More stories

  • in

    Old trees have much to teach us

    Elderflora: A Modern History of Ancient Trees Jared Farmer Basic (2022)About 45 million years ago, when the Arctic was ice-free, the world’s earliest known mummified trees flourished on what is now Axel Heiberg Island in Canada’s Qikiqtaaluk Region. In 1986, palaeobotanists identified the megaflora as members of Metasequoia occidentalis, an extinct redwood species. They had been buried in silt, then frozen, their wood preserved.The lead palaeontologist “celebrated his eureka by kindling a fire with 45-million-year-old twigs and boiling water for tea time,” writes historian Jared Farmer in Elderflora, his expansive global history of grand and venerable trees. Granted, these plants had been dead since the Eocene epoch. Nevertheless, as the author describes, the incident is part of a troubling pattern in which scientists rejoice at their discovery of the ‘oldest’ tree of their time — and then destroy it.In 1957, for example, Edmund Schulman at the University of Arizona in Tucson spent the summer seeking ancient bristlecone pines in California’s White Mountains. He found three more than 4,000 years old, and named them Alpha, Beta and Gamma. Then, in the interests of tree-ring science, he chose to “sacrifice” Alpha, taking snapshots as his nephew and a colleague sawed it down. When the University of Arizona issued a press release titled ‘UA Finds Oldest Living Thing’, Farmer writes, “they say nothing about the thing being dead”.Schulman’s aim was dendroclimatology — the reconstruction of climates using tree-ring data. That lofty motive cannot be ascribed to those who, in 1881, bored a tunnel into the 2,000-year-old Wawona tree in Yosemite National Park, allowing tourists to drive their cars through the 71.3-metre-high giant sequoia (Sequoiadendron giganteum), since toppled.Arboreal legendsAs Elderflora shows, big, old trees are objects of veneration and vandalism, appearing “in the oldest surviving mythologies and the earliest extant texts”. They were associated with gods and heroes, prophets and gurus: they had pivotal roles in the Mesopotamian Epic of Gilgamesh and in the Polynesian legend of Rātā, who fells a noble tree to carve a canoe. In more recent times, European settlers “dispossessed Indigenous peoples and cleared forests with abandon”. Research shows that, for 8,000 years after the glaciers of the last ice age retreated, forests in the Midwestern United States doubled in biomass (A. M. Raiho et al. Science 376, 1491–1495; 2022). Just 150 years of industrial logging and agriculture erased this carbon accumulation.
    It takes a wood to raise a tree: a memoir
    “Imperial conquests and industrial revolutions relied on timber,” Farmer writes. “Wood-stock long guns for capturing lands and peoples; naval vessels with mighty masts for transporting the enslaved and the harvests of their labor.” In New Zealand, European settlers decimated the majestic kauri trees, which can live for up to 2,000 years and that once covered 1.2 million hectares of land. The trees’ 50-metre-trunks became ships’ masts; their resin was made into varnish and linoleum.Like pines, firs, spruces, cedars, cypresses and redwoods, kauri (Agathis australis) is a gymnosperm. These flowerless plants with naked seeds tend to grow slower and live longer than angiosperms, flowering plants that bear fruit. About 25 plant species — most of them conifers — can live for more than a millennium without human assistance, surviving in restricted, vulnerable habitats.Farmer also offers a global survey of ancient trees that have been protected and exalted. They include olive trees of the Levant (Olea europaea); research published this year shows that these were domesticated about 7,000 years ago for their fruit and oil (D. Langgut and Y. Garfinkel Sci. Rep. 12, 7463; 2022). In Africa, the baobab (Adansonia sp.) is both the longest-lived tree and the largest, offering shade and shelter, foods, medicines and textiles. Enslaved Africans planted baobabs in the Caribbean; some survive still. Ginkgo biloba, a species that dates back 390,000 years, survived only in China, whence it was spread around the world in the past millennium. A grove of ginkgo trees survived the atomic bombing of Hiroshima in Japan in August 1945, pushing out new buds the following spring.The planet’s current tree cover, Farmer writes, includes 3 trillion large plants covering about 30% of all land. It is, in fact, expanding. But the new cover consists mostly of shelter belts (trees planted to protect crops or animals), temperate-zone timber crops and tropical plantations of eucalyptus and palm oil. A shrinking proportion of tree cover is made up of species-rich old-growth communities.Epic loss“What would humans and nonhumans stand to lose if these survivors all died prematurely? A world of things,” Farmer writes. “Old trees sustain forest communities” with their seeds and litter. Other plants grow on them, and animals live in them. Their roots share nutrients with other organisms via underground fungi. Groups of “Old Ones” are carbon sinks. Large-scale monocultures are shorter-lived and take less greenhouse gas out of circulation.But even bygone trees of the once-tropical Arctic might offer lessons for a warming world. Palaeobotanist Hope Jahren, in her 2016 memoir Lab Girl, describes how she spent three summers on Axel Heiberg Island, digging “through a hundred vertical feet of time”. Fir, cypress, larch, redwood, spruce, pine and hemlock trees populated this lush conifer forest, with an understory of angiosperms: maple, alder, birch, hickory, chestnut, beech, ash, holly, walnut, sweetgum, sycamore, oak, willow and elm. These plants thrived even through three months of winter darkness and three of constant summer light.“Here stood one of the great forests of all time,” Farmer writes. Today, as the Arctic warms nearly four times as fast as any other place on Earth, the genomes of species related to the trees of this mummified forest might be adaptable enough for the trees to flourish in a rewarmed planet, he says. Old trees have much to teach us: we would be wise to listen. More

  • in

    Reply To: Relative tree cover does not indicate a lagged Holocene forest response to monsoon rainfall

    replying to Y. Cheng et al. Nature Communications https://doi.org/10.1038/s41467-022-33958-7 (2022)We welcome the comment from Matters arising from Cheng Y et al.1, which provides us an opportunity for further clarification of some of our points2. The Comment raised interesting and important issues about our paper, that undoubtably could enhance our understanding for the Holocene vegetation evolution in the northern China and its relationship with East Asian Summer Monsoon (EASM). In particular, the results from Dali lake pose the questions on the timing of the peak of tree cover, that invokes the further investigation to understand this complex tree changes over Holocene period. However, these comments do not impact the key result in our original study2, that is the periodical asynchronous evolutions between EASM and northern China ecosystem under specific conditions.Main points of our paper are: First, we propose that the EASM and its rainfall over northern China mainly followed the variation of the summer insolation and peaked in the early Holocene, while the relative tree cover of temperate deciduous broadleaf tree peaked in the mid-Holocene; the delayed tree cover peak is caused by the winter warming, and peak soil moisture also in the mid-Holocene, which could be related to a hydrological impact from vegetation shift from grass to tree and the positive feedback between this vegetation shift and soil wetting.Second, this asynchronous evolution between the EASM rainfall, which peaks in the early Holocene, and the northern China ecosystem, which peaks in the mid-Holocene, is caused mainly by the opposing effect of residual ice sheet retreat on the decreasing summer insolation. The declining summer insolation does cause a substantial decrease of EASM rainfall from the early to mid-Holocene. However, 2/3 of this rainfall decrease is canceled by the rainfall increase forced by the retreat of residual Laurentide ice sheet, resulting in a weak decreasing trend of rainfall over this period.Third, under this background of weak rainfall changes, winter warming, induced by increased winter insolation and ice sheet retreat, raised the coldest temperature to above −17 °C, the threshold for the survival of temperate deciduous broadleaf tree3, and then favored an increase in tree, meanwhile induced a decrease in grass for reasons of its lower competitiveness than that of tree. This vegetation shift then supported the wetting of northern China through its hydrological effect2. The vegetation shift and soil wetting could reinforce each other. Furthermore, the dominant effect of winter warming on vegetation from the early to mid-Holocene is supported by our sensitive experiments with an off-line land-vegetation model.As stated in Cheng Y’s Comment1, the land cover in northern China includes forests, grass and bare land. In our interpretation, the process of “the vegetation feedback to climate” is mentioned as a possible feedback that enhances this asynchronous response, but is not critically involved in the mechanism. As such, whether the absolute or relative vegetation cover is not a major issue in our discussion. It’s sure that the reconstructed absolute tree cover, which based on pollen concentration, could enrich our understanding of the vegetation changes over the Holocene period in northern China. Indeed, the hydrological impact of bare land (evaporation) had been considered in our hydrological analysis of northern China soil moisture, and the results indicated its impact is important but not critical to the Holocene long-term changes of soil moisture over this region. The relative tree cover, the percentage of cool mixed tree (COMX4) in fossil pollen which is consistent with that of temperate deciduous broadleaf tree in simulation2, that we cited4 is a synthesis of 31 records, which represented the general evolution of vegetation over a large part of northern China, and its main result is consistent with records from other part of northern China such as the 6 ka peak in Gonghai Lake5. In spite of its low time resolution, the general trend over the millennium scale seems to us clear.It’s true that the −17 °C of the coldest month temperature is the survival threshold for the temperate deciduous broadleaved tree. While, the temperature threshold for C3 grass and C3 arctic grass are complex, its direct impact on the changes of grass proposed in our paper is somewhat not strict. However, considering the different competitiveness between tree and grass, increased temperate deciduous broadleaved tree, which derived by the winter warming, could induce a decrease in the grass from the early to mid-Holocene. Indeed, summer temperature, annual rainfall and fire incidents are all the important factors determining the Holocene changes of vegetation over northern China, but series of sensitivity experiment proposed the key impact of winter temperature on the vegetation shift and soil moisture evolution, which is consistent with the results of transient coupled climate simulation and geological records. This grass-to-tree shift for this period is evidenced in the pollen percentages and well simulated by the climate model shown in our paper2.Fire is an important factor for the long-term changes of vegetation cover over semi-arid regions, and its emergence and impact on vegetation are already incorporated into our model6, then, in turn, the simulation. Future works could assess the impact of fire on the long-term changes of semi-arid vegetation through the combination of reconstruction and process-based simulation of fire7.Focusing on the contrary views of Holocene EASM within proxy records, we proposed an asynchronous evolution of EASM rainfall and northern China ecosystem for the period of early to mid-Holocene. Our proposal is based on a state-of-the-art transient climate simulation, which reproduced the diverse evolution of EASM proxies reasonably well. The mechanisms proposed for this asynchronous evolution appear to us consistent with the current evidences available. There are, however, uncertainties in models and proxies. Meanwhile, the northern China is a broad region with large gradient in rainfall and ecosystem, that could induce the possible diverse evolutions in climate and ecosystem under Holocene climate change. Therefore, we believe further studies using other models and new proxies are important to further improve our understanding of this issue. More

  • in

    The influence of social cues on timing of animal migrations

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Bauer, S., Lisovski, S. & Hahn, S. Timing is crucial for consequences of migratory connectivity. Oikos 125, 605–612 (2016).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J. C. The effects of defaunation on plants’ capacity to track climate change. Science 214, 210–214 (2022).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing? PLoS Biol. 6, e188 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Walther, G. et al. Ecological responses to recent climate change. Nature 4126, 389–395 (2002).Article 

    Google Scholar 
    Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).Article 

    Google Scholar 
    Senzaki, M. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605–609 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guerra, A. S. Wolves of the sea: managing human–wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil. Trans. R. Soc. B Biol. Sci. 363, 2369–2375 (2008).Article 

    Google Scholar 
    Winkler, D. W. et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).Article 

    Google Scholar 
    Xu, W. et al. The plasticity of ungulate migration in a changing world. Ecology 102, e03293 (2021).Article 
    PubMed 

    Google Scholar 
    McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental change. Ecol. Lett. 14, 1183–1190 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B Biol. Sci. 287, 20200622 (2020).Article 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2020).Article 
    PubMed 

    Google Scholar 
    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).Article 
    PubMed 

    Google Scholar 
    Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lank, D. B., Butler, R. W., Ireland, J. & Ydenberg, R. C. Effects of predation danger on migration strategies of sandpipers. Oikos 103, 303–319 (2003).Article 

    Google Scholar 
    Sabal, M. C. et al. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol. Evol. 36, 737–749 (2021).Article 
    PubMed 

    Google Scholar 
    Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846–1853 (2018).Article 
    PubMed 

    Google Scholar 
    Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gunnarsson, T., Gill, J., Sigurbjörnsson, T. & Sutherland, W. Arrival synchrony in migratory birds. Nature 431, 646 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Beltran, R. S. et al. Elephant seals time their long-distance migration using a map sense. Curr. Biol. 32, R156–R157 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Furey, N. B. et al. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape. J. Anim. Ecol. 85, 948–959 (2016).Article 
    PubMed 

    Google Scholar 
    Rickbeil, G. J. M. et al. Plasticity in elk migration timing is a response to changing environmental conditions. Glob. Change Biol. 25, 2368–2381 (2019).Article 

    Google Scholar 
    Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).Article 

    Google Scholar 
    Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).Article 
    PubMed 

    Google Scholar 
    Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).Article 

    Google Scholar 
    Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M. & Martín, C. A. Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. J. Avian Biol. 42, 301–308 (2011).Article 

    Google Scholar 
    Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Phil. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).Article 

    Google Scholar 
    Cohen, E. B. & Satterfield, D. A. ‘Chancing on a spectacle:’ co-occurring animal migrations and interspecific interactions. Ecography 43, 1657–1671 (2020).Article 

    Google Scholar 
    Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Abrahms, B., Teitelbaum, C. S., Mueller, T. & Converse, S. J. Ontogenetic shifts from social to experiential learning drive avian migration timing. Nat. Commun. 12, 7326 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 15049 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helm, B., Piersma, T. & van der Jeugd, H. Sociable schedules: interplay between avian seasonal and social behaviour. Anim. Behav. 72, 245–262 (2006).Article 

    Google Scholar 
    Piersma, T., Zwarts, L. & Bruggemann, J. H. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78, 157–184 (1990).
    Google Scholar 
    Dingle, H. & Drake, V. A. What is migration? BioScience 57, 113–121 (2007).Article 

    Google Scholar 
    Oestreich, W. K. & Aiu, K. M. Code and data from: The influence of social cues on timing of animal migrations. Zenodo https://zenodo.org/record/6574762 (2022).Furey, N. B., Martins, E. G. & Hinch, S. G. Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: effects on telemetry-based survival estimates. Ecol. Freshw. Fish 30, 18–30 (2021).Article 

    Google Scholar 
    Berdahl, A., Westley, P. A. H. & Quinn, T. P. Social interactions shape the timing of spawning migrations in an anadromous fish. Anim. Behav. 126, 221–229 (2017).Article 

    Google Scholar 
    Louca, V., Lindsay, S. W. & Lucas, M. C. Factors triggering floodplain fish emigration: importance of fish density and food availability. Ecol. Freshw. Fish 18, 60–64 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bastille-Rousseau, G. et al. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 100, e02658 (2019).Article 
    PubMed 

    Google Scholar 
    Bracis, C. & Mueller, T. Memory, not just perception, plays an important role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284, 20170449 (2017).Article 

    Google Scholar 
    Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 183 (2019).Article 

    Google Scholar 
    Merkle, J. A. et al. Site fidelity as a maladaptive behavior in the Anthropocene. Front. Ecol. Environ. 20, 187–194 (2022).Article 

    Google Scholar 
    Teske, P. R. et al. The sardine run in southeastern Africa is a mass migration into an ecological trap. Sci. Adv. 7, eabf4514 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corten, A. The role of ‘conservatism’ in herring migrations. Rev. Fish Biol. Fish. 11, 339–361 (2002).Article 

    Google Scholar 
    Mukhin, A., Chernetsov, N. & Kishkinev, D. Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines during landfall. Behav. Ecol. 19, 716–723 (2008).Article 

    Google Scholar 
    Barker, K. J. et al. Toward a new framework for restoring lost wildlife migrations. Conserv. Lett. 15, e12850 (2022).Article 

    Google Scholar 
    Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 12, e12599 (2019).Article 

    Google Scholar 
    Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., Jensen, F. H. & Hughey, L. F. Challenges and solutions for studying collective animal behaviour in the wild. Phil. Trans. R. Soc. B 373, 20170005 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Calabrese, J. M. et al. Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Phil. Trans. R. Soc. B 373, 20170007 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. B Biol. Sci. 278, 1482–1488 (2011).Article 

    Google Scholar 
    Dibnah, A. J. et al. Vocally mediated consensus decisions govern mass departures from jackdaw roosts. Curr. Biol. 32, R455–R456 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Robart, A. R., Zuñiga, H. X., Navarro, G. & Watts, H. E. Social environment influences termination of nomadic migration. Biol. Lett. 18, 20220006 (2022).Article 
    PubMed 

    Google Scholar 
    Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Modell. 432, 109225 (2020).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).Article 
    PubMed 

    Google Scholar 
    Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).Article 
    PubMed 

    Google Scholar 
    Oestreich, W. K. et al. Acoustic signature reveals blue whale tune life history transitions to oceanographic conditions. Funct. Ecol. 36, 882–895 (2022).Article 
    CAS 

    Google Scholar 
    Chapman, J. W., Reynolds, D. R. & Smith, A. D. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. BioScience 53, 503–511 (2003).Article 

    Google Scholar 
    Oestreich, W. K. et al. Animal-borne metrics enable acoustic detection of blue whale migration. Curr. Biol. 30, 4773–4779 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fraser, K. C., Shave, A., de Greef, E., Siegrist, J. & Garroway, C. J. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).Article 

    Google Scholar 
    Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Paternal transmission of migration knowledge in a long-distance bird migrant. Nat. Commun. 13, 1566 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneider, S. S. & McNally, L. C. Waggle dance behavior associated with seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 41, 115–127 (1994).Article 

    Google Scholar 
    Raveling, D. G. Preflight and flight behavior of Canada geese. Auk 86, 671–681 (1969).Article 

    Google Scholar 
    Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, cou032 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagarde, A., Lagarde, F. & Piersma, T. Vocal signalling by Eurasian spoonbills Platalea leucorodia in flocks before migratory departure. Ardea 109, 243–250 (2021).Article 

    Google Scholar 
    Rees, E. C. Conflict of choice within pairs of Bewick’s swans regarding their migratory movement to and from the wintering grounds. Anim. Behav. 35, 1685–1693 (1987).Article 

    Google Scholar 
    Mazeroll, A. I. & Montgomery, W. L. Daily migrations of a coral reef fish in the Red Sea (Gulf of Aqaba, Israel). Copiea 1998, 893–905 (1998).Article 

    Google Scholar 
    Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).Article 

    Google Scholar 
    Sweanor, P. Y. & Sandgren, F. Winter-range philopatry of seasonally migratory moose. J. Appl. Ecol. 26, 25–33 (1989).Article 

    Google Scholar 
    Rees, E. C. Consistency in the timing of migration for individual Bewick’s swans. Anim. Behav. 38, 384–393 (1989).Article 

    Google Scholar 
    Corten, A. A possible adaptation of herring feeding migrations to a change in timing of the Calanus finmarchicus season in the eastern North Sea. ICES J. Mar. Sci. 57, 1261–1270 (2000).Article 

    Google Scholar 
    Loonstra, A. J. et al. Individual black-tailed godwits do not stick to single routes: a hypothesis on how low population densities might decrease social conformity. Ardea 107, 251–261 (2020).Article 

    Google Scholar 
    Hake, M., Kjellén, N. & Alerstam, T. Age‐dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).Article 

    Google Scholar 
    Gupte, P. R., Koffijberg, K., Müskens, G. J. D. M., Wikelski, M. & Kölzsch, A. Family size dynamics in wintering geese. J. Ornithol. 160, 363–375 (2019).Article 

    Google Scholar 
    Gonçalves, M. I. C. et al. Movement patterns of humpback whales (Megaptera novaeangliae) reoccupying a Brazilian breeding ground. Biota Neotrop. 18, e20180567 (2018).Article 

    Google Scholar 
    Trudelle, L. et al. First insights on spatial and temporal distribution patterns of humpback whales in the breeding ground at Sainte Marie Channel, Madagascar. Afr. J. Mar. Sci. 40, 75–86 (2018).Article 

    Google Scholar 
    De La Gala-Hernández, S. R., Heckel, G. & Sumich, J. L. Comparative swimming effort of migrating gray whales (Eschrichtius robustus) and calf cost of transport along Costa Azul, Baja California, Mexico. Can. J. Zool. 86, 307–313 (2008).Article 

    Google Scholar 
    Sword, G. A. Local population density and the activation of movement in migratory band-forming Mormon crickets. Anim. Behav. 69, 437–444 (2005).Article 

    Google Scholar 
    Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mysterud, A., Loe, L. E., Zimmermann, B., Bischof, R. & Meisingset, E. Partial migration in expanding red deer populations at northern latitudes—a role for density dependence? Oikos 120, 1817–1825 (2011).Article 

    Google Scholar 
    Bukreeva, O. M. & Lidzhi-garyaeva, G. V. Mass migration of social voles (Microtus socialis Pallas, 1773) in the Northwestern Caspian region. Arid Ecosyst. 8, 147–151 (2018).Article 

    Google Scholar 
    Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).Article 
    PubMed 

    Google Scholar 
    Weithman, C. et al. Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebird. Ecol. Evol. 7, 11044–11056 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rappole, J. H. & Warner, D. W. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 212, 193–212 (1976).Article 

    Google Scholar 
    Fauchald, P., Mauritzen, M. & Gjøsæter, H. Density‐dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).Article 
    PubMed 

    Google Scholar 
    Makris, N. C. et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323, 1734–1737 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).Article 

    Google Scholar 
    Francis, C. M. & Cooke, C. F. Differential timing of spring migration in rose-breasted grosbeaks. J. Field Ornithol. 61, 404–412 (1990).
    Google Scholar 
    Corgos, A., Verísimo, P. & Freire, J. Timing and seasonality of the terminal molt and mating migration in the spider crab, Maja brachydactyla: evidence of alternative mating strategies. J. Shellfish Res. 25, 577–587 (2006).Article 

    Google Scholar 
    Gordo, O., Sanz, J. J. & Lobo, J. M. Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J. Ornithol. 148, 293–308 (2007).Article 

    Google Scholar 
    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Manica, L. T., Graves, J. A., Podos, J. & Macedo, R. H. Hidden leks in a migratory songbird: mating advantages for earlier and more attractive males. Behav. Ecol. 31, 1180–1191 (2020).Article 

    Google Scholar 
    Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim. Behav. 182, 251–266 (2021).Article 

    Google Scholar 
    Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory whooping cranes Grus americana. Bird Conserv. Int. 20, 43–54 (2010).Article 

    Google Scholar 
    Németh, Z. & Moore, F. R. Information acquisition during migration: a social perspective. Auk 131, 186–194 (2014).Article 

    Google Scholar  More

  • in

    Lessons from COVID-19 for wildlife ranching in a changing world

    Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).Article 

    Google Scholar 
    Cumming, G. S. The relevance and resilience of protected areas in the Anthropocene. Anthropocene 13, 46–56 (2016).Article 

    Google Scholar 
    Cumming, G. S. et al. Understanding protected area resilience: a multi-scale, social-ecological approach. Ecol. Appl. 25, 299–319 (2015).Article 

    Google Scholar 
    Ellis, E. C. & Mehrabi, Z. Half Earth: promises, pitfalls, and prospects of dedicating half of Earth’s land to conservation. Curr. Opin. Environ. Sustain. 38, 22–30 (2019).Article 

    Google Scholar 
    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).Article 
    CAS 

    Google Scholar 
    Palfrey, R., Oldekop, J. & Holmes, G. Conservation and social outcomes of private protected areas. Conserv. Biol. 35, 1098–1110 (2021).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).Article 
    CAS 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).Article 

    Google Scholar 
    Taylor, W. A. et al. South Africa’s private wildlife ranches protect globally significant populations of wild ungulates. Biodivers. Conserv. 30, 4111–4135 (2021).Article 

    Google Scholar 
    Child, B. A., Musengezi, J., Parent, G. D. & Child, G. F. T. The economics and institutional economics of wildlife on private land in Africa. Pastoralism 2, 18 (2012).Article 

    Google Scholar 
    Kiffner, C. et al. Community-based wildlife management area supports similar mammal species richness and densities compared to a national park. Ecol. Evol. 10, 480–492 (2020).Article 

    Google Scholar 
    Naidoo, R. et al. Complementary benefits of tourism and hunting to communal conservancies in Namibia. Conserv. Biol. 30, 628–638 (2016).Article 

    Google Scholar 
    Cousins, J., Sadler, J. & Evans, J. Exploring the role of private wildlife ranching as a conservation tool in South Africa: stakeholder perspectives. Ecol. Soc. 13, 43 (2008).Article 

    Google Scholar 
    Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: a review of global strategies with a proposed classification system. J. Environ. Plann. Manage. 58, 576–597 (2015).Article 

    Google Scholar 
    Ogar, E., Pecl, G. & Mustonen, T. Science must embrace traditional and indigenous knowledge to solve our biodiversity crisis. One Earth 3, 162–165 (2020).Article 

    Google Scholar 
    De Vos, A. & Cumming, G. S. The contribution of land tenure diversity to the spatial resilience of protected area networks. People Nat. 1, 331–346 (2019).Article 

    Google Scholar 
    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).Article 

    Google Scholar 
    Cumming, G. & Collier, J. Change and identity in complex systems. Ecol. Soc. 10, 29 (2005).Article 

    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).Article 

    Google Scholar 
    Leslie, P. & McCabe, J. T. Response diversity and resilience in social–ecological systems. Curr. Anthropol. 54, 114–143 (2013).Article 

    Google Scholar 
    Clements, H. S., Knight, M., Jones, P. & Balfour, D. Private rhino conservation: diverse strategies adopted in response to the poaching crisis. Conserv. Lett. 13, e12741 (2020).Article 

    Google Scholar 
    Carpenter, S., Walker, B., Anderies, J. M. & Abel, N. From metaphor to measurement: resilience of what to what? Ecosystems 4, 765–781 (2001).Article 

    Google Scholar 
    Parker, K., De Vos, A., Clements, H. S., Biggs, D. & Biggs, R. Impacts of a trophy hunting ban on private land conservation in South African biodiversity hotspots. Conserv. Sci. Pract. 2, e214 (2020).
    Google Scholar 
    World Travel & Tourism Council. The Economic Impact of Global Wildlife Tourism (WTTC, 2019).Lindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).Article 

    Google Scholar 
    Hambira, W. L., Stone, L. S. & Pagiwa, V. Botswana nature-based tourism and COVID-19: transformational implications for the future. Dev. South. Afr. 39, 51–67 (2021).Article 

    Google Scholar 
    Mudzengi, B. K., Gandiwa, E., Muboko, N. & Mutanga, C. N. Innovative community ecotourism coping and recovery strategies to COVID-19 pandemic shocks: the case of Mahenye. Dev. South. Afr. 39, 68–83 (2021).Article 

    Google Scholar 
    Waithaka, J. et al. Impacts of COVID-19 on protected and conserved areas: a global overview and regional perspectives. Parks 27, 41–56 (2021).Article 

    Google Scholar 
    Smith, M. K. S. et al. Sustainability of protected areas: vulnerabilities and opportunities as revealed by COVID-19 in a national park management agency. Biol. Conserv. 255, 108985 (2021).Article 

    Google Scholar 
    Miller-Rushing, A. J. et al. COVID-19 pandemic impacts on conservation research, management, and public engagement in US national parks. Biol. Conserv. 257, 109038 (2021).Article 

    Google Scholar 
    Thurstan, R. H. et al. Envisioning a resilient future for biodiversity conservation in the wake of the COVID‐19 pandemic. People Nat. 3, 990–1013 (2021).Article 

    Google Scholar 
    Taylor, W. A., Lindsey, P. A., Nicholson, S. K., Relton, C. & Davies-Mostert, H. T. Jobs, game meat and profits: the benefits of wildlife ranching on marginal lands in South Africa. Biol. Conserv. 245, 108561 (2020).Article 

    Google Scholar 
    Chidakel, A., Eb, C. & Child, B. The comparative financial and economic performance of protected areas in the Greater Kruger National Park, South Africa: functional diversity and resilience in the socio-economics of a landscape-scale reserve network.J. Sustain. Tour. 28, 1100–1119 (2020).Article 

    Google Scholar 
    Saayman, M., van der Merwe, P. & Saayman, A. The economic impact of trophy hunting in the South African wildlife industry. Glob. Ecol. Conserv. 16, e00510 (2018).Article 

    Google Scholar 
    Hall, R. A political economy of land reform in South Africa. Rev. Afr. Polit. Econ. 31, 213–227 (2004).Article 

    Google Scholar 
    Mkhize, N. Game farm conversions and the land question: unpacking present contradictions and historical continuities in farm dwellers’ tenure insecurity in Cradock. J. Contemp. Afr. Stud. 32, 207–219 (2014).Article 

    Google Scholar 
    Thakholi, L. Conservation labour geographies: subsuming regional labour into private conservation spaces in South Africa. Geoforum 123, 1–11 (2021).Article 

    Google Scholar 
    Brandt, F. Power battles on South African trophy-hunting farms: farm workers, resistance and mobility in the Karoo. J. Contemp. Afr. Stud. 34, 165–181 (2016).Article 

    Google Scholar 
    Child, B. & Barnes, G. The conceptual evolution and practice of community-based natural resource management in southern Africa: past, present and future. Environ. Conserv. 37, 283–295 (2010).Article 

    Google Scholar 
    Clements, H. S., Baum, J. & Cumming, G. S. Money and motives: an organizational ecology perspective on private land conservation. Biol. Conserv. 197, 108–115 (2016).Article 

    Google Scholar 
    van der Merwe, P., Saayman, A. & Jacobs, C. Assessing the economic impact of COVID-19 on the private wildlife industry of South Africa. Glob. Ecol. Conserv. 28, e01633 (2021).Article 

    Google Scholar 
    Clements, H. S. & Cumming, G. S. Traps and transformations influencing the financial viability of tourism on private-land conservation areas. Conserv. Biol. 32, 424–436 (2018).Article 

    Google Scholar 
    Winterbach, C. W., Whitesell, C. & Somers, M. J. Wildlife abundance and diversity as indicators of tourism potential in northern Botswana. PLoS ONE 10, e0135595 (2015).Article 

    Google Scholar 
    Di Minin, E., Fraser, I., Slotow, R. & MacMillan, D. C. Understanding heterogeneous preference of tourists for big game species: implications for conservation and management. Anim. Conserv. 16, 249–258 (2013).Article 

    Google Scholar 
    Clements, H. S., Biggs, R. & Cumming, G. S. Cross-scale and social–ecological changes constitute main threats to private land conservation in South Africa. J. Environ. Manag. 274, 111235 (2020).Article 

    Google Scholar 
    Breen, C. et al. Integrating cultural and natural heritage approaches to marine protected areas in the MENA region. Mar. Policy 132, 104676 (2021).Article 

    Google Scholar 
    Munasinghe, H. The politics of the past: constructing a national identity through heritage conservation. Int. J. Herit. Stud. 11, 251–260 (2005).Article 

    Google Scholar 
    MacKinnon, K. et al. Strengthening the global system of protected areas post-2020: a perspective from the IUCN World Commission on Protected Areas. Parks 36, 281–296 (2020).
    Google Scholar 
    van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).Article 

    Google Scholar 
    De Vos, A. et al. Pathogens, disease, and the social–ecological resilience of protected areas. Ecol. Soc. 21, 20 (2016).Article 

    Google Scholar 
    Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. Ambio 32, 389–396 (2003).Article 

    Google Scholar 
    Broom, D. M., Galindo, F. A. & Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B 280, 20132025 (2013).Article 
    CAS 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).Marnewick, D., Jonas, H. & Stevens, C. Site-level Methodology for Identifying Other Effective Area-based Conservation Measures (OECMs) Draft Version 1.0 (IUCN: Gland, Switzerland; 2020).Nalau, J., Becken, S. & Mackey, B. Ecosystem-based adaptation: a review of the constraints. Environ. Sci. Policy 89, 357–364 (2018).Article 

    Google Scholar 
    Hartung, C. et al. Open Data Kit: tools to build information services for developing regions. In Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (ed Unwin, T.) pp 1–12 (Association for Computing Machinery, New York, NY, United States; 2010).Oksanen, A. J. et al. Vegan: Community Ecology Package. R version 2.6–2 (2022). https://cran.r-project.org/web/packages/vegan/vegan.pdfWard, J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).Article 

    Google Scholar 
    Maechler, M. et al. Cluster: Finding Groups in Data. R version 2.0.3 (2015). https://cran.microsoft.com/snapshot/2015-11-17/web/packages/cluster/cluster.pdfR Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    The environmental footprint of global food production

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).Article 
    CAS 

    Google Scholar 
    Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).Article 
    CAS 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).Article 
    CAS 

    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article 
    CAS 

    Google Scholar 
    Ellis, E. C., Goldewikj, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).Article 
    CAS 

    Google Scholar 
    Rosegrant, M. W., Ringler, C. & Zhu, T. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).Article 

    Google Scholar 
    Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).Article 

    Google Scholar 
    Lee, R. Y., Seitzinger, S. & Mayorga, E. Land-based nutrient loading to LMEs: a global watershed perspective on magnitudes and sources. Environ. Dev. 17, 220–229 (2016).Article 

    Google Scholar 
    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).Article 
    CAS 

    Google Scholar 
    McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).Article 
    CAS 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).Article 

    Google Scholar 
    Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).Article 
    CAS 

    Google Scholar 
    Davis, K. F. et al. Meeting future food demand with current agricultural resources. Glob. Environ. Change 39, 125–132 (2016).Article 

    Google Scholar 
    Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).Article 
    CAS 

    Google Scholar 
    Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).Article 
    CAS 

    Google Scholar 
    Halpern, B. S. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).Article 
    CAS 

    Google Scholar 
    Béné, C. et al. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2013).Article 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).Article 
    CAS 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).Article 

    Google Scholar 
    Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products (UNESCO-IHE, 2010).Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).Article 
    CAS 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).Article 
    CAS 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).Article 
    CAS 

    Google Scholar 
    Kuempel, C. D. et al. Integrating life cycle and impact assessments to map food’s cumulative environmental footprint. One Earth 3, 65–78 (2020).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).Article 
    CAS 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).Article 

    Google Scholar 
    Judd, A. D., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).Article 

    Google Scholar 
    IPBES Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    FAO The State of World Fisheries and Aquaculture 2020 (FAO, 2020).Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).Article 
    CAS 

    Google Scholar 
    FAOSTAT Database: New Food Balances (FAO, 2020); http://www.fao.org/faostat/en/#data/FBSFAOSTAT Database: Production, Crops (FAO, 2020); http://www.fao.org/faostat/en/#data/QCDong, F. et al. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA–DEA approach. Renew. Agric. Food Syst. 31, 524–539 (2016).Article 

    Google Scholar 
    Watson, R. A. & Tidd, A. Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar. Policy 93, 171–177 (2018).Article 

    Google Scholar 
    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).Article 

    Google Scholar 
    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).Article 

    Google Scholar 
    Balmford, B., Green, R. E., Onial, M., Phalan, B. & Balmford, A. How imperfect can land sparing be before land sharing is more favourable for wild species? J. Appl. Ecol. 56, 73–84 (2019).Article 

    Google Scholar 
    Luskin, M. S., Lee, J. S. H., Edwards, D. P., Gibson, L. & Potts, M. D. Study context shapes recommendations of land-sparing and sharing; a quantitative review. Glob. Food Secur. 16, 29–35 (2018).Article 

    Google Scholar 
    Williams, D. R., Phalan, B., Feniuk, C., Green, R. E. & Balmford, A. Carbon storage and land-use strategies in agricultural landscapes across three continents. Curr. Biol. 28, 2500–2505.e4 (2018).Article 
    CAS 

    Google Scholar 
    Paul, B. G. & Vogl, C. R. Impacts of shrimp farming in Bangladesh: challenges and alternatives. Ocean Coastal Manage. 54, 201–211 (2011).Article 

    Google Scholar 
    Ahmed, N., Cheung, W. W. L., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).Article 

    Google Scholar 
    FAOSTAT Database: Livestock Primary (FAO, 2020); http://www.fao.org/faostat/en/#data/QLRamankutty, N., Ricciardi, V., Mehrabi, Z. & Seufert, V. Trade-offs in the performance of alternative farming systems. Agric. Econ. 50, 97–105 (2019).Article 

    Google Scholar 
    FAOSTAT Database: Detailed Trade Matrix (FAO, 2020); http://www.fao.org/faostat/en/#data/TMFisheries & Aquaculture—Fishery Statistical Collections—Fishery Commodities and Trade (FAO, 2019); http://www.fao.org/fishery/statistics/global-commodities-production/enInternational Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010, version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).Article 

    Google Scholar 
    Petz, K. et al. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Change 29, 223–234 (2014).Article 

    Google Scholar 
    Global Fishing Watch. Fishing effort. Fleet daily, v2 100th degree. (2021). https://globalfishingwatch.org/dataset-and-code-fishing-effort/Verdegem, M. C. J., Bosma, R. H. & Verreth, J. A. J. Reducing water use for animal production through aquaculture. Int. J. Water Resour. Dev. 22, 101–113 (2006).Article 

    Google Scholar 
    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 23, GB0A04 (2009).Article 

    Google Scholar 
    Bouwman, A. F., Van Drecht, G. & Van der Hoek, K. W. Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere 15, 137–155 (2005).
    Google Scholar 
    Bouwman, A., Boumans, L. J. M. & Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).Article 

    Google Scholar 
    FAOSTAT Database: Inputs, Fertilizers by Nutrient (FAO, 2020); http://www.fao.org/faostat/en/#data/RFNHeffer, P., Gruere, A. & Roberts, T. Assessment of fertilizer use by crop at the global level 2014–2014/15, International Fertilizer Association (2017).Fertilizer Use by Crop 5th edn (FAO, IFA & IFDC, 2002).Islam, Md. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).Article 
    CAS 

    Google Scholar 
    Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020).Article 

    Google Scholar 
    Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev. Fish. Sci. 21, 112–156 (2013).Article 
    CAS 

    Google Scholar 
    Gavrilova, O. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 10, Intergovernmental Panel on Climate Change (IPCC); Review Editors on Overview: Dario Gómez (Argentina) and William Irving (USA) (2019).Seafood Carbon Emissions Tool, Lisa Max, Robert Parker, Peter Tyedmers, editors; (2020); http://seafoodco2.dal.ca/Hu, Z., Lee, J. W., Chandran, K., Kim, S. & Khanal, S. K. Nitrous oxide (N2O) emission from aquaculture: a review. Environ. Sci. Technol. 46, 6470–6480 (2012).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).Article 
    CAS 

    Google Scholar 
    Global Livestock Environmental Assessment Model, GLEAM, v.2.0.121 (FAO, 2018).Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquacult. Rep. 15, 100216 (2019).
    Google Scholar 
    Jackson, A. Fish in-fish out (FIFO) explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).Article 
    CAS 

    Google Scholar 
    Frazier, M. et al. Global food system pressure data. https://knb.ecoinformatics.org/view/doi:10.5063/F1V69H1B More

  • in

    Dual ancestries and ecologies of the Late Glacial Palaeolithic in Britain

    Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. Radiocarbon evidence for the lateglacial human recolonisation of Northern Europe. Proc. Prehist. Soc. 63, 25–54 (1997).
    Google Scholar 
    Blockley, S. P. E., Donahue, R. E. & Pollard, A. M. Radiocarbon calibration and Late Glacial occupation in northwest Europe. Antiquity 74, 112–119 (2000).
    Google Scholar 
    Terberger, T., Barton, N. & Street, M. in Humans, Environment and Chronology of the Late Glacial of the North European Plain (eds Street, M. et al.) 189–207 (Romisch-Germanisches Zentralmuseum, 2009).Miller, R. Mapping the expansion of the Northwest Magdalenian. Quat. Int. 272–273, 209–230 (2012).
    Google Scholar 
    Riede, F. & Pedersen, J. B. Late Glacial human dispersals in Northern Europe and disequilibrium dynamics. Hum. Ecol. 46, 621–632 (2018).
    Google Scholar 
    Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).CAS 
    PubMed 

    Google Scholar 
    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).Willis, K. J. & Whittaker, R. J. Perspectives: paleoecology. The refugial debate. Science 287, 1406–1407 (2000).CAS 
    PubMed 

    Google Scholar 
    Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).
    Google Scholar 
    Bennett, K. D. & Provan, J. What do we mean by ‘refugia’? Quat. Sci. Rev. 27, 2449–2455 (2008).
    Google Scholar 
    Terberger, T. & Street, M. Hiatus or continuity? New results for the question of pleniglacial settlement in Central Europe. Antiquity 76, 691–698 (2002).
    Google Scholar 
    Maier, A. in The Central European Magdalenian. Vertebrate Paleobiology and Paleoanthropology (ed. Maier, A.) 231–241 (Springer, 2015).Reade, H. et al. Radiocarbon chronology and environmental context of Last Glacial Maximum human occupation in Switzerland. Sci. Rep. 10, 4694 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, R. E., Hermoso-Buxán, X. L., Marín-Arroyo, A. B., González-Morales, M. R. & Straus, L. G. Investigation of Late Pleistocene and Early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): insights from carbon and nitrogen isotope analyses of red deer. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 46–60 (2014).
    Google Scholar 
    Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C. & Sejrup, H. P. Pattern and timing of retreat of the last British–Irish Ice Sheet. Quat. Sci. Rev. 44, 112–146 (2012).
    Google Scholar 
    Currant, A. P. & Jacobi, R. in The Ancient Human Occupation of Britain Vol. 14 (eds Ashton, N. et al.) 165–180 (Elsevier, 2011).Walker, M. J. C. et al. Devensian lateglacial environmental changes in Britain: a multi-proxy environmental record from Llanilid, South Wales, UK. Quat. Sci. Rev. 22, 475–520 (2003).
    Google Scholar 
    Hill, T. C. B. et al. Devensian late-glacial environmental change in the Gordano Valley, North Somerset, England: a rare archive for southwest Britain. J. Paleolimnol. 40, 431–444 (2008).
    Google Scholar 
    Jacobi, R. M. & Higham, T. F. G. The early Lateglacial re-colonization of Britain: new radiocarbon evidence from Gough’s Cave, southwest England. Quat. Sci. Rev. 28, 1895–1913 (2009).
    Google Scholar 
    Jacobi, R. & Higham, T. in The Ancient Human Occupation of Britain Vol. 14 (eds Ashton, N. M. et al.) 223–247 (Elsevier, 2011).Grimm, S. B. & Weber, M.-J. The chronological framework of the Hamburgian in the light of old and new 14C dates. Quartär. 55, 17–40 (2008).
    Google Scholar 
    Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Jacobi, R. M. & Higham, T. F. G. The ‘Red Lady’ ages gracefully: new ultrafiltration AMS determinations from Paviland. J. Hum. Evol. 55, 898–907 (2008).CAS 
    PubMed 

    Google Scholar 
    Schulting, R. J. et al. A mid-upper Palaeolithic human humerus from Eel Point, South Wales, UK. J. Hum. Evol. 48, 493–505 (2005).PubMed 

    Google Scholar 
    Richards, M. P., Hedges, R. E. M., Jacobi, R., Current, A. & Stringer, C. FOCUS: Gough’s Cave and Sun Hole Cave human stable isotope values indicate a high animal protein diet in the British Upper Palaeolithic. J. Archaeol. Sci. 27, 1–3 (2000).
    Google Scholar 
    Proctor, C., Douka, K., Proctor, J. W. & Higham, T. The age and context of the KC4 Maxilla, Kent’s Cavern, UK. Eur. J. Archaeol. 20, 74–97 (2017).
    Google Scholar 
    Richards, M. P., Jacobi, R., Cook, J., Pettitt, P. B. & Stringer, C. B. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. J. Hum. Evol. 49, 390–394 (2005).CAS 
    PubMed 

    Google Scholar 
    Bello, S. M., Saladié, P., Cáceres, I., Rodríguez-Hidalgo, A. & Parfitt, S. A. Upper Palaeolithic ritualistic cannibalism at Gough’s Cave (Somerset, UK): the human remains from head to toe. J. Hum. Evol. 82, 170–189 (2015).PubMed 

    Google Scholar 
    Andrews, P. & Fernández-Jalvo, Y. Cannibalism in Britain: taphonomy of the Creswellian (Pleistocene) faunal and human remains from Gough’s Cave (Somerset, England). Bull. Nat. Hist. Mus. Geol. 58, 59–81 (2003).
    Google Scholar 
    Bello, S. M., Parfitt, S. A. & Stringer, C. B. Earliest directly-dated human skull-cups. PLoS ONE 6, e17026 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Currant, A. P., Jacobi, R. M. & Stringer, C. B. Excavations at Gough’s Cave, Somerset 1986–7. Antiquity 63, 131–136 (1989).
    Google Scholar 
    Davies, M. in Limestones and Caves of Wales (ed. Ford, T. D.) 92–101 (Cambridge Univ. Press, 1989).Dawkins, W. B. Memorandum on the remains from the cave at the Great Ormes Head. Proc. Liverp. Geol. Soc. 4, 156–159 (1880).
    Google Scholar 
    Sieveking, G. & de, G. The Kendrick’s Cave mandible. Br. Mus. Q. 35, 230–250 (1971).
    Google Scholar 
    Pettitt, P. B. Discovery, nature and preliminary thoughts about Britain’s first cave art.Capra 5,1–12 (2003).
    Google Scholar 
    Bello, S. M., Wallduck, R., Parfitt, S. A. & Stringer, C. B. An Upper Palaeolithic engraved human bone associated with ritualistic cannibalism. PLoS ONE 12, e0182127 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bocherens, H. & Drucker, D. Isotope evidence for paleodiet of late Upper Paleolithic humans in Great Britain: a response to Richards et al. 2005. J. Hum. Evol. 51, 440–442 (2006).PubMed 

    Google Scholar 
    Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9, e87436 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).
    Google Scholar 
    Kloss-Brandstätter, A. et al. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum. Mutat. 32, 25–32 (2011).PubMed 

    Google Scholar 
    Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).CAS 

    Google Scholar 
    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).CAS 
    PubMed 

    Google Scholar 
    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Currant, A. & Jacobi, R. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quat. Sci. Rev. 20, 1707–1716 (2001).
    Google Scholar 
    Pickard, C. & Bonsall, C. Post-glacial hunter-gatherer subsistence patterns in Britain: dietary reconstruction using FRUITS. Archaeol. Anthropol. Sci. 12, 142 (2020).
    Google Scholar 
    Stevens, R. E., Jacobi, R. M. & Higham, T. F. G. Reassessing the diet of Upper Palaeolithic humans from Gough’s Cave and Sun Hole, Cheddar Gorge, Somerset, UK. J. Archaeol. Sci. 37, 52–61 (2010).
    Google Scholar 
    Sala, N. & Conard, N. Taphonomic analysis of the hominin remains from Swabian Jura and their implications for the mortuary practices during the Upper Paleolithic. Quat. Sci. Rev. 150, 278–300 (2016).
    Google Scholar 
    Saladié, P. & Rodríguez-Hidalgo, A. Archaeological evidence for cannibalism in prehistoric Western Europe: from Homo antecessor to the Bronze Age. J. Archaeol. Method Theory 24, 1034–1071 (2017).
    Google Scholar 
    Cook, J. Ice Age Art: Arrival of the Modern Mind (British Museum Press, 2013).Gupta, S., Collier, J. S., Palmer-Felgate, A. & Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–345 (2007).CAS 
    PubMed 

    Google Scholar 
    Mills, W. in From the Atlantic to Beyond the Bug River. Finding and Defining the Federmesser-Gruppen/Azilian (eds Grimm, S. B. et al.) 1–24 (Propylaeum, 2020).Amkreutz, L. et al. What lies beneath … Late Glacial human occupation of the submerged North Sea landscape. Antiquity 92, 22–37 (2018).
    Google Scholar 
    Ward, I., Larcombe, P. & Lillie, M. The dating of Doggerland—post-glacial geochronology of the southern North Sea. Environ. Archaeol. 11, 207–218 (2006).
    Google Scholar 
    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).CAS 

    Google Scholar 
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370, 20130624 (2015).
    Google Scholar 
    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    PubMed 

    Google Scholar 
    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petr, M., Vernot, B. & Kelso, J. admixr—R package for reproducible analyses using ADMIXTOOLS. Bioinformatics 35, 3194–3195 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Busing, F. M., Meijer, E. & Van Der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput. 9, 3–8 (1999).
    Google Scholar 
    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).PubMed 

    Google Scholar 
    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gallego Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350, 820–822 (2015).CAS 
    PubMed 

    Google Scholar 
    Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).CAS 
    PubMed 

    Google Scholar  More

  • in

    Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic)

    Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett. 2013;40:732–7.
    Google Scholar 
    Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons. Environ Res Lett. 2018;13:103001.
    Google Scholar 
    Macdonald RW, Kuzyk ZZA. The Hudson Bay system: a northern inland sea in transition. J Mar Syst. 2011;88:337–40.
    Google Scholar 
    Serreze MC, Barry RG. Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. 2011;77:85–96.
    Google Scholar 
    Hochheim KP, Barber DG. An update on the ice climatology of the Hudson Bay system. Arctic, Antarctic, and Alpine Research. 2014;46:66–83.
    Google Scholar 
    Gagnon AS, Gough WA. Climate change scenarios for the Hudson Bay region: an intermodel comparison. Climatic Change. 2005;69:269–97.
    Google Scholar 
    Bring A, Shiklomanov A, Lammers RB. Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earths Future. 2017;5:72–92.
    Google Scholar 
    Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011;6:e27492.PubMed 
    PubMed Central 

    Google Scholar 
    Li W, McLaughlin F, Lovejoy C, Carmack E. Smallest algae thrive as the Arctic Ocean freshens. Science. 2009;326:539.PubMed 

    Google Scholar 
    Ji R, Jin M, Varpe Ø. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol. 2013;19:734–41.
    Google Scholar 
    Ardyna M, Mundy C, Mills M, Oziel L, Lacour L, Verin G, et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem Sci Anthr. 2020;8:e30.
    Google Scholar 
    Kahru M, Brotas V, Manzano-Sarabia M, Mitchell BG. Are phytoplankton blooms occurring earlier in the Arctic? Glob Change Biol. 2011;17:1733–9.
    Google Scholar 
    Barbedo L, Bélanger S, Tremblay J. Climate control of sea-ice edge phytoplankton blooms in the Hudson Bay system. Elem Sci Anthr. 2020;8:1.
    Google Scholar 
    Matthes LC, Ehn JK, Dalman LA, Babb DG, Peeken I, Harasyn M, et al. Environmental drivers of spring primary production in Hudson Bay. Elem Sci Anthr. 2021;9:00160.
    Google Scholar 
    Harvey M, Therriault JC, Simard N. Late-summer distribution of phytoplankton in relation to water mass characteristics in Hudson Bay and Hudson Strait (Canada). Can J Fish Aquat Sci. 1997;54:1937–52.
    Google Scholar 
    Ferland J, Gosselin M, Starr M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J Mar Syst. 2011;88:385–400.
    Google Scholar 
    Raven JA. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct Ecol. 1998;12:503–13.
    Google Scholar 
    Tilman D, Kilham SS, Kilham P. Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst. 1982;13:349–72.
    Google Scholar 
    Onda DFL, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci. 2017;4:16.
    Google Scholar 
    Campbell K, Mundy CJ, Belzile C, Delaforge A, Rysgaard S. Seasonal dynamics of algal and bacterial communities in Arctic sea ice under variable snow cover. Polar Biol. 2018;41:41–58.
    Google Scholar 
    Forest A, Tremblay JÉ, Gratton Y, Martin J, Gagnon J, Darnis G, et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr. 2011;91:410–36.
    Google Scholar 
    Buchan A, Lecleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.PubMed 

    Google Scholar 
    Cole JJ, Likens GE, Strayer DL. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr. 1982;27:1080–90.
    Google Scholar 
    Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol. 2017;19:4519–35.PubMed 

    Google Scholar 
    Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77:7307–15.PubMed 
    PubMed Central 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.PubMed 
    PubMed Central 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, Demaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.PubMed 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrechet A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.PubMed 

    Google Scholar 
    Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep. 2019;9:1–19.
    Google Scholar 
    Joly S, Senneville S, Caya D, Saucier FJ. Sensitivity of Hudson Bay Sea ice and ocean climate to atmospheric temperature forcing. Clim Dyn. 2011;36:1835–49.
    Google Scholar 
    Kirillov S, Babb D, Dmitrenko I, Landy D, Lukovich JV, Ehn J, et al. Atmospheric forcing drives the winter sea ice thickness asymmetry of Hudson Bay. Geophys Res Oceans. 2020;125:1–12.
    Google Scholar 
    Tivy A, Howell SEL, Alt B, McCourt S, Chagnon R, Crocker G, et al. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960-2008 and 1968-2008. J Geophys Res Oceans. 2011;116:C03007.
    Google Scholar 
    Barber D, Landry D, Babb D, Kirillov S, Aubry C, Schembri S, et al. Bay-Wide Survey Program Cruise Report – CCGS Amundsen (LEG-1). In: Hudson Bay System Study (BaySys) Phase 1 Report: Hudson Bay Field Program and Data Collection. Landry, DL & Candlish, LM. (Eds). 2019. p. 131–222.Jacquemot L, Kalenitchenko D, Matthes LC, Vigneron A, Mundy CJ, Tremblay JE, et al. Protist communities along freshwater-marine transition zones in Hudson Bay (Canada). Elem Sci Anthr. 2021;9:00111.
    Google Scholar 
    Grasshoff K, Kremling K, Ehrhardt M. Determination of nutrients. In: Methods of Seawater Analysis: Third, Completely Revised and Extended Edition. 1999. p. 159–228.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22.PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data. Nat Publ Group. 2010;7:335–6.
    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:597–604.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version 2(9). 2013;1-295.Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1–14.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.PubMed 
    PubMed Central 

    Google Scholar 
    Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 1926;118:558–60.
    Google Scholar 
    Joli N, Monier A, Logares R, Lovejoy C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 2017;11:1372–85.PubMed 
    PubMed Central 

    Google Scholar 
    Barber DG, Hop H, Mundy CJ, Else B, Dmitrenko IA, Tremblay JE, et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog Oceanogr. 2015;139:122–50.
    Google Scholar 
    Tremblay JÉ, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog Oceanogr. 2015;139:171–96.
    Google Scholar 
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:1–7.
    Google Scholar 
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5.Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.PubMed 

    Google Scholar 
    Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett. 2016;19:926–36.PubMed 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.PubMed 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;10:1–10.
    Google Scholar 
    Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci Adv. 2021;7:eabg1921.PubMed 
    PubMed Central 

    Google Scholar 
    Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7.PubMed 

    Google Scholar 
    Not F, del Campo J, Balagué V, de Vargas C, Massana R. New insights into the diversity of marine picoeukaryotes. PLoS One. 2009;4:e7143.PubMed 
    PubMed Central 

    Google Scholar 
    Bass D, Stentiford GD, Littlewood DTJ, Hartikainen H. Diverse Applications of Environmental DNA Methods in Parasitology. Trends Parasitol. 2015;31:499–513.PubMed 

    Google Scholar 
    Kellogg CTE, Mcclelland JW, Dunton KH, Crump BC. Strong seasonality in arctic estuarine microbial food webs. Front Microbiol. 2019;10:2628.PubMed 
    PubMed Central 

    Google Scholar 
    Nitsche F, Weittere M, Scheckenbach F, Hausmann K, Wylezich C, Ardnt H. Deep sea records of choanoflagellates with a description of two new species. Acta Protozool. 2007;46:99–106.
    Google Scholar 
    Thaler M, Lovejoy C. Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol. 2015;81:2137–48.PubMed 
    PubMed Central 

    Google Scholar 
    Thomsen HA, Østergaard JB, Hansen LE. Loricate choanoflagellates from West Greenland (August 1988) including the description of Spinoeca buckii gen. et sp. nov. Eur J Protistol. 1995;31:38–44.
    Google Scholar 
    Thomsen HA, Østergaard JB. Acanthoecid choanoflagellates from the Atlantic Arctic Region − a baseline study. Heliyon. 2017;3:e00345.PubMed 
    PubMed Central 

    Google Scholar 
    Buck KR, Garrison DL, Cruz S. Distribution and abundance of choanoflagellates (Acanthoecidae) across the ice-edge zone in the Weddell Sea, Antarctica. Mar Biol. 1988;98:263–9.
    Google Scholar 
    Escalera L, Mangoni O, Bolinesi F, Saggiomo M. Austral summer bloom of loricate choanoflagellates in the central Ross Sea polynya. J Eukaryot Microbiol. 2019;66:849–52.PubMed 

    Google Scholar 
    Delmont TO, Hammar KM, Ducklow HW, Yager PL, Post AF. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5:1–13.
    Google Scholar 
    Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.PubMed 

    Google Scholar 
    Abell GCJ, Bowman JP. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol. 2005;51:265–77.PubMed 

    Google Scholar 
    Delmont TO, Murat Eren A, Vineis JH, Post AF. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front Microbiol. 2015;6:e1090.
    Google Scholar 
    Stingl U, Desiderio RA, Cho JC, Vergin KL, Giovannoni SJ. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl Environ Microbiol. 2007;73:2290–6.PubMed 
    PubMed Central 

    Google Scholar 
    de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic sea-ice regime. Microb Ecol. 2019;78:388–408.PubMed 

    Google Scholar 
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 2018;9:1035.PubMed 
    PubMed Central 

    Google Scholar 
    Wemheuer B, Güllert S, Billerbeck S, Giebel HA, Voget S, Simon M, et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol Ecol. 2014;87:378–89.PubMed 

    Google Scholar 
    Jain A, Krishnan KP. Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J Basic Microbiol. 2017;57:827–38.PubMed 

    Google Scholar 
    Granskog MA, Kuzyk ZZA, Azetsu-Scott K, Macdonald RW. Distributions of runoff, sea-ice melt and brine using δ18o and salinity data – a new view on freshwater cycling in Hudson Bay. J Mar Syst. 2011;88:362–74.
    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.PubMed 
    PubMed Central 

    Google Scholar 
    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.PubMed 
    PubMed Central 

    Google Scholar 
    Gutierrez-Rodriguez A, Stukel MR, Lopes dos Santos A, Biard T, Scharek R, Vaulot D, et al. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. ISME J. 2019;13:964–76.PubMed 

    Google Scholar 
    Bråte J, Krabberød AK, Dolven JK, Ose RF, Kristensen T, Bjørklund KR, et al. Radiolaria associated with large diversity of marine alveolates. Protist. 2012;163:767–77.PubMed 

    Google Scholar 
    Dolven JK, Lindqvist C, Albert VA, Bjørklund KR, Yuasa T, Takahashi O, et al. Molecular diversity of alveolates associated with neritic North Atlantic radiolarians. Protist. 2007;158:65–76.PubMed 

    Google Scholar 
    Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, et al. Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS One. 2013;8:e53598.PubMed 
    PubMed Central 

    Google Scholar 
    Fernandes GL, Shenoy BD, Damare SR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and Bay of Bengal as deduced by illumina sequencing. Front Microbiol. 2020;10:e3153.
    Google Scholar 
    Vigneron A, Cruaud P, Culley A, Couture RM, Lovejoy C, Vincent W. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. Microbiome. 2020;9:e46.
    Google Scholar 
    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Publ Group. 2012;10:381–94.
    Google Scholar 
    Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–68.
    Google Scholar 
    Michel C, Legendre L, Therriault JC, Demers S, Vandevelde T. Springtime coupling between ice algal and phytoplankton assemblages in southeastern Hudson Bay, Canadian Arctic. Polar Biol. 1993;13:441–9.
    Google Scholar 
    Boetius A, Albrecht S, Bakker K, Bienhold C, Felden J, Fernández-méndez M, et al. Export of algal biomass from the metling Arctic sea ice. Science. 2013;339:1430–2.PubMed 

    Google Scholar 
    Vigneron A, Lovejoy C, Cruaud P, Kalenitchenko D, Culley A, Vincent WF. Contrasting winter versus summer microbial communities and metabolic functions in a permafrost thaw lake. Front Microbiol. 2019;10:e1656.
    Google Scholar 
    Tremblay JÉ, Lee J-H, Gosselin M, Belanger S. Nutrient dynamic and marine biological productivity in the greater Hudson Bay marine region. In: An integrated regional impact study (IRIS) Arcticnet University of Manitoba and ArcticNet. 2019. p. 225–44.Wassmann P, Reigstad M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography. 2011;24:220–31.
    Google Scholar  More

  • in

    Using bioelectrohydrogenesis left-over residues as a future potential fertilizer for soil amendment

    Electrohydrogenesis effluent as a potential biofertilizerTo characterize the electrohydrogenesis left-over residues as potential biofertilizers, the sample from the operating reactors was performed a 16S rRNA sequencing test, and interestingly, the results revealed that the bio-electrohydrogenesis effluent was enriched with various microorganisms including plant growth-promoting microbes that display biofertilizer-like features. Among the well-known plant-promoting bacterial genera observed in DF-MEC residues included Azospirillum, Mycobacterium, Chryseobacterium, Paenibacillus, Rhizobacter, Pseudomonas, Achromobacter, Bradyrhizobium, Actinomyces, Sphingomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Gordonia, Rhodococcus, Bacillus, Methylobacterium-Methylorubrum, Microbacterium, Flavobacterium, Devosia, Acinetobacter, Mesorhizobium, Enterobacter, Aeromonas, Beijerinckia, etc.24,25,26 (Fig. 2). Lots of investigations working on the feasibility of using biofertilizers other than chemical fertilizers have revealed that those aforementioned microbes play a major role in providing the required nutrients for enhanced crop yield.Figure 2The abundance of the Plant growth-promoting bacteria (genus level) detected from the DF-MEC digestate (%).Full size imageNitrogen-fixing microorganismsThe detected nitrogen-fixing microorganisms from the electrohydrogenesis effluent include Azospirillum sp. (0.11 ± 0.02%), rhizobia (Rhizobium (0.058 ± 0.02%), Bradyrhizobium (0.11 ± 0.04%), and Mesorhizobium (0.1 ± 0.03%)), and Beijerinckia (0.08 ± 0.03%) (Fig. 2) and were repeatedly reported for their superior contribution to the plants’ nitrogen requirements through biological nitrogen fixation, which is an important component of sustainable agriculture25. Although the atmosphere counts about 78% N2, it couldn’t be used by plants in its natural state. Prior to getting used by plants, it needs to be converted to ammonia, which is the readily assimilable form of nitrogen by plants/or crops via a biological nitrogen fixation mechanism25. The biological Nitrogen fixation mechanism is summarized in Fig. 3.Figure 3Mechanism of nitrogen fixation bio-catalyzed by nitrogenase enzyme. The plant growth-promoting bacteria produce nitrogenase which is a complex enzyme consisting of dinitrogenase reductase and dinitrogenase. This complex enzyme plays a major role in molecular N2 fixation. Dinitrogenase reductase provides electrons and dinitrogenase uses those electrons to reduce N2 to NH3. However, oxygen is a potential threat to this process since it has the ability to get bound to the enzyme complex and make it inactive and consequently inhibit the process. Interestingly, bacterial leghemoglobin has a strong affinity for O2 and thus gets bound to free oxygen more strongly and effectively to suppress the available oxygen effects on the whole process of nitrogen fixation.Full size imagePhosphate-solubilizing microorganismsFurthermore, various phosphate-solubilizing and mineralizing strains were also found in bioelectrohydrogenesis residues collected from our DF-MEC integrated reactors. Among those microorganisms with the ability to solubilize/metabolize the insoluble inorganic phosphorus, the dominant bacterial genera included Pseudomonas (0.65 ± 0.15%), Bacillus (0.44 ± 0.11%), Rhodococcus (0.04 ± 0.009%), Rhizobium (0.05 ± 0.02%), Microbacterium sp. (0.04 ± 0.01%), Achromobacter (0.16 ± 0.07%), and Flavobacterium (0.058 ± 0.014%) (Fig. 2). Though enormous amounts of phosphorus are available in the soil, its high portion never contributes to plant growth in its primitive state, unless it is bio-transformed into absorbable forms including monobasic and dibasic. Microbial phosphate solubilizing mechanisms are well described in Fig. 4.Figure 4Inorganic phosphorus solubilization by phosphate-solubilizing rhizobacteria. A bacterium solubilizes inorganic phosphorus through the action of low molecular weight organic acids such as gluconic and citric acids. The hydroxyl (OH) and carboxyl (COOH) groups of these acids chelate the cations bound to phosphate and thus convert insoluble phosphorus into a soluble organic form. The mineralization of soluble phosphorus occurs by synthesizing different phosphatases which catalyze the hydrolysis process. When plants incorporate these solubilized and mineralized phosphorus molecules, eventually, overall plant growth and crop yield significantly increase.Full size imagePhytohormone-producing microorganismsIn this current work, the electrohydrogenesis effluent also contained bacterial genera such as Mycobacterium (0.77 ± 0.18%), Allorhizobium (0.05 ± 0.02%), Pararhizobium (0.05 ± 0.02%), Paenibacillus (1.18 ± 0.24%), Bradyrhizobium (0.11 ± 0.04%), Rhizobium (0.05 ± 0.02%), Acinetobacter (0.14 ± 0.02%), and Azospirillum (0.11 ± 0.025%) (Fig. 2) that have the ability to synthesize indole-3-acetic acid/indole acetic acid (IAA) through indole-3-pyruvic acid and indole-3-acetic aldehyde25. IAA is a well-known type of phytohormone that enhances plant/crop growth. Particularly, Azospirillum sp., also produce various phytohormones namely cytokinins, gibberellins, ethylene, abscisic acid and salicylic acid, auxins, vitamins such as niacin, pantothenic acid, and thiamine. The conceptional model delineating the positive effects of inoculation with Azospirillum sp. a phytohormones-producer plant growth-promoting rhizobacteria and its detailed functions on plant growth are summarized and illustrated in Fig. S1. Therefore, the existence of those rhizobacteria in the bioelectrohydrogenesis residues further implies the suitability of considering the DF-MEC left-over residues as potential biofertilizers.Heavy metals-bioremediating microorganismsSome other bacterial genera with the ability to bioremediate the heavy metal toxicity were also found within the bioelectrohydrogenesis left-over residues as well. Among the detected plant growth-promoting bacterial genera; Rhizobium (0.058 ± 0.023%), Mesorhizobium (0.1 ± 0.026%), Bradyrhizobium (0.11 ± 0.04%), Pseudomonas (0.65 ± 0.15%), and Achromobacter (0.16 ± 0.077%) were reported for their key contribution to alleviate the toxicity of the heavy metals via bioremediation process and improve the soil quality for a relief plant development26 (Fig. 2). Other detected heavy metals-bioremediating microorganisms’ species were Chryseobacterium sp. (0.08 ± 0.007%), Azospirillum (0.11 ± 0.02%), Bacillus (0.44 ± 0.11%), Enterobacter (8.57 ± 0.9%), Gordonia (0.06 ± 0.02%), Paenibacillus (1.18 ± 0.24%), Pseudomonas (0.65 ± 0.15%), and Actinomycetes (0.36 ± 0.05%) that either use microbial siderophores or enzymatic biodegradation process.Electrohydrogenesis left-over residues as a potential source of essential elements for plant growthAs aforementioned in “Materials and methods” section, the electrohydrogenesis left-over residues contained diverse microbial communities that degraded the MEC substrate and generate biogas and inorganic compounds. Moreover, it has been reported that those inorganic nutrients are generally available in fermentation effluent in readily plant-utilizable formats owing to substrate mineralization27. Beside detecting various plant growth-promoting microorganisms in the electrohydrogenesis effluent, a larger number of mineral elements essential for promoted growth and development of crop plants were also investigated and analyzed from the residues. The detected primary and secondary macro-elements’ concentrations in the residues were arranged in decreasing order as follows P  > S  > Na  > K  > N  > Ca  > Mg. Interestingly the findings show that the residues abundantly contained Phosphorus (2.766 × 103 mg/L), Nitrogen (274 mg/L), Potassium (282 mg/L), Calcium (17.66 mg/L), Magnesium (16.3 mg/L), Sulfur (1.225 × 103 mg/L), and Sodium (294.3 mg/L) which are well known as macro-nutrients needed in larger amounts for enhanced plant/ crop growth (Fig. 5).Figure 5Macro-, and micronutrients detected from the bio-electrohydrogenesis left-over residues (mg/L).Full size imageMoreover, small amounts of the microelements including Ni, Pb, Zn, Cu, Cr, Hg, Cd were also found in the electrohydrogenesis residues, and consistently these elements are generally required in small quantities for the development of plants (Fig. 5), otherwise, their high concentrations are toxic for the plant cells thus suppress or inhibit plant growth. The detected concentrations for the main microelements in this current research ranged only from 0.36 to 9.6 × 10–5 mg/L and were all reported to play fundamental roles in plant metabolic reactions.Cultivation of the leguminous crops using electrohydrogenesis left-over residues as fertilizerAfter evaluating the plant-growth promoting bacterial communities and the macro- and micronutrients required for plant/crop growth in the electrohydrogenesis left-over residues, the latter was directly used as fertilizer to grow three different plant species including tomato, chili, and brinjal as afore-described in the “Materials and methods” section. To access the potentials of the electrohydrogenesis effluent as fertilizer, the plants grown in the soil amended with the effluent (Soil + Effluent), were directly compared with their corresponding control plants (Soil + water). The results indicated that at the end of 1st month, the plants with effluent grew faster and generated a good amount of branching than the control plants (see Fig. 6), possibly due to the availability of both microbial species with bio-fertilizing aspects and micro-and macronutrients in the effluent.Figure 6Analysis of the plant growth at the end of the 1st month of cultivation. (a) Tomato in soil with effluent, and its control without effluent (b); (c) Chilli grown in soil with effluent, and its control without effluent (d); and (e) brinjal grown in soil with effluent, and its corresponding control grown without effluent (f) (after 2 months).Full size imageFor instance, tomato (Solanum lycopersicum L.) and chilli (Capsicum annuum L.) height in soil + electrohydrogenesis effluent was ~ 36.9 ± 2.1 cm and ~ 32.6 ± 0.8 cm respectively which was ~ 2.03 and ~ 1.2 times the height of their corresponding plant species in the control protocol, respectively (see Fig. 7). However, the brinjal species (Solanum melongena L.) didn’t show any remarkable height differences in both protocols after a month of cultivation (data not shown), probably due to their low adaptative characteristics to the new environment. However, after the 2nd month, the brinjal height in soil + effluent became 2.7 times that of the brinjal control cultivated without effluent (see Fig. 6e,f). Moreover, both the number of the plants’ leaves and their length in plants cultivated in soil + effluent, were remarkably higher than in plants grown without the supply of the effluent.Figure 7Daily plant growth analysis within one month of cultivation. (a) Tomato growth monitoring, (b) Chili growth analysis.Full size imageAt the end of the 3rd month, the plants in soil + electrohydrogenesis effluent generated more fruit with big size than the control plants (see Fig. 8), but the tomato (Solanum lycopersicum L.) didn’t generate fruits in both protocols at that time probably due to the high weather temperature that inhibitory affected its continuous growth, as previously reported that tomato species are generally so sensitive to temperature change28,29. The final yield was evaluated in terms of the size and number of fruits per cultivated plant. Chili cultivated in soil with MEC effluent generated 3 fruits/plant and its corresponding control without effluent produced only 1 fruit/plant. The chili fruit size in soil + effluent was 16 cm, approximately 18.7% higher than its corresponding control. Moreover, at the time of collecting data, the brinjal plant cultivated in soil with MEC effluent generated brinjal fruits whereas its corresponding cultivated without electrohydrogenesis effluent started flowering (see Fig. 8). These further indicate the significant contribution of the electrohydrogenesis effluent in speeding up the plant growth. Herein, the electrohydrogenesis left-over residues have notably improved the soil quality and significantly promoted the plants’ phenology characterized by plant growth, the generation of new leaves, flowering, and the production of fruits.Figure 8Analysis of plant growth characterized by the flowering and fruiting process at the end of the 3 months. (a) Chili grown in soil with effluent, and its control without effluent (b); (c) brinjal grown in soil with effluent and its corresponding control grown without effluent (d).Full size image More