More stories

  • in

    Soil organic matter formation and loss are mediated by root exudates in a temperate forest

    Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243 (2018).Article 

    Google Scholar 
    Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).Article 

    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).Article 

    Google Scholar 
    Fossum, C. et al. Belowground allocation and dynamics of recently fixed plant carbon in a California annual grassland. Soil Biol. Biochem. 165, 108519 (2022).Article 

    Google Scholar 
    Rasse, D. P., Rumpel, C. & Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).Article 

    Google Scholar 
    Sokol, N. W., Kuebbing, Sara, E., Karlsen-Ayala, E. & Bradford, M. A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. N. Phytol. 221, 233–246 (2019).Article 

    Google Scholar 
    Calvo, O. C., Franzaring, J., Schmid, I. & Fangmeier, A. Root exudation of carbohydrates and cations from barley in response to drought and elevated CO2. Plant Soil 438, 127–142 (2019).Article 

    Google Scholar 
    Fransson, P. M. A. & Johansson, E. M. Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems. FEMS Microbiol. Ecol. 71, 186–196 (2009).Article 

    Google Scholar 
    Johansson, E. M., Fransson, P. M. A., Finlay, R. D. & van Hees, P. A. W. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biol. Biochem. 41, 1111–1116 (2009).Article 

    Google Scholar 
    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).Article 

    Google Scholar 
    Jilling, A., Keiluweit, M., Gutknecht, J. L. M. & Grandy, A. S. Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biol. Biochem. 158, 108265 (2021).Article 

    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).Article 

    Google Scholar 
    Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).Article 

    Google Scholar 
    Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A. & Strickland, M. S. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry 113, 271–281 (2013).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).Article 

    Google Scholar 
    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).Article 

    Google Scholar 
    Jones, D. L., Dennis, P. G., Owen, A. G. & van Hees, P. A. W. Organic acid behavior in soils—misconceptions and knowledge gaps. Plant Soil 248, 31–41 (2003).Article 

    Google Scholar 
    Cleveland, C. C. & Liptzin, D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2007).Article 

    Google Scholar 
    Meier, I. C., Finzi, A. C. & Phillips, R. P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 106, 119–128 (2017).Article 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).Article 

    Google Scholar 
    Koo, B.-J., Adriano, D. C., Bolan, N. S. & Barton, C. D. in Encyclopedia of Soils in the Environment (ed. Hillel, D.) 421–428 (Elsevier, 2005); https://doi.org/10.1016/B0-12-348530-4/00461-6Oldfield, E. E., Crowther, T. W. & Bradford, M. A. Substrate identity and amount overwhelm temperature effects on soil carbon formation. Soil Biol. Biochem. 124, 218–226 (2018).Article 

    Google Scholar 
    Mason-Jones, K., Schmücker, N. & Kuzyakov, Y. Contrasting effects of organic and mineral nitrogen challenge the N-mining hypothesis for soil organic matter priming. Soil Biol. Biochem. 124, 38–46 (2018).Article 

    Google Scholar 
    Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).Article 

    Google Scholar 
    Drake, J. E. et al. Stoichiometry constrains microbial response to root exudation—insights from a model and a field experiment in a temperate forest. Biogeosciences 10, 821–838 (2013).Article 

    Google Scholar 
    Falchini, L., Naumova, N., Kuikman, P. J., Bloem, J. & Nannipieri, P. CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol. Biochem. 35, 775–782 (2003).Article 

    Google Scholar 
    Rasmussen, C., Southard, R. J. & Horwath, W. R. Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Sci. Soc. Am. J. 71, 1141–1150 (2007).Article 

    Google Scholar 
    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).Article 

    Google Scholar 
    Angst, G., Mueller, K. E., Nierop, K. G. J. & Simpson, M. J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 156, 108189 (2021).Article 

    Google Scholar 
    Craig, M. E. et al. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat. Commun. 13, 1229 (2022).Article 

    Google Scholar 
    Blagodatsky, S., Blagodatskaya, E., Yuyukina, T. & Kuzyakov, Y. Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol. Biochem. 42, 1275–1283 (2010).Article 

    Google Scholar 
    Hill, P. W., Farrar, J. F. & Jones, D. L. Decoupling of microbial glucose uptake and mineralization in soil. Soil Biol. Biochem. 40, 616–624 (2008).Article 

    Google Scholar 
    Asmar, F., Eiland, F. & Nielsen, N. E. Interrelationship between extracellular enzyme activity, ATP content, total counts of bacteria and CO2 evolution. Biol. Fertil. Soils 14, 288–292 (1992).Article 

    Google Scholar 
    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843 (2003).Article 

    Google Scholar 
    McFarlane, K. J. et al. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry 112, 457–476 (2013).Article 

    Google Scholar 
    Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159 (1982).Article 

    Google Scholar 
    Smith, W. H. Character and significance of forest tree root exudates. Ecology 57, 324–331 (1976).Article 

    Google Scholar 
    Dong, J. et al. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: a review. Sci. Total Environ. 754, 142434 (2021).Article 

    Google Scholar 
    White, M. A., Running, S. W. & Thornton, P. E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145 (1999).Article 

    Google Scholar 
    Giasson, M.-A. et al. Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere 4, 140 (2013).Article 

    Google Scholar 
    Mrak, T. et al. Elevated ozone prevents acquisition of available nitrogen due to smaller root surface area in poplar. Plant Soil 450, 585–599 (2020).Article 

    Google Scholar 
    Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).Article 

    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).Article 

    Google Scholar 
    Haney, R. L., Franzluebbers, A. J., Hons, F. M. & Zuberer, D. A. Soil C extracted with water or K2SO4: pH effect on determination of microbial biomass. Can. J. Soil Sci. 79, 529–533 (1999).Article 

    Google Scholar 
    Ahmed, M. J. & Hossan, J. Spectrophotometric determination of aluminium by morin. Talanta 42, 1135–1142 (1995).Article 

    Google Scholar 
    Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).Article 

    Google Scholar  More

  • in

    Implications of zero-deforestation palm oil for tropical grassy and dry forest biodiversity

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    PubMed 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).PubMed 

    Google Scholar 
    Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    Haupt, F., Bakhtary, H., Schulte, I., Galt, H. & Streck, C. Progress on Corporate Commitments and their Implementation (Tropical Forest Alliance, 2018); https://www.tropicalforestalliance.org/assets/Uploads/Progress-on-Corporate-Commitments-and-their-Implementation.pdfAustin, K. G. et al. Mapping and monitoring zero-deforestation commitments. Bioscience 71, 1079–1090 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Leijten, F. C., Sim, S., King, H. & Verburg, P. H. Which forests could be protected by corporate zero deforestation commitments? A spatial assessment. Environ. Res. Lett. 15, 064021 (2020).
    Google Scholar 
    Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2018.11.003 (2019).Lehmann, C. E. R. & Parr, C. L. Tropical grassy biomes: linking ecology, human use and conservation. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2016.0329 (2016).Miles, L. et al. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505 (2006).
    Google Scholar 
    Gibbs, H. K. et al. Brazil’s soy moratorium. Science https://doi.org/10.1126/science.aaa0181 (2015).Jopke, P. & Schoneveld, G. C. Corporate Commitments to Zero Deforestation: An Evaluation of Externality Problems and Implementation Gaps (CIFOR, 2018); https://doi.org/10.17528/cifor/006827Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.02.004 (2014).Ratnam, J. et al. When is a ‘forest’ a savanna, and why does it matter? Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2010.00634.x (2011).Sanchez-Azofeifa, G. A. et al. Research priorities for neotropical dry forests. Biotropica 37, 477–485 (2005).
    Google Scholar 
    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Principles & Criteria for the Production of Sustainable Palm Oil (RSPO, 2018).Rosoman, G. et al. (eds) The HCS Approach Toolkit (HCS Approach Steering Group, 2017).Brown, E. & Senior, M. J. M. (eds) Common Guidance for the Identification of High Conservation Values (HCV Resource Network, 2017).Furumo, P. R. & Aide, T. M. Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environ. Res. Lett. 12, 024008 (2017).
    Google Scholar 
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience https://doi.org/10.1093/biosci/bix014 (2017).Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data 13, 1211–1231 (2021).
    Google Scholar 
    Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).
    Google Scholar 
    Kuepper, B., Drost, S. & Piotrowski, M. Latin American Palm Oil Linked to Social Risks, Local Deforestation (Chain Reaction Research, 2021); https://chainreactionresearch.com/wp-content/uploads/2021/12/Latin-American-Palm-Oil-Linked-to-Social-Issues-Local-Deforestation-1.pdfHoyle, D. et al. RSPO New Planting Procedures: Summary Report of ESIA, HCV Assessments and Management Plan (Terea, Proforest and Olam Palm Gabon, 2017).Universal Mill List (World Resources Institute, Rainforest Alliance, Proforest & Daemeter, 2018); https://data.globalforestwatch.org/documents/gfw::universal-mill-list/aboutPirker, J., Mosnier, A., Kraxner, F., Havlík, P. & Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 40, 73–81 (2016).
    Google Scholar 
    Fischer, G. et al. Global Agro-Ecological Zones 4 (GAEZ v4) – Model Documentation (FAO, 2021); https://doi.org/10.4060/cb4744enGlobal Agro-Ecological Zoning Version 4 (GAEZ v4) (FAO & IIASA, 2021); http://www.fao.org/gaez/Tao, H. H. et al. Long-term crop residue application maintains oil palm yield and temporal stability of production. Agron. Sustain. Dev. https://doi.org/10.1007/s13593-017-0439-5 (2017).Wei, L., John Martin, J. J., Zhang, H., Zhang, R. & Cao, H. Problems and prospects of improving abiotic stress tolerance and pathogen resistance of oil palm. Plants 10, 2622 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corley, R. H. & Tinker, P. B. The Oil Palm (Wiley-Blackwell, 2016).Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).
    Google Scholar 
    ten Kate, A., Kuepper, B. & Piotrowski, M. NDPE Policies Cover 83% of Palm Oil Refineries; Implementation at 78% (Chain Reaction Research, 2020); https://chainreactionresearch.com/wp-content/uploads/2020/04/NDPE-Policies-Cover-83-of-Palm-Oil-Refining-Market.pdfThe Trase Yearbook: The State Of Forest Risk Supply Chains (Trase, 2020); https://insights.trase.earth/yearbook/summaryAustin, K. G. et al. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69, 41–48 (2017).
    Google Scholar 
    Furumo, P. R., Rueda, X., Rodríguez, J. S. & Parés Ramos, I. K. Field evidence for positive certification outcomes on oil palm smallholder management practices in Colombia. J. Clean. Prod. 245, 118891 (2020).
    Google Scholar 
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).CAS 
    PubMed 

    Google Scholar 
    Heilmayr, R., Carlson, K. M. & Benedict, J. J. Deforestation spillovers from oil palm sustainability certification. Environ. Res. Lett. 15, 075002 (2020).CAS 

    Google Scholar 
    Impact (RSPO, 2022); https://www.rspo.org/impactBastos Lima, M. G., Persson, U. M. & Meyfroidt, P. Leakage and boosting effects in environmental governance: a framework for analysis. Environ. Res. Lett. 14, 105006 (2019).
    Google Scholar 
    Corley, R. H. V. How much palm oil do we need? Environ. Sci. Policy https://doi.org/10.1016/j.envsci.2008.10.011 (2009).FAOSTAT: Food and Agriculture Data (FAO, 2020); https://www.fao.org/faostat/en/Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
    Google Scholar 
    Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Phil. Trans. R. Soc. B 371, 20150319 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, J. R., Hendershot, J. N., Nova, N. & Daily, G. C. The biogeography of ecoregions: descriptive power across regions and taxa. J. Biogeogr. https://doi.org/10.1111/jbi.13871 (2020).Klink, C. A. & Machado, R. B. Conservation of the Brazilian Cerrado. Conserv. Biol. 19, 707–713 (2005).
    Google Scholar 
    Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0099 (2017).le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).
    Google Scholar 
    Nepstad, L. S. et al. Pathways for recent Cerrado soybean expansion: extending the soy moratorium and implementing integrated crop livestock systems with soybeans. Environ. Res. Lett. 14, 044029 (2019).
    Google Scholar 
    Searchinger, T. D. et al. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Change https://doi.org/10.1038/nclimate2584 (2015).Cardoso Da Silva, J. M. & Bates, J. M. Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot. BioScience 52, 225–233 (2002).
    Google Scholar 
    Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).Hill, T. C., Williams, M., Bloom, A. A., Mitchard, E. T. A. & Ryan, C. M. Are inventory based and remotely sensed above-ground biomass estimates consistent? PLoS ONE https://doi.org/10.1371/journal.pone.0074170 (2013).Ryan, C. M. et al. Ecosystem services from southern African woodlands and their future under global change. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2015.0312 (2016).Grace, J., Jose, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).CAS 

    Google Scholar 
    Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aleman, J. C., Blarquez, O. & Staver, C. A. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa. Glob. Change Biol. https://doi.org/10.1111/gcb.13299 (2016).Espírito-Santo, M. M. et al. Understanding patterns of land-cover change in the Brazilian Cerrado from 2000 to 2015. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2015.0435 (2016).Overbeck, G. E. et al. Conservation in Brazil needs to include non-forest ecosystems. Divers. Distrib. https://doi.org/10.1111/ddi.12380 (2015).Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. https://doi.org/10.1111/j.1461-0248.2004.00686.x (2005).RTRS Standard for Responsible Soy Production Version 3.1 (RTRS, 2017); https://responsiblesoy.org/wp-content/uploads/2019/08/RTRS%20Standard%20Responsible%20Soy%20production%20V3.1%20ING-LOW.pdfBatlle-Bayer, L., Batjes, N. H. & Bindraban, P. S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric. Ecosyst. Environ. 137, 47–58 (2010).CAS 

    Google Scholar 
    Rockström, J., Falkenmark, M., Lannerstad, M. & Karlberg, L. The planetary water drama: dual task of feeding humanity and curbing climate change. Geophys. Res. Lett. 39, LXXXXX (2012).
    Google Scholar 
    Ocampo-Peñuela, N., Garcia-Ulloa, J., Ghazoul, J. & Etter, A. Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biol. Conserv. https://doi.org/10.1016/j.biocon.2018.05.024 (2018).Gilroy, J. J. et al. Minimizing the biodiversity impact of Neotropical oil palm development. Glob. Change Biol. 21, 1531–1540 (2015).
    Google Scholar 
    Bonn Challenge 2020 Report (IUCN, 2020); https://www.bonnchallenge.org/resources/bonn-challenge-2020-reportGilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).
    Google Scholar 
    Evans, M. C. et al. Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environ. Sci. Policy 50, 114–129 (2015).CAS 

    Google Scholar 
    Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: recalibrating targets for sustainable intensification. BioScience https://doi.org/10.1093/biosci/bix010 (2017).Beyer, R. & Rademacher, T. Species richness and carbon footprints of vegetable oils: can high yields outweigh palm oil’s environmental impact? Sustainability 13, 1813 (2021).
    Google Scholar 
    Lee, J. S. H., Ghazoul, J., Obidzinski, K. & Koh, L. P. Oil palm smallholder yields and incomes constrained by harvesting practices and type of smallholder management in Indonesia. Agron. Sustain. Dev. 34, 501–513 (2014).
    Google Scholar 
    Murphy, D. J. The future of oil palm as a major global crop: opportunities and challenges. J. Oil Palm Res. 26, 1–24 (2014).
    Google Scholar 
    Giam, X., Koh, L. P. & Wilcove, D. S. Tropical crops: cautious optimism. Science https://doi.org/10.1126/science.346.6212.928-a (2014).Villoria, N. B., Golub, A., Byerlee, D. & Stevenson, J. Will yield improvements on the forest frontier reduce greenhouse gas emissions? A global analysis of oil palm. Am. J. Agric. Econ. 95, 1301–1308 (2013).
    Google Scholar 
    Koh, L. P. & Lee, T. M. Sensible consumerism for environmental sustainability. Biol. Conserv. https://doi.org/10.1016/j.biocon.2011.10.029 (2012).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Harris, N., Goldman, E. & Gibbes, S. Spatial Database of Planted Trees (SDPT) Version 1.0 (World Resources Institute, 2019); https://data.globalforestwatch.org/datasets/tree-plantationsSutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).
    Google Scholar 
    Global Land Cover (Copernicus, 2019); https://lcviewer.vito.be/Tsendbazar, N.-E. et al. Copernicus Global Land Operations ‘Vegetation and Energy’ ‘CGLOPS−1’ Validation Report. Moderate Dynamic Land Cover 100m Version 2 (WUR, 2019); https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_VR_LC100m-V2.0_I1.00.pdfSantoro, M. et al. GlobBiomass – global datasets of forest biomass. PANGAEA https://doi.org/10.1594/PANGAEA.894711 (2018).Santoro, M. et al. A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. Geophys. Res. Abstr. https://doi.org/10.1002/joc.5086 (2018).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science https://doi.org/10.1126/science.1244693 (2013).Gumbricht, T. et al. Tropical and Subtropical Wetlands Distribution Version 7 (CIFOR, 2017); https://doi.org/10.17528/CIFOR/DATA.00058The IUCN Red List of Threatened Species Version 2018−1 (IUCN, 2018); https://www.iucnredlist.orgBird Species Distribution Maps of the World Version 6.0 (BirdLife International & Handbook of the Birds of the World, 2016); http://datazone.birdlife.org/species/requestdisR Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Silalertruksa, T. et al. Environmental sustainability of oil palm cultivation in different regions of Thailand: greenhouse gases and water use impact. J. Clean. Prod. 167, 1009–1019 (2017).CAS 

    Google Scholar 
    Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with Maxent using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Z. et al. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010. Reg. Environ. Change https://doi.org/10.1007/s10113-014-0677-x (2015).Singh, K., McClean, C. J., Büker, P., Hartley, S. E. & Hill, J. K. Mapping regional risks from climate change for rainfed rice cultivation in India. Agric. Syst. 156, 76–84 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Estes, L. D. et al. Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.12034 (2013).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modelling (2016).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
    Google Scholar 
    Merow, C., Smith, M. J., Silander, J. A., Merow, C. & Silander, J. A. A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modell. 220, 589–594 (2009).
    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. F. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 199, 142–152 (2006).
    Google Scholar 
    Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. https://doi.org/10.1111/j.0021-8901.2004.00881.x (2004).Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 1.1. (International Food Policy Research Institute, 2019); https://doi.org/10.7910/DVN/PRFF8V/M2EMBNHofste, R. W. et al. Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators (World Resources Institute, 2019); https://www.wri.org/research/aqueduct-30-updated-decision-relevant-global-water-risk-indicatorsCarr, M. K. V. The water relations and irrigation requirements of oil palm (Elaeis guineensis): a review. Exp. Agric. 47, 629–652 (2011).
    Google Scholar 
    Yusop, Z., Hui, C. M., Garusu, G. J. & Katimon, A. Estimation of evapotranspiration in oil palm catchments by short-time period water-budget method. Malays. J. Civ. Eng. 20, 160–174 (2008).
    Google Scholar 
    Hargreaves, G. H. & Allen, R. G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrig. Drain. Eng. 129, 53–63 (2003).
    Google Scholar 
    Trabucco, A. & Zomer, R. J. Global aridity index and potential evapotranspiration (ET0) climate database v2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC & IUCN, 2020); www.protectedplanet.net/en/thematic-areas/wdpaDudley, N. (ed.) Guidelines for Applying Protected Area Management Categories (IUCN, 2008).Juffe-Bignoli, D. et al. World Database on Protected Areas User Manual 1.5 (UNEP-WCMC, 2017); https://www.protectedplanet.net/en/resources/wdpa-manualChave, J. J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).CAS 
    PubMed 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. https://doi.org/10.1371/journal.pbio.0050157 (2007).Beyer, R. M. & Manica, A. Historical and projected future range sizes of the world’s mammals, birds, and amphibians. Nat. Commun. 11, 5633 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beyer, R. M. & Manica, A. Global and country-level data of the biodiversity footprints of 175 crops and pasture. Data Brief 36, 106982 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cobertura de la Tierra 100K Periodo 2018 (IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales, 2021); http://www.siac.gov.co/catalogo-de-mapasSouza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 12, 2735 (2020).
    Google Scholar 
    MapBiomas Project – Collection 6 of the Annual Series of Land Use and Land Cover Maps of Brazil (MapBiomas, 2021); https://plataforma.brasil.mapbiomas.org/Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. https://doi.org/10.1016/j.biocon.2011.01.011 (2011).Portillo-Quintero, C. A. & Sánchez-Azofeifa, G. A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. https://doi.org/10.1016/j.biocon.2009.09.020 (2010).Veldman, J. W. et al. Toward an old-growth concept for grasslands, savannas, and woodlands. Front. Ecol. Environ. https://doi.org/10.1890/140270 (2015).Zaloumis, N. P. & Bond, W. J. Reforestation or conservation? The attributes of old growth grasslands in South Africa. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2015.0310 (2016).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. https://doi.org/10.1038/s41893-018-0100-6 (2018).Djoudi, H., Vergles, E., Blackie, R. R., Koame, C. K. & Gautier, D. Dry forests, livelihoods and poverty alleviation: understanding current trends. Int. For. Rev. https://doi.org/10.1505/146554815815834868 (2015).Ground-Truthing to Improve Due Diligence on Human Rights in Deforestation-Risk Supply Chains (Forest Peoples Programme, 2020); https://www.forestpeoples.org/en/ground-truthing-to-improve-due-diligenceDrost, S., Rijk, G. & Piotrowski, M. Oil Palm Growers Exposed to USD 0.4-5.9B in Social Compensation Risk (Chain Reaction Research, 2019); https://chainreactionresearch.com/wp-content/uploads/2019/12/Social-compensation-risks-for-palm-growers-4.pdf More

  • in

    Mapping the planet’s critical natural assets

    Extent and location of critical natural assetsCritical natural assets providing the 12 local NCP (Fig. 1a) occupy only 30% (41 million km2) of total land area (excluding Antarctica) and 24% (34 million km2) of marine Exclusive Economic Zones (EEZs), reflecting the steep slope of the aggregate NCP accumulation curve (Fig. 1b). Despite this modest proportion of global land area, the shares of countries’ land areas that are designated as critical can vary substantially. The 20 largest countries require only 24% of their land area, on average, to maintain 90% of current levels of NCP, while smaller countries (10,000 to 1.5 million km2) require on average 40% of their land area (Supplementary Data 1). This high variability in the NCP–area relationship is primarily driven by the proportion of countries’ land areas made up by natural assets (that is, excluding barren, ice and snow, and developed lands), but even when this is accounted for, there are outliers (Extended Data Fig. 2). Outliers may be due to spatial patterns in human population density (for example, countries with dense population centres and vast expanses with few people, such as Canada and Russia, require far less area to achieve NCP targets) or large ecosystem heterogeneity (if greater ecosystem diversity yields higher levels of diverse NCP in a smaller proportion of area, which may explain patterns in Chile and Australia).The highest-value critical natural assets (the locations delivering the highest magnitudes of NCP in the smallest area, denoted by the darkest blue or green shades in Fig. 1c) often coincide with diverse, relatively intact natural areas near or upstream from large numbers of people. Many of these high-value areas coincide with areas of greatest spatial congruence among multiple NCP (Extended Data Fig. 3). Spatially correlated pairs of local NCP (Supplementary Table 4) include those related to water (flood risk reduction with nitrogen retention and nitrogen with sediment retention); forest products (timber and fuelwood); and those occurring closer to human-modified habitats (pollination with nature access and with nitrogen retention). Coastal risk reduction, forage production for grazing, and riverine fish harvest are the most spatially distinct from other local NCP. In the marine realm, there is substantial overlap of fisheries with coastal risk reduction and reef tourism (though not between the latter two, which each have much smaller critical areas than exist for fisheries).Number of people benefitting from critical natural assetsWe estimate that ~87% of the world’s current population, 6.4 billion people, benefit directly from at least one of the 12 local NCP provided by critical natural assets, while only 16% live on the lands providing these benefits (and they may also benefit; Fig. 2a). To quantify the number of beneficiaries of critical natural assets, we spatially delineate their benefitting areas (which varies on the basis of NCP: for example, areas downstream, within the floodplain, in low-lying areas near the coast, or accessible by a short travel). While our optimization selects for the provision of 90% of the current value of each NCP, it is not guaranteed that 90% of the world’s population would benefit (since it does not include considerations for redundancy in adjacent pixels and therefore many of the areas selected benefit the same populations), so it is notable that an estimated 87% do. This estimate of ‘local’ beneficiaries probably underestimates the total number of people benefitting because it includes only NCP for which beneficiaries can be spatially delineated to avoid double-counting, yet it is striking that the vast majority, 6.1 billion people, live within 1 h travel (by road, rail, boat or foot, taking the fastest path17) of critical natural assets, and more than half of the world’s population lives downstream of these areas (Fig. 2b). Material NCP are often delivered locally, but many also enter global supply chains, making it difficult to delineate beneficiaries spatially for these NCP. However, past studies have calculated that globally more than 54 million people benefit directly from the timber industry18, 157 million from riverine fisheries19, 565 million from marine fisheries20 and 1.3 billion from livestock grazing21, and across the tropics alone 2.7 billion are estimated to be dependent on nature for one or more basic needs22.Fig. 2: People benefitting from and living on critical natural assets (CNA).a,b, ‘Local’ beneficiaries were calculated through the intersection of areas benefitting from different NCP, to avoid double-counting people in areas of overlap; only those NCP for which beneficiaries could be spatially delineated were included (that is, not material NCP that enter global supply chains: fisheries, timber, livestock or crop pollination). Bars show percentages of total population globally and for large and small countries (a) or the percentage of relevant population globally (b). Numbers inset in bars show millions of people making up that percentage. Numbers to the right of bars in b show total relevant population (in millions of people, equivalent to total global population from Landscan 2017 for population within 1 h travel or downstream, but limited to the total population living within 10 km of floodplains or along coastlines 80%) of their populations benefitting from critical natural assets, but small countries have much larger proportions of their populations living within the footprint of critical natural assets than do large countries (Fig. 2a and Supplementary Data 2). When people live in these areas, and especially when current levels of use of natural assets are not sustainable, regulations or incentives may be needed to maintain the benefits these assets provide. While protected areas are an important conservation strategy, they represent only 15% of the critical natural assets for local NCP (Supplementary Table 5); additional areas should not necessarily be protected using designations that restrict human access and use, or they could cease to provide some of the diverse values that make them so critical23. Other area-based conservation measures, such as those based on Indigenous and local communities’ governance systems, Payments for Ecosystem Services programmes, and sustainable use of land- and seascapes, can all contribute to maintaining critical flows of NCP in natural and semi-natural ecosystems24.Overlaps between local and global prioritiesUnlike the 12 local NCP prioritized here at the national scale, certain benefits of natural assets accrue continentally or even globally. We therefore optimize two additional NCP at a global scale: vulnerable terrestrial ecosystem carbon storage (that is, the amount of total ecosystem carbon lost in a typical disturbance event25, hereafter ‘ecosystem carbon’) and vegetation-regulated atmospheric moisture recycling (the supply of atmospheric moisture and precipitation sustained by plant life26, hereafter ‘moisture recycling’). Over 80% of the natural asset locations identified as critical for the 12 local NCP are also critical for the two global NCP (Fig. 3). The spatial overlap between critical natural assets for local and global NCP accounts for 24% of land area, with an additional 14% of land area critical for global NCP that is not considered critical for local NCP (Extended Data Fig. 4). Together, critical natural assets for securing both local and global NCP require 44% of total global land area. When each NCP is optimized individually (carbon and moisture NCP at the global scale; the other 12 at the country scale), the overlap between carbon or moisture NCP and the other NCP exceeds 50% for all terrestrial (and freshwater) NCP except coastal risk reduction (which overlaps only 36% with ecosystem carbon, 5% with moisture recycling; Supplementary Table 4).Fig. 3: Spatial overlaps between critical natural assets for local and global NCP.Red and teal denote where critical natural assets for global NCP (providing 90% of ecosystem carbon and moisture recycling globally) or for local NCP (providing 90% of the 12 NCP listed in Fig. 1), respectively, but not both, occur; gold shows areas where the two overlap (24% of the total area). Together, local and global critical natural assets account for 44% of total global land area (excluding Antarctica). Grey areas show natural assets not defined as ‘critical’ by this analysis, though still providing some values to certain populations. White areas were excluded from the optimization.Full size imageSynergies can also be found between NCP and biodiversity and cultural diversity. Critical natural assets for local NCP at national levels overlap with part or all of the area of habitat (AOH, mapped on the basis of species range maps, habitat preferences and elevation27) for 60% of 28,177 terrestrial vertebrates (Supplementary Data 3). Birds (73%) and mammals (66%) are better represented than reptiles and amphibians (44%). However, these critical natural assets represent only 34% of the area for endemic vertebrate species (with 100% of their AOH located within a given country; Supplementary Data 3) and 16% of the area for all vertebrates if using a more conservative representation target framework based on the IUCN Red List criteria (though, notably, achieving Red List representation targets is impossible for 24% of species without restoration or other expansion of existing AOH; Supplementary Data 4). Cultural diversity (proxied by linguistic diversity) has far higher overlaps with critical natural assets than does biodiversity; these areas intersect 96% of global Indigenous and non-migrant languages28 (Supplementary Data 5). The degree to which languages are represented in association with critical natural assets is consistent across most countries, even at the high end of language diversity (countries containing >100 Indigenous and non-migrant languages, such as Indonesia, Nigeria and India). This high correspondence provides further support for the importance of safeguarding rights to access critical natural assets, especially for Indigenous cultures that benefit from and help maintain them. Despite the larger land area required for maintaining the global NCP compared with local NCP, global NCP priority areas overlap with slightly fewer languages (92%) and with only 2% more species (60% of species AOH), although a substantially greater overlap is seen with global NCP if Red List criteria are considered (36% compared with 16% for local NCP; Supplementary Data 4). These results provide different insights than previous efforts at smaller scales, particularly a similar exercise in Europe that found less overlap with priority areas for biodiversity and NCP29. However, the 40% of all vertebrate species whose habitats did not overlap with critical natural assets could drive very different patterns if biodiversity were included in the optimization.Although these 14 NCP are not comprehensive of the myriad ways that nature benefits and is valued by people23, they capture, spatially and thematically, many elements explicitly mentioned in the First Draft of the CBD’s post-2020 Global Biodiversity Framework13: food security, water security, protection from hazards and extreme events, livelihoods and access to green and blue spaces. Our emphasis here is to highlight the contributions of natural and semi-natural ecosystems to human wellbeing, specifically contributions that are often overlooked in mainstream conservation and development policies around the world. For example, considerations for global food security often include only crop production rather than nature’s contributions to it via pollination or vegetation-mediated precipitation, or livestock production without partitioning out the contribution of grasslands from more intensified feed production.Gaps and next stepsOur synthesis of these 14 NCP represents a substantial advance beyond other global prioritizations that include NCP limited to ecosystem carbon stocks, fresh water and marine fisheries30,31,32, though still falls short of including all important contributions of nature such as its relational values33. Despite the omission of many NCP that were not able to be mapped, further analyses indicate that results are fairly robust to inclusion of additional NCP. Dropping one of the 12 local NCP at a time results in More

  • in

    Limited carbon cycling due to high-pressure effects on the deep-sea microbiome

    Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).Article 

    Google Scholar 
    Jannasch, H. W., Eimhjellen, K., Wirsen, C. O. & Farmanfarmaian, A. Microbial degradation of organic matter in the deep sea. Science 171, 672–675 (1971).Article 

    Google Scholar 
    Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R. & Deming, J. W. Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ. Microbiol. 15, 1262–1274 (2013).Article 

    Google Scholar 
    Yayanos, A. A. Microbiology to 10,500 meters in the deep-sea. Annu. Rev. Microb. 49, 777–805 (1995).Article 

    Google Scholar 
    Jebbar, M., Franzetti, B., Girard, E. & Oger, P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19, 721–740 (2015).Article 

    Google Scholar 
    Yayanos, A. A. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl Acad. Sci. USA 83, 9542–9546 (1986).Article 

    Google Scholar 
    Nagata, T. et al. Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry, and genomics. Deep-Sea Res. II 57, 1519–1536 (2010).Article 

    Google Scholar 
    Picard, A. & Daniel, I. Pressure as an environmental parameter for microbial life – a review. Biophys. Chem. 183, 30–41 (2013).Article 

    Google Scholar 
    Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).Article 

    Google Scholar 
    Marietou, A. & Bartlett, D. H. Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl. Environ. Microbiol. 80, 5992–6003 (2014).Article 

    Google Scholar 
    Lauro, F. M. & Bartlett, D. H. Prokaryotic lifestyles in deep sea habitats. Extremophiles 12, 15–25 (2008).Article 

    Google Scholar 
    Peoples, L. M. et al. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genom. 21, 692 (2020).Article 

    Google Scholar 
    Reinthaler, T. et al. Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol. Oceanogr. 51, 1262–1273 (2006).Article 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).Article 

    Google Scholar 
    Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: what the @$#! is wrong with present calculations of carbon budgets? Deep-Sea Res. II 57, 1557–1571 (2010).Article 

    Google Scholar 
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).Article 

    Google Scholar 
    Kirchman, D., Knees, E. & Hodson, R. Leucine incorporation and its potential as a measure of protein-synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49, 599–607 (1985).Article 

    Google Scholar 
    Nielsen, J. L., Christensen, D., Kloppenborg, M. & Nielsen, P. H. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ. Microbiol. 5, 202–211 (2003).Article 

    Google Scholar 
    Sintes, E. & Herndl, G. J. Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with micro autoradiography. Appl. Environ. Microbiol. 72, 7022–7028 (2006).Article 

    Google Scholar 
    Garel, M. et al. Pressure-retaining sampler and high-pressure systems to study deep-sea microbes under in situ conditions. Front. Microbiol 10, 453 (2019).Article 

    Google Scholar 
    Peoples, L. M. et al. A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions. Deep-Sea Res. I 143, 50–57 (2019).Article 

    Google Scholar 
    Gross, M. & Jaenicke, R. Proteins under pressure – the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 221, 617–630 (1994).Article 

    Google Scholar 
    Kirchman, D. L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309 (2016).Article 

    Google Scholar 
    Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).Article 

    Google Scholar 
    Xie, Z., Jian, H., Jin, Z. & Xiao, X. Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress. Appl. Environ. Microbiol. 84, e02342–02317 (2018).Article 

    Google Scholar 
    Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep-Sea Res. II 56, 1533–1546 (2009).Article 

    Google Scholar 
    Ivars-Martinez, E. et al. Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J. 2, 1194–1212 (2008).Article 

    Google Scholar 
    Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, eaaz4354 (2020).Article 

    Google Scholar 
    Bochdansky, A. B., van Aken, H. M. & Herndl, G. J. Role of macroscopic particles in deep-sea oxygen consumption. Proc. Natl Acad. Sci. USA 107, 8287–8291 (2010).Article 

    Google Scholar 
    Chikuma, S., Kasahara, R., Kato, C. & Tamegai, H. Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol. Lett. 267, 108–112 (2007).Article 

    Google Scholar 
    Qin, Q. L. et al. Oxidation of trimethylamine to trimethylamine N-oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. Sci. Adv. 7, eabf9941 (2021).Article 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).Article 

    Google Scholar 
    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471 (2015).Article 

    Google Scholar 
    Tada, Y. et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl. Environ. Microbiol. 77, 4055–4065 (2011).Article 

    Google Scholar 
    Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697 (2000).Article 

    Google Scholar 
    Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. Proc. Natl Acad. Sci. USA 118, e2018269118 (2021).Article 

    Google Scholar 
    Ducklow, H. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) Ch. 4, 85–120 (Wiley-Liss, 2000).Herndl, G. J. et al. Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).Article 

    Google Scholar 
    Baltar, F., Aristegui, J., Gasol, J. M. & Herndl, G. J. Prokaryotic carbon utilization in the dark ocean: growth efficiency, leucine-to-carbon conversion factors, and their relation. Aquat. Microb. Ecol. 60, 227–232 (2010).Article 

    Google Scholar 
    Edgcomb, V. P. et al. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res. II 129, 213–222 (2016).Article 

    Google Scholar 
    Cario, A., Oliver, G. C. & Rogers, K. L. Exploring the deep marine biosphere: challenges, innovations, and opportunities. Front. Earth Sci. 7, 225 (2019).Article 

    Google Scholar 
    Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).Article 

    Google Scholar 
    Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).Article 

    Google Scholar 
    Gasol, J. M. et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Prog. Oceanogr. 83, 189–196 (2009).Article 

    Google Scholar 
    DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).Article 

    Google Scholar 
    Teira, E., Reinthaler, T., Pernthaler, A., Pernthaler, J. & Herndl, G. J. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl. Environ. Microbiol. 70, 4411–4414 (2004).Article 

    Google Scholar 
    Woebken, D., Fuchs, B. M., Kuypers, M. M. M. & Amann, R. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl. Environ. Microbiol. 73, 4648–4657 (2007).Article 

    Google Scholar 
    Wand, M. P. Data-based choice of histogram bin width. Am. Stat. 51, 59–64 (1997).
    Google Scholar 
    Acinas, S. G. et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 4, 604 (2021).Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).Article 

    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).Article 

    Google Scholar 
    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 

    Google Scholar 
    Wu, Y. W., Tang, Y. H., Tringe, S. G., Simmons, B. A. & Singer, S. W. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2, 26 (2014).Article 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. Peerj 7, e7359 (2019).Article 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).
    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 

    Google Scholar 
    Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5, 976–989 (1994).Article 

    Google Scholar 
    Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).Article 

    Google Scholar 
    Riffle, M. et al. MetaGOmics: a web-based tool for peptide-centric functional and taxonomic analysis of metaproteomics data. Proteomes 6, 2 (2017).Article 

    Google Scholar 
    Reinthaler, T., van Aken, H. M. & Herndl, G. J. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep-Sea Res. II 57, 1572–1580 (2010).Article 

    Google Scholar 
    Yokokawa, T., Yang, Y. H., Motegi, C. & Nagata, T. Large-scale geographical variation in prokaryotic abundance and production in meso- and bathypelagic zones of the central Pacific and Southern Ocean. Limnol. Oceanogr. 58, 61–73 (2013).Article 

    Google Scholar 
    Frank, A. H., Garcia, J. A., Herndl, G. J. & Reinthaler, T. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environ. Microbiol. 18, 2052–2063 (2016).Article 

    Google Scholar 
    Herndl, G. J., Bayer, B., Baltar, F. & Reinthaler, T. Prokaryotic life in the deep ocean’s water column. Annu. Rev. Mar. Sci. (in the press).Uchimiya, M., Ogawa, H. & Nagata, T. Effects of temperature elevation and glucose addition on prokaryotic production and respiration in the mesopelagic layer of the western North Pacific. J. Oceanogr. 72, 419–426 (2016).Article 

    Google Scholar 
    Antia, A. N. et al. Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration. Glob. Biogeochem. Cycles 15, 845–862 (2001).Article 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).Article 

    Google Scholar  More

  • in

    Sustainable palm oil puts grasslands at risk

    Austin, K. G. et al. Land Use Policy 69, 41–48 (2017).Article 

    Google Scholar 
    Busch, J. et al. Environ. Res. Lett. 17, 014035 (2022).Article 
    CAS 

    Google Scholar 
    Fleiss, S. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01941-6 (2022).Qaim, M. et al. Annu. Rev. Resour. Econ. 12, 321–344 (2020).Article 

    Google Scholar 
    Haupt, F. et al. Progress on Corporate Commitments and their Implementation (Tropical Forest Alliance, 2018).Brooks, T. et al. Nat. Ecol. Evol. 1, 0099 (2017).Article 

    Google Scholar 
    Buisson, E. et al. Biol. Rev. 94, 590–609 (2019).Article 
    PubMed 

    Google Scholar 
    López-Ricaurte, L. et al. Biol. Conserv. 213, 225–233 (2017).Article 

    Google Scholar 
    Furumo, P. R. & Aide, T. M. Environ. Res. Lett. 12, 024008 (2017).Article 

    Google Scholar 
    RTRS Standard for Responsible Soy Production Version 3.1 (RTRS, 2017). More

  • in

    Semi-field and surveillance data define the natural diapause timeline for Culex pipiens across the United States

    Way, M. J., Hopkins, B. & Smith, P. M. Photoperiodism and diapause in insects. Nature 164, 615 (1949).Article 
    PubMed 

    Google Scholar 
    Beck, S. Photoperiod induction of diapause in an insect. Biol. Bull. 122, 1–12 (1962).Article 

    Google Scholar 
    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).Article 
    PubMed 

    Google Scholar 
    Readio, J., Chen, M. H. & Meola, R. Juvenile hormone biosynthesis in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 36, 355–360 (1999).Article 
    PubMed 

    Google Scholar 
    Eldridge, B. F. & Bailey, C. L. Experimental hibernation studies in Culex pipiens (Diptera: Culicidae): reactivation of ovarian development and blood-feeding in prehibernating females. J. Med Entomol. 15, 462–467 (1979).Article 
    PubMed 

    Google Scholar 
    Spielman, A. & Wong, J. Environmental control of ovarian diapause in Culex pipiens. Ann. Entomol. Soc. Am. 66, 905–907 (1973).Article 

    Google Scholar 
    Sanburg, L. L. & Larsen, J. R. Effect of photoperiod and temperature on ovarian development in Culex pipiens pipiens. J. Insect Physiol. 19, 1173–1190 (1973).Article 
    PubMed 

    Google Scholar 
    Eldridge, B. F. The effect of temperature and photoperiod on blood-feeding and ovarian development in mosquitoes of the Culex pipiens complex. Am. J. Trop. Med. Hyg. 17, 133–140 (1968).Article 
    PubMed 

    Google Scholar 
    Bowen, M. F. Patterns of sugar feeding in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae) females. J. Med. Entomol. 29, 843–849 (1992).Article 
    PubMed 

    Google Scholar 
    Robich, R. M. & Denlinger, D. L. Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc. Natl Acad. Sci. USA 102, 15912–15917 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldridge, B. F. Environmental control of ovarian development in mosquitoes of the Culex pipiens complex. Am. Assoc. Adv. Sci. 151, 826–828 (1966).
    Google Scholar 
    Vinogradova, A. B. Culex pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance And Control (Pensoft, 2000).Benoit, J. B. & Denlinger, D. L. Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J. Exp. Biol. 210, 217–226 (2007).Article 
    PubMed 

    Google Scholar 
    Li, A. & Denlinger, D. L. Pupal cuticle protein is abundant during early adult diapause in the mosquito Culex pipiens. J. Med. Entomol. 46, 1382–1386 (2009).Article 
    PubMed 

    Google Scholar 
    Yang, L., Denlinger, D. L. & Piermarini, P. M. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens. J. Insect Physiol. 98, 141–148 (2017).Article 
    PubMed 

    Google Scholar 
    King, B., Li, S., Liu, C., Kim, S. J. & Sim, C. Suppression of glycogen synthase expression reduces glycogen and lipid storage during mosquito overwintering diapause. J. Insect Physiol. 120, 103971 (2020).Article 
    PubMed 

    Google Scholar 
    Sim, C. & Denlinger, D. L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39, 202–209 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sim, C. & Denlinger, D. L. Insulin signaling and FOXO regulate the overwintering diapause of the mosquito Culex pipiens. Proc. Natl Acad. Sci. USA 105, 6777–6781 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, G. & Miesfeld, R. L. Energy metabolism during diapause in Culex pipiens mosquitoes. J. Insect Physiol. 55, 40–46 (2009).Article 
    PubMed 

    Google Scholar 
    Chang, J. et al. Solid-state NMR reveals differential carbohydrate utilization in diapausing Culex pipiens. Sci. Rep. 6, 37350 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madder, D. J., Surgeoner, G. A. & Helson, B. V. Induction of diapause in Culex pipiens and Culex restuans (Diptera: Culicidae) in Southern Ontario. Can. Entomol. 115, 877–883 (1983).Article 

    Google Scholar 
    Spielman, A. Effect of synthetic juvenile hormone on ovarian diapause of Culex pipiens mosquitoes. J. Med. Entomol. 11, 223–225 (1974).Article 
    PubMed 

    Google Scholar 
    Sim, C. & Denlinger, D. L. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4, 189 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robich, R. M., Rinehart, J. P., Kitchen, L. J. & Denlinger, D. L. Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J. Insect Physiol. 53, 235–245 (2007).Article 
    PubMed 

    Google Scholar 
    Sim, C., Kang, D. S., Kim, S., Bai, X. & Denlinger, D. L. Identification of FOXO targets that generate diverse features of the diapause phenotype in the mosquito Culex pipiens. Proc. Natl Acad. Sci. USA 112, 3811–3816 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang, D. S., Cotten, M. A., Denlinger, D. L. & Sim, C. Comparative transcriptomics reveals key gene expression differences between diapausing and non-diapausing adults of Culex pipiens. PLoS ONE 11, e0154892 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spielman, A. Structure and seasonality of nearctic Culex pipiens populations. Ann. N. Y. Acad. Sci. 951, 220–234 (2001).Article 
    PubMed 

    Google Scholar 
    Wilton, D. P. & Smith, G. C. Ovarian diapause in three geographic strains of Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 22, 524–528 (1985).Article 
    PubMed 

    Google Scholar 
    Eldridge, B. F. Diapause and related phenomena in Culex mosquitoes: their relation to arbovirus disease ecology. In: Current Topics in Vector Research (ed. Harris, K. F.) 1–28 (Springer, 1987).Meuti, M. E., Short, C. A. & Denlinger, D. L. Mom matters: diapause characteristics of Culex pipiens-Culex quinquefasciatus (Diptera: Culicidae) hybrid mosquitoes. J. Med. Entomol. 52, 131–137 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, C. et al. Understanding the regulation of overwintering diapause molecular mechanisms in Culex pipiens pallens through comparative proteomics. Sci. Rep. 9, 6845 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Dunphy, B. M. et al. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci. Rep. 9, 6637 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunphy, B. M., Rowley, W. A. & Bartholomay, L. C. A Taxonomic checklist of the mosquitoes of Iowa. J. Am. Mosq. Control Assoc. 30, 119–121 (2014).Article 
    PubMed 

    Google Scholar 
    Sucaet, Y., Van Hemert, J., Tucker, B. & Bartholomay, L. C. A web-based relational database for monitoring and analyzing mosquito population dynamics. J. Med. Entomol. 45, 775–784 (2008).Article 
    PubMed 

    Google Scholar 
    Ryan, S. F., Valella, P., Thivierge, G., Aardema, M. L. & Scriber, J. M. The role of latitudinal, genetic and temperature variation in the induction of diapause of Papilio glaucus (Lepidoptera: Papilionidae). Insect Sci. 25, 328–336 (2018).Article 
    PubMed 

    Google Scholar 
    Huang, L. et al. Diapause incidence and critical day length of Asian corn borer (Ostrinia furnacalis) populations exhibit a latitudinal cline in both pure and hybrid strains. J. Pest Sci. 93, 559–568 (2020).Article 

    Google Scholar 
    Bradshaw, W. E. Geography of photoperiodic response in diapausing mosquito. Nature 262, 384–386 (1976).Article 
    PubMed 

    Google Scholar 
    Bradshaw, W. E. & Lounibos, L. P. Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitoes. Nature 31, 546–567 (1977).
    Google Scholar 
    Kothera, L., Zimmerman, E. M., Richards, C. M. & Savage, H. M. Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a North-South transect in the central United States. J. Med. Entomol. 46, 236–248 (2009).Article 
    PubMed 

    Google Scholar 
    Darsie, R. F. R. & Ward, R. A. R. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico (University Press of Florida, 2005).Huang, S., Molaei, G. & Andreadis, T. G. Reexamination of Culex pipiens hybridization zone in the eastern United States by ribosomal DNA-based single nucleotide polymorphism markers. Am. J. Trop. Med. Hyg. 85, 434–441 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reisen, W. K. Overwintering studies on Culex tarsalis (Diptera: Culicidae) in Kern County, California: life stages sensitive to diapause induction cues. Ann. Entomol. Soc. Am. 79, 674–676 (1986).Article 

    Google Scholar 
    Haba, Y. & McBride, L. Origin and status of Culex pipiens mosquito ecotypes. Curr. Biol. 32, R237–R246 (2022).Article 
    PubMed 

    Google Scholar 
    Holzapfel, C. M. & Bradshaw, W. E. Geography of larval dormancy in the tree-hole mosquito, Aedes triseriatus (Say). Can. J. Zool. 59, 1014–1021 (1981).Article 

    Google Scholar 
    Rinehart, J. P., Robich, R. M. & Denlinger, D. L. Enhanced cold and desiccation tolerance in diapausing adults of Culex pipiens, and a role for Hsp70 in response to cold shock but not as a component of the diapause program. J. Med. Entomol. 43, 713–722 (2006).Article 
    PubMed 

    Google Scholar 
    Faraji, A. & Gaugler, R. Experimental host preference of diapause and non-diapause induced Culex pipiens pipiens (Diptera: Culicidae). Parasit. Vectors 8, 389 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Washino, R. K. The physiological ecology of gonotrophic dissociation and related phenomena in mosquitoes. J. Med. Entomol. 13, 381–388 (1977).Article 
    PubMed 

    Google Scholar 
    Christophers, S. The development of the egg follicle in Anophelines. Paludism 1, 73–88 (1911).
    Google Scholar 
    Nelms, B. M., Macedo, P. A., Kothera, L., Savage, H. M. & Reisen, W. K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 50, 773–790 (2013).Article 
    PubMed 

    Google Scholar 
    Diniz, D. F. A., De Albuquerque, C. M. R., Oliva, L. O., De Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites Vectors 10, 1–13 (2017).Article 

    Google Scholar 
    Kingsolver, J. G. & Nagle, A. Evolutionary divergence in thermal sensitivity and diapause of field and laboratory populations of Manduca sexta. Physiol. Biochem. Zool. 80, 473–479 (2007).Article 
    PubMed 

    Google Scholar 
    Brent, C. S. & Spurgeon, D. W. Diapause response of laboratory reared and native lygus hesperus knight (Hemiptera: Miridae). Environ. Entomol. 40, 455–461 (2011).Article 

    Google Scholar 
    Rinehart, J. P., Yocum, G. D., Leopold, R. A. & Robich, R. M. Cold storage of Culex pipiens in the absence of diapause. J. Med. Entomol. 47, 1071–1076 (2014).Article 

    Google Scholar 
    Arora, A. K., Sim, C., Severson, D. W. & Kang, D. S. Random forest analysis of impact of abiotic factors on Culex pipiens and Culex quinquefasciatus occurrence. Front. Ecol. Evol. 9, 773360 (2022).Article 

    Google Scholar 
    Focks, D. A., Linda, S. B., Craig Jnr, G. B., Hawley, W. A. & Pumpuni, C. B. Aedes albopictus (Diptera: Culicidae): a statistical model of the role of temperature, photoperiod, and geography in the induction of egg diapause. J. Med. Entomol. 31, 278–286 (1994).Article 
    PubMed 

    Google Scholar 
    Urbanski, J. et al. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am. Nat. 179, 490–500 (2012).Article 
    PubMed 

    Google Scholar 
    Kothera, L., Godsey, M. S., Doyle, M. S. & Savage, H. M. Characterization of Culex pipiens complex (Diptera: Culicidae) populations in Colorado, USA using microsatellites. PLoS ONE 7, e0047602 (2012).Article 

    Google Scholar 
    Kothera, L., Nelms, B. M., Reisen, W. K. & Savage, H. M. Population genetic and admixture analyses of Culex pipiens complex (Diptera: Culicidae) populations in California, United States. Am. J. Trop. Med. Hyg. 89, 1154–1167 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kothera, L. et al. Bloodmeal, Host selection, and genetic admixture analyses of Culex pipiens Complex (Diptera: Culicidae) mosquitoes in Chicago, IL. J. Med. Entomol. 57, 78–87 (2020).Article 
    PubMed 

    Google Scholar 
    Huang, S., Molaei, G. & Andreadis, T. G. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the Northeastern United States by using microsatellite analysis. Am. J. Trop. Med Hyg. 79, 518–527 (2008).Article 
    PubMed 

    Google Scholar 
    Barr, A. R. The Distribution of Culex p. pipiens and Cp quinquefasciatus in North America. Am. J. Trop. Med. Hyg. 6, 153–165 (1957).Article 
    PubMed 

    Google Scholar 
    Iltis, W. G. Biosystematics of the Culex pipiens Complex in Northern California. Thesis, University of California, Davis. (1966).Urbanelli, S., Silvestrini, F., Reisen, W. K., De Vito, E. & Bullini, L. Californian hybrid zone between Culex pipiens pipiens and Cx. p. quinquefasciatus revisited (Diptera: Culicidae). J. Med. Entomol. 34, 116–127 (1997).Article 
    PubMed 

    Google Scholar 
    Nelms, B. M. et al. Phenotypic variation among Culex pipiens complex (Diptera: Culicidae) populations from the Sacramento Valley, California: Horizontal and vertical transmission of West Nile virus, diapause potential, autogeny, and host selection. Am. J. Trop. Med. Hyg. 89, 1168–1178 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dodson, B. L., Kramer, L. D. & Rasgon, J. L. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit. Vectors 5, 199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ciota, A. T., Matacchiero, A. C., Marm Kilpatrick, A. & Kramer, L. D. The effect of temperature on life history traits of Culex mosquitoes. J. Med Entomol. 51, 55–62 (2014).Article 
    PubMed 

    Google Scholar 
    Carrington, L. B., Seifert, S. N., Willits, N. H., Lambrechts, L. & Scott, T. W. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J. Med. Entomol. 50, 43–51 (2013).Article 
    PubMed 

    Google Scholar 
    Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karki, S., Brown, W. M., Uelmen, J., O’Hara Ruiz, M. & Smith, R. L. The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: fine scale dynamic effects of weather, mosquito infection, social, and biological conditions. PLoS ONE 15, e0227160 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andreadis, T. G., Anderson, J. F., Vossbrinck, C. R. & Main, A. J. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector-Borne Zoonotic Dis. 4, 360–378 (2004).Article 
    PubMed 

    Google Scholar 
    Anderson, J. F. & Main, A. J. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the northeastern United States. J. Infect. Dis. 194, 1577–1579 (2006).Article 
    PubMed 

    Google Scholar 
    Nasci, R. S. et al. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg. Infect. Dis. 7, 742–744 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kampen, H., Tews, B. A. & Werner, D. First evidence of West Nile virus overwintering in mosquitoes in Germany. Viruses 13, 1–7 (2021).Article 

    Google Scholar 
    Farajollahi, A. et al. Detection of West Nile viral RNA from an overwintering pool of Culex pipens pipiens (Diptera: Culicidae) in New Jersey, 2003. J. Med. Entomol. 42, 490–494 (2005).Article 
    PubMed 

    Google Scholar 
    Baqar, S., Hayes, C. G., Murphy, J. R. & Watts, D. M. Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Am. J. Trop. Med. Hyg. 48, 757–762 (1993).Article 
    PubMed 

    Google Scholar 
    Miller, B. R. et al. First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley Province, Kenya. Am. J. Trop. Med. Hyg. 62, 240–246 (2000).Article 
    PubMed 

    Google Scholar 
    Peffers, C. S., Pomeroy, L. W. & Meuti, M. E. Critical photoperiod and its potential to predict mosquito distributions and control medically important pests. J. Med. Entomol. 58, 1610–1618 (2021).Article 
    PubMed 

    Google Scholar 
    Bradshaw, W. E. & Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl Acad. Sci. USA 98, 14509–14511 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiter, P. Climate change and mosquito-borne disease. Environ. Health Perspect. 109, 141–161 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Colón-González, F. J. et al. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet. Heal. 5, e404–e414 (2021).Article 

    Google Scholar 
    Barreaux, A. M. G., Stone, C. M., Barreaux, P. & Koella, J. C. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites Vectors 11, 485 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Handel, E. & Day, J. F. Correlation between wing length and protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182 (1989).PubMed 

    Google Scholar 
    Ferreira-De-Freitas, L., Thrun, N. B., Tucker, B. J., Melidosian, L. & Bartholomay, L. C. An evaluation of characters for the separation of two Culex species (Diptera: Culicidae) based on material from the Upper Midwest. J. Insect Sci. 20, 21 (2020).Harrington, L. C. & Poulson, R. L. Considerations for accurate identification of adult Culex restuans (Diptera: Culicidae) in field studies. J. Med. Entomol. 45, 1–8 (2008).Article 
    PubMed 

    Google Scholar  More

  • in

    Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials

    Becker, J., Manske, C. & Randl, S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. https://doi.org/10.1016/j.cogsc.2021.100562 (2022).Article 

    Google Scholar 
    Rajasekharreddy, P., Rani, P. U. & Sreedhar, B. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: A photobiological approach. J. Nanoparticle Res. 12, 25 (2010).Article 

    Google Scholar 
    Mahmoud, A. E. D. Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Mater. Chem. Phys. 253, 123336 (2020).Article 
    CAS 

    Google Scholar 
    Mahmoud, A. E. D., Stolle, A. & Stelter, M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 6, 25 (2018).Article 

    Google Scholar 
    Mellinas, C., Jiménez, A. & del Carmen Garrigós, M. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using theobroma cacao. l. bean shell extract. Molecules 24, 25 (2019).Article 

    Google Scholar 
    Ahmed, S., Saifullah, A. M., Swami, B. L. & Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, 25 (2016).
    Google Scholar 
    Ebadi, M. et al. A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium: Nostoc sp EA03: From biological function to toxicity evaluation. RSC Adv. 9, 25 (2019).Article 

    Google Scholar 
    Mahmoud, A. E. D. & Fawzy, M. Nanosensors and nanobiosensors for monitoring the environmental pollutants. Top. Min. Metallurg. Mater. Eng. https://doi.org/10.1007/978-3-030-68031-2_9 (2021).Article 

    Google Scholar 
    Mousavi, S. M. et al. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 46, 3. https://doi.org/10.1080/21691401.2018.1517769 (2018).Article 
    CAS 

    Google Scholar 
    Hussain, I., Singh, N. B., Singh, A., Singh, H. & Singh, S. C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 25. https://doi.org/10.1007/s10529-015-2026-7 (2016).Article 
    CAS 

    Google Scholar 
    Singh, P., Kim, Y. J., Zhang, D. & Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 25. https://doi.org/10.1016/j.tibtech.2016.02.006 (2016).Article 
    CAS 

    Google Scholar 
    Nilavukkarasi, M., Vijayakumar, S. & Prathipkumar, S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater. Sci. Energy Technol. 3, 25 (2020).
    Google Scholar 
    Hussain, A. et al. Biogenesis of ZnO nanoparticles using: Pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Adv. 9, 25 (2019).Article 

    Google Scholar 
    Mohamed Isa, E. D., Shameli, K., Che Jusoh, N. W., Mohamad Sukri, S. N. A. & Ismail, N. A. Variation of green synthesis techniques in fabrication of zinc oxide nanoparticles—a mini review. IOP Conf. Ser. Mater. Sci. Eng. 1051, 25 (2021).Article 

    Google Scholar 
    Loganathan, S., Shivakumar, M. S., Karthi, S., Nathan, S. S. & Selvam, K. Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It’s evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol. Rep. 8, 25 (2021).
    Google Scholar 
    Mahmoud, A. E. D., El-Maghrabi, N., Hosny, M. & Fawzy, M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ’s thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environ. Sci. Pollut. Res. 20, 1–16 (2022).
    Google Scholar 
    Ahmar Rauf, M., Oves, M., Ur Rehman, F., Rauf Khan, A. & Husain, N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 116, 25 (2019).Article 

    Google Scholar 
    Chabattula, S. C. et al. Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Mater. Today Chem. 22, 25 (2021).
    Google Scholar 
    Berehu, H. M. et al. Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from swertia chirayita leaf extract on colorectal cancer cells. Front. Bioeng. Biotechnol. 9, 25 (2021).Article 

    Google Scholar 
    Khezri, K., Saeedi, M. & Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 106, 25. https://doi.org/10.1016/j.biopha.2018.07.084 (2018).Article 
    CAS 

    Google Scholar 
    Smijs, T. G. & Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 25. https://doi.org/10.2147/nsa.s19419 (2011).Article 

    Google Scholar 
    Nasrollahzadeh, M. S. et al. Zinc oxide nanoparticles as a potential agent for antiviral drug delivery development: A systematic literature review. Curr. Nanosci. 18, 25 (2021).
    Google Scholar 
    Perera, W. P. T. D. et al. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv. 12, 25 (2022).Article 

    Google Scholar 
    Shalaby, M. A., Anwar, M. M. & Saeed, H. Nanomaterials for application in wound healing: Current state-of-the-art and future perspectives. J. Polym. Res. 29, 25. https://doi.org/10.1007/s10965-021-02870-x (2022).Article 
    CAS 

    Google Scholar 
    Kaushik, M. et al. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 25 (2019).Article 

    Google Scholar 
    Espitia, P. J. P., Otoni, C. G. & Soares, N. F. F. Zinc oxide nanoparticles for food packaging applications. Antimicrob. Food Packag. https://doi.org/10.1016/B978-0-12-800723-5.00034-6.4 (2016).Article 

    Google Scholar 
    Doan Thi, T. U. et al. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 10, 25 (2020).Article 

    Google Scholar 
    Shobha, N. et al. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. C 97, 25 (2019).Article 

    Google Scholar 
    Zahran, M. A. & Willis, A. J. The vegetation of Egypt. Plant Veget. 2, 25 (2009).
    Google Scholar 
    El-Borady, O. M., Fawzy, M. & Hosny, M. Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl. Nanosci. (Switzerland) https://doi.org/10.1007/s13204-021-01776-w (2021).Article 

    Google Scholar 
    Hosny, M., Fawzy, M., Abdelfatah, A. M., Fawzy, E. E. & Eltaweil, A. S. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Adv. Powder Technol. 32, 25 (2021).Article 

    Google Scholar 
    Vijayakumar, S. et al. Acalypha fruticosa L. Leaf extract mediated synthesis of ZnO nanoparticles: Characterization and antimicrobial activities. Mater. Today Proc. 23, 25 (2019).
    Google Scholar 
    Fatimah, I., Pradita, R. Y. & Nurfalinda, A. Plant extract mediated of ZnO nanoparticles by using ethanol extract of mimosa pudica leaves and coffee powder. Proced. Eng. 148, 25 (2016).Article 

    Google Scholar 
    Heneidy, S. Z. & Bidak, L. M. Potential uses of plant species of the coastal mediterranean region, Egypt. Pak. J. Biol. Sci. 7, 1010–1023 (2004).Article 

    Google Scholar 
    Manousaki, E. & Kalogerakis, N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 50, 25 (2011).Article 

    Google Scholar 
    Zengin, G., Aumeeruddy-Elalfi, Z., Mollica, A., Yilmaz, M. A. & Mahomoodally, M. F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—a source of innovative phytopharmaceuticals from nature. Phytomedicine 38, 35–44 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xin, P. et al. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Rev. Geophys. 60, 5. https://doi.org/10.1029/2021RG000740 (2022).Article 

    Google Scholar 
    International Union for Conservation of Nature. International Union for Conservation of Nature Natural Resources IUCN Red List Categories and Criteria (IUCN, 2001).
    Google Scholar 
    Boulos, L. Flora of Egypt Vol 417 21–22 (Al Hadara Publishing, 1999).
    Google Scholar 
    Safawo, T., Sandeep, B. V., Pola, S. & Tadesse, A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. Open Nano 3, 25 (2018).
    Google Scholar 
    Soltanian, S. et al. Biosynthesis of zinc oxide nanoparticles using hertia intermedia and evaluation of its cytotoxic and antimicrobial activities. https://doi.org/10.1007/s12668-020-00816-z/Published.Ogbole, O. O., Segun, P. A. & Adeniji, A. J. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern. Med. 17, 25 (2017).Article 

    Google Scholar 
    Slater, T. F., Sawyer, B. & Sträuli, U. Studies on succinate-tetrazolium reductase systems. III Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77, 25 (1963).Article 

    Google Scholar 
    Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 25 (1988).
    Google Scholar 
    van de Loosdrecht, A. A., Beelen, R. H. J., Ossenkoppele, G. J., Broekhoven, M. G. & Langenhuijsen, M. M. A. C. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174, 25 (1994).
    Google Scholar 
    Gonelimali, F. D. et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 9, 25 (2018).Article 

    Google Scholar 
    Aldalbahi, A. et al. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules 25, 25 (2020).Article 

    Google Scholar 
    López-Cuenca, S. et al. High-yield synthesis of zinc oxide nanoparticles from bicontinuous microemulsions. J. Nanomater. 2011, 25 (2011).Article 

    Google Scholar 
    Sajadi, S. M. et al. Natural iron ore as a novel substrate for the biosynthesis of bioactive-stable ZnO@CuO@iron ore NCs: A magnetically recyclable and reusable superior nanocatalyst for the degradation of organic dyes, reduction of Cr(vi) and adsorption of crude oil aromatic compounds, including PAHs. RSC Adv. 8, 62. https://doi.org/10.1039/c8ra06028b (2018).Article 
    CAS 

    Google Scholar 
    Meena, P. L., Poswal, K. & Surela, A. K. Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green dye in aqueous solution. Water Environ. J. 36, 25 (2022).Article 

    Google Scholar 
    El-Belely, E. F. et al. Green synthesis of zinc oxide nanoparticles (Zno-nps) using arthrospira platensis (class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials 11, 25 (2021).Article 

    Google Scholar 
    Faye, G., Jebessa, T. & Wubalem, T. Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract (2021). https://doi.org/10.1049/nbt2.12072.Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R. & Chauhan, P. K. A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata rhizome extract: Antibacterial and anticancer potential. J. Inorg. Organomet. Polym. Mater. 31, 25 (2021).Article 

    Google Scholar 
    Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 6, 25 (2021).Article 

    Google Scholar 
    Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrometry 8, 25 (2007).
    Google Scholar 
    VStein, S., Mirokhin, D., Tchekhovskoi, D., & Nist, G. M. The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library. Gaithersburg, MD: Standard Reference Data Program of the National Institute of Standards and Technology (2002).Mahmoud, A. E. D., Hosny, M., El-Maghrabi, N. & Fawzy, M. Facile synthesis of reduced graphene oxide by Tecoma stans extracts for efficient removal of Ni (II) from water: Batch experiments and response surface methodology. Sustain. Environ. Res. 32, 25 (2022).Article 

    Google Scholar 
    Balasubramani, G. et al. GC-MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J. Photochem. Photobiol. B 148, 25 (2015).Article 

    Google Scholar 
    Barzinjy, A. A. & Azeez, H. H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2, 25 (2020).Article 

    Google Scholar 
    Anitha, R., Ramesh, K. V., Ravishankar, T. N., Sudheer Kumar, K. H. & Ramakrishnappa, T. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J. Sci. Adv. Mater. Devices 3, 25 (2018).
    Google Scholar 
    Chandra, H., Patel, D., Kumari, P., Jangwan, J. S. & Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C 102, 25 (2019).Article 

    Google Scholar 
    Majeed, S., Danish, M., Ismail, M. H., Ansari, M. T. & Ibrahim, M. N. M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line- in vitro study. Sustain. Chem. Pharm. 14, 25 (2019).
    Google Scholar 
    Miri, A., Khatami, M., Ebrahimy, O. & Sarani, M. Cytotoxic and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit. Green Chem. Lett. Rev. 13, 25. https://doi.org/10.1080/17518253.2020.1717005 (2020).Article 
    CAS 

    Google Scholar 
    Ahamed, M., Akhtar, M. J., Khan, M. A. M. & Alhadlaq, H. A. Enhanced anticancer performance of eco-friendly-prepared Mo-ZnO/RGO nanocomposites: Role of oxidative stress and apoptosis. ACS Omega 7, 25 (2022).Article 

    Google Scholar 
    Al-Mohaimeed, A. M., Al-Onazi, W. A. & El-Tohamy, M. F. Multifunctional eco-friendly synthesis of ZnO nanoparticles in biomedical applications. Molecules 27, 25 (2022).Article 

    Google Scholar 
    Schreyer, M., Guo, L., Thirunahari, S., Gao, F. & Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. J. Appl. Crystallogr. 47, 25 (2014).Article 

    Google Scholar 
    Pu, Y., Niu, Y., Wang, Y., Liu, S. & Zhang, B. Statistical morphological identification of low-dimensional nanomaterials by using TEM. Particuology 61, 11–17 (2022).Article 
    CAS 

    Google Scholar 
    Wu, C. M., Baltrusaitis, J., Gillan, E. G. & Grassian, V. H. Sulfur dioxide adsorption on ZnO nanoparticles and nanorods. J. Phys. Chem. C 115, 10164–10172 (2011).Article 
    CAS 

    Google Scholar 
    Saranya, S., Vijayaranai, K., Pavithra, S., Raihana, N. & Kumanan, K. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol. Rep. 4, 25 (2017).
    Google Scholar 
    Chelladurai, M. et al. Anti-skin cancer activity of Alpinia calcarata ZnO nanoparticles: Characterization and potential antimicrobial effects. J Drug Deliv. Sci. Technol. 61, 102180 (2021).Article 
    CAS 

    Google Scholar 
    Lingaraju, K., Naika, H. R., Nagabhushana, H. & Nagaraju, G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. Biocatal. Agric. Biotechnol. 18, 25 (2019).Article 

    Google Scholar 
    Sana, S. S. et al. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules 25, 25 (2020).Article 

    Google Scholar 
    Bisht, G. & Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine https://doi.org/10.5772/63437 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S. & Saravanan, M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J. Mol. Struct. 1235, 25 (2021).Article 

    Google Scholar 
    Selim, Y. A., Azb, M. A., Ragab, I., Abd El-Azim, H. M. & M.,. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 25 (2020).Article 

    Google Scholar 
    Medini, F. et al. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. South Afr. J. Bot. 99, 25 (2015).Article 

    Google Scholar 
    Pan, M. H., Ghai, G. & Ho, C. T. Food bioactives, apoptosis, and cancer. Mol. Nutr. Food Res. 52, 20. https://doi.org/10.1002/mnfr.200700380 (2008).Article 
    CAS 

    Google Scholar 
    Abdallah, H. M. & Ezzat, S. M. Effect of the method of preparation on the composition and cytotoxic activity of the essential oil of Pituranthos tortuosus. Z. Nat. Sect. C J. Biosci. 66 C, 25 (2011).
    Google Scholar 
    Iqbal, J. et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 11, 25 (2021).Article 

    Google Scholar 
    Norouzi Jobie, F., Ranjbar, M., Hajizadeh Moghaddam, A. & Kiani, M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv. Powder Technol. 32, 21 (2021).Article 

    Google Scholar 
    Chen, F. C., Huang, C. M., Yu, X. W. & Chen, Y. Y. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum. Exp. Toxicol. 41, 15 (2022).Article 

    Google Scholar 
    Sajjad, A. et al. Photoinduced fabrication of zinc oxide nanoparticles: Transformation of morphological and biological response on light irradiance. ACS Omega 6, 75 (2021).Article 

    Google Scholar 
    Sohail, M. F. et al. Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol. 59, 15 (2020).
    Google Scholar 
    Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C. & Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 20, 20. https://doi.org/10.1080/10408398.2021.1959295 (2021).Article 
    CAS 

    Google Scholar 
    Bouarab-Chibane, L. et al. Antibacterial properties of polyphenols: Characterization and QSAR (quantitative structure-activity relationship) models. Front. Microbiol. 10, 77 (2019).Article 

    Google Scholar 
    Guimarães, A. C. et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24, 11 (2019).Article 

    Google Scholar 
    Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x (2015).Article 
    CAS 

    Google Scholar 
    Singh, T. A. et al. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Coll. Interface Sci. 295, 25. https://doi.org/10.1016/j.cis.2021.102495 (2021).Article 
    CAS 

    Google Scholar 
    Gao, Y. et al. Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Clust. Sci. 30, 11 (2019).Article 

    Google Scholar 
    Luo, Q. et al. Terpenoid composition and antioxidant activity of extracts from four chemotypes of Cinnamomum camphora and their main antioxidant agents. Biofuels Bioprod. Biorefin. 16, 510–522 (2022).Article 
    CAS 

    Google Scholar 
    Bose, J., Rodrigo-Moreno, A. & Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65, 25. https://doi.org/10.1093/jxb/ert430 (2014).Article 
    CAS 

    Google Scholar  More

  • in

    Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation

    Henry, L.-A. & Roberts, J. M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res. I(54), 654–672 (2007).
    Google Scholar 
    Buhl-Mortensen, L. et al. First observations of the structure and megafaunal community of a large Lophelia reef on the Ghanaian shelf (the Gulf of Guinea). Deep Sea Res. II(137), 148–156 (2017).
    Google Scholar 
    Price, D. M. et al. Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs 38, 1007–1021 (2019).
    Google Scholar 
    Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312, 543–547 (2006).CAS 
    PubMed 

    Google Scholar 
    Henry, L. A., Nizinski, M. S. & Ross, S. W. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep. Res. I(55), 788–800 (2008).
    Google Scholar 
    Henry, L.-A. & Roberts, J. M. Global Biodiversity in Cold-Water Coral Reef Ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–21 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_6-1.Chapter 

    Google Scholar 
    De Mol, B. et al. Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar. Geol. 188, 193–231 (2002).
    Google Scholar 
    Dorschel, B., Hebbeln, D., Rüggeberg, A., Dullo, W. C. & Freiwald, A. Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet. Sci. Lett. 233, 33–44 (2005).CAS 

    Google Scholar 
    Hebbeln, D., Van Rooij, D. & Wienberg, C. Good neighbours shaped by vigorous currents: Cold-water coral mounds and contourites in the North Atlantic. Mar. Geol. 378, 171–185 (2016).
    Google Scholar 
    Wheeler, A. J. et al. Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int. J. Earth Sci. 96, 37–56 (2007).CAS 

    Google Scholar 
    Lo Iacono, C., Savini, A. & Basso, D. Cold-water carbonate bioconstructions. in Submarine Geomorphology, 425–455 (Springer, 2018).Hebbeln, D. Highly variable submarine landscapes in the Alborán sea created by cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 61–65 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_8.Chapter 

    Google Scholar 
    Addamo, A. M. et al. Merging scleractinian genera: The overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. 16, 1–17 (2016).
    Google Scholar 
    Wienberg, C. & Titschack, J. Framework-forming scleractinian cold-water corals through space and time: A late quaternary north atlantic perspective. in Marine Animal Forests 1–34 (Springer, 2017). https://doi.org/10.1007/978-3-319-17001-5_16-1Maier, C., Weinbauer, M. G. & Gattuso, J.-P. Fate of mediterranean scleractinian cold-water corals as a result of global climate change: A synthesis. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 517–529 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_44.Chapter 

    Google Scholar 
    Reynaud, S. & Ferrier-Pagès, C. Biology and ecophysiology of mediterranean cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future (eds Orejas, C. & Jiménez, C.) 391–404 (Springer, 2019). https://doi.org/10.1007/978-3-319-91608-8_35.Chapter 

    Google Scholar 
    Hennige, S. J. et al. Using the Goldilocks principle to model coral ecosystem engineering. Proc. R. Soc. B Biol. Sci. 288, 20211260 (2021).CAS 

    Google Scholar 
    LoIacono, C. et al. The West Melilla cold water coral mounds, Eastern Alboran Sea: Morphological characterization and environmental context. Deep Sea Res. II(99), 316–326 (2014).
    Google Scholar 
    Mortensen, P. B., Hovland, T., Fosså, J. H. & Furevik, D. M. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J. Mar. Biol. Assoc. 81, 581–597 (2001).
    Google Scholar 
    Mienis, F. et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic. Ocean. Deep. Res. I(54), 1655–1674 (2007).
    Google Scholar 
    Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
    Google Scholar 
    Mohn, C. et al. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Prog. Oceanogr. 122, 92–104 (2014).
    Google Scholar 
    Mienis, F. et al. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences 11, 2543–2560 (2014).
    Google Scholar 
    Grasmueck, M. et al. Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys. Res. Lett. 33, L23616 (2006).
    Google Scholar 
    Correa, T. B. S., Eberli, G. P., Grasmueck, M., Reed, J. K. & Correa, A. M. S. Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Mar. Geol. 326–328, 14–27 (2012).
    Google Scholar 
    Lavaleye, M. et al. Cold-water corals on the tisler reef: Preliminary observations on the dynamic reef environment. Oceanography 22, 76–84 (2009).
    Google Scholar 
    Mortensen, P. B. et al. Seascape description of anunusual coral reef area off Vesteraålen, Northern Norway. in 4th International Symposium on deep-sea corals. (2008).Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: Hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).
    Google Scholar 
    Buhl-Mortensen, P. & Sundahl, H. Environmental control of cold-water coral reef morphology. in 7th International Symposium on deep-sea corals. (2019).van der Kaaden, A.-S., van Oevelen, D., Rietkerk, M., Soetaert, K. & van de Koppel, J. Spatial self-organization as a new perspective on cold-water coral mound development. Front. Mar. Sci. 7, 631 (2020).
    Google Scholar 
    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).
    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).
    Google Scholar 
    Mienis, F., Bouma, T., Witbaard, R., van Oevelen, D. & Duineveld, G. Experimental assessment of the effects of coldwater coral patches on water flow. Mar. Ecol. Prog. Ser. 609, 101–117 (2019).CAS 

    Google Scholar 
    van der Kaaden, A.-S. et al. Feedbacks between hydrodynamics and cold-water coral mound development. Deep Sea Res. I 178, 103641 (2021).
    Google Scholar 
    Mortensen, P. B., Hovland, M., Brattegard, T. & Farestveit, R. Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° n on the norwegian shelf: Structure and associated megafauna. Sarsia 80, 145–158 (1995).
    Google Scholar 
    Corbera, G. et al. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanogr. 175, 245–262 (2019).
    Google Scholar 
    Kano, A. et al. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 35, 1051–1054 (2007).CAS 

    Google Scholar 
    Douarin, M. et al. Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: A high resolution U-series and 14C chronology. Earth Planet. Sci. Lett. 375, 176–187 (2013).CAS 

    Google Scholar 
    Orejas, C., Gori, A. & Gili, J. M. Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27, 255–255 (2008).
    Google Scholar 
    Orejas, C. et al. Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar. Ecol. Prog. Ser. 429, 57–65 (2011).
    Google Scholar 
    Lartaud, F., Mouchi, V., Chapron, L., Meistertzheim, A.-L. & Le Bris, N. Growth Patterns of Mediterranean Calcifying Cold-Water Corals. in Mediterranean Cold-Water Corals: Past, Present and Future 405–422 (2019). https://doi.org/10.1007/978-3-319-91608-8_36.Büscher, J. V. et al. In situ growth and bioerosion rates of Lophelia pertusa in a Norwegian fjord and open shelf cold-water coral habitat. PeerJ 2019, 1–10 (2019).
    Google Scholar 
    Form, A. U. & Riebesell, U. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Chang. Biol. 18, 843–853 (2012).
    Google Scholar 
    Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).CAS 

    Google Scholar 
    Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1, 78 (2014).
    Google Scholar 
    Gori, A., Reynaud, S., Orejas, C., Gili, J. M. & Ferrier-Pagès, C. Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs 33, 665–674 (2014).
    Google Scholar 
    Huvenne, V. A. I. et al. Sediment dynamics and palaeo-environmental context at key stages in the Challenger cold-water coral mound formation: Clues from sediment deposits at the mound base. Deep. Res. I(56), 2263–2280 (2009).
    Google Scholar 
    Bartzke, G. et al. Investigating the prevailing hydrodynamics around a cold-water coral colony using a physical and a numerical approach. Front. Mar. Sci. 8, 3304 (2021).
    Google Scholar 
    Downs, C. A. et al. Cellular diagnostics and coral health: Declining coral health in the Florida Keys. Mar. Pollut. Bull. 51, 558–569 (2005).CAS 
    PubMed 

    Google Scholar 
    Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Long. 2014, 1–10 (2014).CAS 

    Google Scholar 
    Oh, T. J., Kim, I. G., Park, S. Y., Kim, K. C. & Shim, H. W. NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate. Environ. Toxicol. Pharmacol. 11, 9–14 (2002).CAS 
    PubMed 

    Google Scholar 
    Dade, L., Hogg, A. & Boudreau, B. Physics of Flow Above the Sediment-Water Interface (Oxford University Press, 2001).
    Google Scholar 
    Gass, S. E. & Roberts, J. M. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Mar. Pollut. Bull. 52, 549–559 (2006).CAS 
    PubMed 

    Google Scholar 
    Brooke, S. & Young, C. M. In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 397, 153–161 (2009).
    Google Scholar 
    Lartaud, F. et al. A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat. Living Resour. 26, 187–196 (2013).
    Google Scholar 
    Sebens, K. P., Witting, J. & Helmuth, B. Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J. Exp. Mar. Bio. Ecol. 211, 1–28 (1997).
    Google Scholar 
    Sebens, K. P., Grace, S. P., Helmuth, B., Maney, E. J. Jr. & Miles, J. S. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar. Biol. 131, 347–360 (1998).
    Google Scholar 
    Purser, A., Larsson, A. I., Thomsen, L. & van Oevelen, D. The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J. Exp. Mar. Bio. Ecol. 395, 55–62 (2010).
    Google Scholar 
    Orejas, C. et al. The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J. Exp. Mar. Bio. Ecol. 481, 34–40 (2016).
    Google Scholar 
    Duineveld, G. C. A. et al. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar. Ecol. Prog. Ser. 444, 97–115 (2012).
    Google Scholar 
    De Clippele, L. H. et al. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs 37, 253–266 (2018).PubMed 

    Google Scholar 
    Jokiel, P. L. Effects of water motion on reef corals. J. Exp. Mar. Biol. Ecol. 35, 87–97 (1978).
    Google Scholar 
    Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461 (1993).CAS 
    PubMed 

    Google Scholar 
    Finelli, C. M., Helmuth, B. S. T., Pentcheff, N. D. & Wethey, D. S. Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25, 47–57 (2006).
    Google Scholar 
    Atkinson, M. J. & Bilger, R. W. Effects of water velocity on phosphate uptake in coral reef-hat communities. Limnol. Oceanogr. 37, 273–279 (1992).CAS 

    Google Scholar 
    Mass, T., Genin, A., Shavit, U., Grinstein, M. & Tchernov, D. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc. Natl. Acad. Sci. 107, 2527–2531 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comeau, S., Edmunds, P. J., Lantz, C. A. & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Sci. Rep. 4, 6681 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larsson, A., Lundälv, T. & van Oevelen, D. Skeletal growth, respiration rate and fatty acid composition in the cold-water coral Lophelia pertusa under varying food conditions. Mar. Ecol. Prog. Ser. 483, 169–184 (2013).
    Google Scholar 
    Baussant, T., Nilsen, M., Ravagnan, E., Westerlund, S. & Ramanand, S. Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density. J. Toxicol. Environ. Health. A 80, 266–284 (2017).CAS 
    PubMed 

    Google Scholar 
    Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).
    Google Scholar 
    Brooke, S. D., Holmes, M. W. & Young, C. M. Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar. Ecol. Prog. Ser. 390, 137–144 (2009).
    Google Scholar 
    Bøe, R. et al. Giant sandwaves in the Hola glacial trough off Vesterålen, North Norway. Mar. Geol. 267, 36–54 (2009).
    Google Scholar 
    Huvenne, V. A. I. et al. The Magellan mound province in the Porcupine Basin. Int. J. Earth Sci. 96, 85–101 (2007).CAS 

    Google Scholar 
    De Haas, H. et al. Morphology and sedimentology of (clustered) cold-water coral mounds at the south Rockall Trough margins, NE Atlantic Ocean. Facies 55, 1–26 (2009).
    Google Scholar 
    Lim, A., Huvenne, V. A. I., Vertino, A., Spezzaferri, S. & Wheeler, A. J. New insights on coral mound development from groundtruthed high-resolution ROV-mounted multibeam imaging. Mar. Geol. 403, 225–237 (2018).
    Google Scholar 
    Olariaga, A., Gori, A., Orejas, C. & Gili, J. M. Development of an autonomous aquarium system for maintaining deep corals. Oceanography 22, 44–45 (2009).
    Google Scholar 
    Davies, A. J. et al. Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico. Deep Sea Res. I(57), 199–212 (2010).
    Google Scholar 
    Mienis, F. et al. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep Sea Res. I(60), 32–45 (2012).
    Google Scholar 
    Flo, E., Garcés, E., Manzanera, M. & Camp, J. Coastal inshore waters in the NW Mediterranean: Physicochemical and biological characterization and management implications. Estuar. Coast. Shelf Sci. 93, 279–289 (2011).CAS 

    Google Scholar 
    Davies, P. S. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101, 389–395 (1989).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, 2018).Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 

    Google Scholar 
    Thérond, P., Auger, J., Legrand, A. & Jouannet, P. α-tocopherol in human spermatozoa and seminal plasma: Relationships with motility, antioxidant enzymes and leukocytes. Mol. Hum. Reprod. 2, 739–744 (1996).PubMed 

    Google Scholar 
    Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140 (1952).CAS 
    PubMed 

    Google Scholar 
    Kalghatgi, S. et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 1–10 (2013).
    Google Scholar  More