Evapotranspiration frequently increases during droughts
Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).CAS
Google Scholar
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).CAS
Google Scholar
Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS
Google Scholar
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS
Google Scholar
Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS
Google Scholar
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS
Google Scholar
Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).CAS
Google Scholar
Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).
Google Scholar
Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).CAS
Google Scholar
Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).CAS
Google Scholar
Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).CAS
Google Scholar
Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).CAS
Google Scholar
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).CAS
Google Scholar
Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).CAS
Google Scholar
Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).
Google Scholar
Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10, 155–161 (2020).
Google Scholar
Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).CAS
Google Scholar
Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 10, 555–560 (2020).CAS
Google Scholar
Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).
Google Scholar
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Google Scholar
Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).
Google Scholar
Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 10, 191–199 (2020).
Google Scholar
Chu, H., Baldocchi, D. D., John, R., Wolf, S. & Reichstein, M. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307 (2017).
Google Scholar
Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).
Google Scholar
Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).
Google Scholar
De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).
Google Scholar
Dong, J., Lei, F. & Crow, W. T. Land transpiration–evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 13, 336 (2022).CAS
Google Scholar
Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
Google Scholar
Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).CAS
Google Scholar
Liu, Y., Holtzman, N. M. & Konings, A. G. Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion. Hydrol. Earth Syst. Sci. 25, 2399–2417 (2021).CAS
Google Scholar
Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).CAS
Google Scholar
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS
Google Scholar
Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).CAS
Google Scholar
Lehmann, P., Merlin, O., Gentine, P. & Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 45, 10398–10405 (2018).
Google Scholar
Fatichi, S. et al. Soil structure is an important omission in Earth System Models. Nat. Commun. 11, 522 (2020).CAS
Google Scholar
McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).CAS
Google Scholar
Baldocchi, D., Ma, S. & Verfaillie, J. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Glob. Chang. Biol. 27, 359–375 (2021).CAS
Google Scholar
Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).CAS
Google Scholar
Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).CAS
Google Scholar
Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS
Google Scholar
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).CAS
Google Scholar
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS
Google Scholar
Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2021).
Google Scholar
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).
Google Scholar
Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).CAS
Google Scholar
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS
Google Scholar
Zhao, M., Geruo, A., Velicogna, I. & Kimball, J. S. A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeorol. 18, 2117–2129 (2017).
Google Scholar
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
Google Scholar
Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).
Google Scholar
Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
Google Scholar
Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).
Google Scholar
Gebremichael, M. et al. Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J. Appl. Meteorol. 42, 1837–1848 (2003).
Google Scholar
Rodell, M. et al. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).
Google Scholar
Major River Basins of the World (Global Runoff Data Centre, 2020).Pascolini-Campbell, M. A., Reager, J. T. & Fisher, J. B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 56, e2019WR026594 (2020).
Google Scholar
Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16, 15-1–15-10 (2002).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Myneni, R., Knyazikhin, Y. & Park, T (ed. NASA EOSDIS Land Processes DAAC) (2021).Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (US Geological Survey, 2018).Zhao, M., Aa, G., Liu, Y. & Konings, A. Evapotranspiration frequently increases during droughts. Zenodo https://doi.org/10.5281/zenodo.6842054 (2022). More