More stories

  • in

    Exploring Natura 2000 habitats by satellite image segmentation combined with phytosociological data: a case study from the Čierny Balog area (Central Slovakia)

    Rocchini, D. et al. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol. Evol. 9(8), 1787–1798 (2018).Article 

    Google Scholar 
    Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation 4(2), 71–93 (2018).Article 

    Google Scholar 
    Corbane, C. et al. Remote sensing for mapping natural habitats and their conservation status–New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 37, 7–16 (2015).ADS 

    Google Scholar 
    Miu, I. V. et al. Identification of areas of very high biodiversity value to achieve the EU Biodiversity Strategy for 2030 key commitments. PeerJ 8, e10067 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Klerk, H., Burgess, N. & Visser, V. Probabilistic description of vegetation ecotones using remote sensing. Eco. Inform. 46, 125–132 (2018).Article 

    Google Scholar 
    Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth Sci. Rev. 196, 102870 (2019).Article 

    Google Scholar 
    Zellweger, F. et al. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34(4), 327–341 (2019).Article 
    PubMed 

    Google Scholar 
    Zhang, X. et al. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 78, 215–226 (2019).ADS 

    Google Scholar 
    Ullerud, H. A. et al. Consistency in land-cover mapping: Influence of field workers, spatial scale and classification system. Appl. Veg. Sci. 21(2), 278–288 (2018).Article 

    Google Scholar 
    Zhu, Y. et al. Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecol. Ind. 104, 365–377 (2019).Article 

    Google Scholar 
    Huylenbroeck, L. et al. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manage. 267, 110652 (2020).Article 
    PubMed 

    Google Scholar 
    Fagan, M. E. et al. Mapping species composition of forests and tree plantations in Northeastern Costa Rica with an integration of hyperspectral and multitemporal Landsat imagery. Remote Sensing 7(5), 5660–5696 (2015).Article 
    ADS 

    Google Scholar 
    Waśniewski, A. et al. Assessment of Sentinel-2 satellite images and random forest classifier for rainforest mapping in Gabon. Forests 11(9), 941 (2020).Article 

    Google Scholar 
    Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).Article 
    ADS 

    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl. Veg. Sci. 19(1), 173–180 (2016).Article 

    Google Scholar 
    Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23(4), 648–675 (2020).Article 

    Google Scholar 
    Šibík, J. Slovak vegetation database. In Dengler J., Oldeland, J., Jansen, F., Chytrý, M., Ewald, J., Finckh, M., Glöckle, RF, Lopez-Gonzalez, G., Peet, R. K. & Schaminée, J. H. J. (eds), Vegetation databases for the 21st century. Biodiversity & Ecology, 2012: p. 429–429.Jarolímek, I., et al. A list of vegetation units of Slovakia. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, 2008: p. 295–329.Stanová, V. & Valachovič, M. Katalóg biotopov Slovenska [A catalogue of biotopes of Slovakia] (DAPHNE-Institút aplikovanej ekológie, 2002).
    Google Scholar 
    Viceníková, A. & Polák, P. Európsky významné biotopy na Slovensku (Štátna ochrana prírody SR v spolupráci s DAPHNE-Inštitút aplikovanej ekológie, 2003).
    Google Scholar 
    Dymond, C. C., Mladenoff, D. J. & Radeloff, V. C. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens. Environ. 80(3), 460–472 (2002).Article 
    ADS 

    Google Scholar 
    Mickelson, J. G., Civco, D. L. & Silander, J. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote. Sens. 64, 891–904 (1998).
    Google Scholar 
    Nitze, I., Barrett, B. & Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 34, 136–146 (2015).ADS 

    Google Scholar 
    Prishchepov, A. V. et al. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 126, 195–209 (2012).Article 
    ADS 

    Google Scholar 
    Saini, M. et al. Hyperspectral data dimensionality reduction and the impact of multi-seasonal Hyperion EO-1 imagery on classification accuracies of tropical forest species. Photogramm. Eng. Remote. Sens. 80(8), 773–784 (2014).Article 

    Google Scholar 
    Wang, L., Silván-Cárdenas, J. L. & Sousa, W. P. Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm. Eng. Remote. Sens. 74(7), 921–927 (2008).Article 

    Google Scholar 
    Dong, J. et al. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote. Sens. 74, 20–33 (2012).Article 

    Google Scholar 
    Fan, H. et al. Phenology-based vegetation index differencing for mapping of rubber plantations using Landsat OLI data. Remote Sens. 7(5), 6041–6058 (2015).Article 
    ADS 

    Google Scholar 
    Li, Z. & Fox, J. M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 32(2), 420–432 (2012).Article 

    Google Scholar 
    Senf, C. et al. Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens. 5(6), 2795–2812 (2013).Article 
    ADS 

    Google Scholar 
    Mikula, K. et al. NaturaSat—A software tool for identification, monitoring and evaluation of habitats by remote sensing techniques. Remote Sens. 13(17), 3381 (2021).Article 
    ADS 

    Google Scholar 
    Mikula, K. et al. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete Contin. Dyn. Syst. S 14(3), 1033 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Mikula, K. et al. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete Contin. Dyn. Syst. S 14(3), 1017 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Klinec, A., Geologická mapa Slovenského rudohoria a Nízkych Tatier (1: 50 000). GÚDŠ, Bratislava, 1976.Lapin, M., et al., Klimatické oblasti [Climatic regions]. Atlas krajiny Slovenskej republiky, 2002. 95.Slamova, M. et al. Historical terraces—Current situation and future perspectives for optimal land use management: The case study of Čierny Balog. Annales 29(1), 85–100 (2019).
    Google Scholar 
    Geoportal, 2021. https://www.geoportal.sk/sk/geoportal.html. Accessed 22 Feb 2021.Directive, H. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 206, 7–50 (1992).
    Google Scholar 
    Barkman, J. J., Doing, H. & Segal, S. Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot. Neerland. 13(3), 394–419 (1964).Article 

    Google Scholar 
    Braun-Blanquet, J. & Pflanzensoziologie, G.d.V. (Springer, Wien, New York, 1964).Westhoff, V. & van der Maarel, E. The Braun-Blanquet approach. In Classification of Plant Communities (ed. Whittaker, R. H.) (Springer, 1973).
    Google Scholar 
    Hennekens, S. M. & Schaminée, J. H. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12(4), 589–591 (2001).Article 

    Google Scholar 
    Tichý, L. JUICE, software for vegetation classification. J. Veg. Sci. 13(3), 451–453 (2002).Article 

    Google Scholar 
    Marhold, K., et al., A list of lower and higher plants of Slovakia. Vydavateľstvo akadémie vied, Bratislava, 1998.Ambroz, M., Kollár, M., & Mikula, K. Semi-implicit scheme for semi-automatic segmentation in Naturasat software. In Proceedings of ALGORITMY (2020).LGIS, 2020. LGIS Lesnícky geografický informačný system (2020). http://gis.nlcsk.org/lgis/. Accessed 1 Sept 2020.Hill, M. TWINSPAN-a FORTRAN program for multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecol. System. (1979).Team, R.C., A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. www.r-project.org. Accessed 14 Feb 2019, 2020.Hausdorff, F., Grundzüge der mengenlehre. Vol. 7. 1914: von Veit.Waghmare, B. & Suryawanshi, M. A review-remote sensing. Int. J. Eng. Res. Appl 7(06), 52–54 (2017).
    Google Scholar 
    Wagner, M. P. & Oppelt, N. Extracting agricultural fields from remote sensing imagery using graph-based growing contours. Remote Sens. 12(7), 1205 (2020).Article 
    ADS 

    Google Scholar 
    Reinermann, S., Asam, S. & Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 12(12), 1949 (2020).Article 
    ADS 

    Google Scholar 
    Lu, M. et al. Forest types classification based on multi-source data fusion. Remote Sens. 9(11), 1153 (2017).Article 
    ADS 

    Google Scholar 
    Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot. 17(3), 189–206 (1998).Article 

    Google Scholar 
    Lamb, D. & Brown, R. B. Pa—precision agriculture: Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res. 78(2), 117–125 (2001).Article 

    Google Scholar 
    Moran, M. S., Inoue, Y. & Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 61(3), 319–346 (1997).Article 
    ADS 

    Google Scholar 
    Senf, C., Seidl, R. & Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 60, 49–60 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avtar, R. et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 20, 100402 (2020).
    Google Scholar 
    Borre, J. V. et al. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 19(2), 116–125 (2011).Article 

    Google Scholar 
    Woodcock, C. E. et al. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 238, 111558 (2020).Article 
    ADS 

    Google Scholar 
    Foody, G. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85(1), 3–12 (1996).Article 

    Google Scholar 
    Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22(12), 2377–2400 (2001).Article 

    Google Scholar 
    Zlinszky, A. et al. Mapping Natura 2000 habitat conservation status in a pannonic salt steppe with airborne laser scanning. Remote Sens. 7(3), 2991–3019 (2015).Article 
    ADS 

    Google Scholar 
    Feilhauer, H. et al. Mapping the local variability of Natura 2000 habitats with remote sensing. Appl. Veg. Sci. 17(4), 765–779 (2014).Article 

    Google Scholar 
    Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1), 18 (2017).Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. Forests 8(10), 389 (2017).Article 

    Google Scholar 
    Cheng, K. & Wang, J. Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm—A case study in the qinling mountains. Forests 10(7), 559 (2019).Article 

    Google Scholar 
    Laurin, G. V. et al. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 176, 163–176 (2016).Article 
    ADS 

    Google Scholar 
    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).Article 
    ADS 

    Google Scholar 
    Navarro, J. A. et al. Integration of UAV, Sentinel-1, and Sentinel-2 data for mangrove plantation aboveground biomass monitoring in Senegal. Remote Sens. 11(1), 77 (2019).Article 
    ADS 

    Google Scholar 
    Sothe, C. et al. Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sens. 9(8), 838 (2017).Article 
    ADS 

    Google Scholar 
    Mikula, K., et al., Natural Numerical Networks for Natura 2000 habitats classification by satellite images. arXiv preprint arXiv:2108.04327, 2021.Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30(2), 161–186 (2019).Article 

    Google Scholar  More

  • in

    Quantifying the impacts of land cover change on gross primary productivity globally

    GPP dataAs our primary productivity product we used the GOSIF GPP dataset21 which utilizes the linear relationship between GPP and remotely-sensed SIF34. GOSIF GPP is available globally at 0.05° spatial resolution for the period 2000–2021, with the period 2001–2015 selected here (for a short summary of all datasets used in this study see Supplementary Table 3). GOSIF GPP is based on a gridded SIF product (GOSIF)34 which uses MODIS enhanced vegetation index and meteorological data for spatial scaling and is trained with millions of SIF observations from the coarser-resolution Orbiting Carbon Observatory-235. The global coverage of GOSIF and the close relationship between SIF and GPP allow for an independent assessment of how land cover changes affect GPP in different regions around the world. For instance, SIF has been shown to capture the high GPP in the US Corn Belt derived from flux towers, while ecosystem models underestimated it36. While GPP can thus be empirically estimated from satellite SIF observations relatively reliably (even though some assumptions like the linear GPP–SIF relationship and its universality across biomes are still debated20,37,38,39), the calculation of NPP needs additional assumptions of autotrophic respiration. Therefore, we focused our study on GPP, but we included an NPP product in our uncertainty analysis. In addition to that, to account for the challenges and uncertainties in global GPP estimates we included four alternative GPP products in our sensitivity analysis (see below).Land cover mappingGridded land cover was derived from ESA-CCI22, a global land cover product designed for climate science. ESA-CCI is available at 300 m spatial resolution for the 1992–2020 period (https://cds.climate.copernicus.eu/). We first classified ESA-CCI land covers to forests, grasslands, and croplands according to IPCC classification: classes 50–100, 160, 170 forests (2,022,283 grid cells); classes 110 and 130 grasslands (509,297 grid cells); classes 10–40 croplands (950,025 grid cells). We focus on these three major land cover types to facilitate our analysis. We then converted the resulting map to 0.05° resolution by determining the prevalent (i.e., mode) land cover for each grid cell using the aggregate function from the raster package40 and only included grid cells in our training data in which the prevalent land cover was constant over the period 2001–2015. Other classes (e.g., cropland/natural vegetation mosaics) and grid cells where the land cover changed over the 2001–2015 period were not used for the RF training.Random forestsRF is a popular and efficient supervised machine learning technique which can be applied for classification and regression problems41. While complex, it is still easier to interpret compared to other machine learning methods such as Artificial Neural Networks. It has recently been applied to a wide range of ecological research questions, including the prediction of food42 and bioenergy43 crop yields, potential natural vegetation31, forest aboveground biomass44, soil respiration45, and soil carbon emissions from land-use change5 and is thus well suited for our approach. The “Forests” refer to a number of individual decision trees. For each tree, a random sample of the training data is selected and split multiple times based on a random subset of variables from which the one minimizing the weighted variance is selected by the algorithm. Model performance is computed directly on out-of-bag (OOB) data which is randomly omitted from the training data (36.8% of all grid cells). When RF is applied to new data, a weighted prediction of each individual decision tree contributes to the overall prediction. Variance in the individual trees, e.g., by selecting random subsets of the observations and random variables at each node improves the overall RF predictive skill. Model training and prediction were done using the R ranger package46. After initial testing (see Supplementary Fig. S11) we decided to set the number of individual decision trees to 800 and the number of variables to possibly split at in each node to 10. As the good evaluation measures of RF algorithms can be related to spatial autocorrelation24 we also tested a coordinate-only model and performed a leave-one-out cross validation including spatial buffers (Supplementary Discussion 2, Supplementary Fig. S3). Due to the large computational effort we reduced the number of decision trees to 100 for the buffered leave-one-out cross validation.Predictor variablesWe predicted forest, grassland, and cropland potential GPP using the following 20 predictor variables in our RF algorithm: mean annual surface temperature (Tmean), mean diurnal temperature range (Tdiurnal), temperature seasonality (Tseason; standard deviation), minimum temperature of the coldest month (Tmin), annual temperature range (Tannual), mean temperature of the warmest quarter (Twarmest), mean annual precipitation (Pmean), precipitation seasonality (Pseason; coefficient of variation), precipitation of the wettest quarter (Pwettest), precipitation of the driest quarter (Pdriest), precipitation of the warmest quarter (Pwarmest), mean annual solar radiation (SR), growing degree days (GDD), relative humidity (RH), soil clay content (Clay), elevation (EL), nitrogen deposition (Ndep), nitrogen fertilization (NF), pesticide application (Pest), and gross domestic product (GDP; a proxy for agricultural management input other than NF and Pest). Overall Tmean, Tannual, and Pmean were the most important predictor variables (see Supplementary Discussion 3 and Fig. S12). We also tested other predictors (including additional bioclimatic variables, soil pH, irrigation, or phosphate fertilization) but found only negligible improvements in RF evaluation metrics and hence decided to restrict our analysis to the 20 predictors mentioned above.Climate variables were taken from the CHELSA dataset47,48, remapped to 0.05° spatial resolution using the aggregate function from the raster package40. To only include years overlapping with our GPP data we used the CHELSA time-series data for the 2001–2013 period if available and 1979–2013 climatologies elsewise. Clay was derived from the Regridded Harmonized World Soil Database v1.249. Ndep was taken from ISIMIP2b50, bilinear remapped from 0.5° to 0.05° spatial resolution using Climate Data Operators33. Elevation was obtained from WorldClim51. NF and Pest were derived from country-specific FAO data (e.g., https://ourworldindata.org/grapher/pesticide-use-per-hectare-of-cropland), i.e., we used the same value for all grid cells in a country. GDP was obtained from ref.52.Suitable areaFor the comparison of potential forest, grassland, and cropland GPP in Fig. 1g–i we only included grid cells suitable for all three land cover types. For forests, we assumed forest cover possible if the grid cell is currently forested (e.g., all grid cells of our forest training data) or if the potential natural forest cover exceeds 36.3%. This threshold represents the 5th percentile of all currently forested grid cells. Potential natural forest cover was derived from a potential natural vegetation map, available for 20 biomes at 0.00833° spatial resolution31. To convert these biomes into potential natural forest cover we assumed 100% forest cover for the ten forest biomes and 30% forest cover for tropical savannah. Other biomes were not considered. We then aggregated the map to 0.05° spatial resolution by computing the mean of 36 grid cells using the aggregate function form the raster package40 (see Supplementary Fig. S5 for the resulting map). For grasslands and croplands, we computed the 5th percentile of Tmean and Pmean in the training data (− 9.9 °C and 165 mm for grasslands and 2.7 °C and 295 mm for croplands, respectively) and removed all grid cells below those thresholds, assuming these areas to be too cold or too dry for the respective land cover type. Finally, we calculated the land cover with the highest potential GPP for all overlapping grid cells.Sensitivity analysisTo explore the sensitivity and uncertainty of our RF approach we repeated our prediction using different input datasets, potential forest cover, and machine-learning approaches. The importance of the underlying potential forest map was estimated by replacing our potential forest map (Supplementary Fig. S5) by the LUH2 potential forest map (Supplementary Fig. S13)23. To explore the dependency on the land cover product we repeated our RF prediction using the spatially aggregated MODIS land cover map (MCD12C1; IGBP scheme), available at 0.05° spatial resolution53. We classified grid cells of classes 1, 2, 3, 4, 5, (all forests), 8 (woody savannahs) and 9 (savannahs) as forest. Classes 8 and 9 were included in forest because otherwise forest cover would be underestimated in the temperate and boreal zone. Class 10 was classified as grassland and class 12 as cropland. A comparison of ESA-CCI with MODIS reveals a substantially larger cropland area in ECA-CCI but a smaller grassland area (Supplementary Fig. S14).The sensitivity to the climate product was tested by repeating our analysis using predictor variables from the WorldClim climatologies (1970–2000)51, aggregated from 30 s to 0.05° spatial resolution using the aggregate function from the raster package40. In contrast to CHELSA, growing degree days and relative humidity were not available from WorldClim but we included water vapour pressure as additional predictor.We also tested four alternative global GPP products. The vegetation photosynthesis model (VPM) product, available for the period of interest at 0.05° spatial resolution, is based on improved light use efficiency theory and is driven by remotely sensed datasets and reanalysis climate data and land cover classification which also distinguishes C3 vs. C4 photosynthesis pathways54. The second product is derived from remote sensing considering radiation and canopy conductance limitations on GPP and is available at 0.05° resolution for the 2001–2012 period55. Land cover is not an input variable. The third product, FLUXCOM, uses machine learning to scale FLUXNET site GPP to the globe56,57. FLUXCOM is available at 0.0833° resolution and was conservative remapped to 0.05° using Climate Data Operators33 meaning that the GPP of different land cover types might be mixed in regions with heterogeneous land cover patterns. The forth product is the MODIS MOD17A3 GPP product58, available for the 2001–2013 period and aggregated to 0.05° resolution using the raster package40. It is derived from meteorological data, fraction of absorbed photosynthetic active radiation/leaf area index, and land cover. As there is also a MOD17A3 NPP product available we additionally conducted a prediction for potential NPP. The MOD17A3 NPP product is calculated as GPP minus maintenance and growth respiration estimated from allometric relationships linking daily biomass and annual growth of plant tissues to leaf area index58. This leads to additional uncertainty compared to the MOD17A3 GPP product.To test the effect of an alternative RF algorithm we repeated our prediction with the RF algorithm from the Python scikit-learn library59 using the same number of decision trees (800). Additionally, we tested another machine-learning technique, a deep neural network (DNN), using the PyTorch library60. We selected 10 linear layers with 5 times alternating 128 and 256 nodes and a sigmoid output function. All layers were connected using the rectified linear unit activation function. We used the adamW optimizer with 0.0003 learning rate and 2000 epochs of training. To prevent overfitting, we included a 10% dropout after the 7th layer. Lastly, we included a very simple estimate of the most productive land cover based on the nearest neighbour using scikit-learn’s BallTree implementation together with the Haversine formula. For each grid cell we searched for the nearest forest, grassland, and cropland grid cell and assigned the respective GPP also to this grid cell. We thus assumed that environmental conditions are more or less identical in these grid cells, which might be a reasonable assumption for many locations but less reliable in complex terrain or in large homogeneous regions like the central Amazon rainforest where the nearest cropland/grassland grid cell might be located far away.Land-use change scenariosTo estimate the effects of historical and potential future land cover changes on global GPP we applied LUH2 scenarios23 which also serve as input data for ESMs participating in CMIP6. Land-use changes over the historical period are based on the HYDE reconstruction3, while future projections were developed by different Integrated Assessment Models combining various assumptions of socio-economic behaviour (SSPs) with climate mitigation targets (RCPs). Annual fractions for the two land cover classes cropland (sum of 5 crop types) and managed grassland (sum of pasture and rangeland) were available for each scenario at 0.25° resolution (https://luh.umd.edu/). We converted to 0.05° resolution assuming the same land cover fractions for all 25 grid cells around the LUH2 grid cells. We considered the following land cover transitions: forest to managed grassland, forest to cropland, and natural grassland to cropland (and reverse transitions for future scenarios). Transitions in areas suitable for only two land cover types were also included. Conversions of natural grasslands to managed grasslands were assumed not to affect productivity. We assumed the original land cover of a grid cell to be either forest (i.e., potential forest cover  > 36.3%) or natural grassland and accordingly multiplied the converted areas by the differences in potential GPP derived from our RF approach. Our broad forest definition including open tree cover (see above) and the fact that we assumed a change from 100 to 0% forest area in deforested grid cells results in a total historical deforestation area substantially larger than estimated in a recent study (2.4 Mkm2 vs. 1.6 Mkm2)61. These assumptions, however, do not impair our GPP estimate as our approach implicitly accounts for gradients in forest productivity (open forests tend to have lower GPP than closed forests). To test the sensitivity of the resulting GPP reduction we also applied the potential GPP maps from our uncertainty analysis to historical land-use changes (Supplementary Fig. S6). For future land cover changes we investigated changes over the 2015–2100 period for all available LUH2 scenarios: SSP1-1.9, SSP2-2.6, SSP4-3.4, SSP5-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. Land-use activities in these scenarios range from large-scale deforestation (e.g., SSP3-7.0) to reforestation (e.g., SSP1-1.9) (Supplementary Fig. S7).Earth System ModelsWe compared the potential GPP estimated by our RF algorithm to simulations of eight ESMs participating in CMIP6 (CESM2-CLM562, CNRM-ESM2.1-Surfex 8.0c63, EC-Earth3-Veg-LPJ-GUESSv464, GFDL-ESM4-GFDL-LM4.165, IPSL-CM6A-LR-ORCHIDEEv2.066, MIROC-ES2L-MATSIRO6.0 + VISIT-e ver.1.067, MPI-ESM1-2-LR-JSBACH3.2068, UKESM1-0-LL-JULES-ES-1.069) with an explicit representation of natural vegetation and at least one agricultural land cover class (cropland or managed grassland) in their vegetation sub-model. We selected these ESMs so that all vegetation models implemented in more than one ESM were represented only once (e.g., the JSBACH vegetation model is a component of both MPI-ESM1-2-LR and AWI-ESM). For each ESM, the variable gppLut was downloaded from the CMIP6 archive (https://esgf-data.dkrz.de/search/cmip6-dkrz/) for the historical simulations. These files contain simulated GPP for natural vegetation, pasture, and cropland for which we calculated the 2001–2014 mean (2014 is the last year of the historical period). ESMs use fractional land covers for each grid cell, meaning that climatic drivers are inherently the same for all land cover types within a grid cell and simulated productivities can therefore be directly compared. As ESMs differ in their spatial resolution we bilinear remapped all output to 0.05° resolution using Climate Data Operators33 to allow for a fair comparison across models. To assess the sensitivity of our results to the interpolation method we also tested conservative remapping which results in slightly different maps (Supplementary Fig. S15) and usually larger model biases (Supplementary Table 2). In addition, ESMs differ in where they simulate forests in natural vegetation areas, and therefore we removed all grid cells from the comparison where at least one ESM simulated no tree productivity/cover/biomass in order to avoid comparing the GPP of natural grasslands to managed grasslands. We provide maps based on the original output for each ESM in Supplementary Fig. S10.FLUXNET dataWe compared our predictions of potential GPP to FLUXNET Tier 1 eddy covariance measurements (Supplementary Fig. S16)70. We included all forest, woody savannah (classified as forest), grassland and cropland sites21 which were located in suitable areas for the respective land cover. Mean GPP was calculated as the mean of the GPP estimates based on the night-time (GPP_NT_VUT_REF) and day-time (GPP_DT_VUT_REF) partitioning method. As some sites only had a few years of data, all available years were considered (i.e., site mean GPP was calculated for a different time period than 2001–2015). Comparisons were made with the potential GPP in the respective grid cell in which the site was located (i.e., not calibrated to site conditions). More

  • in

    Impact of host age on viral and bacterial communities in a waterbird population

    Woolhouse MEJ, Gowtage-Sequeria S. Host range and emerging and reemerging pathogens. Emerg Infect Dis. 2005;11:1842–7.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017;8:1–10.Article 
    CAS 

    Google Scholar 
    Van Kerkhove MD, Ly S, Holl D, Guitian J, Mangtani P, Ghani AC, et al. Frequency and patterns of contact with domestic poultry and potential risk of H5N1 transmission to humans living in rural Cambodia. Influenza Other Respir Viruses. 2008;2:155–63.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaythorpe KAM, Hamlet A, Cibrelus L, Garske T, Ferguson NM. The effect of climate change on yellow fever disease burden in Africa. eLife. 2020;9:1–27.Article 

    Google Scholar 
    Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, et al. Pathogen spillover during land conversion. Ecol Lett. 2018;21:471–83.Article 
    PubMed 

    Google Scholar 
    Gog J, Woodroffe R, Swinton J. Disease in endangered metapopulations: The importance of alternative hosts. Proc R Soc B Biol Sci. 2002;269:671–6.Article 

    Google Scholar 
    Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA. 2013;110:8399–404.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White LA, Forester JD, Craft ME. Disease outbreak thresholds emerge from interactions between movement behavior, landscape structure, and epidemiology. Proc Natl Acad Sci USA. 2018;115:7374–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011;331:296–302.Article 
    CAS 
    PubMed 

    Google Scholar 
    Ludwig SC, Roos S, Bubb D, Baines D. Long-term trends in abundance and breeding success of red grouse and hen harriers in relation to changing management of a Scottish grouse moor. Wildl Biol. 2017;2017:wlb.00246.Article 

    Google Scholar 
    Newton I. Weather-related mass-mortality events in migrants. Ibis. 2007;149:453–67.Article 

    Google Scholar 
    Ropert-Coudert Y, Kato A, Meyer X, Pellé M, MacIntosh AJJ, Angelier F, et al. A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography. 2015;38:111–3.Article 

    Google Scholar 
    Newmark WD, Stanley TR. Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA. 2011;108:11488–93.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuyttens FaM, Macdonald DW, Rogers LM, Cheeseman CL, Roddam AW. Comparative study on the consequences of culling badgers (Meles meles) on biometrics, population dynamics and movement. J Anim Ecol. 2000;69:567–80.Article 

    Google Scholar 
    Frafjord K. Influence of reproductive status: Home range size in water voles (Arvicola amphibius). PLoS ONE. 2016;11:1–13.Article 

    Google Scholar 
    Begg CM, Begg KS, Du Toit JT, Mills MGL. Spatial organization of the honey badger Mellivora capensis in the southern Kalahari: Home-range size and movement patterns. J Zool. 2005;265:23–35.Article 

    Google Scholar 
    Bronikowski AM, Cords M, Alberts SC, Altmann J, Brockman DK, Fedigan LM, et al. Female and male life tables for seven wild primate species. Sci Data. 2016;3:1–8.Article 

    Google Scholar 
    Mitchell GW, Woodworth BK, Taylor PD, Norris DR. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol. 2015;3:1–13.Article 

    Google Scholar 
    Frankish CK, Manica A, Phillips RA. Effects of age on foraging behavior in two closely related albatross species. Mov Ecol. 2020;8:1–17.Article 

    Google Scholar 
    Tirpak JM, Giuliano WM, Allen TJ, Bittner S, Edwards JW, Friedhof S, et al. Ruffed grouse-habitat preference in the central and southern Appalachians. Ecol Manag. 2010;260:1525–38.Article 

    Google Scholar 
    Zhu WW, Garber PA, Bezanson M, Qi XG, Li BG. Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana). Am J Primatol. 2015;77:98–108.Article 
    PubMed 

    Google Scholar 
    Tian H, Yu P, Bjørnstad ON, Cazelles B, Yang J, Tan H, et al. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLOS Pathog. 2017;13:e1006198.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    George DB, Webb CT, Farnsworth ML, O’Shea TJ, Bowen RA, Smith DL, et al. Host and viral ecology determine bat rabies seasonality and maintenance. Proc Natl Acad Sci USA. 2011;108:10208–13.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Dijk JG, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol. 2018;28:26–36.Article 
    PubMed 

    Google Scholar 
    Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, Belov K, et al. Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J Virol. 2019;93:e00205–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    François S, Pybus OG. Towards an understanding of the avian virome. J Gen Virol. 2020;101:785–90.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus verreauxi). Ecol Evol. 2017;7:5732–45.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aivelo T, Laakkonen J, Jernvall J. Population-and individual-level dynamics of the intestinal microbiota of a small primate. Appl Environ Microbiol. 2016;82:3537–45.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, et al. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol. 2013;13:11.Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc B Biol Sci. 2001;356:991–9.Article 
    CAS 

    Google Scholar 
    Wille M, Shi M, Hurt AC, Klaassen M, Holmes EC. RNA virome abundance and diversity is associated with host age in a bird species. Virology. 2021;561:98–106.Article 
    CAS 
    PubMed 

    Google Scholar 
    Negrey JD, Thompson ME, Langergraber KE, Machanda ZP, Mitani JC, Muller MN, et al. Demography, life-history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos Trans R Soc B Biol Sci. 2020;375:20190613.Article 

    Google Scholar 
    Hill SC, Manvell RJ, Schulenburg B, Shell W, Wikramaratna PS, Perrins C, et al. Antibody responses to avian influenza viruses in wild birds broaden with age. Proc R Soc B Biol Sci. 2016;283:20162159.Article 

    Google Scholar 
    Perrins CM, Ogilvie MA. A study of the Abbotsbury mute swans (Cygnus olor). Wildfowl. 1981;32:35–47.
    Google Scholar 
    Perrins CM, McCleery RH, Ogilvie MA. A study of the breeding Mute Swans Cygnus olor at Abbotsbury. Wildfowl. 1994;45:1–14.
    Google Scholar 
    Perrins C. Survival rates of young mute swans Cygnus olor. Wildfowl Suppl. 1991;45:95–103.
    Google Scholar 
    McCleery RH, Perrins C, Wheeler D, Groves S. Population structure, survival rates and productivity of mute swans breeding in a colony at Abbotsbury, Dorset, England. Waterbirds Waterbird Soc. 2002;25:201.
    Google Scholar 
    Matrozis R A 30-year (1988–2017) study of Mute Swans Cygnus olor in Riga, Latvia. Wildfowl. 2019;14:164–77.Charmantier A, Perrins C, McCleery RH, Sheldon BC. Quantitative genetics of age at reproduction in wild swans: Support for antagonistic pleiotropy models of senescence. Proc Natl Acad Sci USA. 2006;103:6587–92.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill SC, Hansen R, Watson S, Coward V, Russell C, Cooper J, et al. Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild bird population. Philos Trans R Soc B Biol Sci. 2019;374:20180259.Cotten M, Oude Munnink B, Canuti M, Deijs M, Watson SJ, Kellam P, et al. Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm. PLoS ONE. 2014;9:e93269.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boom R, Sol CJA, Salimans MMM, Janses CL, Wertheim Van Dillen PME, Van Der Noordaa J. Rapid and simple method for purification of nucleic acids R. J Clin Microbiol. 1990;28:495–503.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Endoh D, Mizutani T, Kirisawa R, Maki Y, Saito H, Kon Y, et al. Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription. Nucleic Acids Res. 2005;33:1–11.Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB. 2011;17:10–12.
    Google Scholar 
    Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.Article 
    PubMed 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Langmead B Aligning short sequencing reads with Bowtie. Curr Protoc Bioinforma. 2010; Chapter 11: Unit 11.7.Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinforma Oxf Engl. 2012;28:1647–9.Article 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhire BM, Varsani A, Martin DP SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE. 2014;9:e108277.Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinforma Oxf Engl. 2011;27:1164–5.Article 
    CAS 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kapoor A, Simmonds P, Lipkin WI, Zaidi S, Delwart E. Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol. 2010;84:10322–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood DE, Salzberg SL Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.Article 

    Google Scholar 
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–42.Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. 2019. R Foundation for Statistical Computing, Vienna, Austria.RStudio Team. RStudio: Integrated Development for R. 2015. Boston, MA, USA.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
    Google Scholar 
    Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.Article 

    Google Scholar 
    Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100–12.Article 
    CAS 
    PubMed 

    Google Scholar 
    Waite DW, Taylor MW. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front Microbiol. 2014;5:1–12.Article 

    Google Scholar 
    Waite DW, Taylor MW. Exploring the avian gut microbiota: Current trends and future directions. Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol. 2017;98:2421–2.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J, et al. ICTV virus taxonomy profile: Parvoviridae. J Gen Virol. 2019;100:367–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bosch A, Guix S, Krishna N, Méndez E, Monroe SS, Pantin-Jackwood M, et al. Astroviridae. In: King A, Adams M, Carstens E, Lefkowitz E (eds). Virus taxonomy. Classification and nomenclature of viruses: ninth report of the International Committee on the Taxonomy of Viruses. 2011. Elsevier, London, pp 953-9.Risely A. Applying the core microbiome to understand host–microbe systems. J Anim Ecol. 2020;89:1549–58.Article 
    PubMed 

    Google Scholar 
    Piepenbring AK, Enderlein D, Herzog S, Kaleta EF, Heffels-Redmann U, Ressmeyer S, et al. Pathogenesis of avian bornavirus in experimentally infected Cockatiels. Emerg Infect Dis. 2012;18:234–41.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anzil AP, Blinzinger K, Mayr A. Persistent Borna virus infection in adult hamsters. Arch Für Gesamt Virusforsch. 1973;40:52–57.Article 
    CAS 

    Google Scholar 
    Heffels-Redmann U, Enderlein D, Herzog S, Piepenbring A, Bürkle M, Neumann D, et al. Follow-Up Investigations on Different Courses of Natural Avian Bornavirus Infections in Psittacines. Avian Dis. 2012;56:153–9.Article 
    PubMed 

    Google Scholar 
    Rubbenstroth D, Brosinski K, Rinder M, Olbert M, Kaspers B, Korbel R, et al. No contact transmission of avian bornavirus in experimentally infected cockatiels (Nymphicus hollandicus) and domestic canaries (Serinus canaria forma domestica). Vet Microbiol. 2014;172:146–56.Article 
    PubMed 

    Google Scholar 
    Olsen I The Family Fusobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Firmicutes and Tenericutes, 4th ed. 2014. pp 109-32.Imhoff JF The Family Chlorobiaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 501-14.Cho JC The Family Lentisphaeraceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 705-10.Karami A, Sarshar M, Ranjbar R, Zanjani RS The Phylum Spirochaetaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 915-29.McBride MJ The Family Flavobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, 4th ed. 2014. pp 643-76.Van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M. Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J Anim Ecol. 2014;83:266–75.Article 
    PubMed 

    Google Scholar 
    Chevalier V, Marsot M, Molia S, Rasamoelina H, Rakotondravao R, Pedrono M, et al. Serological evidence of West Nile and Usutu viruses circulation in domestic and wild birds in wetlands of Mali and Madagascar in 2008. Int J Environ Res Public Health. 2020;17:1998.Guy, JS Turkey Viral Hepatitis. Diseases of Poultry, 12th Edition. 2008. Wiley Blackwell, pp 426-30.Davies ZG, Fuller RA, Dallimer M, Loram A, Gaston KJ. Household factors influencing participation in bird feeding activity: a national scale analysis. PLOS ONE. 2012;7:e39692.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shutt JD, Trivedi UH, Nicholls JA. Faecal metabarcoding reveals pervasive long-distance impacts of garden bird feeding. Proc R Soc B Biol Sci. 2021;288:20210480.Article 

    Google Scholar 
    Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4:e00186–19.Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hylland, K. & Vethaak, A. D. Ecological Impacts of Toxic Chemicals (Bentham Science Publishers, 2012).Bossart, G. D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 48, 676–690 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article 

    Google Scholar 
    Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).Article 

    Google Scholar 
    Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 1–9 (2020).Article 

    Google Scholar 
    Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Savoca, M. S., McInturf, A. G. & Hazen, E. L. Plastic ingestion by marine fish is widespread and increasing. Glob. Change Biol. 27, 2188–2199 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilcox, C., Van Sebille, E. & Hardesty, B. D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl Acad. Sci. USA 112, 11899–11904 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fossi, M. C. et al. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 64, 2374–2379 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Germanov, E. S., Marshall, A. D., Bejder, L., Fossi, M. C. & Loneragan, N. R. Microplastics: no small problem for filter-feeding megafauna. Trends Ecol. Evol. 33, 227–232 (2018).Article 
    PubMed 

    Google Scholar 
    Alava, J. J. Modeling the bioaccumulation and biomagnification potential of microplastics in a Cetacean foodweb of the Northeastern pacific: a prospective tool to assess the risk exposure to plastic particles. Front. Mar. Sci. 7, 566101 (2020).Article 

    Google Scholar 
    Zantis, L. J. et al. Assessing microplastic exposure of large marine filter-feeders. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.151815. (2021).Garcia-Garin, O. et al. Ingestion of synthetic particles by fin whales feeding off Western Iceland in summer. Chemosphere 279, 130564 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sims, D. W. & Quayle, V. A. Selective foraging behaviour of basking sharks on zooplankton in a small-scale front. Nature 393, 460–465 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).Article 

    Google Scholar 
    Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun, X., Liang, J., Zhu, M., Zhao, Y. & Zhang, B. Microplastics in seawater and zooplankton from the Yellow Sea*. Environ. Pollut. 242, 585–595 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mahara, N. et al. Assessing size-based exposure to microplastic particles and ingestion pathways in zooplankton and herring in a coastal pelagic ecosystem of British Columbia, Canada. Mar. Ecol. Prog. Ser. 683, 139–155 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Besseling, E. et al. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248–252 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Baini, M. et al. First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic/planktonic samples and cetacean blubber. Anal. Methods 9, 1512–1520 (2017).Article 
    CAS 

    Google Scholar 
    Goldbogen, J. A. et al. How Baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kawamura, A. A Review of Food of Balaenopterid Whales (AGRIS, 1980).Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2015).Article 
    ADS 

    Google Scholar 
    Clapham, P. J., Leatherwood, S., Szczepaniak, I. & Brownell, R. L. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919–1926. Mar. Mammal. Sci. 13, 368–394 (1997).Article 

    Google Scholar 
    Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).Article 
    PubMed 

    Google Scholar 
    Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).Goldbogen, J. A., Potvin, J. & Shadwick, R. E. Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proc. R. Soc. B: Biol. Sci. 277, 861–868 (2010).Article 

    Google Scholar 
    Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Domenici, P. The scaling of locomotor performance in predator-prey encounters: from fish to killer whales. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131, 169–182 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindstedt, S. & Caldor, W. Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56, 1–16 (1981).Article 

    Google Scholar 
    Banavar, J. R. et al. A general basis for quarter-power scaling in animals. Proc. Natl Acad. Sci. USA 107, 15816–15820 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fossi, M. C. et al. Fin whales and microplastics: the Mediterranean Sea and the Sea of Cortez scenarios. Environ. Pollut. 209, 68–78 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Croll et al. Encyclopedia of Marine Mammals 2nd edn (Elsevier, 2018).De Vos, A., Pattiaratchi, C. B. & Harcourt, R. G. Inter-annual variability in blue whale distribution off Southern Sri Lanka between 2011 and 2012. J. Mar. Sci. Eng. 2, 534–550 (2014).Article 

    Google Scholar 
    Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Friedlaender, A. S. et al. The advantages of diving deep: fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. https://doi.org/10.1111/1365-2435.13471 (2019).Kashiwabara, L. et al. Microplastics and microfibers in surface waters of Monterey Bay National Marine Sanctuary, California. Mar. Pollut. Bull. 165, 112148 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lattin, G. L., Moore, C. J., Zellers, A. F., Moore, S. L. & Weisberg, S. B. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 49, 291–294 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sutton, R. et al. Understanding Microplastic Levels, Pathways, and Transport in the San Francisco Bay Region. (2019).Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Desforges, J. P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contamination Toxicol. 69, 320–330 (2015).Article 
    CAS 

    Google Scholar 
    Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fossi, M. C., Baini, M. & Simmonds, M. P. Cetaceans as ocean health indicators of marine litter impact at global scale. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.586627 (2020).Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere 228, 93–100 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ory, N. C., Gallardo, C., Lenz, M. & Thiel, M. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environ. Pollut. 240, 566–573 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigorakis, S., Mason, S. A. & Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus). Chemosphere 169, 233–238 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gigault, J. et al. Current opinion: What is a nanoplastic? Environ. Pollut. 235, 1030–1034 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barboza, L. G. A. et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 717, 134625 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1–10 (2020).Article 

    Google Scholar 
    Collard, F. et al. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 229, 1000–1005 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wieczorek, A. M. et al. Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic. Front. Mar. Sci. 5, 1–9 (2018).
    Google Scholar 
    Boerger, C. M., Lattin, G. L., Moore, S. L. & Moore, C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60, 2275–2278 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davison, P. & Asch, R. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432, 173–180 (2011).Article 
    ADS 

    Google Scholar 
    Lusher, A. L., Donnell, C. O., Officer, R. & Connor, I. O. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 73, 1214–1225 (2016).Article 

    Google Scholar 
    Hamilton, B. M. et al. Prevalence of microplastics and anthropogenic debris within a deep-sea food web. Mar. Ecol. Prog. Ser. 675, 23–33 (2021).Article 
    ADS 

    Google Scholar 
    Sun, X. et al. Ingestion of microplastics by natural zooplankton groups in the northern. Mar. Pollut. Bull. 115, 217–224 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mayo, C. A. & Marx, M. K. Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68, 2214–2220 (1990).Article 

    Google Scholar 
    Friedlaender, A. S. et al. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar. Ecol. Prog. Ser. 395, 91–100 (2009).Article 
    ADS 

    Google Scholar 
    Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gregorietti, M. et al. Cetacean presence and distribution in the central Mediterranean Sea and potential risks deriving from plastic pollution. Mar. Pollut. Bull. 173, 112943 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosel, P. E., Wilcox, L. A., Yamada, T. K. & Mullin, K. D. A new species of baleen whale (Balaenoptera) from the Gulf of Mexico, with a review of its geographic distribution. Marine Mammal Sci. https://doi.org/10.1111/mms.12776 (2021).Yong, M. M. H. et al. Microplastics in fecal samples of whale sharks (Rhincodon typus) and from surface water in the Philippines. Microplastics Nanoplastics 1, 17 (2021).Article 
    PubMed 

    Google Scholar 
    Fossi, M. C. et al. Are whale sharks exposed to persistent organic pollutants and plastic pollution in the Gulf of California (Mexico)? First ecotoxicological investigation using skin biopsies. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 199, 48–58 (2017).CAS 

    Google Scholar 
    Cade, D. E. et al. Predator‐scale spatial analysis of intra‐patch prey distribution reveals the energetic drivers of rorqual whale super‐group formation. Funct. Ecol. 35, 894–908 (2021).Article 
    CAS 

    Google Scholar 
    Goldbogen, J. A. et al. Why whales are big but not bigger: Physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).Article 
    PubMed 

    Google Scholar 
    Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from Medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).Article 

    Google Scholar 
    Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelem. 9, 34 (2021).Article 

    Google Scholar 
    Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).Article 
    ADS 

    Google Scholar 
    Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).PubMed 

    Google Scholar 
    Hadfield, J. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Hipfner, J. M. et al. Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs. Environ. Pollut. 239, 215–222 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doyle, M. J., Watson, W., Bowlin, N. M. & Sheavly, S. B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71, 41–52 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Witteveen, B. H., Worthy, G. A. J., Foy, R. J. & Wynne, K. M. Modeling the diet of humpback whales: An approach using stable carbon and nitrogen isotopes in a Bayesian mixing model. Mar. Mammal. Sci. 28, E233–E250 (2012).Article 

    Google Scholar  More

  • in

    Uropygial gland microbiota differ between free-living and captive songbirds

    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).Article 
    PubMed 

    Google Scholar 
    Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).Article 

    Google Scholar 
    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cresci, G. A. & Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 30, 734–746 (2015).
    Google Scholar 
    Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L., Raulo, A. & Knowles, S. C. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. 35, 972–980 (2020).Article 
    PubMed 

    Google Scholar 
    Ushida, K., Kock, R. & Sundset, M. A. Wildlife microbiology. Microorganisms 9, 1968 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: Where do we go from here?. BioEssays 36, 847–854 (2014).Article 
    PubMed 

    Google Scholar 
    Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: Microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).Article 
    PubMed 

    Google Scholar 
    Maraci, Ö., Engel, K. & Caspers, B. A. Olfactory communication via microbiota: What is known in birds?. Genes 9, 387 (2018).Article 
    PubMed Central 

    Google Scholar 
    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: A meta-analysis. Sci. Rep. 11, 22660 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).Article 

    Google Scholar 
    Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110, 1983219837 (2013).Article 
    ADS 

    Google Scholar 
    Gassett, J. W., Dasher, K. A., Miller, K. V., Osborn, D. A. & Russell, S. M. White-tailed deer tarsal glands: Sex and age-related variation in microbial flora. Mammalia 64, 371–377 (2000).Article 

    Google Scholar 
    Sin, Y. W., Buesching, C. D., Burke, T. & Macdonald, D. W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol. Ecol. 81, 648–659 (2012).Article 
    PubMed 

    Google Scholar 
    Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14, 387–400 (1974).Article 
    PubMed 

    Google Scholar 
    Greene, L. K. et al. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am. J. Primatol. 81, e22974 (2019).Article 
    PubMed 

    Google Scholar 
    Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 3240 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Kelly, T. R., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota of songbirds differ across populations but not sexes. J. Anim. Ecol. 90, 2202–2212 (2021).Article 
    PubMed 

    Google Scholar 
    Whittaker, D. J. et al. Social environment has a primary influence on the microbial and odor profiles of a chemically signaling songbird. Front. Ecol. Evol. 4, 1–15 (2016).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. R. Soc. Open Sci. 8, 210936 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whittaker, D. J. et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 222, jeb202978 (2019).Article 
    PubMed 

    Google Scholar 
    Martín-Vivaldi, M. et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130 (2010).Article 

    Google Scholar 
    Whittaker, D. J. et al. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256–1263 (2011).Article 

    Google Scholar 
    Grieves, L. A., Bernards, M. A. & MacDougall-Shackleton, E. A. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim. Behav. 156, 57–65 (2019).Article 

    Google Scholar 
    Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 158, 131–138 (2019).Article 

    Google Scholar 
    Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leclaire, S. et al. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 28, 833–846 (2019).PubMed 

    Google Scholar 
    Bisson, I.-A., Marra, P. P., Burtt, E. H. Jr., Sikaroodi, M. & Gillevet, P. M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 58, 212 (2009).Article 
    PubMed 

    Google Scholar 
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588–23593 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arcese, P., Sogge, M. K., Marr, A. B. & Patten, M. A. Song sparrow (Melospiza melodia), version 2.0. In The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002).
    Google Scholar 
    Breton, J. et al. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).Article 
    PubMed 

    Google Scholar 
    Lin, X. et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol. Environ. Saf. 190, 110130 (2020).Article 
    PubMed 

    Google Scholar 
    Grieves, L. A. et al. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. Ecotoxicology 29, 275–285 (2020).Article 
    PubMed 

    Google Scholar 
    Christian, V. J., Miller, K. R. & Martindale, R. G. Food insecurity, malnutrition, and the microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).Article 
    PubMed 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34, 542–551 (2011).Article 
    PubMed 

    Google Scholar 
    Salgado-Flores, A., Tveit, A. T., Wright, A.-D., Pope, P. B. & Sundset, M. A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 14, e0213503 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, R. H. et al. Use of TLC-FID and GC-MS⁄FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152, 782–792 (2010).Article 

    Google Scholar 
    Xie, Y. et al. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6, 33350 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San Juan, P. A., Castro, I. & Dhami, M. K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 3, 48 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, H., Wu, F.-T., Zhou, Q.-H. & Zhao, D.-P. Comparative analysis of gut microbiota in captive and wild oriental white storks: Implications for conservation biology. Front. Microbiol. 12, 649466 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ruano, S. M. et al. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS One 10, e0139734 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xenoulis, P. G. et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146, 320–325 (2010).Article 
    PubMed 

    Google Scholar 
    Kelly, T. R., Vinson, A. E., King, G. M. & Lattin, C. R. No guts about it: Captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr. Org. Biol. 4, obac010 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).Article 

    Google Scholar 
    Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424–434 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).Article 
    PubMed 

    Google Scholar 
    Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. 47, 521–529 (2016).Article 

    Google Scholar 
    Jacob, S. et al. Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol. Biol. 14, 134 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology Vol. 6 (eds Farner, D. S. et al.) 199–324 (Academic Press, 1982).Chapter 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).Article 
    PubMed 

    Google Scholar 
    Egert, M. & Simmering, R. The microbiota of the human skin. Microbiota Hum. Body 902, 61–81 (2016).Article 

    Google Scholar 
    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, B. et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J. Microbiol. Biotechnol. 26, 9–19 (2016).Article 
    PubMed 

    Google Scholar 
    Rosenberg, E. The Prokaryotes (Springer, 2014).Book 

    Google Scholar 
    Tang, J., Huang, J., Qiao, Z., Wang, R. & Wang, G. Mucilaginibacter pedocola sp. Nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038 (2016).Article 
    PubMed 

    Google Scholar 
    Vasconcelos, A. L. et al. Mucilaginibacter sp. strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. Genes 13, 174 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewi, G. & Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 6, 831195 (2022).Article 

    Google Scholar 
    Dworkin, M. The Prokaryotes Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media, 2006).Book 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).Article 
    PubMed 

    Google Scholar 
    Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).Article 
    PubMed 

    Google Scholar 
    Bottini, C. L., MacDougall-Shackleton, S. A., Branfireun, B. A. & Hobson, K. A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 775, 145739 (2021).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kelly, T. R., Bonner, S. J., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Exposing migratory sparrows to Plasmodium suggests costs of resistance, not necessarily of infection itself. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 5–14 (2018).Article 

    Google Scholar 
    Whittaker, D. J. & Hagelin, J. C. Female-based patterns and social function in avian chemical communication. J. Chem. Ecol. 47, 53–62 (2020).
    Google Scholar 
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).Article 
    PubMed 

    Google Scholar 
    Canadian Council on Animal Care (CCAC). Three Rs | Trois R :: About the Three Rs. https://3rs.ccac.ca/.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gloor, G. B. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5, e15406 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. Msphere 2, e00327-e417 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).Article 
    PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986).Book 
    MATH 

    Google Scholar 
    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).Article 
    PubMed 

    Google Scholar 
    Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palarea-Albaladejo, J. & Martin-Fernandez, J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).Article 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aitchison, J. & Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 51, 375–392 (2002).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Spotting hopeful signs for coral health in Barbados’s backyard

    I’m a coral-reef ecologist at the University of the West Indies at Cave Hill in Barbados. Every five years, as often as our funding allows, my team and I survey coral reefs for the government. I was born in Spain and earned my PhD at McGill University in Montreal, Canada. But I decided to work in the Caribbean, where I think I am more useful.We monitor the abundance and diversity of corals, algae, sponges and fish. Barbados no longer has populations of large fish, such as groupers and snappers, because of overfishing. The populations of parrotfish, Barbados’s most important species ecologically and economically, have seemed stable for the past decade.Reefs are under threat globally, and the biggest losses of corals here occurred in the 1970s and 1980s. Since the 1990s, the shallow reefs have stabilized, but the deeper reefs have continued to deteriorate. And numbers of sponges and algae, which can damage corals when too abundant, have gradually increased in the deeper reefs. Still, there are positive signs. Staghorn corals (Acropora cervicornis), which nearly went extinct here in the 1970s, are making a slow comeback.This photo was taken in early September and the water was 28 °C or 29 °C. But I still wore a wetsuit with a hood, because after 90 minutes of scuba diving, you get cold.We survey 43 sites in two months, doing one or two dives a day, three times a week. Four of us dive together; we are like a well-oiled machine.I wish we could do surveys more frequently; in a rapidly changing environment, we need to know what is happening. But there’s not enough money. Still, new technology can model reefs in 3D. Those tools are becoming more affordable, and I think we’ll be using them in the next decade. Then, we could monitor more sites more often with the same resources.I’ve wanted to be a biologist since I was a young boy. And it doesn’t get any better than studying coral reefs in your backyard. More

  • in

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Surface energy fluxes and componentsIn our study, we focused on the circumpolar land north of 60° latitude, and specifically on the extent of the circumpolar Arctic vegetation map (CAVM20, Supplementary Fig. 1–3). We obtained half-hourly and hourly in situ observations of energy fluxes and meteorological variables from the monitoring networks FLUXNET28 (fluxnet.org; FLUXNET2015 dataset), AmeriFlux29 (ameriflux.lbl.gov), AON31,32 (aon.iab.uaf.edu), ICOS (icos-cp.eu), GEM35,36 (g-e-m.dk), GC-Net33,34 (cires1.colorado.edu/steffen/gcnet) and PROMICE30; (promice.dk; Supplementary Table 3). We did not include observations from the Baseline Surface Radiation Network (BSRN; bsrn.awi.de) and Global Energy Balance Archive (GEBA; geba.ethz.ch) because they typically lack information on non-radiative energy fluxes. Finally, we did not include observations from the European Flux Database Cluster (EFDC, europe-fluxdata.eu) because these data are largely located outside the domain of the CAVM20.We aggregated surface energy fluxes and components (Supplementary Table 1) to daily resolution as follows: (i) we extracted only directly measured data and excluded gap-filled data by filtering according to quality information; (ii) we performed a basic outlier filtering (excluding shortwave and longwave radiation flux values >1400 Wm−2 and in case of incoming/outgoing radiation More

  • in

    Honey compositional convergence and the parallel domestication of social bees

    Allsop, K. A. & Miller, J. B. Honey revisited: A reappraisal of honey in pre-industrial diets. Br. J. Nutr. 75, 513–520 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dams, M. & Dams, L. Spanish rock art depicting honey gathering during the Mesolithic. Nature 268, 228–230 (1977).Article 
    ADS 

    Google Scholar 
    Bradbear, N. Bees and their role in forest livelihoods: A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Non-Wood Forests Products Series, Vol. 19 (FAO, Rome, 2009).
    Google Scholar 
    Crane, E. The World History of Beekeeping and Honey Hunting (Routledge, 1999).Book 

    Google Scholar 
    Kritsky, G. Beekeeping from Antiquity through the middle ages. Annu. Rev. Entomol. 62, 249–264 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grüter, C. Stingless Bees: Their Behaviour, Ecology and Evolution (Springer International Publishing, 2020).Book 

    Google Scholar 
    Weaver, N. & Weaver, E. C. Beekeeping with the stingless bee Melipona beecheii, by the Yucatecan Maya. Bee World 62, 7–19 (1981).Article 

    Google Scholar 
    Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).Book 

    Google Scholar 
    Medellín Morales, S. Meliponicultura Maya: Perspectivas para su sostenibilidad. Reporte de sostenibilidad Maya no. 2; 67 pp. (1991).González-Acereto, J. A. La meliponicultura yucateca en crisis: Una actividad indígena a punto de desaparecer, 1er Seminario Nacional sobre Abejas sin Aguijón. Boca Río Ver México 9–12 (1999).Russell, P. The History of Mexico: From Pre-conquest to Present (Routledge, 2010).
    Google Scholar 
    Quezada-Euan, J. J., May-Itzá, W. & González-Acereto, J. Meliponiculture in Mexico: Problems and perspective for development. Bee World 82, 160–167 (2001).Article 

    Google Scholar 
    Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 40, 332–346 (2009).Article 

    Google Scholar 
    Toledo-Hernández, E. et al. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 53, 8 (2022).Article 

    Google Scholar 
    Guzman-Novoa, E. et al. The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Front. Ecol. Evol. 8, 404 (2020).Article 

    Google Scholar 
    Fletcher, M. et al. Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Sci. Rep. 10, 12128 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rao, P. V., Krishnan, K. T., Salleh, N. & Gan, S. H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 26, 657–664 (2016).Article 
    CAS 

    Google Scholar 
    Rattanawannee, A. & Duangphakdee, O. Southeast Asian meliponiculture for sustainable livelihood. In Modern Beekeeping – Bases for Sustainable Production (ed. Ranz, R. E. R.) (IntechOpen, 2019).
    Google Scholar 
    Heard, T. The role of stingless bees in crop pollination. Annu. Rev. Entomol. 44, 183–206 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Slaa, E. J., Chaves, L. A. S., Malagodi-Braga, K. S. & Hofstede, F. E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 37, 293–315 (2006).Article 

    Google Scholar 
    Kendall, L. K., Stavert, J. R., Gagic, V., Hall, M. & Rader, R. Initial floral visitor identity and foraging time strongly influence blueberry reproductive success. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2022.02.009 (2022).Article 

    Google Scholar 
    Kiatoko, N. et al. Effective pollination of greenhouse Galia musk melon (Cucumis melo L. var. reticulatus ser.) by afrotropical stingless bee species. J. Apic. Res. https://doi.org/10.1080/00218839.2021.2021641 (2022).Article 

    Google Scholar 
    Nkoba, K. et al. African endemic stingless bees as an efficient alternative pollinator to honey bees in greenhouse cucumber (Cucumis sativus L.). J. Apic. Res. https://doi.org/10.1080/00218839.2021.2013421 (2022).Article 

    Google Scholar 
    FAO, A. Good beekeeping practices for sustainable apiculture. (FAO, IZSLT, Apimondia and CAAS, 2020). doi:https://doi.org/10.4060/cb5353en.Patel, V., Pauli, N., Biggs, E., Barbour, L. & Boruff, B. Why bees are critical for achieving sustainable development. Ambio 50, 49–59 (2021).Article 
    PubMed 

    Google Scholar 
    Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. 111, 6147–6152 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Purugganan, M. D. An evolutionary genomic tale of two rice species. Nat. Genet. 46, 931–932 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kleisner, K. & Stella, M. Monsters we met, monsters we made: On the parallel emergence of phenotypic similarity under domestication. Σημειωτκή – Sign Syst. Stud. 37, 454–476 (2009).Article 

    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The, “Domestication Syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lecocq, T. Insects: The disregarded domestication histories. In Animal Domestication (ed. Teletchea, F.) (IntechOpen, 2018).
    Google Scholar 
    Pollan, M. The botany of desire: A plant’s-eye view of the world. Econ. Bot. 57(1), 146–147 (2002).
    Google Scholar 
    Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192, 149–155 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Spivak, M. & Danka, R. G. Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie 52, 1–16 (2021).Article 

    Google Scholar 
    Breed, M. D., Guzmán-Novoa, E. & Hunt, G. J. 3. Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49, 271–298 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, G. J. et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94, 247–267 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faegri, K. & van der Pijl,. Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. In Nectaries and Nectar (eds Nicolson, S. W. et al.) (Springer Netherlands, 2007).Chapter 

    Google Scholar 
    Abrahamczyk, S. et al. Pollinator adaptation and the evolution of floral nectar sugar composition. J. Evol. Biol. 30, 112–127 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 123, 247–261 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 99, 206–232 (2010).Article 

    Google Scholar 
    Bantle, J. P. Dietary fructose and metabolic syndrome and diabetes. J. Nutr. 139, 1263S-1268S (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erejuwa, O. O., Sulaiman, S. A. & Wahab, M. S. A. fructose might contribute to the hypoglycemic effect of honey. Molecules 17, 1900–1915 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwakman, P. H. S. & Zaat, S. A. J. Antibacterial components of honey. IUBMB Life 64, 48–55 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J. & Pérez-Álvarez, J. A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 73, R117–R124 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Machado De-Melo, A. A., de Almeida-Muradian, L. B., Sancho, M. T. & Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 57, 5–37 (2018).Article 

    Google Scholar 
    Nordin, A., Sainik, N. Q. A. V., Chowdhury, S. R., Saim, A. B. & Idrus, R. B. H. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73, 91–102 (2018).Article 
    CAS 

    Google Scholar 
    Viteri, R., Zacconi, F., Montenegro, G. & Giordano, A. Bioactive compounds in Apis mellifera monofloral honeys. J. Food Sci. 86, 1552–1582 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bueno, F. G. B. et al. Stingless bee floral visitation in the global tropics and subtropics. BioRxiv. https://doi.org/10.1101/2021.04.26.440550 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, C. & Cameron, S. A. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Syst. Entomol. 32, 26–39 (2007).Article 

    Google Scholar 
    Mokaya, H. O., Nkoba, K., Ndunda, R. M. & Vereecken, N. J. Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366, 130597 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Souza, E. C. A., Menezes, C. & Flach, A. Stingless bee honey (Hymenoptera, Apidae, Meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 52, 113–132 (2021).Article 

    Google Scholar 
    Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. & Lachenmeier, D. W. Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. ISRN Anal. Chem. 2013, 1–9 (2013).Article 

    Google Scholar 
    Mazzoni, V., Bradesi, P., Tomi, F. & Casanova, J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: Application to honey. Magn. Reson. Chem. 35, S81–S90 (1997).Article 
    CAS 

    Google Scholar 
    Consonni, R. & Cagliani, L. R. Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J. Agric. Food Chem. 56, 6873–6880 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schievano, E., Peggion, E. & Mammi, S. H1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 58, 57–65 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. Rstudio, PBC, Boston, MA. URL http://www.rstudio.com (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).Oksanen J., et al. Vegan: Community ecology package. McGlinn lab URL https://CRAN.R-project.org/package=vegan (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).Book 
    MATH 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).Article 
    PubMed 

    Google Scholar  More