More stories

  • in

    Growth characteristics of Cunninghamia lanceolata in China

    FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development (FAO, 2018).
    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993. https://doi.org/10.1126/science.1201609 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luyssaert, S. et al. Tradeoffs in using European forests to meet climate objectives. Nature 562(7726), 259–262. https://doi.org/10.1038/s41586-018-0577-1 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. https://doi.org/10.1038/s41467-019-10174-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).Article 
    CAS 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580(7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–599. https://doi.org/10.1126/science.aad7270 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. https://doi.org/10.1038/s41467-019-13798-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, K. et al. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of Southern China. CATENA 178, 313–321. https://doi.org/10.1016/j.catena.2019.03.038 (2019).Article 
    CAS 

    Google Scholar 
    Mei, G., Sun, Y. & Sajjad, S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China. PLoS ONE 12, e0169747. https://doi.org/10.1371/journal.pone.0169747 (2017).Article 
    CAS 

    Google Scholar 
    Wu, H. et al. Soil phosphorus bioavailability and recycling increasedwith stand age in Chinese fir plantations. Ecosystems 23, 973–988. https://doi.org/10.1007/s10021-019-00450-1 (2019).Article 

    Google Scholar 
    State Forestry Administration. General situation of forest resources in China. The 8th National Forest Inventory (State Forestry Administration, 2014).Wang, X. et al. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 12(1), 13–16 (2001) (in Chinese with English Abstract).ADS 
    CAS 

    Google Scholar 
    Kang, H. et al. Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China. NZ J. For. Sci. 47(1), 20. https://doi.org/10.1186/s40490-017-0102-6 (2017).Article 

    Google Scholar 
    Lu, Y. et al. A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6, 360–379. https://doi.org/10.3390/f6020360 (2015).Article 

    Google Scholar 
    Zhang, X. et al. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: Long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. https://doi.org/10.1016/j.foreco.2020.118103 (2020).Article 

    Google Scholar 
    You, R. et al. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci. Rep. https://doi.org/10.1038/s41598-021-83500-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djomo, A. N., Ibrahima, A., Saborowski, J. & Gravenhorst, G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manag. 260(10), 1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034 (2010).Article 

    Google Scholar 
    Peng, D. et al. Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sens. 11(19), 2270. https://doi.org/10.3390/rs11192270 (2019).Article 
    ADS 

    Google Scholar 
    Zhou, X. et al. Dynamic allometric scaling of tree biomass and size. Nat. Plants. 7(1), 42–49. https://doi.org/10.1038/s41477-020-00815-8 (2021).Article 
    PubMed 

    Google Scholar 
    Li, L. Study on the tree volume table compilation of Chinese fir in Kaihua Forest Farm (Beijing Forestry University, 2011) http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134655.htm (in Chinese).Wang, J. P. et al. Study on the effect of Chinese fir volume formula on estimating the volume of fir standing trees in different sites. Guizhou For. Technol. 19(1), 26–29 (1991) (in Chinese).
    Google Scholar 
    Zeng, W. S. et al. Compatible tree volume and aboveground biomass equations for Chinese fir plantation in Guizhou. J. Beijing For. Univ. 33(4), 1–6 (2011) (in Chinese).
    Google Scholar 
    Xia, Z. S. et al. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China. J. Beijing For. Univ. 34(1), 1–5 (2012) (in Chinese).
    Google Scholar 
    Lin, H. Study on biomass and carbon storage of main coniferous forest in Jiangle state-owned forestry farm. J. Fujian For. Sci. Technol. 45(1), 30–34. https://doi.org/10.13428/j.cnki.fjlk.2018.01.007 (2018) (in Chinese with English Abstract).Article 
    ADS 

    Google Scholar 
    Cai, Z. A study on biomass models of Cunninghamia lanceolata plantation in Fujian. (Beijing Forestry University, 2014), http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327550.htm (in Chinese).Chen, G. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76. https://doi.org/10.1016/j.foreco.2012.07.046 (2013).Article 

    Google Scholar 
    Zhang, G. et al. Biomass Characteristics of dominant tree species (group) at Lingnan forest farm in Anhui province. Scientia Silvae Sinicae. 48(5), 136–140. https://doi.org/10.1007/s11783-011-0280-z (2012) (in Chinese with English abstract).Article 
    ADS 
    CAS 

    Google Scholar 
    Shi, W. et al. Biomass model and carbon storage of Chinese fir plantation in Dabieshan Mountains in Anhui. Resour. Environ. Yangtze Basin. 24(5), 758–764. https://doi.org/10.11870/cjlyzyyhj201505007 (2015) (in Chinese with English abstract).Article 

    Google Scholar 
    Li, H. & Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 289, 153–163. https://doi.org/10.1016/j.foreco.2012.10.002 (2013).Article 

    Google Scholar 
    Zeng, W. & Tang, S. A new general allometric biomass model. Nat. Precedings. https://doi.org/10.1038/npre.2011.6704.1 (2011).Article 

    Google Scholar 
    Schumacher, F. X. & Hall, F. D. S. Logarithmic expression of timber-tree volume. J. Agric. Res. 47(9), 719–734 (1933).
    Google Scholar 
    Honer, T. G. A new total cubic foot volume function. For. Chron. 41(4), 476–493. https://doi.org/10.5558/tfc41476-4 (1965).Article 

    Google Scholar 
    Burkhart, H. E. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 2, 7–9. https://doi.org/10.1093/sjaf/1.2.7 (1977).Article 

    Google Scholar 
    Lee, D., Seo, Y. & Choi, J. Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. For. Sci. Technol. 13(2), 77–82. https://doi.org/10.1080/21580103.2017.1315963 (2017).Article 

    Google Scholar 
    Chen, B. H. & Chen, C. Y. A preliminary study on the biomass and productivity of Picea koraiensis forests in the dunes. Scientia Silvae Sinicae 4, 269–278 (1980) (in Chinese).
    Google Scholar 
    Niklas, K. J. Plant Allometry: The Scaling of Form and Process (University of Chicago Press, 1994).
    Google Scholar 
    Ketterings, Q. M. et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6 (2001).Article 

    Google Scholar 
    Chen, X. G. The biomass and allometric equation of a 20-years-old Cunninghamia lanceolata plantation. Prot. For. Sci. Technol. 4, 28–29, 40. https://doi.org/10.3969/j.issn.1005-5215.2007.04.010.(inChinese) (2007).Article 

    Google Scholar 
    Wang, X. P. et al. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 234, 264–274. https://doi.org/10.1016/j.foreco.2006.07.007 (2006).Article 

    Google Scholar 
    Peng, C. et al. Developing and evaluating tree height–diameter models at three geographic scales for black spruce in Ontario. N. J. Appl. For. 21(2), 83–92. https://doi.org/10.1093/njaf/21.2.83 (2004).Article 

    Google Scholar 
    López-Serrano, F. R. et al. Site and weather effects in allometries: A simple approach to climate change effect on pines. For. Ecol. Manag. 215(1–3), 251–270. https://doi.org/10.1016/j.foreco.2005.05.014 (2005).Article 

    Google Scholar 
    Zhang, C. et al. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single trees in Poplar plantations in Jiangsu Province, China. Forests 7, 32. https://doi.org/10.3390/f7020032 (2016).Article 

    Google Scholar 
    Liu, J. C. et al. Comparing non-destructive methods to estimate volume of three tree taxa in Beijing, China. Forests 10, 92. https://doi.org/10.3390/f10020092 (2019).Article 

    Google Scholar 
    Thangjam, U. et al. Developing tree volume equation for Parkia timoriana grown in home gardens and shifting cultivation areas of North-East India. For. Trees Livelihoods 28(12), 1–13. https://doi.org/10.1080/14728028.2019.1624200 (2019).Article 

    Google Scholar 
    Dutcă, I. et al. Does slope aspect affect the aboveground tree shape and volume allometry of European Beech (Fagus sylvatica L.) trees?. Forests 13, 1071. https://doi.org/10.3390/f13071071 (2022).Article 

    Google Scholar 
    Segura, M. & Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1), 2–8. https://doi.org/10.2307/30045500 (2005).Article 

    Google Scholar 
    Wang, X. W. et al. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann. For. Sci. 75, 60. https://doi.org/10.1007/s13595-018-0738-2 (2018).Article 

    Google Scholar 
    Niklas, K. J. & Enquist, B. J. Canonical rules for plant organ biomass partitioning and annual allocation. Am. J. Bot. 89(5), 812–819. https://doi.org/10.3732/ajb.89.5.812 (2002).Article 
    PubMed 

    Google Scholar 
    Xiang, W. H. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 697–711. https://doi.org/10.1007/s11284-011-0829-0 (2011).Article 

    Google Scholar 
    Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 116, 363–372. https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brassard, B. W. et al. Influence of environmental variability on root dynamics in northern forests. Crit. Rev. Plant Sci. 28, 179–197. https://doi.org/10.1080/07352680902776572 (2009).Article 

    Google Scholar 
    Montagu, K. D. et al. Developing general allometric relationship for regional estimates of carbon sequestration—An example using Eucalyptus pilularis from seven contrasting sites. For. Ecol. Manag. 204, 113–127. https://doi.org/10.1016/j.foreco.2004.09.003 (2005).Article 

    Google Scholar 
    Williams, R. J. et al. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: Towards general predictive equations. Aust. J. Bot. 53, 607–619. https://doi.org/10.1071/BT04149 (2005).Article 

    Google Scholar 
    Ouimet, R. et al. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can. J. For. Res. 38, 92–100. https://doi.org/10.1139/x07-134 (2008).Article 

    Google Scholar 
    Peichl, M. & Arain, M. A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80. https://doi.org/10.1016/j.foreco.2007.07.003 (2007).Article 

    Google Scholar 
    Bond-Lamberty, B. et al. Aboveground and below-ground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450. https://doi.org/10.1139/x02-063 (2002).Article 

    Google Scholar 
    King, J. S. et al. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can. J. For. Res. 37(1), 93–102. https://doi.org/10.1139/x06-217 (2007).Article 

    Google Scholar 
    Ziania, D. & Mencuccini, M. Aboveground biomass relation-ships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60(5), 439–448. https://doi.org/10.1051/forest:2003036 (2003).Article 

    Google Scholar 
    Martin, J. G. et al. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can. J. For. Res. 28(11), 1648–1659. https://doi.org/10.1139/x98-146 (1998).Article 

    Google Scholar 
    Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 222, 9–16. https://doi.org/10.1016/j.foreco.2005.10.074 (2006).Article 

    Google Scholar  More

  • in

    The Blob marine heatwave transforms California kelp forest ecosystems

    The Santa Barbara Coastal Long Term Ecological Research program has monitored benthic communities in five kelp forests seasonally since 2008 using fixed transect diver surveys, and moored sensors at each reef have recorded bottom temperatures every 15 min. Blob-associated positive bottom temperature anomalies began in winter 2014 and persisted through autumn 2016 (Fig. 1a)18. Peak temperature anomalies occurred during the summer and autumn of 2014 and 2015 (Fig. 1a), and the average temperature anomaly in autumn 2015 was +3.1 °C, equivalent to an average daily temperature of 19.6 °C. In 2014 and 2015, 91 and 69% of autumn days, respectively, were classified as heatwave days as defined by Hobday et al.20. Seasonal chlorophyll-a concentration, a proxy for phytoplankton abundance, was obtained from satellite imagery at each of the five reefs over the 14-year period. The average chlorophyll-a concentration was anomalously low throughout the warming period, and exceptionally low during the springs of 2014 and 2015 (Fig. 1a), when upwelling-driven nutrient enrichment typically supports dense phytoplankton blooms.Fig. 1: Average seasonal bottom temperature anomaly, chlorophyll-a concentration anomaly, and percent cover and species richness of sessile invertebrates across five sites.The Blob, an anomalous warming period from spring of 2014 to winter of 2016, is highlighted in gray, coincident with (a) positive temperature anomalies (°C; solid line), negative chlorophyll-a anomalies (mg/m3; dashed line), and declines in (b) invertebrate cover (solid line) and species richness (number of unique species/taxa/80 contact points; dashed line). Seasons are denoted by Sp (Spring), Su (Summer), A (Autumn) and W (Winter).Full size imageMean sessile invertebrate cover averaged across all sites declined 71% during the Blob, reaching a 14-year minimum of 7% in autumn of 2015 (Fig. 1b and Supplementary Fig. 1). Species richness declined 69% during the same period (Fig. 1b and Supplementary Fig. 1). The responses of invertebrates to warming were not consistent across time even though the duration and intensity of warming was similar in 2014 and 2015, suggesting that extended periods of elevated seawater temperature were not solely responsible for the most severe loss of invertebrates. For ectotherms, increases in ambient seawater temperature should be met with increases in metabolic rate and food requirements to sustain metabolism21. Because of their sedentary lifestyle, sessile invertebrates cannot actively forage for food or seek spatial refuge from thermal extremes, and limitations in their planktonic food supply can result in metabolic stress over extended periods22,23. Anomalously low chlorophyll-a concentrations during the Blob (Fig. 1a), particularly in the spring of 2015, indicated that food limitation was a likely driver of invertebrate decline. Results from piecewise structural equation modeling (Fig. 2) that incorporated biological interactions with space competitors (understory macroalgae), predators (sea urchins), and foundation species (giant kelp) showed that the severity of warming had both a direct and indirect effect on the sessile invertebrate community. The proportion of heatwave days was a direct negative predictor of sessile invertebrate cover (−0.11) and species richness (−0.21). The proportion of heatwave days was an even stronger negative predictor of chlorophyll-a concentration (−0.26), yielding negative indirect effects on invertebrate cover (−0.07) and species richness (−0.05) due to the positive influence of chlorophyll-a concentration on sessile invertebrate cover (+0.26) and richness (+0.20).Fig. 2: Piecewise structural equation modeling (SEM) for sessile invertebrate cover and species richness.Arrows indicate directionality of effects on (a) invertebrate cover and (b) species richness. Red arrows show negative relationships; black arrows show positive relationships. R2 values are conditional R2. Arrow widths are proportional to effect sizes as measured by standardized regression coefficients (shown next to arrows). ***p  More

  • in

    Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks

    Conception of the workflow to demonstrate the microbial associations from co-occurrence networks with microbial cultivationMicrobial co-occurrence networks are composed of nodes and edges, which usually represent microbes and statistically significant associations between microbes, respectively. We hypothesized that the microbial associations could be validated if the topological properties of networks are simplified, and if the microbes representing the nodes can be cultivated. To test this hypothesis, we designed a workflow as shown in Fig. 1. A total of 12,096 wells from 126 96-well plates were inoculated with droplets of series diluted environmental samples, wells from each 96-well plate represented the same combination of given culture condition, sample type (plants, roots, and sediments) and dilution rate (from 10–1 to 10–7). After being cultivated at 30 °C for 10 days, 69 effective (Supplementary Table S3) plates with  > 30% wells showing microbial growth were retained for downstream microbial community analysis. Microbial DNA in each well was extracted, bar-coded, and sequenced for the inference of co-occurrence networks. The wells of plates showing high abundances of target Zotus were targeted for microbial isolations. Lastly, the cultivated microbial isolates were matched to Zotus in the network and used for demonstration of microbial interactions.Figure 1Overview of experimental demonstration of microbial interactions in co-occurrence networks. For detailed description, please refer to the method section.Full size imagePrevalent Zotu pairs in the co-occurrence networksDepending on the microbial density in samples, the 96-well plates harbored different numbers of wells with microbial growth. We obtained 65 96-well plates (6,091 wells) that were effective with microbial growth and data analysis for co-occurrence network reconstruction. After quality control and denoise, we obtained 130 Gbp sequence data. A total of 14,377 Zotus were annotated (Supplementary Table S4). There were 217 ± 94 (average ± standard deviation) prevalent Zotus, i.e., these Zotus appeared at frequencies ≥ 30% of wells in a given 96-well plate.Next, we analyzed Zotus compositions and abundances in each well of the 65 plates. Accordingly, we reconstructed 65 independent microbial co-occurrence networks and further retrieved the robust (Spearman’s |ρ| > 0.6 and P  More

  • in

    Kinship dynamics may drive selection of age-related traits

    “This new study is inspired by some our earlier theoretical work applied to killer whales that suggests that age-related changes in relatedness are important for the evolution of menopause,” says Samuel Ellis, the first author of the study. “Reproduction can be thought of as a form of generalized harm as the birth of an offspring increases within-group competition for resources. Kinship dynamics — the ways in which local relatedness changes over an individual’s lifetime — are one way that menopause could be favored, because older females are more inclined to cease reproduction to not harm their group mates than younger females. Here we wanted to generalize this concept to both sexes, and to other species without menopause.” More

  • in

    Viral metagenomics reveals persistent as well as dietary acquired viruses in Antarctic fur seals

    After massive parallel sequencing of the nucleic acids obtained from fur seal scats, a wide variety of invertebrate and vertebrate viral hosts assignations with low nucleotidic and amino-acidic identities were obtained, most of them corresponding to animal species not described before in Antarctica. These results make us reconsider the use of closed RefSeq databases for viral discovery, especially because the studied area was a remote geographical area where a high number of new viral species is expected to occur22.After repeating the analysis of the contigs obtained using BLASTn, a high number of miss-assignments was observed, corresponding almost entirely to contigs newly assigned as unclassified Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA) viral sequences. CRESS viruses have been detected ubiquitously in many different animals without any recognised role in the development of any disease23,24,25,26.These results are in accordance with the recent reporting of CRESS sequences also being ubiquitous in a wide variety of environments and at high proportions, including Antarctica, where they have been described to represent more than 50% of sequences obtained from glacier waters27.Viral-host distributionVirome studies in other Arctocephalus species from subantarctic and South American regions revealed a 5% of viral sequences with predominance of bacteriophages followed by viruses from the Parvoviridae family28. The methodology here applied provided an increase of 12–25% viral reads when probe-based Target Enrichment Sequencing (TES) was applied, that in comparison with Untargeted Viral Metagenomics (UVM) approaches conducted in these type of samples28 could be considered an optimal result.Most of the viral species detected in feces corresponded to unknown viruses, 83.59% from the total of sequences, followed by viruses that infect invertebrates, 8.75%, bacteriophages, 4.46%, and vertebrate viruses, 3.11% (Fig. 1).Figure 1Host distribution of viral assignations sequenced from fecal (A) and serum (B) samples collected from male A. gazella.Full size imageAs expected, when applying both targeted and untargeted sequencing methodologies, TES approach resulted in a recovery of many vertebrate viral assignations (Table 1) whereas untargeted sequencing enabled a better detection of viruses known to infect invertebrates (Table 2). To describe the complete A. gazella fecal virome, sequences obtained by both sequencing methodologies were considered all together, representing a total of 2.62 million reads.Table 1 Vertebrate viral assignations obtained from fecal samples sequencing from male A. gazella. Ranges of Genome coverage, nucleotide identity and aminoacidic identity are expressed in percentages.Full size tableTable 2 Invertebrate viral assignations obtained from fecal samples sequencing from male A. gazella. Colours represent the presence of each assignation in the processed pools. Ranges of Coverage, NT ID and AA ID are represented in percentages.Full size table
    A. gazella virusesFur seal picorna-like virusFur seal picorna-like virus was firstly described in a fecal sample obtained from A. gazella in King George Island in the South Shetland Islands, Antarctica by Krumbholz and co-workers16.In this study, we report a total of 19 contigs resulting after assembling 2671 reads obtained from 4/4 fecal pools analysed being the most prevalent virus described in this study. One of the contigs covered 96.91% of the fur seal picorna-like virus genome and presented a nucleotide homology of 99.38% with the reference strain described in 2017. The other contigs coverage ranged from 19.75 to 21.22% with a 45.92 to 90.5% nucleotide identity with reference strain NC_035110. Four contigs matching the ORF2 polyprotein are represented in Fig. 2 where differences among them and with the reference strain are showed.Figure 2Nucleotide alignment of ORF2 sequences from the A. gazella picorna-like contigs compared to the ORF2 from RefSeq NC_0351110. In consensus strain, position 1 represents position 6523 from RefSeqs genome.Full size imagePicornaviruses are known to cause a wide variety of diseases in vertebrate hosts, especially mammals29, but the role of Fur seal picorna-like virus in pathogenesis development is still unknown30. Many picornaviruses are transmitted horizontally via fecal–oral or airborne routes29. The fact that these sequences were detected in all the fecal pools obtained from animals with no evidence of disease may that suggest the virus may have a stable endemic relationship within that seal population.Torque teno pinniped virusLambdatorquevirus is a genus within the Anelloviridae family. The genus comprises 8 species named Torque teno pinniped virus 2 to 9 isolated from different pinniped species: A. gazella (Torque teno pinniped virus 6 and 7)17, Phoca vitulina (Torque teno pinniped virus 2, 3, 4)31, Zalophus californianus (Torque teno pinniped virus 5)32 and Leptonychotes weddellii (Torque teno pinniped 8 and 9)33.One contig with a nuleotide similarity of 95.12% against Torque teno pinniped virus 7 was obtained from one of the fecal pools. This virus had been described in these animals inhabiting Livingston Island in 2016, using rolling circle amplification and subsequent Sanger sequencing from buccal swabs17. However, sequences obtained in this study belong to partial ORF2 which is not the optimal genome region for typing purposes or phylogenetic analysis.These members of the Anelloviridae represent the more abundant viruses found in human, animals and environmental samples although their etiological role in any disease has not been clearly identified being considered a persistent virus ubiquitous to several different tissues34,35No Torque teno virus sequences were detected in serum samples which agree with what was observed for Zalophus californianus anellovirus prevalently detected in different tissues, like lung and liver, but not in blood samples. Interestingly, other known anelloviruses are typically found in blood or plasma samples32.MamastrovirusTwo of the fecal pools analyzed presented Mamastrovirus sequences. The presence of these viruses in humans and other mammals is widely known, as well as their involvement in gastroenteritis development36. The four contigs obtained (comprising 1008 sequences) showed homologies against reference genomes, ranging from 45.70% to 59.37% when compared at nucleotide level and 36.69% to 46.69% when compared at aminoacidic level. Phylogenetic analysis of partial OFR2 regions of these contigs indicate its closer similarity with sequences from California Sea Lion astroviruses, a virus that was determined as to be the most prevalent in fecal samples from these animals (Z. californianus)37. This finding suggests that these sequences may belong to a yet unknown virus like Z. californianus astrovirus and may indicate that such virus is prevalent in the sampled area (detected in 2/4 fecal pools studied) and the second more abundant virus (1008 reads) in the studied fecal samples (Fig. 3).Figure 3Phylogenetic consensus tree based on partial ORF2 sequences from the Mamastrovirus contigs sequenced from A. gazella scats (in bold). Bootstrap resampling with 1000 replicates.Full size imageAdeno associated virus 2Two of the studied fecal pools presented 138 sequences, forming 3 contigs with nucleotide identities ranging from 46.91 to 48.04% (Table 1), that matched adeno associated viruses previously described in Z. californianus, humans and other mammals with and unknow etiologic role (Fig. 4). The detected sequences probably correspond to fur seal adeno associated viruses never described before. The detection of these viruses is quite common in other mammals suggesting they could cause persistent infections in their hosts, but no etiological role has been attributed to them38.Figure 4Phylogenetic consensus tree of the Adeno-associated virus contigs sequenced from A. gazella scats (in bold). Bootstrap resampling with 1000 replicates.Full size imageNorovirusA norovirus contig was obtained in one of the four pools analyzed. Noroviruses are the most relevant non-bacterial gastroenteritis etiological agents in humans39, with its presence widely described in other mammals40. The contig detected in the fecal samples, represented the 4.43% of the viral genome, was in the VP1 region and comprised 56 reads with an identity  > 99% to California sea lion norovirus described by Teng and collaborators in 201841 (Fig. 5). Results obtained suggest these sequences belong to a putative new norovirus specie.Figure 5Phylogenetic consensus tree of the Norovirus contig sequenced from A. gazella scats (in bold). Bootstrap resampling with 1000 replicates.Full size imageViruses in serum samplesAll the viral sequences obtained from serum samples (970 reads) matched to CRESS-DNA viral sequences from unknown hosts.The fact that no other viruses were identified in serum samples suggests the animals tested were not under active viremia at the time of sample collection or it was not detectable by the applied methodology.Diet related virusesSeveral virus sequences similar to viruses known to have invertebrate animals as hosts were detected in fecal pools, mainly by UVM although some also by TES. These viruses are probably present in fur seal feces because of dietary habits although, since scats were collected from the ground nearby the animals, environmental cross-contamination should not be ruled out.Sequences with high coverage or similarities to any described virus are showed in Table 2.The high prevalence of virus sequences from crustaceans in the feces analyzed is hardly surprising because A. gazella inhabiting the Antarctic peninsula and the Atlantic sector of the Southern Ocean feed mostly on Antarctic krill Euphasia superba during the summer months42,43,44,45,46,47,48. Sequences from cephalopod viruses were also detected, although were much scarcer than those from crustaceans. This also agrees with current knowledge about the diet of A. gazella in the Atlantic sector of the Southern Ocean, where octopuses and squids are regularly consumed, although in low numbers44,45,46. It is worth noting than not cephalopod beak was recovered from the scats analyzed here48. Among all invertebrate viruses identified, some sequences present low identities with genomes from available databases, probably because Antarctica wildlife has been scarcely explored, forcing bioinformatic analysis to match them with the most similar viruses from these databases.No fish viruses were found in this study. Hard skeletal remains of fishes are often recovered from the scats of A. gazella from the Atlantic sector of the Southern Ocean42,43,44,45,46,47 and occurred indeed in the samples analysed here48, but stable isotope analysis of blood and whiskers revealed a negligible contribution of fish to the assimilate diet of juvenile and subadult male A. gazella49, which likely explain the absence of fish viruses in the samples analized here. Additionaly, no data on the virome present in the fish species regularly consumed by A. gazella has been published to our knowledge, with information limited to the bacteriome32, so even in case fish viruses were sequenced, it might not be correctly assigned to a fish host. Nevertheless, the methodology applied in this study had been successfully applied to the identification of the virome of Atlantic fishes50. Furthermore, Li and coworkers.37 and Wille and coworkers.22 also observed viral sequences probably corresponding to fish when analyzing the fecal virome of the California sea lions and Antarctic penguins.On the other hand, sequences highly similar to Coelho and Khabarov viral polymerases (greater than 98% of aminoacid identity), previously described in chinstrap penguins (Pygoscelis antarcticus) by Wille and coworkers22, were found in this study. The consumption of penguins by A. gazella during the summer months has been reported widely51,52,53,54,55, penguins feathers were reported from the scats analyzed in this study48 and stable isotope analysis of blood and whiskers revealed penguins as the second most relevant prey from juvenile and subadult male A. gazella in the population studied here49. This evidence is consistent with the presence of virus from chinstrap penguins in the samples analysed here. All in all, the study of fecal virome constitutes a very promising tool to explore the consumers’ diet. More

  • in

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    Darwin C. The structure and distribution of coral reefs, 3rd edn. D. Appleton & Company: New York, NY, USA, 1889.Lajeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol. 2018;28:2570–80.e6.CAS 
    PubMed 

    Google Scholar 
    Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–60.
    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.
    Google Scholar 
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 

    Google Scholar 
    Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs. 1990;25:75–87.
    Google Scholar 
    Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993;43:606–11.
    Google Scholar 
    Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Perna G, Geißler L, et al. Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J. 2022;16:1110–8.PubMed 

    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 

    Google Scholar 
    Bourne DG, Webster NS. Coral Reef Bacterial Communities. In: Rosenberg E, DeLong EF, editors. The Prokaryotes. Springer: Berlin Heidelberg; 2013. pp. 163–87.Ainsworth DT, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 

    Google Scholar 
    Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 

    Google Scholar 
    Pogoreutz C, Oakley CA, Rädecker N, Cárdenas A, Perna G, Xiang N, et al. Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. ISME J. 2022;16:1883–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Voolstra CR, Rädecker N, Weis V. The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. In: Bosch TCG, Hadfield MG, editors. Cellular Dialogues in the Holobiont. Boca Raton: CRC Press; 2020. pp. 91–118.Babbin AR, Tamasi T, Dumit D, Weber L, Rodríguez MVI, Schwartz SL, et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical Cuban stony corals. ISME J. 2021;15:1222–35.CAS 
    PubMed 

    Google Scholar 
    Glaze TD, Erler DV, Siljanen HMP. Microbially facilitated nitrogen cycling in tropical corals. ISME J. 2022;16:68–77.CAS 
    PubMed 

    Google Scholar 
    Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 

    Google Scholar 
    Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 

    Google Scholar 
    Bednarz VN, van de Water JA, Rabouille S, Maguer JF, Grover R, Ferrier‐Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2019;21:480–95.CAS 
    PubMed 

    Google Scholar 
    Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J. 2016;10:1804–8.CAS 
    PubMed 

    Google Scholar 
    Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci USA. 2021;118:e2022653118.PubMed 
    PubMed Central 

    Google Scholar 
    Braker G, Fesefeldt A, Witzel K-P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 1998;64:3769–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.Tilstra A, Roth F, El-Khaled YC, Pogoreutz C, Rädecker N, Voolstra CR, et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R Soc Open Sci. 2021;8:201835.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiang N, Hassenrück C, Pogoreutz C, Rädecker N, Simancas-Giraldo SM, Voolstra CR, et al. Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol. 2022;88:e01886-21.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 

    Google Scholar 
    Beauchamp EG, Trevors JT, Paul JW. Carbon sources for bacterial Denitrification. In: Stewart BA. Advances in Soil Science. Springer: New York, NY; 1989. pp. 113–42.Baker AC. Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Ann Rev Ecol Evol Syst. 2003;34:661–89.
    Google Scholar 
    Wang J-T, Chen Y-Y, Tew KS, Meng P-J, Chen CA. Physiological and Biochemical Performances of Menthol-Induced Aposymbiotic Corals. PLoS ONE. 2012;7:e46406.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol. 2018;9:214.PubMed 
    PubMed Central 

    Google Scholar 
    Voolstra CR. A journey into the wild of the cnidarian model systemAiptasiaand its symbionts. Mol Ecol. 2013;22:4366–8.PubMed 

    Google Scholar 
    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genom. 2009;10:258.
    Google Scholar 
    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1. J Phycol. 2013;49:447–58.CAS 
    PubMed 

    Google Scholar 
    Thornhill DJ, Lewis AM, Wham DC, Lajeunesse TC. Host‐specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.CAS 
    PubMed 

    Google Scholar 
    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching. PLoS ONE. 2016;11:e0152693.PubMed 
    PubMed Central 

    Google Scholar 
    Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA. 2015;112:11893–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Correa AMS, McDonald MD, Baker AC. Development of clade-specific Symbiodinium primers for quantitative PCR (qPCR) and their application to detecting clade D symbionts in Caribbean corals. Mar Biol. 2009;156:2403–11.CAS 

    Google Scholar 
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.CAS 
    PubMed 

    Google Scholar 
    Lee JA, Francis CA. DeepnirSamplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition. Environ Microbiol. 2017;19:4897–912.CAS 
    PubMed 

    Google Scholar 
    Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 2011;17:10–2.
    Google Scholar 
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot: the manually annotated section of the UniProt KnowledgeBase. Methods Mol Biol. 2007;406:89–112.Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38:7–13.
    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.PubMed 
    PubMed Central 

    Google Scholar 
    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.PubMed 
    PubMed Central 

    Google Scholar 
    Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Commun Ecol Package. 2007;10:719.
    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:1–11.CAS 

    Google Scholar 
    Meunier V, Geissler L, Bonnet S, Rädecker N, Perna G, Grosso O, et al. Microbes support enhanced nitrogen requirements of coral holobionts in a high CO 2 environment. Mol Ecol. 2021;30:5888–99.CAS 
    PubMed 

    Google Scholar 
    Geissler L, Meunier V, Rädecker N, Perna G, Rodolfo-Metalpa R, Houlbrèque F, et al. Highly Variable and Non-complex Diazotroph Communities in Corals From Ambient and High CO2 Environments. Front Mar Sci. 2021;8:754682.Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.CAS 
    PubMed 

    Google Scholar 
    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Front Mar Sci. 2016;3:234.
    Google Scholar 
    Hartman LM, Blackall LL, van Oppen MJH. Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiol. 2022;4:000314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawson CA, Raina JB, Kahlke T, Seymour JR, Suggett DJ. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ Microbiol Rep. 2018;10:7–11.CAS 
    PubMed 

    Google Scholar 
    Matthews JL, Raina JB, Kahlke T, Seymour JR, van Oppen MJ, Suggett DJ. Symbiodiniaceae‐bacteria interactions: rethinking metabolite exchange in reef‐building corals as multi‐partner metabolic networks. Environ Microbiol. 2020;22:1675–87.PubMed 

    Google Scholar 
    Costa RM, Cárdenas A, Loussert-Fonta C, Toullec G, Meibom A, Voolstra CR. Surface Topography, Bacterial Carrying Capacity, and the Prospect of Microbiome Manipulation in the Sea Anemone Coral Model Aiptasia. Front Microbiol. 2021;12:637834.Pelve EA, Fontanez KM, DeLong EF. Bacterial succession on sinking particles in the ocean’s interior. Front Microbiol. 2017;8:2269.PubMed 
    PubMed Central 

    Google Scholar 
    Welles L, Lopez-Vazquez CM, Hooijmans CM, Van Loosdrecht MCM, Brdjanovic D. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions. AMB Express. 2016;6:1–12.Kaneko T. Complete Genomic Sequence of Nitrogen-fixing Symbiotic Bacterium Bradyrhizobium japonicum USDA110. DNA Res. 2002;9:189–97.PubMed 

    Google Scholar 
    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc R Soc B: Biol Sci. 2018;285:20172654.
    Google Scholar 
    Xiang T, Lehnert E, Jinkerson RE, Clowez S, Kim RG, Denofrio JC, et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun. 2020;11:1–9.CAS 

    Google Scholar  More

  • in

    Experimentally increased snow depth affects high Arctic microarthropods inconsistently over two consecutive winters

    Callaghan, T. V. et al. Multiple effects of changes in arctic snow cover. Ambio 40, 32–45 (2011).
    Google Scholar 
    Cooper, E. J. Warmer shorter winters disrupt arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271 (2014).
    Google Scholar 
    IPCC. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324. (Cambridge University Press, 2013).Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25–46 (1984).
    Google Scholar 
    Osler, G. H. & Sommerkorn, M. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology 88, 1611–1621 (2007).PubMed 

    Google Scholar 
    Coulson, S. J. et al. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68, 440–470 (2014).CAS 

    Google Scholar 
    Hodkinson, I. D. Terrestrial and freshwater invertebrates. In Arctic Biodiversity Assessment (ed. Barry, T.) 246–274 (Arctic Council, 2013).
    Google Scholar 
    Strathdee, A. T. & Bale, J. S. Life on the edge: Insect ecology in arctic environments. Annu. Rev. Entomol. 43, 85–106 (1998).CAS 
    PubMed 

    Google Scholar 
    Templer, P. H. et al. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biol. Fertil. Soils 48, 413–424 (2012).
    Google Scholar 
    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).CAS 

    Google Scholar 
    Slatyer, R. A., Nash, M. A. & Hoffmann, A. A. Measuring the effects of reduced snow cover on Australia’s alpine arthropods. Austral Ecol. 42, 844–857 (2017).
    Google Scholar 
    Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Glob. Change Biol. 18, 1152–1162 (2012).ADS 

    Google Scholar 
    Sulkava, P. & Huhta, V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Appl. Soil Ecol. 22, 225–239 (2003).
    Google Scholar 
    Konestabo, H. S., Michelsen, A. & Holmstrup, M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Appl. Soil Ecol. 36, 136–146 (2007).
    Google Scholar 
    Coulson, S. J., Leinaas, H. P., Ims, R. A. & Søvik, G. Experimental manipulation of the winter surface ice layer: The effects on a high arctic soil microarthropod community. Ecography 23, 299–306 (2000).
    Google Scholar 
    Dollery, R., Hodkinson, I. D. & Jonsdottir, I. S. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography 29, 111–119 (2006).
    Google Scholar 
    Ávila-Jimenez, M. L., Coulson, S. J., Solhoy, T. & Sjoblom, A. Overwintering of terrestrial Arctic arthropods: The fauna of Svalbard now and in the future. Polar Res. 29, 127–137 (2010).
    Google Scholar 
    Makkonen, M. et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43, 377–384 (2011).CAS 

    Google Scholar 
    Lindo, Z. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biol. Biochem. 91, 271–278 (2015).CAS 

    Google Scholar 
    Hågvar, S. A review of Fennoscandian arthropods living on and in snow. Eur. J. Entomol. 107, 281–298 (2010).
    Google Scholar 
    Hao, C., Chen, T.-W., Wu, Y., Chang, L. & Wu, D. Snow microhabitats provide food resources for winter-active Collembola. Soil Biol. Biochem. 143, 107731 (2020).CAS 

    Google Scholar 
    Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: Implications for decomposition in the Northern Forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    Convey, P. et al. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. J. Therm. Biol. 54, 111–117 (2015).PubMed 

    Google Scholar 
    Krab, E. J., Monteux, S., Weedon, J. T. & Dorrepaal, E. Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biol. Biochem. 138, 107569 (2019).CAS 

    Google Scholar 
    Sörensen, J. G. & Holmstrup, M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 57, 1147–1153 (2011).PubMed 

    Google Scholar 
    Convey, P., Coulson, S. J., Worland, M. R. & Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 41, 1587–1605 (2018).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Reproductive biology of the arctic collembolan Hypogastrura tullbergi. Ecography 22, 31–39 (1999).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Funct. Ecol. 14, 693–700 (2001).
    Google Scholar 
    Kankaanpää, T. et al. Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna. Arct. Antarct. Alp. Res. 50, e1415624 (2018).
    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the high arctic. Plant Sci. 180, 157–167 (2011).CAS 
    PubMed 

    Google Scholar 
    Krab, E. J. et al. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J. Ecol. 106, 599–612 (2018).CAS 

    Google Scholar 
    Wheeler, H. C., Hoye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions-implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).PubMed 

    Google Scholar 
    Wheeler, J. A. et al. The snow and the willows: Earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050 (2016).CAS 

    Google Scholar 
    Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).PubMed 

    Google Scholar 
    Coulson, S. J., Hodkinson, I. D. & Webb, N. R. Microscale distribution patterns in high Arctic soil microarthropod communities: The influence of plant species within the vegetation mosaic. Ecography 26, 801–809 (2003).
    Google Scholar 
    Hodkinson, I. D. et al. Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct. Alp. Res. 30, 306–313 (1998).
    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at Svalbard 1900–2100. Adv. Meteorol. 2011, 893790 (2011).
    Google Scholar 
    Alatalo, J. M., Jagerbrand, A. K. & Cuchta, P. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Sci. Rep. 5, 18161 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coulson, S. J. et al. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol. 16, 147–153 (1996).
    Google Scholar 
    Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in Northern Vermont. Soil Sci. Soc. Am. J. 67, 1234–1242 (2003).ADS 
    CAS 

    Google Scholar 
    van Pelt, W. J. J. et al. Multidecadal climate and seasonal snow conditions in Svalbard. J. Geophys. Res. Earth Surf. 121, 2100–2117 (2016).ADS 

    Google Scholar 
    Semenchuk, P. R. et al. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry 124, 81–94 (2015).
    Google Scholar 
    Sjursen, H., Michelsen, A. & Jonasson, S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol. 30, 148–161 (2005).
    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).
    Google Scholar 
    Harte, J., Rawa, A. & Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).CAS 

    Google Scholar 
    Siepel, H. Life history tactics of soil microarthropods. Biol. Fertil. Soils 18, 263–278 (1994).
    Google Scholar 
    Chernova, N. M., Potapov, M. B., Savenkova, Y. Y. & Bokova, A. I. Ecological significance of parthenogenesis in Collembola. Zool. Zhurnal 88, 1455–1470 (2009).
    Google Scholar 
    Birkemoe, T. & Somme, L. Population dynamics of two collembolan species in an Arctic tundra. Pedobiologia 42, 131–145 (1998).
    Google Scholar 
    Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).
    Google Scholar 
    Widenfalk, L. A., Malmstrom, A., Berg, M. P. & Bengtsson, J. Small-scale Collembola community composition in a pine forest soil—Overdispersion in functional traits indicates the importance of species interactions. Soil Biol. Biochem. 103, 52–62 (2016).CAS 

    Google Scholar 
    Morgner, E. The importance of winter in annual ecosystem respiration in the High Arctic: Effects of snow depth in two vegetation types. Polar Res. 29, 474–474 (2010).
    Google Scholar 
    Green, K. & Slatyer, R. Arthropod community composition along snowmelt gradients in snowbeds in the Snowy Mountains of south-eastern Australia. Austral Ecol. 45, 144–157 (2020).
    Google Scholar 
    Ayres, E. et al. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol. 33, 897–907 (2010).
    Google Scholar 
    Semenchuk, P. R., Elberling, B. & Cooper, E. J. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol. Evol. 3, 2586–2599 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Morsdorf, M. A. et al. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem. 135, 222–234 (2019).CAS 

    Google Scholar 
    Cooper, E. J., Little, C. J., Pilsbacher, A. K. & Morsdorf, M. A. Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci. 30, 857–867 (2019).
    Google Scholar 
    Mundra, S. et al. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen 5, 856–869 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneider, K. & Maraun, M. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49, 61–67 (2005).
    Google Scholar 
    Krab, E. J., Berg, M. P., Aerts, R., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Vascular plant litter input in subarctic peat bogs changes Collembola diets and decomposition patterns. Soil Biol. Biochem. 63, 106–115 (2013).CAS 

    Google Scholar 
    Jucevica, E. & Melecis, V. Global warming affect Collembola community: A long-term study. Pedobiologia 50, 177–184 (2006).
    Google Scholar 
    Krab, E. J., Oorsprong, H., Berg, M. P. & Cornelissen, J. H. C. Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 24, 1362–1369 (2010).
    Google Scholar 
    Zettel, J. Alpine Collembola—Adaptations and strategies for survival in harsh environments. Zool. Anal. Complex Syst. 102, 73–89 (2000).
    Google Scholar 
    Block, W. Terrestrial arthropods and low-temperature. Cryobiology 18, 436–444 (1981).CAS 
    PubMed 

    Google Scholar 
    Semenchuk, P. R., Christiansen, C. T., Grogan, P., Elberling, B. & Cooper, E. J. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem. J. Geophys. Res. Biogeosci. 121, 1236–1248 (2016).
    Google Scholar 
    Semenchuk, P. R. et al. Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard. Sci. Total Environ. 646, 158–167 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillespie, M. A. K. et al. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 49, 718–731 (2020).PubMed 

    Google Scholar 
    Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry Valleys: Early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).CAS 
    PubMed 

    Google Scholar 
    Staub, B. & Delaloye, R. Using near-surface ground temperature data to derive snow insulation and melt indices for mountain permafrost applications. Permafr. Periglac. Process. 28, 237–248 (2017).
    Google Scholar 
    Rendos, M. et al. Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur. J. Soil Biol. 75, 180–187 (2016).
    Google Scholar 
    Fjellberg, A. The Collembola of the Norwegian Arctic Islands (Norsk Polarinstitutt, 1994).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020). Accessed 06 June 2020. More

  • in

    Abiotic conditions shape spatial and temporal morphological variation in North American birds

    Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning-Gaese, K. & Schleuning, M. Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283, 20152444 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Grant, P. R. Inheritance of size and shape in a population of Darwin’s finches, Geospiza conirostris. Proc. R. Soc. Lond. B 220, 219–236 (1983).
    Google Scholar 
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gött. Stud. 3, 595–708 (1847).
    Google Scholar 
    Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    Altshuler, D. L. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).PubMed 

    Google Scholar 
    Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: is there any evidence? Evol. Appl. 7, 156–168 (2014).PubMed 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).PubMed 

    Google Scholar 
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. J. R. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
    Google Scholar 
    Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Declining body sizes in North American birds associated with climate change. Oikos 119, 1047–1055 (2010).
    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 

    Google Scholar 
    DeSante, D. F., Saracco, J. F., O’Grady, D. R., Burton, K. M. & Walker, B. L. Methodological considerations of the Monitoring Avian Productivity and Survivorship (MAPS) program. Stud. Avian Biol. 29, 28–45 (2004).West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 

    Google Scholar 
    Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dubiner, S. & Meiri, S. Widespread recent changes in morphology of Old World birds, global warming the immediate suspect. Glob. Ecol. Biogeogr. 31, 791–801 (2022).
    Google Scholar 
    Ballinger, M. A. & Nachman, M. W. The contribution of genetic and environmental effects to Bergmann’s rule and Allen’s rule in house mice. Am. Nat. https://doi.org/10.1086/719028 (2022).Andrew, S. C., Hurley, L. L., Mariette, M. M. & Griffith, S. C. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).CAS 
    PubMed 

    Google Scholar 
    Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B 286, 20191332 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Salewski, V., Siebenrock, K.-H., Hochachka, W. M., Woog, F. & Fiedler, W. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE 9, e101927 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 

    Google Scholar 
    Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010).PubMed 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rollinson, C. R. et al. Working across space and time: nonstationarity in ecological research and application. Front. Ecol. Environ. 19, 66–72 (2021).
    Google Scholar 
    Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. eLife 7, e27166 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).PubMed 

    Google Scholar 
    Baldwin, M. W., Winkler, H., Organ, C. L. & Helm, B. Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol. 23, 1050–1063 (2010).CAS 
    PubMed 

    Google Scholar 
    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, M. P., Jahn, A. E. & Mason, N. A. Morphology of migration: associations between wing shape, bill morphology and migration in kingbirds (Tyrannus). Biol. J. Linn. Soc. 135, 71–83 (2022).
    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Elsevier, 2010).Clegg, S. M., Kelly, J. F., Kimura, M. & Smith, T. B. Combining genetic markers and stable isotopes to reveal population connectivity and migration patterns in a neotropical migrant, Wilson’s warbler (Wilsonia pusilla). Mol. Ecol. 12, 819–830 (2003).CAS 
    PubMed 

    Google Scholar 
    Bell, C. P. Leap-frog migration in the fox sparrow: minimizing the cost of spring migration. Condor 99, 470–477 (1997).
    Google Scholar 
    Billerman, S., Keeney, B., Rodewald, P. & Schulenberg, T. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).Desrochers, A. Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91, 1577–1582 (2010).CAS 
    PubMed 

    Google Scholar 
    Swaddle, J. P. & Lockwood, R. Morphological adaptations to predation risk in passerines. J. Avian Biol. 29, 172–176 (1998).
    Google Scholar 
    Chown, S. L. & Klok, C. J. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455 (2003).
    Google Scholar 
    Hsiung, A. C., Boyle, W. A., Cooper, R. J. & Chandler, R. B. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications: animal altitudinal migration review. Biol. Rev. 93, 2049–2070 (2018).PubMed 

    Google Scholar 
    Barras, A. G., Liechti, F. & Arlettaz, R. Seasonal and daily movement patterns of an alpine passerine suggest high flexibility in relation to environmental conditions. J. Avian Biol. 52, jav.02860 (2021).
    Google Scholar 
    Spence, A. R. & Tingley, M. W. Body size and environment influence both intraspecific and interspecific variation in daily torpor use across hummingbirds. Funct. Ecol. 35, 870–883 (2021).CAS 

    Google Scholar 
    Moreau, R. E. Variation in the western Zosteropidae (Aves). Bull. Br. Mus. Nat. Hist. Zool. 4, 311–433 (1957).
    Google Scholar 
    Hamilton, T. H. The adaptive significances of intraspecific trends of variation in wing length and body size among bird species. Evolution 15, 180–194 (1961).
    Google Scholar 
    Hodkinson, I. D. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80, 489–513 (2005).PubMed 

    Google Scholar 
    Feinsinger, P., Colwell, R. K., Terborgh, J. & Chaplin, S. B. Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. Am. Nat. 113, 481–497 (1979).
    Google Scholar 
    Aldrich, J. W. Ecogeographical Variation in Size and Proportions of Song Sparrows (Melospiza melodia) (American Ornithological Society, 1984).Sun, Y. et al. The role of climate factors in geographic variation in body mass and wing length in a passerine bird. Avian Res. 8, 1 (2017).Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed 

    Google Scholar 
    McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).PubMed 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).CAS 
    PubMed 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. 5, 987–994 (2021).PubMed 

    Google Scholar 
    Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).CAS 
    PubMed 

    Google Scholar 
    Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).CAS 
    PubMed 

    Google Scholar 
    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).
    Google Scholar 
    Prum, R. O. Interspecific social dominance mimicry in birds: social mimicry in birds. Zool. J. Linn. Soc. 172, 910–941 (2014).
    Google Scholar 
    Pyle, P. Identification Guide to North American Birds: A Compendium of Information on Identifying, Ageing, and Sexing ‘Near-Passerines’ and Passerines in the Hand (Slate Creek Press, 1997).Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) (US Geological Survey, 2011).Thornton, M. M. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 (ORNL Distributed Active Archive Center, 2020).Greenewalt, C. H. The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans. Am. Philos. Soc. 65, 1–67 (1975).
    Google Scholar 
    Longo, G. & Montévil, M. Perspectives on Organisms: Biological Time, Symmetries, and Singularities (Springer, 2014).Harvey, P. H. in Scaling in Biology (eds Brown, J. H. & West, G. B.) 253–265 (Oxford Univ. Press, 2000).Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5 (2013).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 

    Google Scholar 
    Nudds, R. L., Kaiser, G. W. & Dyke, G. J. Scaling of avian primary feather length. PLoS ONE 6, e15665 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nudds, R. Wing-bone length allometry in birds. J. Avian Biol. 38, 515–519 (2007).
    Google Scholar 
    Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0 (Stan Development Team, 2018); http://mc-stan.orgCarpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).
    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2018).Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdisCramp, S. & Brooks, D. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic, Vol. VI. Warblers (Oxford Univ. Press, 1992).Che-Castaldo, J., Che-Castaldo, C. & Neel, M. C. Predictability of demographic rates based on phylogeny and biological similarity. Conserv. Biol. 32, 1290–1300 (2018).PubMed 

    Google Scholar 
    Villemereuil, P., de, Wells, J. A., Edwards, R. D. & Blomberg, S. P. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. & Kinnison, M. T. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).PubMed 

    Google Scholar 
    Gingerich, P. Rates of evolution: effects of time and temporal scaling. Science 222, 159–162 (1983).CAS 
    PubMed 

    Google Scholar 
    Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020).Gingerich, P. D. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40, 657–675 (2009).
    Google Scholar 
    Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151–163 (1995).PubMed 

    Google Scholar 
    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).PubMed 

    Google Scholar  More