More stories

  • in

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    Hayes, S. M. & McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 59, 192–199 (2018).
    Google Scholar 
    Saatz, J., Vetterlein, D., Mattusch, J., Otto, M. & Daus, B. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ. Pollut. 204, 32–38 (2015).CAS 
    PubMed 

    Google Scholar 
    Gonzalez, V., Vignati, D. A. L., Leyval, C. & Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 71, 148–157 (2014).CAS 
    PubMed 

    Google Scholar 
    Kovarikova, M., Tomaskova, I. & Soudek, P. Rare earth elements in plants. Biol. Plant. 63, 20–32 (2019).CAS 

    Google Scholar 
    Thomas, P. J., Carpenter, D., Boutin, C. & Allison, J. E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 96, 57–66 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramos, S. J. et al. Rare earth elements in the soil environment. Curr. Pollut. Rep. 2, 28–50 (2016).CAS 

    Google Scholar 
    Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 10, e0129936 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kotelnikova, A., Fastovets, I., Rogova, O. & Volkov, D. S. La, Ce and Nd in the soil-plant system in a vegetation experiment with barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 206, 111193 (2020).CAS 
    PubMed 

    Google Scholar 
    Hu, Z., Richter, H., Sparovek, G. & Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 27, 183–220 (2004).CAS 

    Google Scholar 
    Tao, Y. et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ. Pollut. 298, 118540 (2022).CAS 
    PubMed 

    Google Scholar 
    Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 267, 191–206 (2004).CAS 

    Google Scholar 
    Ding, S. et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: An application for metal accumulation by plants. Environ. Sci. Technol. 40, 2686–2691 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grosjean, N. et al. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 9, 18458 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yuan, M. et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int. J. Phytoremediat. 20, 415–423 (2018).CAS 

    Google Scholar 
    Yuan, M. et al. The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L.. Plant Soil 421, 67–82 (2017).CAS 

    Google Scholar 
    Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (eds Van der Ent, A. et al.) 297–308 (Springer, 2018).
    Google Scholar 
    Purwadi, I., Nkrumah, P. N., Paul, A. L. D. & van der Ent, A. Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology 31, 335–342 (2021).CAS 

    Google Scholar 
    Shan, X. et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165, 1343–1353 (2003).CAS 

    Google Scholar 
    Wu, J., Chen, A., Peng, S., Wei, Z. & Liu, G. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 373, 329–338 (2013).CAS 

    Google Scholar 
    Zhenggui, W. et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut. 114, 345–355 (2001).
    Google Scholar 
    Okoroafor, P. U., Ogunkunle, C. O., Heilmeier, H. & Wiche, O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. Int. J. Phytoremediat. 24, 1310–1320 (2022).CAS 

    Google Scholar 
    Taggart, R. K. et al. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environ. Sci. Process. Impacts 20, 1390–1403 (2018).CAS 
    PubMed 

    Google Scholar 
    Fehlauer, T. et al. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. Chemosphere 287, 132315 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, W.-S. et al. Spatially resolved localization of lanthanum and cerium in the rare earth element hyperaccumulator fern Dicranopteris linearis from China. Environ. Sci. Technol. 54, 2287–2294 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saatz, J. et al. Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS. Environ. Pollut. 216, 245–252 (2016).CAS 
    PubMed 

    Google Scholar 
    Mantienne, J. L. Minéralisation thallifère de Jas Roux (Hautes-Alpes)—Alpes françaises (Université Pierre et Marie Curie—Paris VI, 1974).
    Google Scholar 
    Kabata-Pendias, A. Trace Elements in Soils and Plants (CRC Press, 2011).
    Google Scholar 
    Kastori, R., Maksimovic, I., Zeremski-Skoric, T. & Putnik-Delic, M. Rare earth elements: Yttrium and higher plants. Zb. Matice Srp. Za Prir. Nauke 118, 87–98 (2010).Salminen, R., Vos, W. D. & Tarvainen, T. Geochemical Atlas of Europe—Part 1: Background Information, Methodology and Maps (Geological Survey of Finland, 2005).
    Google Scholar 
    Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil-Like Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 l/kg Dry Matter. https://doi.org/10.31030/3069638 (2020).R Core Team. R: A Language and Environment for Statistical Computing (2021).RStudio Team. RStudio: Integrated Development Environment for R (RStudio, PBC, 2020).
    Google Scholar 
    Radziemska, M., Vaverková, M. & Baryła, A. Phytostabilization—Management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 14, 958 (2017).PubMed Central 

    Google Scholar 
    Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil. J. Synchrotron Radiat. 22, 1118–1129 (2015).CAS 
    PubMed 

    Google Scholar 
    Sancho-Tomás, M. et al. Geochemical evidence for arsenic cycling in living microbialites of a high altitude Andean Lake (Laguna Diamante, Argentina). Chem. Geol. 549, 11 (2020).
    Google Scholar 
    Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. J. Synchrotron Radiat. 20, 293–299 (2013).CAS 
    PubMed 

    Google Scholar 
    Aubineau, J. et al. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat. Commun. 10, 2670 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 

    Google Scholar 
    Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62, 63–68 (2007).ADS 

    Google Scholar 
    Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: Fast density-based clustering with R. J. Stat. Softw. 91, 1 (2019).
    Google Scholar 
    Hennig, C. fpc: Flexible Procedures for Clustering (2020).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2021).Wei, T. & Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix (2021).van der Ent, A. et al. (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants (Springer, 2021).
    Google Scholar 
    Liu, C. et al. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere 282, 131096 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Han, F. et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165, 481–492 (2005).CAS 
    PubMed 

    Google Scholar 
    Ruíz-Herrera, L. F., Sánchez-Calderón, L., Herrera-Estrella, L. & López-Bucio, J. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353, 231–247 (2012).
    Google Scholar 
    González-Guerrero, M., Escudero, V., Saéz, Á. & Tejada-Jiménez, M. Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7, 1088 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Jogawat, A., Yadav, B., Chhaya, & Narayan, O. P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 173, 259–275. https://doi.org/10.1111/ppl.13370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Krämer, U., Talke, I. N. & Hanikenne, M. Transition metal transport. FEBS Lett. 581, 2263–2272 (2007).PubMed 

    Google Scholar 
    Tuduri, J. et al. Lumière sur la géologie des terres rares, pourquoi tant d’attraits? Géologues 204, 48–54 (2020).
    Google Scholar 
    Tiziani, R. et al. Root handling affects carboxylates exudation and phosphate uptake of white lupin roots. Front. Plant Sci. 11, 584568 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).CAS 
    PubMed 

    Google Scholar 
    Wen, Z. et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. Plant Soil 465, 31–46 (2021).CAS 

    Google Scholar 
    Wiche, O., Kummer, N.-A. & Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402, 235–245 (2016).CAS 

    Google Scholar 
    Chen, A., Husted, S., Salt, D. E., Schjoerring, J. K. & Persson, D. P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol. 181, 729–742 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rengel, Z. et al. (eds) Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012).
    Google Scholar 
    Brioschi, L. et al. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 366, 143–163 (2013).CAS 

    Google Scholar 
    Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1767 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    St-Cyr, L. & Campbell, P. G. C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33, 969 (1996).
    Google Scholar 
    Tripathi, R. D. et al. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6, 1789–1800 (2014).CAS 
    PubMed 

    Google Scholar 
    Pourret, O. et al. The ‘europium anomaly’ in plants: Facts and fiction. Plant Soil 476, 721–728 (2022).CAS 

    Google Scholar 
    Liu, C. et al. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Sci. Total Environ. 805, 150335 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Poschenrieder, C., Busoms, S. & Barceló, J. How plants handle trivalent (+3) elements. Int. J. Mol. Sci. 20, 3984 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Ma, J. F. & Hiradate, S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360 (2000).CAS 
    PubMed 

    Google Scholar 
    Rellán-Álvarez, R. et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51, 91–102 (2010).PubMed 

    Google Scholar 
    Ding, S. et al. Role of ligands in accumulation and fractionation of rare earth elements in plants: Examples of phosphate and citrate. Biol. Trace Elem. Res. 107, 073–086 (2005).CAS 

    Google Scholar 
    Wu, J., Wei, Z., Zhao, H., Li, H. & Hu, F. The role of amino acids in the long-distance transport of La and Y in the xylem sap of tomato. Biol. Trace Elem. Res. 129, 239–250 (2009).CAS 
    PubMed 

    Google Scholar 
    Singh, S. Guttation: New insights into agricultural implications. In Advances in Agronomy Vol. 128 (ed. Sparks, D. L.) 97–135 (Elsevier, 2014).
    Google Scholar 
    Hossain, Md. B., Sawada, A., Noda, K. & Kawasaki, M. Hydathode function and changes in contents of elements in eddo exposed to zinc in hydroponic solution. Plant Prod. Sci. 20, 423–433 (2017).CAS 

    Google Scholar 
    Singh, S. Guttation: Path, principles and functions. Aust. J. Bot. 61, 497 (2013).
    Google Scholar 
    Wightman, R., Wallis, S. & Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 241, 27–34 (2018).
    Google Scholar 
    Brüggemann, W., Maas-Kantel, K. & Moog, P. R. Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 196606 (1993).
    Google Scholar 
    Ma, J. F., Ryan, P. R. & Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278 (2001).CAS 
    PubMed 

    Google Scholar 
    Tolrà, R. et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J. Plant Res. 124, 165–172 (2011).PubMed 

    Google Scholar  More

  • in

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail

    Lucas, S. G. Permian tetrapod extinction events. Earth Sci. Rev. 170, 31–60 (2017).
    Google Scholar 
    Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? Hist. Biol. 33, 716–722 (2019).
    Google Scholar 
    Day, M. O. & Rubidge, B. S. The late capitanian mass extinction of terrestrial vertebrates in the Karoo Basin of South Africa. Front. Earth Sci. 9, 631198 (2021).
    Google Scholar 
    Bordy, E. M. & Paiva, F. Stratigraphic architecture of the karoo river channels at the end-capitanian. Front. Earth Sci. 8, 521766 (2021).
    Google Scholar 
    Erwin, D. H., Bowring, S. A. & Yugan, J. In Catastrophic events and mass extinctions: impacts and beyond (eds. Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, 2002).Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubidge, B. S. Did mammals originate in Africa? South African fossils and the Russian connection. Syd. Haughton Meml. Lect. 4, 1–14 (1995).
    Google Scholar 
    Day, M. O. & Rubidge, B. S. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin-wide stratigraphic scheme for the Middle Permian Karoo. J. Afr. Earth Sci. 100, 227–242 (2014).
    Google Scholar 
    Day, M., Ramezani, J., Frazer, R. & Rubidge, B. U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. J. Afr. Earth Sci. 186, 104435 (2022).CAS 

    Google Scholar 
    Koch, N. M., Garwood, R. & Parry, L. Fossils improve phylogenetic analyses of morphological characters. Proc. R. Soc. B Biol. Sci. 288, 1–8 (2021).
    Google Scholar 
    McLoughlin, S. Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
    Google Scholar 
    Slater, B. J., McLoughlin, S. & Hilton, J. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 27, 1446–1473 (2015).
    Google Scholar 
    Plumstead, E. P. Three thousand million years of plant life in Africa. (Geological Society of South Africa, 1969).Lacey, W. S., van Dijk, D. E. & Gordon-Gray, K. D. Fossil plants from the Upper Permian in the Mooi River district of Natal, South Africa. Ann. Natal. Mus. 22, 349–420 (1975).
    Google Scholar 
    Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa. Prodomus of South African megafloras. Devonian to Lower Cretaceous. (Balkema, 1985).Bordy, E. M. & Prevec, R. Sedimentology, palaeontology and palaeo-environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South Afr. J. Geol. 111, 429–458 (2008).Prevec, R. et al. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454–493 (2009).
    Google Scholar 
    Mcloughlin, S. & Prevec, R. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa Australas. J. Palaeontol. 43, 480–510 (2019).
    Google Scholar 
    McLoughlin, S. & Prevec, R. The reproductive biology of glossopterid gymnosperms—a review. Rev. Palaeobot. Palynol. 295, 104527 (2021).
    Google Scholar 
    Riek, E. F. New Upper Permian insects from Natal, South Africa. Ann. Natal. Mus. 22, 755–789 (1976).
    Google Scholar 
    Riek, E. F. Fossil insects from the Middle Ecca (Lower Permian) of southern Africa. Palaeontol. Afr. 19, 145–148 (1976).
    Google Scholar 
    Riek, E. F. An entomobryid collembolan (Hexapoda: Collembola) from the Lower Permian of Southern Africa. Palaeontol. Afr. 19, 141–143 (1976).
    Google Scholar 
    McLachlan, I. R. & Anderson, A. M. Fossil insect wings from the Early Permian White Band Formation, South Africa. Palaeontol. Afr. 20, 83–86 (1977).
    Google Scholar 
    Pinto, I. D. & Pinto De Ornellas, L. New fossil insects from the White Band Formation (Permian), South Africa. Pesqui. Zool. 10, 96–104 (1978).
    Google Scholar 
    van Dijk, D. E. & Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal. Mus. 40, 137–171 (1999).
    Google Scholar 
    Geertsema, H., van Dijk, D. E. & van den Heever, A. J. Palaeozoic insects of southern Africa: a review. Palaeontol. Afr. 38, 19–25 (2002).
    Google Scholar 
    Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).CAS 

    Google Scholar 
    Mcloughlin, S., Prevec, R. & Slater, B. J. Arthropod interactions with the Permian Glossopteris flora. J. Palaeosciences 70, 43–133 (2021).
    Google Scholar 
    Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).
    Google Scholar 
    Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257–261 (2013).CAS 
    PubMed 

    Google Scholar 
    Nicholson, D. B., Mayhew, P. J. & Ross, A. J. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10, 1421–1435 (2015).
    Google Scholar 
    Glenister, B. F., Wardlaw, B. R., Lambert, L. L., Spinosa, C. & Bowring, S. A. Proposal of Guadalupian and component Roadian. Wordian Capitanian Stages Int. Stand. middle Permian Ser. Permophiles 34, 3–11 (1999).
    Google Scholar 
    Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–344 (1988).
    Google Scholar 
    Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).Tian, Q. et al. Experimental investigation of insect deposition in lentic environments and implications for formation of Konservat Lagerstätten. Palaeontology 63, 565–578 (2020).
    Google Scholar 
    McCurry, M. R. et al. A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. Sci. Adv. 8, 1–11 (2022).
    Google Scholar 
    Beckemeyer, R. J. & Hall, J. D. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebr. 48, 17 (2007).
    Google Scholar 
    Jell, P. A. The fossil insects of Australia. Mem. Qld. Mus. 50, 1–124 (2004).
    Google Scholar 
    Wickens, H., de, V. & Cole, D. I. Lithostratigraphy of the Skoorsteenberg Formation (Ecca Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 120, 433–446 (2017).
    Google Scholar 
    Rubidge, B. S., Hancox, P. J. & Catuneaunu, O. Sequence analysis of the Ecca–Beaufort contact in the southern Karoo of South Africa. South Afr. J. Geol. 103, 81–96 (2000).
    Google Scholar 
    Lanci, L., Tohver, E., Wilson, A. & Flint, S. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet. Sci. Lett. 375, 123–134 (2013).CAS 

    Google Scholar 
    Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophys. J. Int. 211, 1354–1374 (2017).CAS 

    Google Scholar 
    Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 123, 141–148 (2020).
    Google Scholar 
    Nel, A., Garrouste, R. & Prevec, R. The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2067996 (2022).Cawood, R. et al. The first ‘Grylloblattida’ of the family Liomopteridae from the Middle Permian in the Onder Karoo, South Africa (Insecta: Polyneoptera). Comptes Rendus Palevol. https://doi.org/10.5852/cr-palevol2022v21a22 (2022).Surange, K. R. & Chandra, S. Morphology of the gymnospermous fructifications of the Glossopteris flora and their relationships. Palaeontogr. B 149, 153–180 (1975).
    Google Scholar 
    White, M. E. Reproductive structures of the Glossopteridales in the plant fossil collection of the Australian Museum. Rec. Aust. Mus. 31, 473–504 (1978).
    Google Scholar 
    Nishida, H., Pigg, K. B. & DeVore, M. L. In Transformative Paleobotany, Ch. 8 (eds. Krings, M., Harper, C. J., Cúneo, N. R. & Rothwell, G. W.) 145–154 (Academic Press, 2018).McLoughlin, S. New records of Bergiopteris and glossopterid fructifications from the Permian of Western Australia and Queensland. Alcheringa Australas. J. Palaeontol. 19, 175–192 (1995).
    Google Scholar 
    McLoughlin, S. In Gondwana Eight (eds. Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.) 253–264 (Balkema, 1993).Nishida, H., Pigg, K. B., Kudo, K. & Rigby, J. F. New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov. J. Plant Res. 127, 233–240 (2014).PubMed 

    Google Scholar 
    Tomescu, A. M. F., Bomfleur, B., Bippus, A. C. & Savoretti, A. In Transformative Paleobotany (eds. Krings, M., Harper, C. J., Cuneo, N. R. & Rothwell, G. W.) 375–416 (Elsevier Academic Press, 2018).Bomfleur, B. et al. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120–132 (2014).
    Google Scholar 
    Nel, A., Bechly, G., Prokop, J., Béthoux, O. & Fleck, G. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘protozygopteran’ grade. J. Paleontol. 86, 81–104 (2012).
    Google Scholar 
    Riek, E. F. Fossil insects from the Upper Permian of Natal, South Africa. Ann. Natal. Mus. 21, 513–532 (1973).
    Google Scholar 
    Gallego, O. F. et al. The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana 48, 447–461 (2011).
    Google Scholar 
    Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zool. Cracoviensia 46, 229–256 (2003).
    Google Scholar 
    van Dijk, D. E. & Geertsema, H. A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. Palaeontogr. B 12, 268–270 (2004).
    Google Scholar 
    Béthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol. Biol. 11, 248 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa Australas. J. Palaeontol. 43, 1–6 (2019).
    Google Scholar 
    Sharov, A. G. In Fundamentals of Paleontology: Arthropoda, Tracheata, Chelicerata. (eds. Rohdendorf, B. B. & Davis, D. R.) vol. 9 173–179 (Smithsonian Institution Libraries and NSCF, 1991).Sinitshenkova, N. D. In History of insects. (eds. Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 3.3, 388–426 (Kluwer Academic Publishers, 2002).Hayes, P. A. & Collinson, M. E. The Flora of the insect limestone (latest Eocene) from the Isle of Wight, southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 104, 245–261 (2014).
    Google Scholar 
    Zhang, Q. et al. Mayflies as resource pulses in Jurassic lacustrine ecosystems. Geology 50, 1043–1047 (2022).CAS 

    Google Scholar 
    Prokop, J. et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6, 190460 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Prokop, J., Nel, A., Engel, M. S., Pecharová, M. & Hörnschemeyer, T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178–190 (2016).
    Google Scholar 
    Dos Santos, T. B., de Souza Pinheiro, E. R. & Iannuzzi, R. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). PALAIOS 35, 292–301 (2020).
    Google Scholar 
    Nel, A., Garrouste, R. & Prokop, J. The first African Anthracoptilidae (Insecta: Paoliida) near the Permian—Triassic boundary in Kenya. Zootaxa 3925, 145 (2015).PubMed 

    Google Scholar 
    Riek, E. F. An unusual immature insect from the Upper Permian of Natal. Ann. Natal. Mus. 22, 271–274 (1974).
    Google Scholar 
    Dunlop, J. A., Penney, D., Tetlie, O. E. & Anderson, L. I. How many species of fossil arachnids are there? J. Arachnol. 36, 267–272 (2008).
    Google Scholar 
    Rasnitsyn, A. P. et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61, 234–255 (2016).
    Google Scholar 
    Manum, S. B., Bose, M. N. & Sawyer, R. T. Clitellate cocoons in freshwater deposits since the Triassic. Zool. Scr. 20, 347–366 (1991).
    Google Scholar 
    Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).CAS 
    PubMed 

    Google Scholar 
    Parry, L., Tanner, A. & Vinther, J. The origin of annelids. Palaeontology 57, 1091–1103 (2014).
    Google Scholar 
    Mikulic, D. G., Briggs, D. E. G. & Kluessendorf, J. A Silurian soft-bodied biota. Science 228, 715–717 (1985).CAS 
    PubMed 

    Google Scholar 
    Prokop, J., Szwedo, J., Lapeyrie, J., Garrouste, R. & Nel, A. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soci.été Entomol. Fr. NS 51, 14–51 (2015).
    Google Scholar 
    Cai, C. et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srivastava, A. K. & Agnihotri, D. Dilemma of late Palaeozoic mixed floras in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 54–69 (2010).
    Google Scholar 
    Raff, R. A. Written in stone: fossils, genes and evo–devo. Nat. Rev. Genet. 8, 911–920 (2007).CAS 
    PubMed 

    Google Scholar 
    Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1–12 (2017).PubMed 

    Google Scholar 
    McCulloch, G. A., Wallis, G. P. & Waters, J. M. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Mol. Phylogenet. Evol. 96, 150–160 (2016).PubMed 

    Google Scholar 
    Cui, Y. et al. Rhythms of Insect Evolution. (John Wiley & Sons, Ltd, 2019).Letsch, H. et al. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Syst. Entomol. 46, 952–967 (2021).
    Google Scholar 
    Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).PubMed 

    Google Scholar 
    Beattie, R. The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. Afr. Invertebr. 48, 18 (2007).
    Google Scholar 
    Bernardi, M. et al. Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth Sci. Rev. 175, 18–43 (2017).
    Google Scholar 
    Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).CAS 

    Google Scholar 
    Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
    Google Scholar 
    Wiedenbeck, M. et al. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (2007).
    Google Scholar 
    Horstwood, M. S. A. et al. Community‐derived standards for LA ‐ ICP ‐ MS U‐(Th‐)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).CAS 

    Google Scholar 
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).CAS 

    Google Scholar 
    Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–280 (2012).CAS 

    Google Scholar 
    Rees, P. Mc. A., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891 (1999).
    Google Scholar 
    Walter, H. Vegetation of the Earth and ecological systems of the geo-biosphere. (Springer-Verlag, 1985).Lucas, S. G., Schneider, J. W. & Cassinis, G. Non-marine Permian biostratigraphy and biochronology: an introduction. Geol. Soc. Lond. Spec. Publ. 265, 1–14 (2006).
    Google Scholar 
    Scotese, C. In Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43–52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. (PALEOMAP Project, 2014). More

  • in

    Coupling phenotypic changes to extinction and survival in an endemic prey community threatened by an invasive snake

    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. 113, 11261–11265 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salo, P., Korpimäki, E., Banks, P. B., Nordström, M. & Dickman, C. R. Alien predators are more dangerous than native predators to prey populations. Proc. R. Soc. B Biol. Sci. 274, 1237–1243 (2007).
    Google Scholar 
    Losos, J. B., Schoener, T. W. & Spiller, D. A. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432, 505–508 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Komine, H., Iwai, N. & Kaji, K. Rapid responses in morphology and performance of native frogs induced by predation pressure from invasive mongooses. Biol. Invasions 23, 1293–1305 (2021).
    Google Scholar 
    Nunes, A. L. et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. B Biol. Sci. 286, 20182528 (2019).
    Google Scholar 
    Berthon, K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol. Invasions 17, 2199–2211 (2015).
    Google Scholar 
    Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: What do introductions tell us about natural communities?. Ecol. Lett. 9, 354–371 (2006).
    Google Scholar 
    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).
    Google Scholar 
    Gould, S. J. & Vrba, E. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).
    Google Scholar 
    Komine, H. et al. Rapid behavioural responses of native frogs caused by past predation pressure from invasive mongooses. J. Zool. 310, 126–134 (2020).
    Google Scholar 
    Hoare, J. M., Pledger, S., Nelson, N. J. & Daugherty, C. H. Avoiding aliens: Behavioural plasticity in habitat use enables large, nocturnal geckos to survive Pacific rat invasions. Biol. Conserv. 136, 510–519 (2007).
    Google Scholar 
    Trompeter, W. P. & Langkilde, T. Invader danger: Lizards faced with novel predators exhibit an altered behavioral response to stress. Horm. Behav. 60, 152–158 (2011).CAS 
    PubMed 

    Google Scholar 
    Thawley, C. J., Goldy-Brown, M., McCormick, G. L., Graham, S. P. & Langkilde, T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. Glob. Change Biol. 25, 620–628 (2019).ADS 

    Google Scholar 
    Melotto, A., Manenti, R. & Ficetola, G. F. Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation. Nat. Commun. 11, 3608 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90, 208–217 (2009).PubMed 

    Google Scholar 
    Moore, R. D., Griffiths, R. A., O’Brien, C. M., Murphy, A. & Jay, D. Induced defences in an endangered amphibian in response to an introduced snake predator. Oecologia 141, 139–147 (2004).ADS 
    PubMed 

    Google Scholar 
    Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu. Rev. Ecol. Syst. 29, 113–140 (1998).
    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Dietary shift of an invasive predator: Rats, seabirds and sea turtles. J. Appl. Ecol. 45, 428–437 (2008).PubMed 

    Google Scholar 
    Bonnaud, E. et al. The diet of feral cats on islands: A review and a call for more studies. Biol. Invasions 13, 581–603 (2011).
    Google Scholar 
    Guiden, P. W., Bartel, S. L., Byer, N. W., Shipley, A. A. & Orrock, J. L. Predator–prey interactions in the Anthropocene: Reconciling multiple aspects of novelty. Trends Ecol. Evol. 34, 616–627 (2019).PubMed 

    Google Scholar 
    Savidge, J. A. Extinction of an island forest avifauna by an introduced snake. Ecology 68, 660–668 (1987).
    Google Scholar 
    Wu, N. C., Alton, L. A., Clemente, C. J., Kearney, M. R. & White, C. R. Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.). J. Exp. Biol. 218, 2416–2426 (2015).PubMed 

    Google Scholar 
    Losos, J. B. The evolution of form and function: Morphology and locomotor performance in West Indian lizards. Evolution 44, 1189–1203 (1990).PubMed 

    Google Scholar 
    Irschick, D. J. et al. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 59, 21–35 (1996).
    Google Scholar 
    Winchell, K. M., Maayan, I., Fredette, J. R. & Revell, L. J. Linking locomotor performance to morphological shifts in urban lizards. Proc. R. Soc. B Biol. Sci. 285, 20180229 (2018).
    Google Scholar 
    Tan, W. C., Vanhooydonck, B., Measey, J. & Herrel, A. Morphology, locomotor performance and habitat use in southern African agamids. Biol. J. Linn. Soc. 130, 166–177 (2020).
    Google Scholar 
    Snyder, R. C. The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. Am. J. Anat. 95, 1–45 (1954).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B., Schoener, T. W., Langerhans, R. B. & Spiller, D. A. Rapid temporal reversal in predator-driven natural selection. Science 314, 1111 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anson, J. R., Dickman, C. R., Boonstra, R. & Jessop, T. S. Stress triangle: Do introduced predators exert indirect costs on native predators and prey?. PLoS One 8, e60916 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: A dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).PubMed 

    Google Scholar 
    Cabrera-Pérez, M. Á., Gallo-Barneto, R., Esteve, I., Patiño-Martínez, C. & López-Jurado, L. F. The management and control of the California kingsnake in Gran Canaria (Canary Islands): Project LIFE+ Lampropeltis. Aliens Invasive Species Bull. 32, 20–28 (2012).
    Google Scholar 
    Hubbs, B. Common Kingsnakes: A Natural History of Lampropeltis getula (Tricolor Books, 2009).
    Google Scholar 
    Pyron, R. A. & Burbrink, F. T. Systematics of the common kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa 2241, 22–32 (2009).
    Google Scholar 
    Monzón-Argüello, C. et al. Snakes on an island: Independent introductions have different potentials for invasion. Conserv. Genet. 16, 1225–1241 (2015).
    Google Scholar 
    Piquet, J. C. & López-Darias, M. Invasive snake causes massive reduction of all endemic herpetofauna on Gran Canaria. Proc. R. Soc. B Biol. Sci. 288, 20211939 (2021).
    Google Scholar 
    Martín-González, E. & Sánchez-Pinto, L. Nuevos hallazgos de vertebrados fósiles de Fuerteventura: Identificación de una especie de serpiente utilizando técnicas de micro-escáner. Boletín la Asoc. Amigos del Mus. la Nat. y el Hombre Tenerife 15, 76–85 (2013).
    Google Scholar 
    García-Talavera, F., Rage, J.-C. & Barahona, F. The first record of snakes on the Canary Islands: A vertebra from the Upper Miocene of Lanzarote. Amphibia-Reptilia 19, 419–425 (1998).
    Google Scholar 
    Martín, A. & Lorenzo, J. Aves del archipiélago Canario (Francisco Lemus Editor S.L., 2001).
    Google Scholar 
    Nogales, M. & Medina, F. M. Trophic ecology of feral cats (Felis silvestris f. catus) in the main environments of an oceanic archipelago (Canary Islands): An updated approach. Mamm. Biol. 74, 169–181 (2009).
    Google Scholar 
    Salvador, A. & Pleguezuelos, J. Reptiles españoles: Identificación, historia natural y distribución (Esfagnos, 2002).
    Google Scholar 
    Vernet, R., Castanet, J. & Baez, M. Comparative water fux and daily energy expenditure of lizards of the genus Gallotia (Lacertidae) from the Canary Islands. Amphibia-Reptilia 16, 55–66 (1995).
    Google Scholar 
    Brown, R. P. Microevolution and Ecophysiology of Canary Island Skinks (Chalcides) (Thesis from the University of Aberdeen, 1990).
    Google Scholar 
    Penado, A. et al. Where to “rock”? Choice of retreat sites by a gecko in a semi-arid habitat. Acta Herpetol. 10, 47–54 (2015).
    Google Scholar 
    Brown, R. P. Thermal biology of the gecko Tarentola boettgeri: Comparisons among populations from different elevation within Gran Canaria. Herpetologica 52, 396–405 (1996).
    Google Scholar 
    Wiseman, K. D., Greene, H. W., Koo, M. S. & Long, D. J. Feeding ecology of generalist predator, the California kingsnake (Lampropeltis californiae): Why rare prey matter. Herpetol. Conserv. Biol. 14, 1–30 (2019).
    Google Scholar 
    King, R. B. Predicted and observed maximum prey size—Snake size allometry. Funct. Ecol. 16, 766–772 (2002).
    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).
    Google Scholar 
    del Arco Aguilar, M. J. & Rodríguez Delgado, O. Vegetation of the Canary Islands (Springer, 2018).
    Google Scholar 
    AEMET. Standard climate values. AEMET (2022). http://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?k=mur#tab2 (Accessed 9th February 2021)GESPLAN. Action A.1: Desarrollo de protocolos para la sistematización de las labores de captura y la recolección de datos. Official report (2015).Atzori, A. et al. Advances in methodologies of sexing and marking less dimorphic gekkonid lizards: The study case of the Moorish gecko, Tarentola mauritanica. Amphibia-Reptilia 28, 449–454 (2007).
    Google Scholar 
    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar 
    Peig, J. & Green, A. J. The paradigm of body condition: A critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).
    Google Scholar 
    Molina-Borja, M. & Rodríguez-Domínguez, M. A. Evolution of biometric and life-history traits in lizards (Gallotia) from the Canary Islands. J. Zool. Syst. Evol. Res. 42, 44–53 (2004).
    Google Scholar 
    Suárez, C. R., Rodríguez-Domínguez, M. A. & Molina-Borja, M. Sexual dimorphism in morphological traits and scaling relationships in two populations of Gallotia stehlini (Fam. Lacertidae: Squamata) from Gran Canaria. Afr. J. Herpetol. 65, 1–20 (2016).
    Google Scholar 
    Tejangkura, T. Hybrid Zone Genetics and Within-Island Diversity of the Gecko Tarentola boettgeri (Liverpool John Moores University, 2012).
    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Zapatero-Ramos, L. M., Gonzalez-Santiago, P. M., Solera-Puertas, M. A. & Carvajal-Gallardo, M. M. Estudio de nuevas especies de Pterigosomidae (Acari: Actinedida) sobre geckónidos de las Islas Canarias. Descripción de Geckobia canariensis n. sp. y Geckobia tinerfensis n. sp. Rev. Ibérica Parasitol. 49, 51–64 (1989).
    Google Scholar 
    Fain, A. & Bannert, B. Two new species of Ophionyssus Mégnin (Acari: Macronyssidae) parasitic on lizards of the genus Gallotia Boulenger (Reptilia: Lacertidae) from the Canary Islands. Int. J. Acarol. 26, 41–50 (2000).
    Google Scholar 
    Rosner, B. On the detection of many outliers. Technometrics 17, 221–227 (1975).MathSciNet 
    MATH 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.1 (2021).Langsrud, Ø. ANOVA for unbalanced data: Use type II instead of type III sums of squares. Stat. Comput. 13, 163–167 (2003).MathSciNet 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.5-1 (2021).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
    Google Scholar 
    Halliday, T. R. & Verrell, P. A. Body size and age in amphibians and reptiles. J. Herpetol. 22, 253–265 (1988).
    Google Scholar 
    Lopez-Darias, M., Vanhooydonck, B., Cornette, R. & Herrel, A. Sex-specific differences in ecomorphological relationships in lizards of the genus Gallotia. Funct. Ecol. 29, 506–514 (2015).
    Google Scholar 
    Márquez, R. & Cejudo, D. Defensive behavior as an escape strategy in four species of Gallotia (Sauria, Lacertidae) from the Canary Islands. Copeia 2000, 601–605 (2000).
    Google Scholar 
    Moon, B. R., Penning, D. A., Segall, M. & Herrel, A. Feeding in snakes: Form, function, and evolution of the feeding system. In Feeding in Vertebrates: Evolution, Morphology, Behavior, Biomechanics (eds Bels, V. & Whishaw, I. Q.) 527–574 (Springer, 2019).
    Google Scholar 
    Castanet, J. & Baéz, M. Adaptation and evolution in Gallotia lizards from the Canary Islands: Age, growth, maturity and longevity. Amphibia-Reptilia 12, 81–102 (1991).
    Google Scholar 
    Zamora-Camacho, F. J., Reguera, S., Rubiño-Hispán, M. V. & Moreno-Rueda, G. Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol. Biol. 41, 509–517 (2014).
    Google Scholar 
    Glossip, D. & Losos, J. B. Ecological correlates of number of subdigital lamellae in anoles. Herpetologica 53, 192–199 (1997).
    Google Scholar 
    Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B. & Autumn, K. Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology 117, 363–369 (2014).PubMed 

    Google Scholar 
    Landová, E., Jančúchová-Lásková, J., Musilová, V., Kadochová, Š & Frynta, D. Ontogenetic switch between alternative antipredatory strategies in the leopard gecko (Eublepharis macularius): Defensive threat versus escape. Behav. Ecol. Sociobiol. 67, 1113–1122 (2013).
    Google Scholar 
    Eifler, M. A., Marchand, R., Eifler, D. A. & Malela, K. Habitat use and activity patterns in the nocturnal gecko, Chondrodactylus turneri. Herpetologica 73, 43–47 (2017).
    Google Scholar 
    Hielen, B. Unterschiedliche Fortpflanzungsstrategien bei Geckos der Gattung Tarentola Gray, 1825. Salamandra 28, 179–194 (1993).
    Google Scholar 
    Magnhagen, C. Predation risk as a cost of reproduction. Trends Ecol. Evol. 6, 183–186 (1991).CAS 
    PubMed 

    Google Scholar 
    Shine, R. ‘Costs’ of reproduction in reptiles. Oecologia 46, 92–100 (1980).ADS 
    PubMed 

    Google Scholar 
    Moran, E. V. & Alexander, J. M. Evolutionary responses to global change: Lessons from invasive species. Ecol. Lett. 17, 637–649 (2014).PubMed 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).
    Google Scholar 
    Pinya, S., Tejada, S., Capó, X. & Sureda, A. Invasive predator snake induces oxidative stress responses in insular amphibian species. Sci. Total Environ. 566–567, 57–62 (2016).ADS 
    PubMed 

    Google Scholar 
    Genovart, M. et al. The young, the weak and the sick: Evidence of natural selection by predation. PLoS One 5, e9774 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sand, H., Wikenros, C., Ahlqvist, P., Strømseth, T. H. & Wabakken, P. Comparing body condition of moose (Alces alces) selected by wolves (Canis lupus) and human hunters: Consequences for the extent of compensatory mortality. Can. J. Zool. 90, 403–412 (2012).
    Google Scholar 
    Vedder, O., Bouwhuis, S. & Sheldon, B. C. The contribution of an avian top predator to selection in prey species. J. Anim. Ecol. 83, 99–106 (2014).PubMed 

    Google Scholar 
    Lopez, L. K. & Duffy, M. A. Mechanisms by which predators mediate host–parasite interactions in aquatic systems. Trends Parasitol. 37, 890–906 (2021).CAS 
    PubMed 

    Google Scholar 
    Garrido, M. & Pérez-Mellado, V. Human pressure, parasitism and body condition in an insular population of a Mediterranean lizard. Eur. J. Wildl. Res. 61, 617–621 (2015).
    Google Scholar 
    Amo, L., López, P. & Martín, J. Habitat deterioration affects body condition of lizards: A behavioral approach with Iberolacerta cyreni lizards inhabiting ski resorts. Biol. Conserv. 135, 77–85 (2007).
    Google Scholar 
    Kindinger, T. L. & Albins, M. A. Consumptive and non-consumptive effects of an invasive marine predator on native coral-reef herbivores. Biol. Invasions 19, 131–146 (2017).
    Google Scholar 
    Main, A. R. & Bull, C. M. The impact of tick parasites on the behaviour of the lizard Tiliqua rugosa. Oecologia 122, 574–581 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Garrido, M. & Pérez-Mellado, V. Sprint speed is related to blood parasites, but not to ectoparasites, in an insular population of lacertid lizards. Can. J. Zool. 92, 67–72 (2014).
    Google Scholar 
    Wirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P. & Schmitz, O. J. The context dependence of non-consumptive predator effects. Ecol. Lett. 24, 113–129 (2021).PubMed 

    Google Scholar 
    Civantos, E., López, P. & Martín, J. Non-lethal effects of predators on body growth and health state of juvenile lizards, Psammdromus algirus. Physiol. Behav. 100, 332–339 (2010).CAS 
    PubMed 

    Google Scholar 
    Graham, S. P., Freidenfelds, N. A., McCormick, G. L. & Langkilde, T. The impacts of invaders: Basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen. Comp. Endocrinol. 176, 400–408 (2012).CAS 
    PubMed 

    Google Scholar 
    Donihue, C. M. et al. Hurricane-induced selection on the morphology of an island lizard. Nature 560, 88–91 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Donihue, C. M. et al. Hurricane effects on Neotropical lizards span geographic and phylogenetic scales. Proc. Natl. Acad. Sci. 117, 10429–10434 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodman, B. A., Miles, D. B. & Schwarzkopf, L. Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology 89, 3462–3471 (2008).PubMed 

    Google Scholar 
    Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human influences on evolution, and the ecological and societal consequences. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160028 (2017).
    Google Scholar  More

  • in

    The trophic niche of subterranean populations of Speleomantes italicus

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/sqb.1957.022.01.039 (1957).Article 

    Google Scholar 
    Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living?. Behav. Ecol. Sociobiol. 74, 126. https://doi.org/10.1007/s00265-020-02909-x (2020).Article 

    Google Scholar 
    Pekár, S., García, L. F. & Viera, C. Behaviour and Ecology of Spiders (Springer, 2017).
    Google Scholar 
    Nawrocki, B., Colborne, S. F., Yurkowski, D. J. & Fisk, A. T. Foraging ecology of Bowfin (Amia calva), in the Lake Huron-Erie Corridor of the Laurentian Great Lakes: Individual specialists in generalist populations. J. Great Lakes Res. 42, 1452–1460. https://doi.org/10.1016/j.jglr.2016.08.002 (2016).Article 

    Google Scholar 
    Nifong, J. C. Living on the edge: Trophic ecology of Alligator mississippiensis (American alligator) with access to a shallow estuarine impoundment. Bull. Fla. Mus. Nat. Hist. 54, 13–49 (2016).
    Google Scholar 
    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786. https://doi.org/10.1126/science.1103538 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jaeger, A. et al. Age, sex, and breeding status shape a complex foraging pattern in an extremely long-lived seabird. Ecology 95, 2324–2333 (2014).Article 
    PubMed 

    Google Scholar 
    Salwiczek, L. H. et al. Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner: Client reef fish cooperation. PLoS ONE 7, e49068. https://doi.org/10.1371/journal.pone.0049068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juáres, M. A., Santos, M., Mennucci, J. A., Coria, N. R. & Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar. Biol. 163, 105. https://doi.org/10.1007/s00227-016-2886-y (2016).Article 
    CAS 

    Google Scholar 
    Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16. https://doi.org/10.1007/s00442-014-3201-6 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Casper, R. M. et al. The influence of diet on foraging habitat models: A case study using nursing Antarctic fur seals. Ecography 33, 748–759. https://doi.org/10.1111/j.1600-0587.2009.06155.x (2010).Article 

    Google Scholar 
    Pagani-Núñez, E., Barnett, C. A., Gu, H. & Goodale, E. The need for new categorizations of dietary specialism incorporating spatio-temporal variability of individual diet specialization. J. Zool. 300, 1–7. https://doi.org/10.1111/jzo.12364 (2016).Article 

    Google Scholar 
    Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274. https://doi.org/10.1890/07-1580.1 (2009).Article 
    PubMed 

    Google Scholar 
    Ćirović, D., Penezić, A., Milenković, M. & Paunović, M. Winter diet composition of the Golden jackal (Canis aureus L. 1758) in Serbia. Mamm. Biol. 79, 132–137. https://doi.org/10.1016/j.mambio.2013.11.003 (2014).Article 

    Google Scholar 
    Moser, C. F., de Avila, F. R., de Oliveira, M. & Tozetti, A. M. Diet composition and trophic niche overlap between two sympatric species of Physalaemus (Anura, Leptodactylidae, Leiuperinae) in a subtemperate forest of southern Brazil. Herpeto. Notes 10, 9–15 (2017).
    Google Scholar 
    Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE 13, e0205672. https://doi.org/10.1371/journal.pone.0205672 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evangelista, C., Boiche, A., Lecerf, A. & Cucherousset, J. Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator. J. Anim. Ecol. 83, 1025–1034. https://doi.org/10.1111/1365-2656.12208 (2014).Article 
    PubMed 

    Google Scholar 
    Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060. https://doi.org/10.1098/rsos.170060 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dehnhard, N. et al. Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird?. Ecol. Evol. 6, 4488–4501. https://doi.org/10.1002/ece3.2213 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jirka, K. J. & Kraft, C. E. Diet niche width and individual specialization of Brook trout in Adirondack lakes. Trans. Am. Fish Soc. 146, 716–731. https://doi.org/10.1080/00028487.2017.1290680 (2017).Article 

    Google Scholar 
    Reading, C. & Jofré, G. Diet composition changes correlated with body size in the Smooth snake, Coronella austriaca, inhabiting lowland heath in southern England. Amphib. Reptil. 34, 463–470. https://doi.org/10.1163/15685381-00002899 (2013).Article 

    Google Scholar 
    Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol. 36, 522–529. https://doi.org/10.1016/j.actao.2010.07.005 (2010).Article 
    ADS 

    Google Scholar 
    Stamp, N. E. & Bowers, M. D. Presence of predatory wasps and stinkbugs alters foraging behavior of cryptic and non-cryptic caterpillars on plantain (Plantago lanceolata). Oncologic 95, 376–384 (1993).ADS 

    Google Scholar 
    Magnusson, W. E. & Lima, A. P. The ecology of a cryptic predator, Paleosuchus tigonatus, in a tropical rainforest. J. Herpetol. 25, 41–48 (1991).Article 

    Google Scholar 
    Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes Ecology, Evolution, and Physiology of Teleosts in Extreme Environments (Springer, 2015).
    Google Scholar 
    Horikoshi, K. Barophiles: Deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1, 291–295 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926. https://doi.org/10.1002/ece3.7556 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildl. Res. 39, 266–270. https://doi.org/10.1071/WR11103 (2012).Article 

    Google Scholar 
    Wake, D. B. The enigmatic history of the European. Asian and American plethodontid salamanders. Amphib-reptile 34, 323–336 (2013).Article 

    Google Scholar 
    Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus. Civ. Stor. Nat. Trieste 52, 5–135 (2006).
    Google Scholar 
    Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).European Community. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. J. Eur. Union 206(7), 1–44 (1992).
    Google Scholar 
    Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 20. https://doi.org/10.1007/s00114-017-1443-y (2017).Article 
    CAS 

    Google Scholar 
    Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species?. Acta Oecol. 55, 29–35. https://doi.org/10.1016/j.actao.2013.11.003 (2014).Article 
    ADS 

    Google Scholar 
    Salvidio, S., Oneto, F., Ottonello, D., Costa, A. & Romano, A. Trophic specialization at the individual level in a terrestrial generalist salamander. Can. J. Zool. 93, 79–83. https://doi.org/10.1139/cjz-2014-0204 (2015).Article 

    Google Scholar 
    Lunghi, E. et al. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 8, 7527. https://doi.org/10.1038/s41598-018-25704-1 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 8, 10575. https://doi.org/10.1038/s41598-018-28796-x (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. in Scripta Herpetologica. Studies on Amphibians and Reptiles in honour of Benedetto Lanza (eds M. Capula & C. Corti) (Edizioni Belvedere, 2014).Lunghi, E., Mascia, C., Mulargia, M. & Corti, C. Is the Sardinian grass snake (Natrix natrix cetti) an active hunter in underground environments?. Spixiana 41, 160 (2018).
    Google Scholar 
    Ficetola, G. F., Canedoli, C. & Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216. https://doi.org/10.1111/cobi.13179 (2019).Article 
    PubMed 

    Google Scholar 
    Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 5, 180083. https://doi.org/10.1038/sdata.2018.83 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes. Sci. Data 8, 150. https://doi.org/10.1038/s41597-021-00931-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deban, S. M. & Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 207, 2071–2081. https://doi.org/10.1242/jeb.00978 (2004).Article 
    PubMed 

    Google Scholar 
    Deban, S. M., O’Reilly, J. C., Dicke, U. & van Leeuwen, J. L. Extremely high-power tongue projection in plethodontid salamanders. J. Exp. Biol. 210, 655–667. https://doi.org/10.1242/jeb.02664 (2007).Article 
    PubMed 

    Google Scholar 
    Vignoli, L., Caldera, F. & Bologna, M. A. Trophic niche of cave populations of Speleomantes italicus. J. Nat. Hist. 40, 1841–1850 (2006).Article 

    Google Scholar 
    Salvidio, S. et al. Consistency in trophic strategies between populations of the Sardinian endemic salamander Speleomantes imperialis. Anim. Biol. 67, 1–16. https://doi.org/10.1163/15707563-00002517 (2017).Article 

    Google Scholar 
    Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection?. PeerJ 3, e1122. https://doi.org/10.7717/peerj.1122 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J. Therm. Biol. 60, 79–85. https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).Article 
    PubMed 

    Google Scholar 
    Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).Article 

    Google Scholar 
    Manenti, R., Lunghi, E. & Ficetola, G. F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 134, 242–251. https://doi.org/10.1111/ivb.12092 (2015).Article 

    Google Scholar 
    Yurkowski, D. J. et al. Latitudinal variation in ecological opportunity and intraspecific competition indicates differences in niche variability and diet specialization of Arctic marine predators. Ecol. Evol. 6, 1666–1678. https://doi.org/10.1002/ece3.1980 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Araújo, M. S., Bolnick, D. L. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958. https://doi.org/10.1111/j.1461-0248.2011.01662.x (2011).Article 
    PubMed 

    Google Scholar 
    Lunghi, E. et al. Same diet, different strategies: Variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180. https://doi.org/10.3390/d12050180 (2020).Article 

    Google Scholar 
    Costa, A., Crovetto, F. & Salvidio, S. European plethodontid salamanders on the forest floor: Local abundance is related to fine-scale environmental factors. Herpetol. Conserv. Biol. 11, 344–349 (2016).
    Google Scholar 
    Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol. 43, 42–50 (2012).Article 
    ADS 

    Google Scholar 
    Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats 2nd edn. (Oxford University Press, 2019).Book 

    Google Scholar 
    Lunghi, E., Manenti, R. & Ficetola, G. F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 5, e3169. https://doi.org/10.7717/peerj.3169 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E., Ficetola, G. F., Zhao, Y. & Manenti, R. Are the neglected Tipuloidea crane flies (Diptera) an important component for subterranean environments?. Diversity 12, 333. https://doi.org/10.3390/d12090333 (2020).Article 

    Google Scholar 
    Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 45, 90–97. https://doi.org/10.1016/j.jnc.2018.08.001 (2018).Article 

    Google Scholar 
    Lunghi, E. et al. Ecological observations on hybrid populations of European plethodontid salamanders, genus Speleomantes. Diversity 13, 285. https://doi.org/10.3390/d13070285 (2021).Article 

    Google Scholar 
    Lunghi, E., Guillaume, O., Blaimont, P. & Manenti, R. The first ecological study on the oldest allochthonous population of European cave salamanders (Hydromantes sp.). Amphib-Reptile 39, 113–119. https://doi.org/10.1163/15685381-00003137 (2018).Article 

    Google Scholar 
    Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B 277, 1789–1797. https://doi.org/10.1098/rspb.2010.0018 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): Nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).
    Google Scholar 
    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 724–734. https://doi.org/10.1111/ecog.04798 (2020).Article 

    Google Scholar 
    Lormée, H., Jouventin, P., Trouve, C. & Chastel, O. Sex-specific patterns in baseline corticosterone and body condition changes in breeding Red-footed Boobies Sula sula. Ibis 145, 212–219 (2003).Article 

    Google Scholar 
    Du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob Change Biol 18, 3063–3070. https://doi.org/10.1111/j.1365-2486.2012.02778.x (2012).Article 
    ADS 

    Google Scholar 
    Lunghi, E. & Corti, C. Predation of European cave salamanders (Speleomantes) by the spider Meta bourneti. Spixiana 44, 54 (2021).
    Google Scholar 
    Lunghi, E. Doubling the lifespan of European plethodontid salamanders. Ecology 103, e03581. https://doi.org/10.1002/ecy.3581 (2022).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Pennati, R. & Manenti, R. Spatial segregation among age classes in cave salamanders: Habitat selection or social interactions?. Popul Ecol 55, 217–226 (2013).Article 

    Google Scholar 
    Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: Do environmental factors have a role?. Ecology 101, e03088. https://doi.org/10.1002/ecy.3088 (2020).Article 
    PubMed 

    Google Scholar 
    Blamires, S. J. Plasticity in extended phenotypes: Orb web architectural responses to variations in prey parameters. J. Exp. Biol. 213, 3207–3212. https://doi.org/10.1242/jeb.045583 (2010).Article 
    PubMed 

    Google Scholar 
    Costa, A. et al. Generalisation within specialization: Inter-individual diet variation in the only specialized salamander in the world. Sci. Rep. 5, 13260. https://doi.org/10.1038/srep13260 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Capture-mark-recapture data on the strictly protected Speleomantes italicus. Ecology 103, e3641. https://doi.org/10.1002/ecy.3641 (2022).Article 
    PubMed 

    Google Scholar 
    Lunghi, E. & Bruni, G. Long-term reliability of visual implant elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
    Google Scholar 
    Lunghi, E., Bacci, F. & Zhao, Y. How can we record reliable information on animal colouration in the wild?. Diversity 13, 356. https://doi.org/10.3390/d13080356 (2021).Article 

    Google Scholar 
    Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253. https://doi.org/10.3897/herpetozoa.32.e39030 (2019).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-7. https://cran.r-project.org, https://github.com/vegandevs/vegan (2020).R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021) http://www.R-project.org/.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    Băncilă, R. I., Hartel, T. R. P., Smets, J. & Cogălniceanu, D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib-Reptile 31, 558–562. https://doi.org/10.1163/017353710X518405 (2010).Article 

    Google Scholar 
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2014).Article 

    Google Scholar 
    Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci. Data 7, 171. https://doi.org/10.1038/s41597-020-0513-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 3, 319. https://doi.org/10.1038/s41559-019-0803-8 (2019).Article 
    PubMed 

    Google Scholar  More

  • in

    Evidence of sweet corn yield losses from rising temperatures

    Brown, M. E. et al. In Climate Change, global food security, and the U.S. food system (2015).Masson-Delmotte, V. et al. AR6 Climate Change 2021: The Physical Science Basis—IPCC. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Douris, J. et al. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-No. 1267). In WMO Statement on the state of the Global Climate vol. 1267 (WMO, 2021).Smith, A. B. U.S. Billion-dollar Weather and Climate Disasters, 1980–present (NCEI Accession 0209268). In National Centers for Environmental Information (2020).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 
    ADS 

    Google Scholar 
    Mann, M. E. et al. Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv. 4, 5 (2018).Article 

    Google Scholar 
    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 2325–2337 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Daloz, A. S. et al. Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. J. Agric. Food Res. 4, 100–132 (2021).
    Google Scholar 
    Leng, G. Maize yield loss risk under droughts in observations and crop models in the Unites States. Environ. Res. Lett. 16, 24016 (2021).Article 

    Google Scholar 
    Backlund, P., Janetos, A., & Schimel, D. In The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States Synthesis and Assessment Product, vol. 4.3 (2008).Scheelbeek, P. F. D., Tuomisto, H. L., Bird, F. A., Haines, A. & Dangour, A. D. Effect of environmental change on yield and quality of fruits and vegetables: Two systematic reviews and projections of possible health effects. Lancet Glob. Health 5, S21 (2017).Article 

    Google Scholar 
    Drewnowski, A., Dwyer, J., King, J. C. & Weaver, C. M. A proposed nutrient density score that includes food groups and nutrients to better align with dietary guidance. Nutr. Rev. 77, 404–416 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinberger, K. & Lumpkin, T. A. Diversification into horticulture and poverty reduction: A research agenda. World Dev. 35, 1464–1480 (2007).Article 

    Google Scholar 
    Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38 (2008).PubMed 

    Google Scholar 
    Kazan, K. & Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 67, 47–60 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Messina, C. D. et al. On the dynamic determinants of reproductive failure under drought in maize. In Silico Plants 1, 1–14 (2019).Article 

    Google Scholar 
    Yang, X., Wang, B., Chen, L., Li, P. & Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 9, 3742 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).Article 
    ADS 

    Google Scholar 
    Owen, P. C. Responses of a semi-dwarf wheat to temperatures representing a tropical dry season. II. Extreme temperatures. Exp. Agric. 7, 43–47 (1971).Article 

    Google Scholar 
    Liu, F., Jensen, C. R. & Andersen, M. N. A review of drought adaptation in crop plants: Changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust. J. Agric. Res. 56, 1245–1252 (2005).Article 
    CAS 

    Google Scholar 
    Turc, O., Bouteillé, M., Fuad-Hassan, A., Welcker, C. & Tardieu, F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytol. 212, 377–388 (2016).Article 
    PubMed 

    Google Scholar 
    Fuad-Hassan, A., Tardieu, F. & Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: A spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ. 31, 1349–1360 (2008).Article 
    PubMed 

    Google Scholar 
    USDA–National Agricultural Statistics Service (2021). https://data.nal.usda.gov/dataset/nass-quick-stats, accessed 29 December 2021.Challinor, A. J., Parkes, B. & Ramirez-Villegas, J. Crop yield response to climate change varies with cropping intensity. Glob. Chang. Biol. 21, 1679–1688 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kukal, M. S. & Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 8, 1–18 (2018).Article 
    ADS 

    Google Scholar 
    Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 7, 1–7 (2020).Article 

    Google Scholar 
    Thornton, M. M. et al. In Daymet: Daily surface weather data on a 1-km grid for North America, Version 4. ORNL DAAC (2020).Ritchie, S. W., Hanway, J. J., Benson, G. O., & Herman, J. C. How a corn plant develops: Special report no. 48. In Ames: Iowa State University of Science and Technology Cooperative Extension Service (1986).Nicholls, N. Increased Australian wheat yield due to recent climate trends. Nature 387, 484–485 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 106, 15594–15598 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhaliwal, D. S. & Williams, M. M. I. I. Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn. PLoS ONE 15, e0228809 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).Article 
    ADS 

    Google Scholar 
    Gilmore, E. C. & Rogers, J. S. heat units as a method of measuring maturity in corn. Agron. J. 50, 611–615 (1958).Article 

    Google Scholar 
    Wang, J. Y. A critique of the heat unit approach to plant response studies. Ecology 41, 785–790 (1960).Article 

    Google Scholar 
    Cross, H. Z. & Zuber, M. S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64, 351–355 (1972).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 
    ADS 

    Google Scholar 
    Díaz, E. L. et al. In Chapter 20: US Caribbean. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II,(2018).Wang, Y. et al. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 158, 80–88 (2019).Article 

    Google Scholar 
    Lohani, N., Singh, M. B. & Bhalla, P. L. High temperature susceptibility of sexual reproduction in crop plants. J. Exp. Bot. 71, 555–568 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jagadish, S. V. K., Craufurd, P. Q. & Wheeler, T. R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58, 1627–1635 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).Article 
    ADS 

    Google Scholar 
    Hedhly, A., Hormaza, J. I. & Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 14, 30–36 (2008).Article 
    PubMed 

    Google Scholar 
    Zhao, F. et al. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron. Sin. 39, 1644–1651 (2013).Article 
    CAS 

    Google Scholar 
    Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 35, 9705 (2008).Article 
    ADS 

    Google Scholar 
    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).Article 
    ADS 

    Google Scholar 
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).Article 
    ADS 
    PubMed 

    Google Scholar  More

  • in

    Optimization of the process of seed extraction from the Larix decidua Mill. cones including evaluation of seed quantity and quality

    Cone characteristics: the entire set and individual variantsCones used in all the test variants did not differ from each other in terms of height (coefficient of variance in the Student t-test–F = 1.33 at p = 0.23), diameter (F = 1.77 at p = 0.08), or initial weight (F = 0.86 at p = 0.55). Analysis of variance revealed a significant difference for cone humidity (F = 2.52 at p ˂ 0.05).Cone parameters such as height, diameter and initial weight are factors that can determine the course of the extraction process. Therefore, the relationship between diameter and height for all cones used in the study was described using a linear regression equation ((y=0.2794x+8.3195)), which means that cone diameter increased by 0.28 mm per 1 mm of cone height, ((R=0.778 >0.104-{R}_{kr})).The initial weight of cones may be associated with their harvest time or storage conditions. A linear regression equation was also used to describe the relationship between the height and initial weight of the examined cones (y = 0.238x–3.918), which means that initial weight increased on average by 0.238 g per 1 mm of height, (R = 0.795  > 0.104).Table 2 shows means with standard deviations, the minimum and maximum values of the measured parameters, the range of variance, the coefficient of variation and the standard error for the entire set of studied cones and seeds. The Shapiro–Wilk test showed that the examined characteristics had a normal distribution.Table 2 Cone and seed parameters for the entire study set.Full size tableThe cones used in the study had a height of 21.4–44.1 mm and a diameter of 12.5–24.3 mm. The mean height of a cone was 33.8 (± 3.4) mm and the mean diameter was 17.8 (± 1.6) mm. The initial weight of cones ranged from 2.137 to 9.111 g, with a mean of 4.144 (± 1.019) g. The initial moisture content of cones was from 27.6 to 57.1%, with a mean of 40.4 (± 4.5)%. Analysis was performed for individual extraction variants. The mean values of cone height h, diameter d, initial weight m01, and moisture content W were calculated (Table 3).Table 3 Mean parameter values and standard deviations for the nine process variants.Full size tableThe HSD Tukey test revealed one homogeneous group for cone height encompassing all variants and two homogeneous groups for diameter. The first group consisted of all variants except 7, and the second group included all variants except 2. One homogeneous group was obtained for initial weight. Two homogeneous groups were found for moisture content, one consisting of all variants except 7, and the other one containing variants 1, 4, 5, 6, 7, 8, and 9.Seed extraction results for the studied stepsSeed extraction conditions and timeThe change in cone weight in each step of the extraction process depended on its duration, temperature and humidity conditions in the extraction cabinet, as well as on the initial moisture content of the cones.Humidity inside the drying chamber decreased to an average of 30% after 2 h of the process in each step as a result of increasing temperature. Over the subsequent 4 h of the process, after increasing the temperature, the humidity inside the chamber declined significantly, and then (over 2 and 4 h) it decreased further only slightly, stabilizing at approx. 5% for the 10 h variants, 6% for the 8 h variants, and 8% for 6 h variants on average.Moisture content changes in cones during the seed extraction processThe initial moisture content (u01) of the studied cones was much greater than 0.20 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}), which means that special care must be taken during seed extraction, which should be conducted at a temperature of up to 50 °C8.The relatively high moisture content of the cones could be attributed to the absence of preliminary drying in airy storage places prior to seed extraction (which is typically the case in commercial practice) and the early date of cone harvest, at the beginning of the extraction season. The initial (u0x) and final (ukx) moisture content of cones used in each process variant is given with standard deviation in Table 4.Table 4 Initial and final moisture content of cones used in each process variant.Full size tableThe initial moisture content of cones (u0x) in most variants increased with each extraction step due to immersion. In most variants, the final moisture content (ukx) was the highest in the first extraction step and decreased or remained at the same level with each subsequent step.The mean initial moisture content for the three process variants with 10 h of drying was 0.411 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}). After 10 h of drying, the mean moisture content decreased to 0.130 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}). The mean initial moisture content in the fifth extraction step was 0.437 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}), and the final moisture content in that step was 0.071 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}) . Cones dried for 10 h reached on average 7% moisture content after extraction steps 4 and 5.The mean initial moisture content for the three process variants with 8 h of drying was 0.412 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}). After 8 h of drying, the mean moisture content decreased to 0.128 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}) . The mean initial moisture content in the fifth extraction step was 0.440 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}), and the final moisture content in that step was 0.064 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}) . Cones dried for 8 h reached on average 7.1% moisture content after extraction step IV and 6.4% after step V.The mean initial moisture content for the three process variants with 6 h of drying was 0.389 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}). After 6 h of drying, the mean moisture content decreased to 0.129 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}) . The mean initial moisture content in the fifth extraction step was 0.415 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}), and the final moisture content in that step was 0.084 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{mathrm{d}.mathrm{w}.}^{-1}) . Cones dried for 6 h reached on average 8.9% moisture content after extraction step IV and 8.4% moisture content after step V, which means that their final moisture content was higher than that of cones dried for 8 h and 10 h.The cones with the longest immersion time (15 min) were characterized by the highest initial moisture content in each extraction step as compared to the other two variants (immersion of 5 min and 10 min) with the same drying time. The final moisture content in a given extraction step differed between cones with different immersion times. Cones with an immersion time of 15 min were characterized by the highest final moisture content in individual extraction steps, and those with 5 min immersion revealed the lowest final moisture content.The Tukey HSD test revealed homogeneous groups in terms of initial moisture content (u01, u02, u03, u04, u05) and final moisture content (uk1, uk2, uk3, uk4, uk5) in each step, as shown in Table 4. For instance, four homogeneous groups were found for the final moisture content after extraction step V (uk5): the first one consisted of all variants except for 7, 8, and 9, the second one included variants 1, 2, 3, and 7, the third one comprised of variants 7 and 8, while the fourth one was constituted by variant 9 alone.Using Eq. (1), changes in moisture content were described for each of the tested cones over all five steps of each variant. The equation included the initial and final values of moisture content and the b coefficient for individual cones. The average values of the b coefficient and standard deviations for each extraction step are presented in Table 5 for individual extraction variants.Table 5 Mean values of the b coefficient and standard deviations for the five steps of the studied process variants.Full size tableThe lowest value of the b coefficient was recorded for the first step of the 10h_15min variant (b1 = 0.34), while the highest value was obtained for the fifth step of the 8 h_15 min variant (b5 = 0.60). In the process variants involving 10 and 8 h of drying , the b coefficient increased with each extraction step until the third one; in the fourth step it slightly decreased and in the fifth step it remained constant. In the variants with 6 h of drying the b coefficient almost peaked in the second extraction step and remained at a similar level until the fifth step. In the first steps of the variants with 6 h of drying, the mean value of the b coefficient was 0.54 and did not differ significantly from the coefficients obtained during the other steps. It was noted that in the 8 h_15 min variant, the b coefficients increased over successive steps.Figures 2–3 show examples of curves of actual and model changes in moisture content and the rate of extraction for sample cones, one each for variants 10 h_15 min and 8 h_15 min.Figure 2Diagrams: (a) actual and predicted changes in cone moisture content, (b) extraction rate in five extraction steps for larch cone no. 32 in the 10 h_15 min variant throughout effective extraction.Full size imageFigure 3Diagrams: (a) actual and predicted changes in cone moisture content, (b) extraction rate in five extraction steps for larch cone no. 17 in the 8 h_15 min variant throughout effective extraction.Full size imageEquations for changes in moisture content and extraction rate in consecutive extraction steps are given below for the graphically for the cone shown in Fig. 2 (no. 32 in the 10 h_15 min variant):Step I: ({u}_{1}=0.264cdot {mathrm{e }}^{left(-0.38 cdot {tau }_{i}right)}+0.107) ,(frac{d{u}_{1}}{d{tau }_{1}}=-0.100cdot {mathrm{e }}^{(-0.38 cdot {tau }_{i})})Step II: ({u}_{2}=0.372cdot {mathrm{e }}^{left(-0.44 cdot {tau }_{i}right)}+0.095) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.164cdot {mathrm{e }}^{(-0.44 cdot {tau }_{i})})Step III: ({u}_{3}=0.397cdot {mathrm{e }}^{left(-0.49 cdot {tau }_{i}right)}+0.086) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.195cdot {mathrm{e }}^{(-0.49 cdot {tau }_{i})})Step IV: ({u}_{4}=0.536cdot {mathrm{e }}^{left(-0.44 cdot {tau }_{i}right)}+0.080) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.236cdot {mathrm{e }}^{(-0.44 cdot {tau }_{i})})Step V: ({u}_{5}=0.485cdot {mathrm{e }}^{left(-0.46 cdot {tau }_{i}right)}+0.076) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.223cdot {mathrm{e }}^{(-0.46 cdot {tau }_{i})})Equations for changes (Fig. 3) in moisture content and extraction rate in consecutive extraction steps are also given for this cone (no. 17 in the 8 h_15 min variant):Step I: ({u}_{1}=0.304cdot {mathrm{e }}^{left(-0.53 cdot {tau }_{i}right)}+0.113) ,(frac{d{u}_{1}}{d{tau }_{1}}=-0.161cdot {mathrm{e }}^{(-0.53 cdot {tau }_{i})})Step II: ({u}_{2}=0.292cdot {mathrm{e }}^{left(-0.55 cdot {tau }_{i}right)}+0.085) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.161cdot {mathrm{e }}^{(-0.55 cdot {tau }_{i})})Step III: ({u}_{3}=0.369cdot {mathrm{e }}^{left(-0.70 cdot {tau }_{i}right)}+0.077) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.258cdot {mathrm{e }}^{(-0.70 cdot {tau }_{i})})Step IV: ({u}_{4}=0.379cdot {mathrm{e }}^{left(-0.71 cdot {tau }_{i}right)}+0.059) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.269cdot {mathrm{e }}^{(-0.71 cdot {tau }_{i})})Step V: ({u}_{5}=0.428cdot {mathrm{e }}^{left(-0.77 cdot {tau }_{i}right)}+0.060) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.330cdot {mathrm{e }}^{(-0.77 cdot {tau }_{i})})Finally, equations for changes in moisture content and extraction rate in consecutive extraction steps are given for cone no. 5 in the 6 h_15 min variant:Step I: ({u}_{1}=0.308cdot {mathrm{e }}^{left(-0.58 cdot {tau }_{i}right)}+0.0904) ,(frac{d{u}_{1}}{d{tau }_{1}}=-0.179cdot {mathrm{e }}^{(-0.58 cdot {tau }_{i})})Step II: ({u}_{2}=0.346cdot {mathrm{e }}^{left(-0.63 cdot {tau }_{i}right)}+0.1070) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.218cdot {mathrm{e }}^{(-0.63 cdot {tau }_{i})})Step III: ({u}_{3}=0.368cdot {mathrm{e }}^{left(-0.63 cdot {tau }_{i}right)}+0.0837) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.232cdot {mathrm{e }}^{(-0.63 cdot {tau }_{i})})Step IV: ({u}_{4}=0.387cdot {mathrm{e }}^{left(-0.68 cdot {tau }_{i}right)}+0.0838) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.263cdot {mathrm{e }}^{(-0.68 cdot {tau }_{i})})Step V: ({u}_{5}=0.396cdot {mathrm{e }}^{left(-0.65 cdot {tau }_{i}right)}+0.0743) , (frac{d{u}_{1}}{d{tau }_{1}}=-0.257cdot {mathrm{e }}^{(-0.65 cdot {tau }_{i})})Figures 2a, 3a show the curves of actual changes in the moisture content of three sample cones subjected to different drying times (10 and 8 h) but the same immersion time (15 min); the curves were fitted to a model which is widely used in descriptions of drying at constant temperature (mostly for vegetables). The present study used variable temperature, which may have influenced the fit of the model, in addition to the input variables (drying and immersion times). The best fit was found for the cone subjected to the variant with 8 h of drying (Fig. 3), with a slight deviation in the first three extraction steps, and with a very good fit in the fourth and fifth steps. The lowest fit was found for the cone subjected to 6 h drying, which may be caused by insufficient drying time (the cone was exposed to 35 °C for 2 h, and to 50 °C for only 4 h).Figures 2b, 3b show diagrams for cone extraction rates at different drying times (10 h and 8 h) at the same immersion times (15 min). As can be seen, extraction rates decreased in the very beginning, which is characteristic of the so-called second period of solid drying (Pabis44).Seed extraction dynamicsTable 2 presents data on the number of scales and seeds for the studied cones. There were from 33 to 70 open scales per cone, with an average of 48 (± 6). From 1 to 76 seeds were extracted per cone, with an average of 36 (± 18). Finally, each cone contained from 5 to 97 seeds, with an average of 52 (± 19). The weight of the extracted seeds ranged from 0.001 g to 0.651 g, on average 0.193 (± 0.109) g.Cones obtained from different process variants did not differ in terms of the number of seeds extracted (F = 0.862 at p = 0.55) or their weight (F = 0.720 at p = 0.674). However, ANOVA did reveal significant differences in the number of scales (F = 3.561 at p ˂0.05) and the total number of seeds per cone (F = 2.93601 at p = 0.003645). Table 6 gives mean scale and seed numbers per larch cone (with standard deviations) for the various extraction variants and homogeneous groups.Table 6 Mean numbers of cone scales and seeds for each process variant.Full size tableOn average, 70% of the seeds were extracted from cones used in all nine study variants, with 30% of the seeds remaining in the cones. Table 7 shows the number of seeds extracted in individual variants and the number of seeds remaining in the cones, expressed as a percentage.Table 7 Number of seeds extracted from and remaining in the cones for each process variant.Full size tableThe greatest number of seeds was obtained in process variants 2–73%, closely followed by variants 3, 1, and 7 (72%), and 8 (70%). The lowest seed yield was obtained from variant 4 (65%).In all study variants, some of the seeds were obtained in the process of extraction in the chamber and some in the process of shaking in the drum (Table 7). The highest number of seeds in the chamber was obtained in variant 2 (69%), and the lowest in variant 9 (56%). On average, the largest quantity of seeds was obtained in the chamber in the 10 h variants, and the lowest quantity in the 6 h variants. Comparing different process variants of the same drying duration, the greatest number of seeds in the chamber were obtained in variants 2, 5, and 7 (and also in variant 8—only 1% fewer). The greatest quantity of seeds extracted by shaking in the drum was obtained in variant 9 (44%), and the lowest in variant 2 (31%). On average, 38% of seeds extracted in all variants were obtained by shaking in the drum.It can be seen that in each of the variants and their individual steps, the highest number of seeds was obtained after 6 h of the process. Figure 4a–c shows the percentage of seeds obtained during the effective extraction time, where the number of seeds extracted at a given step was added cumulatively to those from the previous steps.Figure 4Percentage seed yield dynamics for each step of a five-step extraction process: (a) 10 h of drying, (b) 8 h of drying, (c) 6 h of drying.Full size imageThe diagrams in Fig. 4 show the percentage of seeds obtained throughout the entire process. Each step consists of drying, shaking, immersion, and soaking, except for step V, which involved only drying and shaking without immersion or soaking. Analysis of seed yield over 10 h of drying (Fig. 4a) shows that on average 37% of all extracted seeds were obtained in the first step, 26% in the second step, approx. 20% in the third step, 11% in the fourth step, and about 6% in the fifth step.As regards the 8 h process (Fig. 4b), on average 30% of all extracted seeds were obtained in the in the first extraction step in the 8 h_5 min and 8 h_15 min variants, and as much as 53% in the 8 h_10 min variant. An average of 27% of all seeds were extracted in the second step, 15% in the third step, about 11% in the fourth step, and approx. 5% in the fifth step. The 8 h_10 min variant was characterized by the highest seed yield, beginning in the first step of the process (as compared to the 8 h_5 min and 8 h_15 min variants).As far as the variant with 6 h of drying is concerned (Fig. 4c), on average approx. 46% of all extracted seeds were obtained in the first step, 24% in the second step, 15% in the third step, approx. 11% in the fourth step, about 4% in the fifth step.When extracting seeds from larch cones, scale deflection and the number of obtained seeds are not assessed during the process, as is the case with pine and spruce cones due to the difficulties caused by the aforementioned morphology of larch cones (Tyszkiewicz, 1949). The presented diagrams show that a satisfactory seed yield (60%) was obtained in variants with 8 and 6 h of drying already after 10 h of effective extraction time.The seed yield coefficient, α (3), and the cone mass yield coefficient, β (4), for each extraction variant are presented in Table 8.Table 8 Seed yield coefficient and cone mass yield coefficient for each process variants.Full size tableThe seed yield coefficient was the highest for variants 2 (0.73) and 3 (0.72), and the lowest for variants 4 (0.65) and 6 and 9 (0.67). The cone mass yield coefficient was the highest for variant 5, and the lowest for variant 9.Seed viabilityTable 9 presents germination energy (E) and capacity (Z) for the control seeds as well as for seeds obtained from the various steps of the nine process variants, as well as their corresponding quality classes.Table 9 Germination energy and capacity for the control seeds as well as for seeds obtained from the various extraction process variants.Full size tableGermination energy and capacity for the control sample were 45% and 57%, respectively, meaning that naturally released seeds, not subjected to any thermal or mechanical treatments, were classified in quality class I18. Importantly, seeds obtained from all the studied process variants were also placed in the same class; their germination energy ranged from 30 to 59%, and their germination capacity from 35 to 61%. When analyzing each extraction step separately, no correlation was found between decreasing germination energy and successive steps. However, the average germination energy was 46% for seeds obtained in the first extraction step of all nine variants, 45% for those from the second and third steps, 41% for seeds from the fourth step and 40% for those from the fifth one. Thus, in each subsequent step the average germination energy of seeds was equal or lower than in the previous step, which is consistent with literature reports that prolonged drying may reduce the quality of seeds8. This is also corroborated by the fact that the highest germination energy and capacity was revealed by seeds from variants with 6 h of drying while the lowest germination indicators characterized seeds from the 10 h variants. Furthermore, seeds from variant 1 exhibited the lowest germination energy and capacity and seeds from variant 8–the highest.Another reason for the higher quality of seeds from variants with 6 h of drying may be the lower initial moisture content of the cones due to the longer time they were kept at room temperature immediately before the test (u01 = 0.391 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{d.mathrm{w}.}^{-1}) as compared to u01 = 0.411 ({mathrm{kg}}_{mathrm{water}}cdot {mathrm{kg}}_{d.mathrm{w}.}^{-1}) for seeds from variants with 8 and 10 h of drying). These results are in line with the study of Tyszkiewicz8, who noted that under the same temperature and humidity conditions, the quality of seeds from cones with a lower moisture content did not deteriorate, in contrast to the quality of seeds obtained from cones with a higher moisture content.The germination capacity of seeds calculated from the mean capacity of seeds obtained from the same extraction steps of all process variants was similar at 45% for each of the steps.In summary, in the study the authors investigated a five-step process of extracting seeds from larch cones involving immersion and heat treatment to maximize seed yield. It was found that the two-step process widely used in extractories is insufficient, while a four-step process does not lead to a significantly higher number of obtained seeds. Thus, a three-step process appears to be optimal. More

  • in

    Morphometric classification of kangaroo bones reveals paleoecological change in northwest Australia during the terminal Pleistocene

    Adams, D. C., Rohlf, F. J. & Slice, D. E. A field comes of age: Geometric morphometrics in the 21st century. Hystrix 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283 (2013).Article 

    Google Scholar 
    Terray, L. et al. Skull morphological evolution in Malagasy endemic Nesomyinae rodents. PLoS ONE 17, e0263045. https://doi.org/10.1371/journal.pone.0263045 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viacava, P., Baker, A. M., Blomberg, S. P., Phillips, M. J. & Weisbecker, V. Using 3D geometric morphometrics to aid taxonomic and ecological understanding of a recent speciation event within a small Australian marsupial (Antechinus: Dasyuridae). Zool. J. Linn. Soc. 1–16. https://doi.org/10.1093/zoolinnean/zlab048 (2021).Brassard, C. et al. Morphological and functional divergence of the lower jaw between native and invasive red foxes. J. Mamm. Evol. 29, 335–352. https://doi.org/10.1007/s10914-021-09593-2 (2022).Article 

    Google Scholar 
    Boessneck, J. & von den Driesch, A. The significance of measuring animal bones from archaeological sites. In Approaches to Faunal Analysis in the Middle East (eds Meadows, R. H. & Zeder, M. A.) 5–39 (Peabody Museum Bulletin 2, 1978).
    Google Scholar 
    Serjeantson, D. ‘Science is measurement’; ABMAP, a database of domestic animal bone measurements. Environ. Archaeol. 10, 97–103. https://doi.org/10.1179/env.2005.10.1.97 (2005).Article 

    Google Scholar 
    Haruda, A. F. Separating sheep (Ovis aries L.) and goats (Capra hircus L.) using geometric morphometric methods: An investigation of astragalus morphology from late and final Bronze Age Central Asian contexts. Int. J. Osteoarchaeol. 27, 551–562 (2017).Article 

    Google Scholar 
    Davis, S. J. M. Towards a metrical distinction between sheep and goat astragali. In Economic Zooarchaeology: Studies in Hunting, Herding and Early Agriculture (eds Rowley-Conwy, P. et al.) 93–138 (Oxbow Books Limited, 2019).
    Google Scholar 
    Jeanjean, M. et al. Sorting the flock: Quantitative identification of sheep and goat from isolated third lower molars and mandibles through geometric morphometrics. J. Archaeol. Sci. 141, 105580. https://doi.org/10.1016/j.jas.2022.105580 (2022).Article 

    Google Scholar 
    Evin, A. et al. Phenotype and animal domestication: A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evol. Biol. 15, 1–16. https://doi.org/10.1186/s12862-014-0269-x (2015).Article 

    Google Scholar 
    Harbers, H. et al. The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). R. Soc. Open Sci. 7, 192039. https://doi.org/10.1098/rsos.192039 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drake, A. G., Coquerelle, M. & Colombeau, G. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep. 5, 8299. https://doi.org/10.1038/srep08299 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventresca Miller, A. R., Haruda, A., Varfolomeev, V., Goryachev, A. & Makarewicz, C. A. Close management of sheep in ancient Central Asia: Evidence for foddering, transhumance, and extended lambing seasons during the Bronze and Iron Ages. Sci. Technol. Archaeol. Res. 6, 41–60. https://doi.org/10.1080/20548923.2020.1759316 (2020).Duval, C., Lepetz, S., Horard-Herbin, M.-P. & Cucchi, T. Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. J. Archaeol. Sci. 57, 345–354. https://doi.org/10.1016/j.jas.2015.03.004 (2015).Article 

    Google Scholar 
    Davis, S. J. M. Zooarchaeological evidence for Moslem and Christian improvements of sheep and cattle in Portugal. J. Archaeol. Sci. 35, 991–1010. https://doi.org/10.1016/j.jas.2007.07.001 (2008).Article 

    Google Scholar 
    Samper Carro, S. C., Louys, J. & Oonnor, S. Shape does matter: A geometric morphometric approach to shape variation in Indo-Pacific fish vertebrae for habitat identification. J. Archaeol. Sci. 99, 124–134. https://doi.org/10.1016/j.jas.2018.09.010 (2018).Stimpson, C. M. A 48,000 year record of swiftlets (Aves: Apodidae) in North-western Borneo: Morphometric identifications and palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 132–143. https://doi.org/10.1016/j.palaeo.2013.01.011 (2013).Article 

    Google Scholar 
    Medina, M. E., Picasso, M. B. J., Campos, M. R. & Avila, N. C. Tarsometatarsus, eggshells, and the species level identification of large-sized flightless birds from Boyo Paso 2 (Sierras of Córdoba, Argentina). Int. J. Osteoarchaeol. 29, 584–594. https://doi.org/10.1002/oa.2754 (2019).Article 

    Google Scholar 
    Weaver, L. N. & Grossnickle, D. M. Functional diversity of small-mammal postcrania is linked to both substrate preference and body size. Curr. Zool. 66, 539–553. https://doi.org/10.1093/cz/zoaa057 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, X., Milne, N. & O’Higgins, P. Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J. Morphol. 266, 167–181. https://doi.org/10.1002/jmor.10370 (2005).Article 
    PubMed 

    Google Scholar 
    Etienne, C., Filippo, A., Cornette, R. & Houssaye, A. Effect of mass and habitat on the shape of limb long bones: A morpho-functional investigation on Bovidae ( Mammalia: Cetartiodactyla ). J. Anat. 238, 886–904. https://doi.org/10.1111/joa.13359 (2020).Article 
    PubMed 

    Google Scholar 
    Bassarova, M., Janis, C. M. & Archer, M. The calcaneum-on the heels of marsupial locomotion. J. Mamm. Evol. 16, 1–23. https://doi.org/10.1007/s10914-008-9093-7 (2009).Article 

    Google Scholar 
    Janis, C. M., Buttrill, K. & Figueirido, B. Locomotion in extinct giant kangaroos: Were Sthenurines hop-less monsters?. PLoS ONE 9, e109888. https://doi.org/10.1371/journal.pone.0109888 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J. Morphol. 253, 76–108. https://doi.org/10.1002/jmor.1114 (2002).Article 
    PubMed 

    Google Scholar 
    Mein, E. & Manne, T. Identifying marsupials from Australian archaeological sites: Current methodological challenges and opportunities in zooarchaeological practice. Archaeol. Ocean. 56, 133–141. https://doi.org/10.1002/arco.5234 (2021).Article 

    Google Scholar 
    Woinarski, J. C. Z. et al. Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261. https://doi.org/10.1016/j.biocon.2019.108261 (2019).Article 

    Google Scholar 
    Garvey, J. Preliminary zooarchaeological interpretations from Kutikina Cave, south-west Tasmania. Aust. Aborig. Stud. 1, 57–62 (2006).
    Google Scholar 
    Veth, P. et al. Montebello Islands Archaeology: Late Quaternary Foragers on an Arid Coastline. (BAR Publishing, 2007).Morse, K. Who can see the sea? Prehistoric Aboriginal occupation of the Cape Range peninsula. Rec. West. Aust. Mus. Suppl. 45, 227–242 (1993).
    Google Scholar 
    Warburton, N. M. & Prideaux, G. Functional pedal morphology of the extinct tree-kangaroo Bohra (Diprotodontia: Macropodidae). In Macropods: The Biology of Kangaroos, Wallabies, and Rat-Kangaroos (eds Coulson, G. & Eldridge, M.) 137–151 (CSIRO Publishing, 2010).
    Google Scholar 
    Bishop, N. Functional anatomy of the macropodid pes. Proc. Linn. Soc. New South Wales 117, 17–50 (1997).ADS 

    Google Scholar 
    Szalay, F. S. Evolutionary History of the Marsupials and an Analysis of Osteological Characters. (Cambridge University Press, 1994).Veth, P. et al. Early human occupation of a maritime desert, Barrow Island, north-west Australia. Quat. Sci. Rev. 168, 19–29. https://doi.org/10.1016/j.quascirev.2017.05.002 (2017).Article 
    ADS 

    Google Scholar 
    Moro, D. & Lagdon, R. History and environment of Barrow Island. Rec. West. Aust. Mus. Suppl. 83, 1–8. https://doi.org/10.18195/issn.0313-122x.83.2013.001-008 (2013).Veth, P., Ditchfield, K. & Hook, F. Maritime deserts of the Australian northwest. Aust. Archaeol. 79, 156–166. https://doi.org/10.1080/03122417.2014.11682032 (2014).Article 

    Google Scholar 
    Morse, K. Coastwatch: Pleistocene resource use on the Cape Range peninsula. In Australian Coastal Archaeology (eds Hall, J. & McNiven, I. J.) 73–78 (ANH Publications, 1999).
    Google Scholar 
    Baynes, A. & McDowell, M. C. The original mammal fauna of the Pilbara biogeographic region of north-western Australia. Rec. West. Aust. Mus. Suppl. 78, 285–298. https://doi.org/10.18195/issn.0313-122x.78(1).2010.285-298 (2010).Article 

    Google Scholar 
    Shortridge, G. C. An account of the geographical distribution of the marsupials and monotremes of south-west Australia, having special reference to the specimens collected during the Balston expedition of 1904–1907. Proc. Zool. Soc. Lond. 74, 803–848. https://doi.org/10.1111/j.1469-7998.1910.tb06974.x (1909).Article 

    Google Scholar 
    Ballard, C. K. Use of Epiphyseal and Total Fusion Scores as Methods of Age Estimation and Evaluation of Morphological Indices in the Macropodidae. (Northern Illinois University, 2007).Rose, R. W. Age estimation of the Tasmanian bettong (Bettongia gaimardi) (Marsupialia: Potoroidae). Wildl. Res. 16, 251–261. https://doi.org/10.1071/WR9890251 (1989).Article 

    Google Scholar 
    Johnson, P. M. & Delean, S. Reproduction in the northern bettong, Bettongia tropica Wakefield (Marsupialia: Potoroidae), in captivity, with age estimation and development of pouch young. Wildl. Res. 28, 79–85. https://doi.org/10.1071/WR00007 (2001).Article 

    Google Scholar 
    Thompson, C. K., Wayne, A. F., Godfrey, S. S. & Andrew Thompson, R. C. Survival, age estimation and sexual maturity of pouch young of the brush-tailed bettong (Bettongia penicillata) in captivity. Aust. Mammal. 37, 29–38. https://doi.org/10.1071/AM14025 (2015).Article 

    Google Scholar 
    Janis, C. M. Correlation of cranial and dental variables with dietary preferences in mammals: A comparison of macropodoids and ungulates. Mem. – Queensl. Museum 28, 349–366 (1990).
    Google Scholar 
    Sharman, G. B., Frith, H. J. & Calaby, J. H. Growth of the pouch young, tooth eruption and age determination in the red kangaroo, Megaleia rufa. CSIRO Wildl. Res. 9, 20–49. https://doi.org/10.1071/cwr9640020 (1964).Article 

    Google Scholar 
    Newsome, A. E., Merchant, J. C., Bolton, B. L. & Dudziński, M. L. Sexual dimorphism in molar progression and eruption in the agile wallaby. Wildl. Res. 4, 1–5. https://doi.org/10.1071/WR9770001 (1977).Article 

    Google Scholar 
    Poole, W. E., Merchant, J. C., Carpenter, S. M. & Calaby, J. H. Reproduction, growth and age determination in the yellow-footed rock-wallaby Petrogale xanthopus Gray, in captivity. Wildl. Res. 12, 127–136. https://doi.org/10.1071/WR9850127 (1985).Article 

    Google Scholar 
    Delaney, R. & Marsh, H. Estimating the age of wild rock-wallabies by dental radiography: A basis for quantifying the age structure of a discrete colony of Petrogale assimilis. Wildl. Res. 22, 547–559. https://doi.org/10.1071/WR9950547 (1995).Article 

    Google Scholar 
    Kido, N., Tanaka, S., Wada, Y., Sato, S. & Omiya, T. Molar eruption and identification of the eastern grey kangaroo (Macropus giganteus) at different ages. J. Vet. Med. Sci. 80, 648–652. https://doi.org/10.1292/jvms.17-0069 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Claude, J. Log-shape ratios, Procrustes superimposition, elliptic Fourier analysis: Three worked examples in R. Hystrix 24, 94–102. https://doi.org/10.4404/hystrix-24.1-6316 (2013).Article 

    Google Scholar 
    Mosimann, J. E. Size allometry: Size and shape variables with characterizations of the Lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 65, 930–945. https://doi.org/10.2307/2284599 (1970).Article 
    MATH 

    Google Scholar 
    Kovarovic, K., Aiello, L. C., Cardini, A. & Lockwood, C. A. Discriminant function analyses in archaeology: Are classification rates too good to be true ?. J. Archaeol. Sci. 38, 3006–3018. https://doi.org/10.1016/j.jas.2011.06.028 (2011).Article 

    Google Scholar 
    Ramayah, T. et al. Discriminant analysis: An illustrated example. Afr. J. Bus. Manag. 4, 1654–1667 (2010).
    Google Scholar 
    Sanchez, P. M. The unequal group size problem in discriminant analysis. J. Acad. Mark. Sci. 2, 629–633. https://doi.org/10.1007/BF02729456 (1974).Article 

    Google Scholar 
    Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis. (Cengage, 2018).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage 2019).Harrell, F. E. & Dupont, C. Harrell Miscellaneous. (2021).Oksanen, J. et al. Community Ecology Package (2020).Kassambara, A. Pipe-Friendly Framework for Basic Statistical Tests. (2021).Korkmaz, S., Goksuluk, D. & Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R J. 6, 151–162 (2014).Article 

    Google Scholar 
    Revelle, W. Procedures for Psychological, Psychometric, and Personality Research. (2022).Weisbecker, V. et al. Individual variation of the masticatory system dominates 3D skull shape in the herbivory-adapted marsupial wombats. Front. Zool. 16, 41. https://doi.org/10.1186/s12983-019-0338-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, J. D. et al. The biology of banded (Lagostrophus fasciatus) and rufous (Lagorchestes hirsutus) hare-wallabies (Diprotodontia: Macropodidae) on Dorre and Bernier Islands, Western Australia. Wildl. Res. 28, 311–322. https://doi.org/10.1071/WR99109 (2001).Article 
    ADS 

    Google Scholar 
    Ingleby, S. & Westoby, M. Habitat requirements of the spectacled hare-wallaby (Lagorchestes conspicillatus) in the Northern Territory and Western Australia. Wildl. Res. 19, 721–741. https://doi.org/10.1071/WR9920721 (1992).Article 

    Google Scholar 
    Helgen, K. M. & Flannery, T. F. Taxonomy and historical distribution of the wallaby genus Lagostrophus. Aust. J. Zool. 51, 199–212. https://doi.org/10.1071/ZO02078 (2003).Article 

    Google Scholar 
    McDowell, M. C. et al. Morphological and molecular evidence supports specific recognition of the recently extinct Bettongia anhydra (Marsupialia: Macropodidae). J. Mammal. 96, 287–296. https://doi.org/10.1093/jmammal/gyv006 (2015).Article 

    Google Scholar 
    Ingleby, S. Distribution and status of the northern nailtail wallaby, Onychogalea unguífera (Gould, 1841). Wildl. Res. 18, 655–676. https://doi.org/10.1071/WR9910655 (1991).Article 

    Google Scholar 
    Peters, C. et al. Species identification of Australian marsupials using collagen fingerprinting. R. Soc. Open Sci. 8, 211229. https://doi.org/10.1098/rsos.211229 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prince, R. I. T. Banded hare-wallaby. In Mammals of Australia (eds Strahan, R. & van Dyck, S.) 406–408 (Reed New Holland, 2008).
    Google Scholar 
    De Deckker, P., Barrows, T. T. & Rogers, J. Land-sea correlations in the Australian region: Post-glacial onset of the monsoon in northwestern Western Australia. Quat. Sci. Rev. 105, 181–194. https://doi.org/10.1016/j.quascirev.2014.09.030 (2014).Article 
    ADS 

    Google Scholar 
    Ward, I. et al. 50,000 years of archaeological site stratigraphy and micromorphology in Boodie Cave, Barrow Island, Western Australia. J. Archaeol. Sci. Rep. 15, 344–369. https://doi.org/10.1016/j.jasrep.2017.08.012 (2017).Article 

    Google Scholar 
    Skippington, J., Manne, T. & Veth, P. Isotopic indications of late Pleistocene and Holocene paleoenvironmental changes at Boodie Cave archaeological site, Barrow Island, Western Australia. Molecules 26, 2585. https://doi.org/10.3390/molecules26092582 (2021).Article 
    CAS 

    Google Scholar 
    Baynes, A. & Jones, B. The mammals of Cape Range Peninsula, north-western Australia. Rec. West. Aust. Mus. Suppl. 45, 207–255 (1993).
    Google Scholar 
    Piper, C. & Veth, P. Palaeoecology and sea level changes: Decline of mammal species richness during late Quaternary island formation in the Montebello Islands, north-western Australia. Palaeontol. Electron. 24, a20. https://doi.org/10.26879/1050 (2021).Article 

    Google Scholar 
    Lyman, R. L. The history of ‘laundry lists’ in North American zooarchaeology. J. Anthropol. Archaeol. 39, 42–50. https://doi.org/10.1016/j.jaa.2015.02.003 (2015).Article 

    Google Scholar 
    Guillaud, E., Cornette, R. & Béarez, P. Is vertebral form a valid species-specific indicator for salmonids? The discrimination rate of trout and Atlantic salmon from archaeological to modern times. J. Archaeol. Sci. 65, 84–92. https://doi.org/10.1016/j.jas.2015.11.010 (2016).Article 

    Google Scholar 
    Monchot, H. & Gendron, D. Disentangling long bones of foxes (Vulpes vulpes and Alopex lagopus) from artic archaeological sites. J. Archaeol. Sci. 37, 799–806. https://doi.org/10.1016/j.jas.2009.11.009 (2010).Article 

    Google Scholar  More

  • in

    A globally robust relationship between water table decline, subsidence rate, and carbon release from peatlands

    Systematic reviewWe searched relevant publications through Web of Science (all databases), Google Scholar, and the China National Knowledge Infrastructure Database between 1945 and March 2021 with the following combinations of keywords: (drain* OR lower* water table OR standing water depth OR ground water table level drawdown OR decline OR drought OR dry*) with (peatland* OR mire* OR fen OR bog OR swamp OR marsh*) with (soil respiration OR heterotrophic respiration OR microbial respiration OR soil CO2 OR soil carbon decompos* OR soil carbon minerali* or peat subsidence). Using these search terms, we initially identified 2120 different publications. To reliably evaluate WT decline impacts on SR and peat subsidence-associated soil CO2 emissions, the following further criteria were applied:1) Only paired studies with pristine peatland (i.e., undrained, near-natural peatland without direct drainage history) as a control and pristine peatland with direct WT decline (due to drainage and land use or climate-induced drying) as a treatment were included by carefully checking the descriptions of field conditions from the publications. For the pristine peatlands, we included the peatland only if the peat soil had at least 30% dry organic matter, a peat depth of >40 cm1, and did not have any direct drainage history2. We acknowledge that few, if any, untouched and completely pristine peatlands currently exist, particularly in Europe.2) WT decline in peatlands referred to only the WT depth lowered by drainage or climate-induced drying and/or additional management practices related to C or N input (e.g., manure/N fertilizers); treatments in which WT decline was combined with manipulated warming, elevated CO2, N deposition, etc., were excluded, while individual treatments (i.e., peatlands affected by WT decline without additional warming, elevated CO2, N deposition treatments, etc.) were included, as the primary objective of this study was to evaluate the responses of peatland C decomposition to WT decline.3) Each individual study included SR or at least one of its components (HR and AR), and the measurement intervals were at least monthly. The in situ measurements of SR or its components (HR and AR) covered at least the growing or nongrowing season in temperate/boreal climate zones and the whole wet or dry season in (sub)tropical climate zones.4) Both in situ and soil core/microcosm/mesocosm measurements of SR or its components (HR and AR) were included. SR and its components were exclusively measured using the chamber method. The results of the latter group were used to test the results of the former.Finally, 386 paired in situ and 21 paired soil core incubation measurements of SR or its components (HR and AR) were extracted from 63 in situ studies and 9 soil core studies, respectively (see Supplementary Data A). Furthermore, to estimate HR emissions from global drained peatlands, the in situ measured paired peat subsidence rate (Rps, cm yr–1) and drainage duration (i.e., years since first drainage) and the proportion of peat subsidence rate attributed to oxidation (Po, %) and drainage duration, as well as the soil (0–30 cm) organic C and bulk density in pristine peatlands, were extracted from peer-reviewed publications. In drained boreal and temperate peatlands, most studies measured the total subsidence (in meter) during a certain drainage period, therefore the average Rps was calculated as the ratio of total subsidence and drainage years. It was assumed that the Rps was faster at the beginning and lower at the end of drainage duration, so the average subsidence rate is the rate for the middle year of the drainage duration41. The remaining studies directly showed the in situ measured Rps at the ith year of drainage. A similar procedure was applied for the Po in the ith year of drainage. In sum, 230 paired Rps–drainage duration observations and 49 paired Po–drainage duration observations, as well as 76 SOC and 63 BD in pristine peatlands, were taken from 80, 25, 58, and 44 studies, respectively (see Supplementary Data B).Data compilationTo systematically evaluate the impacts of WT decline on SR in pristine peatlands and clarify the underlying mechanisms, we obtained data related to SR and its components (HR and AR) together with environmental variables such as the mean annual temperature [MAT], mean annual precipitation [MAP], peat depth [PD], WT depth [WTD], soil water content [SWC], soil temperature [Ts], soil redox potential [Eh], soil air oxygen level [O2], soil bulk density [BD], soil pH [pH], soil organic carbon [SOC], soil total nitrogen [TN], soil total phosphorus [TP], soil ammonium [({{{{rm{NH}}}}}_{4}^{+})], soil nitrate [({{{{rm{NO}}}}}_{3}^{-})], soil dissolved organic carbon [DOC], microbial biomass carbon [MBC], microbial biomass nitrogen [MBN], dissolved total phosphorus [DTP], belowground biomass [BGB], iron [Fe3+, Fe2+] and sulfate [({{{{rm{SO}}}}}_{4}^{2-})] when possible. If available, other important information, such as geographic location (latitude, longitude), climate and WT decline driver and duration, intensity, peatland type, Rps, Po, nutrient type, inundated condition, microtopography, and plant functional types, was recorded. For WT decline intensity, net WT declines greater and less than 30 cm were defined as deep and shallow declines, respectively, according to the IPCC wetland report42. The abovementioned information about pristine peatlands and peatlands affected by WT decline is compiled in Supplementary Data A and B.We subsequently extracted the mean ((bar{X})), standard deviation (SD) and replicates (n) from different publications. If studies reported standard error (SE) rather than SD, then SD was calculated by SE (sqrt{n}). If studies reported only the median, maximum, minimum, and 25th and 75th percentiles, then the mean and SD were estimated following the mathematical equations recommended by ref. 60. If neither SD nor SE was reported, then the missing SD was estimated by multiplying the reported mean by the average coefficient of variation (CV) obtained from the remaining observations, resulting in both the mean and SD being reported61. The data were either obtained directly from tables and texts or extracted by digitizing graphs using Getdata Graph Digitizer software (version 2.26, Russia).The final database consisted of 250 paired SR, 101 paired HR and 35 paired AR in situ observations. Only 35 paired observations simultaneously reported SR, HR, and AR. Twenty-one paired SR soil core incubation measurements were also collected to test the results of the in situ measurements. The dataset mainly originated from Europe, North America, and Southeast Asia, and most studies ( >70%) were conducted in temperate and boreal peatlands in the Northern Hemisphere (Fig. 1a). Moreover, 230 paired Rps–drainage duration observations and 49 paired Po–drainage duration observations (Fig. 5a, b) and an additional 485 drainage year (Supplementary Fig. 9) observations classified by climate zone (i.e., boreal, temperate and tropical) and land use (i.e., agriculture, forestry, and grassland) were collected. A total of 76 SOC and 63 BD measurements from pristine peatlands categorized by climate zone (i.e., boreal, temperate, and tropical) were extracted to estimate Rps by oxidation and associated soil HR from global pristine peatlands due to drainage activities (Supplementary Fig. 10 and Supplementary Data B). In this study, we were unable to estimate climate drying-induced net CO2 emissions through soil HR, as the areas of pristine peatlands affected by climate drying currently remain unknown.Meta-analysisTo assess the relative changes in SR and its components (HR and AR), as well as environmental variables (e.g., SOC, BD, Ts, etc.) due to WT decline, the log-transformed response ratio (RR) was used:62$${{{mathrm{ln}}}}({{{rm{RR}}}})=,{{{mathrm{ln}}}}({X}_{{{{rm{t}}}}}/{X}_{{{{rm{c}}}}})$$
    (1)
    The results are presented as the percent change ((elnRR  – 1) × 100). The variance (v) of RR was estimated using the following equation:$$v=frac{{{{{rm{SD}}}}}_{{{{rm{t}}}}}^{2}}{{n}_{{{{rm{t}}}}},{X}_{{{{rm{t}}}}}^{2}}+frac{{{{{rm{SD}}}}}_{{{{rm{c}}}}}^{2}}{{n}_{{{{rm{c}}}}},{X}_{{{{rm{c}}}}}^{2}}$$
    (2)
    where Xt and Xc indicate the means of the treatment and control, SDt and SDc indicate the SDs of the treatment and control and nt and nc indicate the numbers of replicates in the treatment and control, respectively.However, in our study, approximately 60% of the WTD and Eh observations for the peatlands in pristine condition (control) and affected by WT decline (treatment) showed opposite signs; e.g., the pristine peatlands generally exhibited positive WTDs (higher than the peat surface) and negative Eh values, while those affected by WT decline exhibited negative WTDs (lower than the peat surface) and positive Eh values. Since it is impossible to calculate the logarithm of negative values, we introduced a new study index (net changes) for these two variables in our meta-analysis according to ref. 63:$$D={X}_{{{{rm{t}}}}}-{X}_{{{{rm{c}}}}}$$
    (3)
    where Xt and Xc indicate the paired annual mean WTD and Eh for the treatment and control, respectively, and D indicates the difference between the treatment and control.The SD and variance (v) of D were estimated using the following equation:$${{{rm{SD}}}}=sqrt{frac{({n}_{{{{rm{c}}}}}-1);{{{{rm{SD}}}}}_{{{{rm{c}}}}}^{2}+({n}_{{{{rm{t}}}}}-1);{{{{rm{SD}}}}}_{{{{rm{t}}}}}^{2}}{{n}_{{{{rm{c}}}}}+{n}_{{{{rm{t}}}}}-2}}$$
    (4)
    $$v=frac{{{{{rm{SD}}}}}_{{{{rm{t}}}}}^{2}}{{n}_{{{{rm{t}}}}}}+frac{{{{{rm{SD}}}}}_{{{{rm{c}}}}}^{2}}{{n}_{{{{rm{c}}}}}}$$
    (5)
    where SDt and SDc indicate the SD of the treatment and control and nt and nc indicate the number of replicates for the treatment and control, respectively.The weighted mean RR or D was calculated by individual RR or D with bias-corrected 95% confidence intervals (CIs) using the rma.mv function in the metafor package in R software (R core team, 2019)64, in which the variable “study” was regarded as a random effect to account for the dependence of observations derived from the same study. The impact of WT decline on a response variable was considered significant if the 95% CI did not overlap 065. Differences between subgroups (e.g., WT decline driver, climate zone, drainage duration) were considered significant if the 95% CIs did not overlap each other65. The frequency distribution of RR was calculated to test variability among individual studies using the Gaussian function (i.e., normal distribution)66.Estimation of peat subsidence rate by oxidation and associated HR rateDrainage has induced widespread peat subsidence and associated large CO2 release through soil HR and consequently reduced the sustainable utilization of drained peatlands and contributed to global warming11,12. In this study, we estimated the spatial patterns of Rps by oxidation and associated soil HR from global drained peatlands. Using the 230 paired Rps and drainage duration observations synthesized in this study, we first constructed empirical models between Rps and drainage duration for drained peatlands categorized by climate zone (boreal, temperate and tropical climate) and land use (i.e., agriculture, forestry and grassland) (Fig. 5a, b). The values of Rps for certain groups classified by climate zone and land use could be estimated by using the corresponding empirical models established in this study and reported drainage durations that were extracted from the literature. The empirical models categorized by climate zone and land use are listed below (Fig. 5a, b):$${R}_{{{{rm{ps}}}}}{mbox{-}}{{{rm{Bor}}}}{mbox{-}}{{{rm{Tem}}}}{mbox{-}}{{{rm{Agr}}}}=13.95,{{{{rm{Dur}}}}}^{-0.58},,n=48,,{R}_{{{{rm{adj}}}}.}^{2}=0.85,,p; < ; 0.0001$$ (6) $${R}_{{{{rm{ps}}}}}{mbox{-}}{{{rm{Bor}}}}{mbox{-}}{{{rm{Tem}}}}{mbox{-}}{{{rm{For}}}}=5.36,{{{{rm{Dur}}}}}^{-0.83},,n=21,,{R}_{{{{rm{adj}}}}.}^{2}=0.92,,p; < ; 0.0001$$ (7) $${R}_{{{{rm{ps}}}}}{mbox{-}}{{{rm{Bor}}}}{mbox{-}}{{{rm{Tem}}}}{mbox{-}}{{{rm{Gra}}}}=5.55,{{{{rm{Dur}}}}}^{-0.36},,n=40,,{R}_{{{{rm{adj}}}}.}^{2}=0.61,,p; < ; 0.0001$$ (8) $${R}_{{{{rm{ps}}}}}{mbox{-}}{{{rm{Tro}}}}{mbox{-}}{{{rm{Agr}}}}{mbox{-}}{{{rm{For}}}}{mbox{-}}{{{rm{Gra}}}}=6.63,{{{{rm{Dur}}}}}^{-0.37},,n=121,,{R}_{{{{rm{adj}}}}.}^{2}=0.55,,p; < ; 0.0001$$ (9) where Rps indicates the peat subsidence rate (cm yr–1), Dur is the drainage duration, and the numbers indicate coefficients for the established empirical models. Bor, Tem, and Tro indicate boreal, temperate, and tropical climate zones, respectively. Agr, For, and Gra represent agriculture, forestry, and grassland land uses, respectively. We note that it was not possible to further distinguish these models between boreal and temperate climate zones and among agriculture, forestry, or grassland land use in tropical climates, as there is currently a lack of sufficient measurements, which warrants more research.However, the Rps is triggered by a combination of processes such as physical compaction by heavy equipment or livestock trampling and shrinkage through contraction of organic fibers when drying, consolidation by loss of water from pores in the peat and oxidation owing to the breakdown of peat organic matter10,11,12. Therefore, to reliably estimate the soil HR rate from Rps due to oxidation, the proportion of Rps attributed to oxidation (Po, in %) should be considered12. Using the 49 paired Po and drainage duration observations synthesized in this study, we then constructed empirical models between Po and drainage duration for drained peatlands that were also categorized by climate zone (boreal, temperate, and tropical climate) and land use (agriculture, forestry, and grassland) (Fig. 5c, d). Similarly, the Po values of certain groups classified by climate zone and land use could be estimated by using the corresponding empirical models established in this study and reported drainage durations that were extracted from the literature. The empirical models categorized by climate zone and land use are shown below (Fig. 5c, d):$$ {P}_{{{{rm{o}}}}}{mbox{-}}{{{rm{Tem}}}}{mbox{-}}{{{rm{Bor}}}}{mbox{-}}{{{rm{Agr}}}}{mbox{-}}{{{rm{For}}}}{mbox{-}}{{{rm{Gra}}}}=12.05,{{{mathrm{Ln}}}}({{{rm{Dur}}}})+2.15,,n=30,\ {R}_{{{{rm{adj}}}}.}^{2}=0.89,,p; < ;0.0001$$ (10) $$ {P}_{{{{rm{o}}}}}{mbox{-}}{{{rm{Tro}}}}{mbox{-}}{{{rm{Agr}}}}{mbox{-}}{{{rm{For}}}}{mbox{-}}{{{rm{Gra}}}}=14.36,{{{mathrm{Ln}}}}({{{rm{Dur}}}})+37.05,,n=19,\ {R}_{{{{rm{adj}}}}.}^{2}=0.81,,p; < ;0.0001$$ (11) where Po indicates the proportion of Rps attributable to oxidation, Dur is the drainage duration, and the numbers indicate coefficients for the established empirical models. The abbreviations Bor, Tem, Tro, Agr, For, and Gra have been described previously. We note that the different land uses shared the same models across temperate and boreal climates and tropical climate due to a lack of sufficient global observations. This will also induce some uncertainties in our analysis.Furthermore, the soil HR (FHR, Mt C yr−1) due to peat oxidation induced by drainage was estimated using the following equation according to ref. 11:$${F}_{{{{rm{HR}}}}}=sum {R}_{{{{rm{ps}}}},i,j}times {P}_{{{{rm{o}}}},i,j}times {{{{rm{SOC}}}}}_{i}times {{{{rm{BD}}}}}_{i}times {A}_{i,j}$$ (12) where SOC (g kg–1) and BD (g cm–3) indicate the soil (0–30 cm) organic C concentration and bulk density of pristine peatlands, respectively; A (×103 km2) indicates the drained peatland area; i indicates the climate zone (boreal, temperate or tropical); j indicates the land use (agriculture, forestry or grassland); and Rps (cm yr–1) and Po (%) are described in Eqs. (6–11). Datasets of the SOC concentration and BD and Rps due to oxidation were systematically reviewed and bootstrapped and categorized by climate zones and land uses (see Supplementary Fig. 10 and Supplementary Data B). Regarding the large uncertainties for areas of drained peatlands, we combined two previously published datasets (72, 61, 22, 37, 43, 26, 94, 109, and 39 × 103 km2 by ref. 18, and 37, 55, 4, 109, 63, 58, 96, 72, and 1 × 103 km2 by ref. 20. for agriculture-, forestry- and grassland-drained peatlands in boreal, temperate and tropical climate zones, respectively) and obtained their mean values with 95% CIs (for details, see bootstrapping procedure in Data analysis). Uncertainties (i.e., 95% CI) in total HR (δFHR) were propagated according to the Gaussian random error propagation principle as follows:$${{{rm{delta }}}}{F}_{{{{rm{HR}}}}}=sqrt{sum sqrt{begin{array}{c}{(delta {R}_{{{{rm{ps}}}},i,j})}^{2}times {({P}_{{{{rm{o}}}},i,j}times {{{{rm{SOC}}}}}_{i}times {{{{rm{BD}}}}}_{i}times {A}_{i,j})}^{2}+\ {(delta {P}_{{{{rm{o}}}},i,j})}^{2}times {({R}_{{{{rm{ps}}}},i,j}times {{{{rm{SOC}}}}}_{i}times {{{{rm{BD}}}}}_{i}times {A}_{i,j})}^{2}+\ {(delta {{{{rm{SOC}}}}}_{i})}^{2}times {({R}_{{{{rm{ps}}}},i,j}times {P}_{{{{rm{o}}}},i,j}times {{{{rm{BD}}}}}_{i}times {A}_{i,j})}^{2}+\ {(delta {{{{rm{BD}}}}}_{i})}^{2}times {({R}_{{{{rm{ps}}}},i,j}times {P}_{{{{rm{o}}}},i,j}times {{{{rm{SOC}}}}}_{i}times {A}_{i,j})}^{2}+\ {(delta {A}_{i,j})}^{2}times {({R}_{{{{rm{ps}}}},i,j}times {P}_{{{{rm{o}}}},i,j}times {{{{rm{SOC}}}}}_{i}times {{{{rm{BD}}}}}_{i})}^{2}end{array}}}$$ (13) where δFHR, δRps, δPo, δSOC, δBD, and δA indicate the 95% CIs of total soil HR, Rps, Po, SOC, and BD and drained peatland area, respectively, and i and j indicate the climate zone (boreal, temperate, tropical) and land use (agriculture, forestry, or grassland), respectively.To further estimate the total SR (FSR, Mt C yr−1) and its uncertainty (δFSR) from global drained peatlands, the following equations were used:$${F}_{{{{rm{SR}}}}}=sum frac{{F}_{{{{rm{HR}}}},i,j}}{{C}_{{{{rm{HR}}}},i,j}}$$ (14) $$delta {F}_{{{{rm{SR}}}}}=sqrt{sum sqrt{{(frac{1}{{C}_{{{{rm{HR}}}},i,j}})}^{2}times delta {F}_{{{{rm{HR}}}},i,j}^{2}+{(-frac{{F}_{{{{rm{HR}}}},i,j}}{{C}_{{{{rm{HR}}}},i,j}^{2}})}^{2}times delta {C}_{{{{rm{HR}}}},i,j}^{2}}}$$ (15) where CHR (%) indicates the mean relative contribution of HR to SR from simultaneously measured SR, HR, and AR from our meta-analysis (see Supplementary Fig. 11 and Supplementary Data A) and i and j indicate the climate zone (boreal, temperate, tropical) and land use (agriculture, forestry, or grassland), respectively. FHR and δFHR are given in Eqs. (12, 13). We note that the CHR could be classified only by climate zone, as there is a lack of sufficient measurements of land use; that is, the different land uses under the same climate shared the same CHR value, which may induce uncertainties in estimating the total SR from global drained peatlands.Regarding the abovementioned lack of sufficient measurements for distinguishing between boreal and temperate drained peatlands, we also used another method to estimate the annual total HR and SR from global drained peatlands. Specifically, we obtained the mean values of Rps by oxidation across boreal and temperate drained peatlands for each land use (i.e., climate zones were classified as boreal+temperate or tropical) (Supplementary Fig. 14 and Supplementary Table 1). The estimation process was the same as that previously described. The different estimation methods were likely to provide results with greater convergence.Data analysisSignificant differences in observed variables were tested by performing nonparametric analysis. Specifically, tests with two independent samples (i.e., Mann–Whitney U test) were used for only two variables (i.e., to compare the contribution of HR to SR between pristine and drained peatlands), and tests with two or more independent samples (i.e., Kruskal–Wallis test and pairwise comparisons) were used if there were three or more variables (i.e., SOC, BD and Rps due to oxidation in the boreal, temperate and tropical climate zones or different land uses). Linear or nonlinear regression analysis was performed to examine the relationships between the responses of SR and its components with environmental variables or the peat subsidence rate with drainage duration.To reliably estimate the uncertainties in Rps by oxidation, SOC, BD, drained peatland area, and relative contribution of HR to SR, bootstrap resampling with 10000 iterations was conducted using the boot package, and 95% CIs were calculated using the “basic” type. The ggplot 2 package in R software (R core team, 2019) was used for statistical analysis. Data were expressed as the means with their 95% CIs, and significance of the regression analyses was indicated at the level of p  More