More stories

  • in

    Mountain- and brown hare genetic polymorphisms to survey local adaptations and conservation status of the heath hare (Lepus timidus sylvaticus, Nilsson 1831)

    Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 1–11, https://doi.org/10.2307/3504302 (1995).Bergengren, A. On genetics, evolution and history of distribution of the heath-hare, a distinct population of the Arctic hare, Lepus timidus Lin. Swed. Wildl. (Viltrevy) 6, 381–460 (1969).
    Google Scholar 
    Thulin, C.-G. The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus? Mamm. Rev. 33, 29–42 (2003).Article 

    Google Scholar 
    Mills, L. S. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Nat.Acad. Sci. 110, 7360–7365 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zimova, M. et al. Lack of phenological shift leads to increased camouflage mismatch in mountain hares. Proc.Royal Soc. B: Biol. Sci. 287, 20201786 (2020).Article 

    Google Scholar 
    Levänen, R., Kunnasranta, M. & Pohjoismäki, J. Mitochondrial DNA introgression at the northern edge of the brown hare (Lepus europaeus) range. Ann Zool Fennici 55, 15–24 (2018).Article 

    Google Scholar 
    Thulin, C.-G., Winiger, A., Tallian, A. G. & Kindberg, J. Hunting harvest data in Sweden indicate precipitous decline in the native mountain hare subspecies Lepus timidus sylvaticus (heath hare). J. Nat. Conserv. 64, 126069 (2021).Article 

    Google Scholar 
    Thulin, C.-G., Jaarola, M. & Tegelström, H. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6, 463–467 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pohjoismäki, J. L. O., Michell, C., Levänen, R. & Smith, S. Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci. Rep. 11, 15771 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb) 97, 222–234 (2006).Article 
    CAS 

    Google Scholar 
    Hamill, R. M., Doyle, D. & Duke, E. J. Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity (Edinb) 97, 355–365 (2006).Article 
    CAS 

    Google Scholar 
    Leach, K., Montgomery, W. I. & Reid, N. Biogeography, macroecology and species’ traits mediate competitive interactions in the order Lagomorpha. Mamm. Rev. 45, 88–102 (2015).Article 

    Google Scholar 
    Marques, J. P. et al. Data Descriptor: Mountain hare transcriptome and diagnostic markers as resources to monitor hybridization with European hares. Sci. Data 4, 1–11 (2017).Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP358660 (2022).Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Preprint at http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Marques, J. P. et al. An annotated draft genome of the mountain hare (Lepus timidus). Genome Biol. Evol. 12, 3656–3662 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broad Institute. Picard toolkit. Broad Institute, GitHub repository. Preprint at https://broadinstitute.github.io/picard/ (2019).Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 1207.3907 (2012).Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Michell, C. T., Pohjoismäki, J. L. O., Spong, G. & Thulin, C.-G. Mountain- and brown hare genetic polymorphisms to survey local adaptations and conservation status of the heath hare (Lepus timidus sylvaticus, Nilsson 1831), Dryad, https://doi.org/10.5061/dryad.3bk3j9kmp (2022).Khan, A. & Mathelier, A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45 (2017).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30 (2013).Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44 (2016).Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levänen, R., Thulin, C.-G., Spong, G. & Pohjoismäki, J. L. O. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PloS One 13, e0191790 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giska, I. et al. The evolutionary pathways for local adaptation in mountain hares. Mol. Ecol. 31, 1487–1503 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thulin, C.-G., Isaksson, M. & Tegelström, H. The origin of Scandinavian mountain hares (Lepus timidus). Gibier Faune Savage/Game and Wildlife 14, 463–475 (1997).
    Google Scholar 
    Ferreira, M. S. et al. The legacy of recurrent introgression during the radiation of hares. Syst. Biol. 70, 593–607 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Effects of different pioneer and exotic species on the changes of degraded soils

    Sacristán, D., Peñarroya, B., Recatalá, L. Increasing the Knowledge on the Management of Cu-Contaminated Agricultural Soils by Cropping Tomato (Solanum Lycopersicum L.). Land Degrad. Dev. 26, 587–595 (2015).FAO. Land Degradation Assessment in Drylands. Manual for Local Level Assessment of Land Degradation and Sustainable Land Management. Part 1: Planning and Methodological Approach, Analysis and Reporting. https://www.fao.org/3/i6362e/i6362e.pdf (Food and Agriculture Organization of the United Nations, 2011).Vlachodimos, K., Papatheodorou, E. M., Diamantopoulos, J. & Monokrousos, N. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps. Environ Monit. Assess. 185, 6921–6932 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Misano, G. & Di Pietro, R. Habitat 9250 “Quercus trojana woods” in Italy. Fitosociologia 44, 235–238 (2007).
    Google Scholar 
    Biondi, E. et al. A contribution towards the knowledge of semideciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41(1), 3–28 (2004).MathSciNet 

    Google Scholar 
    Brunetti, G. et al. Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad. Dev. 29, 91–104 (2017).Article 

    Google Scholar 
    Poblador, S. et al. The influence of the invasive alien nitrogen-fixing Robinia pseudoacacia L. on soil nitrogen availability in a mixed Mediterranean riparian forest. Eur. J. For. Res. 138, 1083–1093 (2019).Article 
    CAS 

    Google Scholar 
    Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302 (2017).Article 

    Google Scholar 
    Doran, J.W., Parkin, T.B. Quantitative indicators of soil quality: a minimum data set. in Methods for Assessing Soil Quality (eds. Doran, J.W., Jones, A.J.). 25–37 (Soil Science Society of America, 1996).Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C. & Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37, 877–887 (2005).Article 
    CAS 

    Google Scholar 
    Andriani, G. F. & Walsh, N. An example of the effects of anthropogenic changes on natural environment in the Apulian karst (southern Italy). Environ. Geol. 58, 313–325 (2009).Article 
    ADS 

    Google Scholar 
    Bisantino, T., Pizzo, V., Polemio, M. & Gentile, F. Analysis of the flooding event of October 22–23, 2005 in a small basin in the province of Bari (Southern Italy). J. Agric. Eng. 531, 197–204 (2016).Article 

    Google Scholar 
    Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
    Google Scholar 
    Tartarino, P. Inventario dei Boschi Spontanei e dei Rimboschimenti delle Provincie BAT e Bari e Stima del Loro Volume Legnoso e della sua Frazione Prelevabile nel Prossimo Ventennio. (Rapporto Tecnico Scientifico, 2011).Ismail, A. et al. Chemical composition and biological activities of Tunisian Cupressus arizonica Greene essential oils. Chem. Biodivers. 11, 150–160 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Navarro, A. et al. Feasibility of SRC Species for growing in Mediterranean conditions. Bioenerg. Res. 9, 208–223 (2015).Article 

    Google Scholar 
    Perrino, E. V., Brunetti, G. & Farrag, K. Plant communities in multi-metal contaminated soils: A case study in the National Park of Alta Murgia (Apulia Region-Southern Italy). Int. J. Phytoremediat. 16, 871–888 (2014).Article 
    CAS 

    Google Scholar 
    VV AA Perizia Studi per il Riequilibrio Socio-Economico dell’area Interessata dall’invaso sul Torrente Locone. Consorzio Di Bonifica Apulo Lucano (1986).Lavarra, P. et al. Il Sistema Carta della Natura della Regione Puglia. (ISPRA, Serie Rapporti 204, 2014).Sparks, D. L. et al. Method of Soil Analysis: Part 3 (American Society of Agronomy Inc, 1996).Book 

    Google Scholar 
    Brink, R. H. Jr., Dubach, P. & Lynch, D. L. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 89, 157–166 (1960).Article 
    ADS 
    CAS 

    Google Scholar 
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).Article 
    CAS 
    PubMed 

    Google Scholar 
    García, C., Hernandez, T. & Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 28, 123–134 (1997).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).Article 
    CAS 

    Google Scholar 
    Gregorich, E. G., Wen, G., Voroney, R. P. & Kachanoski, R. G. Calibration of a rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 22, 1009–1011 (1990).Article 
    CAS 

    Google Scholar 
    Nannipieri, P., Ceccanti, B., Cervelli, S. & Matarese, E. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980).Article 
    ADS 
    CAS 

    Google Scholar 
    Tabatabai, M.A. (1994) Soil enzymes. in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (eds. Weaver, R.W. et al.). 775–833 (Soil Science Society of America, Inc., 1996)Traversa, A., Said-Pullicino, D., D’Orazio, V., Gigliotti, G., & Senesi, N. Properties of humic acids in Mediterranean forest soils (Southern Italy): Influence of different plant covering. Eur. J. For. Res. 130, 1045–1054 (2011)De Marco, A. et al. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 51, 1–15 (2012).Article 
    CAS 

    Google Scholar 
    Wei, G. et al. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiol. Ecol. 68, 320–328 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulze, E. D., Gebauer, G., Ziegler, H. & Lange, O. L. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88, 451–455 (1991).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zahran, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veste, M. & Kriebitzsch, W. U. Influence of drought stress on photosynthesis, transpiration, and growth of juvenile black locust (Robinia pseudoacacia L.). Forstarchiv 84, 35–42 (2013).
    Google Scholar 
    Nicolescu, V. N. et al. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 31, 1081–1101 (2020).Article 
    CAS 

    Google Scholar 
    Sposito, G. The Chemistry of Soil (Oxford University Press, 2008).
    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337. https://doi.org/10.1038/s41598-017-01418-8 (2017).Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Frankenberger, W. T. & Dick, W. A. Relationships between enzyme, activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945–951 (1983).Article 
    ADS 
    CAS 

    Google Scholar 
    Frankenberger, W.T., Tabatabai, M.A. Amidase activity in soils III. Stability and distribution. Soil Sci. Soc. Am. J. 45, 333–338 (1981).Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018).Article 
    CAS 

    Google Scholar 
    Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L. & Ros, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem. 32, 1877–1883 (2000).Article 
    CAS 

    Google Scholar 
    García-Gil, J. C., Plaza, C., Solker-Rovira, P. & Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32, 1907–1913 (2000).Article 

    Google Scholar 
    Insam, H. & Domsch, K. H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 15, 177–188 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 31, 85–91 (2000).Article 
    CAS 

    Google Scholar 
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210, 21–32 (1999).Article 
    CAS 

    Google Scholar 
    De Marco, A., Esposito, F., Berg, B., Zarrelli, A. & Virzo De Santo, A. Litter inhibitory effects on soil microbial biomass activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. Forest 9, 766. https://doi.org/10.3390/f9120766 (2018).Article 

    Google Scholar 
    Haghverdi, K. & Kooch, Y. Effects of diversity of tree species on nutrient cycling and soil-related processes. CATENA 178, 335–344 (2019).Article 
    CAS 

    Google Scholar 
    Anderson, H. T. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).Article 

    Google Scholar 
    Jenkinson, D.S., Ladd, J.N. Microbial biomass in soil: Measurement and turnover. in Soil Biochemistry (eds. Paul, E.A., Ladd, J.N.). 415–471 (Marcel Dekker Inc., 1981) More

  • in

    Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes

    Cohort demographicsA total of 206 female participants were enrolled in the study and passed our quality control standards. All participants were required to be between the ages of 18–26 years old (22.5 ± 2.1) and to be born and at the time living in one of four geographically distinct regions of the world: Barbados; Santiago, Chile; Pretoria, S. Africa; and Bangkok, Thailand. The regions do, however, differ by an order of magnitude in their geographic spread as the intra-distance separating the residence neighborhood of participants ranged from 34 (Barbados) to 681 km (Pretoria, S. Africa) (Fig. S2). The Chilean and the South African datasets are further divided into two contiguous sub-regions, or neighborhoods, to allow for a micro-geographic analysis. The study population is largely dominated by individuals with self-identified Thai heritage (33%), followed by Black African (16%), Afro-Caribbean (14%) and white (14%) descent, although 19% of the Chilean population did not report ethnicity.Study participants, despite the divergent geographies, mostly have similar dietary and lifestyle habits (Table S1). Over half the study population (62%) have a normal BMI, with the mean BMI in this range (22.6 ± 5.5). The diets of the different cohorts are also similar as of the total cohort, 78% consume a starch heavy diet (≥ 4 days a week) of rice, bread and pasta, followed by 66% who frequently consume (≥ 4 days a week) vegetables and fruit and 49% who frequently consume dairy products. The study population is split by level of tobacco exposure, with 51% of the population having never smoked, and 43% being exposed to second-hand smoke through living with a smoker. Over half (56%) of the study population own one or more pets.Stool microbiomeThe OTUs identified using the UPARSE pipeline17 were used to compute the alpha diversity of the microbial communities using the Chao1 (species richness) and Shannon (species evenness) indices. The mean Shannon indices reveal that the microbiota diversity is only significant between Thailand-Chile with FDR  More

  • in

    Improving quantitative synthesis to achieve generality in ecology

    Houlahan, J. E., McKinney, S. T., Anderson, T. M. & McGill, B. J. The priority of prediction in ecological understanding. Oikos 126, 1–7 (2017).Article 

    Google Scholar 
    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).Article 

    Google Scholar 
    Elliott-Graves, A. Generality and causal interdependence in ecology. Philos. Sci. 85, 1102–1114 (2018).Article 

    Google Scholar 
    Fox, J. W. The many roads to generality in ecology. Philos. Top. 9, 83–104 (2019).Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).Article 
    PubMed 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. An equilibrium theory of insular zoogeography. Evolution 17, 373–387 (1963).Article 

    Google Scholar 
    Gurevitch, J., Fox, G. A., Wardle, G. M., Inderjit & Taub, D. Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol. Lett. 14, 407–418 (2011).Article 
    PubMed 
    CAS 

    Google Scholar 
    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Anderson, S. C. et al. Trends in ecology and conservation over eight decades. Front. Ecol. Environ. 19, 274–282 (2021).Article 

    Google Scholar 
    Kneale, D., Thomas, J., O’Mara-Eves, A. & Wiggins, R. How can additional secondary data analysis of observational data enhance the generalisability of meta-analytic evidence for local public health decision making? Res. Synth. Methods 10, 44–56 (2019).Article 
    PubMed 

    Google Scholar 
    Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R. & Dalton, C. M. Debunking myths and urban legends about meta-analysis. Organ. Res. Methods 14, 306–331 (2011).Article 

    Google Scholar 
    Polit, D. F. & Beck, C. T. Generalization in quantitative and qualitative research: myths and strategies. Int. J. Nurs. Stud. 47, 1451–1458 (2010).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Lundberg, I., Johnson, R. & Stewart, B. M. What is your estimand? Defining the target quantity connects statistical evidence to theory. Am. Sociol. Rev. 86, 532–565 (2021).Article 

    Google Scholar 
    Lawrance, R. et al. What is an estimand & how does it relate to quantifying the effect of treatment on patient-reported quality of life outcomes in clinical trials? J. Patient-Rep. Outcomes 4, 68 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Findley, M. G., Kikuta, K. & Denly, M. External validity. Annu. Rev. Polit. Sci. 24, 365–393 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. External validity: from do-calculus to transportability across populations. Stat. Sci. 29, 579–595 (2014).Article 

    Google Scholar 
    Westreich, D., Edwards, J. K., Lesko, C. R., Cole, S. R. & Stuart, E. A. Target validity and the hierarchy of study designs. Am. J. Epidemiol. 188, 438–443 (2019).Article 
    PubMed 

    Google Scholar 
    Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2020).Article 

    Google Scholar 
    Rohrer, J. M. & Arslan, R. C. Precise answers to vague questions: issues with interactions. Adv. Methods Pract. Psychol. Sci. 4, 1–19 (2021).
    Google Scholar 
    Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).
    Google Scholar 
    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Konno, K. et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol. Evol. 10, 6373–6384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).Article 

    Google Scholar 
    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).Article 
    PubMed 
    CAS 

    Google Scholar 
    Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be avoided. Int. J. Epidemiol. 42, 1012–1014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spake, R. et al. Implications of scale dependence for cross-study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2021).Article 
    PubMed 

    Google Scholar 
    Spake, R. & Doncaster, C. P. Use of meta-analysis in forest biodiversity research: key challenges and considerations. For. Ecol. Manag. 400, 429–437 (2017).Article 

    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).Article 
    PubMed 

    Google Scholar 
    Schielzeth, H. & Nakagawa, S. Conditional repeatability and the variance explained by reaction norm variation in random slope models. Methods Ecol. Evol. 13, 1214–1223 (2022).Article 

    Google Scholar 
    Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2021).Article 
    PubMed 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-Scale Assess. Educ. 6, 8 (2018).Article 

    Google Scholar 
    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).Article 

    Google Scholar 
    Ojha, M., Naidu, D. G. T. & Bagchi, S. Meta-analysis of induced anti-herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. J. Ecol. 110, 799–816 (2022).Dodds, K. C. et al. Material type influences the abundance but not richness of colonising organisms on marine structures. J. Environ. Manag. 307, 114549 (2022).Article 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    PubMed 
    CAS 

    Google Scholar 
    Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta- analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).Article 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    PubMed 
    CAS 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).Article 
    PubMed 

    Google Scholar 
    Glass, G. V. Primary, secondary, and meta-analysis of research. Educ. Res. 5, 3–8 (1976).Article 

    Google Scholar 
    Glass, G. V. Meta‐analysis at 25: a personal history. Education in Two Worlds https://ed2worlds.blogspot.com/2022/07/meta-analysis-at-25-personal-history.html (2000).Cooper, H. M. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl. Soc. 1, 104–126 (1988).
    Google Scholar 
    Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Gerstner, K. et al. Will your paper be used in a meta-analysis? Make the reach of your research broader and longer lasting. Methods Ecol. Evol. 8, 777–784 (2017).Article 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Simons, D. J., Shoda, Y. & Lindsay, D. S. Constraints on Generality (CoG): a proposed addition to all empirical papers. Perspect. Psychol. Sci. 12, 1123–1128 (2017).Article 
    PubMed 

    Google Scholar 
    Yarkoni, T. The generalizability crisis. Behav. Brain Sci. https://doi.org/10.1017/S0140525X20001685 (2020).Lopez, P. M., Subramanian, S. V. & Schooling, C. M. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J. Clin. Epidemiol. 113, 123–128 (2019).Article 
    PubMed 

    Google Scholar 
    Campbell, D. T. in Advances in QuasiExperimental Design and Analysis (ed. Trochim, W.) 67–77 (Jossey-Bass, 1986).Spake, R. et al. Meta‐analysis of management effects on biodiversity in plantation and secondary forests of Japan. Conserv. Sci. Pract. 1, e14 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forest Ecosystem Diversity Basic Survey (in Japanese) (Forestry Agency of Japan, 2019); https://www.rinya.maff.go.jp/j/keikaku/tayouseichousa/index.htmlIto, S., Ishigamia, S., Mizoue, N. & Buckley, G. P. Maintaining plant species composition and diversity of understory vegetation under strip-clearcutting forestry in conifer plantations in Kyushu, southern Japan. For. Ecol. Manag. 231, 234–241 (2006).Article 

    Google Scholar 
    Utsugi, E. et al. Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests. For. Ecol. Manag. 237, 15–28 (2006).Article 

    Google Scholar 
    Kominami, Y. et al. Classification of bird-dispersed plants by fruiting phenology, fruit size, and growth form in a primary lucidophyllous forest: an analysis, with implications for the conservation of fruit–bird interactions. Ornthological Sci. 2, 3–23 (2003).Article 

    Google Scholar 
    Tsujino, R. & Matsui, K. Forest regeneration inhibition in a mixed broadleaf-conifer forest under sika deer pressure. J. For. Res. 27, 230–235 (2021).Article 

    Google Scholar 
    Spake, R., Soga, M., Catford, J. A. & Eigenbrod, F. Applying the stress-gradient hypothesis to curb the spread of invasive bamboo. J. Appl. Ecol. 58, 1993–2003 (2021).Article 

    Google Scholar 
    Mize, T. D. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol. Sci. 6, 81–117 (2019).Article 

    Google Scholar 
    Karaca-Mandic, P., Norton, E. C. & Dowd, B. Interaction terms in nonlinear models. Health Serv. Res. 47, 255–274 (2012).Article 
    PubMed 

    Google Scholar 
    Spake, R. et al. Forest damage by deer depends on cross-scale interactions between climate, deer density and landscape structure. J. Appl. Ecol. 57, 1376–1390 (2020).McCabe, C. J., Kim, D. S. & King, K. M. Improving present practices in the visual display of interactions. Adv. Methods Pract. Psychol. Sci. 1, 147–165 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christie, A. P. et al. Innovation and forward‐thinking are needed to improve traditional synthesis methods: a response to Pescott and Stewart. J. Appl. Ecol. 59, 1191–1197 (2022).Article 

    Google Scholar 
    Haddaway, N. R. et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 8, 22 (2019).Delory, B. M., Li, M., Topp, C. N. & Lobet, G. archiDART v3.0: a new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7, 22 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkel, J. M. The future of scientific figures. Nature 554, 133–134 (2018).Article 
    PubMed 
    CAS 

    Google Scholar 
    Weaver, S. & Gleeson, M. P. The importance of the domain of applicability in QSAR modeling. J. Mol. Graph. Model. 26, 1315–1326 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    Sutton, C. et al. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 11, 4428 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Pearl, J. & Bareinboim, E. Transportability of causal and statistical relations: a formal approach. In 2011 IEEE 11th International Conference on Data Mining Workshops https://doi.org/10.1109/ICDMW.2011.169 (IEEE, 2011).Munthe-Kaas, H., Nøkleby, H. & Nguyen, L. Systematic mapping of checklists for assessing transferability. Syst. Rev. 8, 22 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A. & Vandenbroucke, J. P. How to assess the external validity of therapeutic trials: a conceptual approach. Int. J. Epidemiol. 39, 89–94 (2010).Article 
    PubMed 
    CAS 

    Google Scholar 
    Schloemer, T. & Schröder-Bäck, P. Criteria for evaluating transferability of health interventions: a systematic review and thematic synthesis. Implement. Sci. 13, 88 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Hermida, J. R., Calafat, A., Becoña, E., Tsertsvadze, A. & Foxcroft, D. R. Assessment of generalizability, applicability and predictability (GAP) for evaluating external validity in studies of universal family-based prevention of alcohol misuse in young people: systematic methodological review of randomized controlled trials. Addiction 107, 1570–1579 (2012).Article 
    PubMed 

    Google Scholar 
    Avellar, S. A. et al. External validity: the next step for systematic reviews? Eval. Rev. 41, 283–325 (2017).Article 
    PubMed 

    Google Scholar 
    Bareinboim, E. & Pearl, J. A general algorithm for deciding transportability of experimental results. J. Causal Inference 1, 107–134 (2013).Article 

    Google Scholar 
    Degtiar, I. & Rose, S. A review of generalizability and transportability. Preprint at https://doi.org/10.48550/arXiv.2102.11904 (2021).Bareinboim, E. & Pearl, J. Meta-transportability of causal effects: a formal approach. J. Mach. Learn. Res. 31, 135–143 (2013).
    Google Scholar 
    Jamieson, D. Scientific uncertainty: how do we know when to communicate research findings to the public? Sci. Total Environ. 184, 103–107 (1996).Article 
    CAS 

    Google Scholar 
    Burchett, H. E. D., Mayhew, S. H., Lavis, J. N. & Dobrow, M. J. When can research from one setting be useful in another? Understanding perceptions of the applicability and transferability of research. Health Promot. Int. 28, 418–430 (2013).Article 
    PubMed 

    Google Scholar 
    Forscher, P. et al. Build up big-team science. Nature 601, 505–507 (2022).Article 

    Google Scholar 
    Whalen, M. A. et al. Climate drives the geography of marine consumption by changing predator communities. Proc. Natl Acad. Sci. USA 117, 28160–28166 (2020).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    Moshontz, H. et al. The Psychological Science Accelerator: advancing psychology through a distributed collaborative network. Adv. Methods Pract. Psychol. Sci. 1, 501–515 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, I. C. A general framework for the analysis of adaptive experiments. Stat. Sci. 36, 465–492 (2021).Article 

    Google Scholar 
    Clark, M. Shrinkage in Mixed Effects Models https://m-clark.github.io/posts/2019-05-14-shrinkage-in-mixed-models/ (2019).Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).Article 

    Google Scholar 
    Mengersen, K., Gurevitch, J. & Schmid, C. H. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, U. et al.) 300–312 (Princeton Univ. Press, 2013).Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salguero-Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).Article 

    Google Scholar  More

  • in

    Network motifs shape distinct functioning of Earth’s moisture recycling hubs

    UTrack atmospheric moisture tracking modelThe UTrack atmospheric moisture tracking model is a novel Lagrangian model that tracks parcels of moisture forward in three-dimensional space9. UTrack is the first moisture tracking model to employ ERA5 reanalysis data8. The basic principle of the model is that for each mm of evaporation, a certain number of “moisture parcels” is released and subsequently tracked through time and space. At each time step, the moisture budget of the parcels is updated based on evaporation and precipitation at the respective time and location, meaning that for each location of evaporation, a detailed image of the “footprint” of evaporation can be created. All types of evapotranspiration are included, and here is simply called evaporation.For each mm of evaporation, 100 parcels are released 50 hPa above the surface height at random spatial locations within each 0.25° grid cell of input evaporation data. The trajectories of the parcels are based on interpolated three-dimensional ERA5 wind speed and wind direction data, which also have a horizontal resolution of 0.25° and consist of 25 pressure layers in the atmospheric column. The spatial coordinates of each parcel are updated at each time step of 0.1 h. Also, at each time step, there is a certain probability that a parcel is redistributed randomly along the atmospheric column such that, on average, every parcel is redistributed every 24 h (see methods section Moisture recycling dataset: validation and uncertainties below for further details). The relative probability of the new position in the atmospheric column is scaled with the vertical moisture profile. Parcels are tracked for 30 days or until 99% of their moisture has precipitated.To allocate a certain fraction of any moisture parcel to precipitation events at the current time and location, ERA5 hourly total precipitation (P) and total precipitable water (TPW) are interpolated to the simulation time step of 0.1 h. The amount of moisture that precipitates at a certain time step equals the amount of precipitation at that time step over the total precipitable water in the atmospheric water column (P/TPW). Specifically, precipitation A in mm per time step at location x, y at time t that originated as evaporation from a particular source is described as:$${A}_{x,y,t}={P}_{x,y,t}frac{{W}_{{{{{{{{rm{parcel,t}}}}}}}}}{E}_{{{{{{{{rm{source,t}}}}}}}}}}{{{{{{mathrm{TP}}}}}}{{{{{{mathrm{W}}}}}}}_{x,y,t}}$$
    (1)
    with P being precipitation in mm at time step t, Wparcel,t (mm) the amount of moisture in the parcel of interest, Esource,t the fraction of moisture present in the parcel at time t that has evaporated from the source, and TPW (mm) the precipitable water in the atmospheric water column. The moisture content of parcels is updated each time step using evaporation and precipitation at its current location:$${W}_{{{{{{{{rm{parcel,t}}}}}}}}}={W}_{{{{{{{{rm{parcel,t-1}}}}}}}}}+({E}_{{{{{{{{rm{x,y,t}}}}}}}}}-{P}_{{{{{{{{rm{x,y,t}}}}}}}}})frac{{W}_{{{{{{{{rm{parcel,t-1}}}}}}}}}}{{{{{{mathrm{TP}}}}}}{{{{{{mathrm{W}}}}}}}_{{{{{{{{rm{x,y,t}}}}}}}}}}$$
    (2)
    The moisture (fraction) that has evaporated from the source is updated as follows:$${E}_{{{{{{{{rm{source,t}}}}}}}}}=frac{{E}_{{{{{{{{rm{source,t-1}}}}}}}}}{W}_{{{{{{{{rm{parcel,t-1}}}}}}}}}{A}_{x,y,t}}{{W}_{{{{{{{{rm{parcel,t}}}}}}}}}}$$
    (3)
    The moisture flow mij from evaporation in cell i to precipitation in cell j is aggregated on a monthly basis (mm/month), where [x, y] ∈ j becomes:$${m}_{ij}=mathop{sum }limits_{t=0}^{{{{{{{{rm{month}}}}}}}}}{A}_{j,t}frac{{E}_{i,t}}{{W}_{i,t}}$$
    (4)
    with Wi,t being the tracked amount of moisture from the source cell i at time t. These simulations were performed for all evaporation on Earth during 2008–2017. The results were then aggregated on a mean-monthly basis to produce monthly means, and stored at 0.5 degree resolution. This dataset can be downloaded from ref. 53. For details on how to process the data, we refer to the accompanying paper by ref. 3.Moisture recycling dataset: validation and uncertaintiesAs with all moisture recycling simulations, the ones used in this study rely on a number of assumptions that may affect the moisture recycling rates. All offline moisture recycling models use atmospheric model output to simulate the path of evaporation through the atmosphere to the location where it precipitates. Therefore, there are two sources of uncertainty that affect the moisture recycling estimates: (1) the quality of the atmospheric forcing data and (2) the assumptions in the moisture tracking model.Tuinenburg and Staal (2020)9 explored these sources of uncertainty for a number of locations globally. The effects of a decrease in the quality of the atmospheric forcing data were most important in the vertical resolution of the atmospheric data: the forcing data should have enough vertical levels to resolve any vertical shear in atmospheric moisture transport. If the forcing data has a low vertical resolution, the moisture tracking model is forced with the mean atmospheric flow over a number of layers. In many regions, there are surface moisture flows that are in a different direction than the moisture flow aloft, resulting in a very small vertically integrated transport, which would distort the simulation of atmospheric moisture transport. Compared to the vertical resolution of the forcing data, the horizontal and temporal resolutions were less important in order to keep errors as small as possible. Because of the importance of this high vertical resolution, it was recommended9 to use the ERA5 dataset8 as its forcing dataset, as this currently is the atmospheric reanalysis dataset with the highest vertical resolution.In addition, the change of ERA-interim to ERA5 resulted in a much better land-surface scheme with monthly varying vegetation and better bare soil evaporation. Also, many more observations are assimilated, which results in a better precipitation product compared to ERA-interim. Following this, the tracking of atmospheric moisture using ERA5 allows for a better quality of the atmospheric moisture cycle than before. But, of course, also the already high horizontal resolution of 0.5∘ × 0. 5∘ has the limitation that very localized moisture recycling features like orography and locally varying land use cannot be resolved. Out of these reasons, the uncertainty in the evaporation estimates is a lot larger than that in the precipitation estimates, because of the lack of global evaporation measurements and the difficulty in measuring evaporation in general54,55.There are also uncertainties due to the assumptions in the moisture tracking model that can be split into a category of simulation assumptions and physical assumptions. The simulation assumptions include model formulation (Eulerian vs. Lagrangian model set-ups), time step lengths, number of parcels released, and types of interpolation. Of these simulation assumptions, the most important aspects were the model formulation, with Lagrangian models better able to resolve complex terrain and atmospheric flows. For the other model assumptions (see methods section UTrack atmospheric moisture tracking model), it was chosen to simulate with the highest level of precision before any more information (e.g., more parcels) would no longer affect evaporation footprints and moisture recycling statistics (see ref. 9 for further details). Even though the ERA5 dataset is known to have some precipitation biases in the tropics, the results of UTrack (forced by ERA5) have recently been validated across the tropics by independent measurements of deuterium excess, a measure of a stable isotope that depends on terrestrial precipitation recycling56. UTrack estimates and isotope-based estimates of terrestrial moisture recycling corresponded, especially in tropical rainforests (Kendall’s (overline{tau }=0.52)56), which are found to be moisture recycling hubs on a global scale.Network constructionMotivated by the network-like structure of the data, we here employ a network perspective to study moisture flows. Hence, nodes in such a network are grid cells on a regular spherical grid and edges represent the moisture transported. However, interpreting the dataset directly as a weighted network is neither computationally feasible nor does a weighted network allow for identifying motifs, the building blocks of complex networks17. We, therefore, aim for an approach utilizing an unweighted network.As shown in Fig. S1, moisture recycling strengths are heterogeneously distributed over multiple powers of magnitude. Thus, it is not appropriate to just withdraw the moisture transport volume and include all moisture transport connections within the dataset as equal and unweighted links. Instead, we attempt to highlight the strongest moisture pathways and, thus, the backbone of the Earth’s moisture recycling network. To, on the one hand, include as much moisture volume as possible but also keep the absolute volume of moisture transport represented per edge as similar as possible, we decided to include edges in a data-adaptive way: we step-wise include links starting from the strongest and stop this procedure as the total moisture transport volume exceeds the variable threshold ρ. The resulting edges then represent the backbone of the global moisture recycling network. In the main text, we have shown the results for a network where all edges together represent ρ = 25% of the total moisture transport. Here and in the SI figures, we add a sensitivity analysis for ρ = 20% and ρ = 30% and find that the results are stable for this broader range of total moisture volume thresholds.Network measures and motifsThe topology of an unweighted network is typically encoded in an adjacency matrix A with elements aij indicating if there exists an edge from node i to node j (aij = 1) or not (aij = 0). The degree k of a node i describes the number of adjacent edges pointing towards or away from node i. Hence, the in-degree is defined by25$${k}_{{{{{{mathrm{in}}}}}}}^{i}=mathop{sum }limits_{i=1}^{N}{a}_{ji}$$
    (5)
    and out-degree is defined by25$${k}_{{{{{{mathrm{out}}}}}}}^{i}=mathop{sum }limits_{i=1}^{N}{a}_{ij}.$$
    (6)
    To further analyze the topology of a network and, in particular, the local connectivity patterns, we study the presence of three motifs—the feed-forward loop, the neighboring loop, and the zero loop.The feed-forward loop (FFL) consists of three nodes, A, B, and C, where nodes A and C are directly connected via a detour over node B (intermediary node). Therefore, we have two different pathways that focus on node C. Hence, this motif can be referred to as a directed lens, due to its focused flow from two nodes on one singular and its purely directed linkage. This network motif has been studied in the context of tipping elements and has been proven to facilitate tipping cascades by lowering critical thresholds19. The zero loop (ZL) is made up of a bidirectional connection of two nodes. In contrast to the FFL, where node A does not receive feedback from node C, here, both nodes are dependent on each other without a preferred direction of network flow. This facilitates tipping to a much lesser degree than the FFL motif19. The neighboring loop (NBr) is an extension of the ZL. In this case, there is an additional node connected to one of the nodes of a zero loop. Hence, there is a two-step directionality in the motif, but in contrast to the FFL, this motif is characterized by reciprocity.We count the number of motifs a certain node is involved in the network. The number of FFLs is counted as the number that a certain node is a so-called “target” node. The target node is the node, on which the triangular structure of the motif is converging to, i.e., the node that has been referred to as node C above. The ZL is a symmetric motif for the two involved nodes. Therefore, the number of ZLs of a certain node in the network is counted directly as the number of bidirectional interactions of the inspected node. Lastly, the number of NBrs of a certain node is the number of being in the center of a neighboring loop. With this procedure, each node is characterized by its number of FFLs, ZLs, and NBrs (cf. ref. 19).Motif strength and their spatially aggregated differenceTo assess the presence of motifs and, in particular, their relative frequency, we first determine the numbers of FFLs, ZLs, and NBrs per node. Subsequently, we normalize these counts by the respective maximum to obtain the motif strength, which is shown for each network motif in Fig. S5. In Fig. S5a–c, we display the motifs for the global network, and in Fig. S5d–f for the land-to-land network.To specifically characterize the focus regions by means of the network topology, we evaluate which motifs dominate in which region. Consequently, we compute the difference of the motif strengths shown in Fig. S5 and reveal the patterns shown in Fig. 2. For spatially aggregated motif strength differences (Fig. 2c, d), we then compute the average of the respective values inside the highlighted boxes.Sensitivity to link threshold ρ
    The network analysis featured in the main text uses those moisture recycling edges that together represent ρ = 25% of all atmospheric moisture recycling on Earth. As we aimed to focus on the strongest moisture flows, we chose a threshold of ρ = 25% aggregating the strongest moisture transport pathways. This allows us to reveal the regions of strongest moisture connections, which are located in and close to the tropics, as we expected. Overall, the aim of this thresholding procedure is to utilize a network approach with unweighted edges but also take into account the large spread of moisture recycling strengths. To test the robustness of the results to the threshold value, we here show the same figures as above in the main text but with different thresholds ρ. Note that the error bars in Fig. 2 are based on the analysis featured in this part (the resulting differences using thresholds of ρ = 20% and ρ = 30%).Figures S6 and S7 show the in- and out-degree of the all-to-all and land-to-land network using a threshold of ρ = 20% (Fig. S6) and ρ = 30% (Fig. S7). Note that the color bar has been adjusted as the number of links differs substantially between the networks. The main difference between Figs. S6 and S7 is the greater emphasis on moisture recycling in the mid-latitudes in Fig. S7. This is a direct consequence of considering more, and thus also some weaker, links. Acknowledging this difference, we stress that especially the land-to-land patterns (Figs. S6c, d, S7c, d) are consistent. In particular, the four focus regions, as defined in the main text, stand out as the main global land-to-land moisture recycling hubs. To support this visual analysis of the in- and out-degree pattern, we furthermore compute the motif strengths for both network configurations for quantitative validation of the results.In line with the main text, we compare the FFL and ZL strength (see Fig. 2a–d). Not only the spatial patterns in our sensitivity analysis agree remarkably well with the results in the main text above, but also the focus regions remain basically the same (cf. Fig. S8 for ρ = 20% and Fig. S9 for ρ = 30% with Fig. 2). The only slight change is the shift towards a directed lens (spatially aggregated FFL and ZL strength difference) for the Amazon basin in the all-to-all network for increasing ρ (cf. Fig. S8c vs Fig. S9c vs Fig. 2c). We attribute the overproportional increase of the number of FFLs to those that include at least one oceanic grid cell to this noticeable shift. This underscores our characterization of the Amazon basin as a directed lens.The spatially aggregated FFL and NBr difference (Figs. S10, S11) is structurally the same as above, where we computed the FFL and ZL difference (see Figs. S8, S9). The spatial patterns and the aggregated values are robust against shifts of ρ. However, for the Amazon basin (AB), the number of FFLs increases overproportionally in the all-to-all network when we include more links in our analysis. In other words, the spatially aggregated FFL-strength for AB increases for higher thresholds ρ (cf. Figs. S10c, S11c and Fig. 2g).Sensitivity to the size of the focus regionsAnother aspect affecting the results is the spatial extent chosen as a focus region (i.e., the rectangles in Fig. 2). Varying the size of these rectangles affects the spatially aggregated measures. For all focus regions besides the Amazon Basin (AB), the values are not significantly affected by changing the rectangle size, as the values close to the focus regions are either coherently negative, as for the Congo Rainforest (CR) and the Indonesian Archipelago (IA), or close to zero (South Asia: SA). The AB is characterized by positive values (tendency to lensing), whereas the more southern parts along the Andes are marked by more negative (corridor/washing machine) values.Hence, we assess the stability of the results by using the spatial region covered by the Amazon rainforest (the extent of the Amazon rainforest is based on ref. 6) and compare them to the ones obtained by using the rectangle. The results featured in Fig. S12 indicate that only considering the rainforest-covered parts of the AB leads to similar or even more positive (lensing) values, confirming our conclusions that the Amazon rainforest region functions differently from the other focus regions.Notes on mapsThis paper makes use of perceptually uniform color maps developed by ref. 57. The underlying world maps have been created by cartopy58. More

  • in

    Ecological transition and sustainable development: integrated statistical indicators to support public policies

    The link between SDGs and NRRPThe Italian National Recovery and Resilience Plan (NRRP) is part of the Next Generation EU (NGEU) program, the 750-billion-euro package, consisting of about half of grants, agreed by the European Union in response to the pandemic crisis. The main component of the NGEU program is the Recovery and Resilience Facility (RRF), which has a duration of six years, from 2021 to 2026, and a total size of €672.5 billion (€312.5 billion grants, the remaining €360 billion loans at subsidized rates).The Plan is developed around three strategic axes shared at European level: digitalization and innovation, ecological planning and social inclusion.The missions of the NRRP are as follows:

    Mission 1: Digitalization, innovation, competitiveness, culture and tourism

    Mission 2: Green revolution and ecological transition

    Mission 3: Infrastructure for sustainable mobility

    Mission 4: Education and research

    Mission 5: Cohesion and inclusion

    Mission 6: Health.

    With the aim of encouraging the debate on the use of sustainability indicators for monitoring the progress of the PNRR, a mapping of the correspondences between the 17 Sustainable Development Goals and the 6 Missions provided for by the NRRP is proposed (Fig. 1). In this way it is possible to identify the SDGs indicators that can be useful tools for achieving the missions of the NRRP.Figure 1Relationships between SDGs indicators and NRRP missions.Full size imageOf particular interest for the purposes of our work is Mission 2 (Green Revolution and Ecological Transition) of NRRP. It provides for investments and reforms for the circular economy and to improve waste management, strengthen separate collection infrastructure and modernize or develop new waste treatment plants. Substantial tax incentives are provided to increase the energy efficiency of buildings, to achieve progressive decarbonization, to increase the use of renewable energy sources. In addition, the Mission devotes resources to enhancing the capacity of electricity grids, their reliability, security, and flexibility (Smart Grid) and water infrastructure. The Mission also includes the issues of territorial security, with prevention and restoration interventions in the face of significant hydrogeological risks, the protection of green areas and biodiversity, and those related to the elimination of water and soil pollution, and the availability of water resources.The main components of this mission are:

    M2C1: Circular economy and sustainable agriculture

    M2C2: Renewable energy, hydrogen, grid, and sustainable mobility

    M2C3: Energy efficiency and upgrading of buildings

    M2C4: Protection of land and water resources.

    The analysis of Mission 2 (Green Revolution and Ecological Transition) finds ample space in the SDGs creating important interconnections between the different indicators present in the individual Goals and the objectives of the Mission itself.The SDGs indicators to support the NRRPThe SDGs indicators selected for the analysis of Mission 2 (Green Revolution and Ecological Transition) of the NRRP, are descripted in Table 1. We considered 13 indicators, selected from Goals 2, 6, 7, 11, 12 and 15 which may be of significant interest for the achievement of Mission 2. These indicators will then be attributed to the individual components of the mission.Table 1 Goal, indicators, measures e source of SDGs data.Full size tableThe indicators were chosen based on their relevance to the objectives of the mission and on the availability of data on a regional basis. For each main component we can use the following indicators:

    M2C1: Circular economy and sustainable agriculture:

    – Share of utilized agricultural area invested by organic crops

    – Growth rate of organic crops

    – Delivery of municipal waste to landfill.

    – Separate waste collection

    M2C2: Renewable energy, hydrogen, grid and sustainable mobility:

    M2C3: Energy efficiency and upgrading of buildings

    M2C4: Protection of land and water resources

    – Irregularities in water distribution

    – Sealing and soil consumption per capita

    – Soil sealing from artificial cover

    – Fragmentation of the natural and agricultural territory

    – Incidence of urban green areas on the urbanized surface of cities.

    The SDGs indicators at the level of territorial distribution in ItalyWe carry out a first analysis by territorial distribution for the different sets of main components of Mission 2.From a first analysis of the M2C1 indicators (Circular Economy and Sustainable Agriculture) it emerges that the share of agricultural area destined for organic crops is greater, especially in the Center and in the South of Italy. In 2019, the extent of organic farming in Italy reached 15.8% of the utilized agricultural area, almost double the EU average. However, the annual growth rate of the areas converted to organic farming or in the process of conversion (+ 1.8%) is the lowest since 2012 and is negative in the South, where for the second consecutive year there is a decrease (− 2.1% in the 2-year period 2017–2019). The dynamics of organic farming is an index of the spread of sustainable agricultural practices, which must be accompanied by measures that also consider the pressure on the environment generated by agriculture (Table 2).Table 2 M2C1 indicators—Circular economy and sustainable agriculture by territorial distribution (year 2019).Full size tableAlso, in the Central and Southern Italy area there is the greatest delivery of waste to landfills. Waste cycle management is crucial for living conditions and global health. The share of municipal waste landfilled is steadily decreasing at national level. In 2019, in fact, the part sent to landfill is equal to 20.9% of the total, down compared to the previous year (21.5%). The separate collection of municipal waste represents a further important step in view of the objective of reducing the amount of waste returned to the environment and, more specifically, of the delivery of waste to landfills. The 18.5 million tons of differentiated RU in 2019 represent 61.3% of national production, a share almost doubled compared to ten years ago and up from last year by 3.1 percentage points. Despite the evident progress, Italy is still marked by a considerable delay compared to the regulatory objectives, having not yet reached, in 2019, the target of 65% of separate collection planned for 2012. Critical issues are also observed in relation to the substantial territorial gaps, which disadvantage the Center and the South compared to the North, despite the distances have been reduced in recent years.
    Regarding the M2C2 Mission (Renewable Energy, Hydrogen, Network and Sustainable Mobility), national and international energy policies have been committed for years to the enhancement of renewable energy sources, with the aim of decarbonizing the economy and guaranteeing the commitments made in the field of climate change. In 2019, one year after the expiry of the objectives of the European Union’s Climate-Energy Package, fourteen Member States, including Italy, exceeded the target assigned at national level. In Italy, the overall share of energy from renewable sources in gross final consumption (CFL) of energy, equal to 18.2% (Table 3), a percentage slightly lower than the average of the EU27 (19.7%), is placed for the sixth consecutive year above the 17% target set for our country. However, for Italy to achieve the ambitious programs defined by the 2020 National Integrated Energy and Climate Plan, which set a 30% target for renewables by 2030, a further boost to production from renewable sources is necessary. The resources introduced by the National Recovery and Resilience Plan (NRRP) to achieve the “green revolution and ecological transaction” include significant investments in the energy field, focusing, among other components, on a further strengthening of the Sources from Renewable energy (FER).Table 3 M2C2 indicators—Renewable energy, hydrogen, network and sustainable mobility by territorial distribution (year 2019).Full size tableThe M2C3 Mission (Energy Efficiency and Upgrading of Buildings) devotes resources to enhancing the capacity of electricity grids, their reliability, safety, and flexibility (Smart Grid). Consistent with the objectives of reducing energy consumption pursued by European policies, the Italian figure for 2019 confirms the process of reducing Italian energy intensity, which marks a further contraction of 1.3%, reaching an overall negative balance compared to the last decade of 11.8%, with an average annual rate of change of − 1.2% (Table 4). The reduction in energy intensity is largely attributable to the effect of the measures in favor of energy efficiency, which, between 2011 and 2019, resulted in energy savings of 12 Mtoe/year, equal to 77% of the 2020 target set by the National Action Plan for Energy Efficiency 2017. A further acceleration of energy efficiency is expected, in the coming years, because of the investment plan envisaged by the NRRP, also linked to the redevelopment of the public and private building stock. At the sectoral level, the reduction in energy intensity is driven by improvements in industry, which, despite the slight increase in the last year, in 2019, with 92 toes per million euros, shows a decrease compared to 2009 of 17%, with an average annual rate of change of − 1.8%.Table 4 M2C3 indicators—Energy efficiency and requalification of buildings by territorial distribution (year 2019).Full size tableThe M2C4 Mission (Protection of the territory and water resources) also includes the issues of territorial safety, with prevention and recovery interventions, the protection of green areas and those related to the elimination of water and soil pollution.Italy is among the European countries of the Mediterranean area that use groundwater, springs and wells the most; these represent the most important resource of fresh water for drinking water use on the Italian territory (84.8% of the total withdrawn). The efficiency of municipal drinking water distribution networks has been steadily deteriorating since 2008 for more than half of the regions. The share of families who complain of irregularities in the water supply service in their home is stable (equal to 8.6% in 2019) with more accentuated values in the Center and South of Italy (Table 5).Table 5 M2C4 indicators—Protection of land and water resources by territorial distribution (year 2019).Full size tableLand degradation, understood as loss of ecological functionality, is monitored through the dynamics of land consumption, which Italy has committed to zero by 2030 with the National Strategy for Sustainable Development (2017). The “consumed” soil is that occupied by urbanization and made impermeable by artificial roofing (soil sealing). Excessive fragmentation of open spaces, however, is also a factor of degradation, since the barriers made up of buildings and infrastructures interrupt the continuity of ecosystems, making even unoccupied but not large enough spaces ecologically inert and unproductive. Moreover, in a fragile territory such as Italy, land consumption is also a significant factor of hydrogeological risk and deterioration of the landscape. The index of sealing and land consumption per capita in 2019 increases for the fifth consecutive year, resulting in 357 m2 per inhabitant. The soil sealed by artificial covers is equal to 7.1% of the national territory (8.5% in the North, 6.7% in the Center, 5.9% in the South).According to Ispra estimates, 44.3% of Italy’s natural and agricultural land has a high or very high degree of fragmentation. A joint representation of the variations in fragmentation and soil sealing over the last two years summarizes recent trends in land consumption and their impact on the environment and landscape.A further objective for 2030 is to provide universal access to safe, inclusive, and accessible public green spaces, for women and children, the elderly, and people with disabilities. In 2019 the incidence of urban green areas on the urbanized surface of cities is equal to 8.5% in Italy with slightly higher values in the North and less elevated in the South. More

  • in

    Investigation of the spermathecal morphology, reproductive strategy and fate of stored spermatozoa in three important thysanopteran species

    Cavalleri, A., Masumoto, M., Minaei, K., Mound, L. & Ulitzka, M. R. ThripsWiki – providing information on the World’s thrips. https://thrips.info/wiki/Main_Page (2022).Kirk, W. D. J., de Kogel, W. J., Koschier, E. H. & Teulon, D. A. J. Semiochemicals for thrips and their use in pest management. Annu. Rev. Entomol. 66, 101–119. https://doi.org/10.1146/annurev-ento-022020-081531 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mota-Sanchez, D. & Wise, C. J. The Arthropod Pesticide Resistance Database. Available at http://www.pesticideresistance.org (2022).von Kèler, S. Entomologisches Wörterbuch. mit besonderer Berücksichtigung der morphologischen Terminologie. 3rd edn. (Akademie, Berlin, 1963).
    Google Scholar 
    Pascini, T. V. & Martins, G. F. The insect spermatheca: an overview. Zoology Jena (Germany) 121, 56–71. https://doi.org/10.1016/j.zool.2016.12.001 (2017).Article 

    Google Scholar 
    Bode, W. Der Ovipositor und die weiblichen Geschlechtswege der Thripiden (Thysanoptera, Terebrantia). Z. Morph. Tiere (Zeitschrift für Morphologie der Tiere) 81, 1–53; https://doi.org/10.1007/BF00290072 (1975).Moritz, G. Zur Morphologie und Anatomie des Fransenflüglers Aeolothrips intermedius Bagnall, 1934 (Aeolothripidae, Thysanoptera, Insecta) III. Mitteilung: Das Abdomen. Investigation on the Morphology and Anatomy in Aeolothrips intermedius Bagnall, 1934 (Aeolothripidae, Thysanoptera, Insecta) 3. The Abdomen. Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 108, 293–340 (1982).Moritz, G. Die Ontogenese der Thysanoptera (lnsecta) unter besonderer Berücksichtigung des Fransenflüglers Hercinothrips femoralis (O. M. REUTER, 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago – Abdomen. The Ontogenesis of Thysanoptera (Insecta) with Special Reference to the Panchaetothripine Hercinothrips femoralis (O. M. REUTER, 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago – Abdomen. Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 119, 157–217 (1989).Heming, B. S. Postembryonic development of the female reproductive system in Frankliniella fusca (Thripidae) and Haplothrips verbasci (Phlaeothripidae) (Thysanoptera). Misc. Publ. Entomol. Soc. Am. 7, 197–234 (1970).
    Google Scholar 
    Heming, B. S. History of the germ line in male and female thrips. In Thrips Biology and Management. International conference on Thysanoptera: Towards Understanding Thrips Management, Vermont, edited by B. L. Parker, M. Skinner & T. Lewis (Springer, Berlin, 1995), pp. 505–535.Dallai, R., Del Bene, G. & Lupetti, P. Fine structure of spermatheca and accessory gland of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Int. J. Insect Morphol. Embryol. 25, 317–330; https://doi.org/10.1016/0020-7322(95)00018-6 (1996).Jordan, K. Anatomie und Biologie der Physapoda. Zeitschrift für wissenschaftliche Zoologie 47, 541–620 (1888).
    Google Scholar 
    Bournier, A. L`appareil gènital femelle de Caudothrips buffai Karny et sa pompe spermatige (Thysan.). Bulletin de la Sociètè Entomologique de France 67, 203–207 (1962).Dhileepan, K. & Ananthakrishnan, T. Impact of sex-limited and alary polymorphism on spermathecal diversity and reproductive behaviour in some mycophagous Tubulifera. Proc. Indian Natl. Acad. Sci. 4, 329–336 (1987).
    Google Scholar 
    Bhatti, J. S. The spermatheca as a useful character for species differentiation in Coleothrips Haliday (Insecta: Terebrantia: Aeolothripidae). J. Pure Appl. Zool. 1, 111–116 (1988).
    Google Scholar 
    Klocke, F. Beiträge zur Anatomie und Histologie der Thysanopteren. Zeitschrift für wissenschaftliche Zoologie 128, 1 (1926).
    Google Scholar 
    Priesner, H. Die Thysanopteren Europas (F. Wagner Verlag, Wien, 1926–1928).Bode, W. Spermienstruktur und Spermatohistogenese bei Thrips validus Uzel (Insecta, Thysanoptera). Zoologische Jahrbücher/ Abteilung für Anatomie und Ontogenie der Tiere 109, 301–318 (1983).
    Google Scholar 
    Moritz, G. Thripse. Fransenflügler, Thysanoptera. 1st ed. (Westarp Wissenschaften, Hohenwarsleben, 2006).Bournier, A. Contribution à l’étude de la parthénogénèse des thysanoptères et de sa cytologie. Archives de Zoologie expérimentale et générale 93, 219–318 (1956).
    Google Scholar 
    Heming, B. S. Postembryonic development of the male reproductive system in Frankliniella fusca (Thripidae) and Haplothrips verbasci (Phlaeothripidae) (Thysanoptera). Misc. Publ. Entomol. Soc. Am. 7, 235–272 (1970).
    Google Scholar 
    Krueger, S., Jilge, M., Mound, L. & Moritz, G. B. Reproductive behavior of Echinothrips americanus (Thysanoptera: Thripidae). J. Insect Sci. 17; https://doi.org/10.1093/jisesa/iex043 (2017).Krueger, S. & Moritz, G. Sperm ultrastructure in arrhenotokous and thelytokous Thysanoptera. Arthropod Struct. Dev. 64, 101084; https://doi.org/10.1016/j.asd.2021.101084 (2021).Lewis, T. Thrips. Their biology, ecology and economic importance (Academic Press, London, 1973).Jacobs, W. & Seidel, F. Systematische Zoologie, Insekten (Fischer, 1975).
    Google Scholar 
    Gotoh, A., Ito, F. & Billen, J. Vestigial spermatheca morphology in honeybee workers, Apis cerana and Apis mellifera, from Japan. Apidologie 44, 133–143; https://doi.org/10.1007/s13592-012-0165-6 (2013).Gotoh, A., Billen, J., Hashim, R. & Ito, F. Degeneration patterns of the worker spermatheca during morphogenesis in ants (Hymenoptera: Formicidae). Evol. Dev. 18, 96–104; https://doi.org/10.1111/ede.12182 (2016).Schoeters, E. & Billen, J. The importance of the spermathecal duct in bumblebees. J. Insect Physiol. 46, 1303–1312; https://doi.org/10.1016/S0022-1910(00)00052-4 (2000).Gobin, B., Ito, F., Peeters, C. & Billen, J. Queen-worker differences in spermatheca reservoir of phylogenetically basal ants. Z. Zellforsch (Zeitschrift für Zellforschung und Mikroskopische Anatomie) 326, 169–178; https://doi.org/10.1007/s00441-006-0232-2 (2006).Gobin, B., Ito, F., Billen, J. & Peeters, C. Degeneration of sperm reservoir and the loss of mating ability in worker ants. Die Naturwissenschaften 95, 1041–1048; https://doi.org/10.1007/s00114-008-0420-x (2008).Gotoh, A., Billen, J., Hashim, R., Ito, F. Comparison of spermatheca morphology between reproductive and non-reproductive females in social wasps. Arthropod. Struct. Dev. 37, 199–209; https://doi.org/10.1016/j.asd.2007.11.001 (2008).Gotoh, A., Billen, J., Tsuji, K., Sasaki, T. & Ito, F. Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale (Hymenoptera: Formicidae). Acta Zool. 93, 200–207; https://doi.org/10.1111/j.1463-6395.2010.00498.x (2012).Buffa, P. Studi intorno al ciclo partenogenetico dell´ Heliothrips haemorrhoidales (Boúche). REDIA 7, 71–109 (1911).
    Google Scholar 
    Bene, G. D., Cavallo, V., Lupetti, P. & Dallai, R. Ultrastructure of the accessory gland in the parthenogenetic thrips Heliothrips haemorrhoidalis (Bouché) (Thysanoptera. Thripidae). Int. J. Insect Morphol. Embryol. 27, 255–261; https://doi.org/10.1016/S0020-7322(98)00018-X (1998).Nakao, S. & Yabu, S. Ethological and chemical discrimination between thelytokous and arrhenotokous Thrips nigropilosus Uzel, with discussion of taxonomy. Jpn. J. Appl. Entomol. Zool. 42, 77–83; https://doi.org/10.1303/jjaez.42.77 (1998).Article 
    CAS 

    Google Scholar 
    Arakaki, N., Miyoshi, T. & Noda, H. Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc. R. Soc. B Biol. Sci. 268, 1011–1016; https://doi.org/10.1098/rspb.2001.1628 (2001).Kumm, S. & Moritz, G. First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. Environ. Entomol. 37, 1422–1428. https://doi.org/10.1603/0046-225X-37.6.1422 (2008).Article 
    PubMed 

    Google Scholar 
    Moritz, G. The biology of thrips is not the biology of their adults: a developmental view. In Thrips and Tospovirus: Proceedings of the 7th International Symposium on Thysanoptera, edited by L. A. Mound & R. Marullo (Australian National Insect Collection CSIRO, Canberra, 2002), pp. 259–267.Moritz, G., Schäfer, E., Kumm, S., Steller, A. & Tschuch, G. D. Alien-Thrips: Suocerathrips linguis – Biologie und Verhalten. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 14, 177–181 (2004).
    Google Scholar 
    Gehlsen, U. Ernährungssystem, Verhalten und Wehrsekret des subsozialen Phlaeothripinen Suocerathrips linguis MOUND & MARULLO, 1994 (Insecta, Thysanoptera, Tubulifera). PhD-thesis (Martin-Luther University Halle-Wittenberg, Germany, 2009).Kumm, S. Reproduction, progenesis and embryogenesis of thrips (Thysanoptera, Insecta). Dissertation. Martin-Luther-Universität Halle-Wittenberg, 2002.Krueger, S., Mound, L. A. & Moritz, G. B. Offspring sex ratio and development are determined by copulation activity in Echinothrips americanus MORGAN 1913 (Thysanoptera: Thripidae). J. Appl. Entomol. 140, 462–473; https://doi.org/10.1111/jen.12280 (2016).Oetting, R. D., Beshear, R. J., Liu, T.-X., Braman S. K., & Baker, J. R. Biology and identification of thrips on greenhouse ornamentals. Univ. Ga. Res. Bull. 414, 20 (1993).Mound, L. A., Nielsen, M.-C. & Hastings, A. Thysanoptera Aotearoa. Thrips of New Zealand. Available at https://keys.lucidcentral.org/keys/v3/nz_thrips/index.html.Schindelin, J. et al. Fiji an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Uzel, H. Monographie der Ordnung Thysanoptera (Nabu Oress, Charleston SC, United States, 1895).Marzo L. De. Dettagli anatomici dei genitali interni in Melanthrips fuscus (Sulzer) e altri tisanotteri. Entomologica 36, 109–119. https://doi.org/10.15162/0425-1016/747 (2002).Melis, A. Nuove osservazioni anatomo-istologiche sui diversi stati postembrionali del Liothrips oleae Costa. REDIA 21, 263–334 (1934).
    Google Scholar 
    van der Kooi, C. J. & Schwander, T. On the fate of sexual traits under asexuality. Biol. Rev. 89, 805–819. https://doi.org/10.1111/brv.12078 (2014).Article 
    PubMed 

    Google Scholar 
    Sloan, N. S. & Simmons, L. W. The evolution of female genitalia. J. Evol. Biol. 32, 882–899. https://doi.org/10.1111/jeb.13503 (2019).Article 
    PubMed 

    Google Scholar 
    Buffa, P. Tisanotteri esotici esistenti nel Museo Civico di Storia Naturale di Genova. REDIA 5, 157–172 (1909).
    Google Scholar 
    Osborn, H. Note on a New Species of Phloeothrips, with description. Proc. Iowa Acad. Sci. 3, 228 (1895).
    Google Scholar 
    Mound, L. A. & Marullo, R. New thrips on mother-in-law`s tongue. Entomol. Mon. Mag. 130, 95–98 (1994).
    Google Scholar 
    Zur Strassen, R. Die terebranten Thysanopteren Europas und des Mittelmeer-Gebietes (Goecke und Evers, Keltern, 2003).Davies, R. G. The postembryonic development of the female reproductive system in Limothrips cerealium Haliday (Thysanoptera: Thripidae). Proc. Zool. Soc. Lond. 136, 411–437. https://doi.org/10.1111/j.1469-7998.1961.tb05883.x (1961).Article 

    Google Scholar 
    Gerber, G. H. Evolution of the methods of spermatophore formation in pterygotan insects. Can. Entomol. 102, 358–362 (1970).Article 

    Google Scholar 
    Dallai, R., Afzelius, B. A., Lanzavecchia, S. & Bellon, P. L. Bizarre flagellum of thrips spermatozoa (Thysanoptera, Insecta). J. Morphol. 209, 343–347. https://doi.org/10.1002/jmor.1052090309 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paccagnini, E., Mencarelli, C., Mercati, D., Afzelius, B. A. & Dallai, R. Ultrastructural analysis of the aberrant axoneme morphogenesis in thrips (Thysanoptera, Insecta). Cell Mot. Cytoskel. 64, 645–661. https://doi.org/10.1002/cm.20212 (2007).Article 

    Google Scholar 
    Paccagnini, E., Lupetti, P., Afzelius, B. A. & Dallai, R. New findings on sperm ultrastructure in thrips (Thysanoptera, Insecta). Arthropod. Struct. Dev. 38, 70–83. https://doi.org/10.1016/j.asd.2008.07.004 (2009).Article 
    PubMed 

    Google Scholar 
    Paccagnini, E., Mercati, D., Giusti, F., Conti, B. & Dallai, R. The spermatogenesis and the sperm structure of Terebrantia (Thysanoptera, Insecta). Tissue & cell 42, 247–258. https://doi.org/10.1016/j.tice.2010.04.008 (2010).Article 

    Google Scholar 
    Pitnick, S., Wolfner, M. F. & Dorus, S. Post-ejaculatory modifications to sperm (PEMS). Biol. Rev. Camb. Philos. Soc. 95, 365–392. https://doi.org/10.1111/brv.12569 (2020).Article 
    PubMed 

    Google Scholar 
    Karr, T. L., Swanson, W. J. & Snook, R. R. The evolutionary significance of variation in sperm–egg interactions. In Sperm biology. An evolutionary perspective, edited by T. R. Birkhead. 1st ed. (Academic Press/Elsevier, Amsterdam, 2009), pp. 305–365.Friedländer, M., Jeshtadi, A. & Reynolds, S. E. The structural mechanism of trypsin-induced intrinsic motility in Manduca sexta spermatozoa in vitro. J. Insect Physiol. 47, 245–255. https://doi.org/10.1016/s0022-1910(00)00109-8 (2001).Article 
    PubMed 

    Google Scholar 
    Hughes, M. & Davey, K. G. The activity of spermatozoa of Periplaneta. J. Insect Physiol. 15, 1607–1616. https://doi.org/10.1016/0022-1910(69)90181-4 (1969).Article 

    Google Scholar 
    Longo, G. et al. Ultrastructural changes in sperm of Eyprepocnemis plorans (Charpentier) (Orthoptera: Acrididae) during storage of gametes in female genital tract. Inverteb. Reprod. Dev. 24, 1–6. https://doi.org/10.1080/07924259.1993.9672325 (1993).Article 

    Google Scholar 
    Makielski, S. K. The structure and maturation of the spermatozoa of Sciara coprophila. J. Morphol. 118, 11–41. https://doi.org/10.1002/jmor.1051180103 (1966).Article 
    CAS 
    PubMed 

    Google Scholar 
    Giuffrida, A. & Rosati, F. Changes in sperm tail of Eyprepocnemis plorans (Insects, Orthoptera) as a result of in vitro incubation in spermathecal extract. Inverteb. Reprod. Dev. 24, 47–52. https://doi.org/10.1080/07924259.1993.9672330 (1993).Article 

    Google Scholar 
    Giuffrida, A., Focarelli, R., Lampariello, R., Thole, H. & Rosati, F. Purification and properties of a 35 kDa glycoprotein from spermathecal extract of Eyprepocnemis plorans (Insecta, Orthoptera) with axonemal cytoskeleton disassembly activity. Insect Biochem. Mol. Biol. 26, 347–354. https://doi.org/10.1016/0965-1748(95)00095-X (1996).Article 
    CAS 

    Google Scholar 
    Arakaki, N., Noda, H. & Yamagishi, K. Wolbachia-induced parthenogenesis in the egg parasitoid Telenomus nawai. Entomol. Exp. Appl. 96, 177–184. https://doi.org/10.1046/j.1570-7458.2000.00693.x (2000).Article 

    Google Scholar 
    Pannebakker, B. A. et al. Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. J. Evol. Biol. 18, 1019–1028. https://doi.org/10.1111/j.1420-9101.2005.00898.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stouthamer, R., Russell, J. E., Vavre, F. & Nunney, L. Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction. BMC Evol. Biol. 10, 229. https://doi.org/10.1186/1471-2148-10-229 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sänger, K. & Helfert, B. Comparative studies on number and position of the micropyles and the shape of the eggs of Saga pedo, S. natoliae and S. ephippigera (Orthoptera: Tettigoniidae). Entomologia 19, 49–56. https://doi.org/10.1127/ENTOM.GEN/19/1994/049 (1994).Article 

    Google Scholar 
    Gottlieb, Y. & Zchori-Fein, E. Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomol. Exp. Appl. 100, 271–278. https://doi.org/10.1046/j.1570-7458.2001.00874.x (2001).Article 

    Google Scholar 
    Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. WOLBACHIA PIPIENTIS. Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53, 71–102. https://doi.org/10.1146/annurev.micro.53.1.71 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schwander, T., Crespi, B. J., Gries, R. & Gries, G. Neutral and selection-driven decay of sexual traits in asexual stick insects. Proc. Biol. Sci. 280, 20130823. https://doi.org/10.1098/rspb.2013.0823 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Micro. 6, 741–751. https://doi.org/10.1038/nrmicro1969 (2008).Article 
    CAS 

    Google Scholar  More

  • in

    Small rainfall changes drive substantial changes in plant coexistence

    Schimper, A. F. W. Plant Geography upon a Physiological Basis (Clarendon Press, 1903).Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. N. Y. Acad. Sci. 1297, 112–125 (2013).PubMed 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Loarie, S. R., Weiss, S. B., Hamilton, H., Branciforte, R. & Kraft, N. J. B. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).Article 

    Google Scholar 
    Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dybzinski, R. & Tilman, D. Resource use patterns predict long‐term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318 (2007).Article 
    PubMed 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sandel, B. et al. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol. 188, 565–575 (2010).Article 
    PubMed 

    Google Scholar 
    Esch, E. H., Ashbacher, A. C., Kopp, C. W. & Cleland, E. E. Competition reverses the response of shrub seedling mortality and growth along a soil moisture gradient. J. Ecol. 106, 2096–2108 (2018).Article 

    Google Scholar 
    Alon, M. & Sternberg, M. Effects of extreme drought on primary production, species composition and species diversity of a Mediterranean annual plant community. J. Veg. Sci. 30, 1045–1061 (2019).Article 

    Google Scholar 
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).Article 
    ADS 
    PubMed 

    Google Scholar 
    Adler, P., Hillerislambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 
    PubMed 

    Google Scholar 
    Germain, R. M., Mayfield, M. M. & Gilbert, B. The ‘filtering’ metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biol. Lett. 14, 20180460 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17, 3633–3643 (2011).Article 
    ADS 

    Google Scholar 
    Fargione, J. & Tilman, D. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143, 598–606 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).Article 
    ADS 

    Google Scholar 
    Chesson, P. Geometry, heterogeneity and competition in variable environments. Phil. Trans. R. Soc. Lond. B 330, 165–173 (1990).Article 
    ADS 

    Google Scholar 
    Aronson, J., Kigel, J., Shmida, A. & Klein, J. Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia 89, 17–26 (1992).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Santa Barbara County Public Works water resources hydrology: historical rainfall data: daily and monthly rainfall. County of Santa Barbara http://www.countyofsb.org/pwd/water/downloads/hydro/421dailys.pdf (2019).Kandlikar, G. S., Kleinhesselink, A. R. & Kraft, N. J. B. Functional traits predict species responses to environmental variation in a California grassland annual plant community. J. Ecol. 110, 833–844 (2022).Article 
    CAS 

    Google Scholar 
    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 
    PubMed 

    Google Scholar 
    Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Kleinhesselink, A. R., Kraft, N. J. B., Pacala, S. W. & Levine, J. M. Detecting and interpreting higher order interactions in ecological communities. Ecol. Lett. 25, 1604–1617 (2022).Article 
    PubMed 

    Google Scholar 
    Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).Article 

    Google Scholar 
    Levine, J. I., Levine, J. M., Gibbs, T. & Pacala, S. W. Competition for water and species coexistence in phenologically structured annual plant communities. Ecol. Lett. 25, 1110–1125 (2022).Article 
    PubMed 

    Google Scholar 
    Farrior, C. E. et al. Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology 94, 2505–2517 (2013).Article 
    PubMed 

    Google Scholar 
    Harrison, S., Grace, J. B., Davies, K. F., Safford, H. D. & Viers, J. H. Invasion in a diversity hotspot: exotic cover and native richness in the Californian serpentine flora. Ecology 87, 695–703 (2006).Article 
    PubMed 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Godoy, O. & Levine, J. M. Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology 95, 726–736 (2014).Article 
    PubMed 

    Google Scholar  More