Growth characteristics of Cunninghamia lanceolata in China
FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development (FAO, 2018).
Google Scholar
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993. https://doi.org/10.1126/science.1201609 (2011).Article
ADS
CAS
PubMed
Google Scholar
Luyssaert, S. et al. Tradeoffs in using European forests to meet climate objectives. Nature 562(7726), 259–262. https://doi.org/10.1038/s41586-018-0577-1 (2018).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. https://doi.org/10.1038/s41467-019-10174-4 (2019).Article
PubMed
PubMed Central
Google Scholar
Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).Article
CAS
Google Scholar
Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580(7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9 (2020).Article
ADS
CAS
PubMed
Google Scholar
Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–599. https://doi.org/10.1126/science.aad7270 (2016).Article
ADS
CAS
PubMed
Google Scholar
Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. https://doi.org/10.1038/s41467-019-13798-8 (2020).Article
PubMed
PubMed Central
Google Scholar
Yu, K. et al. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of Southern China. CATENA 178, 313–321. https://doi.org/10.1016/j.catena.2019.03.038 (2019).Article
CAS
Google Scholar
Mei, G., Sun, Y. & Sajjad, S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China. PLoS ONE 12, e0169747. https://doi.org/10.1371/journal.pone.0169747 (2017).Article
CAS
Google Scholar
Wu, H. et al. Soil phosphorus bioavailability and recycling increasedwith stand age in Chinese fir plantations. Ecosystems 23, 973–988. https://doi.org/10.1007/s10021-019-00450-1 (2019).Article
Google Scholar
State Forestry Administration. General situation of forest resources in China. The 8th National Forest Inventory (State Forestry Administration, 2014).Wang, X. et al. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 12(1), 13–16 (2001) (in Chinese with English Abstract).ADS
CAS
Google Scholar
Kang, H. et al. Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China. NZ J. For. Sci. 47(1), 20. https://doi.org/10.1186/s40490-017-0102-6 (2017).Article
Google Scholar
Lu, Y. et al. A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6, 360–379. https://doi.org/10.3390/f6020360 (2015).Article
Google Scholar
Zhang, X. et al. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: Long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. https://doi.org/10.1016/j.foreco.2020.118103 (2020).Article
Google Scholar
You, R. et al. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci. Rep. https://doi.org/10.1038/s41598-021-83500-w (2021).Article
PubMed
PubMed Central
Google Scholar
Djomo, A. N., Ibrahima, A., Saborowski, J. & Gravenhorst, G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manag. 260(10), 1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034 (2010).Article
Google Scholar
Peng, D. et al. Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sens. 11(19), 2270. https://doi.org/10.3390/rs11192270 (2019).Article
ADS
Google Scholar
Zhou, X. et al. Dynamic allometric scaling of tree biomass and size. Nat. Plants. 7(1), 42–49. https://doi.org/10.1038/s41477-020-00815-8 (2021).Article
PubMed
Google Scholar
Li, L. Study on the tree volume table compilation of Chinese fir in Kaihua Forest Farm (Beijing Forestry University, 2011) http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134655.htm (in Chinese).Wang, J. P. et al. Study on the effect of Chinese fir volume formula on estimating the volume of fir standing trees in different sites. Guizhou For. Technol. 19(1), 26–29 (1991) (in Chinese).
Google Scholar
Zeng, W. S. et al. Compatible tree volume and aboveground biomass equations for Chinese fir plantation in Guizhou. J. Beijing For. Univ. 33(4), 1–6 (2011) (in Chinese).
Google Scholar
Xia, Z. S. et al. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China. J. Beijing For. Univ. 34(1), 1–5 (2012) (in Chinese).
Google Scholar
Lin, H. Study on biomass and carbon storage of main coniferous forest in Jiangle state-owned forestry farm. J. Fujian For. Sci. Technol. 45(1), 30–34. https://doi.org/10.13428/j.cnki.fjlk.2018.01.007 (2018) (in Chinese with English Abstract).Article
ADS
Google Scholar
Cai, Z. A study on biomass models of Cunninghamia lanceolata plantation in Fujian. (Beijing Forestry University, 2014), http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327550.htm (in Chinese).Chen, G. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76. https://doi.org/10.1016/j.foreco.2012.07.046 (2013).Article
Google Scholar
Zhang, G. et al. Biomass Characteristics of dominant tree species (group) at Lingnan forest farm in Anhui province. Scientia Silvae Sinicae. 48(5), 136–140. https://doi.org/10.1007/s11783-011-0280-z (2012) (in Chinese with English abstract).Article
ADS
CAS
Google Scholar
Shi, W. et al. Biomass model and carbon storage of Chinese fir plantation in Dabieshan Mountains in Anhui. Resour. Environ. Yangtze Basin. 24(5), 758–764. https://doi.org/10.11870/cjlyzyyhj201505007 (2015) (in Chinese with English abstract).Article
Google Scholar
Li, H. & Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 289, 153–163. https://doi.org/10.1016/j.foreco.2012.10.002 (2013).Article
Google Scholar
Zeng, W. & Tang, S. A new general allometric biomass model. Nat. Precedings. https://doi.org/10.1038/npre.2011.6704.1 (2011).Article
Google Scholar
Schumacher, F. X. & Hall, F. D. S. Logarithmic expression of timber-tree volume. J. Agric. Res. 47(9), 719–734 (1933).
Google Scholar
Honer, T. G. A new total cubic foot volume function. For. Chron. 41(4), 476–493. https://doi.org/10.5558/tfc41476-4 (1965).Article
Google Scholar
Burkhart, H. E. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 2, 7–9. https://doi.org/10.1093/sjaf/1.2.7 (1977).Article
Google Scholar
Lee, D., Seo, Y. & Choi, J. Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. For. Sci. Technol. 13(2), 77–82. https://doi.org/10.1080/21580103.2017.1315963 (2017).Article
Google Scholar
Chen, B. H. & Chen, C. Y. A preliminary study on the biomass and productivity of Picea koraiensis forests in the dunes. Scientia Silvae Sinicae 4, 269–278 (1980) (in Chinese).
Google Scholar
Niklas, K. J. Plant Allometry: The Scaling of Form and Process (University of Chicago Press, 1994).
Google Scholar
Ketterings, Q. M. et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6 (2001).Article
Google Scholar
Chen, X. G. The biomass and allometric equation of a 20-years-old Cunninghamia lanceolata plantation. Prot. For. Sci. Technol. 4, 28–29, 40. https://doi.org/10.3969/j.issn.1005-5215.2007.04.010.(inChinese) (2007).Article
Google Scholar
Wang, X. P. et al. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 234, 264–274. https://doi.org/10.1016/j.foreco.2006.07.007 (2006).Article
Google Scholar
Peng, C. et al. Developing and evaluating tree height–diameter models at three geographic scales for black spruce in Ontario. N. J. Appl. For. 21(2), 83–92. https://doi.org/10.1093/njaf/21.2.83 (2004).Article
Google Scholar
López-Serrano, F. R. et al. Site and weather effects in allometries: A simple approach to climate change effect on pines. For. Ecol. Manag. 215(1–3), 251–270. https://doi.org/10.1016/j.foreco.2005.05.014 (2005).Article
Google Scholar
Zhang, C. et al. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single trees in Poplar plantations in Jiangsu Province, China. Forests 7, 32. https://doi.org/10.3390/f7020032 (2016).Article
Google Scholar
Liu, J. C. et al. Comparing non-destructive methods to estimate volume of three tree taxa in Beijing, China. Forests 10, 92. https://doi.org/10.3390/f10020092 (2019).Article
Google Scholar
Thangjam, U. et al. Developing tree volume equation for Parkia timoriana grown in home gardens and shifting cultivation areas of North-East India. For. Trees Livelihoods 28(12), 1–13. https://doi.org/10.1080/14728028.2019.1624200 (2019).Article
Google Scholar
Dutcă, I. et al. Does slope aspect affect the aboveground tree shape and volume allometry of European Beech (Fagus sylvatica L.) trees?. Forests 13, 1071. https://doi.org/10.3390/f13071071 (2022).Article
Google Scholar
Segura, M. & Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1), 2–8. https://doi.org/10.2307/30045500 (2005).Article
Google Scholar
Wang, X. W. et al. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann. For. Sci. 75, 60. https://doi.org/10.1007/s13595-018-0738-2 (2018).Article
Google Scholar
Niklas, K. J. & Enquist, B. J. Canonical rules for plant organ biomass partitioning and annual allocation. Am. J. Bot. 89(5), 812–819. https://doi.org/10.3732/ajb.89.5.812 (2002).Article
PubMed
Google Scholar
Xiang, W. H. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 697–711. https://doi.org/10.1007/s11284-011-0829-0 (2011).Article
Google Scholar
Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 116, 363–372. https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).Article
CAS
PubMed
Google Scholar
Brassard, B. W. et al. Influence of environmental variability on root dynamics in northern forests. Crit. Rev. Plant Sci. 28, 179–197. https://doi.org/10.1080/07352680902776572 (2009).Article
Google Scholar
Montagu, K. D. et al. Developing general allometric relationship for regional estimates of carbon sequestration—An example using Eucalyptus pilularis from seven contrasting sites. For. Ecol. Manag. 204, 113–127. https://doi.org/10.1016/j.foreco.2004.09.003 (2005).Article
Google Scholar
Williams, R. J. et al. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: Towards general predictive equations. Aust. J. Bot. 53, 607–619. https://doi.org/10.1071/BT04149 (2005).Article
Google Scholar
Ouimet, R. et al. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can. J. For. Res. 38, 92–100. https://doi.org/10.1139/x07-134 (2008).Article
Google Scholar
Peichl, M. & Arain, M. A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80. https://doi.org/10.1016/j.foreco.2007.07.003 (2007).Article
Google Scholar
Bond-Lamberty, B. et al. Aboveground and below-ground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450. https://doi.org/10.1139/x02-063 (2002).Article
Google Scholar
King, J. S. et al. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can. J. For. Res. 37(1), 93–102. https://doi.org/10.1139/x06-217 (2007).Article
Google Scholar
Ziania, D. & Mencuccini, M. Aboveground biomass relation-ships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60(5), 439–448. https://doi.org/10.1051/forest:2003036 (2003).Article
Google Scholar
Martin, J. G. et al. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can. J. For. Res. 28(11), 1648–1659. https://doi.org/10.1139/x98-146 (1998).Article
Google Scholar
Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 222, 9–16. https://doi.org/10.1016/j.foreco.2005.10.074 (2006).Article
Google Scholar More