More stories

  • in

    The expanding value of long-term studies of individuals in the wild

    Lack, D. J. Anim. Ecol. 33, 159–173 (1964).Article 

    Google Scholar 
    Pemberton, J. et al. The unusual value of long-term studies of individuals: the example of the Isle of Rum red deer project. Annu. Rev. Ecol. Evol. Syst. (in the press).Clutton-Brock, T. & Sheldon, B. C. Trends Ecol. Evol. 25, 562–573 (2010).Article 
    PubMed 

    Google Scholar 
    Weimerskirch, H. J. Anim. Ecol. 87, 945–955 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Höner, O. P. et al. Nature 448, 798–801 (2007).Article 
    PubMed 

    Google Scholar 
    Rodríguez-Muñoz, R. et al. Evolution 73, 317–328 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P. & Primmer, C. R. Science 376, 420–423 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sparkman, A. M., Arnold, S. J. & Bronikowski, A. M. Proc. R. Soc. Lond. B 274, 943–950 (2007).
    Google Scholar 
    Doak, D. F. & Morris, W. F. Nature 467, 959–962 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Campos, F. A. et al. Proc. Natl Acad. Sci. USA 119, e2117669119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    Bonnet, T. et al. PLoS Biol. 17, e3000493 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCleery, R. H. & Perrins, C. M. Nature 391, 30–31 (1998).Article 
    CAS 

    Google Scholar 
    Charmantier, A. et al. Science 320, 800–803 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vedder, O., Bouwhuis, S. & Sheldon, B. C. PLoS Biol. 11, e1001605 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Ecol. Lett. 23, 1766–1775 (2020).Article 
    PubMed 

    Google Scholar 
    Cole, E. F., Regan, C. E. & Sheldon, B. C. Nat. Clim. Chang. 11, 872–878 (2021).Article 

    Google Scholar 
    Huisman, J., Kruuk, L. E., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Proc. Natl Acad. Sci. USA 113, 3585–3590 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnston, S. E., Bérénos, C., Slate, J. & Pemberton, J. M. Genetics 203, 583–598 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Nat. Commun. 12, 2972 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieneisen, L. et al. Science 373, 181–186 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Björk, J. R. et al. Nat. Ecol. Evol. 6, 955–964 (2022).Article 
    PubMed 

    Google Scholar 
    Lamichhaney, S. et al. Science 352, 470–474 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bosse, M. et al. Science 358, 365–368 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Villemereuil, P. et al. Proc. Natl Acad. Sci. USA 117, 31969–31978 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bailey, L. D. et al. Nat. Commun. 13, 2112 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnet, T. et al. Science 376, 1012–1016 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Culina, A. et al. J. Anim. Ecol. 90, 2147–2160 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion

    Paini, D. R. et al. Global threat to agriculture from invasive species. PNAS 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Molfini, M. et al. A preliminary prioritized list of Italian alien terrestrial invertebrate species. Biol. Invasions 22, 2385–2399. https://doi.org/10.1007/s10530-020-02274-w (2020).Article 

    Google Scholar 
    Sweeney, J. et al. Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. J. Pest Sci. 92, 1–2. https://doi.org/10.1007/s10340-018-01073-6 (2019).Article 

    Google Scholar 
    Pace, R. et al. The bugs in the bags : The risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13, 617. https://doi.org/10.3390/insects13070617 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182. https://doi.org/10.3390/insects9040182 (2018).Article 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. Characterization, distribution, biology and impact on Italian walnut orchards of the invasive North-American leafminer Coptodisca lucifluella (Lepidoptera: Heliozelidae). Bull. Entomol. Res. 105, 210–224. https://doi.org/10.1017/S0007485314000947 (2015).Article 
    PubMed 
    CAS 

    Google Scholar 
    Saxena, R. C. & Barrion, A. A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 8, 453–458. https://doi.org/10.1017/s1742758400022475 (1987).Article 

    Google Scholar 
    Bentur, J. S., Cheralu, C. & Rao, P. R. M. Monitoring virulence in Asian rice gall midge populations in India. Entomol. Exp. Appl. 129, 96–106. https://doi.org/10.1111/j.1570-7458.2008.00756.x (2008).Article 

    Google Scholar 
    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    Prentis, P. J. et al. Adaptive evolution in invasive species. Trends Plant. Sci. 13, 288–294. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Lack, J. B. et al. Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the U.S. reveals distinct colonization histories and dispersal. Biol. Invasions 15, 1067–1087. https://doi.org/10.1007/s10530-012-0351-5 (2013).Article 

    Google Scholar 
    Fišer Pečnikar, Ž. & Buzan EV. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 55, 43–52, https://doi.org/10.1007/s13353-013-0180-y (2014).Nugnes, F. et al. Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10, e0124660. https://doi.org/10.1371/journal.pone.0124660 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Nugnes, F., Bernardo, U. & Viggiani, G. An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst. Biodivers. 15, 582–599. https://doi.org/10.1080/14772000.2017.1299811 (2017).Article 

    Google Scholar 
    Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 9, 42–50. https://doi.org/10.1111/j.1755-0998.2009.02631.x (2009).Article 
    PubMed 

    Google Scholar 
    Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415 (2005).Article 

    Google Scholar 
    Hebert, P. D. N. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859. https://doi.org/10.1080/10635150500354886 (2005).Article 
    PubMed 

    Google Scholar 
    Faccoli, M., Simonato, M. & Rassati, D. Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J. Appl. Entomol. 140, 697–705. https://doi.org/10.1111/jen.12299 (2016).Article 

    Google Scholar 
    Verheggen, F. et al. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: Invasion potential and control strategies. Appl. Entomol. Zool. 52, 1–7. https://doi.org/10.1007/s13355-016-0459-7 (2017).Article 

    Google Scholar 
    Gargiulo, S. et al. Insetti endemici e nuove invasioni: il complicato quadro dei fitofagi del noce. Entomata. 15, 73–83 (2021).
    Google Scholar 
    de Benedetta, F. et al. Carpophilus dimidiatus, nuova minaccia per la nocicoltura. Inf. Agr. 17, 57–59 (2020).
    Google Scholar 
    Dobson, R. M. The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. Bull. Entomol. Res. 45, 389–402 (1954).Article 

    Google Scholar 
    Audisio, P. Coleoptera: Nitidulidae – Kateretidae. Coleoptera Nitidulidaee Kateretidae Carpophilinae in Fauna d’Italia XXXII 226–269 (Calderini, 1993).Powell, G. S., Cline, A. R., Duffy, A. G. & Zaspel, J. M. Phylogeny and reclassification of Carpophilinae (Coleoptera: Nitidulidae), with insights into the origins of anthophily. Zool. J. Linn. Soc. 189, 1359–1369. https://doi.org/10.1093/zoolinnean/zlaa001 (2020).Article 

    Google Scholar 
    Bartelt, R. & Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod. Rev. 3, 29–61. https://doi.org/10.1163/187498310×489981 (2010).Article 

    Google Scholar 
    Audisio, P. Fauna Europaea: Coleoptera, Carpophilinae, Carpophilus in Fauna Europaea version 2021.07 https://fauna-eu.org/ (2021).Tremblay, E., Espinosa, B. & Baldini, C. Dannosità dei Carpofili (Coleoptera: Nitidulidae) alle pesche in Campania. Inf. Fitopatol. 34, 43–45 (1984).
    Google Scholar 
    Reales, N. et al. Morphological and molecular identification of Carpophilus dimidiatus (Coleoptera: Nitidulidae) associated with stored walnut in Northwestern Argentina. J. Stored Prod. Res. 76, 37–42. https://doi.org/10.1016/j.jspr.2017.12.002 (2018).Article 
    ADS 

    Google Scholar 
    Hossain, M. Management of Carpophilus Beetle in Almonds. Hort Innovation – Final Report Project #A:1–93 (2018).Powell, G. S. & Hamilton, M. L. Notes on the Carpophilus Stephens (Coleoptera: Nitidulidae) of Australia, with a new species from Victoria. Zootaxa 4701, 192–196. https://doi.org/10.1017/S0009840X0002730X (2019).Article 

    Google Scholar 
    Boston, W., Leemon, D. & Cunningham, J. P. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy 10, 1207. https://doi.org/10.3390/agronomy10081207 (2020).Article 

    Google Scholar 
    Connell, W.A. A key to Carpophilus sap beetle associated with stored foods in the United States (Coleoptera: Nitidulidae). Department of Agriculture Cooperative Plant Pest Reports 23, 398–404 (1977).Brown, S. D. J., Armstrong, K. F. & Cruickshank, R. H. Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). Mol. Phylogenetics Evol. 64, 428–440. https://doi.org/10.1016/j.ympev.2012.04.018 (2012).Article 

    Google Scholar 
    Leica Application Suite software version 3.8.0; Leica: Switzerland, (2011).Murray, A. X. I. I. I. Monograph of the family of Nitidulariae. Trans. Linn. Soc. Lond. 24, 211–414. https://doi.org/10.1111/j.1096-3642.1863.tb00163.x (1864).Article 

    Google Scholar 
    Gillogly, L. R. Insects of Micronesia Coleoptera: Nitidulidae*. Insects Micronesia 16, 133–188 (1962).
    Google Scholar 
    Connell, W.A. Sap Beetles (Nitidulidae, Coleoptera). in Insect and Mite pests in food, an illustrated key. 151–174 (1991).DiLorenzo, C.L., Powell, G.S., Cline, A.R. & McHugh, J.V. Carpophiline-ID, a taxonomic web resource for the identification of Carpophilinae (Nitidulidae) of eastern North America. (2021a). https://site.caes.uga.edu/carpophiline-id/DiLorenzo, C. L., Powell, G. S., Cline, A. R. & McHugh, J. V. Carpophiline-ID: An interactive matrix-based key to the Carpophiline sap beetles (Coleoptera, Nitidulidae) of Eastern North America. ZooKeys 1028, 85–93. https://doi.org/10.3897/zookeys.1024.59467 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motschulsky, V. Insectes des Indes orientales. Etudes entomologiques 7, 20–122 (1858).
    Google Scholar 
    Fall, H. C. Miscellaneous notes and descriptions of North American Coleoptera. Am. Entomol. Soc. 36, 89–197 (1910).
    Google Scholar 
    Dobson, R. M. A new species of Carpophilus Stephens (Col. Nitidulidae) found on stored produce. Entomol’s Mon. Mag. 90, 299–300 (1954).
    Google Scholar 
    Connell, W. A. Carpophilus pilosellus Motschulsky, new synonymy and distribution (Coleoptera: Nitidulidae). Coleopt. Bull. 17, 89–90 (1963).
    Google Scholar 
    Kirejtshuk, A.G. Some results of study on the Nitidulidae from Namibia and adjacent territories. Part 1 Coleoptera, Cucujoidea, Nitidulidae. Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72, 21–52, https://doi.org/10.1002/mmnz.19960720106 (1996).Wang, D., Bai, X., Zhou, Y., Zhao, Y. Illustrated book of stored grain insects in China. 63–66 (China Press, 2008).Brown, S.D.J. Molecular systematics and colour variation of Carpophilus species (Coleoptera: Nitidulidae) of the South Pacific. Dissertation, Lincoln University (2009).Dasgupta, J., Pal, T. K. & Powell, G. S. Taxonomy of Carpophilinae (Coleoptera: Nitidulidae) from Tripura, India with a new species. Annal. Zool. 71, 627–649. https://doi.org/10.3161/00034541ANZ2021.71.3.003 (2021).Article 

    Google Scholar 
    Gebiola, M. et al. Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): Two closely related valid species. J. Nat. Hist. 43, 2465–2480. https://doi.org/10.1080/00222930903105088 (2009).Article 

    Google Scholar 
    Folmer, R. H. A., Nilges, M., Folkers, P. J. M., Konings, R. N. H. & Hilbers, C. W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240(4), 341–357 (1994).Article 
    PubMed 
    CAS 

    Google Scholar 
    Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).Article 
    CAS 

    Google Scholar 
    Schulmeister, S., Wheeler, W. C. & Carpenter, J. M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484. https://doi.org/10.1111/j.1096-0031.2002.tb00287.x (2002).Article 
    PubMed 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11. https://doi.org/10.1186/1471-2105-13-134 (2012).Article 
    CAS 

    Google Scholar 
    Campbell, B. C., Steffen-Campbell, J. D. & Werren, J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect. Mol. Biol. 2, 225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x (1994).Article 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377. https://doi.org/10.1111/2041-210X.13512 (2021).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rambaut, A., FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/ (2014).Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. https://doi.org/10.1093/molbev/mst197 (2013).Article 
    CAS 

    Google Scholar 
    Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248. https://doi.org/10.1016/0304-4149(82)90011-4 (1982).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Austerlitz, F. et al. DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10, 1–13. https://doi.org/10.1186/1471-2105-10-S14-S10 (2009).Article 
    CAS 

    Google Scholar 
    Grewe, P. M. et al. Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50, 2397–2403. https://doi.org/10.1139/f93-264 (1993).Article 

    Google Scholar 
    Rossmo, D.K. Geographic profiling. CRC press, 1–378 (1999).Le Comber, S. C. et al. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10, 1–8. https://doi.org/10.1186/1476-072X-10-35 (2011).Article 

    Google Scholar 
    Stevenson, M. D., Rossmo, D. K., Knell, R. J. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).Article 

    Google Scholar 
    Gutiérrez, D. & Menéndez, R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. J. Biogeogr. 24, 903–914. https://doi.org/10.1046/j.1365-2699.1997.00144.x (1997).Article 

    Google Scholar 
    Canter, D., Coffey, T., Huntley, M. & Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 16, 457–478. https://doi.org/10.1023/A:1007551316253 (2000).Article 

    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12, 71–79. https://doi.org/10.1111/j.1366-9516.2006.00218.x (2006).Article 

    Google Scholar 
    Marchioro, M. & Faccoli, M. Dispersal and colonization risk of the walnut twig beetle, Pityophthorus juglandis, in southern Europe. J. Pest Sci. 95, 303–313. https://doi.org/10.1007/s10340-021-01372-5 (2022).Article 

    Google Scholar 
    Meurisse, N. & Pawson, S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE 12, 1–24. https://doi.org/10.1371/journal.pone.0174111 (2017).Article 
    CAS 

    Google Scholar 
    Papini, A. et al. The use of jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 38, 76–81. https://doi.org/10.1016/j.ecoinf.2017.02.001 (2017).Article 

    Google Scholar 
    Statgraphics Plus Version 3.0; Manugistics: Rockville, MD, USA, (1997).Bagnaia, R. et al. Carta della Natura della Regione Campania: Carta degli habitat alla scala 1:25.000. ISPRA (2017).Martoni, F., Piper, A. M., Rodoni, B. C. & Blacket, M. J. Disentangling bias for non-destructive insect metabarcoding. PeerJ 10, e12981. https://doi.org/10.7717/peerj.12981 (2022).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Jelinek, J. & Audisio, P. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea in Catalogue of Palaearctic Coleoptera. 459–490 (Apollo Books, 2007)Mbenoun, M., Garnas, J. R., Wingfield, M. J., Begoude Boyogueno, A. D. & Roux, J. Metacommunity analyses of Ceratocystidaceae fungi across heterogeneous African savanna landscapes. Fungal Ecol. 28, 76–85. https://doi.org/10.1016/j.funeco.2016.09.007 (2017).Article 

    Google Scholar 
    Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernardo, U. et al. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 47, 609–622. https://doi.org/10.1093/ee/nvy028 (2018).Article 
    PubMed 

    Google Scholar 
    Bernardo, U. et al. An integrative study on Asphondylia spp. (Diptera: Cecidomyiidae), causing flower galls on Lamiaceae, with description, phenology, and associated fungi of two new species. Insetcs 12, 958. https://doi.org/10.3390/insects12110958 (2021).Article 

    Google Scholar 
    Wacławik, B. et al. An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini): taxonomic, systematic, biogeographic and evolutionary insights. Arthropod Syst. Phylogeny. 79, 419–441. https://doi.org/10.3897/asp.79.e64252 (2021).Article 

    Google Scholar 
    Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers Distrib. 10, 135–141 (2004).Article 

    Google Scholar 
    Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).Article 

    Google Scholar 
    Jelínek, J. et al. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of Sap Beetles introduced to Europe and Mediterranean areas. APP | Physical, Math. Nat. Sci. Accademia Peloritana dei Pericolanti, 94, 1–24, https://doi.org/10.1478/AAPP.942A4 (2016).Benchi, D., Conelli, L. & Bernardo, U. L. mosca delle noci minaccia le produzioni campane. Inf Agr. 66, 74–76 (2010).
    Google Scholar 
    Pollini, A. Entomologia Applicata. (Edagricole, 2013).Van Steenwyk, R.A. et al. Walnut husk fly control with reduced risk insecticides. Acta Hortic 861, 375–382, https://doi.org/10.17660/ActaHortic.2010.861.5 (2010).EU (2019). Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. j. Eur. Union, Legis., L 319/1, 1–279. Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2019/2072/ojRusso, E. et al. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63959-9 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hsu, F. et al. Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania 67, 271–279. https://doi.org/10.6165/tai.2022.67.271 (2022).Article 

    Google Scholar 
    Porter, J. Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. J. Stored Prod. Res. 22, 135–139. https://doi.org/10.1016/0022-474X(86)90006-8 (1986).Article 
    ADS 

    Google Scholar 
    Potter, M. A. et al. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in West Central Florida. Fla. Entomol. 96, 1188–1189. https://doi.org/10.1653/024.096.0363 (2013).Article 

    Google Scholar 
    Burks, C.S., Yasin, M., El-Shafie, H.A.F. & Wakil, W. Pests of stored dates in Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (eds Wakil, W., Romeno Faleiro J., Miller, T.A.) 237–286 (Springer, Zürich, Switzerland, 2015). https://doi.org/10.1007/978-3-319-24397-9Akşit, T., Özsemerci, F. & Çakmak, İ. Studies on determination of harmful fauna in the fig orchards in Aydin province (Turkey). Türkiye Entomoloji Dergisi 27, 181–189 (2003).
    Google Scholar  More

  • in

    Using hyrax latrines to investigate climate change

    This might look like an ordinary rock formation, but the black material is actually preserved faeces and urine from a small mammal called a rock hyrax (Procavia capensis).Hyraxes, which are common in Africa and the Middle East, look like groundhogs but are more closely related to manatees and elephants. They live in crevasses and pick one spot to use as a latrine. The use of the same spot over tens of thousands of years creates a layered refuse heap known as a midden that scientists can mine for palaeoclimatic data. I specialize in examining the pollen in these dungheaps for information about the vegetation and climate of the past.Our team found this site in May, in the Cape Fold Belt mountains of South Africa, using a drone to help investigate crevasses. We were excited when we saw the extent of this midden; we think it covers at least 20,000 years. We came back after the winter to take a sample. This photograph was taken in September. My colleague and project leader Brian Chase, who has rock-climbing skills, used a circular saw to extract a wedge that we brought back to the lab for analysis.The team will first look at radioactive carbon to determine the age of the midden layers. Then, we will analyse the stable carbon isotopes to learn what plants the hyraxes were eating, which in turn provides clues to the climate of that time. When I examine the samples, I look for pollen grains, which enter the midden both in the hyrax’s urine and faeces and by being blown in by the wind. I’ll also look for charcoal, to tell how many wildfires occurred in the region over time, and fungal spores, which can reveal which animals were nearby.We now have a much more nuanced and detailed view of climate changes in southern Africa. The fieldwork is very demanding, requiring long days of hiking, but I love it. More

  • in

    Carcass appearance does not influence scavenger avoidance of carnivore carrion

    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 

    Google Scholar 
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, e01331 (2019).
    Google Scholar 
    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).ADS 
    PubMed 
    CAS 

    Google Scholar 
    Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution, and Their Applications (eds Benbow, E. M. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Selva, N. The Role of Scavenging in the Predator Community of Białowieża Primeval Forest (E Poland) (Univeristy of Sevilla, 2004).
    Google Scholar 
    Moleón, M. et al. Carnivore carcasses are avoided by carnivores. J. Anim. Ecol. 86, 1179–1191 (2017).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7, e01496 (2016).
    Google Scholar 
    DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).
    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Muñoz-Lozano, C. et al. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS ONE 14, e0221890 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Peers, M. J. L. et al. Vertebrate scavenging dynamics differ between carnivore and herbivore carcasses in the northern boreal forest. Ecosphere 12, e03691 (2021).
    Google Scholar 
    Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: A trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).PubMed 

    Google Scholar 
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).
    Google Scholar 
    Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).
    Google Scholar 
    Fouilloux, C., Ringler, E. & Rojas, B. Cannibalism. Curr. Biol. 29, R1295–R1297 (2019).PubMed 
    CAS 

    Google Scholar 
    Oliva-Vidal, P., Tobajas, J. & Margalida, A. Cannibalistic necrophagy in red foxes: Do the nutritional benefits offset the potential costs of disease transmission?. Mamm. Biol. https://doi.org/10.1007/s42991-021-00184-5 (2021).Article 

    Google Scholar 
    Mateo, J. M. Recognition systems and biological organization: The perception component of social recognition. Ann. Zool. Fenn. 41, 729745 (2004).
    Google Scholar 
    Dangles, O., Irschick, D., Chittka, L. & Casas, J. Variability in sensory ecology: Expanding the bridge between physiology and evolutionary biology. Q. Rev. Biol. 84, 51–74 (2009).PubMed 

    Google Scholar 
    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).CAS 

    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).PubMed 
    CAS 

    Google Scholar 
    Gonzálvez, M., Martínez-Carrasco, C., Sánchez-Zapata, J. A. & Moleón, M. Smart carnivores think twice: red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl. Anim. Behav. Sci. 243, 105462 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Écoscience 10, 303–311 (2003).
    Google Scholar 
    Carr, W. J., Hirsch, J. T., Campellone, B. E. & Marasco, E. Some determinants of a natural food aversion in Norway rats. J. Comp. Physiol. Psychol. 93, 899–906 (1979).
    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).PubMed 

    Google Scholar 
    Moleón, M. & Sánchez-Zapata, J. A. The role of carrion in the landscapes of fear and disgust: a review and prospects. Diversity 13, 28 (2021).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (Springer, 2022).
    Google Scholar 
    Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A. & Zeileis, A. Coin: Conditional Inference Procedures in a Permutation Test Framework (Springer, 2021).
    Google Scholar 
    Owings, C. G., Gilhooly, W. P. & Picard, C. J. Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects. PLoS ONE 16, e0249422 (2021).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Matuszewski, S., Konwerski, S., Frątczak, K. & Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 128, 1039–1048 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Cunningham, C. X. et al. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proc. R. Soc. B. 285, 1–10 (2018).
    Google Scholar 
    Huang, S., Bininda-Emonds, O. R. P., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671–680 (2014).PubMed 

    Google Scholar 
    Hill, D. E., Chirukandoth, S. & Dubey, J. P. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim. Health Res. Rev. 6, 41–61 (2005).PubMed 

    Google Scholar 
    Hill, D. E. et al. Trichinella murrelli in scavenging mammals from south-central Wisconsin, USA. J. Wildl. Dis. 44, 629–635 (2008).PubMed 
    CAS 

    Google Scholar 
    Sandfoss, M., DePerno, C., Patton, S., Flowers, J. & Kennedy-Stoskopf, S. Prevalence of antibody to Toxoplasma gondii and Trichinella spp. in feral pigs (Sus scrofa) of eastern North Carolina. J. Wildl. Dis. 47, 338–343 (2011).PubMed 

    Google Scholar 
    Butler, J. R. A., du Toit, J. T. & Bingham, J. Free-ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats of competition and disease to large wild carnivores. Biol. Conserv. 115, 369–378 (2004).
    Google Scholar 
    Mendenhall, I. H. et al. Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Health 2, 122–125 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Han, B. A., Castellanos, A. A., Schmidt, J. P., Fischhoff, I. R. & Drake, J. M. The ecology of zoonotic parasites in the Carnivora. Trends Parasitol. 37, 1096–1110 (2021).PubMed 

    Google Scholar 
    Malmberg, J. L., White, L. A. & VandeWoude, S. Bioaccumulation of pathogen exposure in top predators. Trends Ecol. Evol. 36, 411–420 (2021).PubMed 

    Google Scholar 
    Mammal Diversity Database (Version 1.9). https://doi.org/10.5281/zenodo.6407053 (2022).Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Digby, Z. et al. Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Rep. 36, 109614 (2021).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).PubMed 
    CAS 

    Google Scholar 
    Hart, B. L. & Hart, L. A. How mammals stay healthy in nature: The evolution of behaviours to avoid parasites and pathogens. Philos. Trans. R. Soc. B 373, 20170205 (2018).
    Google Scholar 
    Brown, C. J. & Plug, I. Food choice and diet of the bearded vulture Gypaetus barbatus in southern Africa. S. Afr. J. Zool. 25, 169–177 (1990).
    Google Scholar 
    Rossi, L., Interisano, M., Deksne, G. & Pozio, E. The subnivium, a haven for Trichinella larvae in host carcasses. Int. J. Parasitol. Parasit. Wildl. 8, 229–233 (2019).
    Google Scholar 
    Micozzi, M. S. Experimental study of postmortem change under field conditions: Effects of freezing, thawing, and mechanical injury. J. Forensic Sci. 31, 953–961 (1986).PubMed 
    CAS 

    Google Scholar 
    Mayntz, D. & Toft, S. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J. Anim. Ecol. 75, 288–297 (2006).PubMed 

    Google Scholar 
    Margalida, A. Bearded vultures (Gypaetus barbatus) prefer fatty bones. Behav. Ecol. Sociobiol. 63, 187–193 (2008).
    Google Scholar 
    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
    Google Scholar 
    Evans, B. E., Mosby, C. E. & Mortelliti, A. Assessing arrays of multiple trail cameras to detect North American mammals. PLoS ONE 14, 1–18 (2019).
    Google Scholar 
    Ivan, J. S. & Newkirk, E. S. CPW Photo Warehouse: A custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods Ecol. Evol. 7, 499–504 (2016).
    Google Scholar 
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).MATH 

    Google Scholar 
    Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2’ (Springer, 2020).
    Google Scholar 
    Nenadic, O. & Greenacre, M. Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J. Stat. Softw. 20, 1–13 (2007).
    Google Scholar 
    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (Springer, 2020).
    Google Scholar 
    Greenacre, M. The contributions of rare objects in correspondence analysis. Ecology 94, 241–249 (2013).PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
    Google Scholar  More

  • in

    Dryland productivity under a changing climate

    Schimel, D. S. Drylands in the Earth system. Science 327, 418–419 (2010).Article 
    CAS 

    Google Scholar 
    Whitford, W. G. Ecology of Desert Systems (Academic Press, 2002).D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2019). A comprehensive introduction to dryland ecohydrology.Lal, R. Carbon cycling in global drylands. Curr. Clim. Change Rep. 5, 221–232 (2019).Article 

    Google Scholar 
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Illustrates the role drylands play in determining the variability and long-term trend of the terrestrial CO2 sink.Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014). Illustrates the role drylands play in determining the variability of the terrestrial CO2 sink.Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016). A comprehensive review of dryland structure and functioning.Article 

    Google Scholar 
    Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017). Highlights the often-ignored role of non-rainfall water inputs to dryland ecosystem dynamics.Article 

    Google Scholar 
    Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).Article 

    Google Scholar 
    Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).Article 

    Google Scholar 
    Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).Article 

    Google Scholar 
    Brookshire, E. J., Stoy, P. C., Currey, B. & Finney, B. The greening of the Northern Great Plains and its biogeochemical precursors. Glob. Change Biol. 26, 5404–5413 (2020).Article 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).Article 
    CAS 

    Google Scholar 
    Ravi, S. et al. Biological invasions and climate change amplify each other’s effects on dryland degradation. Glob. Change Biol. 28, 285–295 (2022).Article 
    CAS 

    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere https://doi.org/10.1890/ES15-00203.1 (2015).Yu, K. et al. The competitive advantage of a constitutive CAM species over a C4 grass species under drought and CO2 enrichment. Ecosphere 10, e02721 (2019).Article 

    Google Scholar 
    Fensholt, R. et al. in Remote Sensing Time Series (eds Kuenzer, C. et al.) 183–292 (Springer, 2015).Andela, N., Liu, Y., Van Dijk, A., De Jeu, R. & McVicar, T. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).Article 

    Google Scholar 
    Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).Article 
    CAS 

    Google Scholar 
    Venter, Z., Cramer, M. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).Article 
    CAS 

    Google Scholar 
    Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Change Biol. 27, 4367–4380 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, W., Brandt, M., Tong, X., Tian, Q. & Fensholt, R. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330 (2018).Article 

    Google Scholar 
    Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115, 438–451 (2011).Article 

    Google Scholar 
    Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).Article 
    CAS 

    Google Scholar 
    Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).Article 
    CAS 

    Google Scholar 
    Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6, 710–714 (2016).Article 

    Google Scholar 
    Choler, P., Sea, W., Briggs, P., Raupach, M. & Leuning, R. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences 7, 907–920 (2010).Article 

    Google Scholar 
    Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).Article 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).Article 

    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021). Provides a comprehensive analysis on the dryland expansion debates.Article 

    Google Scholar 
    Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).Article 
    CAS 

    Google Scholar 
    Daramola, M. T. & Xu, M. Recent changes in global dryland temperature and precipitation. Int. J. Climatol. 42, 1267–1282 (2022).Article 

    Google Scholar 
    Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).Article 

    Google Scholar 
    Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021). This study found that vegetation growth in the Northern Hemisphere is becoming increasingly water limited.Article 
    CAS 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).Article 

    Google Scholar 
    D’Odorico, P. & Bhattachan, A. Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Phil. Trans. R. Soc. B 367, 3145–3157 (2012).Article 

    Google Scholar 
    Hou, E. et al. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob. Change Biol. 27, 5225–5237 (2021).Article 
    CAS 

    Google Scholar 
    Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).Article 

    Google Scholar 
    Ridolfi, L., D’Odorico, P. & Laio, F. Noise-Induced Phenomena in the Environmental Sciences (Cambridge Univ. Press, 2011).Zeng, N. & Neelin, J. D. The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Clim. 13, 2665–2670 (2000).Article 

    Google Scholar 
    Borgogno, F., D’Odorico, P., Laio, F. & Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophysics 47, RG1005 (2009).Article 

    Google Scholar 
    van de Koppel, J. & Rietkerk, M. Spatial interactions and resilience in arid ecosystems. Am. Nat. 163, 113–121 (2004).Article 

    Google Scholar 
    Lefever, R. & Lejeune, O. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997).Article 

    Google Scholar 
    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015). Highlights the role of precipitation varibility in plant community composition in drylands.Article 
    CAS 

    Google Scholar 
    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 

    Google Scholar 
    Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).Article 
    CAS 

    Google Scholar 
    Lu, X., Wang, L., Pan, M., Kaseke, K. F. & Li, B. A multi-scale analysis of Namibian rainfall over the recent decade—comparing TMPA satellite estimates and ground observations. J. Hydrol. Reg. Stud. 8, 59–68 (2016).Article 

    Google Scholar 
    Franz, T., Caylor, K., Nordbotten, J., Rodriguez-Itubre, I. & Celia, M. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Res. 33, 215–230 (2010).Article 

    Google Scholar 
    Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E. & Smith, M. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl Acad. Sci. USA 117, 201922030 (2020).Article 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).Article 

    Google Scholar 
    Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004). Illustrates the close linkage between water pulses and biogeochemical cycles in drylands.Article 

    Google Scholar 
    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).Article 

    Google Scholar 
    Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).Article 

    Google Scholar 
    Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).Article 
    CAS 

    Google Scholar 
    Manzoni, S. et al. Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration. Biogeosciences 17, 4007–4023 (2020).Article 
    CAS 

    Google Scholar 
    Leizeaga, A., Meisner, A., Rousk, J. & Bååth, E. Repeated drying and rewetting cycles accelerate bacterial growth recovery after rewetting. Biol. Fertil. Soils 58, 365–374 (2022).Article 
    CAS 

    Google Scholar 
    Gao, D. et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148, 107896 (2020).Article 
    CAS 

    Google Scholar 
    Homyak, P. M., Allison, S. D., Huxman, T. E., Goulden, M. L. & Treseder, K. K. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J. Geophys. Res. Biogeosci. 122, 3260–3272 (2017).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).Article 
    CAS 

    Google Scholar 
    Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184, 65–74 (2006).Article 

    Google Scholar 
    Kaseke, K. F., Wang, L. & Seely, M. K. Nonrainfall water origins and formation mechanisms. Sci. Adv. 3, e1603131 (2017).Article 

    Google Scholar 
    Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).Article 

    Google Scholar 
    Feng, T. et al. Dew formation reduction in global warming experiments and the potential consequences. J. Hydrol. 593, 125819 (2021).Article 

    Google Scholar 
    Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).Article 

    Google Scholar 
    Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).Article 

    Google Scholar 
    Fessehaye, M. et al. Fog-water collection for community use. Renew. Sustain. Energy Rev. 29, 52–62 (2014).Article 

    Google Scholar 
    Kidron, G. J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 301, 66–74 (2005).Article 

    Google Scholar 
    Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).Article 

    Google Scholar 
    Tomaszkiewicz, M. et al. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566, 1339–1348 (2016).Article 

    Google Scholar 
    Walker, B. H., Ludwig, D., Holling, C. S. & Peterman, R. N. Stability of semi-arid savanna grazing systems. J. Ecol. 69, 473–498 (1981).Article 

    Google Scholar 
    Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).Article 
    CAS 

    Google Scholar 
    D’Odorico, P., Bhattachan, A., Davis, K., Ravi, S. & Runyan, C. Global desertification: drivers and feedbacks. Adv. Water Res. 51, 326–344 (2013).Article 

    Google Scholar 
    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007). Highlights the loss of ecosystem services as a result of dryland desertification.Article 
    CAS 

    Google Scholar 
    Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011). Provides a compehenseive analysis of the shrub enrochment effects on dryland functions.Article 

    Google Scholar 
    IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).Yang, H. et al. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos. 125, e2020JD033158 (2020).Article 

    Google Scholar 
    Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).Article 

    Google Scholar 
    Ayyad, M. A., Fakhry, A. M. & Moustafa, A.-R. A. Plant biodiversity in the Saint Catherine area of the Sinai peninsula. Egypt. Biodivers. Conserv. 9, 265–281 (2000).Article 

    Google Scholar 
    Global Land Outlook 2017 (UNCCD, 2017).Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).Article 

    Google Scholar 
    Redo, D., Aide, T. M. & Clark, M. L. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J. Land Use Sci. 8, 123–153 (2013).Article 

    Google Scholar 
    Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).Article 

    Google Scholar 
    Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).Article 
    CAS 

    Google Scholar 
    Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).Article 

    Google Scholar 
    Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).Article 
    CAS 

    Google Scholar 
    Dell’Angelo, J., D’Odorico, P., Rulli, M. C. & Marchand, P. The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Dev. 92, 1–12 (2017).Article 

    Google Scholar 
    Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).Article 
    CAS 

    Google Scholar 
    Wang, L. & D’Odorico, P. The limits of water pumps. Science 321, 36–37 (2008).Article 
    CAS 

    Google Scholar 
    OECD-FAO Agricultural Outlook 2021–2030 (OECD and FAO, 2021).Qi, J., Xin, X., John, R., Groisman, P. & Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 6, 22 (2017).Article 

    Google Scholar 
    Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).Article 

    Google Scholar 
    Herrero, M. et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24, 165–182 (2014).Article 

    Google Scholar 
    Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).Article 

    Google Scholar 
    Qiu, B. et al. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 826, 154222 (2022).Article 
    CAS 

    Google Scholar 
    Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 197, 43–57 (2017).Article 

    Google Scholar 
    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).Article 
    CAS 

    Google Scholar 
    Griffith, D. M. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, eaao1309 (2017).Article 

    Google Scholar 
    Teckentrup, L. et al. Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18, 5639–5668 (2021).Article 
    CAS 

    Google Scholar 
    MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021). Highlights the often-neglected uncertainties in the prediction of dryland productivity.Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).Article 

    Google Scholar 
    Whitley, R. et al. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences 13, 3245–3265 (2016).Article 

    Google Scholar 
    Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).Article 

    Google Scholar 
    MacBean, N. et al. Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrol. Earth Syst. Sci. 24, 5203–5230 (2020).Article 
    CAS 

    Google Scholar 
    Burrell, A., Evans, J., De & Kauwe, M. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).Article 
    CAS 

    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).Article 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article 
    CAS 

    Google Scholar 
    Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).Article 
    CAS 

    Google Scholar 
    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).Article 
    CAS 

    Google Scholar 
    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).Article 

    Google Scholar 
    Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R. & AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: a global investigation. Earth’s Future 9, e2021EF002196 (2021).Article 

    Google Scholar 
    Dunkerley, D. L. Light and low-intensity rainfalls: a review of their classification, occurrence, and importance in landsurface, ecological and environmental processes. Earth Sci. Rev. 214, 103529 (2021).Article 

    Google Scholar 
    Zhu, Y. & Yang, S. Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int. J. Climatol. 41, E1100–E1118 (2021).Article 

    Google Scholar 
    Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).Article 
    CAS 

    Google Scholar 
    Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).Article 

    Google Scholar 
    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v4 (2019).Paschalis, A., Fatichi, S., Katul, G. G. & Ivanov, V. Y. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 1716–1740 (2015).Article 

    Google Scholar  More

  • in

    A large-scale dataset reveals taxonomic and functional specificities of wild bee communities in urban habitats of Western Europe

    Here we assessed how species and functional diversity components of wild bee assemblages responded to increasing urbanization levels, using a large dataset encompassing recent surveys gathering 838 sampling sites located in natural, semi-natural and urban habitats of France, Belgium and Switzerland.We found a weak, but significant negative effect of the proportion of impervious surfaces in a 500 m radius around each site on local species richness of bee communities. Thus, sites with high soil sealing tended to host less species than those with low soil sealing. However, this trend was not observed when using human population density as an urbanization metric: sites with denser human populations hosted on average the same number of species as less densely populated sites.Concerning taxonomic homogenization of communities, we did not record any effects of urbanization, both in terms of impervious surfaces or human population density.Analyses of occurrence rates of bee functional traits revealed significant differences between poorly and highly urbanized communities, for both urbanization metrics. With higher human population density, probabilities of occurrence of above-ground nesters, generalist and small species increased, and a higher probability of occurrence of above-ground nesters, generalists and social bees were recorded in areas with high soil sealing.Therefore, we found overall consistent results linking urbanization and wild bees taxonomic as well as functional trait diversity, even though analyses stemmed from a combination of many independent studies covering a broad range of anthropized and natural aeras from western Europe. This further highlights the greater generalizability of those ecological trends throughout European temperate biomes compared to other studies typically focusing on a single city and its immediate vicinity.Two complementary metrics of urbanization intensityTo quantify urbanization, we used two variables: soil sealing12,16,19,36 in a 500 m radius, and the mean human population density, also in a 500 m radius, the latter variable being used only recently to assess pollinator responses to urban environments37,38. These two variables return different but complementary information concerning urban environments. Indeed, if soil sealing gives an idea as to how human activities impact land use, human population density helps distinguish between very dense urban areas and very impervious areas with lower densities of buildings. High human population density areas are usually associated with high levels of soil sealing, but the contrary is not true. Similarly, areas with low soil sealing are usually associated with low human population densities, but again, the opposite is not always true. Therefore, we found it informative to consider both variables when analyzing the response of wild bee assemblages to urbanization.Note that some specific habitat types, for example business districts, are exceptions to the rule. These places are indeed very densely urbanized, but with very low population density. However, no inventories have been carried out in these places, and thus will not be a problem for our study.Response of bee community species richness to urbanizationOne of our goals was to position this study in the context of the contrasting findings on pollinator communities and urbanization. Whereas no consistent trend is reported in literature15, our large dataset reveals that high soil sealing is detrimental to wild bee species richness. This offers a unified view of a trend that has been unequally evidenced from studies focusing on a single or few cities only. High proportions of soil sealing reduce the availability of nesting sites for ground-nesting bee species. This may in turn lower the species diversity of local assemblages, by filtering out ground-nesting bees, leaving mainly cavity-nesting bees. Furthermore, high levels of soil sealing can lead to depletion of floral resources, of extreme importance for bees, especially in highly disturbed environments such as cities39,40. Note that several previous studies report the opposite, with high local species richness of wild bees in urbanized habitats. However, these positive effects are often associated with intermediate levels of urbanization15,16, where private gardens and other green spaces may supply abundant floral resources, in conjunction with intermediate levels of soil sealing16,17,18,19,20,24.On the contrary, there was no significant relationship between local species richness and human population density. Recently, two recent studies have used this metric to analyze how urbanization impacts local diversity of bee, hoverfly37 or butterfly38 assemblages, and both studies report negative impacts of human population density. However, high levels of human population density do not necessarily correlate with low availability of floral resources or nesting sites for pollinating insects. Several studies show that densely-populated urban environments may be adequate habitats for pollinating insects, due to alternative management practices of urban green space41 and the year-round availability of ornamental flowers42,43. Here, the absence of a clear effect of human population density on local bee species richness masks a change in the species composition of the communities, as shown by the increasing proportion of cavity nesters, compared with ground nesters. Indeed, despite the lower availability of nesting resources for ground-nesters, cavity-nesters take over in high-density areas, where more concrete structures and buildings are present15, thus they may compensate for the loss of ground-nesting bee species.Wild bee community homogenization and urbanizationWe did not observe any relationship between mean pairwise β-diversity and the two metrics of urbanization. This result contrasts with those of Banaszak-Cibicka and Żmihorski (2020)44 who found more homogeneous wild bee communities in urban environments compared to non-urban ones. Similar results have been reported for bees, with homogenization of urban pollinator communities compared to rural ones28,45. Biotic homogenization in urban environments has also been reported for other taxa, for example birds46.In our study, when considering urbanization levels, either in terms of soil sealing or human population density, urban wild bee communities are not more or less taxonomically homogeneous than non-urban ones. It is important to note that this result does not imply that urban and non-urban wild bee communities are similar, but that the homogenization of wild bee communities is constant throughout the urbanization gradient. In other words, urban communities are as dissimilar as non-urban ones. Here, the β diversity values are quite high (ranging from 0.68 to 0.96), emphasizing that even urban areas have quite dissimilar communities when compared to each other. This high level of dissimilarity among wild bee communities in urban environments can be explained by the large range of biogeographical regions encompassed in our dataset (Fig. 5), as each of these regions harbors a specific wild bee fauna34.Local factors in cities might also explain these high levels of dissimilarity. We know for example that green space connectivity has effects on species richness, with more wild bee species and abundance in cities with more connected green spaces47. Another local explanation might come from contrasting green space management practices among cities. Not all cities have the same policies, and urban green space management is crucial to the establishment and sustainability of diverse pollinator communities14,15,48. Thus, we expect more dissimilar wild bee communities among cities with differing green space layout and management.Figure 5Grouped sampling sites (n = 532) in France, Belgium and Switzerland, with the biogeographical regions. In total, 238 sites belong to the Continental region, 178 to the Atlantic, 106 to de Mediterranean and 10 to the Alpine. This figure was generated using QGIS software, v3.10.13 (https://www.qgis.org/).Full size imageFunctional responses of bee communities to urbanizationSeveral studies have already shown trends on how urban areas filter wild bee communities based on their functional traits (see30 and49 for reviews). However, as for taxonomic diversity, it is often difficult to identify clear variation patterns50. Using our large dataset, we could identify typical wild bee functional traits that are favored in urban environments, thus informing on the average functional profiles of wild bee species that may thrive in cities. We found urban wild bees in general to be typically above-ground nesters and generalists, while different trends were established for their body size and sociality, depending on the considered urbanization metric (Fig. 6).Figure 6Summary picture of an urban bee community, compared to a non-urban one. This figure was generated using Inkscape v1.2 (https://inkscape.org/).Full size imageNesting habitsAbove-ground nesting species were more frequent with increasing urbanization than below-ground nesting ones, and this result was recorded with both urbanization metrics.This result is consistent with what was previously reported in the literature16,49,51,52. Indeed, cities, with high proportions of impervious surfaces and buildings, offer fewer nesting habitats to ground-nesting species15, nesting sites becoming a limiting factor39. On the other hand, above-ground nesters can do well in cities with the presence of man-made structures, depending on their ability to use them and on their availability53.The presence of green areas in cities can help ground-nesting bee species by offering more nesting opportunities and resources17. Several studies highlight the importance of parks and gardens in supporting bee biodiversity in cities12,18,31,54, which otherwise are constraining environments due to soil sealing.DietGeneralist species were more frequent in more urbanized sites than specialist ones, and this was recorded for both urbanization metrics.This is in accordance with what was previously found in the literature32,50,51,52,54,55, as specialist bee species depend on the presence of their host plants to complete their life-cycle, which are often scarce due to the rarefaction of native flowering resources. As one can find many exotic flowers in cities, especially in residential gardens and urban parks56, we expect to detect less oligolectic bee species in densely urbanized habitats57.Notwithstanding, Banaszak-Cibicka et al. (2018)20 found more oligolectic species in urban parks of Poznań (Poland) compared to a national park. Thus, urban areas are not always depleted of specialist species, and well-managed parks with preserved native floral resources can obviously support specialist wild bee species in cities58.Additionally, it is important to emphasize that the presence of an exotic plant species may concomitantly support an associated specialist bee species. In Poland, for instance, the spread of Bryonia dioica in urban environments also brought the Andrena florea wild bee species, specialized on this plant59.Body sizeWe recorded contrasting effects of the two urbanization metrics on wild bee body size: small species were more frequent in relation to higher human population density compared to large species, but we found no difference with the proportion of impervious surfaces. Contrasting impacts of urbanization on bee body size are also reported in the literature, with some studies finding little to no effect32,50, and some finding that urbanization often favors smaller bee species12,30,60. Bee body size is of particular importance because it is related to the foraging range of individuals61,62. In fragmented habitats, such as dense urban environments, distances between suitable nesting and feeding habitats may select for smaller species that can remain on small green spaces and rarely need to commute across several green spaces. Furthermore, small bees may be favored given that they need fewer floral resources than large bees, even though large bees can fly further62.This might also explain the difference in the response of bee body size to the two urbanization metric results. In densely populated cities, it is harder to fly between suitable habitats, even for larger bees, as higher buildings and structures may act as barriers to their movement. Indeed, it has been recently shown that the 3D structure of cities impacts wild bee community composition63. Thus, being able to fly further might no longer be an advantage, and larger bees, requiring more floral resources than smaller ones, might be selected against. On the contrary, very impervious areas do not always host high building density (for example, as in the case of parking lots), thus making it easier for large wild bees to fly between bare soil areas.Densely populated areas might also exhibit warmer temperatures due to the urban heat island effect, and this could, in turn, result in the selection of smaller individuals, as we know that in cities, higher temperature results in smaller body sizes64.SocialityWe also recorded contrasting effects of the two urbanization metrics on sociality: social species were more frequent in relation to higher proportion of impervious surface compared to solitary ones, but no effect was recorded with human population density. This is in agreement with a recent literature review that reports on no consensus concerning the response of this trait to urbanization30.However, some urban habitats are shown to host more social species than rural habitats20,32, which may be linked to better reproductive success in cities compared to rural habitats such as agricultural environments65, an explanation that is consistent with our results on the soil sealing—sociality relationship.Conclusion, limits & future directionsOverall, our findings suggest that urban environment filters wild bee communities based on their functional traits. Our results also underscore different impacts of urbanization metrics on local species diversity, with a significant negative impact of soil sealing. On the contrary, both soil sealing and human population densities create strong functional filtering of trait assemblages.These results are particularly relevant since they arise from a range of independent studies, thus providing a general view on the wild bee communities in urban environments from western Europe. Since this study covers different biogeographical zones, it further underlines its applicability to other temperate countries. We therefore expect similar patterns to shape wild bee communities in urbanized areas from other temperate regions, but further confirmatory studies would be welcome.Our study also delivers a clear message concerning wild bee communities in urban environments. Urban environments cannot compare with non-urban ones in terms of species richness and trait diversities of bee communities. However, simple management practices of urban green spaces, such as differentiated management, or simply low management66, may help in maintaining this diversity. Indeed, not all green spaces are equally valuable in supporting wild bees, and pollinator assemblages in general49. For example, it has been shown that pollinator richness was positively influenced by green space size, but also by management measures such as mowing67. Increasing the quantity of floral resources and their spatio-temporal availability and diversity40,68 could also help conserving pollinator communities and pollination function in cities69, as long as these resources are native or attractive to pollinators.We can then hypothesize that changes in managing practices could help increase functional diversity of bees in cities, with specialist and ground-nesting species being found more frequently in these low-managed urban areas.Finally, if managing urban green space is of great importance to protect biodiversity in cities, it is crucial to involve all stakeholders, especially residents70 to achieve efficient and socially-accepted measures.In the future, it will be important to consider intra-city landscape variation, and see how urban characteristics might influence taxonomic and trait diversity. This will surely allow us to better understand the dynamics shaping wild bee communities in urban environments. More

  • in

    Factors influencing lion movements and habitat use in the western Serengeti ecosystem, Tanzania

    Pacifici, M., Di Marco, M. & Watson, J. E. M. Protected areas are now the last strongholds for many imperiled mammal species. Conserv. Lett. 13, 1–7 (2020).
    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, 909–914 (2004).CAS 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).ADS 
    PubMed 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 

    Google Scholar 
    Rija, A. A., Critchlow, R., Thomas, C. D. & Beale, C. M. Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PLoS One 15, 1–14 (2020).
    Google Scholar 
    Bamford, A. J., Ferrol-Schulte, D. & Wathan, J. Human and wildlife usage of a protected area buffer zone in an area of high immigration. Oryx 48, 504–513 (2014).
    Google Scholar 
    Snyder, K. D., Mneney, P. B. & Wittemyer, G. Predicting the risk of illegal activity and evaluating law enforcement interventions in the western Serengeti. Conserv. Sci. Pract. 1, 1–13 (2019).
    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lynagh, F. M. & Urich, P. B. A critical review of buffer zone theory and practice: A Philippine case study. Soc. Nat. Resour. 15, 129–145 (2002).
    Google Scholar 
    Paolino, R. M. et al. Buffer zone use by mammals in a Cerrado protected area. Biota Neotrop. 16, (2016).
    Mills, K. L. et al. Comparable space use by lions between hunting concessions and national parks in West Africa. J. Appl. Ecol. 57, 975–984 (2020).ADS 

    Google Scholar 
    Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).
    Google Scholar 
    Tyrrell, P., Russell, S. & Western, D. Seasonal movements of wildlife and livestock in a heterogenous pastoral landscape: Implications for coexistence and community based conservation. Glob. Ecol. Conserv. 12, 59–72 (2017).
    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Everatt, K. T., Andresen, L. & Somers, M. J. The influence of prey, pastoralism and poaching on the hierarchical use of habitat by an apex predator. Afr. J. Wildl. Res. 45, 187–196 (2015).
    Google Scholar 
    Oriol-Cotterill, A., Macdonald, D. W., Valeix, M., Ekwanga, S. & Frank, L. G. Spatiotemporal patterns of lion space use in a human-dominated landscape. Anim. Behav. 101, 27–39 (2015).
    Google Scholar 
    Schuette, P., Creel, S. & Christianson, D. Coexistence of African lions, livestock, and people in a landscape with variable human land use and seasonal movements. Biol. Conserv. 157, 148–154 (2013).
    Google Scholar 
    Beattie, K., Olson, E. R., Kissui, B., Kirschbaum, A. & Kiffner, C. Predicting livestock depredation risk by African lions (Panthera leo) in a multi-use area of northern Tanzania. Eur. J. Wildl. Res. 66, 1–4 (2020).
    Google Scholar 
    Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: Reserve boundaries as ‘attractive sinks’. In Biology and Conservation of Wild Felids (eds. Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, 2010).Boyers, M., Parrini, F., Owen-Smith, N., Erasmus, B. F. N. & Hetem, R. S. How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity. Conserv. Physiol. 7, 1–12 (2019).
    Google Scholar 
    Abade, L. et al. The relative effects of prey availability, anthropogenic pressure and environmental variables on lion (Panthera leo) site use in Tanzania’s Ruaha landscape during the dry season. J. Zool. 310, 135–144 (2020).
    Google Scholar 
    Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).
    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).
    Google Scholar 
    Kisingo, A. W. Governance of Protected Areas in the Serengeti Ecosystem, Tanzania (University of Victoria, 2013).UNEP-WCMC & IUCN. Protected planet: the world database on protected areas (WDPA). www.protectedplanet.net (2020).Zella, A. Y. The management of protected areas in Serengeti ecosystem: A case study of Ikorongo and Grumeti Game Reserves (IGGRs). Int. J. Eng. Sci. 6, 22–50 (2016).
    Google Scholar 
    IUCN. Ngorongoro Conservation Area conservation outlook assessment. The IUCN World Heritage Outlook https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/2010 (2020).Kittle, A. M., Bukombe, J. K., Sinclair, A. R. E., Mduma, S. A. R. & Fryxell, J. M. Landscape-level movement patterns by lions in western Serengeti: Comparing the influence of inter-specific competitors, habitat attributes and prey availability. Mov. Ecol. 4, 1–18 (2016).
    Google Scholar 
    Packer, C. et al. Ecological change, group territoriality, and population dynamics in Serengeti lions. Science 307, 390–393 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mwampeta, S. B. et al. Lion and spotted hyena distributions within a buffer area of the Serengeti-Mara ecosystem. Sci. Rep. 11, 1–8 (2021).
    Google Scholar 
    Grumeti Fund. Protecting wildlife and human lives in the western corridor of the Serengeti. https://www.grumetifund.org/blog/updates/protecting-wildlife-and-human-lives-in-the-western-corridor-of-the-serengeti/ (2020).IUCN. Serengeti National Park conservation outlook assessment. The IUCN World Heritage Outlook https://worldheritageoutlook.iucn.org/explore-sites/wdpaid/2575 (2017).Veldhuis, M. P. et al. Data from: Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Dryad https://doi.org/10.5061/dryad.b303788 (2021).Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).
    Google Scholar 
    Norton-Griffiths, M., Herlocker, D. & Pennycuick, L. The patterns of rainfall in the Serengeti Ecosystem, Tanzania. Afr. J. Ecol. 13, 347–374 (1975).
    Google Scholar 
    McNaughton, S. J. Serengeti grassland ecology: The role of composite environmental factors and contingency in community organization. Ecol. Monogr. 53, 291–320 (1983).
    Google Scholar 
    Buchhorn, M. et al. Copernicus global land service: land cover 100m: version 3 globe 2015-2019. Copernicus Global Land Operations. Zenodo. https://doi.org/10.5281/zenodo.3938963.Boone, R. B., Thirgood, S. J. & Hopcraft, J. G. C. Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87, 1987–1994 (2006).PubMed 

    Google Scholar 
    Ogutu, J. O. & Dublin, H. T. The response of lions and spotted hyaenas to sound playbacks as a technique for estimating population size. Afr. J. Ecol. 36, 83–95 (1998).
    Google Scholar 
    Fyumagwa, R. D. et al. Comparison of anaesthesia and cost of two immobilization protocols in free-ranging lions. S. Afr. J. Wildl. Res. 42, 67–70 (2012).
    Google Scholar 
    Rija, A. A. Spatial Pattern of Illegal Activities and the Impact on Wildlife Populations in Protected Areas in the Serengeti Ecosystem. (University of York, 2017).Kideghesho, J. R. Wildlife Conservation and Local Land Use Conflicts in Western Serengeti Corridor, Tanzania (Norwegian University of Science and Technology, 2006).Holmern, T., Muya, J. & Røskaft, E. Local law enforcement and illegal bushmeat hunting outside the Serengeti National Park, Tanzania. Environ. Conserv. 34, 55–63 (2007).
    Google Scholar 
    Schmitt, J. A. Improving Conservation Efforts in the Serengeti Ecosystem, Tanzania: An Examination of Knowledge, Benefits, Costs, and Attitudes (University of Minnesota, 2010).Kaaya, E. & Chapman, M. Micro-credit and community wildlife management: Complementary strategies to improve conservation outcomes in Serengeti National Park, Tanzania. Environ. Manag. 60, 464–475 (2017).ADS 

    Google Scholar 
    Kideghesho, J. R., Røskaft, E. & Kaltenborn, B. P. Factors influencing conservation attitudes of local people in Western Serengeti, Tanzania. Biodivers. Conserv. 16, 2213–2230 (2007).
    Google Scholar 
    Kegamba, J. J., Sangha, K. K., Wurm, P. & Garnett, S. T. A review of conservation-related benefit-sharing mechanisms in Tanzania. Glob. Ecol. Conserv. 33, e01955 (2022).
    Google Scholar 
    Rija, A. A. & Kideghesho, J. R. Poachers’ strategies to surmount anti-poaching efforts in Western Serengeti, Tanzania. In Protected Areas in Northern Tanzania (eds. Durrant, J. O. et al.) 91–112 (Springer Nature Switzerland AG, 2020).Mfunda, I. M. & Røskaft, E. Wildlife or crop production: The dilemma of conservation and human livelihoods in Serengeti, Tanzania. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 39–49 (2011).
    Google Scholar 
    Kideghesho, J. R. Reversing the trend of wildlife crime in Tanzania: Challenges and opportunities. Biodivers. Conserv. 25, 427–449 (2016).
    Google Scholar 
    Sisya, E., Frankfurt Zoological Society & Tanzania National Parks Authority. Serengeti Park Roads. Serengeti GIS and Data Centre and ArcGIS Online. ArcGIS online https://www.arcgis.com/home/item.html?id=f8d9e2cb6ab24b92bd6d645a0d659963. (2018).Maliti, H., von Hagen, C., Frankfurt Zoological Society, Tanzania National Parks Authority & Hopcraft, J. G. C. Serengeti Park rivers. https://serengetidata.weebly.com/rivers-and-lakes.html (2008).Worldpop & Center for International Earth Science Information Network. The spatial distribution of population density in 2018, Tanzania. https://doi.org/10.5258/SOTON/WP00674 (2018).Gilbert, M. et al. Global cattle distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/GIVQ7 (2018).Gilbert, M. et al. [dataset] Global goat distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/OCPH42 (2018).Gilbert, M. et al. Global sheep distribution in 2010 (5 minutes of arc). Harvard Dataverse, Version 3. https://doi.org/10.7910/DVN/BLWPZN (2018).Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 1–11 (2018).
    Google Scholar 
    Swihart, R. K. & Slade, N. A. Testing for independence of observations in animal movements. Ecology 66, 1176–1184 (1985).
    Google Scholar 
    Seaman, D. E. & Powell, R. A. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085 (1996).
    Google Scholar 
    Calenge, C. The package adehabitat for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Version 4.0.4. https://www.r-project.org/ (2021).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
    Google Scholar 
    Thomas, D. L. & Taylor, E. J. Study designs and tests for comparing resource use and availability II. J. Wildl. Manag. 70, 324–336 (2006).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Sommer, S. & Huggins, R. M. Variables selection using the Wald test and a robust CP. J. R. Stat. Soc. 45, 15–29 (1996).MATH 

    Google Scholar 
    Burnham, K. P. & Anderson, D. D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).Ogutu, J. O. & Dublin, H. T. Demography of lions in relation to prey and habitat in the Maasai Mara National Reserve, Kenya. Afr. J. Ecol. 40, 120–129 (2002).
    Google Scholar 
    Henschel, P. et al. Determinants of distribution patterns and management needs in a critically endangered lion (Panthera leo) population. Front. Ecol. Evol. 4, 1–14 (2016).
    Google Scholar 
    Melubo, K. & Lovelock, B. Living inside a UNESCO World Heritage Site: The perspective of the Maasai community in Tanzania. Tour. Plan. Dev. 16, 197–216 (2019).
    Google Scholar 
    Makupa, E. E. Conservation Efforts and Local Livelihoods in Western Serengeti, Tanzania: Experiences from Ikona Community Wildlife Management Area (University of Victoria, 2013).Ndibalema, V. G. & Songorwa, A. N. Illegal meat hunting in serengeti: Dynamics in consumption and preferences. Afr. J. Ecol. 46, 311–319 (2008).
    Google Scholar 
    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).PubMed 

    Google Scholar 
    Tuqa, J. H. et al. Impact of severe climate variability on lion home range and movement patterns in the Amboseli ecosystem, Kenya. Glob. Ecol. Conserv. 2, 1–10 (2014).
    Google Scholar 
    Blackburn, S., Hopcraft, J. G. C., Ogutu, J. O., Matthiopoulos, J. & Frank, L. Human–wildlife conflict, benefit sharing and the survival of lions in pastoralist community-based conservancies. J. Appl. Ecol. 53, 1195–1205 (2016).
    Google Scholar 
    Thirgood, S. et al. Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Anim. Conserv. 7, 113–120 (2004).
    Google Scholar 
    Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).
    Google Scholar 
    Mkonyi, F. J., Estes, A. B., Lichtenfeld, L. L. & Durant, S. M. Large carnivore distribution in relationship to environmental and anthropogenic factors in a multiple-use landscape of northern Tanzania. Afr. J. Ecol. 56, 972–983 (2018).
    Google Scholar 
    Hill, J. E., De Vault, T. L. & Belant, J. L. A review of ecological factors promoting road use by mammals. Mamm. Rev. 51, 214–227 (2021).
    Google Scholar 
    Hägerling, H. G. & Ebersole, J. J. Roads as travel corridors for mammals and ground birds in Tarangire National Park, Tanzania. Afr. J. Ecol. 55, 701–704 (2017).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. Are negative effects of tourist activities on wildlife over-reported? A review of assessment methods and empirical results. Biol. Conserv. 211, 10–19 (2017).
    Google Scholar 
    de Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).
    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825 (2017).
    Google Scholar 
    Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, 1–11 (2019).
    Google Scholar 
    Snyman, A., Raynor, E., Chizinski, C., Powell, L. & Carroll, J. African lion (Panthera leo) space use in the Greater Mapungubwe Transfrontier Conservation Area. Afr. J. Wildl. Res. 48, 023001 (2018).
    Google Scholar 
    Mwakaje, A. G. et al. Community-based conservation, income governance, and poverty alleviation in Tanzania: The case of the Serengeti Ecosystem. J. Environ. Dev. 22, 51–73 (2013).
    Google Scholar 
    Everatt, K. T., Moore, J. F. & Kerley, G. I. H. Africa’s apex predator, the lion, is limited by interference and exploitative competition with humans. Glob. Ecol. Conserv. 20, e00758 (2019).
    Google Scholar  More

  • in

    The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean

    Roemmich, D. & Mcgowan, J. Climatic warming and the decline of zooplankton in the California current. Science 267(5202), 1324–1326 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ware, D. M. & Thomson, R. E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726), 1280–1284 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. 107, 10120–10124 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewald, W. F. Über Orientierung Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biol. Zentralblatt 30, 1–16 (1910).
    Google Scholar 
    Dam, H. G., Roman, M. R. & Youngbluth, M. J. Downward export of respiratory carbon and dissolved nitrogen by diel-migrant mesozooplankton at the JGOFS Bermuda time-series station. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 1187–1197 (1995).ADS 
    CAS 

    Google Scholar 
    Morales, C. E. Carbon and nitrogen fluxes in the ocean: the contribution by zooplankton migrants to active transport in the North Atlantic during the Joint Global Flux Study. J. Plankton Res. 21, 1799–1808 (1999).
    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 55(14–15), 1615–1635 (2008).ADS 

    Google Scholar 
    Brugnano, C., Granata, A., Guglielmo, L. & Zagami, G. Spring diel vertical distribution of copepod abundances and diversity in the open Central Tyrrhenian Sea (Western Mediterranean). J. Mar. Syst. 105, 207–220 (2012).
    Google Scholar 
    Werner, T. & Buchholz, F. Diel vertical migration behaviour in Euphausiids of the northern Benguela current: seasonal adaptations to food availability and strong gradients of temperature and oxygen. J. Plankton Res. 35(4), 792–812 (2013).CAS 

    Google Scholar 
    Palmer, M. R. & Pearson, P. N. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean. Science 300(5618), 480–482 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3(6), 391–397 (2010).ADS 
    CAS 

    Google Scholar 
    Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, D. & Smoot, N. C. Distribution of seamounts in the North Atlantic. Nature 337, 254–257 (1989).ADS 

    Google Scholar 
    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res. Part I Oceanogr. Res. Pap. 58(4), 442–453 (2011).ADS 

    Google Scholar 
    Rogers, A. D. The biology of seamounts: 25 Years on. Adv. Mar. Biol. 79, 137–224 (2018).PubMed 

    Google Scholar 
    Rowden, A. A., Dower, J. F., Schlacher, T. A., Consalvey, M. & Clark, M. R. Paradigms in seamount ecology: fact, fiction and future. Mar. Ecol. 31, 226–241 (2010).ADS 

    Google Scholar 
    Wilson, R. R. & Kaufmann, R. S. Seamount biota and biogeography. Geophys. Monogr. Ser. 43, 355–377 (2013).ADS 

    Google Scholar 
    Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for seamounts: research links to conservation and management. PLoS ONE 7(1), e29232 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlacher, T. A., Rowden, A. A., Dower, J. F. & Consalvey, M. Seamount science scales undersea mountains: new research and outlook. Mar. Ecol. 31, 1–13 (2010).ADS 

    Google Scholar 
    Stocks, K. I. et al. CenSeam, an international program on seamounts within the census of marine life: achievements and lessons learned. PLoS ONE 7(2), e32031 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cascao, I., Domokos, R., Lammers, M. O., Santos, R. S. & Silva, M. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Oceanogr. 175, 1–13 (2019).ADS 

    Google Scholar 
    Denda, A., Stefanowitsch, B. & Christiansen, B. From the epipelagic zone to the abyss: trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic – Part II Benthopelagic fishes. Deep Sea Res I Oceanogr. Res. Pap. 130, 78–92 (2017).ADS 
    CAS 

    Google Scholar 
    Dai, L. et al. Zooplankton abundance, biovolume and size spectra down to 3000 m depth in the western tropical North Pacific during autumn 2014. Deep Sea Res. Part I Oceanogr. Res. Pap. 121, 1–13 (2017).ADS 

    Google Scholar 
    Sun, D., Zhang, D. S., Zhang, R. Y. & Wang, C. S. Different vertical distribution of zooplankton community between North Pacific Subtropical Gyre and Western Pacific Warm Pool: its implication to carbon flux. Acta Oceanol. Sin. 38(6), 32–45 (2019).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 
    PubMed 

    Google Scholar 
    Haury, L., Fey, C., Newland, C. & Genin, A. Zooplankton distribution around four eastern North Pacific seamounts. Prog. Oceanogr. 45(1), 69–105 (2000).ADS 

    Google Scholar 
    Genin, A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50(1–2), 3–20 (2004).
    Google Scholar 
    Valle-Levinson, A., Castro, A. T., de Velasco, G. G. & Armas, R. G. Diurnal vertical motions over a seamount of the southern Gulf of California. J. Mar. Syst. 50(1–2), 61–77 (2004).
    Google Scholar 
    Martin, B. & Christiansen, B. Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 2671–2682 (2009).ADS 
    CAS 

    Google Scholar 
    Rawlinson, K. A., Davenport, J. & Barnes, D. K. A. Vertical migration strategies with respect to advection and stratification in a semi-enclosed lough: a comparison of mero- and holozooplankton. Mar. Biol. 144, 935–946 (2004).
    Google Scholar 
    Forward, R. B. Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Ann. Rev. 26, 361–393 (1988).
    Google Scholar 
    Tao, Z. C., Wang, Y. Q., Wang, J. J., Liu, M. T. & Zhang, W. C. Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV-B radiation as a function of wavelength and intensity. J. Oceanol. Limnol. 37(4), 1289–1300 (2019).ADS 

    Google Scholar 
    Fragopoulu, N. & Lykakis, J. J. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar. Biol. 104(3), 381–387 (1990).
    Google Scholar 
    Lougee, L. A., Bollens, S. M. & Avent, S. R. The effects of haloclines on the vertical distribution and migration of zooplankton. J. Exp. Mar. Biol. Ecol. 278(2), 111–134 (2002).
    Google Scholar 
    Saltzman, J. & Wishner, K. F. Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of copepods. Deep Sea Res. Part I Oceanogr. Res. Pap. 44(6), 931–954 (1997).ADS 
    CAS 

    Google Scholar 
    Antezana, T. Species-specific patterns of diel migration into the oxygen minimum zone by euphausiids in the Humboldt Current Ecosystem. Prog. Oceanogr. 83, 228–236 (2009).ADS 

    Google Scholar 
    Johnsen, G. H. & Jakobsen, P. J. The effect of food limitation on vertical migration in Daphnia longispina. Limnol. Oceanogr. 32(4), 873–880 (1987).ADS 

    Google Scholar 
    Spinelli, M. et al. Diel vertical distribution of the larvacean Oikopleura dioica in a North Patagonian tidal frontal system (42 degrees-45 degrees S) of the SW Atlantic Ocean. Mar. Biol. Res. 11(6), 633–643 (2015).
    Google Scholar 
    Guillam, M. et al. Vertical distribution of brittle star larvae in two contrasting coastal embayments: implications for larval transport. Sci. Rep. 10(1), 1–5 (2020).
    Google Scholar 
    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2(1), 33–37 (2012).ADS 
    CAS 

    Google Scholar 
    Ma, J. et al. The OMZ and its influence on POC in the Tropical Western Pacific Ocean: based on the survey in March 2018. Front. Earth Sci. 9, 632229 (2021).
    Google Scholar 
    Sun, Q. Q., Song, J. M., Li, X. G., Yuan, H. M. & Wang, Q. D. The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1690–1704 (2021).ADS 
    CAS 

    Google Scholar 
    Wang, Q. D. et al. Characteristics and biogeochemical effects of oxygen minimum zones in typical seamount areas, Tropical Western Pacific. J. Oceanol. Limnol. 39(5), 1651–1661 (2021).ADS 
    CAS 

    Google Scholar 
    Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69(2–4), 318–359 (2006).ADS 

    Google Scholar 
    Wishner, K. F., Gowing, M. M. & Gelfman, C. Living in suboxia: Ecology of an Arabian Sea oxygen minimum zone copepod. Limnol. Oceanogr. 45(7), 1576–1593 (2000).ADS 

    Google Scholar 
    Wishner, K. F. et al. Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Prog. Oceanogr. 78(2), 163–191 (2008).ADS 

    Google Scholar 
    Ekau, W., Auel, H., Portner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).ADS 
    CAS 

    Google Scholar 
    Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. 6, 535 (2019).
    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Le Borgne, R. & Rodier, M. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2003–2023 (1997).ADS 

    Google Scholar 
    Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2083–2103 (2001).ADS 
    CAS 

    Google Scholar 
    Ge, R., Chen, H., Zhuang, Y. & Liu, G. Active carbon flux of mesozooplankton in South China Sea and Western Philippine Sea. Front. Mar. Sci. 8, 1324 (2021).
    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53(4), 1327–1338 (2008).ADS 

    Google Scholar 
    Hirch, S., Martin, B. & Christiansen, B. Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 56(25), 2656–2670 (2009).ADS 
    CAS 

    Google Scholar 
    Denda, A. & Christiansen, B. Zooplankton distribution patterns at two seamounts in the subtropical and tropical NE Atlantic. Mar. Ecol. 35(2), 159–179 (2014).ADS 

    Google Scholar 
    Dower, J. F. & Mackas, D. L. “Seamount effects” in the zooplankton community near Cobb Seamount. Deep Sea Res. Part I Oceanogr. Res. Pap. 43, 837–858 (1996).ADS 

    Google Scholar 
    Ma, J. et al. Analysis of differences in nutrients chemistry in seamount seawaters in the Kocebu and M5 seamounts in Western Pacific Ocean. J. Oceanol. Limnol. 39(5), 1662–1674 (2021).ADS 

    Google Scholar 
    Denda, A., Mohn, C., Wehrmann, H. & Christiansen, B. Microzooplankton and meroplanktonic larvae at two seamounts in the subtropical and tropical NE Atlantic. J. Mar. Biol. Assoc. U. K. 97(1), 1–27 (2017).
    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17(2), 455–473 (2020).ADS 
    CAS 

    Google Scholar 
    Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton Methodology Manual (Academic Press, 2000).
    Google Scholar 
    Zhang, X. & Dam, H. G. Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 44, 2191–2202 (1997).ADS 
    CAS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).
    Google Scholar 
    Ikeda, T. Respiration and ammonia excretion by marine metazooplankton taxa: synthesis toward a global-bathymetric model. Mar. Biol. 161(12), 2753–2766 (2014).CAS 

    Google Scholar 
    Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 47(1), 137–158 (2000).ADS 
    CAS 

    Google Scholar 
    Andersen, V. et al. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). J. Plankton Res. 26(3), 275–293 (2004).
    Google Scholar  More