More stories

  • in

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    Darwin C. The structure and distribution of coral reefs, 3rd edn. D. Appleton & Company: New York, NY, USA, 1889.Lajeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol. 2018;28:2570–80.e6.CAS 
    PubMed 

    Google Scholar 
    Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–60.
    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.
    Google Scholar 
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 

    Google Scholar 
    Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs. 1990;25:75–87.
    Google Scholar 
    Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.
    Google Scholar 
    Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 2022;16:1110–8.PubMed 

    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 

    Google Scholar 
    Bourne DG, Webster NS. Coral Reef Bacterial Communities. In: Rosenberg E, DeLong EF, editors. The Prokaryotes. Springer: Berlin Heidelberg; 2013. pp. 163–87.Ainsworth DT, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 

    Google Scholar 
    Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 

    Google Scholar 
    Pogoreutz C, Oakley CA, Rädecker N, Cárdenas A, Perna G, Xiang N, et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 2022;16:1883–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Voolstra CR, Rädecker N, Weis V. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular Dialogues in the Holobiont. Boca Raton: CRC Press; 2020. pp. 91–118.Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI, Schwartz SL, et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 2021;15:1222–35.CAS 
    PubMed 

    Google Scholar 
    Glaze TD, Erler DV, Siljanen HMP. Microbially facilitated nitrogen cycling in tropical corals. ISME J. 2022;16:68–77.CAS 
    PubMed 

    Google Scholar 
    Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 

    Google Scholar 
    Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 

    Google Scholar 
    Bednarz VN, van de Water JA, Rabouille S, Maguer JF, Grover R, Ferrier‐Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.CAS 
    PubMed 

    Google Scholar 
    Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J. 2016;10:1804–8.CAS 
    PubMed 

    Google Scholar 
    Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    Braker G, Fesefeldt A, Witzel K-P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64:3769–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.Tilstra A, Roth F, El-Khaled YC, Pogoreutz C, Rädecker N, Voolstra CR, et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R Soc Open Sci. 2021;8:201835.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiang N, Hassenrück C, Pogoreutz C, Rädecker N, Simancas-Giraldo SM, Voolstra CR, et al. Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol. 2022;88:e01886-21.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 

    Google Scholar 
    Beauchamp EG, Trevors JT, Paul JW. Carbon sources for bacterial Denitrification. In: Stewart BA. Advances in Soil Science. Springer: New York, NY; 1989. pp. 113–42.Baker AC. Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Ann Rev Ecol Evol Syst. 2003;34:661–89.
    Google Scholar 
    Wang J-T, Chen Y-Y, Tew KS, Meng P-J, Chen CA. Physiological and Biochemical Performances of Menthol-Induced Aposymbiotic Corals. PLoS ONE. 2012;7:e46406.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol. 2018;9:214.PubMed 
    PubMed Central 

    Google Scholar 
    Voolstra CR. A journey into the wild of the cnidarian model systemAiptasiaand its symbionts. Mol Ecol. 2013;22:4366–8.PubMed 

    Google Scholar 
    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genom. 2009;10:258.
    Google Scholar 
    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J Phycol. 2013;49:447–58.CAS 
    PubMed 

    Google Scholar 
    Thornhill DJ, Lewis AM, Wham DC, Lajeunesse TC. Host‐specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.CAS 
    PubMed 

    Google Scholar 
    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching. PLoS ONE. 2016;11:e0152693.PubMed 
    PubMed Central 

    Google Scholar 
    Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA. 2015;112:11893–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Correa AMS, McDonald MD, Baker AC. Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol. 2009;156:2403–11.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 
    PubMed 

    Google Scholar 
    Lee JA, Francis CA. DeepnirSamplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition. Environ Microbiol. 2017;19:4897–912.CAS 
    PubMed 

    Google Scholar 
    Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 2011;17:10–2.
    Google Scholar 
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot: the manually annotated section of the UniProt KnowledgeBase. Methods Mol Biol. 2007;406:89–112.Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:7–13.
    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.PubMed 
    PubMed Central 

    Google Scholar 
    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.PubMed 
    PubMed Central 

    Google Scholar 
    Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:719.
    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:1–11.CAS 

    Google Scholar 
    Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, et al. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO 2 environment. Mol Ecol. 2021;30:5888–99.CAS 
    PubMed 

    Google Scholar 
    Geissler L, Meunier V, Rädecker N, Perna G, Rodolfo-Metalpa R, Houlbrèque F, et al. Highly Variable and Non-complex Diazotroph Communities in Corals From Ambient and High CO2 Environments. Front Mar Sci. 2021;8:754682.Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.CAS 
    PubMed 

    Google Scholar 
    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Front Mar Sci. 2016;3:234.
    Google Scholar 
    Hartman LM, Blackall LL, van Oppen MJH. Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiol. 2022;4:000314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawson CA, Raina JB, Kahlke T, Seymour JR, Suggett DJ. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ Microbiol Rep. 2018;10:7–11.CAS 
    PubMed 

    Google Scholar 
    Matthews JL, Raina JB, Kahlke T, Seymour JR, van Oppen MJ, Suggett DJ. Symbiodiniaceae‐bacteria interactions: rethinking metabolite exchange in reef‐building corals as multi‐partner metabolic networks. Environ Microbiol. 2020;22:1675–87.PubMed 

    Google Scholar 
    Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A, Voolstra CR. Surface Topography, Bacterial Carrying Capacity, and the Prospect of Microbiome Manipulation in the Sea Anemone Coral Model Aiptasia. Front Microbiol. 2021;12:637834.Pelve EA, Fontanez KM, DeLong EF. Bacterial succession on sinking particles in the ocean’s interior. Front Microbiol. 2017;8:2269.PubMed 
    PubMed Central 

    Google Scholar 
    Welles L, Lopez-Vazquez CM, Hooijmans CM, Van Loosdrecht MCM, Brdjanovic D. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions. AMB Express. 2016;6:1–12.Kaneko T. Complete Genomic Sequence of Nitrogen-fixing Symbiotic Bacterium Bradyrhizobium japonicum USDA110. DNA Res. 2002;9:189–97.PubMed 

    Google Scholar 
    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc R Soc B: Biol Sci. 2018;285:20172654.
    Google Scholar 
    Xiang T, Lehnert E, Jinkerson RE, Clowez S, Kim RG, Denofrio JC, et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun. 2020;11:1–9.CAS 

    Google Scholar  More

  • in

    Estimates of regeneration potential in the Pannonian sand region help prioritize ecological restoration interventions

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3831673 (IPBES Secretariat, 2019).UNEP/FAO. The UN Decade on Ecosystem Restoration 2021-2030 “Prevent, halt and reverse the degradation of ecosystems worldwide.” https://www.decadeonrestoration.org/ (2020).Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. 36, 1 (2021).
    Google Scholar 
    Tolvanen, A. & Aronson, J. Ecological reastoration, ecosystem services, and land use: a European perspective. Ecol. Soc. 21, 47 (2016).
    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 

    Google Scholar 
    Temperton, V. M. et al. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restor. Ecol. 27, 705–719 (2019).
    Google Scholar 
    Prach, K. & Hobbs, R. J. Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor. Ecol. 16, 363–366 (2008).
    Google Scholar 
    Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2019).
    Google Scholar 
    Gilby, B. L. et al. Applying systematic conservation planning to improve the allocation of restoration actions at multiple spatial scales. Restor. Ecol. 29, e13403 (2021).
    Google Scholar 
    Erdős, L. et al. The edge of two worlds: a new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci. 21, 345–362 (2018).
    Google Scholar 
    Poschlod, P. & WallisDeVries, M. F. The historical and socioeconomic perspective of calcareous grasslands. Lessons learnt from the distant and recent past. Biol. Conserv. 104, 361–376 (2022).
    Google Scholar 
    Wesche, K. et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 25, 2197–2231 (2016).
    Google Scholar 
    Butaye, J., Dries, A. & Honnay, O. Conservation and restoration of calcareous grasslands: a concise review of the effects of fragmentation and management on plant species. Biotechnol. Agron. Soc. Environ. 9, 111–118 (2005).
    Google Scholar 
    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).PubMed 

    Google Scholar 
    Knight, M. L. & Overbeck, G. E. How much does is cost to restore a grassland? Restor. Ecol. 29, e13463 (2021).
    Google Scholar 
    Albert, Á.-J. et al. Trait-based analysis of spontaneous grassland recovery in sandy old-fields. Appl. Veg. Sci. 17, 214–224 (2014).
    Google Scholar 
    Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
    Google Scholar 
    Seregélyes, T., Molnár, Z. S., Csomós, Á. & Bölöni, J. Regeneration potential of the Hungarian (semi)-natural habitats I. Concepts and basic data of the MÉTA database. Acta Bot. Hung. 50, 229–248 (2008).
    Google Scholar 
    Käyhkö, N. & Skånes, H. Change trajectories and key biotopes – Assessing landscape dynamics and sustainability. Landsc. Urban Plan 75, 300–321 (2006).
    Google Scholar 
    Käyhkö, N. & Skånes, H. Retrospective land cover/land use change trajectories as drivers behind the local distribution and abundance patterns of oaks in south-western Finland. Landsc. Urban Plan 88, 12–22 (2008).
    Google Scholar 
    Swetnam, R. D. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landsc. Urban Plan 81, 91–103 (2007).
    Google Scholar 
    Ruiz, J. & Domon, G. 2009. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: case study in a watershed of southern Québec, Canada. Landsc. Ecol. 24, 419–432 (2009).
    Google Scholar 
    Eremiášová, R. & Skokanová, H. Land use changes (recorded in old maps) and delimitation of the most stable areas from the perspective of land use in the Kašperské Hory region. Landsc. Ecol. 88, 20–34 (2009).
    Google Scholar 
    Frondoni, R. B. M. & Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan 100, 117–128 (2011).
    Google Scholar 
    Biró, M., Szitár, K., Horváth, F., Bagi, I. & Molnár, Z. S. Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales. Community Ecol. 14, 219–230 (2013).
    Google Scholar 
    Molnár, Z. S, Biró, M., Bartha, S. & Fekete, G. in Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & van Staalduinen, M. A.) Ch. 7 (Springer, 2012).Mezősi, G. in The Physical Geography of Hungary. Geography of the Physical Environment (ed. Mezősi, G) Ch. 11 (Springer, 2017).Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32, 660–671 (2018).PubMed 

    Google Scholar 
    Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2, 305–316 (2020).
    Google Scholar 
    Benton, T. G., Bieg, C., Harwatt, H., Pudasaini, R. & Wellesley, L. Food system impacts on biodiversity loss. Three levers for food system transformation in support of nature. Chatham House, the Royal Institute of International Affairs. ISBN: 978 1 78413 433 4 (2021).Kuemmerle, T. et al. Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 11, 614 (2008).
    Google Scholar 
    Feranec, J. et al. Inventory of major landscape changes in the Czech Republic, Hungary, Romania and Slovak Republic 1970s – 1990s. Int. J. Appl. Earth Observ. Geoinf. 2, 129–139 (2000).
    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 

    Google Scholar 
    Csákvári, E. et al. Conservation biology research priorities for 2050: a Central-Eastern European perspective. Biol. Conserv. 264, 109396 (2021).
    Google Scholar 
    Molnár, Z. S., Bölöni, J. & Horváth, F. Threatening factors encountered: actual endangerment of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 199–217 (2008).
    Google Scholar 
    Király, G., Molnár, ZS., Bölöni, J., Csiky, J. & Vojtkó, A. Magyarország földrajzi kistájainak növényzete (in Hungarian). MTA ÖBKI, Vácrátót, 248 (2008).Botta-Dukát, Z. Invasion of alien species to Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 219–227 (2008).
    Google Scholar 
    Csákvári, E., Bede-Fazekas, Á., Horváth, F., Molnár, Z. & Halassy, M. Do environmental predictors affect the regeneration capacity of sandy habitats? A country-wide survey from Hungary. Glob. Ecol. Conserv. 27, e01547 (2021).
    Google Scholar 
    Somodi, I. et al. Implementation and application of multiple potential natural vegetation models–a case study of Hungary. J. Veg. Sci. 28, 1260–1269 (2017).
    Google Scholar 
    Bölöni, J., Molnár, Zs. & Kun, A. (Eds.), Magyarország élőhelyei. A hazai vegetációtípusok leírása és határozója (in Hungarian) (Habitats – Description and Identification of Vegetation Types of Hungary, ÁNÉR 2011). MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, pp. 439. ISBN 978-963-8391-51 (2011).Choi, Y. D. et al. Ecological restoration for future sustainability in a changing environment. Ecoscience 15, 53–64 (2008).CAS 

    Google Scholar 
    Valkó, O. et al. Abandonment of croplands: problem or chance for grassland restoration? Case studies from Hungary. Ecosyst. Health Sustain. 2, e01208 (2016).
    Google Scholar 
    Csecserits, A. et al. Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric. Ecosyst. Environ. 226, 88–98 (2016).
    Google Scholar 
    Pyšek P. & Richardson D. M. in Biological Invasions. Ecological Studies (Analysis and Synthesis) (ed. Nentwig, W) Ch. 7 (Springer, 2008).Reis, B. P. et al. The long-term effect of initial restoration intervention, landscape composition, and time on the progress of Pannonic sand grassland restoration. Landsc. Ecol. Eng. https://doi.org/10.1007/s11355-022-00512-y (2022).Article 

    Google Scholar 
    Ruprecht, E. Successfully recovered grassland: a promising example from Romanian old‐fields. Restor. Ecol. 14, 473–480 (2006).
    Google Scholar 
    Török, P. et al. Restoring grassland biodiversity: sowing low-diversity seed mixtures can lead to rapid favourable changes. Biol. Conserv. 143, 3 (2010).
    Google Scholar 
    Török, P., Vida, E., Deák, B., Lengyel, S. & Tóthmérész, B. Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers. Conserv. 20, 2311–2332 (2011).
    Google Scholar 
    Prach, K., Jongepierová, I., Řehounková, K. & Fajmon, K. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agric. Ecosyst. Environ. 182, 131–136 (2014).
    Google Scholar 
    Prach, K., Chenoweth, J. & del Moral, R. Spontaneous and assisted restoration of vegetation on the bottom of a former water reservoir, the Elwha River, Olympic National Park, WA, USA. Restor. Ecol. 27, 592–599 (2019).
    Google Scholar 
    Török, P., Helm, A., Kiehl, K., Buisson, E. & Valkó, O. Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restor. Ecol. 26, S65–S72 (2018).
    Google Scholar 
    Török, P., Bullock James M, J. M., Jiménez‐Alfaro, B. & Sonkoly, J. The importance of dispersal and species establishment in vegetation dynamics and resilience. J. Veg. Sci. 31, 935–942 (2020).
    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Kirmer, A., Baasch, A. & Tischew, S. Sowing of low and high diversity seed mixtures in ecological restoration of surface mined-land. Appl. Veg. Sci. 15, 198–207 (2012).
    Google Scholar 
    Llumiquinga, Y. B. et al. Long-term results of initial seeding, mowing and carbon amendment on the restoration of Pannonian sand grassland on old fields. Tuxenia 41, 361–379 (2021).
    Google Scholar 
    Edwards, A. R. et al. Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement of botanical diversity in grasslands. Biol. Conserv. 134, 372–382 (2007).
    Google Scholar 
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).
    Google Scholar 
    Bussion, E., Archibald, S., Fidelis, A. & Sudling, K. N. Ancient grasslands guide ambitious goals in grassland restoration. Science 377, 594–598 (2022).
    Google Scholar 
    Csecserits, A. et al. Regeneration of sandy old-field in the forest steppe region of Hungary. Plant Biosyst. 145, 715–726 (2011).
    Google Scholar 
    Szitár, K. et al. Az országos zöldinfrastruktúrahálózat kijelölésének módszertana többszempontú állapotértékelés alapján. (in Hungarian) (Methodology for designating the national green infrastructure network based on multi-criteria assessment). Term.észetvédelmi K.özlemények 27, 145–157 (2021).
    Google Scholar 
    Szalai, S., Szinell, C. S. & Zoboki, J. Early warning systems for drought preparedness and drought management. In Proc. Expert Group Meeting (eds Wilhite, D. A., Sivakumar, M. V. K. & Wood, D. A.) (World Meteorological Organization, 2000).Szilassi, P. et al. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 81, 252–259 (2017).
    Google Scholar 
    Demeter, I., Makádi, M., Végső, B., Aranyos, T. J. & Posta, K. The effect of recycled plant residues on the microbial activity of typical sandy soil of the Nyírség region. In Abstract Book, 18th Alps-Adria Scientific Workshop https://doi.org/10.34116/NTI.2019.AA.13 (2019).Borhidi, A. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39, 97–181 (1995).
    Google Scholar 
    Horváth, F. et al. Flóra adatbázis 1.2. Taxonlista és attribútum-állomány (Flora database 1.2. Taxon list and attribute file). MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, ISBN 9638391197 (1995).Király, G. Új Magyar Füvészkönyv. Magyarország hajtásos növényei (New Herbal Guide to the Hungarian Flora). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, Hungary, 628p. (2009).Máté, A. 6260 pannon homoki gyepek. In: Haraszthy, L. (Eds.), Natura 2000 fajok és élőhelyek Magyarországon. (in Hungarian) Pro Vértes Közalapítvány, Csákvár, Hungary, pp. 817-823. ISBN: 9789630888530 (2014).Molnár, Z. S. et al. Magyarországi Élőhelytérképezési Adatbázisának (MÉTA) térképezési módszertani és Adatlapkitöltési Útmutatója (AL-KÚ) 3.3 Kézirat, (Guide on the methods of MÉTA and on the completion of the MÉTA datasheets). MTA ÖBKI, Vácrátót, Hungary, 54 pp. (2003).Molnár, Z. S. et al. A grid-based, satellite-image supported multi-attributed vegetation mapping method (MÉTA). Folia Geobotanica 42, 225–247 (2007).
    Google Scholar 
    Horváth, F. et al. Fact sheet of the MÉTA database 1.2. Acta Bot. Hung. 50, 11–34 (2008).
    Google Scholar 
    Bölöni, J., Kun, A. & Molnár, Z. S. Élőhely-ismereti Útmutató (Habitat guide). MTA ÖBKI, Vácrátót, Hungary (2003).European Environment Agency. Corine Land Cover 2006 seamless vector data (Version 17). https://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3 (2013).European Environment Agency. CLC2006 Technical Guidelines. Report No. 17/2007, ISNN 1725-2237 (2017).ESRI ArcGIS Vers. 10.2. (Environmental System Research Institute Inc., 2013).Pásztor, L. et al. Compilation of novel and renewed, goal oriented digital soil maps using geostatistical and data mining tools. Hungarian Geogr. Bull. 64, 49–64 (2015).
    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 2.4-20, https://cran.r-project.org/web/packages/raster/index.html (2015).R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ (2019).USGS. Shuttle Radar Topography Mission, 3 Arc Second scene SRTM_u03_n045e016-SRTM_ff03_n048e022, Unfilled Unfinished 2.0, Global Land Cover Facility, February 2000. College Park, MD, USA, University of Maryland (2004).SRTM. SRTM Mission Summary. URL: lta.cr.usgs.gov/srtm/mission_summary (2015). [Last accesed: 2016.04.22.].Szalai, S. et al. Climate of the Greater Carpathian Region. Final Technical Report. http://www.carpatclim-eu.org/ (2013).Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (2002).
    Google Scholar 
    Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (CRC Press, 1984).Sarica, A., Cerasa, A. & Quattrone, A. Random Forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front. Aging Neurosci. 6, 329 (2017).
    Google Scholar 
    Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph Stat. 15, 651–674 (2006).
    Google Scholar 
    Pebesma, E. Simple features for R: standardized support for spatial vector. Data. R. J. 10, 439–446 (2018).
    Google Scholar 
    Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd ed. (Springer, 2013).Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).
    Google Scholar 
    Bölöni, J., Molnár, Z. S., Horváth, F. & Illyés, E. Naturalness-based habitat quality of the Hungarian (semi-)natural habitats. Acta Bot. Hung. 50, 149–159 (2008).
    Google Scholar 
    Czúcz, B., Molnár, Z. S., Horváth, F. & Botta-Dukát, Z. The natural capital index of Hungary. Acta Bot. Hung. 50, 161–177 (2008).
    Google Scholar  More

  • in

    Towards a unified theory of plant photosynthesis and hydraulics

    Raschke, K., Monteith, J. L. & Weatherley, P. E. How stomata resolve the dilemma of opposing priorities. Phil. Trans. R. Soc. Lond. B 273, 551–560 (1976).Article 
    CAS 

    Google Scholar 
    Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodribb, T. J., Bowman, D. J. M. S., Nichols, S., Delzon, S. & Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188, 533–542 (2010).Article 
    PubMed 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keeling, R. F. et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1619240114 (2017).Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 
    PubMed 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).Article 

    Google Scholar 
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).Article 
    CAS 

    Google Scholar 
    Damour, G., Simonneau, T., Cochard, H. & Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33, 1419–1438 (2010).PubMed 

    Google Scholar 
    Wang, Y., Sperry, J. S., Anderegg, W. R. L., Venturas, M. D. & Trugman, A. T. A theoretical and empirical assessment of stomatal optimization modeling. New Phytol. 227, 311–325 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).Article 
    PubMed 

    Google Scholar 
    Venturas, M. D. et al. A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought. New Phytol. 220, 836–850 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sabot, M. E. B. et al. Plant profit maximization improves predictions of European forest responses to drought. New Phytol. 226, 1638–1655 (2020).Article 
    PubMed 

    Google Scholar 
    Eller, C. B. et al. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytol. 226, 1622–1637 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).Article 

    Google Scholar 
    Bonan, G. B., Williams, M., Fisher, R. A. & Oleson, K. W. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 7, 2193–2222 (2014).Article 

    Google Scholar 
    Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).Article 

    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, Version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).Article 

    Google Scholar 
    Cowan, I. R. & Farquhar, G. D. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 31, 471–505 (1977).CAS 
    PubMed 

    Google Scholar 
    Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. USA 113, E7222–E7230 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sperry, J. S. et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 40, 816–830 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bartlett, M. K., Detto, M. & Pacala, S. W. Predicting shifts in the functional composition of tropical forests under increased drought and CO2 from trade-offs among plant hydraulic traits. Ecol. Lett. 22, 67–77 (2019).Article 
    PubMed 

    Google Scholar 
    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).Article 
    PubMed 

    Google Scholar 
    Wright, I. J., Reich, P. B. & Westoby, M. Least‐cost input mixtures of water and nitrogen for photosynthesis. Am. Nat.161, 98–111 (2003).Article 
    PubMed 

    Google Scholar 
    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J.-L., Reynolds, J. F., Harley, P. C. & Tenhunen, J. D. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).Article 
    PubMed 

    Google Scholar 
    Buckley, T. N., John, G. P., Scoffoni, C. & Sack, L. How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 168, 1616–1635 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scoffoni, C. et al. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiol. 173, 1197–1210 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Klein, T. et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol. Res. 33, 839–855 (2018).CAS 

    Google Scholar 
    Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sack, L. & Holbrook, N. M. Leaf hydraulics. Annu. Rev. Plant Biol. 57, 361–381 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bourbia, I., Pritzkow, C. & Brodribb, T. J. Herb and conifer roots show similar high sensitivity to water deficit. Plant Physiol. 186, 1908–1918 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. Meteorol. 182–183, 204–214 (2013).Article 

    Google Scholar 
    Kanechi, M., Uchida, N., Yasuda, T. & Yamaguchi, T. Non-stomatal inhibition associated with inactivation of rubisco in dehydrated coffee leaves under unshaded and shaded conditions. Plant Cell Physiol. 37, 455–460 (1996).Article 
    CAS 

    Google Scholar 
    Salmon, Y. et al. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 226, 690–703 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. New Phytol. 204, 105–115 (2014).Article 
    PubMed 

    Google Scholar 
    Bartlett, M. K., Klein, T., Jansen, S., Choat, B. & Sack, L. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl Acad. Sci. USA 113, 13098–13103 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutiérrez, M. V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450 (2003).Article 

    Google Scholar 
    Martin‐StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437–1447 (2017).Article 
    PubMed 

    Google Scholar 
    Skelton, R. P. et al. Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiol. 177, 1066–1077 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hölttä, T., Lintunen, A., Chan, T., Mäkelä, A. & Nikinmaa, E. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source–sink flux. Tree Physiol. 37, 851–868 (2017).Article 
    PubMed 

    Google Scholar 
    Pivovaroff, A. L., Sack, L. & Santiago, L. S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytol. 203, 842–850 (2014).Article 
    PubMed 

    Google Scholar 
    Boyer, J. S., Wong, S. C. & Farquhar, G. D. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiol. 114, 185–191 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deans, R. M., Brodribb, T. J., Busch, F. A. & Farquhar, G. D. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nat. Plants 6, 1116–1125 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rungwattana, K. et al. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Funct. Ecol. 32, 2638–2651 (2018).Article 

    Google Scholar 
    Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B. & Pacala, S. W. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am. Nat. 177, 153–166 (2011).Article 
    PubMed 

    Google Scholar 
    Hikosaka, K. & Anten, N. P. R. An evolutionary game of leaf dynamics and its consequences for canopy structure. Funct. Ecol. 26, 1024–1032 (2012).Article 

    Google Scholar 
    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).Article 
    PubMed 

    Google Scholar 
    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).Article 

    Google Scholar 
    Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).Article 
    PubMed 

    Google Scholar 
    Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Glob. Change Biol. 26, 2573–2583 (2020).Article 

    Google Scholar 
    Papastefanou, P. et al. A dynamic model for strategies and dynamics of plant water-potential regulation under drought conditions. Front. Plant Sci. 11, 373 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieu, P., Guehl, J. M. & Aussenac, G. The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species. Physiol. Plant. 73, 97–104 (1988).Article 

    Google Scholar 
    Liu, F., Andersen, M. N., Jacobsen, S.-E. & Jensen, C. R. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ. Exp. Bot. 54, 33–40 (2005).Article 
    CAS 

    Google Scholar 
    Tezara, W., Driscoll, S. & Lawlor, D. W. Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica 46, 127–134 (2008).Article 
    CAS 

    Google Scholar 
    Liu, C.-C. et al. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol. Plant. 139, 39–54 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Posch, S. & Bennett, L. T. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol. 11, 83–93 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiang, M., Kelly, J. W. G., Atwell, B. J., Tissue, D. T. & Medlyn, B. E. Drought by CO2 interactions in trees: a test of the water savings mechanism. New Phytol. 230, 1421–1434 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ennajeh, M., Tounekti, T., Vadel, A. M., Khemira, H. & Cochard, H. Water relations and drought-induced embolism in olive (Olea europaea) varieties ‘Meski’ and ‘Chemlali’ during severe drought. Tree Physiol. 28, 971–976 (2008).Article 
    PubMed 

    Google Scholar 
    Peguero-Pina, J. J., Sancho-Knapik, D., Morales, F., Flexas, J. & Gil-Pelegrín, E. Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct. Plant Biol. 36, 453–462 (2009).Article 
    PubMed 

    Google Scholar 
    Liu, C.-C. et al. Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats of southwestern China. Acta Physiol. Plant. 33, 93–102 (2011).Article 

    Google Scholar 
    Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995).Article 
    CAS 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    Brodribb, T. et al. Linking xylem network failure with leaf tissue death. New Phytol. 232, 68–79 (2021).Article 
    PubMed 

    Google Scholar 
    Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28, 1313–1320 (2014).Article 

    Google Scholar  More

  • in

    The point of no return for species facing heatwaves

    Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021).
    Google Scholar 
    Hesketh, A. V. & Harley, C. D. G. Glob. Change Biol. https://doi.org/10.1111/gcb.16390 (2022).Article 

    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Nature https://doi.org/10.1038/s41586-022-05334-4 (2022).Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Nature Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman & Hall, 1987).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).Article 
    PubMed 

    Google Scholar 
    Dillon, M. E. et al. Integr. Comp. Biol. 56, 14–30 (2016).Article 
    PubMed 

    Google Scholar 
    Stillman, J. H. Physiology 34, 86–100 (2019).Article 
    PubMed 

    Google Scholar 
    MacMillan, H. A. J. Exp. Biol. 222, jeb191593 (2019).Article 
    PubMed 

    Google Scholar 
    Kingsolver, J. G. & Umbanhowar, J. J. Exp. Biol. 221, jeb167858 (2018).Article 
    PubMed 

    Google Scholar  More

  • in

    Temporal change in plant communities and its relationship to soil salinity and microtopography on the Caspian Sea coast

    Shomurodov, K. F. & Adilov, B. A. Current state of the flora of Vozrozhdeniya Island (Uzbekistan). Arid Ecosyst. 9, 97–103 (2019).
    Google Scholar 
    Adilov, B. et al. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. J. Arid Land 13, 71–87 (2020).
    Google Scholar 
    Kuz’mina, Z. V. & Treshkin, S. E. Soil salinization and dynamics of Tugai vegetation in the southeastern Caspian Sea region and in the Aral Sea coastal region. Eurasian Soil Sci. 30, 642–649 (1997).
    Google Scholar 
    Kuz’mina, Z. V., Shinkarenko, S. S. & Solodovnikov, D. A. Main tendencies in the dynamics of floodplain ecosystems and landscapes of the lower reaches of the Syr Darya river under modern changing conditions. Arid Ecosyst. 9, 226–236 (2019).
    Google Scholar 
    Dimeyeva, L. A. Phytogeography of the northeastern coast of the Caspian Sea: Native flora and recent colonizations. J. Arid Land 5, 439–451 (2013).
    Google Scholar 
    Goryaev, I. A. & Korablev, A. P. Halophytic vegetation in the west caspian lowland. Contemp. Probl. Ecol. 13, 514–521 (2020).
    Google Scholar 
    Novikova, N. M., Volkova, N. A., Ulanova, S. S. & Chemidov, M. M. Change in vegetation on meliorated solonetcic soils of the Peri-Yergenian plain over 10 years (Republic of Kalmykia). Arid Ecosyst. 10, 194–202 (2020).
    Google Scholar 
    Ravanbakhsh, M., Amini, T. & Hosseini, S. M. N. Plant species diversity among ecological species groups in the Caspian Sea coastal sand dune; Case study: Guilan Province, North of Iran. Biodiversitas 16, 16–21 (2015).
    Google Scholar 
    Yan, S., Mu, G., Xu, Y. & Zhao, Z. Quarternary environmental evolution of the Lop Nur region, China. Dili Xuebao/Acta Geogr. Sin. 53, 332–340 (1998).
    Google Scholar 
    Hao, H., Ferguson, D. K., Chang, H. & Li, C. S. Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Clim. Change 113, 323–338 (2012).ADS 

    Google Scholar 
    Li, C. et al. Growth and sustainability of Suaeda salsa in the Lop Nur, China. J. Arid Land 10, 429–440 (2018).
    Google Scholar 
    Barrett, G. Vegetation communities on the shores of a salt lake in semi-arid Western Australia. J. Arid Environ. 67, 77–89 (2006).ADS 

    Google Scholar 
    Neffar, S., Chenchouni, H. & Si Bachir, A. Floristic composition and analysis of spontaneous vegetation of Sabkha Djendli in north-east Algeria. Plant Biosyst. 150, 396–403 (2016).
    Google Scholar 
    Yanina, T. A. The Ponto-Caspian region: Environmental consequences of climate change during the Late Pleistocene. Quat. Int. 345, 88–99 (2014).
    Google Scholar 
    Rychagov, G. I. Pleistocene History of the Caspian Sea (Moscow State University, 1977).
    Google Scholar 
    Rychagov, G. I. The level mode of the Caspian Sea during the last 10000. Vestn. Mosk. Univ. Seriya 5 Geogr. 2, 38–49 (1993).
    Google Scholar 
    Kroonenberg, S. B. et al. Solar-forced 2600 BP and Little Ice Age highstands of the Caspian Sea. Quat. Int. 173–174, 137–143 (2007).
    Google Scholar 
    Kasimov, N. S., Lychagin, M. Y. & Kroonenberg, S. B. Geochemical indication of cyclic fluctuations of the caspian sea level. Vestn. Mosk. Univ. Seriya Geogr. 2, 72–77 (2011).
    Google Scholar 
    Kroonenberg, S. B., Badyukova, E. N., Storms, J. E. A., Ignatov, E. I. & Kasimov, N. S. A full sea-level cycle in 65 years: Barrier dynamics along Caspian shores. Sediment. Geol. 134, 257–274 (2000).ADS 

    Google Scholar 
    Bolikhovskaya, N. & Kasimov, N. The evolution of climate and landscapes of the Lower Volga region during the Holocene. Geogr. Environ. Sustain. 3, 78–97 (2010).
    Google Scholar 
    Magomedov, M.M.-R. & Gasanov, S. M. Features of soil changes under crowns of the shrubberies tamarisk (Tamarix meyeri boiss, T. ramosissima zedeb). South Russ. Ecol. Dev. 6, 12–21 (2014).
    Google Scholar 
    Du, N. et al. Facilitation or competition? The effects of the shrub species tamarix chinensis on herbaceous communities are dependent on the successional stage in an impacted coastal wetland of North China. Wetlands 37, 899–911 (2017).
    Google Scholar 
    Jiang, L., Jiapaer, G., Bao, A., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).ADS 
    PubMed 

    Google Scholar 
    Burke, I. C. et al. Plant–soil interactions in temperate grasslands. In Plant-Induced Soil Changes: Processes and Feedbacks (ed. van Breemen, N.) 121–143 (Springer, 1998). https://doi.org/10.1007/978-94-017-2691-7_7.Chapter 

    Google Scholar 
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
    Google Scholar 
    Abaturov, B. D. Microdepression microrelief of Caspian Lowland and mechanisms of its formation. Arid. Ecosistemy 16, 31–45 (2010).
    Google Scholar 
    Sapanov, M. K. The results of soil water investigations in Djanybek stationary. Dokuchaev Soil Bull. 83, 22–40 (2016).
    Google Scholar 
    Bolshakov, A. F. & Bazykina, G. S. Natural biogeocenoses and the conditions of their existence. In Biogeocenotic Basis of the Reclamation of Semidesert in the Northern Caspain Lowland (ed. Rode, A. A.) 6–34 (Nauka, 1974).
    Google Scholar 
    Konyushkova, M. V., Nukhimovskaya, Y. D., Gasanova, Z. U. & Stepanova, N. Y. The temporal change in variability of soil salinity and phytodiversity at the coastal plain of the Caspian Sea. Arid Ecosyst. 10, 312–321 (2020).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A., Nukhimovskaya, Y. & Klink, G. Data on the soilscape and vegetation properties at the key site in the NW Caspian Sea coast, Russia. Data Br. 31, 105972 (2020).
    Google Scholar 
    Konyushkova, M. V. et al. Spatial and seasonal salt translocation in the young soils at the coastal plains of the Caspian Sea. Quat. Int. 590, 15–25 (2021).
    Google Scholar 
    Semenkov, I., Konyushkova, M., Heidari, A. & Nikolaev, E. Chemical differentiation of recent fine-textured soils on the Caspian Sea coast: A case study in Golestan (Iran) and Dagestan (Russia). Quat. Int. 590, 48–55 (2021).
    Google Scholar 
    Haghani, S. et al. An early ‘Little Ice Age’ brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people. Holocene 26, 3–16 (2016).ADS 

    Google Scholar 
    Panin, G. N., Mamedov, R. M. & Mitrofanov, I. V. Present State of the Caspian Sea (Nauka, 2005).
    Google Scholar 
    Konyushkova, M. V. et al. The spatial differentiation of soil salinity at the young saline coastal plain of the Caspian region. Dokuchaev Soil Bull. 95, 41–57 (2018).
    Google Scholar 
    Cherepanov, S. K. Vascular Plants of Russia and Adjacent States (Within the Former USSR) (Cambridge University Press, 1995).
    Google Scholar 
    Takhtajan, A. Flowering Plants (Springer Science+Business Media B.V, 2009). https://doi.org/10.1007/978-1-4020-9609-9.Book 

    Google Scholar 
    Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew (Board of Trustees of the Royal Botanic Gardens, 2022).Chase, M. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
    Google Scholar 
    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
    Google Scholar 
    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 
    Semenkov, I. N. et al. The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula. Sci. Rep. 11, 11077 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R Packag. version 1.0.0 (2019).Goryaev, I. A. Regularities of distribution of halophytic vegetation on the Caspian Lowland. Bot. Zhurnal 104, 1072–1089 (2019).
    Google Scholar 
    Soltanmuradova, Z. I. & Teimurov, A. A. Taxonomic structure of the flora of the Primorskaya Lowland of the Republic of Dagestan. South Russ. Ecol. Dev. 3, 38 (2010).
    Google Scholar 
    Zörb, C., Sümer, A., Sungur, A., Flowers, T. J. & Özcan, H. Ranking of 11 coastal halophytes from salt marshes in northwest Turkey according their salt tolerance. Turk. J. Botany 37, 1125–1133 (2013).
    Google Scholar 
    Zhao, Y., Yu, H., Zhang, T. & Guo, J. Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China. J. Arid Land 9, 143–152 (2017).
    Google Scholar 
    Podar, D. et al. Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiol. Mol. Biol. Plants 25, 1335–1347 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayyar, H. & Gupta, D. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ. Exp. Bot. 58, 106–113 (2006).CAS 

    Google Scholar 
    Way, D. A., Katul, G. G., Manzoni, S. & Vico, G. Increasing water use efficiency along the C3 to C4 evolutionary pathway: A stomatal optimization perspective. J. Exp. Bot. 65, 3683–3693 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Atia, A. et al. Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia. J. Arid Land 6, 762–770 (2014).
    Google Scholar 
    Pickett, S. T. A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology 110–135 (1989) https://doi.org/10.1007/978-1-4615-7358-6_5.Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Dimeeva, L. A. Dynamics of vegetation in deserts of Aral and Caspian regions. (2011).Yu, K. et al. Late quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 77–91 (2019).
    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 

    Google Scholar 
    Zhang, D. et al. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quat. Sci. Rev. 229, 106138 (2020).
    Google Scholar 
    Lu, K. Q. et al. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 551, 109762 (2020).
    Google Scholar 
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 

    Google Scholar 
    Ziffer-Berger, J., Weisberg, P. J., Cablk, M. E. & Osem, Y. Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient. J. Arid Environ. 102, 27–33 (2014).ADS 

    Google Scholar 
    Vinogradov, B. V. Plant Indicators and Their Use in the Study of Natural Resources (Visshaya shkola, 1964).
    Google Scholar 
    Luo, C. et al. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev. Palaeobot. Palynol. 153, 282–295 (2009).
    Google Scholar 
    Zhao, Y. & Herzschuh, U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veg. Hist. Archaeobot. 18, 245–260 (2009).
    Google Scholar  More

  • in

    Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases

    World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).Global Vector Control Response 2017–2030 (World Health Organization & UNICEF, 2017).Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).Article 

    Google Scholar 
    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, J. E. et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B Biol. Sci. 278, 2446–2454 (2011).Article 

    Google Scholar 
    Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. & Galvani, A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 6, e1799 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cavany, S. M. et al. Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Comput. Biol. 16, e1007743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefopoulou, Α et al. Reducing Aedes albopictus breeding sites through education: a study in urban area. PLoS ONE 13, e0202451 (2018).Article 

    Google Scholar 
    Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W.Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Echaubard, P. et al. Fostering social innovation and building adaptive capacity for dengue control in Cambodia: a case study. Infect. Dis. Poverty 9, 126 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazquez-Prokopec, G. M., Lenhart, A. & Manrique-Saide, P. Housing improvement: a novel paradigm for urban vector-borne disease control? Trans. R. Soc. Trop. Med. Hyg. 110, 567–569 (2016).Article 
    PubMed 

    Google Scholar 
    Malone, R. W. et al. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10, e0004530 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 11, e0005640 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).Article 
    PubMed 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juliano, S. A., Westby, K. M. & Ower, G. D. Know your enemy: effects of a predator on native and invasive container mosquitoes. J. Med. Entomol. 56, 320–328 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahendra, A. & Seto, K. C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South (World Resources Institute, 2019).Moretto, L. et al. Challenges of water and sanitation service co-production in the global South. Environ. Urban. 30, 425–443 (2018).Article 

    Google Scholar 
    Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35, 167–194 (2010).Article 

    Google Scholar 
    Estallo, E. L. et al. A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon 6, e04858 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaufman, M. G. & Fonseca, D. M.Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu. Rev. Entomol. 59, 31–49 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kache, P. A. et al. Environmental determinants of Aedes albopictus abundance at a northern limit of its range in the United States. Am. J. Trop. Med. Hyg. 102, 436–447 (2020).Article 
    PubMed 

    Google Scholar 
    Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biehler, D. et al. in The Palgrave Handbook of Critical Physical Geography 295–318 (Springer, 2018).Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis. 3, e481 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and Chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, P. P.-Y., Lai, P.-C., Low, C.-T., Chen, S. & Hart, M. The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 95, 199–208 (2016).Article 

    Google Scholar 
    Rey, J. R. & O’Connell, S. M. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. J. Vector Ecol. 39, 190–196 (2014).Article 
    PubMed 

    Google Scholar 
    Leisnham, P. T. & Juliano, S. Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160, 343–352 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paploski, I. A. D. et al. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit. Vectors 9, 419 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zainon, N., Rahim, F. A. M., Roslan, D. & Abd Samat, A. H. Prevention of Aedes breeding habitats for urban high-rise building in Malaysia. Plan. Malay. 14, 115–128 (2016).
    Google Scholar 
    Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrington, L. C. et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72, 209–220 (2005).Article 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: a mark–release–recapture study using self-marking units. Parasit. Vectors 12, 583 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, H., Wu, W., Li, T. & Yang, Z. Urban villages as transfer stations for dengue fever epidemic: a case study in the Guangzhou, China. PLoS Negl. Trop. Dis. 13, e0007350 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charron, D. F. in Ecohealth Research in Practice 255–271 (Springer, 2012).Lippi, C. A. et al. Exploring the utility of social–ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Negl. Trop. Dis. 15, e0009257 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wijayanti, S. P. et al. The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl. Trop. Dis. 10, e0004964 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zellweger, R. M. et al. Socioeconomic and environmental determinants of dengue transmission in an urban setting: an ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 11, e0005471 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, S. J. et al. Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int. J. Environ. Res. Public Health 16, 682 (2019).Article 
    PubMed Central 

    Google Scholar 
    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez, L. et al. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 12, 800–806 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cromwell, E. A. et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl. Trop. Dis. 11, e0005429 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Honório, N. A. et al. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3, e545 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chadee, D. Dengue cases and Aedes aegypti indices in Trinidad, West Indies. Acta Trop. 112, 174–180 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fustec, B. et al. Complex relationships between Aedes vectors, socio-economics and dengue transmission—lessons learned from a case-control study in northeastern Thailand. PLoS Negl. Trop. Dis. 14, e0008703 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scarpino, S. V. & Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 10, 898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Batty, M. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 1041–1071 (Springer, 2009).McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Rus, K., Kilar, V. & Koren, D. Resilience assessment of complex urban systems to natural disasters: a new literature review. Int. J. Disaster Risk Reduct. 31, 311–330 (2018).Article 

    Google Scholar 
    Bettencourt, L. M. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).Handbook for Integrated Vector Management (World Health Organization, 2012).Kolimenakis, A. et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Negl. Trop. Dis. 15, e0009631 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V., Bhatnagar, S., Drake, J. M., Murdock, C. C. & Mukherjee, S.Socio‐ecological dynamics in urban systems: an integrative approach to mosquito‐borne disease in Bengaluru, India. People Nat. 4, 730–743 (2022).Article 

    Google Scholar 
    Cook, E. M., Hall, S. J. & Larson, K. L. Residential landscapes as social–ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 15, 19–52 (2012).Article 

    Google Scholar 
    Bai, X., McAllister, R. R., Beaty, R. M. & Taylor, B. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Curr. Opin. Environ. Sustain. 2, 129–135 (2010).Article 

    Google Scholar 
    Batty, M. Inventing Future Cities (MIT Press, 2018).McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).Article 

    Google Scholar 
    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. in The Routledge Handbook of Urbanization and Global Environmental Change 227–236 (Routledge, 2015).Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Filatova, T., Parker, D. & Van der Veen, A. Agent-based urban land markets: agent’s pricing behavior, land prices and urban land use change. J. Artif. Soc. Soc. Simul. 12, 3 (2009).
    Google Scholar 
    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).Article 

    Google Scholar 
    Collins, M. & Kapucu, N. Early warning systems and disaster preparedness and response in local government. Disaster Prev. Manag. 17, 587–600 (2008).Article 

    Google Scholar 
    Ahern, J. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan. 100, 341–343 (2011).Article 

    Google Scholar 
    Gordon-Larsen, P., Nelson, M. C., Page, P. & Popkin, B. M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 117, 417–424 (2006).Article 
    PubMed 

    Google Scholar 
    Zhou, S. & Lin, R. Spatial–temporal heterogeneity of air pollution: the relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. D Transp. Environ. 76, 305–322 (2019).Article 

    Google Scholar 
    Frank, L. D. & Engelke, P. Multiple impacts of the built environment on public health: walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 28, 193–216 (2005).Article 

    Google Scholar 
    Diuk-Wasser, M. A., VanAcker, M. C. & Fernandez, M. P. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol. 58, 1546–1564 (2021).Article 
    PubMed 

    Google Scholar 
    Sengupta, U., Rauws, W. S. & De Roo, G.Planning and complexity: engaging with temporal dynamics, uncertainty and complex adaptive systems. Environ. Plann. B Plann. Des. 43, 970–974 (2016).Article 

    Google Scholar 
    Shi, Y. et al. Assessment methods of urban system resilience: from the perspective of complex adaptive system theory. Cities 112, 103141 (2021).Article 

    Google Scholar 
    Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2012).Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23, 46–61 (2018).Article 

    Google Scholar 
    Levin, S. et al. Social–ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).Article 

    Google Scholar 
    Waldrop, M. M. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, 1993).Nel, D., du Plessis, C. & Landman, K. Planning for dynamic cities: introducing a framework to understand urban change from a complex adaptive systems approach. Int. Plan. Stud. 23, 250–263 (2018).Article 

    Google Scholar 
    Sharifi, A. Resilient urban forms: a macro-scale analysis. Cities 85, 1–14 (2019).Article 

    Google Scholar 
    Borgström, S. T., Elmqvist, T., Angelstam, P. & Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 11, 16 (2006).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S. & Peterson, G. D. Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17, 30 (2012).Article 

    Google Scholar 
    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).Article 

    Google Scholar 
    Peters, D. P., Bestelmeyer, B. T. & Turner, M. G. Cross-scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10, 790–796 (2007).Article 

    Google Scholar 
    Crépin, A.-S. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36, 191–213 (2007).Article 

    Google Scholar 
    Soranno, P. A. et al. Cross‐scale interactions: quantifying multi‐scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Pickett, S. T. et al. Theoretical perspectives of the Baltimore Ecosystem Study: conceptual evolution in a social–ecological research project. BioScience 70, 297–314 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunderson, L. H., Holling, C. S. & Light, S. S. Barriers and Bridges to the Renewal of Ecosystems and Institutions (Columbia Univ. Press, 1995).Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).Article 

    Google Scholar 
    Wu, J. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).Article 

    Google Scholar 
    Flores, A., Pickett, S. T., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308 (1998).Article 

    Google Scholar 
    Fauchald, P. & Tveraa, T. Hierarchical patch dynamics and animal movement pattern. Oecologia 149, 383–395 (2006).Article 
    PubMed 

    Google Scholar 
    Linton, J. & Budds, J. The hydrosocial cycle: defining and mobilizing a relational–dialectical approach to water. Geoforum 57, 170–180 (2014).Article 

    Google Scholar 
    Knox, P. & Pinch, S. Urban Social Geography: an Introduction (Routledge, 2014).Geels, F. W. From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory. Res. Policy 33, 897–920 (2004).Article 

    Google Scholar 
    West, S., Haider, L. J., Stålhammar, S. & Woroniecki, S. A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325 (2020).Article 

    Google Scholar 
    Jones, M. Phase space: geography, relational thinking, and beyond. Prog. Hum. Geogr. 33, 487–506 (2009).Article 

    Google Scholar 
    Wohl, S. Considering how morphological traits of urban fabric create affordances for complex adaptation and emergence. Prog. Hum. Geogr. 40, 30–47 (2016).Article 

    Google Scholar 
    Herold, M., Scepan, J. & Clarke, K. C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A 34, 1443–1458 (2002).Article 

    Google Scholar 
    Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).Article 
    PubMed 

    Google Scholar 
    LaCon, G. et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 8, e3038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai, S. et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl. Trop. Dis. 12, e0006743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gergel, S. E. & Turner, M. G. Learning Landscape Ecology: a Practical Guide to Concepts and Techniques (Springer, 2017).Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Phil. Trans. R. Soc. B Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector‐borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowley, W. A. & Graham, C. L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14, 1251–1257 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am. J. Trop. Med. Hyg. 101, 362–370 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Streutker, D. R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23, 2595–2608 (2002).Article 

    Google Scholar 
    Fikrig, K. et al. Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking. PLoS Negl. Trop. Dis. 14, e0008244 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samson, D. M. et al. Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida. J. Am. Mosq. Control Assoc. 29, 231–236 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grove, J. M., Locke, D. H. & O’Neil-Dunne, J. P. An ecology of prestige in New York City: examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manag. 54, 402–419 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronson, M. F. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Hemme, R. R., Thomas, C. L., Chadee, D. D. & Severson, D. W. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 4, e634 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Betancourt, T., Higuera-Mendieta, D. R., González-Uribe, C., Cortés, S. & Quintero, J. Understanding water storage practices of urban residents of an endemic dengue area in Colombia: perceptions, rationale and socio-demographic characteristics. PLoS ONE 10, e0129054 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, R., de Loë, R. & Armitage, D. A systematic review of water vulnerability assessment tools. Water Resour. Manag. 26, 4327–4346 (2012).Article 

    Google Scholar 
    Ledogar, R. J. et al. Mobilising communities for Aedes aegypti control: the SEPA approach. BMC Public Health 17, 103–114 (2017).Article 

    Google Scholar 
    Michalos, A. C. Encyclopedia of Quality of Life and Well-being Research (Springer Netherlands, 2014).Reiner, R. C. Jr, Stoddard, S. T. & Scott, T. W. Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics 6, 30–36 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whiteford, L. M. The ethnoecology of dengue fever. Med. Anthropol. Q. 11, 202–223 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ibarra, A. M. S. et al. A social–ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 14, 1135 (2014).Article 

    Google Scholar 
    Mitchell-Foster, K. L. Interdisciplinary Knowledge Translation and Evaluation Strategies for Participatory Dengue Prevention in Machala, Ecuador. PhD thesis, Univ. British Columbia (2013).Kropf, K.Aspects of urban form. Urban Morphol. 13, 105–120 (2009).Article 

    Google Scholar 
    Rose, L. A. Topographical constraints and urban land supply indexes. J. Urban Econ. 26, 335–347 (1989).Article 

    Google Scholar 
    Liu, F. “Interrupted Development”: The Effects of Blighted Neighborhoods and Topographic Barriers on Cities. PhD thesis, George Washington Univ. (2006).Durand-Lasserve, A. & Selod, H. in Urban Land Markets 101–132 (Springer, 2009).Talen, E. City Rules: How Regulations Affect Urban Form (Island Press, 2012).Scheer, B. C. The Evolution of Urban Form: Typology for Planners and Architects (Routledge, 2017).Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C. & Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 64, 1–9 (2013).Article 

    Google Scholar 
    Middel, A., Häb, K., Brazel, A. J., Martin, C. A. & Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc. Urban Plan. 122, 16–28 (2014).Article 

    Google Scholar 
    Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).Article 
    PubMed 

    Google Scholar 
    Seto, K. C. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 923–1000 (Cambridge Univ. Press, 2014).Romeo-Aznar, V., Freitas, L. P., Cruz, O. G., King, A. & Pascual, M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat. Commun. 13, 996 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lafferty, K. D. et al. Local extinction of the Asian tiger mosquito (Aedes albopictus) following rat eradication on Palmyra Atoll. Biol. Lett. 14, 20170743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, M. C., Dupont-Courtade, L. & Oueslati, W. Air pollution and urban structure linkages: evidence from European cities. Renew. Sustain. Energy Rev. 53, 1–9 (2016).Article 

    Google Scholar 
    Venter, Z. S., Krog, N. H. & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 709, 136193 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Little, E., Barrera, R., Seto, K. C. & Diuk-Wasser, M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. EcoHealth 8, 365–375 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban–forest interface in Brazil. Emerg. Microbes Infect. 7, 191 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, J. et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 16, 1918–1924 (2010).Article 
    PubMed Central 

    Google Scholar 
    Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015–2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tonkiss, F. Cities by Design: the Social Life of Urban Form (John Wiley & Sons, 2014).Hillier, B., Greene, M. & Desyllas, J. Self-generated neighbourhoods: the role of urban form in the consolidation of informal settlements. Urban Des. Int. 5, 61–96 (2000).Article 

    Google Scholar 
    Li, X., Mou, Y., Wang, H., Yin, C. & He, Q. How does polycentric urban form affect urban commuting? Quantitative measurement using geographical big data of 100 cities in China. Sustainability 10, 4566 (2018).Article 

    Google Scholar 
    Wen, T.-H., Lin, M.-H., Teng, H.-J. & Chang, N.-T. Incorporating the human–Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Appl. Geogr. 62, 256–266 (2015).Article 

    Google Scholar 
    Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, T. W. & Morrison, A. C. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr. Top. Microbiol. Immunol. 338, 115–128 (2010).PubMed 

    Google Scholar 
    Delmelle, E., Kim, C., Xiao, N. & Chen, W. Methods for space–time analysis and modeling: an overview. Int. J. Appl. Geospat. Res. 4, 1–18 (2013).Article 

    Google Scholar 
    Kua, K. P. & Lee, S. W. H. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: a systematic review and meta-analysis. PLoS ONE 16, e0244284 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chareonviriyaphap, T. et al. The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. J. Vector Ecol. 30, 344–346 (2005).PubMed 

    Google Scholar 
    Maneerat, S. & Daudé, E. A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecol. Model. 333, 66–78 (2016).Article 

    Google Scholar 
    Barbu, C. M. et al. The effects of city streets on an urban disease vector. PLoS Comput. Biol. 9, e1002801 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mesch, G. S. & Manor, O. Social ties, environmental perception, and local attachment. Environ. Behav. 30, 504–519 (1998).Article 

    Google Scholar 
    Matthews, L. & Haydon, D. Introduction. Cross-scale influences on epidemiological dynamics: from genes to ecosystems. J. R. Soc. Interface 4, 763–765 (2007).Article 
    PubMed Central 

    Google Scholar 
    Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).Article 
    PubMed 

    Google Scholar 
    Schreiber, S. J. et al. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol. 7, veaa105 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramalho, C. E. & Hobbs, R. J. Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27, 179–188 (2012).Article 
    PubMed 

    Google Scholar 
    Waggoner, J. J. et al. Homotypic dengue virus reinfections in Nicaraguan children. J. Infect. Dis. 214, 986–993 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezeakacha, N. F. & Yee, D. A. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit. Vectors 12, 123 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit. Vectors 11, 426 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, S.-C. et al. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci. Total Environ. 408, 4069–4075 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Elsinga, J. et al. Knowledge, attitudes, and preventive practices regarding dengue in Maracay, Venezuela. Am. J. Trop. Med. Hyg. 99, 195–203 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, L. P., Shakir, S. M. M., Atefi, N. & AbuBakar, S. Factors affecting dengue prevention practices: nationwide survey of the Malaysian public. PLoS ONE 10, e0122890 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).Article 
    PubMed 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    Combs, M. A. et al. Socio‐ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob. Change Biol. 28, 1705–1724 (2022).Article 
    CAS 

    Google Scholar 
    Zhou, Q.A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6, 976–992 (2014).Article 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Co-developing climate services for public health: stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Negl. Trop. Dis. 13, e0007772 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).Article 
    PubMed 

    Google Scholar 
    Lippi, C. A. et al. A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. Int. J. Health Geogr. 19, 3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Projection of the Ecuadorian Population, per Calendar Years, by Cantons 2010–2020 (National Institute of Statistics and Census, 2012).Pertumbuhan Ekonomi Indonesia Triwulan II (Badann Pusat Statistik, 2021).Rašić, G. et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasit. Vectors 8, 610 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L. et al. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian tiger mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0006009 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L., Filipović, I., Hoffmann, A. A. & Rašić, G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120, 386–395 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tantowijoyo, W. et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 14, e0008157 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. The spread of dengue in an endemic urban milieu—the case of Delhi, India. PLoS ONE 11, e0146539 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. Social and environmental risk factors for dengue in Delhi city: a retrospective study. PLoS Negl. Trop. Dis. 15, e0009024 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, E. C. & Seto, K. C. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett. 14, 045002 (2019).Article 

    Google Scholar 
    Jackson-Smith, D. B. et al. Differentiating urban forms: a neighborhood typology for understanding urban water systems. Cities Environ. 9, 5 (2016).
    Google Scholar 
    Population Census by Age (Department of Provincial Administration, accessed March 2022); https://stat.bora.dopa.go.th/new_stat/webPage/statByAge.phpSalje, H. et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc. Natl Acad. Sci. USA 109, 9535–9538 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salje, H. et al. Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nat. Commun. 12, 1810 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chai, B. & Seto, K. C. Conceptualizing and characterizing micro-urbanization: a new perspective applied to Africa. Landsc. Urban Plan. 190, 103595 (2019).Article 

    Google Scholar 
    Zhu, G., Liu, J., Tan, Q. & Shi, B. Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLoS Negl. Trop. Dis. 10, e0004633 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Hamid, N. et al. Vertical infestation profile of Aedes in selected urban high-rise residences in Malaysia. Trop. Med. Infect. Dis. 5, 114 (2020).Article 
    PubMed Central 

    Google Scholar 
    Sun, H. et al. Spatio-temporal analysis of the main dengue vector populations in Singapore. Parasit. Vectors 14, 41 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ho, C.-M. et al. Surveillance for dengue fever vectors using ovitraps at Kaohsiung and Tainan in Taiwan. Formos. Entomol. 25, 159–174 (2005).
    Google Scholar 
    McKenzie, D. & Ray, I. Urban water supply in India: status, reform options and possible lessons. Water Policy 11, 442–460 (2009).Article 

    Google Scholar 
    Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G. & Reckhow, K. H. On the application of multilevel modeling in environmental and ecological studies. Ecology 91, 355–361 (2010).Article 
    PubMed 

    Google Scholar 
    Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130551 (2015).Article 

    Google Scholar 
    Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L. & Taylor, W. Effect of climate on wildfire size: a cross-scale analysis. Ecosystems 13, 828–840 (2010).Article 

    Google Scholar 
    Chiu, C.-H., Wen, T.-H., Chien, L.-C. & Yu, H.-L. A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLoS ONE 9, e106334 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higuera-Mendieta, D. R., Cortés-Corrales, S., Quintero, J. & González-Uribe, C. KAP surveys and dengue control in Colombia: disentangling the effect of sociodemographic factors using multiple correspondence analysis. PLoS Negl. Trop. Dis. 10, e0005016 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. H., Yuan, J. & Wang, T. Direct cost of dengue hospitalization in Zhongshan, China: associations with demographics, virus types and hospital accreditation. PLoS Negl. Trop. Dis. 11, e0005784 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tam, C. C. et al. Estimates of dengue force of infection in children in Colombo, Sri Lanka. PLoS Negl. Trop. Dis. 7, e2259 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. & Castillo-Chavez, C. The role of residence times in two-patch dengue transmission dynamics and optimal strategies. J. Theor. Biol. 374, 152–164 (2015).Article 
    PubMed 

    Google Scholar 
    Adams, B. & Kapan, D. D. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS ONE 4, e6763 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M., Schweigmann, N. & Solari, H. G. A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol. 70, 1297–1325 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M. & Solari, H. G. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 223, 32–46 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. & Liu, X. Embedding sustainable development strategies in agent‐based models for use as a planning tool. Int. J. Geogr. Inf. Sci. 22, 21–45 (2008).Article 

    Google Scholar 
    Mozaffaree Pour, N. & Oja, T. Urban expansion simulated by integrated cellular automata and agent-based models; an example of Tallinn, Estonia. Urban Sci. 5, 85 (2021).Article 

    Google Scholar 
    Gilbert, N. Agent-Based Models Vol. 153 (Sage Publications, 2019).Roster, K. & Rodrigues, F. A. Neural networks for dengue prediction: a systematic review. Preprint at https://arxiv.org/abs/2106.12905 (2021).Zhao, N. et al. Machine learning and dengue forecasting: comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl. Trop. Dis. 14, e0008056 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhai, Y. et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 34, 1475–1499 (2020).Article 

    Google Scholar 
    Verma, D. & Jana, A. LULC classification methodology based on simple Convolutional Neural Network to map complex urban forms at finer scale: evidence from Mumbai. Preprint at https://arxiv.org/abs/1909.09774 (2019).Djenontin, I. N. S. & Meadow, A. M. The art of co-production of knowledge in environmental sciences and management: lessons from international practice. Environ. Manag. 61, 885–903 (2018).Article 

    Google Scholar 
    Meschede, C. & Mainka, A. Including citizen participation formats for drafting and implementing local sustainable development strategies. Urban Sci. 4, 13 (2020).Article 

    Google Scholar 
    Mansfield, R. G., Batagol, B. & Raven, R. “Critical agents of change?”: opportunities and limits to children’s participation in urban planning. J. Plan. Lit. 36, 170–186 (2021).Article 

    Google Scholar 
    Curtis, A., Quinn, M., Obenauer, J. & Renk, B. M. Supporting local health decision making with spatial video: dengue, Chikungunya and Zika risks in a data poor, informal community in Nicaragua. Appl. Geogr. 87, 197–206 (2017).Article 

    Google Scholar 
    Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    Dickens, L. & Butcher, M. Going public? Re‐thinking visibility, ethics and recognition through participatory research praxis. Trans. Inst. Br. Geogr. 41, 528–540 (2016).Article 

    Google Scholar 
    Wallerstein, N. et al. Power dynamics in community-based participatory research: a multiple-case study analysis of partnering contexts, histories, and practices. Health Educ. Behav. 46, 19S–32S (2019).Article 
    PubMed 

    Google Scholar 
    Parra, C. et al. Synergies between technology, participation, and citizen science in a community-based dengue prevention program. Am. Behav. Sci. 64, 1850–1870 (2020).Article 

    Google Scholar 
    Lozano–Fuentes, S. et al. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J. Med. Entomol. 50, 879–889 (2013).Article 
    PubMed 

    Google Scholar 
    Kelvin, A. A. et al. ZIKATracker: a mobile app for reporting cases of ZIKV worldwide. J. Infect. Dev. Ctries. 10, 113–115 (2016).Article 
    PubMed 

    Google Scholar 
    Fernandez, M. P. et al. Usability and feasibility of a smartphone app to assess human behavioral factors associated with tick exposure (The Tick App): quantitative and qualitative study. JMIR mHealth uHealth 7, e14769 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).Article 
    PubMed 

    Google Scholar 
    Van Leeuwen, J. P., Hermans, K., Jylhä, A., Quanjer, A. J. & Nijman, H. Effectiveness of virtual reality in participatory urban planning: a case study. In Proc. Media Architecture Biennale 128–136 (Association for Computing Machinery, 2018).Kahila-Tani, M. Reshaping the Planning Process Using Local Experiences: Utilising PPGIS in Participatory Urban Planning. PhD thesis, Aalto Univ. (2015).Iwaniec, D. M. et al. The co-production of sustainable future scenarios. Landsc. Urban Plan. 197, 103744 (2020).Article 

    Google Scholar 
    Dickin, S. K., Schuster-Wallace, C. J. & Elliott, S. J. Mosquitoes & vulnerable spaces: mapping local knowledge of sites for dengue control in Seremban and Putrajaya Malaysia. Appl. Geogr. 46, 71–79 (2014).Article 

    Google Scholar 
    Chircop, A., Bassett, R. & Taylor, E. Evidence on how to practice intersectoral collaboration for health equity: a scoping review. Crit. Public Health 25, 178–191 (2015).Article 

    Google Scholar 
    Gamache, S., Diallo, T. A., Shankardass, K. & Lebel, A. The elaboration of an intersectoral partnership to perform health impact assessment in urban planning: the experience of Quebec City (Canada). Int. J. Environ. Res. Public Health 17, 7556 (2020).Article 
    PubMed Central 

    Google Scholar 
    Herdiana, H., Sari, J. F. K. & Whittaker, M. Intersectoral collaboration for the prevention and control of vector borne diseases to support the implementation of a global strategy: a systematic review. PLoS ONE 13, e0204659 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. A., Economou, T., de Castro Catão, R., Barcellos, C. & Lowe, R. The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl. Trop. Dis. 15, e0009773 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johansson, M. A., Cummings, D. A. & Glass, G. E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 6, e1000168 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5, e1378 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hess, G. Disease in metapopulation models: implications for conservation. Ecology 77, 1617–1632 (1996).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol. 4, 113–114 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Masui, H. et al. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities. Theor. Biol. Med. Model. 13, 12 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Negl. Trop. Dis. 13, e0007479 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Reilly, K. M. et al. Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Med. 16, 180 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santé, I., García, A. M., Miranda, D. & Crecente, R. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan. 96, 108–122 (2010).Article 

    Google Scholar 
    Yang, J., Gong, J., Tang, W. & Liu, C. Patch-based cellular automata model of urban growth simulation: integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 79, 101402 (2020).Article 

    Google Scholar 
    Rozos, E., Butler, D. & Makropoulos, C. An integrated system dynamics–cellular automata model for distributed water-infrastructure planning. Water Sci. Technol. Water Supply 16, 1519–1527 (2016).Article 

    Google Scholar 
    Enduri, M. K. & Jolad, S. Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018).Article 
    PubMed 

    Google Scholar 
    Medeiros, L. C. et al. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl. Trop. Dis. 5, e942 (2011).Article 
    PubMed Central 

    Google Scholar 
    Ali, A. M., Shafiee, M. E. & Berglund, E. Z. Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain. Cities Soc. 28, 420–434 (2017).Article 

    Google Scholar 
    Philippon, D. et al. in Multi-Agent Based Simulation XVII. MABS 2016. Lecture Notes in Computer Science Vol 10399 (eds Nardin, L. & Antunes, L.) 111–127 (Springer, 2016).Agyemang, F. S., Silva, E. & Fox, S.Modelling and simulating ‘informal urbanization’: an integrated agent-based and cellular automata model of urban residential growth in Ghana. Urban Anal. City Sci. 0, 1–15 (2022).
    Google Scholar 
    Chouhan, S. S., Kaul, A. & Singh, U. P. Image segmentation using computational intelligence techniques. Arch. Comput. Methods Eng. 26, 533–596 (2019).Article 

    Google Scholar 
    Andersson, V. O., Birck, M. A. F. & Araujo, R. M. Towards predicting dengue fever rates using convolutional neural networks and street-level images. Proc. 2018 Int. Jt Conf. Neural Netw. 1–8 (IEEE, 2018).Chrysler, A., Gunarso, R., Puteri, T. & Warnars, H. A Literature Review of Crowd-Counting System on Convolutional Neural Network 012029 (IOP Conference Series: Earth and Environmental Science Volume 729, IOP Publishing, 2021).Bharambe, A., Chandorkar, A. A. & Kalbande, D. A deep learning approach for dengue tweet classification. Proc. 3rd Int. Conf. Invent. Res. Comput. Appl. 1043–1047 (IEEE, 2021).Kumar, A. & Garg, G. Sentiment analysis of multimodal twitter data. Multimed. Tools Appl. 78, 24103–24119 (2019).Article 

    Google Scholar 
    Marin, A. & Wellman, B. in The SAGE Handbook of Social Network Analysis Ch. 2 (2011).Snijders, T. A. & Steglich, C. E. Representing micro–macro linkages by actor-based dynamic network models. Sociol. Methods Res. 44, 222–271 (2015).Article 
    PubMed 

    Google Scholar 
    Warren, C. R., Burton, R., Buchanan, O. & Birnie, R. V. Limited adoption of short rotation coppice: the role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 45, 175–183 (2016).Article 

    Google Scholar 
    Beal Cohen, A. A., Muneepeerakul, R. & Kiker, G. Intra-group decision-making in agent-based models. Sci. Rep. 11, 17709 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frederiks, E. R., Stenner, K. & Hobman, E. V. Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 41, 1385–1394 (2015).Article 

    Google Scholar 
    Spiegel, J. et al. Barriers and bridges to prevention and control of dengue: the need for a social–ecological approach. EcoHealth 2, 273–290 (2005).Article 

    Google Scholar 
    Arellano, C. et al. Knowledge and beliefs about dengue transmission and their relationship with prevention practices in Hermosillo, Sonora. Front. Public Health 3, 142 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gertler, M. S. & Wolfe, D. A. Local social knowledge management: community actors, institutions and multilevel governance in regional foresight exercises. Futures 36, 45–65 (2004).Article 

    Google Scholar 
    Brown, R. R., Farrelly, M. A. & Loorbach, D. A. Actors working the institutions in sustainability transitions: the case of Melbourne’s stormwater management. Glob. Environ. Change 23, 701–718 (2013).Article 

    Google Scholar 
    Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. & Kelly, B. F. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ. Model. Softw. 73, 305–323 (2015).Article 

    Google Scholar 
    Sabatier, P. A. Toward better theories of the policy process. PS Polit. Sci. Polit. 24, 147–156 (1991).Article 

    Google Scholar 
    Abrantes, P. et al. Modelling urban form: a multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 46, 47–65 (2019).Article 

    Google Scholar 
    McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure Vol. 351 (US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995).Vazquez-Prokopec, G. M. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE 8, e58802 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ligtenberg, A., van Lammeren, R. J., Bregt, A. K. & Beulens, A. J. Validation of an agent-based model for spatial planning: a role-playing approach. Comput. Environ. Urban Syst. 34, 424–434 (2010).Article 

    Google Scholar  More

  • in

    Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts

    Molecular Phylogeny of Paramecium bursaria and Identification of its EndosymbiontsThe SSU and ITS rDNA of the nuclear ribosomal operon were sequenced to infer the genetic variability of the investigated strains. The SSU and ITS rDNA sequences were aligned according to their secondary structure (examples are presented for the strain SAG 27.96; Fig. 1 and Supplementary Fig. 1). Additional sequences acquired from GenBank were incorporated into a dataset, which included all syngens also from references known for P. bursaria. The phylogenetic analyses revealed five highly supported lineages among the P. bursaria strains, which corresponded to their syngen assignment. As demonstrated in Fig. 2, all investigated strains belonging to the syngens R1, R2 and R5 originated from Europe, whereas the others of the syngens R3-R4 showed a worldwide distribution. The three known green algal endosymbionts, i.e., Chlorella variabilis (Cvar), Chlorella vulgaris (Cvul) and Micractinium conductrix (Mcon) showed no or only little affiliation to specific syngens.Figure 1ITS‐1 (A) and ITS-2 (B) secondary structures of Paramecium protobursaria, SAG 27.96 (syngen R1).Full size imageFigure 2Molecular phylogeny of the Paramecium bursaria species complex based on SSU and ITS rDNA sequence comparisons. The phylogenetic tree shown was inferred using the maximum likelihood method based on the datasets (2197 aligned positions of 19 taxa) using the computer program PAUP 4.0a169. For the analyses, the best model was calculated by PAUP 4.0a169. The setting of the best model was given as follows: TVM + I (base frequencies: A 0.2983, C 0.1840, G 0.2271, T 0.2906; rate matrix A–C 2.6501, A–G 8.6851, A–U 5.3270, C–G 0.91732, C–U 8.6851, G–U 1.0000) with the proportion of invariable sites (I = 0.9544). The branches in bold are highly supported in all bootstrap analyses (bootstrap values  > 50% calculated with PAUP using the maximum likelihood, neighbour—joining, and maximum parsimony). The clades are named after the syngens (color‐coded) proposed by Greczek‐Stachura et al.10 and Bomford9 in brackets. The accession numbers are given after the strain numbers. The endosymbiotic green algae identified are highlighted (Mcon—Micractinium conductrix, Cvar—Chlorella variabilis and Cvul—Chlorella vulgaris) after the origin of the P. bursaria strains. The reference strain of each syngen is marked with an asterisk. The strains used for morphological comparisons are marked with a green dot next to the strain number.Full size imageSynapomorphies of the Paramecium bursaria SyngensAs demonstrated in Fig. 2, the subdivision of the P. bursaria strains into syngens is supported by the phylogenetic analyses of the SSU and ITS rDNA sequences. To figure out if these splits were also supported by characteristic molecular signatures, we studied the secondary structures of both SSU and ITS of all available sequences. We discovered 30, respectively 23 variable positions among the SSU and ITS sequences (numbers of these positions in the respective alignments are given in Fig. 3). All syngens showed characteristic patterns among the SSU and ITS. Only the syngens R1 and R2 could not be distinguished using the SSU only, however, in combination with the ITS, each syngen is characterized by unique synapomorphies as highlighted in yellow (Fig. 3). In addition, few variable base positions within syngens (marked in blue in Fig. 3) have been recognized in the ITS regions. For comparison with literature data, we also analyzed all available sequences of the mitochondrial COI gene to find synapomorphies for the five syngens. Within this gene, only 18 variable positions at the amino acid level could be discovered of which 13 are diagnostic for the five syngens (Fig. 3).Figure 3Variable base positions among the SSU, ITS rRNA, and COI sequences of the five syngens among the Paramecium bursaria species complex. The unique synapomorphies are highlighted in yellow, variable positions marked in blue.Full size imageThe synapomorphies discovered above were used to get insights into the geographical distribution of each P. bursaria syngen. Despite the complete SSU and ITS rDNA sequences included in the phylogeny presented in Fig. 2, records of the partial SSU or ITS rDNA sequences are available in GenBank (BLASTn search; 100% identity;13). Considering the metadata of our investigated strains and of the entries in GenBank (Supplementary Table 1), we constructed three haplotype networks using the Templeton-Crandall-Sing (TCS) approach. The SSU haplotype network (Fig. 4) containing 84 records showed that the syngens R1, R2 and R5 were only found in Europe, whereas the other three syngens have been discovered around the world. A similar distribution pattern occurred when using the ITS (101 entries in GenBank). Records of syngens R1 and R5 have only been found in Europe, whereas all other syngens were distributed around the world. The 132 COI records found in GenBank by the BLASTn search were used for the haplotype network, which also showed the similar pattern (Fig. 4).Figure 4TCS haplotype networks of the five syngens inferred from SSU, ITS rRNA, and COI sequences of the Paramecium bursaria species complex. This network was inferred using the algorithm described by Clement et al.40,41. Sequence nodes corresponding to samples collected from different geographical regions.Full size imageCiliate TaxonomyConsidering all our findings, P. bursaria is morphologically highly variable, and obviously represents a cryptic species complex (Figs. 5, 6; Supplementary Table 2). The known five syngens most likely represent biological species according to Mayr14 and can be attributed to the cryptic species described by Greczek-Stachura et al.11. As mentioned above, the assignments of these cryptic species by Greczek-Stachura et al.11 have not been validly described according to the ICZN. In addition, the naming using a mixture of Latin prefix and Greek suffix is also not appropriate (the epithet bursa derived from the Greek word byrsa). Therefore, we describe the five syngens as new species as follows. The general morphological features of these species are summarized in Table 1.Figure 5Ventral views of Paramecium bursaria morphotypes in vivo: P. protobursaria (syngen R1), i.e., strains SAG 2645 (A) and PB-25 (B); P. deuterobursaria (syngen R2), i.e., strains CCAP 1660/36 (C) and CCAP 1660/34 (D); P. tritobursaria (syngen R3), i.e., strains CCAP 1660/28 (E), CCAP 1660/26 (F) and CCAP 1660/31 (G); P. tetratobursaria (syngen R4), i.e., strains CCAP 1660/25 (H) and CCAP 1660/33 (I); P. pentobursaria (syngen R5), i.e., strain CCAP 1660/30 (J). Scale bar 20 µm.Full size imageFigure 6Morphological details of the Paramecium bursaria species complex from specimens of strains PB-25 (A), CCAP 1660/30 (B), SAG 2645 (C, F, G, I, L–N), CCAP 1660/36 (D), CCAP 1660/26 (E, H), CCAP 1660/30 (J, O), CCAP 1660/16 (K) in vivo (A–F, H–O) and after silver nitrate staining (G). Adoral membranelles (A, B), endosymbiotic algae Micractinium conductrix (C), caudal and somatic cilia (D), arrows denote excretory pores of the contractile vacuoles: extruded extrusomes are shown and caudal cilia (E), ventral views showing the preoral suture and the oral opening (F), the ciliary pattern (G), arrows denote excretory pores of the contractile vacuoles (H), trichocysts and symbiotic algae underneath the pellicula (I, J), cell size variations (K), radial collecting channels (white arrows) and excretory pores (black arrows) of contractile vacuoles (L), macro- and micronucleus (M), cytopyge and characteristic rectangular pellicular pattern (N), pattern of the pellicula (O). AS anterior suture, CC caudal cilia, CP cytopyge (cell after), CV contractile vacuole, EP excretory pore of a contractile vacuole, EX extrusomes, M1–M3 membranelles 1–3, MA macronucleus, MI micronucleus, OO oral opening, S symbiotic algae, SC somatic cilia, SK somatic kineties, UM undulating membrane. Scale bars 10 µm (A, I), 20 µm (B, D–H, J, L–O), 50 µm (K).Full size imageTable 1 Main morphometric and morphological characteristics of the Paramecium bursaria syngens (min and max values).Full size table
    Paramecium protobursaria sp. nov.Synonym: Paramecium primabursaria nom. inval.Description: The strains SAG 27.96 and PB-25 belong to syngen R1 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231333). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 70–164 × 44–65 µm; the single macronucleus is located around mid-cell and measures 25–38 × 11–22 µm; the adjacent single compact micronucleus measures 11–20 × 5–8 µm; the usually two (rarely one) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–22; the length of the caudal cilia is 9–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 4–7 × 4–7 µm; the smaller algal cells measure 2–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R1 were found in Europe: Göttingen, Germany; Lake Mondsee, Austria. In addition, this species has been reported from different places in Europe, Asia and North America (see details in Supplementary Table 1).Reference material: Strain SAG 27.96 and the clonal strain SAG 2645 derived from SAG 27.96 are available at the Culture Collection of Algae (SAG), University of Göttingen, Germany.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the clonal culture SAG 2645, which derived from the reference material SAG 27.96, isolated from the pond of the Old Botanical Garden of the University of Göttingen (Germany), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: AFD967ED-BC2A-43FD-847E-5DF588BB025C.
    Paramecium deuterobursaria sp. nov.Synonym: Paramecium bibursaria nom. inval.Description: The strains CCAP 1660/34 and CCAP 1660/36 belong to syngen R2 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (OK318487). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 81–167 × 35–83 µm; the single macronucleus is located around mid-cell and measures 24–46 × 10–32 µm; the adjacent single compact micronucleus measures 10–18 × 5–9 µm, no micronucleus seen in live cells of strain CCAP 1660/34; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 13–22; the length of the caudal cilia is 11–20 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 5–7 × 4–7 µm; the smaller algal cells measure 3–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R2 were found in Europe: Zurich, Switzerland; Lake Piburg, Austria. In addition, this species has been reported from different places in Europe, Asia and Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/36 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/36, isolated from Lake Piburg (Tyrol, Austria), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: D1C20BE6-9A15-4A3D-A7E5-DFC31FF04679.
    Paramecium tritobursaria sp. nov.Synonym: Paramecium tribursaria nom. inval.Description: The strains CCAP 1660/26, CCAP 1660/28 and CCAP 1660/31 belong to syngen R3 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231339). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 80–153 × 49–73 µm; the single macronucleus is located around mid-cell and measures 21–53 × 12–31 µm; the adjacent single compact micronucleus measures 9–17 × 3–6 µm; no micronucleus seen in live cells of strain CCAP 1660/28; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 12–20; the length of the caudal cilia is 8–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 4–7 × 3–6 µm; the smaller algal cells measure 3–5 × 2–4 µm.Geographic distribution: The investigated strains of syngen R3 were found in Europe and Asia: Lake Piburg, Austria; Tokyo, Japan; Khabarovsk region, Amur River, Russia. In addition, this species has been reported from different places in Europe, Asia, North and South America as well as in Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/26 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/26, isolated from Japan, have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: CC0FBA7E-9E3A-4C37-B424-C9BFF2018EC0.
    Paramecium tetratobursaria sp. nov.Synonym: Paramecium tetrabursaria nom. inval.Description: The strains CCAP 1660/25 and CCAP 1660/33 belong to syngen R4 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231347). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 65–179 × 37–79 µm; the single macronucleus is located around mid-cell and measures 18–53 × 10–29 µm; the adjacent single compact micronucleus measures 8–18 × 4–10 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–19; the length of the caudal cilia is 12–20 µm; the numerous trichocysts located in the cell cortex are 4–7 µm in length. The symbiotic algae belong to C. variabilis (CCAP 1660/25) and M. conductrix (CCAP 1660/33); the larger algae measure 3–6 × 3–6 µm; the smaller algal cells measure 2–5 × 1–4 µm.Geographic distribution: The investigated strains of syngen R4 are found in North- and South America: Burlington, North Carolina, USA; San Pedro de la Paz, Laguna Grande, Chile. In addition, this species has been reported from Europe (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/25 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/25, isolated from a pond in Burlington (North Carolina, USA), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 78BA9923-07A9-4918-AD7C-9E5E15CC9CDB.
    Paramecium pentobursaria sp. nov.Synonym: Paramecium pentabursaria nom. inval.Description: The strain CCAP 1660/30 belongs to syngen R5 according to Greczek-Stachura et al.10,11 and differs from other syngens by their SSU and ITS rDNA sequences (MT231348). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 161–194 × 76–99 µm; the single macronucleus is located around mid-cell and measures 24–47 × 19–31 µm; the adjacent single compact micronucleus measures 13–20 × 4–9 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–4 excretory pores each; the number of ciliary rows/20 µm is 13–19; the length of the caudal cilia is 14–25 µm; the numerous trichocysts located in the cell cortex are 5–7 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 5–6 × 5–6 µm; the smaller algal cells measure 4–5 × 3–4 µm.Geographic distribution: The investigated strain of Syngen R5 was found in Europe: Astrakhan Nature Reserve, Russia.Reference material: Strain CCAP 1660/30 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/30, isolated from Astrakhan Nature Reserve (Russia), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 6629FA71-E00F-48C6-83AB-61C0CA4823B6.Syngen Affiliation related to Ciliate Morphology, Endosymbionts and Geographic DistributionPearson-correlations of morphometric, syngen-specific and endosymbiont datasets of the P. bursaria strains revealed four significant positive correlations (p  r  > 0.75) between ciliate cell length (BLEN) and width (BWID), BWID and macronucleus width (MACWID), as well as length and width of large symbiotic algae (LSALEN and LSAWID; Fig. 7).Figure 7Pearson-correlations of morphometric, symbiont and syngen data of Paramecium strains under study. Colored dots indicate the strength of correlation, and the size of dots represent p-values. Bold squares highlight significant correlations, with − 0.75  > r  > 0.75 and p  1, accounting for 73.1% variation in total (Supplementary Table 3). Principal component axis 1 (PC1) appears to be most negatively weighted by syngen (SYN) and width of the macronucleus (MACWID), separating CCAP 1660/30 and CCAP 1660/33 from the other strains. Principal component axis 2 (PC2) is primarily positively influenced by symbiotic algae characteristics (LSALEN, LSAWID, small symbiotic algal length (SSALEN) and width (SSAWID)) and, ciliate cell length (BLEN) and width (BWID; Supplementary Table 4), partitioning strain PB-25, CCAP 1660/26 and CCAP 1660/36 from CCAP 1660/31 and SAG 27.96 (Fig. 8).Figure 8PCA of morphometric data of Paramecium bursaria strains. Only the top eight contributing variables are shown.Full size imageThe redundancy analysis (RDA; Fig. 9) revealed a large difference between morphometric features and the tested set of explanatory variables (i.e., algal species (ALSPEC), LSAWID, SSALEN, SYN and GEO) as only 26.9% of the total variation could be explained.Figure 9Ordination diagram for redundancy analysis (RDA) of morphometric data and shown syngen (SYN), geographic region (GEO), and algal features (ALSPEC, LSAWID and SSALEN) as explanatory features.Full size image More

  • in

    Smaller birds with warmer temperatures

    Gill, J. A. et al. Proc. R. Soc. B 281, 20132161 (2014).Article 

    Google Scholar 
    Tomotani, B. M. et al. Glob. Chang. Biol. 24, 823–835 (2018).Article 

    Google Scholar 
    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Proc. Natl Acad. Sci. USA 105, 13492–13496 (2008).Article 
    CAS 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Youngflesh, C., Saracco, J. F., Siegel, R. B. & Tingley, M. W. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01893-x (2022).Article 

    Google Scholar 
    Hughes, E. C. et al. Ecol. Lett. 25, 598–610 (2022).Article 

    Google Scholar 
    Tobias, J. A. et al. Ecol. Lett. 25, 581–597 (2022).Article 

    Google Scholar 
    Shine, R. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    Dubiner, S. & Meiri, S. Glob. Ecol. Biogeogr. 31, 791–801 (2022).Article 

    Google Scholar 
    Jirinec, V. et al. Sci. Adv. 7, eabk1743 (2021).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Parmesan, C. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phil. Trans. R. Soc. Lond. B 374, 20180178 (2019).Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. Glob. Change Biol. 12, 450–455 (2006).Article 

    Google Scholar 
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Conserv. Biol. 25, 163–171 (2011).Article 

    Google Scholar 
    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).Berg, M. P. & Ellers, J. Evol. Ecol. 24, 617–629 (2010).Article 

    Google Scholar  More