More stories

  • in

    High resolution ancient sedimentary DNA shows that alpine plant diversity is associated with human land use and climate change

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schwörer, C. et al. Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veg. Hist. Archaeobot. 23, 479–496 (2014).Article 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bennett, K. D. & Willis, K. J. Pollen. Tracking Environmental Change Using Lake Sediments (eds Smol, J. P., Birks, H. J. B., Last, W. M., Bradley, R. S. & Alverson, K.) 5–32 (Kluwer Academic Publishers, 2002).Liu, S. et al. Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nat. Commun. 12, 2995 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Väre, H., Lampinen, R., Humphries, C. & Williams, P. Taxonomic diversity of vascular plants in the European alpine areas. in Alpine biodiversity in Europe (eds Nagy, L., Grabherr, G., Körner, C. & Thompson, D. B. A.) 133–148 (Springer Berlin Heidelberg, 2003).Theurillat, J.-P. & Guisan, A. Potential impact of climate change on vegetation in the European alps: A Review. Climatic Change 50, 77–109 (2001).Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tribsch, A. & Schönswetter, P. Patterns of endemism and comparative phylogeography confirm palaeo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52, 477–497 (2003).Article 

    Google Scholar 
    Rudmann-Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. The role of landuse and natural determinants for grassland vegetation composition in the Swiss Alps. Basic Appl. Ecol. 9, 494–503 (2008).Article 

    Google Scholar 
    Walsh, K. et al. A historical ecology of the Ecrins (Southern French Alps): Archaeology and palaeoecology of the Mesolithic to the Medieval period. Quat. Int. 353, 52–73 (2014).Article 

    Google Scholar 
    Walsh, K. & Giguet-Covex, C. Encyclopedia of the World’s Biomes 555–573 (Elsevier, 2020).Schwörer, C., Henne, P. D. & Tinner, W. A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob. Chang. Biol. 20, 1512–1526 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Henne, P. D. et al. An empirical perspective for understanding climate change impacts in Switzerland. Reg. Environ. Change 18, 1–17 (2017).
    Google Scholar 
    Niedrist, G., Tasser, E., Lüth, C., Dalla Via, J. & Tappeiner, U. Plant diversity declines with recent land use changes in European Alps. Plant Ecol. 202, 195–210 (2009).Article 

    Google Scholar 
    Lasanta-Martínez, T., Vicente-Serrano, S. M. & Cuadrat-Prats, J. M. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: A study of the Spanish Central Pyrenees. Appl. Geogr. 25, 47–65 (2005).Article 

    Google Scholar 
    Nautiyal, S. & Kaechele, H. Adverse impacts of pasture abandonment in Himalayan protected areas: Testing the efficiency of a Natural Resource Management Plan (NRMP). Environ. Impact Assess. Rev. 27, 109–125 (2007).Article 

    Google Scholar 
    Karger, D. N., Nobis, M. P. & Normand, S. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past (2021).Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).Article 
    ADS 

    Google Scholar 
    Heiri, O., Ilyashuk, B., Millet, L., Samartin, S. & Lotter, A. F. Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region. Holocene 25, 137–149 (2015).Article 
    ADS 

    Google Scholar 
    Ivy-Ochs, S. et al. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 28, 2137–2149 (2009).Article 
    ADS 

    Google Scholar 
    Finsinger, W. & Tinner, W. Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17, 1119–1127 (2007).Article 
    ADS 

    Google Scholar 
    Baroni, C. et al. Last Lateglacial glacier advance in the Gran Paradiso Group reveals relatively drier climatic conditions established in the Western Alps since at least the Younger Dryas. Quat. Sci. Rev. 255, 106815 (2021).Article 

    Google Scholar 
    Schibler, J., Elsner, J. & Schlumbaum, A. Incorporation of aurochs into a cattle herd in Neolithic Europe: Single event or breeding? Sci. Rep. 4, 5798 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220–230 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilyashuk, E. A., Heiri, O., Ilyashuk, B. P., Koinig, K. A. & Psenner, R. The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps. Clim. Dyn. 52, 1–15 (2018).
    Google Scholar 
    Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Alsos, I. G. et al. Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until the Norse settlement (Landnám) AD 870. Quat. Sci. Rev. 259, 106903 (2021).Article 

    Google Scholar 
    Pansu, J. et al. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24, 1485–1498 (2015).Article 
    PubMed 

    Google Scholar 
    Varotto, C. et al. A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy). Sci. Rep. 11, 1208 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parducci, L. et al. Proxy comparison in ancient peat sediments: Pollen, macrofossil and plant DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130382 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clarke, C. L. et al. A 24,000-year ancient DNA and pollen record from the Polar Urals reveals temporal dynamics of arctic and boreal plant communities. Quat. Sci. Rev. 247, 106564 (2020).Article 

    Google Scholar 
    Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).Article 

    Google Scholar 
    Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O. & Lotter, A. F. Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J. Paleolimnol. 30, 261–272 (2003).Article 
    ADS 

    Google Scholar 
    Lotter, A. F. et al. Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veg. Hist. Archaeobot. 15, 295–307 (2006).Article 

    Google Scholar 
    Thöle, L. et al. Reconstruction of Holocene vegetation dynamics at Lac de Bretaye, a high-mountain lake in the Swiss Alps. Holocene 26, 380–396 (2016).Article 
    ADS 

    Google Scholar 
    Heiri, O., Lotter, A. F., Hausmann, S. & Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13, 477–484 (2003).Article 
    ADS 

    Google Scholar 
    Garcés-Pastor, S., Cañellas-Boltà, N., Clavaguera, A., Calero, M. A. & Vegas-Vilarrúbia, T. Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central Pyrenees) during the last millennium. Holocene 27, 553–565 (2017).Article 
    ADS 

    Google Scholar 
    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J. P. Flora Alpina: Atlas des 4500 Plantes Vasculaires des Alpes (Belin, 2004).Sønstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol. Ecol. Resour. 10, 1009–1018 (2010).Article 
    PubMed 

    Google Scholar 
    Diekmann, M. Species indicator values as an important tool in applied plant ecology—a review. Basic Appl. Ecol. 4, 493–506 (2003).Article 

    Google Scholar 
    Giesecke, T. et al. Postglacial change of the floristic diversity gradient in Europe. Nat. Commun. 10, 5422 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colombaroli, D. & Tinner, W. Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene 23, 1625–1634 (2013).Article 
    ADS 

    Google Scholar 
    Schwörer, C., Colombaroli, D., Kaltenrieder, P., Rey, F. & Tinner, W. Early human impact (5000–3000 BC) affects mountain forest dynamics in the Alps. J. Ecol. 103, 281–295 (2015).Article 

    Google Scholar 
    Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilck, F. & Poschlod, P. The origin of alpine farming: A review of archaeological, linguistic and archaeobotanical studies in the Alps. Holocene 29, 1503–1511 (2019).Article 
    ADS 

    Google Scholar 
    Tinner, W., Nielsen, E. H. & Lotter, A. F. Mesolithic agriculture in Switzerland? A critical review of the evidence. Quat. Sci. Rev. 26, 1416–1431 (2007).Article 
    ADS 

    Google Scholar 
    Berthel, N., Schwörer, C. & Tinner, W. Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev. Palaeobot. Palynol. 174, 91–100 (2012).Article 

    Google Scholar 
    Hafner, A. & Schwörer, C. Vertical mobility around the high-alpine Schnidejoch Pass. Indications of Neolithic and Bronze Age pastoralism in the Swiss Alps from paleoecological and archaeological sources. Quat. Int. https://doi.org/10.1016/j.quaint.2016.12.049 (2017).Oveisi, M. et al. Potential for endozoochorous seed dispersal by sheep and goats: Risk of weed seed transport via animal faeces. Weed Res. 61, 1–12 (2021).Article 

    Google Scholar 
    Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).Article 

    Google Scholar 
    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).Article 

    Google Scholar 
    Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 14676 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andres, B. Alpine settlement remains in the Bernese Alps (Switzerland) in medieval and modern times. Historical Archaeologies of Transhumance across Europe (eds Costello, E. & Svensson, E.) 155–169 (Routledge, 2018).eTopoi. Journal for Ancient Studies. 3, 279–283 (2012).Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).Article 
    ADS 

    Google Scholar 
    Yuan, Z. Y., Jiao, F., Li, Y. H. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spiegelberger, T., Matthies, D., Müller-Schärer, H. & Schaffner, U. Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29, 541–548 (2006).Article 

    Google Scholar 
    Maurer, K., Weyand, A., Fischer, M. & Stöcklin, J. Old cultural traditions, in addition to land use and topography, are shaping plant diversity of grasslands in the Alps. Biol. Conserv. 130, 438–446 (2006).Article 

    Google Scholar 
    Kampmann, D. et al. Mountain grassland biodiversity: Impact of site conditions versus management type. J. Nat. Conserv. 16, 12–25 (2008).Article 

    Google Scholar 
    Pellegrini, E., Buccheri, M., Martini, F. & Boscutti, F. Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Sci. Rep. 11, 8385 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).Article 
    PubMed 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625 (2012).Article 

    Google Scholar 
    Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: A meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).Article 
    PubMed 

    Google Scholar 
    Evans, D. M. et al. The cascading impacts of livestock grazing in upland ecosystems: A 10-year experiment. Ecosphere 6, art42 (2015).Article 

    Google Scholar 
    Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mathieu, J. Eine Agrargeschichte der inneren Alpen. Graubünden, Tessin, Wallis 1500–1800 (Chronos, 1992).Aerni, K, Egli, H. R & Fehn, K. Siedlungsprozesse an der Höhengrenze der Ökumene: am Beispiel der Alpen: Referate der 16 Tagung des” Arbeitskreises für genetische Siedlungsforschung in Mitteleuropa” vom 20.−23. (Siedlungsforschung: Spiez, 1991).Brugger, S. O. et al. Alpine glacier reveals ecosystem impacts of Europe’s prosperity and peril over the last millennium. Geophys. Res. Lett. 48, e2021GL095039 (2021).Merkt, J. & Streif, H. Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geologisches Jahrbuch 88, 137–148 (1970).Lamb, A. L. Determination of organic and carbonate content in soils and sediments by loss on ignition (LOI), NERC Isotope Geosciences Laboratory Report, 197 (2004).Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon https://doi.org/10.1017/RDC.2020.41 (2020).Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. i-vi, 1-276 (2007).Schulze, E. A Key to the Larval Chironomidae and their Instars from Austrian Danube Region Streams and Rivers with Particular Reference to a Numerical Taxonomic Approach. Part I. In: Wasser und Abwasser, Supplementband 3/93. Hrsg.: Bundesamt für Wassergüte, Wien-Kaisermühlen. Schriftenleitung: Werner Kohl. Selbstverlag, 1993, 514 S., öS 562. Acta Hydrochim. Hydrobiol. 22, 191–191 (1994).Article 

    Google Scholar 
    Juggins, S. C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5). Newcastle upon Tyne: Newcastle University (2007). https://www.staff.ncl.ac.uk/stephen.juggins/software/code/C2.pdf.Moore, P. D., Webb, J. A. & Collison, M. E. Pollen Analysis, edn 2 (Blackwell, 1991).Stockmarr & Ja Tabletes with spores used in absolute pollen analysis. Pollen Spores 13, 615–621 (1971).
    Google Scholar 
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord (Laboratoire de Botanique historique et Palynologie, Marseille, 1992).van Geel, B. et al. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J. Archaeol. Sci. 30, 873–883 (2003).Article 

    Google Scholar 
    Bennett, K. D. Determination of the number of zones in a biostratigraphical sequence. N. Phytol. 132, 155–170 (1996).Article 
    CAS 

    Google Scholar 
    Tinner, W. et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8, 31–42 (1998).Article 
    ADS 

    Google Scholar 
    Adolf, C. et al. The sedimentary and remote-sensing reflection of biomass burning in Europe. Glob. Ecol. Biogeogr. 27, 199–212 (2018).Article 

    Google Scholar 
    Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: Relevance for fire reconstruction. Holocene 13, 499–505 (2003).Article 
    ADS 

    Google Scholar 
    Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).Article 
    CAS 

    Google Scholar 
    Alsos, I. G. et al. The treasure vault can be opened: Large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, 432 (2020).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).Article 
    PubMed 

    Google Scholar 
    Voldstad, L. H. et al. A complete Holocene lake sediment ancient DNA record reveals long-standing high Arctic plant diversity hotspot in northern Svalbard. Quat. Sci. Rev. 234, 106207 (2020).Article 

    Google Scholar 
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ficetola, G. F. et al. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS One 10, e0115335 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boratyn, G. M. et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 41, W29–W33 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leonard, J. A. et al. Animal DNA in PCR reagents plagues ancient DNA research. J. Archaeol. Sci. 34, 1361–1366 (2007).Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).Article 
    PubMed 

    Google Scholar 
    Ter Braak, C. J. F. & Prentice, I. C. A theory of gradient analysis. Adv. Ecol. Res. 18, 271–317 (Elsevier, 1988).Vieira, D. C., Brustolin, M. C., Ferreira, F. C. & Fonseca, G. segRDA: Anr package for performing piecewise redundancy analysis. Methods Ecol. Evol. 10, 2189–2194 (2019).Article 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling inr for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Chen, W. & Ficetola, G. F. Numerical methods for sedimentary‐ancient‐DNA‐based study on past biodiversity and ecosystem functioning. Environ. DNA 2, 115–129 (2020).Article 

    Google Scholar 
    Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-26. https://cran.r-project.org/web/packages/rioja/index.html (2020).Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012).Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer, 2016).Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).Tinner, W. & Ammann, B. Long-term responses of mountain ecosystems to environmental changes: Resilience, adjustment, and vulnerability. In Global change and mountain regions. 133–143 (Springer, Dordrecht; 2005). More

  • in

    A Swin Transformer-based model for mosquito species identification

    The framework of Swin MSIWe established the first Swin Transformer-based mosquito species identification (Swin MSI) model, with the help of self-constructed image dataset and multi-adjustment-test. Gradient-weighted class activation mapping was used to visualize the identification process (Fig. 1a). The key Swin Transformer block was described on Fig. 1b. Based on practical needs, Swin MSI was additional designed to identify Culex pipiens Complex on the subspecies level (Fig. 1c) and novel mosquito (which was defined as ones beyond 17 species in our dataset) classification attribution (Fig. 1d). Detailed results are shown in the following sections.Figure 1The Framework of Swin MSI. (a)The basic architecture for mosquito features extraction and identification. Attention visualization generated by filters at each layer are shown. (b) Details for Swin Transformer block. (c) For mosquito within our dataset 17 species, output is the top 5 confidence species. (d) For mosquito beyond 17 species (defined as novel species), whether the output is a species or a genus is decided after comparing with confidence threshold.Full size imageMosquito datasetsWe established the highest-definition and most-balanced mosquito image dataset to date. The mosquito image dataset covers 7 genera and 17 species (including 3 morphologically similar subspecies in the Cx. pipiens Complex), which covers the most common and important disease-transmitting mosquitoes at the global scale, with a total of 9,900 mosquito images. The image resolution was 4464 × 2976 pixels. The specific taxonomic status and corresponding images are shown in Fig. 2. Due to the limitation of field collection, Ae. vexans, Coquillettidia ochracea, Mansonia uniformis, An. vagus and Toxorhynchites splendens only have females or only have males. In addition, each mosquito species included 300 images of both sexes, which was large enough and same number for each species, in order to balance the capacity and variety of training sets.Figure 2Taxonomic status and index of mosquito species included in this study Both male and female mosquitoes were photographed from different angles such as dorsal, left side, right side, ventral side, etc. Except for 5 species, each mosquito includes 300 images of both sexes, and the resolution of mosquito photos were 4464 × 2976. Cx. pipiens quinquefasciatus, Cx. pipiens pallens, and Cx. pipiens molestus (subspecies level, in dark gray background) were 3 subspecies in Cx. pipiens Complex (species level).Full size imageWorkflow for mosquito species identificationA three-stage flowchart of building best deep learning model for identification of mosquito species model was adopted (Fig. 3). The first learning stage was conducted by three CNNs (the Mask R-CNN, DenseNet, and YOLOv5) and three transformer models (the Detection Transformer, Vision Transformer, and Swin Transformer). Based on the performance of the first-stage model and the real mosquito labels, the second learning stage involved adjusting the model parameters of the three Swin Transformer variants (T, B, and L) to compare their performances. The third learning stage involved testing the effects of inputting differently sized images (384 × 384 and 224 × 224) to the Swin Transformer-L model; finally, we proposed a deep learning model for mosquito species identification (Swin MSI) to test the recognition effects of different mosquito species. The model was validated on different mosquito species, with a focus on the identification accuracy of three subspecies within the Cx. pipiens Complex and the detection effect of novel mosquito species.Figure 3Flowchart of testing deep learning model for intelligent identification of mosquito species.Full size imageComparison between the CNN model and Transformer model results (1st round of learning)Figure 4a shows the accuracies obtained for the six different computer vision network models tested on the mosquito picture test set. The test results show that the transformer network model had a higher mosquito species discrimination ability than the CNN.Figure 4Comparison of mosquito recognition effects of computer vision network models and variants. (a) Comparison of mosquito identification accuracy between 3 CNNs and 3 Transformer; (b) The best effect CNN (YOLOv5) training set loss curve(blue), validation set loss curve(green) and validation set accuracy curve(orange); (c) The best effect Transformer (Swin Transformer) training set loss curve, validation set loss curve and validation set accuracy curve. (d) Swin-MSI-T test result confusion matrix; (e) Swin-MSI -B test result confusion matrix; (f) Swin-MSI -L test result confusion matrix. Confusion matrix of mosquito labels in which odd numbers represent females and even numbers represent males. The small squares in the confusion matrix represent the recognition readiness rate, from red to green, the recognition readiness rate is getting higher and higher An. sinensis: 1, 2; Cx. pipiens quinquefasciatus: 3, 4; Cx. pipiens pallens: 5, 6; Cx. pipiens molestus: 7,8 Cx. modestus: 9,10; Ae. albopictus: 11, 12 Ae. aegypti: 13, 14; Cx. pallidothorax: 15, 16 Ae. galloisi: 17,18 Ae. vexans: 19, 20; Ae. koreicus: 21, 22 Armigeres subalbatus: 23, 24; Coquillettidia ochracea: 25, 26 Cx. gelidus: 27, 28 Cx. triraeniorhynchus: 29, 30 Mansonia uniformis: 31, 32 An. vagus: 33, 34 Ae. elsaie: 35,36 Toxorhynchites splendens: 37, 38.Full size imageIn the CNN training process (applied to YOLOv5), the validation accuracy requires more than 110 epochs to grow to 0.9, and the validation loss requires 110 epochs to drop to a flat interval; in contrast, during the training step, these losses represent a continuously decreasing process. These results indicate that the deep learning model derived based on the Swin Transformer algorithm was able to achieve a higher recognition accuracy in less time than the rapid convergence ability of the CNN during the iterative process (Fig. 4b).The Swin Transformer model exhibited the highest test accuracy of 96.3%. During the training process, the loss of this model could stabilize after 30 epochs, and its validation accuracy could grow to 0.9 after 20 epochs; during the validation step, the loss can drop to 0.36 after 20 epochs, after which the loss curve fluctuated but did not produce adverse effects (Fig. 4c). Based on the excellent performance of the Swin Transformer model, this model was used as the baseline to carry out the subsequent analyses.Swin Transformer model variant adjustment (2nd round of learning)Following testing performed to clarify the superior performance of the Swin Transformer algorithm, we chose different Drop_path_rate, Embed_dim and Depths parameter settings and labeled the parameter sets as the Swin Transformer-T, Swin Transformer-B, and Swin Transformer-L variants. Drop_path is an efficient regularization method, and an asymmetric Drop_path_rate is beneficial for supervised representation learning when using image classification tasks and Transformer architectures. The Embed_dim parameter represents the image dimensions obtained after the input red–green–blue (RGB) image is calculated by the Swin Transformer block in stage 1. The Depths parameter is the number of Swin Transformer blocks used in the four stages. The parameter information and test results are shown in Table 1. Due to the increase in the Swin Transformer block and Embed_dim parameters in stage 3, the recognition accuracies of the three variants were found to be 95.8%, 96.3%, and 98.2%, Correspondingly, the f1 score were 96.2%, 96.7% and 98.3%; thus, these variants could effectively improve the mosquito species identification ability in a manner similar to the CNN by increasing the number of convolutional channels to extract more features and improve the overall classification ability. In this study, the Swin Transformer-L variant, which exhibited the highest accuracy, was selected as the baseline for the next work.Table 1 Parameters and test accuracy of three variants of Swin Transformer.Full size tableBy plotting a confusion matrix of the test set results derived using the three Swin Transformer variants, we clearly obtained the proportion of correct and incorrect identifications in each category to visually reflect the mosquito species discrimination ability (Fig. 4d–f). In the matrix, the darker diagonal colors indicate higher identification rate accuracies of the corresponding mosquito categories. Among them, five mosquito species were missing because the Ae. vexans, Coquillettidia ochracea, Mansonia uniformis, An. vagus and Toxorhynchites splendens species were represented in the dataset by only females or only males. The confusion matrix shown in Panel C lists the lowest number of mosquito species identification error points and the lowest accuracy level obtained in each category, suggesting that the Swin Transformer-L model has a better classification performance than the Swin Transformer-T and Swin Transformer-B models.Effect of the input image size on the discrimination ability (3rd round of learning)To investigate the relationship between the input image size and mosquito species identification performance, in this study, we conducted a comparison test between input images with sizes of 224 × 224 and 384 × 384, based on the Swin Transformer-L model, and identified 8 categories of mosquito identification accuracy differences. These test results are shown in Table 2. When using an image size of 224 × 224 pixels, the batch_size parameter was set to 16, and when using an image size of 384 × 384 pixels, the batch_size parameter was set to 4; under these conditions, the proportion of utilized video memory accounted for 67%, as shown in Eq. 4, and this was consistent with the description of the relationship between the size of self-attentive operations during the operation of the Swin Transformer model when 384 × 384 pixels images were used. The time required for the Transformer-L model to complete all the training sessions was excessive, reaching 126 h and even exceeding the 124 h required by the YOLOv5 model, which was found to require the highest computation time during the training process in this work. Long-term training process could more fully reflect the performance differences between models. Fortunately and actually, the response speed of the model will not be affected by the training time. Compared to the accuracy of 98.2% obtained for 224 × 224 inputs, the 384 × 384 input image size derived based on the Swin Transformer-L model provided a higher mosquito species identification accuracy of 99.04%, representing an improvement of 0.84%.$$Omega ({text{W}} – {text{MSA}}) = 4{text{HWC}}^{2} + 2{text{M}}^{2} {text{HWC}}$$
    (1)
    Table 2 Comparison of recognition accuracy for different input image sizes.Full size tableVisualizing and understanding the Swin MSI modelsTo investigate the differences in the attentional features utilized by the Swin MSI and taxonomists for mosquito species identification, we applied the Grad-CAM method to visualize the Swin MSI attentional areas on mosquitoes at different stages. Because the Swin Transformer has different attentional ranges among its multi-head self-attention steps in different stages, different attentional weights can be found on different mosquito positions. In stage 1, the feature dimension of each patch was 4 × 4 × C, thus enabling the Swin Transformer’s multi-head self-attention mechanism to give more attention to the detailed parts of the mosquitoes, such as their legs, wings, antennae, and pronota. In stage 2, the feature dimension of each patch was 8 × 8 × 2C, enabling the Swin Transformer’s multi-head self-attention mechanism to focus on the bodies of the mosquitoes, such as their heads, thoraces, and abdomens. In stage 3, when the feature dimension of each patch was 16 × 16 × 4C, the Swin Transformer’s multi-head self-attention mechanism could focus on most regions of the mosquito, thus forming a global overall attention mechanism for each mosquito (Fig. 5). This attentional focus process is essentially the same as the process used by taxonomists when classifying mosquito morphology, changing from details to localities to the whole mosquito.Figure 5Attention visualization of representative mosquitoes of the genera Ae., Cx., An., Armigeres, Coquillettidia and Mansonia. This is a visualization for identifying the regions in the image that can explain the classification progress. Images of Toxorhynchites contain only males, with obvious differences in morphological characteristics, are not shown.Full size imageAe. aegypti is widely distributed in tropical and subtropical regions around the world and transmits Zika, dengue and yellow fever. A pair of long-stalked sickle-shaped white spots on both shoulder sides of the mesoscutum, with a pair of longitudinal stripes running through the whole mesotergum, is the most important morphological identification feature of this species. This feature was the deepest section in the attention visualization, indicating that the Swin MSI model also recognized it as the principal distinguishing feature. In addition, the abdominal tergum of A. aegypti is black and segments II-VII have lateral silvery white spots and basal white bands; the model also focused on these areas.Cx. triraeniorhynchus is the main vector of Japanese encephalitis; this mosquito has a small body size, a distinctive white ring on the proboscis (its most distinctive morphological feature), and a peppery color on its whole body. Similarly, the model constructed herein focused on both the head and abdominal regions of this species.An. sinensis is the top vector of malaria in China and has no more than three white spots on its anterior wing margin and a distinct white spot on its marginal V5.2 fringe; this feature was observed in Stage 2, at which time the modelstrongly focused on the corresponding area.The most obvious feature of Armigeres subalbatus is the lateral flattening and slightly downward curving of its proboscis; the observation of the attention visualization revealed that the constructed model focused on these regions from Stage 1 to Stage 3. The mesoscutum and abdominal tergum were not critical and were less important for identification than the proboscis, and the attention visualization results correspondingly show that the neural network focused less on these features.Coquillettidia ochracea belongs to the Coquillettidia genus and is golden yellow all over its body, with the most pronounced abdomen among the analyzed species. The model showed a consistent morphological taxonomic focus on the abdomen of this species.Mansonia uniformis is a vector of Malayan filariasis. The abdominal tergum of this species is dark brown, and its abdominal segments II-VII have yellow terminal bands and lateral white spots, which are more obvious than the dark brown feature on proboscis. Through the attention visualization, we determined that the Swin MSI model was more concerned with the abdominal region features than with the proboscis features.Subspecies-level identification tests of mosquitos in the Culex pipiens ComplexFine-grained image classification has been the focus of extensive research in the field of computer vision25,26. Based on the test set (containing 270 images) constructed herein for three subspecies of the Cx. pipiens Complex, the subspecies and sex identification accuracies were 100% when the Swin MSI model was used.The morphological characteristics of Cx. pipiens quinquefasciatus, Cx. pipiens pallens, and Cx. pipiens molestus within the Cx. pipiens Complex are almost indistinguishable, but their host preferences, self-fertility properties, breeding environments, and stagnation overwintering strategies are very different27. Among the existing features available for morphological classification, the stripes on the abdominal tergum of Cx. pipiens quinquefasciatus are usually inverted triangles and are not connected with the pleurosternums, while those of Cx. pipiens pallens are rectangular and are connected with the pleurosternums. Cx. pipiens molestus is morphologically more similar to Cx. pipiens pallens as an ecological subspecies of the Cx. pipiens Complex. However, taxonomists do not recommend using the unstable feature mentioned above as the main taxonomic feature for differentiation. By analyzing the attention visualization results of these three subspecies (last three rows on Fig. 5), we found that the neural networks of Cx. pipiens quinquefasciatus, Cx. pipiens pallens, and Cx. pipiens molestus still focused on the abdominal regions, as shown in dark red. The area of focus of these neural networks differ from that of the human eye, and the results of this study suggest that the Swin MSI model can detect finely granular features among these three mosquito subspecies that are indistinguishable to the naked human eye.Novel mosquito classification attributionAfter we performed a confidence check on the successfully identified mosquito images in the dataset, the lowest confidence value was found to be 85%. A higher confidence threshold mean stricter evaluation criteria, which can better reflect the powerful performance of the model. Therefore, 0.85 was set as the confidence threshold when judging novel mosquitoes. When identifying 10 unknown mosquito species, the highest derived species confidence level was below 85%; when the results were output to the genus level (Fig. 1d), the average probability of obtaining a correct judgment was 96.26%accuracy and 98.09% F1-score (Table 3). The images tested as novel Ae., Cx. and An. mosquito were from Minakshi and Couret et al.28,29.Table 3 Probability of correct attribution of novel species.Full size table More

  • in

    Phenotypic trait variation in a long-term multisite common garden experiment of Scots pine in Scotland

    Seed sampling and germinationSeed from ten trees from each of 21 native Scottish Scots pine populations (Table 1) were collected in March 2007 and germinated at the James Hutton Institute, Aberdeen (latitude 57.133214, longitude −2.158764) in June 2007. Populations were chosen to represent the species’ native range in Scotland and to include three populations from each of the seven seed zones (Fig. 2). There was no selection of seed-trees on the basis of any traits except for the possession of cones on the date of sampling. Ten seed trees were sampled from each population according to a spatial protocol designed to cover a circle of approximately 1 km in diameter located around a central tree. The sampling strategy identified nine points each in a pre-determined random direction from the central point, whilst stratifying the number sampled with increasing distance from the central point in the ratio 1: 3: 5. This strategy avoids over-sampling the areas close to the centre point. For smaller fragments of woodland, or where only a few trees with cones were present, then the directions of the sampled trees from the central tree were maintained to give a wide coverage of the woodland area, but the distances between trees varied but were never closer than 50 m. To break dormancy, seeds were soaked for 24 hours on the benchtop at room temperature, after which they were stored in wet paper towels and refrigerated in darkness at 3–5 °C for approximately 4 weeks. Seeds were kept moist and transferred to room temperature until germination began (approx. 5–7 days), then transplanted to 8 cm × 8 cm × 9 cm, 0.4 L pots filled with Levington’s C2a compost and 1.5 g of Osmocote Exact 16–18 months slow release fertiliser and kept in an unheated glasshouse. The compost was covered with a layer of grit to reduce moss and liverwort growth. Seedlings from the same mother tree are described as a family and are assumed to be half-siblings.Table 1 Locations and basic environmental data for the populations sampled for seed to establish the trial. See the maternal traits dataset15 for precise data for each mother tree sampled.Full size tableExperimental design: nurseriesThe full collection consisted of 210 families (10 families from each of 21 populations) each consisting of 24 half sibling progeny (total 5,040 individuals); needle tissue was sampled from each seedling and preserved for long term storage, one needle on silica gel, 2–5 needles at −20 °C. After transfer into pots, 8 seedlings per family were moved to one of three nurseries (total 1,680 seedlings per nursery): outdoors at Inverewe Gardens in western Scotland (nursery in the west of Scotland: coded NW, latitude 57.775714, longitude −5.597181, Fig. 2); outdoors in a fruit cage (to minimise browsing) at the James Hutton Institute in Aberdeen (nursery in the east of Scotland: NE); in an unheated glasshouse at the James Hutton Institute in Aberdeen (nursery in a glasshouse: NG). Trees were arranged in 40 randomised trays (blocks) in each nursery. Each block contained two trees per population (total 42 trees). Watering was automatic in NG, and manually as required for NE and NW. No artificial light was used in any of the nurseries. In May 2010 the seedlings from NG were moved outdoors to Glensaugh in Aberdeenshire (latitude 56.893567, longitude −2.535736). In 2010 all plants were repotted into 19 cm (3 L) pots containing Levingtons CNSE Ericaceous compost with added Osmocote STD 16–18 month slow release fertilizer.Experimental design: field sitesIn 2012 the trees were transplanted to one of three field sites: Yair in the Scottish Borders (field site in the south of Scotland: FS, latitude 55.603625, longitude −2.893025); Glensaugh (field site in the east of Scotland: FE); and Inverewe (field site in the west of Scotland: FW). All trees transplanted to FS were raised in the NG and all but four of the trees transplanted to FE were raised locally in the NE (the remainder were grown in NG). In contrast, following mortality and ‘beating up’ (filling gaps where saplings had died), the FW experiment ultimately contained cohorts of trees raised in each of the three nurseries as follows: 290 grown locally in the NW; 132 were grown in the NG; and 82 were grown in the NE.Site historiesThe Yair site (FS) had previously been used for growing Noble fir (Abies procera) for Christmas trees and Lodgepole pine (Pinus contorta), a section of the former were felled and chipped to create a clear area prior to planting. The planting site is also adjacent to a large block of commercial Sitka spruce (Picea sitchensis) forestry, and the Glenkinnon Burn Site of Special Scientific Interest (SSSI NatureScot site code 736; EU site code 135445), an area of mixed broadleaf woodland. Prior to planting, major areas of tall weeds were strimmed. The site was protected by a deer fence. The experiment was planted 8–11 October 2012. The Glensaugh site (FE) is in Forestry Compartment 3 of the Glensaugh Research Station, adjacent to Cleek Loch. It is thought to have been cleared of Scots pine and Larch (Larix decidua) around 1917, after which it reverted to rough grazing. An attempt to reseed part of the site in the 1980s was unsuccessful and it quickly reverted to rough grazing for a second time. The whole site (within which the experimental area is embedded) was deer fenced and re-planted under the Scottish Rural Development Programme (SRDP) in 2012. The experimental plot was planted up 7–9 March 2012. The Inverewe site (FW) had previously been a Sitka spruce and Lodgepole pine plantation (50:50 mix) that had been clear-felled in 2010 following substantial windthrow. The experimental site was deer fenced in early 2012, and the experiment was planted 12–16 March 2012, followed by beating up on 27–28 March 2013 and 22–24 October 2013. There had been minimal preparation of the site in line with current practice for restocking sites. The experimental site is included in the Inverewe Forest Plan, which included deer fencing of a larger area (2014) around the experimental site. Planting of this area was completed in early 2015, funded by NTS (National Trust for Scotland), although natural regeneration is also taking place.At each site, trees were planted in randomised blocks at 3 m × 3 m spacing. There are four randomised blocks in both FS and FE and three in FW. A guard row of Scots pine trees was planted around the periphery of the blocks and between blocks B and C at FS. Each block comprised one individual from each of eight (of the 10 sampled) families per 21 populations (168 trees). Although most families (N = 159) were represented at each of the three sites, families with insufficient trees (N = 9) were replaced in one site (FS) with a different family from the same population. Each experimental site was designed with redundancy such that, if thinning becomes necessary as the trees mature, then the systematic removal of trees (i.e. trees 1,3,5,7, etc of row 1, and 2,4,6,8, etc of row 2, 1,3,5,7,etc of row 3) will maintain a balanced design of the experiment, with sufficient family and population representation to provide an ongoing experiment with full geographic coverage.The field sites generally experience different climates, with FW typically warmer and wetter and with more growing degree days per year and a much longer growing season than both FE and FS (Table 2). The coldest site with the shortest growing season is generally FE.Table 2 Average climatic variables at field sites Glensaugh (FE), Inverewe (FW) and Yair (FS) from planting in 2012 until 2020. Climatic variables are derived from data provided by the Met Office (daily mean, minimum and maximum temperatures and monthly rainfall).Full size tablePhenotype assessmentsMaternal traitsFollowing seed collection, a range of traits were measured in the mother trees in order to control for maternal effects in subsequent measurements of their progeny (Table 3). For each mother tree, measurements of height and diameter at breast height (DBH) were taken, and ten cones were collected and assessed in detail. Cone width and length were measured prior to drying the cones (when they were still closed). Cone weight was measured post-drying. Seed removed from each cone was assessed for total weight (after wings had been removed) and for the count and percentage of seeds which were classed as viable (viable seed were those which had both a wing and an obvious seed). No further seed sorting was applied.Table 3 Traits assessed in mother trees, cones, seeds (dataset: Maternal), nursery seedlings (dataset: Nursery) and field trials (dataset: Field). Within the datasets, traits are recorded in a single column for each year using the format Code-Year (e.g. absolute height in 2008 = HA08) except for the maternal traits datasets which were all measured in 2007.Full size tableNursery traitsSeedling phenotype assessments were performed annually from 2007–2010 for three different trait types: phenology (budburst and growth cessation); form (total number of buds, needle length); cumulative growth (stem diameter and height, canopy width). Measurements of tree form and cumulative growth traits were taken after the end of each growing season. Phenology was assessed weekly during the spring and autumn of 2008 for budburst and growth cessation, respectively. Budburst was defined as the number of days from 31 March 2008 to the time when newly emerged green needles were observed (budburst stage 6: Fig. 3). In some seedlings in 2008, a secondary flush of growth occurred from terminal buds that had formed during the summer of that year. Therefore, growth cessation was defined retrospectively as the number of days from 10 September 2008 to the date when a terminal bud had formed on the leading shoot of the seedling, providing no further growth was observed either on the stem below that bud, nor from the bud itself. Canopy width (widest point) was measured at two perpendicular points in the horizontal plane. Needle length was measured for three needles per tree. Mortality was recorded each year from 2007 to 2010.Fig. 3Phenological stages of bud burst in Pinus sylvestris assessed in field trials. Inset numbers correspond to budburst stage. Budburst stage 1: bud dormant; 2: bud swelling and showing signs of linear expansion; 3: scales open at base revealing green tissue. Remaining bud remains encased by smooth bud scales; 4: scales open along length of shoot revealing green tissue and partially visible needles; 5: white tipped needles visible along length of the shoot; 6: green needles emerging away from the shoot (bottle brush appearance) along its entire length; 7: Needles have separated and next year’s terminal bud is usually formed and clearly visible.Full size imageField traitsTree height was measured in the field in the winter after each growing season from 2013 at FE and FW, and from 2014 to 2020 at all sites. Height was taken as the vertical measurement in cm from top bud straight to the ground. Basal stem diameter was measured at the end of the growing season for trees growing at FE and FW from 2014 to 2020 and for FS in 2020.Phenology assessments were performed in spring at each site from 2015 to 2019. Seven distinct stages of budburst (assessed on the terminal bud) were defined (Fig. 3) although only stages 4 to 6 are included in the dataset and considered for analysis due to high proportions of missing data for the early and late stages. Each tree was assessed for budburst stage at weekly intervals from early spring until budburst was complete. In order to allow comparisons within and among sites and years, the date at which each stage of budburst occurred was considered relative to 31 March of that year. For example, 25 May 2019 is recorded as 55 days since 31 March 2019. The duration of budburst (time taken to reach stage 6 from stage 4) was also estimated.When trees progressed through budburst stages rapidly, skipping a stage between assessments, a mean value was taken from the two assessment dates. For example, if a tree was at stage 4 on day 55 and was recorded as stage 6 at the next assessment on day 62, it is assumed to have reached stage 5 at day 58.5. More

  • in

    The arrival of millets to the Atlantic coast of northern Iberia

    Buxó, R. & Piqué, R. Arqueobotánica: Los Usos de las Plantas en la Península Ibérica. (Grupo Planeta GBS, 2008).Miller, N. F., Spengler, R. N. & Frachetti, M. Millet cultivation across Eurasia: Origins, spread, and the influence of seasonal climate. Holocene 26, 1566–1575 (2016).ADS 

    Google Scholar 
    James, T. K., Rahman, A., McGill, C. R. & Trivedi, P. D. Biology and survival of broomcorn millet (Panicum miliaceum) seed. N. Z. Plant Prot. 64, 142–148 (2011).
    Google Scholar 
    Kirleis, W., Dal Corso, M. & Filipović, D. Millet and What Else?: The Wider Context of the Adoption of Millet Cultivation in Europe. vol. 14 (Sidestone Press, 2022).Sherratt, A. Water, soil and seasonality in early cereal cultivation. World Archaeol. 11, 313–330 (1980).
    Google Scholar 
    Rachie, K. O. The Millets: Importance, Utilization and Outlook. 74 (International Crops Research Institute for the Semi-Arid Tropics, 1975).Moreno-Larrazabal, A., Teira-Brión, A., Sopelana-Salcedo, I., Arranz-Otaegui, A. & Zapata, L. Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Veg. Hist. Archaeobot. 24, 541–554 (2015).
    Google Scholar 
    Liu, L. et al. The origins of specialized pottery and diverse alcohol fermentation techniques in Early Neolithic China. Proc. Natl. Acad. Sci. USA 116, 12767–12774 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tereso, J. P. et al. Agriculture in NW Iberia during the Bronze Age: A review of archaeobotanical data. J. Archaeol. Sci. Rep. 10, 44–58 (2016).
    Google Scholar 
    Liu, C., Kong, Z. & Lang, S. D. A discussion on agricultural and botanical remains and the human ecology of Dadiwan site, in Chinese. Zhongyuan Wenwu 4, 25–29 (2004).
    Google Scholar 
    Zhao, Z. New archaeobotanic data for the study of the origins of agriculture in China. Curr. Anthropol. 52, S295–S306 (2011).
    Google Scholar 
    Crawford, G. W., Xuexiang, C., Fengshi, L. & Jianhua, W. A Preliminary analysis on plant remains of the Yuezhuang site in Changqing District, Jinan City, Shandong Province. Jianghan Archaeol. 2, 107–113 (2013).
    Google Scholar 
    Frachetti, M. D. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 53, 2–38. https://doi.org/10.1086/663692 (2012).Article 

    Google Scholar 
    Ventresca Miller, A. R. & Makarewicz, C. A. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Sci. Rep. 9, 8363 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. et al. Food globalisation in prehistory: The agrarian foundations of an interconnected continent. J. Br. Acad. 4, 73–87 (2016).
    Google Scholar 
    Spengler, R. et al. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc. Biol. Sci. 281, 20133382 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Hermes, T. R. et al. Early integration of pastoralism and millet cultivation in Bronze Age Eurasia. Proc. Biol. Sci. 286, 20191273 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frachetti, M. D., Spengler, R. N., Fritz, G. J. & Maryashev, A. N. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84, 993–1010 (2010).
    Google Scholar 
    Motuzaite-Matuzeviciute, G., Richard, A. S., Hunt, H. V., Liu, X. & Jones, M. K. The early chronology of broomcorn millet (Panicum Miliaceum) in Europe. Antiquity 338, 1073–1085 (2013).
    Google Scholar 
    Filipović, D. et al. New AMS 14C dates track the arrival and spread of broomcorn millet cultivation and agricultural change in prehistoric Europe. Sci. Rep. 10, 13698 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt, H. V. et al. Millets across Eurasia: Chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg. Hist. Archaeobot. 17, 5–18 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Brudenell, M., Fosberry, R., Phillips, T. & Kwiatkowska, M. Early cultivation of broomcorn millet in southern Britain: Evidence from the Late Bronze Age settlement site of Old Catton, Norfolk. Antiquity 2022, 1–6 (2022).
    Google Scholar 
    Weber, S. A. & Fuller, D. Q. Millets and their role in early agriculture. Pragdhara 18, 69–90 (2007).
    Google Scholar 
    Shelton, C. P. & White, C. E. The hand-pump flotation system: A new method for archaeobotanical recovery. J. Field Archaeol. 35, 316–326 (2010).
    Google Scholar 
    Barboff, M. Le millet au Portugal. In Millet– Hirse–Millet. Actes du Congres d’Aizenay (ed. Hörandner, E.) 113–122 (Grazer Beitra¨ge zur 731 europa¨ischen Ethnologie, 1995).Reddy, S. N. If the Threshing Floor Could Talk: Integration of Agriculture and Pastoralism during the Late Harappan in Gujarat, India. J. Anthropol. Archaeol. 16, 162–187 (1997).
    Google Scholar 
    Dayakar Rao, B. et al. Nutritional and health benefits of millets. In ICAR_Indian Institute of Millets Research (IIMR), Rajendranagar, Hyderabad 112 (2017).Mariotti-Lippi, M., Pisaneschi, L., Sarti, L., Lari, M. & Moggi-Cecchi, J. Insights into the Copper-Bronze Age diet in Central Italy: Plant microremains in dental calculus from Grotta dello Scoglietto (Southern Tuscany, Italy). J. Archaeol. Sci. Rep. 15, 30–39 (2017).
    Google Scholar 
    Lu, H. et al. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum). PLoS ONE 4, e4448 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lucarini, G., Radini, A., Barton, H. & Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on ground stone tools from the Farafra Oasis, Egypt. Quat. Int. 410, 77–92 (2016).
    Google Scholar 
    Madella, M., Lancelotti, C. & García-Granero, J. J. Millet microremains—an alternative approach to understand cultivation and use of critical crops in Prehistory. Archaeol. Anthropol. Sci. 8, 17–28 (2016).
    Google Scholar 
    Yang, X. et al. From the modern to the archaeological: Starch grains from millets and their wild relatives in China. J. Archaeol. Sci. 39, 247–254 (2012).
    Google Scholar 
    Lightfoot, E., Liu, X. & Jones, M. K. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World Archaeol. 45, 574–623 (2013).
    Google Scholar 
    Armendariz, A. In Las cuevas sepulcrales del País Vasco. (Tesis Doctoral Inédita, Universidad del País Vasco-Euskal Herriko Unibertsitatea, 1992).Vazquez-Varela, J. M. El cultivo del mijo, (Panicum miliaceum, L.), en la cultura castreña del noroeste de la peninsula iberica. Cuad. Estud. Gallegos 1, 65–73 (1994).
    Google Scholar 
    Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arias, P. & Armendariz, A. Aproximación a la Edad del Bronce en la región cantábrica. A Idade do Bronce en Galicia: novas perspectivas. Cadernos Semin. Sargadelos 77, 47–80 (1998).
    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 

    Google Scholar 
    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
    Google Scholar 
    van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
    Google Scholar 
    Nehlich, O. & Richards, M. P. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 1, 59–75 (2009).
    Google Scholar 
    Cristiani, E., Radini, A., Edinborough, M. & Borić, D. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. Proc. Natl. Acad. Sci. USA 113, 10298–10303 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henry, A. G. & Piperno, D. R. Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqā’I, Syria. J. Archaeol. Sci. 35, 1943–1950 (2008).
    Google Scholar 
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).ADS 
    CAS 

    Google Scholar 
    Hedges, R. E. M. & Reynard, L. M. Nitrogen isotopes and the trophic level of humans in archaeology. J. Archaeol. Sci. 34, 1240–1251 (2007).
    Google Scholar 
    López-Costas, O., Müldner, G. & Martínez-Cortizas, A. Diet and lifestyle in Bronze Age Northwest Spain: The collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218 (2015).
    Google Scholar 
    Jones, J. R. et al. Investigating prehistoric diet and lifeways of early farmers in central northern Spain (3000–1500 CAL BC) using stable isotope techniques. Archaeol. Anthropol. Sci. 11, 3979–3994 (2019).
    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    CAS 

    Google Scholar 
    O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).
    Google Scholar 
    Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216, 1131–1132 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Blas Cortina, M. Á. De la caverna al lugar fortificado: Una mirada a la edad del bronce en el territorio Astur-Cántabro. Quad. Prehist. Arqueol. Castelló 29, 105–134 (2011).
    Google Scholar 
    Nehlich, O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 142, 1–17 (2015).ADS 
    CAS 

    Google Scholar 
    Richards, M. P., Fuller, B. T. & Hedges, R. E. M. Sulphur isotopic variation in ancient bone collagen from Europe: Implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth Planet. Sci. Lett. 191, 185–190 (2001).ADS 
    CAS 

    Google Scholar 
    González-Rabanal, B. et al. Diet, mobility and death of Late Neolithic and Chalcolithic groups of the Cantabrian Region (northern Spain). A multidisciplinary approach towards studying the Los Avellanos I and II burial caves. J. Archaeol. Sci. Rep. 34, 1–13 (2020).
    Google Scholar 
    McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 101, 17593–17598 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Crespo, T., Ordoño, J., Bogaard, A., Llanos, A. & Schulting, R. A snapshot of subsistence in Iron Age Iberia: The case of La Hoya village. J. Archaeol. Sci. Rep. 28, 1–10 (2019).
    Google Scholar 
    Hedges, R. E. M. On bone collagen?apatite-carbonate isotopic relationships. Int. J. Osteoarchaeol. 13, 66–79 (2003).
    Google Scholar 
    Arias, P. Determinaciones de isótopos estables en restos humanos de la región Cantábrica. Aportación al estudio de la dieta de las poblaciones del Mesolítico y el Neolítico. Munibe Antropol.-Arkeol. 57, 359–374 (2005).
    Google Scholar 
    Palencia-Madrid, L. et al. Ancient mitochondrial lineages support the prehistoric maternal root of Basques in Northern Iberian Peninsula. Eur. J. Hum. Genet. 25, 631–636 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Crespo, T., Mujika, J. A. & Ordoño, J. Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab. Prehist. 73, 325–334 (2016).
    Google Scholar 
    Higuero Pliego, A. In Análisis Isotópico de Carbono y Nitrógeno en Secuencias de Dentina y de Estroncio en Esmalte Procedente de Restos Humanos Prehistóricos de la Cueva de Los Canes (Cabrales, Asturias). (Tesis Doctoral Inédita, Universidad de Cantabria, 2020).Teira-Brión, A. Traditional millet cultivation in the Iberian Peninsula: Ethnoarchaeological reflections through the lens of social relations and economic concerns. In (eds. Kirleis, W. et al.) Millet and What Else?: The Wider Context of the Adoption of Millet Cultivation in Europe vol. 14 263–278 (Sidestone Press, 2022).Pechenkina, E. A., Ambrose, S. H., Xiaolin, M. & Benfer, R. A. Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis. J. Archaeol. Sci. 32, 1176–1189 (2005).
    Google Scholar 
    Hu, Y. et al. Palaeodietary study of Sanxingcun Site, Jintan, Jiangsu. Chin. Sci. Bull. 52, 660–664 (2007).
    Google Scholar 
    Motuzaite-Matuzeviciute, G., Ananyevskaya, E., Sakalauskaite, J., Soltobaev, O. & Tabaldiev, K. The integration of millet into the diet of Central Asian populations in the third millennium BC. Antiquity 96, 560–574 (2022).
    Google Scholar 
    Herrscher, E. et al. The origins of millet cultivation in the Caucasus: Archaeological and archaeometric approaches. Préhistoires Méditerr. 2018, 6 (2018).
    Google Scholar 
    Tafuri, M. A., Craig, O. E. & Canci, A. Stable isotope evidence for the consumption of millet and other plants in Bronze Age Italy. Am. J. Phys. Anthropol. 139, 146–153 (2009).PubMed 

    Google Scholar 
    Varalli, A., Moggi-Cecchi, J., Moroni, A. & Goude, G. Dietary variability during bronze age in central Italy: First results. Int. J. Osteoarchaeol. 26, 431–446 (2016).
    Google Scholar 
    Goude, G., Rey, L., Toulemonde, F., Cervel, M. & Rottier, S. Dietary changes and millet consumption in northern France at the end of Prehistory: Evidence from archaeobotanical and stable isotope data. Environ. Archaeol. 22, 268–282 (2017).
    Google Scholar 
    Fernández-Crespo, T., Ordoño, J., Llanos, A. & Schulting, R. J. Make a desert and call it peace: Massacre at the Iberian Iron Age village of La Hoya. Antiquity 94, 1245–1262 (2020).
    Google Scholar 
    Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 106, 7367–7372 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, M. et al. Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province. Sci. China Earth Sci. 53, 694–699 (2010).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Lu, H., Wu, N., Yang, X. & Diao, X. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and Green Foxtail (Setaria viridis). PLoS ONE 6, e19726 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ge, Y. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol. Anthropol. Sci. 10, 61–73 (2018).
    Google Scholar 
    Tao, D., Zhang, G., Zhou, Y. & Zhao, H. Investigating wheat consumption based on multiple evidences: Stable isotope analysis on human bone and starch grain analysis on dental calculus of humans from the Laodaojing cemetery, Central Plains, China. Int. J. Osteoarchaeol. 30, 594–606 (2020).
    Google Scholar 
    Bucchi, A., Burguet-Coca, A., Expósito, I., Aceituno-Bocanegra, F. J. & Lozano, M. Comparisons between methods for analyzing dental calculus samples from El Mirador cave (Sierra de Atapuerca, Spain). Archaeol. Anthropol. Sci. 11, 6305–6314 (2019).
    Google Scholar 
    Cristiani, E. et al. Wild cereal grain consumption among Early Holocene foragers of the Balkans predates the arrival of agriculture. Elife 10, 1–37 (2021).
    Google Scholar 
    Bocanegra, F. J. A. & Sáez, J. A. L. Caracterización morfológica de almidones de los géneros Triticum y Hordeum en la Península Ibérica. Trabprehist 69, 332–348 (2012).
    Google Scholar 
    Hardy, K., Buckley, S. & Copeland, L. Pleistocene dental calculus: Recovering information on Paleolithic food items, medicines, paleoenvironment and microbes. Evol. Anthropol. 27, 234–246 (2018).PubMed 

    Google Scholar 
    López-Dóriga, I. In The use of plants during the Mesolithic and the Neolithic in the Atlantic coast of the Iberian peninsula. (Tesis Doctoral Inédita, Universidad de Cantabria, 2016).Nava, A. et al. Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP). Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Pyankov, V. I., Ziegler, H., Akhani, H., Deigele, C. & Lüttge, U. European plants with C4 photosynthesis: Geographical and taxonomic distribution and relations to climate parameters. Bot. J. Linn. Soc. 163, 283–304 (2010).
    Google Scholar 
    Zapata, L. In La explotación de los recursos vegetales y el origen de la agricultura en el País Vasco. (Tesis Doctora Inédita, Universidad del País Vasco, 2002).Figueiral, I., de-Jesus-Sanches, M. & Cardoso, J. L. Crasto de Palheiros (Murça, NE Portugal, 3rd – 1st millennium BC): From archaeological remains to ordinary life. Estudos Quat. 17, 13–28 (2017).
    Google Scholar 
    Bettencourt, A. M. S. O povoado da Idade do Bronze da Sola, Braga, norte de Portugal. Cadernos Arqueol. 9, 29–44 (2000).
    Google Scholar 
    Jesus, A., Tereso, J. P. & Gaspar, R. Interpretative trajectories towards the understanding of negative features using Terraço das Laranjeiras Bronze Age site as a case study. J. Archaeol. Sci. Rep. 30, 1–14 (2020).
    Google Scholar 
    Alonso-Martínez, N. Registro arqueobotánico de Cataluña occidental durante el II y I milenio a.n.e.. Complutum 11, 221–238 (2000).
    Google Scholar 
    Tarongi-Chavarri, M. Análisis comparativo de los estudios carpológicos de la Depresión del Ebro durante el III y I milenio a. C. Un estado de la cuestión. Rev. d’arqueologia Ponent 27, 41–59 (2017).
    Google Scholar 
    Stika, H.-P. & Heiss, A. G. Plant cultivation in the Bronze Age. In The Oxford Handbook of the European Bronze Age (eds. Fokkens, H. & Harding, A.) 348–369 (2013).González-y-Fernández-Valles, J. M. Temas de toponimia asturiana. Archivum 21, 121–140 (1971).
    Google Scholar 
    de Carvallo, L. A. In Antiguedades y Cosas Memorables del Principado de Asturias. (Julian de Paredes, 1695).MacKinnon, A. T., Passalacqua, N. V. & Bartelink, E. J. Exploring diet and status in the Medieval and Modern periods of Asturias, Spain, using stable isotopes from bone collagen. Archaeol. Anthropol. Sci. 11, 3837–3855. https://doi.org/10.1007/s12520-019-00819-2 (2019).Article 

    Google Scholar 
    Renfrew, J. M. Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe (Columbia University Press, 1973).
    Google Scholar 
    Bronk Ramsey, C. Bayesian Analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 

    Google Scholar 
    Richards, M. P. & Hedges, R. E. M. Stable isotope evidence for similarities in the types of marine foods used by late mesolithic humans at sites along the Atlantic Coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).
    Google Scholar 
    Sabin, S. & James, A. In Dental Calculus Field-Sampling Protocol (Sabin version) v2 (protocols.io.bqecmtaw). (2020). https://doi.org/10.17504/protocols.io.bqecmtaw.Cristiani, E. et al. Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean. Sci. Rep. 8, 8147 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fiorin, E. et al. Combining dental calculus with isotope analysis in the Alps: New evidence from the Roman and medieval cemeteries of Lamon. Italy. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.022 (2021).Article 

    Google Scholar  More

  • in

    Tree diversity in a tropical agricultural-forest mosaic landscape in Honduras

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381. https://doi.org/10.1038/nature10425 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845. https://doi.org/10.1038/35002708 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    ​FAO. Global Forest Resources Assessment 2020: Main report. 184p (Rome, Italy, 2020).Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22, 8–15 (2008).Article 
    PubMed 

    Google Scholar 
    Brouwer, F. & McCarl, B. Agriculture and climate beyond 2015: A New Perspective on Future Land Use Patterns. (2006).Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. 109, 8839–8844. https://doi.org/10.1073/pnas.1201664109 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Declerck, F. et al. Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biol. Conserv. 143, 2301–2313. https://doi.org/10.1016/j.biocon.2010.03.026 (2010).Article 

    Google Scholar 
    Miller, K., Chang, E. & Johnson, N. Defining Common Ground for the Mesoamerican Biological Corridor (World Resources Institute, Washington, 2001).
    Google Scholar 
    Fischer, J. et al. Conservation: Limits of land sparing. Science 334, 593–593. https://doi.org/10.1126/science.334.6056.593-a (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Morecroft, M. D. et al. Agricultural lands key to mitigation and adaptation—Response. Science 367, 518–519. https://doi.org/10.1126/science.aba7577 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vidal, A., Kumar, C., Zinngrebe, Y., Dobie, P. & Gassner, A. Trees on farms as a nature-based solution for
    biodiversity conservation in agricultural landscapes. Report number: ICRAF Policy brief No 47. 12p. World
    Agroforestry Centre. https://doi.org/10.13140/RG.2.2.14852.07045 (2020).César, R. et al. Forest and landscape restoration: A review emphasizing principles, concepts, and practices. Land 10, 28. https://doi.org/10.3390/land10010028 (2020).Article 

    Google Scholar 
    Stanturf, J. A. et al. Implementing forest landscape restoration under the Bonn Challenge: A systematic approach. Ann. For. Sci. https://doi.org/10.1007/s13595-019-0833-z (2019).Article 

    Google Scholar 
    VilchezMendoza, S. et al. Consistency in bird use of tree cover across tropical agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 24, 158–168. https://doi.org/10.1890/13-0585.1 (2014).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020. https://doi.org/10.1126/science.aau6020 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaver, I. et al. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Glob. Environ. Change 32, 74–86. https://doi.org/10.1016/j.gloenvcha.2015.02.006 (2015).Article 

    Google Scholar 
    Zermeño-Hernández, I., Pingarroni, A. & Martínez-Ramos, M. Agricultural land-use diversity and forest regeneration potential in human- modified tropical landscapes. Agric. Ecosyst. Environ. 230, 210–220. https://doi.org/10.1016/j.agee.2016.06.007 (2016).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773. https://doi.org/10.1111/conl.12773 (2021).Article 

    Google Scholar 
    Estrada-Carmona, N., Martínez-Salinas, A., DeClerck, F. A. J., Vílchez-Mendoza, S. & Garbach, K. Managing the farmscape for connectivity increases conservation value for tropical bird species with different forest-dependencies. J. Environ. Manag. 250, 109504. https://doi.org/10.1016/j.jenvman.2019.109504 (2019).Article 
    CAS 

    Google Scholar 
    Vandermeer, J. & Perfecto, I. The agroecosystem: A need for the conservation biologist’s lens. Conserv. Biol. 11, 591–592 (1997).Article 

    Google Scholar 
    Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agr. Ecosyst. Environ. 247, 98–111. https://doi.org/10.1016/j.agee.2017.06.018 (2017).Article 
    CAS 

    Google Scholar 
    Nair, P. R. The coming of age of agroforestry. J. Sci. Food Agric. 87, 1613–1619. https://doi.org/10.1002/jsfa.2897 (2007).Article 
    CAS 

    Google Scholar 
    Chatterjee, N., Nair, P. K. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67. https://doi.org/10.1016/j.agee.2018.07.014 (2018).Article 

    Google Scholar 
    Toledo-Hernández, M., Wanger, T. C. & Tscharntke, T. Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agr. Ecosyst. Environ. 247, 137–148. https://doi.org/10.1016/j.agee.2017.05.021 (2017).Article 

    Google Scholar 
    Pumariño, L. et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 16, 573–582. https://doi.org/10.1016/j.baae.2015.08.006 (2015).Article 

    Google Scholar 
    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).Article 

    Google Scholar 
    Martínez-Fonseca, J. G., Chávez-Velásquez, M., Williams-Guillen, K. & Chambers, C. L. Bats use live fences to move between tropical dry forest remnants. Biotropica 52, 5–10. https://doi.org/10.1111/btp.12751 (2020).Article 

    Google Scholar 
    Prevedello, J. A., Almeida-Gomes, M. & Lindenmayer, D. B. The importance of scattered trees for biodiversity conservation: A global meta-analysis. J. Appl. Ecol. 55, 205–214. https://doi.org/10.1111/1365-2664.12943 (2018).Article 

    Google Scholar 
    INE. Ministerio de Agricultura, Pesca y Alimentación (MAPA)- Gobierno de España-. 2021. Ficha de sectores. Sectores Agricultura y Pesquero. Honduras (2022).MinAmbiente-ICF. Tipologías de Bosques de Honduras. Programa ONU-REDD. Forest Carbon Partnership Facility. Tegucigalpa, Honduras. Secretaria de Energía, Recursos Naturales, Ambiente y Minas (Min Ambiente)/Instituto Nacional de Conservación y Desarrollo Forestal, Areas Protegidas y Vida Silvestre (ICF). (2017).Godinot, F., Somarriba, E., Finegan, B. & Delgado-Rodríguez, D. Secondary tropical dry forests are important to cattle ranchers in Northwestern Costa Rica. Trop. J. Environ. Sci. 54, 20–50 (2020).
    Google Scholar 
    Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded Areas in the Tropics. Restor. Ecol. 13, 92–102. https://doi.org/10.1111/j.1526-100X.2005.00011.x (2005).Article 

    Google Scholar 
    Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. Publ. Ecol. Soc. Am. 16, 1986–1999. https://doi.org/10.1890/1051-0761(2006)016[1986:poadid]2.0.co;2 (2006).Article 

    Google Scholar 
    Miceli-Mèndez, C. L., Ferguson, B. G. & Ramìrez-Marcial, N. in Post-Agricultural Succession in the Neotropics (ed Randall W. Myster) 165–191 (Springer New York, 2008).Gaoue, O. G. & Ticktin, T. Patterns of harvesting foliage and bark from the multipurpose tree Khaya senegalensis in Benin: Variation across ecological regions and its impacts on population structure. Biol. Conserv. 137, 424–436. https://doi.org/10.1016/j.biocon.2007.02.020 (2007).Article 

    Google Scholar 
    Daily, G., Ceballos, G., Pacheco, J., Suzan, G. & Anchez-Azofeifa, A. Countryside biogeography of neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2003.00298.x (2003).Article 

    Google Scholar 
    Mayfield, M. M. & Daily, G. C. Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol. Appl. 15, 423–439. https://doi.org/10.1890/03-5369 (2005).Article 

    Google Scholar 
    Sánchez-Merlos, D. et al. Diversidad, composición y estructura de la vegetación en un agropaisaje ganadero en Matiguás, Nicaragua. Rev. Biol. Trop. https://doi.org/10.15517/rbt.v53i3-4.14601 (2005).Article 

    Google Scholar 
    Sekercioglu, C. H., Loarie, S. R., Oviedo Brenes, F., Ehrlich, P. R. & Daily, G. C. Persistence of forest birds in the Costa Rican agricultural countryside. Conserv. Biol. 21, 482–494. https://doi.org/10.1111/j.1523-1739.2007.00655.x (2007).Article 
    PubMed 

    Google Scholar 
    Wallace, G., Barborak, J. & MacFarland, C. Land use planning and regulation in and around protected areas: A study of best practices and capacity building needs in Mexico and Central America. Nat Conserv 3 (2005).
    Rozendaal Danaë, M. A. et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114. https://doi.org/10.1126/sciadv.aau3114 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests:
    Towards climate change mitigation through sustainable timber harvesting. Forest Ecology and Management 496,
    119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article 

    Google Scholar 
    Gillespie, T. W., Grijalva, A. & Farris, C. N. Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol. 147, 37–47. https://doi.org/10.1023/A:1009848525399 (2000).Article 

    Google Scholar 
    Ngo Bieng, M. A. et al. Relevance of secondary tropical forest for landscape restoration. For. Ecol. Manag. 493, 119265. https://doi.org/10.1016/j.foreco.2021.119265 (2021).Article 

    Google Scholar 
    Souza Oliveira, M. et al. Biomass of timber species in Central American secondary forests: Towards climate change mitigation through sustainable timber harvesting. For. Ecol. Manag. 496, 119439. https://doi.org/10.1016/j.foreco.2021.119439 (2021).Article 

    Google Scholar 
    Chacón, L. M. & Harvey, C. A. Live fences and landscape connectivity in a neotropical agricultural landscape. Agrofor. Syst. 68, 15. https://doi.org/10.1007/s10457-005-5831-5 (2006).Article 

    Google Scholar 
    Harvey, C. A. et al. Conservation value of dispersed tree cover threatened by pasture management. For. Ecol. Manag. 261, 1664–1674. https://doi.org/10.1016/j.foreco.2010.11.004 (2011).Article 

    Google Scholar 
    Suding, K. N. Toward an Era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).Article 

    Google Scholar 
    Moguel, P. & Toledo, V. M. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13, 11–21. https://doi.org/10.1046/j.1523-1739.1999.97153.x (1999).Article 

    Google Scholar 
    Harrison, R. D., Harrison, S., Laumonier, Y., Somarriba, E. & Suber, M. Biodiversity monitoring for agricultural landscapes. A protocol using biodiversity metrics to monitor agricultural sustainability under Aichi Target 7. (2019).Heck, K. L. Jr., van Belle, G. & Simberloff, D. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461. https://doi.org/10.2307/1934716 (1975).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity (Wiley-Blackwell, New Jersey, 2004).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439. https://doi.org/10.1890/06-1736.1 (2007).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. XXII, 574 (Springer New York, NY, 2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2021).Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.2-1 2, 1–2 (2015).Hsieh, T. C., Ma, K. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12613 (2016).Article 

    Google Scholar 
    Venables, W. N & Ripley, B. D Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-
    95457-0 (2002)Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2009).Book 
    MATH 

    Google Scholar 
    gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. (2017). More

  • in

    Mountain- and brown hare genetic polymorphisms to survey local adaptations and conservation status of the heath hare (Lepus timidus sylvaticus, Nilsson 1831)

    Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 1–11, https://doi.org/10.2307/3504302 (1995).Bergengren, A. On genetics, evolution and history of distribution of the heath-hare, a distinct population of the Arctic hare, Lepus timidus Lin. Swed. Wildl. (Viltrevy) 6, 381–460 (1969).
    Google Scholar 
    Thulin, C.-G. The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus? Mamm. Rev. 33, 29–42 (2003).Article 

    Google Scholar 
    Mills, L. S. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Nat.Acad. Sci. 110, 7360–7365 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zimova, M. et al. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc.Royal Soc. B: Biol. Sci. 287, 20201786 (2020).Article 

    Google Scholar 
    Levänen, R., Kunnasranta, M. & Pohjoismäki, J. Mitochondrial DNA introgression at the northern edge of the brown hare (Lepus europaeus) range. Ann Zool Fennici 55, 15–24 (2018).Article 

    Google Scholar 
    Thulin, C.-G., Winiger, A., Tallian, A. G. & Kindberg, J. Hunting harvest data in Sweden indicate precipitous decline in the native mountain hare subspecies Lepus timidus sylvaticus (heath hare). J. Nat. Conserv. 64, 126069 (2021).Article 

    Google Scholar 
    Thulin, C.-G., Jaarola, M. & Tegelström, H. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6, 463–467 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pohjoismäki, J. L. O., Michell, C., Levänen, R. & Smith, S. Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci. Rep. 11, 15771 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb) 97, 222–234 (2006).Article 
    CAS 

    Google Scholar 
    Hamill, R. M., Doyle, D. & Duke, E. J. Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity (Edinb) 97, 355–365 (2006).Article 
    CAS 

    Google Scholar 
    Leach, K., Montgomery, W. I. & Reid, N. Biogeography, macroecology and species’ traits mediate competitive interactions in the order Lagomorpha. Mamm. Rev. 45, 88–102 (2015).Article 

    Google Scholar 
    Marques, J. P. et al. Data Descriptor: Mountain hare transcriptome and diagnostic markers as resources to monitor hybridization with European hares. Sci. Data 4, 1–11 (2017).Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP358660 (2022).Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Preprint at http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Marques, J. P. et al. An annotated draft genome of the mountain hare (Lepus timidus). Genome Biol. Evol. 12, 3656–3662 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broad Institute. Picard toolkit. Broad Institute, GitHub repository. Preprint at https://broadinstitute.github.io/picard/ (2019).Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 1207.3907 (2012).Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Michell, C. T., Pohjoismäki, J. L. O., Spong, G. & Thulin, C.-G. Mountain- and brown hare genetic polymorphisms to survey local adaptations and conservation status of the heath hare (Lepus timidus sylvaticus, Nilsson 1831), Dryad, https://doi.org/10.5061/dryad.3bk3j9kmp (2022).Khan, A. & Mathelier, A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45 (2017).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30 (2013).Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44 (2016).Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levänen, R., Thulin, C.-G., Spong, G. & Pohjoismäki, J. L. O. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PloS One 13, e0191790 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giska, I. et al. The evolutionary pathways for local adaptation in mountain hares. Mol. Ecol. 31, 1487–1503 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thulin, C.-G., Isaksson, M. & Tegelström, H. The origin of Scandinavian mountain hares (Lepus timidus). Gibier Faune Savage/Game and Wildlife 14, 463–475 (1997).
    Google Scholar 
    Ferreira, M. S. et al. The legacy of recurrent introgression during the radiation of hares. Syst. Biol. 70, 593–607 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Effects of different pioneer and exotic species on the changes of degraded soils

    Sacristán, D., Peñarroya, B., Recatalá, L. Increasing the Knowledge on the Management of Cu-Contaminated Agricultural Soils by Cropping Tomato (Solanum Lycopersicum L.). Land Degrad. Dev. 26, 587–595 (2015).FAO. Land Degradation Assessment in Drylands. Manual for Local Level Assessment of Land Degradation and Sustainable Land Management. Part 1: Planning and Methodological Approach, Analysis and Reporting. https://www.fao.org/3/i6362e/i6362e.pdf (Food and Agriculture Organization of the United Nations, 2011).Vlachodimos, K., Papatheodorou, E. M., Diamantopoulos, J. & Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit. Assess. 185, 6921–6932 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Misano, G. & Di Pietro, R. Habitat 9250 “Quercus trojana woods” in Italy. Fitosociologia 44, 235–238 (2007).
    Google Scholar 
    Biondi, E. et al. A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41(1), 3–28 (2004).MathSciNet 

    Google Scholar 
    Brunetti, G. et al. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad. Dev. 29, 91–104 (2017).Article 

    Google Scholar 
    Poblador, S. et al. The influence of the invasive alien nitrogen-fixing Robinia pseudoacacia L. on soil nitrogen availability in a mixed Mediterranean riparian forest. Eur. J. For. Res. 138, 1083–1093 (2019).Article 
    CAS 

    Google Scholar 
    Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).Article 

    Google Scholar 
    Doran, J.W., Parkin, T.B. Quantitative indicators of soil quality: a minimum data set. in Methods for Assessing Soil Quality (eds. Doran, J.W., Jones, A.J.). 25–37 (Soil Science Society of America, 1996).Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887 (2005).Article 
    CAS 

    Google Scholar 
    Andriani, G. F. & Walsh, N. An example of the effects of anthropogenic changes on natural environment in the Apulian karst (southern Italy). Environ. Geol. 58, 313–325 (2009).Article 
    ADS 

    Google Scholar 
    Bisantino, T., Pizzo, V., Polemio, M. & Gentile, F. Analysis of the flooding event of October 22–23, 2005 in a small basin in the province of Bari (Southern Italy). J. Agric. Eng. 531, 197–204 (2016).Article 

    Google Scholar 
    Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
    Google Scholar 
    Tartarino, P. Inventario dei Boschi Spontanei e dei Rimboschimenti delle Provincie BAT e Bari e Stima del Loro Volume Legnoso e della sua Frazione Prelevabile nel Prossimo Ventennio. (Rapporto Tecnico Scientifico, 2011).Ismail, A. et al. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils. Chem. Biodivers. 11, 150–160 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Navarro, A. et al. Feasibility of SRC Species for growing in Mediterranean conditions. Bioenerg. Res. 9, 208–223 (2015).Article 

    Google Scholar 
    Perrino, E. V., Brunetti, G. & Farrag, K. Plant communities in multi-metal contaminated soils: A case study in the National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediat. 16, 871–888 (2014).Article 
    CAS 

    Google Scholar 
    VV AA Perizia Studi per il Riequilibrio Socio-Economico dell’area Interessata dall’invaso sul Torrente Locone. Consorzio Di Bonifica Apulo Lucano (1986).Lavarra, P. et al. Il Sistema Carta della Natura della Regione Puglia. (ISPRA, Serie Rapporti 204, 2014).Sparks, D. L. et al. Method of Soil Analysis: Part 3 (American Society of Agronomy Inc, 1996).Book 

    Google Scholar 
    Brink, R. H. Jr., Dubach, P. & Lynch, D. L. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89, 157–166 (1960).Article 
    ADS 
    CAS 

    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    García, C., Hernandez, T. & Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 28, 123–134 (1997).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).Article 
    CAS 

    Google Scholar 
    Gregorich, E. G., Wen, G., Voroney, R. P. & Kachanoski, R. G. Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 22, 1009–1011 (1990).Article 
    CAS 

    Google Scholar 
    Nannipieri, P., Ceccanti, B., Cervelli, S. & Matarese, E. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Tabatabai, M.A. (1994) Soil enzymes. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (eds. Weaver, R.W. et al.). 775–833 (Soil Science Society of America, Inc., 1996)Traversa, A., Said-Pullicino, D., D’Orazio, V., Gigliotti, G., & Senesi, N. Properties of humic acids in Mediterranean forest soils (Southern Italy): Influence of different plant covering. Eur. J. For. Res. 130, 1045–1054 (2011)De Marco, A. et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 51, 1–15 (2012).Article 
    CAS 

    Google Scholar 
    Wei, G. et al. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol. Ecol. 68, 320–328 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, E. D., Gebauer, G., Ziegler, H. & Lange, O. L. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88, 451–455 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zahran, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veste, M. & Kriebitzsch, W. U. Influence of drought stress on photosynthesis, transpiration, and growth of juvenile black locust (Robinia pseudoacacia L.). Forstarchiv 84, 35–42 (2013).
    Google Scholar 
    Nicolescu, V. N. et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 31, 1081–1101 (2020).Article 
    CAS 

    Google Scholar 
    Sposito, G. The Chemistry of Soil (Oxford University Press, 2008).
    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337. https://doi.org/10.1038/s41598-017-01418-8 (2017).Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Frankenberger, W. T. & Dick, W. A. Relationships between enzyme, activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945–951 (1983).Article 
    ADS 
    CAS 

    Google Scholar 
    Frankenberger, W.T., Tabatabai, M.A. Amidase activity in soils III. Stability and distribution. Soil Sci. Soc. Am. J. 45, 333–338 (1981).Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018).Article 
    CAS 

    Google Scholar 
    Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L. & Ros, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem. 32, 1877–1883 (2000).Article 
    CAS 

    Google Scholar 
    García-Gil, J. C., Plaza, C., Solker-Rovira, P. & Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913 (2000).Article 

    Google Scholar 
    Insam, H. & Domsch, K. H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15, 177–188 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 31, 85–91 (2000).Article 
    CAS 

    Google Scholar 
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210, 21–32 (1999).Article 
    CAS 

    Google Scholar 
    De Marco, A., Esposito, F., Berg, B., Zarrelli, A. & Virzo De Santo, A. Litter inhibitory effects on soil microbial biomass activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. Forest 9, 766. https://doi.org/10.3390/f9120766 (2018).Article 

    Google Scholar 
    Haghverdi, K. & Kooch, Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. CATENA 178, 335–344 (2019).Article 
    CAS 

    Google Scholar 
    Anderson, H. T. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).Article 

    Google Scholar 
    Jenkinson, D.S., Ladd, J.N. Microbial biomass in soil: Measurement and turnover. in Soil Biochemistry (eds. Paul, E.A., Ladd, J.N.). 415–471 (Marcel Dekker Inc., 1981) More

  • in

    Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes

    Cohort demographicsA total of 206 female participants were enrolled in the study and passed our quality control standards. All participants were required to be between the ages of 18–26 years old (22.5 ± 2.1) and to be born and at the time living in one of four geographically distinct regions of the world: Barbados; Santiago, Chile; Pretoria, S. Africa; and Bangkok, Thailand. The regions do, however, differ by an order of magnitude in their geographic spread as the intra-distance separating the residence neighborhood of participants ranged from 34 (Barbados) to 681 km (Pretoria, S. Africa) (Fig. S2). The Chilean and the South African datasets are further divided into two contiguous sub-regions, or neighborhoods, to allow for a micro-geographic analysis. The study population is largely dominated by individuals with self-identified Thai heritage (33%), followed by Black African (16%), Afro-Caribbean (14%) and white (14%) descent, although 19% of the Chilean population did not report ethnicity.Study participants, despite the divergent geographies, mostly have similar dietary and lifestyle habits (Table S1). Over half the study population (62%) have a normal BMI, with the mean BMI in this range (22.6 ± 5.5). The diets of the different cohorts are also similar as of the total cohort, 78% consume a starch heavy diet (≥ 4 days a week) of rice, bread and pasta, followed by 66% who frequently consume (≥ 4 days a week) vegetables and fruit and 49% who frequently consume dairy products. The study population is split by level of tobacco exposure, with 51% of the population having never smoked, and 43% being exposed to second-hand smoke through living with a smoker. Over half (56%) of the study population own one or more pets.Stool microbiomeThe OTUs identified using the UPARSE pipeline17 were used to compute the alpha diversity of the microbial communities using the Chao1 (species richness) and Shannon (species evenness) indices. The mean Shannon indices reveal that the microbiota diversity is only significant between Thailand-Chile with FDR  More