Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants
Hayes, S. M. & McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 59, 192–199 (2018).
Google Scholar
Saatz, J., Vetterlein, D., Mattusch, J., Otto, M. & Daus, B. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ. Pollut. 204, 32–38 (2015).CAS
PubMed
Google Scholar
Gonzalez, V., Vignati, D. A. L., Leyval, C. & Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 71, 148–157 (2014).CAS
PubMed
Google Scholar
Kovarikova, M., Tomaskova, I. & Soudek, P. Rare earth elements in plants. Biol. Plant. 63, 20–32 (2019).CAS
Google Scholar
Thomas, P. J., Carpenter, D., Boutin, C. & Allison, J. E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 96, 57–66 (2014).ADS
CAS
PubMed
Google Scholar
Ramos, S. J. et al. Rare earth elements in the soil environment. Curr. Pollut. Rep. 2, 28–50 (2016).CAS
Google Scholar
Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 10, e0129936 (2015).PubMed
PubMed Central
Google Scholar
Kotelnikova, A., Fastovets, I., Rogova, O. & Volkov, D. S. La, Ce and Nd in the soil-plant system in a vegetation experiment with barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 206, 111193 (2020).CAS
PubMed
Google Scholar
Hu, Z., Richter, H., Sparovek, G. & Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 27, 183–220 (2004).CAS
Google Scholar
Tao, Y. et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ. Pollut. 298, 118540 (2022).CAS
PubMed
Google Scholar
Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 267, 191–206 (2004).CAS
Google Scholar
Ding, S. et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: An application for metal accumulation by plants. Environ. Sci. Technol. 40, 2686–2691 (2006).ADS
CAS
PubMed
Google Scholar
Grosjean, N. et al. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 9, 18458 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
Yuan, M. et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int. J. Phytoremediat. 20, 415–423 (2018).CAS
Google Scholar
Yuan, M. et al. The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L.. Plant Soil 421, 67–82 (2017).CAS
Google Scholar
Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (eds Van der Ent, A. et al.) 297–308 (Springer, 2018).
Google Scholar
Purwadi, I., Nkrumah, P. N., Paul, A. L. D. & van der Ent, A. Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology 31, 335–342 (2021).CAS
Google Scholar
Shan, X. et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165, 1343–1353 (2003).CAS
Google Scholar
Wu, J., Chen, A., Peng, S., Wei, Z. & Liu, G. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 373, 329–338 (2013).CAS
Google Scholar
Zhenggui, W. et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut. 114, 345–355 (2001).
Google Scholar
Okoroafor, P. U., Ogunkunle, C. O., Heilmeier, H. & Wiche, O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. Int. J. Phytoremediat. 24, 1310–1320 (2022).CAS
Google Scholar
Taggart, R. K. et al. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environ. Sci. Process. Impacts 20, 1390–1403 (2018).CAS
PubMed
Google Scholar
Fehlauer, T. et al. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. Chemosphere 287, 132315 (2022).ADS
CAS
PubMed
Google Scholar
Liu, W.-S. et al. Spatially resolved localization of lanthanum and cerium in the rare earth element hyperaccumulator fern Dicranopteris linearis from China. Environ. Sci. Technol. 54, 2287–2294 (2020).ADS
CAS
PubMed
Google Scholar
Saatz, J. et al. Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS. Environ. Pollut. 216, 245–252 (2016).CAS
PubMed
Google Scholar
Mantienne, J. L. Minéralisation thallifère de Jas Roux (Hautes-Alpes)—Alpes françaises (Université Pierre et Marie Curie—Paris VI, 1974).
Google Scholar
Kabata-Pendias, A. Trace Elements in Soils and Plants (CRC Press, 2011).
Google Scholar
Kastori, R., Maksimovic, I., Zeremski-Skoric, T. & Putnik-Delic, M. Rare earth elements: Yttrium and higher plants. Zb. Matice Srp. Za Prir. Nauke 118, 87–98 (2010).Salminen, R., Vos, W. D. & Tarvainen, T. Geochemical Atlas of Europe—Part 1: Background Information, Methodology and Maps (Geological Survey of Finland, 2005).
Google Scholar
Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil-Like Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 l/kg Dry Matter. https://doi.org/10.31030/3069638 (2020).R Core Team. R: A Language and Environment for Statistical Computing (2021).RStudio Team. RStudio: Integrated Development Environment for R (RStudio, PBC, 2020).
Google Scholar
Radziemska, M., Vaverková, M. & Baryła, A. Phytostabilization—Management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 14, 958 (2017).PubMed Central
Google Scholar
Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil. J. Synchrotron Radiat. 22, 1118–1129 (2015).CAS
PubMed
Google Scholar
Sancho-Tomás, M. et al. Geochemical evidence for arsenic cycling in living microbialites of a high altitude Andean Lake (Laguna Diamante, Argentina). Chem. Geol. 549, 11 (2020).
Google Scholar
Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. J. Synchrotron Radiat. 20, 293–299 (2013).CAS
PubMed
Google Scholar
Aubineau, J. et al. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat. Commun. 10, 2670 (2019).ADS
PubMed
PubMed Central
Google Scholar
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS
PubMed
Google Scholar
Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62, 63–68 (2007).ADS
Google Scholar
Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: Fast density-based clustering with R. J. Stat. Softw. 91, 1 (2019).
Google Scholar
Hennig, C. fpc: Flexible Procedures for Clustering (2020).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
Google Scholar
Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2021).Wei, T. & Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix (2021).van der Ent, A. et al. (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants (Springer, 2021).
Google Scholar
Liu, C. et al. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere 282, 131096 (2021).ADS
CAS
PubMed
Google Scholar
Han, F. et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165, 481–492 (2005).CAS
PubMed
Google Scholar
Ruíz-Herrera, L. F., Sánchez-Calderón, L., Herrera-Estrella, L. & López-Bucio, J. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353, 231–247 (2012).
Google Scholar
González-Guerrero, M., Escudero, V., Saéz, Á. & Tejada-Jiménez, M. Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7, 1088 (2016).PubMed
PubMed Central
Google Scholar
Jogawat, A., Yadav, B., Chhaya, & Narayan, O. P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 173, 259–275. https://doi.org/10.1111/ppl.13370 (2021).Article
CAS
PubMed
Google Scholar
Krämer, U., Talke, I. N. & Hanikenne, M. Transition metal transport. FEBS Lett. 581, 2263–2272 (2007).PubMed
Google Scholar
Tuduri, J. et al. Lumière sur la géologie des terres rares, pourquoi tant d’attraits? Géologues 204, 48–54 (2020).
Google Scholar
Tiziani, R. et al. Root handling affects carboxylates exudation and phosphate uptake of white lupin roots. Front. Plant Sci. 11, 584568 (2020).PubMed
PubMed Central
Google Scholar
Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).CAS
PubMed
Google Scholar
Wen, Z. et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. Plant Soil 465, 31–46 (2021).CAS
Google Scholar
Wiche, O., Kummer, N.-A. & Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402, 235–245 (2016).CAS
Google Scholar
Chen, A., Husted, S., Salt, D. E., Schjoerring, J. K. & Persson, D. P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol. 181, 729–742 (2019).CAS
PubMed
PubMed Central
Google Scholar
Rengel, Z. et al. (eds) Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012).
Google Scholar
Brioschi, L. et al. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 366, 143–163 (2013).CAS
Google Scholar
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1767 (2017).PubMed
PubMed Central
Google Scholar
St-Cyr, L. & Campbell, P. G. C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33, 969 (1996).
Google Scholar
Tripathi, R. D. et al. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6, 1789–1800 (2014).CAS
PubMed
Google Scholar
Pourret, O. et al. The ‘europium anomaly’ in plants: Facts and fiction. Plant Soil 476, 721–728 (2022).CAS
Google Scholar
Liu, C. et al. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Sci. Total Environ. 805, 150335 (2022).ADS
CAS
PubMed
Google Scholar
Poschenrieder, C., Busoms, S. & Barceló, J. How plants handle trivalent (+3) elements. Int. J. Mol. Sci. 20, 3984 (2019).CAS
PubMed Central
Google Scholar
Ma, J. F. & Hiradate, S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360 (2000).CAS
PubMed
Google Scholar
Rellán-Álvarez, R. et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51, 91–102 (2010).PubMed
Google Scholar
Ding, S. et al. Role of ligands in accumulation and fractionation of rare earth elements in plants: Examples of phosphate and citrate. Biol. Trace Elem. Res. 107, 073–086 (2005).CAS
Google Scholar
Wu, J., Wei, Z., Zhao, H., Li, H. & Hu, F. The role of amino acids in the long-distance transport of La and Y in the xylem sap of tomato. Biol. Trace Elem. Res. 129, 239–250 (2009).CAS
PubMed
Google Scholar
Singh, S. Guttation: New insights into agricultural implications. In Advances in Agronomy Vol. 128 (ed. Sparks, D. L.) 97–135 (Elsevier, 2014).
Google Scholar
Hossain, Md. B., Sawada, A., Noda, K. & Kawasaki, M. Hydathode function and changes in contents of elements in eddo exposed to zinc in hydroponic solution. Plant Prod. Sci. 20, 423–433 (2017).CAS
Google Scholar
Singh, S. Guttation: Path, principles and functions. Aust. J. Bot. 61, 497 (2013).
Google Scholar
Wightman, R., Wallis, S. & Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 241, 27–34 (2018).
Google Scholar
Brüggemann, W., Maas-Kantel, K. & Moog, P. R. Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 196606 (1993).
Google Scholar
Ma, J. F., Ryan, P. R. & Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278 (2001).CAS
PubMed
Google Scholar
Tolrà, R. et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J. Plant Res. 124, 165–172 (2011).PubMed
Google Scholar More