, E. C. Beekeeping with the stingless bee Melipona beecheii, by the Yucatecan Maya. Bee World 62, 7–19 (1981).Article 

    Google Scholar 
    Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).Book 

    Google Scholar 
    Medellín Morales, S. Meliponicultura Maya: Perspectivas para su sostenibilidad. Reporte de sostenibilidad Maya no. 2; 67 pp. (1991).González-Acereto, J. A. La meliponicultura yucateca en crisis: Una actividad indígena a punto de desaparecer, 1er Seminario Nacional sobre Abejas sin Aguijón. Boca Río Ver México 9–12 (1999).Russell, P. The History of Mexico: From Pre-conquest to Present (Routledge, 2010).
    Google Scholar 
    Quezada-Euan, J. J., May-Itzá, W. & González-Acereto, J. Meliponiculture in Mexico: Problems and perspective for development. Bee World 82, 160–167 (2001).Article 

    Google Scholar 
    Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).Article 

    Google Scholar 
    Toledo-Hernández, E. et al. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 53, 8 (2022).Article 

    Google Scholar 
    Guzman-Novoa, E. et al. The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Front. Ecol. Evol. 8, 404 (2020).Article 

    Google Scholar 
    Fletcher, M. et al. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 10, 12128 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rao, P. V., Krishnan, K. T., Salleh, N. & Gan, S. H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 26, 657–664 (2016).Article 
    CAS 

    Google Scholar 
    Rattanawannee, A. & Duangphakdee, O. Southeast Asian meliponiculture for sustainable livelihood. In Modern Beekeeping – Bases for Sustainable Production (ed. Ranz, R. E. R.) (IntechOpen, 2019).
    Google Scholar 
    Heard, T. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S. & Hofstede, F. E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 37, 293–315 (2006).Article 

    Google Scholar 
    Kendall, L. K., Stavert, J. R., Gagic, V., Hall, M. & Rader, R. Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2022.02.009 (2022).Article 

    Google Scholar 
    Kiatoko, N. et al. Effective pollination of greenhouse Galia musk melon (Cucumis melo L. var. reticulatus ser.) by afrotropical stingless bee species. J. Apic. Res. https://doi.org/10.1080/00218839.2021.2021641 (2022).Article 

    Google Scholar 
    Nkoba, K. et al. African endemic stingless bees as an efficient alternative pollinator to honey bees in greenhouse cucumber (Cucumis sativus L.). J. Apic. Res. https://doi.org/10.1080/00218839.2021.2013421 (2022).Article 

    Google Scholar 
    FAO, A. Good beekeeping practices for sustainable apiculture. (FAO, IZSLT, Apimondia and CAAS, 2020). doi:https://doi.org/10.4060/cb5353en.Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 
    PubMed 

    Google Scholar 
    Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. 111, 6147–6152 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purugganan, M. D. An evolutionary genomic tale of two rice species. Nat. Genet. 46, 931–932 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleisner, K. & Stella, M. Monsters we met, monsters we made: On the parallel emergence of phenotypic similarity under domestication. Σημειωτκή – Sign Syst. Stud. 37, 454–476 (2009).Article 

    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The, “Domestication Syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lecocq, T. Insects: The disregarded domestication histories. In Animal Domestication (ed. Teletchea, F.) (IntechOpen, 2018).
    Google Scholar 
    Pollan, M. The botany of desire: A plant’s-eye view of the world. Econ. Bot. 57(1), 146–147 (2002).
    Google Scholar 
    Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192, 149–155 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Spivak, M. & Danka, R. G. Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie 52, 1–16 (2021).Article 

    Google Scholar 
    Breed, M. D., Guzmán-Novoa, E. & Hunt, G. J. 3. Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49, 271–298 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, G. J. et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94, 247–267 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faegri, K. & van der Pijl,. Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. In Nectaries and Nectar (eds Nicolson, S. W. et al.) (Springer Netherlands, 2007).Chapter 

    Google Scholar 
    Abrahamczyk, S. et al. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 30, 112–127 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123, 247–261 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 99, 206–232 (2010).Article 

    Google Scholar 
    Bantle, J. P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 139, 1263S-1268S (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erejuwa, O. O., Sulaiman, S. A. & Wahab, M. S. A. fructose might contribute to the hypoglycemic effect of honey. Molecules 17, 1900–1915 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwakman, P. H. S. & Zaat, S. A. J. Antibacterial components of honey. IUBMB Life 64, 48–55 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J. & Pérez-Álvarez, J. A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73, R117–R124 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Machado De-Melo, A. A., de Almeida-Muradian, L. B., Sancho, M. T. & Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 57, 5–37 (2018).Article 

    Google Scholar 
    Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73, 91–102 (2018).Article 
    CAS 

    Google Scholar 
    Viteri, R., Zacconi, F., Montenegro, G. & Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 86, 1552–1582 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bueno, F. G. B. et al. Stingless bee floral visitation in the global tropics and subtropics. BioRxiv. https://doi.org/10.1101/2021.04.26.440550 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Syst. Entomol. 32, 26–39 (2007).Article 

    Google Scholar 
    Mokaya, H. O., Nkoba, K., Ndunda, R. M. & Vereecken, N. J. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366, 130597 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Souza, E. C. A., Menezes, C. & Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 52, 113–132 (2021).Article 

    Google Scholar 
    Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. & Lachenmeier, D. W. Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. ISRN Anal. Chem. 2013, 1–9 (2013).Article 

    Google Scholar 
    Mazzoni, V., Bradesi, P., Tomi, F. & Casanova, J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: Application to honey. Magn. Reson. Chem. 35, S81–S90 (1997).Article 
    CAS 

    Google Scholar 
    Consonni, R. & Cagliani, L. R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J. Agric. Food Chem. 56, 6873–6880 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schievano, E., Peggion, E. & Mammi, S. H1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 58, 57–65 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. Rstudio, PBC, Boston, MA. URL http://www.rstudio.com (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).Oksanen J., et al. Vegan: Community ecology package. McGlinn lab URL https://CRAN.R-project.org/package=vegan (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 
    PubMed 

    Google Scholar  More