More stories

  • in

    Characterizing phenotypic diversity in marine populations of the threespine stickleback

    Bell, M. A. & Foster, S. A. The Evolutionary Biology of the Threespine Stickleback (Oxford University Press, 1994).
    Google Scholar 
    Seebacher, F., Webster, M. M., James, R. S., Tallis, J. & Ward, A. J. W. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). R. Soc. Open Sci. 3, 160316 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63, 2004–2016 (2009).PubMed 

    Google Scholar 
    Svanbäck, R. & Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 180, 50–59 (2012).PubMed 

    Google Scholar 
    Caldecutt, W. J. & Adams, D. C. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998, 827–838 (1998).
    Google Scholar 
    Yershov, P. & Sukhotin, A. Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse. Polar Biol. 38, 1813–1823 (2015).
    Google Scholar 
    Dorgham, A. S. et al. Morphological variation of threespine stickleback (Gasterosteus aculeatus) on different stages of spawning period. Proc. KarRC RAS 59–73 (2018). https://doi.org/10.17076/them819.DeFaveri, J. & Merilä, J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J. Evol. Biol. 26, 1700–1715 (2013).CAS 
    PubMed 

    Google Scholar 
    Shaw, K. A., Scotti, M. L. & Foster, S. A. Ancestral plasticity and the evolutionary diversification of courtship behaviour in threespine sticklebacks. Anim. Behav. 73, 415–422 (2007).
    Google Scholar 
    McGee, M. D., Schluter, D. & Wainwright, P. C. Functional basis of ecological divergence in sympatric stickleback. BMC Evol. Biol. 13, 277 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Berner, D., Grandchamp, A.-C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).PubMed 

    Google Scholar 
    Walker, J. A. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61, 3–50 (1997).
    Google Scholar 
    Hagen, D. W. & Gilbertson, L. G. Geographic variation and environmental selection in Gasterosteus aculeatus L. in the Pacific Northwest America. Evolution 26, 32–51 (1972).CAS 
    PubMed 

    Google Scholar 
    Smith, C., Zięba, G., Spence, R., Klepaker, T. & Przybylski, M. Three-spined stickleback armour predicted by body size, minimum winter temperature and pH. J. Zool. 311, 13–22 (2020).
    Google Scholar 
    Aguirre, W. E. & Bell, M. A. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment: Stickleback body shape evolution. Biol. J. Linn. Soc. 105, 817–831 (2012).
    Google Scholar 
    Lavin, P. A. & McPhail, J. D. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): Site-specific differentiation of trophic morphology. Can. J. Zool. 63, 2632–2638 (1985).
    Google Scholar 
    Matthews, B., Marchinko, K. B., Bolnick, D. I. & Mazumder, A. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91, 1025–1034 (2010).PubMed 

    Google Scholar 
    Lefébure, R., Larsson, S. & Byström, P. A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 79, 1815–1827 (2011).PubMed 

    Google Scholar 
    Foster, S. A. Inference of evolutionary pattern: Diversionary displays of three-spined sticklebacks. Behav. Ecol. 5, 114–121 (1992).
    Google Scholar 
    Taylor, E. B. & McPhail, J. D. Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biol. J. Linn. Soc. 66, 271–291 (1999).
    Google Scholar 
    Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J. A. & Bell, M. A. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J. Zool. 252, 293–302 (2000).
    Google Scholar 
    Kristjánsson, B. K., Skúlason, S. & Noakes, D. L. G. Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evol. Ecol. Res. 4, 659–672 (2002).
    Google Scholar 
    Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. & Foster, S. A. A test of the “flexible stem” model of evolution: Ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449–462 (2008).PubMed 

    Google Scholar 
    Arif, S., Aguirre, W. E. & Bell, M. A. Evolutionary diversification of opercle shape in Cook Inlet threespine stickleback. Biol. J. Linn. Soc. 97, 832–844 (2009).
    Google Scholar 
    Terekhanova, N. V. et al. Fast evolution from precast bricks: Genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widespread parallel evolution of the stickleback genome. Curr. Biol. 29, 530–537 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Ghani, N. I., Herczeg, G. & Merilä, J. Effects of perceived predation risk and social environment on the development of three-spined stickleback (Gasterosteus aculeatus) morphology. Biol. J. Linn. Soc. 118, 520–535 (2016).
    Google Scholar 
    DeFaveri, J. & Merilä, J. Local adaptation to salinity in the three-spined stickleback?. J. Evol. Biol. 27, 290–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Jakubavičiūtė, E., De Blick, Y., Dainys, J., Ložys, L. & Olsson, J. Morphological divergence of three-spined stickleback in the Baltic Sea—Implications for stock identification. Fish. Res. 204, 305–315 (2018).
    Google Scholar 
    Yanos, C. L. et al. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol. Evol. 00, 1–12 (2021).
    Google Scholar 
    Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).PubMed 

    Google Scholar 
    Ortí, G., Bell, M. A., Reimchen, T. E. & Meyer, A. Global survey of mitochondrial DNA sequences in the threespine sticklebacks: Evidence for recent migrations. Evolution 48, 608–622 (1994).PubMed 

    Google Scholar 
    Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe: Evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).PubMed 

    Google Scholar 
    Thomson, R. E. Oceanography of the British Columbia Coast (Department of Fisheries and Oceans, 1981).
    Google Scholar 
    Emmett, R. et al. Geographic signatures of North American west coast estuaries. Estuaries 23, 765 (2000).CAS 

    Google Scholar 
    Dallimore, A. & Jmieff, D. Canadian west coast fjords and inlets. Geol. Soc. Spec. Pub. 344, 143–162 (2010).
    Google Scholar 
    Schoch, G. C., Albert, D. M. & Shanley, C. S. An estuarine habitat classification for a complex fjordal island archipelago. Estuaries Coasts 37, 160–176 (2014).
    Google Scholar 
    Rudnick, D. L. & Ferrari, R. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283, 526–529 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).PubMed 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).CAS 
    PubMed 

    Google Scholar 
    Webster, M. M., Atton, N., Hart, P. J. B. & Ward, A. J. W. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PLoS ONE 6, e21060 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish. Biol. 70, 1484–1503 (2007).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biol. J. Linn. Soc. 95, 505–516 (2008).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: Potential for rapid shifts in colonizing populations. J. Morphol. 272, 590–597 (2011).CAS 
    PubMed 

    Google Scholar 
    Morris, M. R. J. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol. 23, 3226–3240 (2014).PubMed 

    Google Scholar 
    Ramler, D., Mitteroecker, P., Shama, L. N. S., Wegner, K. M. & Ahnelt, H. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J. Evol. Biol. 27, 497–507 (2014).CAS 
    PubMed 

    Google Scholar 
    Mazzarella, A. B., Voje, K. L., Hansson, T. H., Taugbøl, A. & Fischer, B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J. Evol. Biol. 28, 667–677 (2015).CAS 
    PubMed 

    Google Scholar 
    Leinonen, T., Cano, J. M., Mäkinen, H. & Merilä, J. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J. Evol. Biol. 19, 1803–1812 (2006).CAS 
    PubMed 

    Google Scholar 
    Schluter, D., Marchinko, K. B., Barrett, R. D. H. & Rogers, S. M. Natural selection and the genetics of adaptation in threespine stickleback. Phil. Trans. R. Soc. B 365, 2479–2486 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Rogers, S. M. et al. Genetic signature of adaptive peak shift in threespine stickleback. Evolution 66, 2439–2450 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Jamniczky, H. A., Barry, T. N. & Rogers, S. M. Eco-evo-devo in the study of adaptive divergence: Examples from threespine stickleback (Gasterosteus aculeatus). Integr. Comp. Biol. 55, 166–178 (2015).PubMed 

    Google Scholar 
    Gow, J. L., Rogers, S. M., Jackson, M. & Schluter, D. Ecological predictions lead to the discovery of a benthic–limnetic sympatric species pair of threespine stickleback in Little Quarry Lake, British Columbia. Can. J. Zool. 86, 564–571 (2008).
    Google Scholar 
    McPhail, J. D. Genetic evidence for a species pair in Enos Lake, British Columbia. Can. J. Zool. 62, 1402–1408 (1984).
    Google Scholar 
    McPhail, J. D. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Origin of the species pairs. Can. J. Zool. 71, 515–523 (1993).
    Google Scholar 
    Kimmel, C. B., Aguirre, W., Ullmann, B., Currey, M. & Cresko, W. Allometric change accompanies opercular shape evolution in Alaskan threespine sticklebacks. Behaviour 145, 669–691 (2008).
    Google Scholar 
    Wootton, R. J. A Functional Biology of Sticklebacks (Croom Helm, 1984).
    Google Scholar 
    Kitano, J., Mori, S. & Peichel, C. L. Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2, 336–349 (2007).
    Google Scholar 
    Aguirre, W. E., Ellis, K. E., Kusenda, M. & Bell, M. A. Phenotypic variation and sexual dimorphism in anadromous threespine stickleback: Implications for postglacial adaptive radiation. Biol. J. Linn. Soc. 95, 465–478 (2008).
    Google Scholar 
    Davenne, E. & Masson, D. Water properties in the Straits of Georgia and Juan de Fuca. 41 http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/straitofgeorgia/JdFG_e.pdf (2001).Irvine, J. R. & Crawford, W. R. State of the Ocean Report for the Pacific North Coast Integrated Management Area (PNCIMA). 51 (2011).DFO. Data from British Columbia (BC) Lighthouses. Department of Fisheries and Oceans https://www.dfo-mpo.gc.ca/science/data-donnees/lightstations-phares/index-eng.html (2020).Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst. 25, 547–572 (1994).
    Google Scholar 
    Griffin, D. A. & LeBlond, P. H. Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast Shelf. Sci. 30, 275–297 (1990).ADS 

    Google Scholar 
    Vaz, N., Dias, J. M., Leitão, P. & Martins, I. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dyn. 55, 416–429 (2005).ADS 

    Google Scholar 
    Rybkina, E. V., Ivanova, T. S., Ivanov, M. V., Kucheryavyy, A. V. & Lajus, D. L. Habitat preference of three-spined stickleback juveniles in experimental conditions and in wild eelgrass. J. Mar. Biol. Ass. UK 97, 1437–1445 (2017).
    Google Scholar 
    Flynn, S., Cadrin, C. & Filatow, D. Estuaries in British Columbia. 6 (2006).Kelly, J. R., Proctor, H. & Volpe, J. P. Intertidal community structure differs significantly between substrates dominated by native eelgrass (Zostera marina L.) and adjacent to the introduced oyster Crassostrea gigas (Thunberg) in British Columbia, Canada. Hydrobiologia 596, 57–66 (2008).
    Google Scholar 
    Fagherazzi, S. et al. Ecogeomorphology of Salt Marshes. In The Ecogeomorphology of Tidal Marshes (eds Blum, L. K. & Marani, M.) 182–200 (American Geophysical Union, 2004).
    Google Scholar 
    Campbell, A. Vegetation-environment relationships and plant community classification and ordination in British Columbia coastal salt marshes. Master’s Thesis. (University of British Columbia, 1986).Kjerfve, B. Comparative oceanography of coastal lagoons. in Estuarine Variability (ed. Wolfe, D. A.) 63–81 (Academic Press, 1986). https://doi.org/10.1016/B978-0-12-761890-6.50009-5.Barnes, R. S. K. & de Villiers, C. J. Animal abundance and food availability in coastal lagoons and intertidal marine sediments. J. Mar. Biol. Ass. UK 80, 193–202 (2000).
    Google Scholar 
    Saimoto, R. K. Life history of marine stickleback in Oyster Lagoon, British Columbia. Master’s Thesis. (University of British Columbia, 1993).King, R. W. The threespine stickleback adaptive radiation: Salinity, plasticity, and the important of ancestry. Doctoral Dissertation. (Clark University, 2016).Ahnelt, H. Imprecise naming: the anadromous and the sea spawning threespine stickleback should be discriminated by names. Biologia 73, 389–392 (2018).
    Google Scholar 
    Morris, M. R. J., Bowles, E., Allen, B. E., Jamniczky, H. A. & Rogers, S. M. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol. Biol. 18, 113 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S.-Y., Costa, M. M., Esteve-Codina, A. & Velando, A. Transcriptional mechanisms underlying life-history responses to climate change in the three-spined stickleback. Evol. Appl. 10, 718–730 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sambrook, R. J. Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh. Master’s Thesis. (University of British Columbia, 1990). https://doi.org/10.14288/1.0098704.Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, G. J. A. & Strange, C. D. The distribution of salmonids in upland streams in relation to depth and gradient. J. Fish Biol. 20, 579–591 (1982).
    Google Scholar 
    Macdonald, J. S., Birtwell, I. K. & Kruzynski, G. M. Food and habitat utilization by juvenile salmonids in the Campbell River estuary. Can. J. Fish. Aquat. Sci. 44, 1233–1246 (1987).
    Google Scholar 
    Everest, F. H. & Chapman, D. W. Habitat selection and spatial interaction by juvenile chinook salmon and steelhead trout in two Idaho streams. J. Fish. Res. Bd. Can. 29, 91–100 (2011).
    Google Scholar 
    McPhail, J. D. Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of south-western British Columbia. In The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 399–471 (Oxford University Press, 1994).
    Google Scholar 
    Kimmel, C. B. et al. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 66, 419–434 (2012).PubMed 

    Google Scholar 
    Østbye, K. et al. The temporal window of ecological adaptation in postglacial lakes: A comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evol. Biol. 16, 102 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Aguirre, W. E. & Akinpelu, O. Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 77, 802–821 (2010).CAS 
    PubMed 

    Google Scholar 
    Reimchen, T. E. & Nosil, P. Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58, 1274 (2004).CAS 
    PubMed 

    Google Scholar 
    Pistore, A. Ontogeny of population-specific phenotypic variation in the threespine stickleback. Master’s Thesis. (University of Calgary, 2018).Yurtseva, A. O. et al. Aging three-spined sticklebacks Gasterosteus aculeatus: Comparison of estimates from three structures. J. Fish Biol. 95, 802–811 (2019).PubMed 

    Google Scholar 
    Picard, P. Jr., Dodson, J. J. & FitzGerald, G. J. Habitat segregation among the age groups of Gasterosteus aculeatus (Pisces: Gasterosteidae) in the middle St. Lawrence estuary, Canada. Can. J. Zool. 68, 1202–1208 (1990).
    Google Scholar 
    Reimchen, T. E., Bergström, C. A. & Nosil, P. Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol. Ecol. Res. 15, 241–269 (2013).
    Google Scholar 
    Raeymaekers, J. A. M., Delaire, L. & Hendry, A. P. Genetically based differences in nest characteristics between lake, inlet, and hybrid threespine stickleback from the Misty system, British Columbia, Cananda. Evol. Ecol. Res. 11, 905–919 (2009).
    Google Scholar 
    Di Poi, C., Lacasse, J., Rogers, S. M. & Aubin-Horth, N. Evolution of stress reactivity in stickleback. Evol. Ecol. Res. 17, 395–405 (2016).
    Google Scholar 
    Weber, J. N., Bradburd, G. S., Stuart, Y. E., Stutz, W. E. & Bolnick, D. I. Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. Evolution 71, 342–356 (2017).PubMed 

    Google Scholar 
    Rohlf, F. J. Package: tpsUtil, tps file utility program. Version 1. 61. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2015).Rohlf, F. J. Package: tpsDig, digitize landmarks and outlines. Version 2. 05. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2005).Adams, D. C., Collyer, M. L. & Kaliontzopoupou, A. Geomorph: Software for geometric morphometric analysis (2020).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2012).MATH 

    Google Scholar 
    Galipaud, M., Gillingham, M. A. F., David, M. & Dechaume-Moncharmont, F.-X. Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods Ecol. Evol. 5, 983–991 (2014).
    Google Scholar 
    Scheipl, F., Greven, H. & Kuechenhoff, H. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput. Stat. Data Anal. 52, 3283–3299 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Robinson, J. James Robinson’s functions. Version 0. 0. 0. 1. Retrieved from https://rdrr.io/github/jpwrobinson/funk/. (2019).Bartoń, K. R Package: MuMIn: Multi-model inference. Version 1. 43. 17. Retrieved from https://CRAN.R-project.org/package=MuMIn. (2020).Frank, A. Diagnosing collinearity in mixed models from lme4 R package, vif.mer function [R script]. Retrieved from https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. GitHub https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. (2011).Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impacts of Lysinibacillus sphaericus on mosquito larval community composition and larval competition between Culex pipiens and Aedes albopictus

    Project 1: mesocosm field experimentsMesocosm experiments took place at Lockwood Farm located in Hamden, Connecticut. Individual mesocosms were composed of black 20 L cylindrical plastic containers filled with 12 L tap water and seeded with 10 mg of a 3:2 ratio liver powder/brewer’s yeast mixture and 1 g of grass hay. Drain-holes were drilled into the sides of each container 5 mm from the 12 L surface to allow flooding for Aedes spp. egg emergence and to allow overflow beyond this level due to precipitation. Four experimental mesocosm clusters were dispersed throughout the Lockwood Farm in microhabitats previously sampled in Eastwood et al.22. Clusters contained 4 mesocosms spaced 3 m apart in a 2 × 2 grid. We utilized four L. sphaericus treatment levels in each cluster: no L. sphaericus, the LC50 (0.053 ITU/ml) and LC95 (1.0 ITU/ml) for Culex pipiens derived from Burtis et al.3, and the label rate of L. sphaericus (~ 1.2 ITU/ml). All treatments were derived from VectoLex WDG. Prior to insecticide application, we prepared 1 L of a 1000 ITU/ml stock solution. To inoculate each mesocosm, we measured the depth of the container’s water column, calculated water volume, and applied the appropriate amount of stock to achieve the target LC value. Replicate insecticide treatments were randomized within each cluster, and insecticides were applied 30-days post mesocosm seeding with nutrients. All mesocosms in each cluster were rotated within the 2 × 2 grid each week. Two clusters were then randomly chosen for a second application of L. sphaericus 30-days post initial insecticide application.To sample the larval habitat of each mesocosm, we performed a figure-8 sweep with an aquarium fish net (4 × 3-in. opening, Penn-Plax) each Monday and Thursday of the week for each week of the experiment. Sweep contents were washed from the net into a white photo development pan, and pupae were removed for in-lab identification after eclosion following a dichotomous key23. All larvae were then returned to the mesocosm. This sampling protocol minimized destruction of larval habitats and influence of interspecific interactions due to removal sampling.In addition to sampling containers for pupae, we collected water samples from each container for an in-lab bioassay to determine the realized mortality of the larval environment. Due to time constraints of the field crew, a 50% randomized sample of containers were sampled on Monday with the remaining 50% sampled on Thursday of each sampling week. Bioassay procedures followed McMillan et al.24 for Cx. pipiens with the addition of screening mortality in CAES’ Ae. albopictus colonies. We finally performed in-lab susceptibility trials to L. sphaericus with larvae from CAES’ Cx. pipiens and Ae. albopictus colonies to confirm each species’ colony varied in their sensitivity to the product. Briefly, 15 3rd to 4th instar larvae of each species per replicate dose were exposed to a wide range of L. sphaericus concentrations and mortality was recorded 24-h post-exposure. Lethal concentrations were then estimated from a generalized linear model with mortality (corrected for mortality in untreated control replicates) as the response term and the log10-dose as the predictor term.Primary endpoints from the field experiment included the number and species identity of pupae collected from each mesocosm. We compared total weekly pupal collections per mesocosm using a generalized linear mixed model (GLMM) framework with treatment level and cluster ID as fixed effects, species ID and week of collection as a random effect, and a Poisson-error distribution. We repeated this analysis excluding all collected Culex spp. to examine how the L. sphaericus treatments impacted the more tolerant Aedes spp. The primary endpoint for the mortality assays was the corrected larval mortality. We initially compared mortality using a species-specific GLMM with L. sphaericus treatment concentration and treatment period as fixed effects, week of collection as a random effect, and a binomial-error distribution. Preliminary analyses revealed negligible variance attributed to week of collection, so all subsequent models were a GLM. All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, ggplot228, ggeffects29, and glmmTMB30.Project 2: laboratory competition assaysCompetition assays took place at CAES’ main facility in New Haven, CT. This facility contains an Ae. albopictus colony (founded circa 2014 from Stratford, CT) and a Cx. pipiens colony (founded circa 2018 from New Haven, CT;). Colony maintenance for each species was similar: larval rearing pans consisted of approx. 200 eggs (on papers, Ae. albopictus, or as egg rafts, Cx. pipiens) in ~ 2 L RO water and initiated with ~ 20 ml of a 1% 3:2 liver powder/brewer’s yeast slurry. Pans were held at 25.5 °C and 80% humidity and fed ~ 20 ml of the 1% slurry every other day. Pupae were removed to an eclosion chamber and adults were allowed access to 10% sucrose solution ad libitum. Aedes albopictus females were given access to defibrinated sheep’s blood (HemoStat©) through a Hemotek membrane feeder for 1 h every 2–3 weeks and moistened, fluted filter paper was provided to collect eggs. Culex pipiens females were given access to a live, restrained buttonquail overnight once per week and a small cup seeded with 5 ml 1% slurry and 15 RO ml water was provided to collect egg rafts. The use of buttonquail was reviewed and approved in accordance with CAES Institutional Animal Care and Use Committee.We performed two experiments. All experiments consisted of the following treatments: variable ratios of Ae:Cx larvae and two L. sphaericus treatments (no treatment and 0.01 ITU/ml). Larval density (40 per container) remained constant across all replicate treatments, but Ae:Cx ratios varied from 40/0, 30/10, 20/20, 10/30, and 0/40. Nutrients supplied were a low concentration (3 mg larva−1) of a 3:2 liver powder/brewer’s yeast mix applied at the beginning of the experiment. Temperature was held constant at the colony maintenance level. Assays took place in 300 ml disposable plastic cups filled with 100 ml of RO water. The first experiments consisted of the addition of the 40 larvae as newly hatched individuals (+/− 1 day between species’ hatch) at the appropriate ratios, the larval diet, and the 0.01 ITU/ml concentration (diluted from a lab stock of 1000 ITU/ml). Assays were monitored daily until all larvae were dead and/or all larvae pupated. Experiment 2 consisted of the addition of only the Cx. pipiens larvae and the larval diet. After all Cx. pipiens had pupated, containers were treated with L. sphaericus and then the Ae. Albopictus larvae were added.Primary endpoints included species-specific pupation success. Preliminary analyses in a GLMM framework revealed negligible variance attributed to a replicate ID random effect; replicate as a random term also interfered with model convergence. Preliminary analyses further revealed there was neither a significant interaction nor an improvement in the Akaike Information Criterion between the L. sphaericus treatment and initial starting condition terms. Thus, we adopted a GLM rather than a GLMM framework in all further analyses, and species-specific mortality was analyzed as a binomial response term with treatment and initial starting conditions included as fixed effects All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, and ggplot228. More

  • in

    Optimal settings and advantages of drones as a tool for canopy arthropod collection

    UAVs indeed proved to be a practical, efficient, and accurate tool in sampling insects within four different habitats in Quebec. Furthermore, different drone settings of speed, height, and net diameter may yield different insect orders, which can be useful in studies that aim to target specific insects. Nonetheless, only height, and not speed, net diameter or drone type influenced insect abundance. Compared with Lindgren funnels, drones were not only able to catch more insects in less time, but also a wider array of the insect community diversity.Our study successfully shows the promise of using drones to collect forest and wetland canopy arthropods. More arthropods were collected flying at zero meters (grazing the canopy) than flying at one meter, while different speed, net size and drone type had less of an effect on insect yield (Fig. 2). The one-meter setting was expected to yield different arthropod diversity, such as fewer terrestrial families (ex. Araneae) and more aerial families (ex. Diptera) compared to the grazing zero-meter setting. However, the proportions of the top three orders (Diptera, Hemiptera, and Araneae) were similar among settings (Fig. 3). The capture of arachnids at one meter above the canopy can be explained by webs that are attached to taller foliage in proximity to the area, or spiders ‘ballooning’ in the airspace on silk threads25. Because canopy height was not always uniform, flying while grazing the canopy underneath the drone was at times lower than other parts of the canopy. Another explanation could be jumping spiders (ex. family Salticidae) which have been found to react to a disturbance or threat by leaping, possibly into the drone net26. Though the main three orders were in similar proportion, the one-meter setting caught five fewer orders in total than the zero-meter setting did. Flying at one meter was the only setting that captured no insects of order Coleoptera, Hymenoptera, or Orthoptera, suggesting that these orders spend time in and among the wetland canopy, and are seldom above the grassy canopy (Fig. 3). Most importantly, this setting only caught nine insects total over all flights, revealing itself to be an inefficient method of insect collection. This can be due to the number of insects available to be collected at each height. When flying at one meter, the net has access to only aerial insects in flight above the canopy (ex. flies). Flying while grazing the canopy, however, gives the researcher access to the same aerial insects in flight above the canopy, but also aerial insects in flight within the canopy (ex. bees), aerial insects at rest on the canopy (ex. leafhoppers), and terrestrial insects on the canopy (ex. ants). Thus, flying the drone while grazing the canopy opens the possibility of capturing three more insect groups compared to flying above the canopy. It is also possible that there are indeed many insects to be caught solely in the airspace, but that the ideal height for collecting insects strictly above the canopy is either less than or greater than one meter—which is the only height above the canopy that we tested.This sampling period caught three total insects from order Odonata, with two of the three being caught with the 18-inch diameter net setting (Fig. 3). As these dragonflies are typically fast flyers and of large body size, perhaps the extra diameter of the larger net was helpful in increasing the chances of catching Odonates, though we do not have enough data to make solid conclusions. This would be a valuable line of future research for studies focused on dragonflies, or other large and fast-flying insects.Flying the drone and hanging sweep net at 20 km/hr yielded the highest number and proportion of insects in the order Hemiptera, which are often found at rest within the canopy27. We speculate that the faster speed of the drone striking the grassy canopy more swiftly, thus giving the insects resting on the grasses less of an opportunity to evade the threat of the approaching net. Future studies targeting the collection of true bugs should utilize a faster drone speed in flight to optimize yield.With 84% of insects found within the second layer of our net, we conclude that our novel net design with two layers of tulle is satisfactory in retaining insects and preventing most from escaping when landing the drone. In addition to the insects counted, we never witnessed any insects flying out during landing stages. We believe that our methodology of flying the drone in quickly and covering the opening of the net with cardboard before landing the drone, in addition to the extra layer of netting, was successful at retaining the insects caught. Determining how to fly the drone and net over the two forest canopy habitats was a challenge. When flying, it was impossible for the drone camera to look both forward—to see obstacles coming up, and downwards—to see how close the net was hanging regarding the top of the canopy. For this reason, we used a second drone as a spotter for the first, the pilot of which could give instructions on moving up or down. Forest canopies were particularly difficult, as the height from one tree to the next was always different, the drone had to be constantly adjusted. We experienced many snags on branches, although they were not damaging to the net or drone. Once we became comfortable flying the drone low enough to graze the canopy, snagging became a common occurrence that was easily remedied. In fact, snagging the net probably helped in the collection of insects on those branches—a technique that could be honed and used in future studies using nets and drones over forest canopies.Over our 12 days of sampling habitat canopies with drones, we were able to determine that wetlands had the highest diversity and abundance of the four habitats examined, with lake habitats showing the lowest Shannon-Weiner Diversity index (H’), and the highest Pielou’s evenness index (J). It is unsurprising that lakes showed the most even distribution of families, as is often the case with habitats having low species richness, as there are less competitors that could dominate the habitat28. Habitat, humidity, and temperature were the most important variables affecting drone insect yield, with habitat being the common variable in all high scoring models. Wetlands had by the far the most insects collected, in addition to the highest diversity and species richness. This can be explained simply by the plant composition in wetlands compared to the other habitats. While coniferous and deciduous forests are dominated by a few species (and lakes have little to no vegetation over the water) wetlands can host a wide variety of plant species. Because insect diversity correlates with plant richness and abundance, wetlands can provide shelter and sustenance for many more groups of insects that the other habitats we studied29.Lindgren funnels disproportionately collected insects from order Coleoptera (Fig. 7). Although Lindgren funnels have been used in papers reporting results focused on insects of orders Hemiptera30,31,32,33 and Diptera34,35,36, it is unclear whether some were targeted studies or all simply bycatch of the funnel from other experiments. Instead, Lindgren funnels are overwhelmingly used in Coleoptera studies as the funnels resemble a tree and attracts various wood-boring beetles37,38,39,40,41. This attraction explains the large number and proportion of beetles caught in funnels in this study. However, diversity indices show that in three of four habitats, drones collect a higher diversity sample than the Lindgren funnels (Tables 1 and 2). Thus, though Lindgren funnels are undoubtedly effective at collecting beetles from the environment, our results indicate that the drone collection method is preferable when seeking an accurate representation of the insect diversity of the habitat. Studies focused on Coleoptera could also employ this method, which would be helpful in determining the status and proportion of beetles within the population and compared to other insect orders.In addition to the larger diversity collected by drones, the temporal advantage of this technique over the funnels can not be understated. During our study, it took three Lindgren funnel traps established for seven days to collect a total of 36 insects at the wetland sites (0.001 insect collected per minute). Comparatively, at the same height and placement, drones were able to collect 391 insects in only a combined 36 min (10.9 insects collected per minute) (Fig. 7). This large difference in both yield and time scale demonstrates that the drone collection method is vastly more efficient at arthropod sampling compared to the Lindgren funnels.While this study was successful at validating the usefulness of drones in canopy entomology studies and insect collection in general, it does have its limitations. Optimal drone settings were only examined at wetland grassy canopy sites, and it is possible that the drone might perform differently within different habitats. For example, grazing the canopy at 20 km/hr might result in high insect yield at wetlands, where the lack of obstacles made it relatively easy to fly quickly. But the same settings may be unrealistic and prone to net snagging when sampling over other habitats, such as the coniferous forest canopy. Furthermore, Lindgren funnels were an acceptable comparison to drone collection for yield and diversity at some habitats, however it was impossible to get the funnels up into the canopy where sampling took place at coniferous and deciduous sites. There is no doubt that the advantage of this method lies in its accessibility, speed, and safety—studies that need more precise and fine sampling might not benefit from drones.Overall, our research demonstrates that drones are an efficient and accurate tool in collecting a wide diversity of insects above the canopies of different habitats. Benefits included rapidly and safely sampling the airspace while drawbacks included battery life limiting the duration of sampling. If this new technique is integrated into the field of entomology, canopy studies can be done much more often, for less money, and more safely than they have been done using other techniques. In 2019, a review of the potential causes of decline of aerial insectivores concluded that insect declines and changes in high quality prey availability could be a large driver of insectivore declines9. However, there is a lack of research detailing insect trends over time. The drone collection method used in this study could provide the missing link between the need for more research of aerial canopy insects and the limitations of the current methodology in entomology. This technique can be used in conjunction with aerial insectivore surveys and diet studies to begin to determine the relationship between declining predators and prey. Future research may also use and add to our guidelines to customize drone and net settings for studies targeting specific insect orders or families. More

  • in

    Intrinsic individual variation in daily activity onset and plastic responses on temporal but not spatial scales in female great tits

    Carothers, J. H. & Jaksić, F. M. Time as a Niche difference: The role of interference competition. Oikos 42, 403–406 (1984).
    Google Scholar 
    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).
    Google Scholar 
    Lesmeister, D. B., Nielsen, C. K., Schauber, E. M. & Hellgren, E. C. Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildl. Monogr. 191, 1–61 (2015).
    Google Scholar 
    Chmura, H. E. et al. Plasticity and repeatability of activity patterns in free-living Arctic ground squirrels. Anim. Behav. 169, 81–91 (2020).
    Google Scholar 
    Helm, B. et al. Two sides of a coin: Ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160246 (2017).
    Google Scholar 
    Alós, J., Martorell-Barceló, M. & Campos-Candela, A. Repeatability of circadian behavioural variation revealed in free-ranging marine fish. R. Soc. Open Sci. 4, 160791 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Schlicht, L. & Kempenaers, B. The effects of season, sex, age and weather on population-level variation in the timing of activity in Eurasian Blue Tits Cyanistes caeruleus. Ibis 162, 1146–1162 (2020).
    Google Scholar 
    Helm, B. & Visser, M. E. Heritable circadian period length in a wild bird population. Proc. R. Soc. B Biol. Sci. 277, 3335–3342 (2010).
    Google Scholar 
    Nikhil, K. L., Abhilash, L. & Sharma, V. K. Molecular correlates of circadian clocks in fruit fly drosophila melanogaster populations exhibiting early and late emergence chronotypes. J. Biol. Rhythms 31, 125–141 (2016).CAS 
    PubMed 

    Google Scholar 
    Allebrandt, K. V. et al. CLOCK gene variants associate with sleep duration in two independent populations. Biol. Psychiatry 67, 1040–1047 (2010).CAS 
    PubMed 

    Google Scholar 
    Maukonen, M. et al. Genetic associations of chronotype in the finnish general population. J. Biol. Rhythms 35, 501–511 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roecklein, K. A. et al. Melanopsin gene variations interact with season to predict sleep onset and chronotype. Chronobiol. Int. 29, 1036–1047 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinmeyer, C., Kempenaers, B. & Mueller, J. C. Testing for associations between candidate genes for circadian rhythms and individual variation in sleep behaviour in blue tits. Genetica 140, 219–228 (2012).CAS 
    PubMed 

    Google Scholar 
    Stuber, E. F., Baumgartner, C., Dingemanse, N. J., Kempenaers, B. & Mueller, J. C. Genetic correlates of individual differences in sleep behavior of free-living great tits (Parus major). G3 GenesGenomesGenetics 6, 599–607 (2016).CAS 

    Google Scholar 
    Cuthill, I. C. & Macdonald, W. A. Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. Behav. Ecol. Sociobiol. 26, 209–216 (1990).
    Google Scholar 
    Grava, T., Grava, A. & Otter, K. A. Supplemental feeding and dawn singing in black-capped chickadees. Condor 111, 560–564 (2009).
    Google Scholar 
    Saggese, K., Korner-Nievergelt, F., Slagsvold, T. & Amrhein, V. Wild bird feeding delays start of dawn singing in the great tit. Anim. Behav. 81, 361–365 (2011).
    Google Scholar 
    Dominoni, D. M. Effects of artificial light at night on daily and seasonal organization of European blackbirds (Turdus merula). https://kops.uni-konstanz.de/handle/123456789/32198 Accessed 23 February 2022 (2013).
    Lehmann, M., Spoelstra, K., Visser, M. E. & Helm, B. Effects of temperature on circadian clock and chronotype: An experimental study on a passerine bird. Chronobiol. Int. 29, 1062–1071 (2012).PubMed 

    Google Scholar 
    Zsebők, S. et al. Short- and long-term repeatability and pseudo-repeatability of bird song: Sensitivity of signals to varying environments. Behav. Ecol. Sociobiol. 71, 154 (2017).
    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period and is followed by a sleep rebound. Environ. Pollut. 215, 125–134 (2016).CAS 
    PubMed 

    Google Scholar 
    Grunst, M. L., Grunst, A. S., Pinxten, R. & Eens, M. Variable and consistent traffic noise negatively affect the sleep behavior of a free-living songbird. Sci. Total Environ. 778, 146338 (2021).CAS 
    PubMed 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).CAS 
    PubMed 

    Google Scholar 
    Stuber, E. F. et al. Perceived predation risk affects sleep behaviour in free-living great tits Parus major. Anim. Behav. 98, 157–165 (2014).
    Google Scholar 
    Niemelä, P. T. & Dingemanse, N. J. Individual versus pseudo-repeatability in behaviour: Lessons from translocation experiments in a wild insect. J. Anim. Ecol. 86, 1033–1043 (2017).PubMed 

    Google Scholar 
    Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).PubMed 

    Google Scholar 
    Niemelä, P. T. & Dingemanse, N. J. On the usage of single measurements in behavioural ecology research on individual differences. Anim. Behav. 145, 99–105 (2018).
    Google Scholar 
    Browne, W. J., McCleery, R. H., Sheldon, B. C. & Pettifor, R. A. Using cross-classified multivariate mixed response models with application to life history traits in great tits (Parus major). Stat. Model. 7, 217–238 (2007).MathSciNet 
    MATH 

    Google Scholar 
    Pettifor, R. A., Sheldon, B. C., Browne, W. J., Rasbash, J. & McCleery, R.
    H. Partitioning of Phenotypic Variance in Life-history Traits in the Great Tit, Parus major.
    https://seis.bristol.ac.uk/~frwjb/materials/phenovar.pdf (2003). Accessed 23 February 2022.Casasole, G. et al. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp. Biochem. Physiol. A 210, 14–21 (2017).CAS 

    Google Scholar 
    Payevsky, V. A. Mortality rate and population density regulation in the great tit, Parus major L.: A review. Russ. J. Ecol. 37, 180 (2006).
    Google Scholar 
    Vermeulen, A., Eens, M., Van Dongen, S. & Müller, W. Does baseline innate immunity change with age? A multi-year study in great tits. Exp. Gerontol. 92, 67–73 (2017).CAS 
    PubMed 

    Google Scholar 
    Haftorn, S. Incubation during the egg-laying period in relation to clutch-size and other aspects of reproduction in the great tit Parus major. Ornis Scand. Scand. J. Ornithol. 12, 169–185 (1981).
    Google Scholar 
    Grunst, M. L., Grunst, A. S., Pinxten, R., Eens, G. & Eens, M. An experimental approach to investigating effects of artificial light at night on free-ranging animals: Implementation, results and directions for future research. J. Vis. Exp. 180, e63381 (2022).

    Google Scholar 
    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Specht, R. Avisoft-saslab pro: Sound analysis and synthesis laboratory. Avis. Bioacoustics
    http://avisoft.com/SASLab_deutsch.pdf Accessed 23 February 2022 (2002).Iserbyt, A., Griffioen, M., Borremans, B., Eens, M. & Müller, W. How to quantify animal activity from radio-frequency identification (RFID) recordings. Ecol. Evol. 8, 10166–10174 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Light pollution disrupts sleep in free-living animals. Sci. Rep. 5, 13557 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Meijdam, M., Müller, W., Thys, B. & Eens, M. No relationship between chronotype and timing of breeding when variation in daily activity patterns across the breeding season is taken into account. Ecol. Evol. 12, e9353 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Found. Stat. Comput. https://www.R-project.org/ Accessed 23 February 2022 (2013).Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).
    Google Scholar 
    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
    Google Scholar 
    Mitchell, D. J., Dujon, A. M., Beckmann, C. & Biro, P. A. Temporal autocorrelation: A neglected factor in the study of behavioral repeatability and plasticity. Behav. Ecol. 31, 222–231 (2020).
    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Graham, J. L., Cook, N. J., Needham, K. B., Hau, M. & Greives, T. J. Early to rise, early to breed: A role for daily rhythms in seasonal reproduction. Behav. Ecol. 28, 1266–1271 (2017).
    Google Scholar 
    Maury, C., Serota, M. W. & Williams, T. D. Plasticity in diurnal activity and temporal phenotype during parental care in European starlings Sturnus vulgaris. Anim. Behav. 159, 37–45 (2020).
    Google Scholar 
    Schlicht, L., Valcu, M., Loës, P., Girg, A. & Kempenaers, B. No relationship between female emergence time from the roosting place and extrapair paternity. Behav. Ecol. 25, 650–659 (2014).
    Google Scholar 
    Steinmeyer, C., Schielzeth, H., Mueller, J. C. & Kempenaers, B. Variation in sleep behaviour in free-living blue tits, Cyanistes caeruleus: Effects of sex, age and environment. Anim. Behav. 80, 853–864 (2010).
    Google Scholar 
    Stuber, E. F., Dingemanse, N. J., Kempenaers, B. & Mueller, J. C. Sources of intraspecific variation in sleep behaviour of wild great tits. Anim. Behav. 106, 201–221 (2015).
    Google Scholar 
    Raap, T., Pinxten, R. & Eens, M. Cavities shield birds from effects of artificial light at night on sleep. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 449–456 (2018).
    Google Scholar 
    Edelaar, P., Siepielski, A. M. & Clobert, J. Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. Evolution 62, 2462–2472 (2008).PubMed 

    Google Scholar 
    Gorissen, L. & Eens, M. Interactive communication between male and female great tits (Parus major) during the dawn chorus. Auk 121, 184–191 (2004).
    Google Scholar 
    Halfwerk, W., Bot, S. & Slabbekoorn, H. Male great tit song perch selection in response to noise-dependent female feedback. Funct. Ecol. 26, 1339–1347 (2012).
    Google Scholar 
    Steinmeyer, C., Mueller, J. C. & Kempenaers, B. Individual variation in sleep behaviour in blue tits Cyanistes caeruleus: Assortative mating and associations with fitness-related traits. J. Avian Biol. 44, 159–168 (2013).
    Google Scholar 
    Cain, J. R. & Wilson, W. O. The influence of specific environmental parameters on the circadian rhythms of chickens. Poult. Sci. 53, 1438–1447 (1974).CAS 
    PubMed 

    Google Scholar 
    Zhang, Z. C. et al. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct. Poult. Sci. 95, 1653–1659 (2016).CAS 
    PubMed 

    Google Scholar 
    Womack, R. J. Clocks in the wild: biological rhythms of great tits and the environment. https://theses.gla.ac.uk/81345/ Accessed 23 February 2022 (2020).Dominoni, D., Smit, J. A. H., Visser, M. E. & Halfwerk, W. Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major). Environ. Pollut. 256, 113314 (2020).CAS 
    PubMed 

    Google Scholar 
    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
    Google Scholar  More

  • in

    Foundation plant species provide resilience and microclimatic heterogeneity in drylands

    Hantson, S., Huxman, T. E., Kimball, S., Randerson, J. T. & Goulden, M. L. Warming as a driver of vegetation loss in the Sonoran Desert of California. J. Geophys. Res. Biogeosci. 126, e2020JG005942. https://doi.org/10.1029/2020JG005942 (2021).Article 
    ADS 

    Google Scholar 
    Lortie, C. J., Filazzola, A., Kelsey, R., Hart, A. K. & Butterfield, H. S. Better late than never: A synthesis of strategic land retirement and restoration in California. Ecosphere 9, e02367. https://doi.org/10.1002/ecs2.2367 (2018).Article 

    Google Scholar 
    Ye, J.-S., Reynolds, J. F., Sun, G.-J. & Li, F.-M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Clim. Change 119, 321–332. https://doi.org/10.1007/s10584-013-0719-2 (2013).Article 
    ADS 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966. https://doi.org/10.1038/s41598-017-17966-y (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021. https://doi.org/10.1126/sciadv.abf8021 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stahle David, W. Anthropogenic megadrought. Science 368, 238–239. https://doi.org/10.1126/science.abb6902 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318. https://doi.org/10.1126/science.aaz9600 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bryant, B. P. et al. Shaping land use change and ecosystem restoration in a water-stressed agricultural landscape to achieve multiple benefits. Front. Sustain. Food Syst. 4, 138 (2020).Article 

    Google Scholar 
    Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Chang. 11, 449–455. https://doi.org/10.1038/s41558-021-01034-5 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E. & Dennehy, K. F. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob. Change Biol. 11, 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x (2005).Article 
    ADS 

    Google Scholar 
    Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20, 3335–3370. https://doi.org/10.1002/hyp.6335 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kelsey, R., Hart, A., Butterfield, H. S. & Vink, D. Groundwater sustainability in the San Joaquin Valley: Multiple benefits if agricultural lands are retired and restored strategically. Calif. Agric. 2, 151–154 (2018).Article 

    Google Scholar 
    Capdevila, P. et al. Reconciling resilience across ecological systems, species and subdisciplines. J. Ecol. 109, 3102–3113. https://doi.org/10.1111/1365-2745.13775 (2021).Article 

    Google Scholar 
    Thebault, A., Mariotte, P., Lortie, C. & MacDougall, A. Land management trumps the effects of climate change and elevated CO2 on grassland functioning. J. Ecol. 102, 896–904. https://doi.org/10.1111/1365-2745.12236 (2014).Article 

    Google Scholar 
    Turney, C., Ausseil, A.-G. & Broadhurst, L. Urgent need for an integrated policy framework for biodiversity loss and climate change. Nature Ecol. Evol. 4, 996–996. https://doi.org/10.1038/s41559-020-1242-2 (2020).Article 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729. https://doi.org/10.1038/s41586-020-2784-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ellison, A. M. Foundation species, non-trophic interactions, and the value of being common. iScience 13, 254–268. https://doi.org/10.1016/j.isci.2019.02.020 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, M. J., Carbonell, E. P., Losapio, G., Schlüter, P. M. & Schöb, C. Foundation species promote local adaptation and fine-scale distribution of herbaceous plants. J. Ecol. 109, 191–203. https://doi.org/10.1111/1365-2745.13461 (2021).Article 
    CAS 

    Google Scholar 
    Bagley, J. E. et al. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains. J. Geophys. Res.: Atmos. 122, 5793–5807. https://doi.org/10.1002/2017JD026740 (2017).Article 
    ADS 

    Google Scholar 
    Norris, C., Hobson, P. & Ibisch, P. L. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J. Appl. Ecol. 49, 562–570. https://doi.org/10.1111/j.1365-2664.2011.02084.x (2012).Article 

    Google Scholar 
    Brooker, R. W. et al. Tiny niches and translocations: The challenge of identifying suitable recipient sites for small and immobile species. J. Appl. Ecol. 55, 621–630. https://doi.org/10.1111/1365-2664.13008 (2018).Article 

    Google Scholar 
    Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362. https://doi.org/10.1038/s41558-020-0717-0 (2020).Article 
    ADS 

    Google Scholar 
    Milling, C. R. et al. Habitat structure modifies microclimate: An approach for mapping fine-scale thermal refuge. Methods Ecol. Evol. 9, 1648–1657. https://doi.org/10.1111/2041-210X.13008 (2018).Article 

    Google Scholar 
    Ghazian, N., Zuliani, M. & Lortie, C. J. Micro-climatic amelioration in a california desert: Artificial shelter versus shrub canopy. J. Ecol. Eng. 21, 216–228. https://doi.org/10.12911/22998993/126875 (2020).Article 

    Google Scholar 
    Wright, A. J., Barry, K. E., Lortie, C. J. & Callaway, R. M. Biodiversity and ecosystem functioning: Have our experiments and indices been underestimating the role of facilitation?. J. Ecol. 109, 1962–1968. https://doi.org/10.1111/1365-2745.13665 (2021).Article 

    Google Scholar 
    Germano, D. J. et al. The San Joaquin Desert of California: Ecologically misunderstood and overlooked. Nat. Areas J. 31, 138–147. https://doi.org/10.3375/043.031.0206 (2011).Article 

    Google Scholar 
    Fairbairn, M., LaChance, J., De Master, K. T. & Ashwood, L. In vino veritas, in aqua lucrum: Farmland investment, environmental uncertainty, and groundwater access in California’s Cuyama Valley. Agric. Hum. Values 38, 285–299. https://doi.org/10.1007/s10460-020-10157-y (2021).Article 

    Google Scholar 
    Filazzola, A., Lortie, C. J., Westphal, M. F. & Michalet, R. Species-specificity challenges the predictability of facilitation along a regional desert gradient. J. Veg. Sci. 1, 1–12. https://doi.org/10.1111/jvs.12909 (2020).Article 

    Google Scholar 
    Cutlar, H. C. Monograph of the North American species of the genus Ephedra. Ann. Mo. Bot. Gard. 26, 373–428 (1939).Article 

    Google Scholar 
    Hollander, J. L., Wall, S. B. V. & Baguley, J. G. Evolution of seed dispersal in North American Ephedra. Evol. Ecol. 24, 333–345. https://doi.org/10.1007/s10682-009-9309-1 (2010).Article 

    Google Scholar 
    Filazzola, A., Brown, C., Westphal, M. & Lortie, C. J. Establishment of a desert foundation species is limited by exotic plants and light but not herbivory or water. Appl. Veg. Sci. 1, 1–12. https://doi.org/10.1111/avsc.12515 (2020).Article 

    Google Scholar 
    Lortie, C. J., Gruber, E., Filazzola, A., Noble, T. & Westphal, M. The Groot effect: Plant facilitation and desert shrub regrowth following extensive damage. Ecol. Evol. 8, 706–715. https://doi.org/10.1002/ece3.3671 (2018).Article 
    PubMed 

    Google Scholar 
    Lortie, C. J. et al. Telemetry of the lizard species Gambelia sila at Carrizo plain national monument. Figshare. Dataset. https://doi.org/10.6084/m9.figshare.8239667.v2 (2019).Article 

    Google Scholar 
    Braun, J., Westphal, M. & Lortie, C. J. The shrub Ephedra californica facilitates arthropod communities along a regional desert climatic gradient. Ecosphere 12, e03760. https://doi.org/10.1002/ecs2.3760 (2021).Article 

    Google Scholar 
    Terando, A., Youngsteadt, E., Meineke, E. & Prado, S. Accurate near surface air temperature measurements are necessary to gauge large-scale ecological responses to global climate change. Ecol. Evol. 8, 5233–5234. https://doi.org/10.1002/ece3.3972 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tielborger, K. & Kadmon, R. Indirect effects in a desert plant community: Is competition among annuals more intense under shrub canopies?. Plant Ecol. 150, 53–63 (2000).Article 

    Google Scholar 
    Holzapfel, C., Tielbörger, K., Parag, H. A., Kigel, J. & Sternberg, M. Annual plant–shrub interactions along an aridity gradient. Basic Appl. Ecol. 7, 268–279. https://doi.org/10.1016/j.baae.2005.08.003 (2006).Article 

    Google Scholar 
    Jankju, M. Role of nurse shrubs in restoration of an arid rangeland: Effects of microclimate on grass establishment. J. Arid Environ. 89, 103–109. https://doi.org/10.1016/j.jaridenv.2012.09.008 (2013).Article 
    ADS 

    Google Scholar 
    Baldelomar, M., Atala, C. & Molina-Montenegro, M. A. Top-down and Bottom-up effects deployed by a nurse shrub allow facilitating an endemic mediterranean orchid. Front. Ecol. Evol. 7, 466 (2019).Article 

    Google Scholar 
    Tielborger, K. & Kadmon, R. Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 81, 1544–1553. https://doi.org/10.1890/0012-9658(2000)081[1544:TEVTTB]2.0.CO;2 (2000).Article 

    Google Scholar 
    Walter, J. Effects of changes in soil moisture and precipitation patterns on plant-mediated biotic interactions in terrestrial ecosystems. Plant Ecol. https://doi.org/10.1007/s11258-018-0893-4 (2018).Article 

    Google Scholar 
    Schob, C., Armas, C. & Pugnaire, F. Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122, 1371–1379. https://doi.org/10.1111/j.1600-0706.2013.00390.x (2013).Article 

    Google Scholar 
    Eldridge, D. J., Beecham, G. & Grace, J. B. Do shrubs reduce the adverse effects of grazing on soil properties?. Ecohydrology 8, 1503–1513. https://doi.org/10.1002/eco.1600 (2015).Article 

    Google Scholar 
    Nerlekar, A. N. & Veldman, J. W. High plant diversity and slow assembly of old-growth grasslands. Proc. Natl. Acad. Sci. 117, 18550. https://doi.org/10.1073/pnas.1922266117 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tielbörger, K. et al. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat. Commun. 5, 5102. https://doi.org/10.1038/ncomms6102 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought?. Geophys. Res. Lett. 41, 9017–9023. https://doi.org/10.1002/2014GL062433 (2014).Article 
    ADS 

    Google Scholar 
    Data, U. C. In US Climate Data Product, New Cuyama, vol. 1. https://www.usclimatedata.com (2021).Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Glob. Change Biol. 25, 269–276. https://doi.org/10.1111/gcb.14480 (2019).Article 
    ADS 

    Google Scholar 
    Ding, Y., Li, Z. & Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 92, 102179. https://doi.org/10.1016/j.jag.2020.102179 (2020).Article 

    Google Scholar 
    Liu, H. et al. Analysis of the time-lag effects of climate factors on grassland productivity in Inner Mongolia. Glob. Ecol. Conserv. 30, e01751. https://doi.org/10.1016/j.gecco.2021.e01751 (2021).Article 

    Google Scholar 
    Liancourt, P., Song, X., Macek, M., Santrucek, J. & Dolezal, J. Plant’s-eye view of temperature governs elevational distributions. Glob. Change Biol. 26, 4094–4103. https://doi.org/10.1111/gcb.15129 (2020).Article 
    ADS 

    Google Scholar 
    Ryan, M. J. et al. Too dry for lizards: Short-term rainfall influence on lizard microhabitat use in an experimental rainfall manipulation within a pinon-juniper woodland. Funct. Ecol. https://doi.org/10.1111/1365-2435.12595 (2015).Article 

    Google Scholar 
    Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671. https://doi.org/10.1111/1365-2656.12812 (2018).Article 
    PubMed 

    Google Scholar 
    Gaudenti, N., Nix, E., Maier, P., Westphal, M. F. & Taylor, E. N. Habitat heterogeneity affects the thermal ecology of an endangered lizard. Ecol. Evol. 11, 14843–14856. https://doi.org/10.1002/ece3.8170 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lortie, C. J., Filazzola, A. & Sotomayor, D. A. Functional assessment of animal interactions with shrub-facilitation complexes: A formal synthesis and conceptual framework. Funct. Ecol. 30, 41–51. https://doi.org/10.1111/1365-2435.12530 (2016).Article 

    Google Scholar 
    Lortie, C. J. et al. Shrub and vegetation cover predict resource selection use by an endangered species of desert lizard. Sci. Rep. 10, 4884. https://doi.org/10.1038/s41598-020-61880-9 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nature Ecol. Evol. 3, 744–749. https://doi.org/10.1038/s41559-019-0842-1 (2019).Article 

    Google Scholar 
    Avolio, M. L. et al. Determinants of community compositional change are equally affected by global change. Ecol. Lett. 24, 1892–1904. https://doi.org/10.1111/ele.13824 (2021).Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Chang. 11, 1027–1034. https://doi.org/10.1038/s41558-021-01198-0 (2021).Article 
    ADS 

    Google Scholar 
    Hedden-Nicely, D. R. Climate change and the future of western US water governance. Nat. Clim. Chang. https://doi.org/10.1038/s41558-021-01141-3 (2021).Article 

    Google Scholar 
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717. https://doi.org/10.1038/s41558-018-0231-9 (2018).Article 
    ADS 

    Google Scholar 
    Hanson, R. T., Flint, L. E., Faunt, C. C., Gibbs, D. R. & Schmid, W. Hydrologic models and analysis of water availability in Cuyama Valley, California. In U.S. Geological Survey Scientific Investigations Report, 2015 1–126 (2015).John, S. In Encyclopedia of World Climatology (ed John, E. O.) 89–94 (Springer Netherlands, 2005).James-Jeremy, J. et al. A systems approach to restoring degraded drylands. J. Appl. Ecol. 50, 730–739. https://doi.org/10.1111/1365-2664.12090 (2013).Article 

    Google Scholar 
    Upson, J. E. & Worts, G. F. In Ground water in the Cuyama Valley, California. Report No. 1110B 1–82 (1951).Hanson, M. T., Randall, T. & Sweetkind, D. Cuyama Valley, California hydrologic study—an assessment of water availability. In U.S. Geological Survey Scientific Investigations Report 2014 1–4. https://doi.org/10.3133/fs20143075 (2014).Greicius, T. NASA data show California’s San Joaquin Valley Still Sinking. JPL 28, 1–9 (2017).
    Google Scholar 
    Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156. https://doi.org/10.1016/j.jog.2011.05.001 (2012).Article 

    Google Scholar 
    Lortie, C. J. & Filazzola, A. US climate data, New Cuyama, CA, 2016–2017. Figshare 1, 2016–2017. https://doi.org/10.6084/m9.figshare.17162600.v1 (2021).Article 

    Google Scholar 
    Lortie, C. J. & Filazzola, A. Vegetation surveys in Cuyama Valley, CA, USA in 2016 and 2017 at the peak of megadrought. Knowl. Netw. Biocompl. 1, 1–15. https://doi.org/10.5063/F1MG7MZH (2021).Article 

    Google Scholar 
    Hickman, J. C. The Jepson Manual (University of California Press, 1996).
    Google Scholar 
    Villanueva-Almanza, L. & Fonseca, R. M. In Taxonomic review and geographic distribution of Ephedra (Ephedraceae) in Mexico. ACTA BOTANICA MEXICANA 96 (2011).Alfieri, F. J. & Mottola, P. M. Seasonal changes in the phloem of Ephedra californica Wats. Bot. Gaz. 144, 240–246 (1983).Article 

    Google Scholar 
    Hoffman, O., de-Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. https://doi.org/10.1111/jvs.12372 (2016).Article 

    Google Scholar 
    Ivey, K. N. et al. Thermal ecology of the federally endangered blunt-nosed leopard lizard (Gambelia sila). Conserv. Physiol. 2020, 8. https://doi.org/10.1093/conphys/coaa014 (2020).Article 

    Google Scholar 
    Grimes, A. J., Corrigan, G., Germano, D. J. & Smith, P. T. Mitochondrial phylogeography of the endangered blunt-nosed leopard lizard, Gambelia sila. Southwestern Natural. 59, 38–46. https://doi.org/10.1894/F06-GC-233.1 (2014).Article 

    Google Scholar 
    Stewart, J. A. E. et al. Habitat restoration opportunities, climatic niche contraction, and conservation biogeography in California’s San Joaquin Desert. PLoS ONE 14, e0210766. https://doi.org/10.1371/journal.pone.0210766 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Germano, D. J., Rathbun, G. B. & Saslaw, L. R. Effects of grazing and invasive grasses on desert vertebrates in California. J. Wildl. Manag. 76, 670–682. https://doi.org/10.1002/jwmg.316 (2012).Article 

    Google Scholar 
    Moss, B. The water framework directive: Total environment or political compromise?. Sci. Total Environ. 400, 32–41. https://doi.org/10.1016/j.scitotenv.2008.04.029 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Denevan, W. M. The “Pristine Myth ” revisited. Geogr. Rev. 101, 576–591. https://doi.org/10.1111/j.1931-0846.2011.00118.x (2011).Article 

    Google Scholar 
    da Cunha, A. R. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation. Environ. Monit. Assess. 187, 236. https://doi.org/10.1007/s10661-015-4458-x (2015).Article 
    PubMed 

    Google Scholar 
    Terando, A. J., Youngsteadt, E., Meineke, E. K. & Prado, S. G. Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecol. Evol. 7, 9890–9904. https://doi.org/10.1002/ece3.3499 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nature, I. I. U. f. C. o. The IUCN red list of threatened species. IUCN 2019-1 1–142 (2019).Lortie, C. J., Filazzola, A., Butterfield, H. S. & Westphal, M. Cuyama Micronet. Figshare 1, 1–6. https://doi.org/10.6084/m9.figshare.11888199.v2 (2020).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. Vol. 4.2.1 (R foundation for Statistical Computing, 2022).Pinheiro, J., Bates, D., DebRoy, S. & Deepayan, S. nlme: Linear and nonlinear mixed effects models. CRAN 3, 1–153 (2021).
    Google Scholar 
    Pebesma, E. spacetime: Spatio-temporal data in R. J. Stat. Softw. 1(7), 2012. https://doi.org/10.18637/jss.v051.i07 (2012).Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear mixed-effects models using “Eigen” and S4. CRAN 2020, 1–122 (2020).
    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means. CRAN 1, 1–89 (2022).
    Google Scholar  More

  • in

    Subalpine woody vegetation in the Eastern Carpathians after release from agropastoral pressure

    Bolliger, J., Kienast, F. & Zimmermann, N. E. Risk of global warming on montane and subalpine forests in Switzerland—A modeling study. Reg. Environ. Change 1, 99–111 (2000).
    Google Scholar 
    Bugmann, H. & Pfister, Ch. Impacts of interannual climate variability on past and future forest composition. Reg. Environ. Change 1, 112–125 (2000).
    Google Scholar 
    Becker, A. & Bugmann, H. (eds.) Global change and mountain regions: The Mountain Research Initiative. IHDP Report 13, GTOS Report 28 and IGBP Report 49, Stockholm (2001).Kullman, L. 20th Century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio 30, 72–80. https://doi.org/10.1579/0044-7447-30.2.72 (2001).CAS 
    PubMed 

    Google Scholar 
    Körner, Ch. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x (2004).
    Google Scholar 
    Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 20, 582–596. https://doi.org/10.1111/j.1466-8238.2010.00622.x (2011).
    Google Scholar 
    Tokarczyk, N. Forest encroachment on temperate mountain meadows: scale, drivers, and current research directions. Geogr. Pol. 90, 463–480 (2017).
    Google Scholar 
    Vitali, A. et al. Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. For. Ecol. Manag. 435, 28–37. https://doi.org/10.1016/j.foreco.2018.12.039 (2019).
    Google Scholar 
    Heikkinen, O., Obrębska-Starkel, B. & Tuhkanen, S. Introduction: the timberline—A changing battlefront. Prace Geograficzne UJ 98, 7–16 (1995).
    Google Scholar 
    Mattson, J. Human impact on the timberline in the far North of Europe. Zeszyty Naukowe UJ, Prace Geogr. 98, 41–56 (1995).
    Google Scholar 
    Stanisci, A., Lavieri, D., Acosta, A. & Blasi, C. Structure and diversity trends at Fagus timberline in central Italy. Community Ecol. 1, 133–138 (2000).
    Google Scholar 
    Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: Climate change or land abandonment?. J. Veg. Sci. 18, 571–582 (2007).
    Google Scholar 
    Feurdean, A. et al. Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images. Reg. Environ. Change 17, 2193–2207. https://doi.org/10.1007/s10113-016-1063-7 (2017).
    Google Scholar 
    Burga, C. A., Bührer, S. & Klötzli, F. Mountain ash (Sorbus aucuparia) forests of the Central and Southern Alps (Grisons and Ticino, Switzerland-Prov. Verbano-Cusio-Ossola, N-Italy): Plant ecological and phytosociological aspects. Tuexenia 39, 121–138 (2019).
    Google Scholar 
    Slayter, R. O. & Noble, I. R. Dynamics of Montane Treelines. In Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 346–359 (Springer-Verlag, 1992).
    Google Scholar 
    Bryn, A. Recent forest limit changes in south-east Norway: Effects of climate change or regrowth after abandoned utilisation?. Nor. Geogr. Tidsskr. 62(4), 251–270. https://doi.org/10.1080/00291950802517551 (2008).
    Google Scholar 
    Lu, X., Liang, E., Wang, Y., Babst, F. & Camarero, J. J. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30(1), 305–315. https://doi.org/10.1111/geb.13214 (2021).
    Google Scholar 
    Armand, A. D. Sharp and Gradual Mountain Timberlines as Result of species Interaction. Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows. In Ecological Studies Vol. 92 (eds Hansen, A. J. & di Castri, F.) 360–377 (Springer-Verlag, 1992).
    Google Scholar 
    Kucharzyk, S. Ekologiczne znaczenie drzewostanów w strefie górnej granicy lasu w Karpatach Wschodnich i ich wrażliwość na zmiany antropogeniczne [Ecological importance of stands at the upper forest limit in the Eastern Carpathians and their sensibility to anthropogenic changes]. Roczn. Bieszcz. 14, 15–43 (2006) (in Polish with English summary).
    Google Scholar 
    Surina, B. & Rakaj, M. Subalpine beech forest with Hairy alpenrose (Polysticho lonchitis-Fagetum Rhododendretosum hirsuti subass. nova) on Mt. Snežnik (Liburnian Karst, Dinaric Mts). Hacquetia 6, 195–208 (2007).
    Google Scholar 
    Kucharzyk, S. Zmiany przebiegu górnej granicy lasu w pasmie Szerokiego Wierchu w Bieszczadzkim Parku Narodowym [Changes of upper forest limit in the Szeroki Wierch range (Bieszczady National Park)]. Roczn. Bieszcz. 12, 81–102 (2004) (in Polish with English summary).
    Google Scholar 
    Kucharzyk, S. & Augustyn, M. Dynamika górnej granicy lasu w Bieszczadach Zachodnich – zmiany w ciągu półtora wieku [The upper forest limit dynamics in the Western Bieszczady Mts.—Changes over a century and a half]. Stud. Nat. 54, 133–156 (2008) (in Polish with English summary).
    Google Scholar 
    Kubijowicz, W. Życie pasterskie w Beskidach Wschodnich [La Vie Pastorale dans les Beskides Orientales]. Prace Instytutu Geograficznego UJ 5, 3–30 (1926) (in Polish).
    Google Scholar 
    Zarzycki, K. Lasy Bieszczadów Zachodnich [The forests of the Western Bieszczady Mts (Polish Eastern Carpathians)]. Acta Agr. et Silv. Ser. Leśna 3, 1–131 (1963) (in Polish with English summary).
    Google Scholar 
    Augustyn, M. Połoniny w Bieszczadach Zachodnich [Almen im westlichen Bieszczady-Gebirge]. Materiały Muzeum Budownictwa Ludowego w Sanoku 31, 88–98 (1993) (in Polish with German summary).
    Google Scholar 
    Winnicki, T. Zbiorowiska roślinne połonin Bieszczadzkiego Parku Narodowego (Bieszczady Zachodnie, Karpaty Wschodnie) [Plant communities of subalpine poloninas in the Bieszczady National Park (Western Bieszczady Mts, Eastern Carpathians)]. Monogr. Bieszczadzkie 4, 1–215 (1999) (in Polish with English summary).
    Google Scholar 
    Mróz, W. Zróżnicowanie szaty roślinnej przy górnej granicy lasu w Bieszczadach Wschodnich i Zachodnich [The diversity of vegetation near the upper timberline in the Eastern and the Western Bieszczady Mts]. Roczn. Bieszcz. 14, 45–62 (2006) (in Polish with English summary).
    Google Scholar 
    Augustyn, M. & Kucharzyk, S. Górna granica lasu na terenie wsi Ustrzyki Górne i Wołosate w końcu XVIII wieku [Timberline in the Western Bieszczady Mts.]. Roczn. Bieszcz. 20, 15–27 (2012) (in Polish with English summary).
    Google Scholar 
    Jeník, J. Succession on the Połonina Balds in the Western Bieszczady, the Eastern Carpathians. Tuexenia 3, 207–216 (1983).
    Google Scholar 
    Michalik, S. & Szary, A. Zbiorowiska leśne Bieszczadzkiego Parku Narodowego [The forest communities of the Bieszczady National Park]. Monogr. Bieszcz. 1, 1–175 (1997).
    Google Scholar 
    Zemanek, B. & Winnicki, T. Rośliny naczyniowe Bieszczadzkiego Parku Narodowego [Vascular plants of the Bieszczady National Park]. Monogr. Bieszcz. 3, 1–249 (1999) (in Polish with English summary).
    Google Scholar 
    Kucharzyk, S. & Augustyn, M. Trwałość polan reglowych w Bieszczadzkim Parku Narodowym [Stability of mountain glades in the Bieszczady National Park]. Roczn. Bieszcz. 18, 45–58 (2010) (in Polish with English summary).
    Google Scholar 
    Durak, T., Żywiec, M. & Ortyl, B. Rozprzestrzenianie się zarośli drzewiastych w piętrze połonin Bieszczad Zachodnich [Expansion of brushwood in the subalpine zone of the Western Bieszczady Mts]. Sylwan 157, 130–138 (2013) (in Polish with English summary).
    Google Scholar 
    Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For. Ecol. Manag. 339, 127–135. https://doi.org/10.1016/j.foreco.2014.12.014 (2015).
    Google Scholar 
    Durak, T., Żywiec, M., Kapusta, P. & Holeksa, J. Rapid spread of a fleshy-fruited species in abandoned subalpine meadows—Formation of an unusual forest belt in the eastern Carpathians. iForest – Biogeosci. For. 9, 337–343. https://doi.org/10.3832/ifor1470-008 (2015).
    Google Scholar 
    Wężyk, P. & Hawryło, P. Analiza struktury 3D drzewostanów Bieszczadzkiego PN na podstawie danych lotniczego skanowania laserowego oraz ortofotomap lotniczych CIR [3D structure analysis of stands of the Bieszczady National Park on the basis of airborne laser scanning data and CIR aerial ortho-photomaps] (ProGea Consulting, 2015) (in Polish).Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27, 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x (1995).
    Google Scholar 
    Scott, L. M. & Janikas, M. V. Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis (eds Fischer, M. M. & Getis, A.) 27–41 (Springer, 2010).
    Google Scholar 
    Cui, H., Wu, L., Hu, S., Lu, R. & Wang, S. Research on the driving forces of urban hot spots based on exploratory analysis and binary logistic regression model. Trans. GIS 25(3), 1522–1541. https://doi.org/10.1111/tgis.12739 (2021).
    Google Scholar 
    Pierce, K. B., Lookingbill, T. & Urban, D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landsc. Ecol. 20, 137–147 (2005).
    Google Scholar 
    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Int. J. Sc. 5, 23–27 (1999).
    Google Scholar 
    Böhner, J. & Antonić, O. Land-surface parameters specific to topo-climatology. Geomorphometry – Concepts, Softw. Appl. Dev. Soil Sci. 33, 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1 (2009).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2021).
    Google Scholar 
    Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley & Sons Inc., 2007).MATH 

    Google Scholar 
    Cottrell, A. Gnu Regression, Econometrics and Time-series Library gretl. http://gretl.sourceforge.net/(2020).Hellevik, O. Linear versus logistic regression when the dependent variable is a dichotomy. Qual. Quant. 43, 59–74 (2009).
    Google Scholar 
    Azen, R. & Traxel, N. Using dominance analysis to determine predictor importance in logistic regression. J. Educ. Behav. Stat. 34, 319–347. https://doi.org/10.3102/1076998609332754 (2009).
    Google Scholar 
    Borcard, P., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
    Google Scholar 
    Przybylska, K. & Kucharzyk, S. Skład gatunkowy i struktura lasów Bieszczadzkiego Parku Narodowego [Species composition and structure of forest of the Bieszczady National Park. Monogr. Bieszcz. 6, 1–159 (1999) (in Polish with English summary).
    Google Scholar 
    Bader, M. Y. et al. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 44(2), 265–292. https://doi.org/10.1111/ecog.05285 (2021).
    Google Scholar 
    Nowosad, M. Zarys klimatu Bieszczadzkiego Parku Narodowego i jego otuliny w świetle dotychczasowych badań [Outlines of climate of the Bieszczady National Park and its bufferzone in the light of previous studies]. Roczn. Bieszcz. 4, 163–183 (1995) (in Polish with English summary).
    Google Scholar 
    Nowosad, M. & Wereski, S. Warunki klimatyczne. Bieszczadzki Park Narodowy–40 lat ochrony [Climatic conditions. Bieszczady National Park–40 years of protection]. In Bieszczadzki Park Narodowy [The Bieszczady National Park] (eds Górecki, A. & Zemanek, B.) 31–38 (Wyd. Bieszczadzki Park Narodowy, 2016) (in Polish with English summary).
    Google Scholar 
    Kukulak, J. Neotectonics and planation surfaces in the High Bieszczady Mountains (Outer Carpathians, Poland). Ann. Soc. Geol. Pol. 74, 339–350 (2004).
    Google Scholar 
    Haczewski, G., Kukulak, J. & Bąk, K. Budowa geologiczna i rzeźba Bieszczadzkiego Parku Narodowego [Geology and relief of the Bieszczady National Park]. Prace monograficzne (Akademia Pedagogiczna im. Komisji Edukacji Narodowej w Krakowie) 468, 1–156 (2007) (in Polish with English summary).
    Google Scholar 
    Skiba, S., Drewnik, M., Kacprzak, A. & Kołodziejczyk, M. Gleby litogeniczne Bieszczadów i Beskidu Niskiego [Lithogenous soils of the Bieszczady and Beskid Niski Mts (Polish Carpathians)]. Roczn. Bieszcz. 7, 387–396 (1998) (in Polish with English summary).
    Google Scholar 
    Skiba, S. & Winnicki, T. Gleby zbiorowisk roślinnych bieszczadzkich połonin [Soils of the subalpine meadows plant communities in the Bieszczady Mts]. Roczn. Bieszcz. 4, 97–109 (1995) (in Polish with English summary).
    Google Scholar 
    Musielok, Ł, Drewnik, M., Szymański, W. & Stolarczyk, M. Classification of mountain soils in a subalpine zone—A case study from the Bieszczady Mountains (SE Poland). Soil Sci. Annu. 70, 170–177. https://doi.org/10.2478/ssa-2019-0015 (2019).CAS 

    Google Scholar 
    Spatz, G. Succession patterns on mountain pastures. Vegetatio 43, 39–41 (1980).
    Google Scholar 
    Kozak, J. Zmiany powierzchni lasów w Karpatach Polskich na tle innych gór świata [Changes in the Land Cover in the Polish Carpathians at the Turn of the 20th and 21st Century in Relation to Local Development Level]. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków (2005) (in Polish with English summary).Vitali, A., Urbinati, C., Weisberg, P. J., Urza, A. K. & Garbarino, M. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29(2), 189–199. https://doi.org/10.1111/jvs.12598 (2018).
    Google Scholar 
    Micu, D. M., Dumitrescu, A., Cheval, S., Nita, I.-A. & Birsan, M.-V. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Climatol. 41, 2154–2172. https://doi.org/10.1002/joc.6952 (2020).
    Google Scholar 
    Rehman, A. Ziemie dawnej Polski. Cz. I. Karpaty [The lands of ancient Poland. Part I. The Carpathians]. (Gubrynowicz i Schmidt, Lwów) (1895) (in Polish).Frey, W. The influence of snow on growth and survival of planted trees. Arct. Alp. Res. 15, 241–251 (1983).
    Google Scholar 
    Malanson, G. P. et al. Alpine treeline of Western North America: Linking organism-to-landscape dynamics. Phys. Geogr. 28, 378–396. https://doi.org/10.2747/0272-3646.28.5.378 (2007).
    Google Scholar 
    Holtmeier, F. K. & Broll, G. Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys. Geogr. 31, 203–233. https://doi.org/10.2747/0272-3646.31.3.203 (2010).
    Google Scholar 
    Barclay, A. M. & Crawford, R. M. M. Winter desiccation stress and resting bud viability in relation to high altitude survival in Sorbus aucuparia L. Flora 172, 21–34 (1982).
    Google Scholar 
    Raspé, O., Findlay, C. & Jacquemart, A. L. Sorbus aucuparia L. J. Ecol. 88, 910–930 (2000).
    Google Scholar 
    Zerbe, S. On the ecology of Sorbus aucuparia (Rosaceae) with special regard to germination, establishment and growth. Pol. Bot. J. 46, 229–239 (2001).
    Google Scholar 
    Smith, W. K., Germino, M. J., Hancock, T. E. & Johnson, D. M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 23, 1101–1112 (2003).PubMed 

    Google Scholar 
    Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698. https://doi.org/10.1038/s41598-020-66277-2 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbeito, I., Dawes, M. A., Rixen, C., Senn, J. & Bebi, P. Factors driving mortality and growth at treeline: A 30-year experiment of 92 000 conifers. Ecology 93(2), 389–401 (2012).PubMed 

    Google Scholar 
    Kullman, L. A 25-year survey of geoecological change in the scandes mountains of Sweden. Geogr. Ann. Ser. B 79, 139–165 (1997).
    Google Scholar 
    Pękala, K. Rzeźba Bieszczadzkiego Parku Narodowego [Relief of the Bieszczady National Park]. Roczn. Bieszcz. 6, 19–38 (1997) (in Polish with English summary).
    Google Scholar 
    Kullman, L. Temporal and spatial aspects of subalpine populations of Sorbus aucuparia in Sweden. Ann. Bot. Fenn. 23, 267–275 (1986).
    Google Scholar 
    Hoersch, B. Modelling the spatial distribution of montane and subalpine forests in the Central Alps using digital elevation models. Ecol. Model. 168, 267–282 (2003).
    Google Scholar 
    Resler, L. M., Butler, D. R. & Malanson, G. P. Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Phys. Geogr. 26, 112–125 (2005).
    Google Scholar 
    Kollmann, J. Regeneration window for fleshy-fruited plants during scrub development on abandoned grassland. Ecoscience 2, 213–222 (1995).
    Google Scholar 
    Lediuk, K. D., Damascos, M. A., Puntieri, J. G. & de Torres Curth, M. I. Population dynamics of an invasive tree, Sorbus aucuparia, in the understory of a Patagonian forest. Plant Ecol. 217, 899–911 (2016).
    Google Scholar 
    McCutchan, M. H. & Fox, D. G. Effect of elevation and aspect on wind, temperature and humidity. J. Appl. Meteorol. Climatol. 25(12), 1996–2013 (1986).ADS 

    Google Scholar 
    Stage, A. R. & Salas, C. Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For. Sci. 53, 486–492 (2007).
    Google Scholar 
    Pocewicz, A. L., Gessler, P. & Robinson, A. P. The relationship between effective plant area index and Landsat spectral response across elevation, solar insolation, and spatial scales in a northern Idaho forest. Can. J. For. Res. 34, 465–480 (2004).
    Google Scholar 
    Kucharzyk, S. & Sugiero, D. Zróżnicowanie dynamiki procesów lasotwórczych w buczynach bieszczadzkich w zależności od wystawy i wzniesienia [Variability of the dynamics of forest development processes in the Bieszczady beech forests in relation to exposition and altitude]. Sylwan 7, 29–38 (2007) (in Polish with English summary).
    Google Scholar 
    Drewnik, M., Musielok, Ł, Stolarczyk, M., Mitka, J. & Gus, M. Effects of exposure and vegetation type on organic matter stock in the soils of subalpine meadows in the Eastern Carpathians. CATENA 147, 167–176. https://doi.org/10.1016/j.catena.2016.07.014 (2016).CAS 

    Google Scholar 
    Zheng, L. et al. Tree regeneration patterns on contrasting slopes at treeline ecotones in Eastern Tibet. Forests 12, 1605. https://doi.org/10.3390/f12111605 (2021).
    Google Scholar  More

  • in

    Flexible embryonic shell allies large offspring size and anti-predatory protection in viviparous snails

    The studied viviparous clausiliids developed four types of morphological adaptations that facilitate the delivery of embryos through the shell aperture: (1) reduction of the clausiliar apparatus, (2) decrease of embryonic shell width, (3) widening of the shell canal, and (4) development of a flexible embryonic shell.Reduction of the clausiliar apparatusMembers of the Reinia genus, arboreal species from Japan (Fig. 1), show the most advanced adaptations to live-bearing compared to hypothetical ancestral Phaedusinae. The shell shape in these species is more conical than fusiform, the number of whorls decreases, and the aperture widens. One of the species, R. variegata, features almost full reduction of the clausiliar apparatus that consists of only vestigial folds (Fig. 1F). This species also lacks the clausilium, so the entrance through the aperture is unprotected.Figure 1Different stages of reduction of apertural barriers in members of genus Reinia: R. ashizuriensis (A–C; upper row) and R. variegata (D–F; lower row). (A,D) Adult shells; (B,C,E,F) adult shells with body whorl cut open dorsally in microCT visualisation. cp clausilium plate, il inferior lamella, pr principal plica, sc subcolumellar lamella, sl superior lamella, sp spiral lamella, upp upper palatal plica.Full size imageDecrease of embryonic shell widthAnother adaptation concerns the shape of the embryonic shell (“protoconch”), which becomes very narrow in some viviparous species. This feature is conspicuous because embryonic whorls remain in the adult shell as apical whorls. For instance in S. addisoni (Fig. 2A–D), the apical part being much narrower than the first whorls of the teleoconch is a clear evidence that the growth trajectory has changed abruptly after birth. Other examples include E. cylindrella and E. steetzneri, in which both the protoconch and the teleoconch are very narrow, yet at the borderline between these parts, the shell axis is slightly bent (Fig. 2E–L). We suppose that this feature develops as a result of obstruction during birth.Figure 2Width difference between protoconch and teleoconch in Stereophaedusa addisoni (A–D, upper row), Euphaedusa cylindrella (E–H, middle row), Euphaedusa steetzneri (I–L, lower row). (A,C,E,G,I,K) Adult shells with very narrow apical whorls; (B,F,J) X-rayed adults; (F,J) with retained embryos inside; (D,H,L) X-rays of apical part of adult shell with schematic drawings of a neonate.Full size imageWidening of the shell canalThe third type of adaptation is the widening of the shell canal in the body whorl, allowing for easier passage of the embryo between the lamellae and plicae of the apertural barriers. In this case, the outline of the shell changes only slightly giving the body whorl a more convex appearance. A substantial difference to egg-laying species concerns the apertural barriers: the clausiliar includes a broad clausilium plate and a spirally ascending inferior lamella (Fig. 3A–D). These modifications result in a spacious shell canal in the body whorl, for example in S. addisoni and E. sheridani, that can accommodate the transfer of a large embryo. Table 1 presents neonatal size in these species (shell width ca. 1.2 mm), which is very similar to their clausilium width (ca. 1.1–1.2 mm).Figure 3Two types of clausiliar apparatus occurring in Phaedusinae in microCT visualisation: with spirally ascending inferior lamella and wide clausilium plate (upper row), and with straight ascending inferior lamella and narrow clausilium plate (lower row). (A) T. sheridani adult shell with the body whorl cut open dorsally; (B) clausilium of T. sheridani; (C) clausilium of S. addisoni; (D) clausilium of R. ashizuriensis; (E) Zaptyx ventriosa adult shell with body whorl cut open dorsally; (F) clausilium of Z. ventriosa; (G,H) clausilia of O. miranda. Note, that all depicted species are viviparous.Full size imageTable 1 Shell size of studied Phaedusinae species.Full size tableMost viviparid clausiliids develop one of these three types of modification; some adaptations co-occur within a single species, for example a wide clausilium accompanies a narrow apex. Interestingly, the Reinia genus includes taxa with a gradual escalation of viviparity-related adaptations: R. ashizurensis, with a stout shell shape and a low number of whorls, has fully developed apertural barriers with a broad clausilium plate (Fig. 1A–C), while its congener, R. variegata, has reduced apertural barriers (Fig. 1D–F).Development of a flexible embryonic shellThe fourth type of adaptation found in Phaedusinae concerns the structure of the embryonic shells. We report this adaptation in O. miranda and Z. ventriosa.Oospira miranda is a dextral, often decollated, ground-dwelling species from Vietnam (Fig. 4A). The species is viviparous: during microCT scanning of museum specimens, we found embryos within a parental shell (Fig. 4B); in laboratory culture, we observed neonates immediately after live birth (Fig. 4C,D). Morphological characters recognized in the adult shell, i.e., a wide apex (= wide embryonic shell), straightly ascending inferior lamella, and a narrow clausilium plate (Fig. 3G,H), seemed to exclude the possibility of live-bearing reproduction, as embryos are too large to pass through the shell canal at the narrowest point. The height and width of the neonatal shell (mean values: 5.19 mm, 3.59 mm) evidently exceeds the width of the clausilium plate in this species (1.97 mm) (Table 1). However, under closer examination, we found the shell to be thin and delicate, which we refer to as a ‘soft shell’. In direct examination, the neonatal shell of O. miranda resembles cellophane, which may keep a given shape for a long time but becomes distorted already under slight pressure.Figure 4Viviparous clausiliids and their ‘soft-shelled’ neonates born in laboratory culture. (A–D) O. miranda: adult shell, X-rayed shell with embryo visible inside, neonates; (E–H) Z. ventriosa: adult shell, X-rayed shell with eggs visible inside, neonates.Full size imageA similar adaptation exists in Z. ventriosa, a Taiwanese species with a very wide apex, never decollated, a straight ascending inferior lamella, and a narrow clausilium plate (Figs. 3E,F, 4E,F). This species produces neonates in laboratory culture (Fig. 4G–H). The dimensions of the neonates (mean values: height 3.37 mm, width 2.51 mm) exceed at last twofold the width of the clausilium plate (1.08 mm). The shells of such freshly delivered juveniles, when gently touched with laboratory tweezers, became dented, but not fractured. More intense and stronger pressing can break this dentation.These initial observations, that we made during the maintenance of the laboratory culture, suggested that the neonatal shells of O. miranda and Z. ventriosa have flexible walls. These ‘soft-shells’ seem to be highly malleable during the entire embryonic development period and delivery through apertural barriers, hardening shortly after birth. We further investigated the physical properties of the embryonic shell by means of microcomputed tomography and scanning electron microscopy.Microcomputed tomographyWe scanned ‘soft-shelled’ neonates of O. miranda and Z. ventriosa, together with ‘hard-shelled’ embryos and neonates of S. addisoni and T. sheridani, in order to compare the density and thickness of the shells (Fig. 5).Figure 5Comparison of embryonic shell thickness in clausiliids: ‘soft-shelled’ neonates of Z. ventriosa (A,B,G,H) and O. miranda (C,D,I,J); “hard-shelled” neonate of S. addisoni (E,K) and embryo of T. sheridani (F,L) scanned inside a parental shell. Upper row—microCT visualisation of shell surface; middle row—microCT sections of those specimens; (M–O) X-ray photographs of S. addisoni (embryo from dissected adult) and Z. ventriosa (neonate) enlarged in (N,O), respectively, showing the difference in shell density and thickness; (P) microCT based volume rendering of O. miranda (left) and S. addisoni (right) neonates, showing difference between relative density of their shells.Full size imagePreliminary observations using the two-dimensional X-ray photographs showed a difference in thickness and density between S. addisoni and Z. ventriosa (Fig. 5M, enlarged in N and O, respectively). The 3D visualization of O. miranda and S. addisoni (the same microCT scanning and reconstruction parameters) confirmed the difference between density and shell thickness of these two species (Fig. 5P).Due to variations in wall thickness within the neonatal shell (e.g., between the first and the second whorls), it is not possible to precisely determine the thickness of the shell wall. The accuracy of the measurement is also limited by the resolution of the microCT scans, especially in the case of the relatively large neonates of O. miranda and Z. ventriosa. When scanning the whole embryonic shell of Z. ventriosa (approximately 3.5 mm in height), the size of the voxel was approximately 1 µm. Thus, we cannot determine the shell thickness down to the nearest micron, but we can estimate it from a few to a dozen microns. A direct comparison between virtual microCT sections of specimens scanned under the same conditions shows a clear difference between the ‘soft-shelled’ and ‘hard-shelled’ taxa (Fig. 5G–L). The ’hard-shelled’ neonates have a shell wall of 30–40 µm thick. We examined the sequence of three ’soft-shelled’ O. miranda specimens that differed in size (the exact time of birth of each of the cultured neonates is unknown, ca. 1–2 days). The larger (older) the neonate was, the thicker the shell. The shell of the largest of the studied O. miranda was up to 20 µm thick. However, the shell wall of this relatively large juvenile (several millimeters in height) still did not reach the thickness of the small ’hard-shelled’ T. sheridani embryo, which was already about 30–40 µm thick, stiff and rigid during the retention in the genital tract. The neonates of O. miranda and Z. ventriosa were much larger than the embryos and neonates of S. addisoni and R. variegata (Table 1), however, the former taxa has much thinner shells.Scanning electron microscopyAfter the non-invasive microCT scan, we scanned embryos and neonates using SEM (Fig. 6). The different properties of the shells of Z. ventriosa and O. miranda vs. S. addisoni and R. variegata were already visible during the preparation of the analysis. Under vacuum conditions, the soft shells of Z. ventriosa and O. miranda shrank and crumpled, creating a cellophane-like surface (Fig. 6A). Embryos and neonates of S. addisoni and R. variegata did not require any special preparation and their shell shape remained unchanged under the vacuum conditions applied during the SEM examination (Fig. 6D,E). To reduce the shell deformations, we freeze-dried the next group of thin-shelled neonates prior to SEM analyses (Fig. 6B,C).Figure 6Neonates of O. miranda (A,B,F,I,L,M,O) and Z. ventriosa (C,G,J,P) in direct comparison with hard-shelled embryos and neonates of R. variegata (D,N,Q) and S. addisoni (E,H,K); SEM microphotographs. The vacuum conditions in SEM led to the shrinkage of the thin O. miranda shell (A); freeze-drying of ‘soft-shelled’ neonates prior to SEM imaging reduced the level of deformity (B,C). Contrastingly, R. variegata and S. addisoni shells do not require special preparation and retain their shape (D,E). (F) The dented surface of O. miranda neonate and SEM-close-up (I) on a cross-section of the shell just a few micrometers thick (arrow in F indicates the region enlarged in I). (G,J) Shell of Z. ventriosa in comparison with similarly ornamented fragment of S. addisoni (H,K); note several times thicker shell in the latter (arrows in G,H indicate the regions enlarged in J,K, respectively). (L,M) Inner surface of intact periostracum which still connects two fragments of broken aragonite shell of O. miranda (the arrow in M indicates the region enlarged in L); note the difference between shell thickness in O. miranda (L,M) and R. variegata (N). All observed specimens have similar crossed-lamellar microstructure (L–Q). However, just as shell thickness, also the number of lamellar layers of alternate orientation within the shell differs (L,M,O,P vs N,Q).Full size imageThe SEM studies allowed for complementary measurements of the shells. In the broken fragments of Z. ventriosa and O. miranda, the thickness of the shell wall ranged from 2–3 µm (Fig. 6F,G,I,J,L,M) to 18 µm in the largest neonate of O. miranda (Fig. 6O). The shells of S. addisoni (Fig. 6H,K) and R. variegata (Fig. 6N) are several times thicker.All analyzed samples have a thin ( More

  • in

    Ancient DNA reveals how Viking-era fishers helped to make herring scarce

    .readcube-buybox { display: none !important;}
    A roaring trans-European herring trade that began in the Viking Age might have depleted stocks1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03431-y

    References

    Subjects

    Latest on: More