More stories

  • in

    Sexual dimorphism and reproductive biology of the Asian bockadam snake (Cerberus schneiderii) in West Java

    Stocks, G., Seales, L., Paniagua, F., Maehr, E. & Bruna, E. M. The geographical and institutional distribution of ecological research in the tropics. Biotropica 40, 397–404 (2008).Article 

    Google Scholar 
    Bernstein, J. M., Murphy, J. C., Voris, H. K., Brown, R. M. & Ruane, S. Phylogenetics of mud snakes (Squamata: Serpentes: Homalopsidae): A paradox of both undescribed diversity and taxonomic inflation. Mol. Phylogenet. Evol. 160, 107109 (2021).Article 
    PubMed 

    Google Scholar 
    Murphy, J. C., Voris, H. K. & Karns, D. R. The dog-faced water snakes, a revision of the genus Cerberus Cuvier, (Squamata, Serpentes, Homalopsidae), with the description of a new species. Zootaxa 3484, 1–34 (2012).Article 

    Google Scholar 
    Stuart, B. L. The harvest and trade of reptiles at U Minh Thuong National Park, southern Viet Nam. Traffic Bull. 20, 25–34 (2004).
    Google Scholar 
    Brooks, S. E., Allison, E. H. & Reynolds, J. D. Vulnerability of Cambodian water snakes: Initial assessment of the impact of hunting at Tonle Sap Lake. Biol. Conserv. 139, 401–414 (2007).Article 

    Google Scholar 
    Murphy, J. C. Homalopsid Snakes (Evolution in the Mud (Krieger Publishing, Malabar, 2007).
    Google Scholar 
    Karns, D. R., Murphy, J. C. & Voris, H. K. Semi-aquatic snake communities of the central plain region of Thailand. Trop. Nat. Hist. 10, 1–25 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Heang, K. B. Diet, feeding behavior, growth, and numbers of a population of Cerberus rynchops (Serpentes: Homalopsinae) in Malaysia: a contribution in celebration of the distinguished scholarship of Robert F. Inger on the occasion of his sixty-fifth birthday. Fieldiana Zoology, Series 50 (Field Museum of Natural History, Chicago, IL, 1988).Chim, C. K. & Diong, C. H. A mark-recapture study of a dog-faced water snake Cerberus schneiderii (Colubridae: Homalopsidae) population in Sungei Buloh Wetland Reserve Singapore. Raffles Bull. Zool. 61, 811–825 (2013).
    Google Scholar 
    Shine, R., Ambariyanto, Harlow, P. S. & Mumpuni. Ecological attributes of two commercially-harvested python species in northern Sumatra. J. Herpet. 33, 249–257 (1999).Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).Article 

    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A. & Shine, R. Harvest effects on blood pythons in North Sumatra. J. Wildl. Manage. 84, 249–255 (2020).Article 

    Google Scholar 
    Shine, R., Harlow, P. S. & Keogh, J. S. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1988).Article 

    Google Scholar 
    Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).Article 

    Google Scholar 
    Shine, R. & Harlow, P. S. Reticulated pythons in Sumatra: biology, harvesting and sustainability. Biol. Conserv. 87, 349–357 (1999).Article 

    Google Scholar 
    Hoesel, J. K. P. Ophidia Javanica (Museum Zoologicum Bogoriense, Kebun Raya, Indonesia, 1959).Voris, H. K. & Murphy, J. C. The prey and predators of homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).Article 

    Google Scholar 
    Wall, F. A popular treatise on the common Indian Snakes. Part 26. J. Bombay Nat. Hist. Soc. 26, 89–97 (1918).Gorman, G. C., Licht, P. & McCollum, F. Annual reproductive patterns in three species of marine snakes from the central Philippines. J. Herpetol. 15, 335–354 (1981).Article 

    Google Scholar 
    Auffenberg, W. The herpetofauna of Komodo, with notes on adjacent areas. Bull. Florida State Mus. Biol. Sci. 25, 39–156 (1980).
    Google Scholar 
    Alcala, A. C. Guide to Philippine Flora and Fauna. Vol. X. Amphibians and Reptiles (Natural Resource Management Center, Ministry of Natural Resources and the University of the Philippines, Manila, Philippines, 1986).Harlow, P. S. & Taylor, J. E. Reproductive ecology of the jacky dragon (Amphibolurus muricatus): An agamid lizard with temperature-dependent sex determination. Austral. Ecol. 25, 640–652 (2000).Article 

    Google Scholar 
    Saint Girons, H. & Pfeffer, P. Notes sur l’ecologie des serpents du Cambodge. Zool. Mededelingen 47, 65–87 (1972).Kusrini, M. D. et al. Abundance, demography, and harvesting of water snakes from agricultural landscapes in West Java, Indonesia. Wildl. Res. In review (2022).Shine, R. Sexual differences in morphology and niche utilization in an aquatic snake Acrochordus arafurae. Oecologia 69, 260–267 (1986).Article 
    PubMed 

    Google Scholar 
    Houston, D. & Shine, R. Sexual dimorphism and niche divergence: Feeding habits of the Arafura filesnake. J. Anim. Ecol. 62, 737–748 (1993).Article 

    Google Scholar 
    Shine, R., Reed, R., Shetty, S. & Cogger, H. Relationships between sexual dimorphism and niche partitioning within a clade of sea-snakes (Laticaudinae). Oecologia 133, 45–53 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vincent, S. E., Herrel, A. & Irschick, D. J. Sexual dimorphism in head shape and diet in the cottonmouth snake (Agkistrodon piscivorus). J. Zool. 264, 53–59 (2004).Article 

    Google Scholar 
    Perkins, M. W., Cloyed, C. S. & Eason, P. K. Intraspecific dietary variation in niche partitioning within a community of ecologically similar snakes. Evol. Ecol. 34, 1017–1035 (2020).Article 

    Google Scholar 
    Shine, R. & Goiran, C. Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae). Sci. Rep. 11, 20026 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122 (1991).Article 

    Google Scholar 
    Bonnet, X., Shine, R., Naulleau, G. & Vacher-Vallas, M. Sexual dimorphism in snakes: Different reproductive roles favour different body plans. Proc. R. Soc. B 265, 179–183 (1998).Article 
    PubMed Central 

    Google Scholar 
    Shine, R., Olsson, M. M., Moore, I. T., LeMaster, M. P. & Mason, R. T. Why do male snakes have longer tails than females?. Proc. R. Soc. B 266, 2147–2151 (1999).Article 
    PubMed Central 

    Google Scholar  More

  • in

    Vultures for climate

    Pablo Ignacio Plaza and Sergio Agustín Lambertucci from the National University of Comahue and the Argentine Research Council in Argentina quantified the contribution of vultures to reducing greenhouse gas emissions by developing two contrasting scenarios. The first assumes that all the dead animals that the vultures can consume are disposed of, whereas in the second scenario, the dead animals are left to decompose in the environment without scavengers. The results show that the current vulture population can reduce emissions by up to 60.7 teragrams CO2 equivalent per year. A decline in vulture populations decreases their mitigation capacity by 30%. The study highlights that vultures are essential to keep our climate cool. More

  • in

    Heated beetles

    The long-term resilience of species to increasing temperature relies on both individual survival and successful reproduction. High temperatures have been shown to readily impair the production and function of gametes (particularly sperm), and species occurrence has been shown to map closely to sterilizing (rather than lethal) temperatures. However, the impacts of temperature on sexual selection — the competition for mating partners or their gametes — remains relatively unexplored. More

  • in

    A non-avian dinosaur with a streamlined body exhibits potential adaptations for swimming

    Dinosauria Owen, 1842Theropoda Marsh, 1881Dromaeosauridae Matthew and Brown, 1922Halszkaraptorinae Cau et al., 2017Revised diagnosisSmall dromaeosaurids that possess dorsoventrally flattened premaxillae, premaxillary bodies perforated by many neurovascular foramina, enlarged and closely packed premaxillary teeth that utilized delayed replacement patterns, reduced anterior maxillary teeth, dorsolateral placement of retracted external nares, greatly elongated cervical vertebrae, anterior cervical vertebrae with round lobes formed by the postzygapophyses, horizontal zygapophyses, and pronounced zygapophyseal laminae in the anterior caudal vertebrae, mediolaterally compressed ulnae with sharp posterior margins, second and third metacarpals with similar thicknesses, shelf-like supratrochanteric processes on the ilia, elongated fossae that border posterolateral ridges on the posterodistal surfaces of the femoral shafts, and third metatarsals in which the proximal halves are unconstricted and anteriorly convex.Natovenator polydontus gen. et sp. nov.HolotypeMPC-D 102/114 (Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia) is a mostly articulated skeleton with a nearly complete skull (See Supplementary Table 1 for measurements).Locality and horizonBaruungoyot Formation (Upper Cretaceous), Hermiin Tsav, Omnogovi Province, Mongolia13 (Supplementary Fig. 5).EtymologyNatovenator, from the Latin nato (swim) and venator (hunter), in reference to the hypothesized swimming behaviour and piscivorous diet of the new taxon; polydontus, from the Greek polys (many) and odous (tooth) in reference to the unusually many teeth.DiagnosisA small halszkaraptorine dromaeosaurid with the following autapomorphies: wide groove delimited by a pair of ridges on the anterodorsal surface of the premaxilla, premaxilla with an elongated internarial process that overlies nasal and extends posterior to the external naris, 13 premaxillary teeth with large and incisiviform crowns, first three anteriormost maxillary teeth are greatly reduced and are clustered together with the following tooth without any separations by interdental septa, anteroposteriorly long external naris (about 30% of the preorbital skull length), paroccipital process with a anteroposteriorly broad dorsal surface, elongate maxillary process of the palatine that extends anteriorly beyond the middle of the antorbital fenestra, pterygoid with a deep fossa on the medial surface of the quadrate ramus, distinct posterolaterally oriented projection on the lateral surface of atlas, absence of pleurocoels in cervical vertebrae (not confirmed in the missing fifth cervical centrum), posterolaterally oriented and nearly horizontal proximal shafts in the dorsal ribs, hourglass-shaped metacarpal II with distinctly concave medial and lateral surfaces.DescriptionThe skull of Natovenator is nearly complete, although the preorbital region has been affected by compression and is slightly offset from the rest of the skull (Figs. 1c, d, 2a–d and Supplementary Figs. 1, 2). Near the tip of the snout, the premaxilla is marked by a broad groove. The body of the premaxilla is also dorsoventrally low and is perforated by numerous foramina that lead into a complex network of neurovascular chambers (Supplementary Fig. 1b) as in Halszkaraptor4. Similarly, the external naris is positioned posteriorly and is level with the premaxilla-maxilla contact (Fig. 2a, b), although it is marginally behind this position in Halszkaraptor4. It is also dorsally placed compared to those of other non-avian theropods and faces dorsolaterally. The exceptionally long external naris and accordingly elongated internarial process of Natovenator (Fig. 2c) are unique among dromaeosaurids but comparable to those in aquatic toothed birds14 as well as in therizinosaurs15,16. The frontal is similar to those of other halszkaraptorines4,17 in that it is vaulted to accommodate a large orbit and has little contribution to the supratemporal fossa. A sharp nuchal crest is formed by the parietal and the squamosal (Supplementary Fig. 2a–e). The latter also produces a shelf that extends over the quadrate head as in other dromaeosaurids18. The paroccipital process curves gently on the occiput and has a broad dorsal surface that tapers laterally (Fig. 2f and Supplementary Fig. 2b, e). Its ventrolateral orientation is reminiscent of Mahakala17 but is different from the more horizontal paroccipital process of Halszkaraptor4. The occipital condyle is long and constricted at its base. A shallow dorsal tympanic recess on the lateral wall of the braincase is different from the deep one of Mahakala17. The palatine is tetraradiate with a greatly elongated maxillary process, which extends anteriorly beyond the level of the mid-antorbital fenestra. The pterygoid is missing its anterior portion (Fig. 2g and Supplementary Fig. 2a–e). A deep fossa on the medial surface of the thin quadrate ramus is not seen in any other dromaeosaurids. The mandibles of Natovenator preserve most of the elements, especially those on the left side (Fig. 1a, b, d and Supplementary Figs. 1a, 2). Each jaw is characterized by a slender dentary with nearly parallel dorsal and ventral margins, a surangular partially fused with the articular, a distinctive surangular shelf, and a fan-shaped retroarticular process that protrudes dorsomedially. The upper dentition of Natovenator is heterodont as the premaxillary teeth are morphologically distinct from the maxillary teeth (Fig. 2a, b, e and Supplementary Fig. 1a, c). There are unusually numerous premaxillary teeth tightly packed without any separation of the alveoli by bony septa. The roots of the teeth are long, and the crowns are tall and incisiviform as in Halszkaraptor4. Moreover, the large replacement teeth in the premaxilla suggest that the replacement of the premaxillary teeth was delayed as in Halszkaraptor4. However, the number of teeth in each premaxilla is 13 in Natovenator, whereas it is only 11 in Halszkaraptor4. In the maxilla, the three most anterior maxillary teeth are markedly shorter than the premaxillary teeth and the more posterior maxillary teeth. This pattern is also observed in Halszkaraptor, although the number of shorter maxillary teeth differs as it has two reduced ones7. Both the maxillary and dentary teeth have sharp fang-like crowns that lack serrations. Although posteriormost parts are poorly preserved, there are at least 23 alveoli in each of the maxilla and dentary, which suggests high numbers of teeth in both elements.The neck of Natovenator, as preserved, is twisted and includes ten elongated cervical vertebrae, although most of the 5th cervical is missing (Figs. 1, 3a–d). This elongation of the cervicals results in a noticeably longer neck than those of most dromaeosaurids and is estimated to be longer than the dorsal series. It is, however, proportionately shorter than that of Halszkaraptor, which has a neck as long as its dorsal and sacral vertebra combined4. Another peculiarity in the neck of the Natovenator is a pronounced posterolaterally extending projection on the neurapophysis of the atlas (Fig. 3a and Supplementary Fig. 2b, c, e). The postzygapophyses of each anterior cervical are fused into a single lobe-like process as in Halszkaraptor4. Pleurocoels are absent in the cervical vertebrae. In contrast, Halszkaraptor has pleurocoels on its 7th–9th cervicals4. A total of 12 dorsal vertebrae are preserved (Figs. 1a, b, 3e, 4a and Supplementary Figs. 3a–d). They all lack pleurocoels, and their parapophyses on the anterior and mid-dorsals are placed high on the anterodorsal end of each centrum. Interestingly, the positions of the parapophyses are similar to those of hesperornithiforms19,20,21 rather than other dromaeosaurids such as Deinonychus22 or Velociraptor23. The preserved dorsal ribs, articulated with the second to seventh dorsals, are flattened and posteriorly oriented (Figs. 1, 3e, 4a–d). The proximal shafts are also nearly horizontal, which is indicative of a dorsoventrally compressed ribcage. Each proximal caudal vertebra has a long centrum and horizontal zygapophyses with expanded laminae (Fig. 3f and Supplementary Fig. 3e–i), all of which are characters shared with other halszkaraptorines4,17. The forelimb elements are partially exposed (Figs. 1a, b, 2a–d, 3e, g). The nearly complete right humerus is proportionately short and distally flattened like that of Halszkaraptor4. The shaft of the ulna is mediolaterally compressed to produce a sharp posterior margin as in Halszkaraptor4 and Mahakala17. Metacarpal III is robust and is only slightly longer than metacarpal II. Similarly, metacarpal III is almost as thick and long as other second metacarpals of other halszkaraptorines4,17. The femur has a long ridge on its posterior surface, which is another characteristic shared among halszkaraptorines4. Typically for a dromaeosaurid, metatarsals II and III have ginglymoid distal articular surfaces (Fig. 3h and Supplementary Fig. 4f, h). The ventral surface of metatarsal III is invaded by a ridge near the distal end, unlike other halszkaraptorines (Fig. 3h)4,5,17,24.Phylogenetic analysisThe phylogenetic analysis found more than 99,999 most parsimonious trees (CI = 0.23, RI = 0.55) with 6574 steps. Deinonychosaurian monophyly is not supported by the strict consensus tree (Supplementary Fig. 6). Instead, Dromaeosauridae was recovered as a sister clade to a monophyletic clade formed by Troodontidae and Avialae, which is consistent with the results of Cau et al.4 and Cau7. Halszkaraptorinae is positioned at the base of Dromaeosauridae as in Cau et al.4, although there are claims that dromaeosaurid affinities of halszkaraptorines are not well supported25. Nine (seven ambiguous and two unambiguous) synapomorphies support the inclusion of Halszkaraptorinae in Dromaeosauridae. The two unambiguous synapomorphies are the anterior tympanic recess at the same level as the basipterygoid process and the presence of a ventral flange on the paroccipital process. A total of 20 synapomorphies (including one unambiguous synapomorphy) unite the four halszkaraptorines, including Natovenator (Supplementary Fig. 7). In Halszkaraptorinae, Halszkaraptor is the earliest branching taxon, and the remaining three taxa form an unresolved clade supported by three ambiguous synapomorphies (characters 121/1, 569/0, and 1153/1). Two of these synapomorphies are related to the paroccipital process (characters 121 and 569), which is not preserved in Hulsanpes5,24. The other is the presence of an expansion on the medial margin of the distal half of metatarsal III, which is not entirely preserved in the Natovenator. When scored as 0 for this character, Natovenator branches off from the unresolved clade. It suggests that the medial expansion of the dorsal surface of metatarsal III could be a derived character among halszkaraptorines. More

  • in

    Temporal patterns of soil carbon emission in tropical forests under long-term nitrogen deposition

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).Article 

    Google Scholar 
    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCC, 2015).IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).Article 

    Google Scholar 
    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 3rd edn (Elsevier, 2013).Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Du, E. Rise and fall of nitrogen deposition in the United States. Proc. Natl Acad. Sci. USA 113, E3594–E3595 (2016).Article 

    Google Scholar 
    Schmitz, A. et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 244, 980–994 (2019).Article 

    Google Scholar 
    Hietz, P. et al. Long-term change in the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).Article 

    Google Scholar 
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences 5, 339–352 (2008).Article 

    Google Scholar 
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).Article 

    Google Scholar 
    Liu, L. L. & Greaver, T. L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 13, 819–828 (2010).Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).Article 

    Google Scholar 
    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).Article 

    Google Scholar 
    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 

    Google Scholar 
    Zhong, Y., Yan, W. & Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 25, 475–488 (2016).Article 

    Google Scholar 
    Deng, L. et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob. Change Biol. 26, 2613–2629 (2020).Article 

    Google Scholar 
    Hagedorn, F., Kammer, A., Schmidt, M. W. I. & Goodale, C. L. Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Glob. Change Biol. 18, 1412–1427 (2012).Article 

    Google Scholar 
    Du, Y. et al. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Glob. Change Biol. 20, 3222–3228 (2014).Article 

    Google Scholar 
    Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: evidence from a 7-year field study of larch plantations in northern China. Agr. For. Meteorol. 262, 24–33 (2018).Article 

    Google Scholar 
    Xing, A. et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol. Lett. 25, 77–78 (2021).Article 

    Google Scholar 
    Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).Article 

    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).Article 

    Google Scholar 
    Liu, X. J. et al. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264 (2011).Article 

    Google Scholar 
    Zhu, F. F., Yoh, M., Gilliam, F. S., Lu, X. K. & Mo, J. M. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8, e82661 (2013).Article 

    Google Scholar 
    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).Article 

    Google Scholar 
    Priess, J. & Fölster, H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biol. Biochem. 33, 503–509 (2001).Article 

    Google Scholar 
    He, T., Wang, Q., Wang, S. & Zhang, F. Nitrogen addition altered the effect of belowground C allocation on soil respiration in a subtropical forest. PLoS ONE 11, e0155881 (2016).Article 

    Google Scholar 
    Fan, H. et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 379, 361–371 (2014).Article 

    Google Scholar 
    Zheng, M. et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences 13, 3503–3517 (2016).Article 

    Google Scholar 
    Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl Acad. Sci. USA 118, e2020790118 (2021).Article 

    Google Scholar 
    Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).Article 

    Google Scholar 
    Tian, J. et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 25, 3267–3281 (2019).Article 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 

    Google Scholar 
    Lu, X. K. et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China. Pedosphere 19, 189–198 (2009).Article 

    Google Scholar 
    Fang, Y., Gundersen, P., Mo, J. & Zhu, W. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. For. Ecol. Manage. 257, 332–342 (2009).Article 

    Google Scholar 
    Chen, X. M. et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S. China. J. Plant Nutr. Soil Sci. 175, 947–953 (2012).Article 

    Google Scholar 
    Fang, H. J. et al. 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320, 243–254 (2009).Article 

    Google Scholar 
    Liu, L. et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 5, 14378–14378 (2014).Article 

    Google Scholar 
    Chen, H. et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Funct. Ecol. 30, 305–313 (2015).Article 

    Google Scholar 
    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).Article 

    Google Scholar 
    Mao, Q. G. Impacts of Long-Term Nitrogen and Phosphorus Addition on Understory Plant Diversity in Subtropical Forests in Southern China. Doctoral Thesis, Univ. Chinese Academy of Sciences (2017).Xing, A. J. et al. High-level nitrogen additions accelerate soil respiration reduction over time in a boreal forest. Ecol. Lett. https://doi.org/10.1111/ele.14065 (2022).Cao, J. et al. Plant–bacteria–soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Funct. Ecol. 34, 723–734 (2020).Article 

    Google Scholar 
    Mo, J. M., Brown, S., Peng, S. L. & Kong, G. H. Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For. Ecol. Manage. 175, 573–583 (2003).Article 

    Google Scholar 
    Huang, Z. L., Ding, M. M., Zhang, Z. P. & Yi, W. M. The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecol. Sin. 18, 194–199 (1994).
    Google Scholar 
    Wright, R. F. & Rasmussen, L. Introduction to the NITREX and EXMAN projects. For. Ecol. Manage. 101, 1–7 (1998).Article 

    Google Scholar 
    Gundersen, P. et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For. Ecol. Manage. 101, 37–55 (1998).Article 

    Google Scholar 
    Aber, J. D. et al. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Appl. 3, 156–166 (1993).Article 

    Google Scholar 
    Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl Acad. Sci. USA 103, 10316–10321 (2006).Article 

    Google Scholar 
    Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).Article 

    Google Scholar 
    Lu, X. et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences 10, 3931–3941 (2013).Article 

    Google Scholar 
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).Article 

    Google Scholar 
    Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil–atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).Article 

    Google Scholar 
    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 403 (2021).Article 

    Google Scholar  More

  • in

    Greater evolutionary divergence of thermal limits within marine than terrestrial species

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article 
    CAS 

    Google Scholar 
    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).Article 
    CAS 

    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).Article 
    CAS 

    Google Scholar 
    Hughes, A. R. et al. Predicting the sensitivity of marine populations to rising temperatures. Front. Ecol. Environ. 17, 17–24 (2019).Article 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).Article 

    Google Scholar 
    Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 374, 20180550 (2019).Article 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).Article 

    Google Scholar 
    Kelly, M. W., Sanford, E. & Grosberg, R. K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B 279, 349–356 (2012).Article 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).Article 
    CAS 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Article 
    CAS 

    Google Scholar 
    Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).Article 

    Google Scholar 
    Barley, J. M. et al. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc. R. Soc. B 288, 202110765 (2021).Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).Article 

    Google Scholar 
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article 

    Google Scholar 
    Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).Article 

    Google Scholar 
    Kinlan, B. P., Gaines, S. D. & Lester, S. E. Propagule dispersal and the scales of marine community process. Diversity Distrib. 11, 139–148 (2005).Article 

    Google Scholar 
    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 2014).Haldane, J. B. S. The relation between density regulation and natural selection. Proc. R. Soc. Lond. B 145, 306–308 (1956).Article 
    CAS 

    Google Scholar 
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).Article 
    CAS 

    Google Scholar 
    Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93, 1378–1387 (2012).Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).Article 

    Google Scholar 
    Caplat, P. et al. Looking beyond the mountain: dispersal barriers in a changing world. Front. Ecol. Environ. 14, 261–268 (2016).Article 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).Article 

    Google Scholar 
    Pinsky, M. L., Comte, L. & Sax, D. F. Unifying climate change biology across realms and taxa. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.04.011 (2022).Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).Article 

    Google Scholar 
    Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat. Ecol. 48, 73–83 (2014).Article 
    CAS 

    Google Scholar 
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).Article 

    Google Scholar 
    Kappes, H. & Haase, P. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci. 74, 1–14 (2012).Article 

    Google Scholar 
    Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).Article 

    Google Scholar 
    Cereja, R. Critical thermal maxima in aquatic ectotherms. Ecol. Indic. 119, 106856 (2020).Article 

    Google Scholar 
    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).Article 

    Google Scholar 
    Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2022).Article 

    Google Scholar 
    Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the Bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Org. Biol. 1, oby002 (2019).Spence, A. R. & Tingley, M. W. The challenge of novel abiotic conditions for species undergoing climate-induced range shifts. Ecography 43, 1571–1590 (2020).Article 

    Google Scholar 
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).Article 
    CAS 

    Google Scholar 
    Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).Article 

    Google Scholar 
    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Chuang, A. & Peterson, C. R. Expanding population edges: theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article 

    Google Scholar 
    Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).Article 
    CAS 

    Google Scholar 
    Gaston, K. J. et al. Macrophysiology: a conceptual reunification. Am. Nat. 174, 595–612 (2009).Article 

    Google Scholar 
    Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).Article 
    CAS 

    Google Scholar 
    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).Article 
    CAS 

    Google Scholar 
    Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-Analysis (Russel Sage Foundation, 2009).Gleser, L. & Olkin, I. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) Ch. 19 (Russel Sage Foundation, 2009).Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).Article 
    CAS 

    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’’ animals against climate warming. Proc. Natl Acad. Sci. USA 10, 3835–3840 (2009).Article 

    Google Scholar 
    Denney, D. A., Jameel, M. I., Bemmels, J. B., Rochford, M. E. & Anderson, J. T. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB Plants 12, plaa005 (2020).Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).Article 
    CAS 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comp. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    Pespeni, M. H. & Palumbi, S. R. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol. Ecol. 22, 3580–3597 (2013).Article 
    CAS 

    Google Scholar 
    Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747 (2018).Article 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 
    CAS 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Morelli, T. L. et al. Managing Climate Change refugia for climate adaptation. PLoS ONE 11, e0159909 (2016).Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Med. 151, 264–270 (2009).Article 

    Google Scholar 
    O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. https://doi.org/10.1111/brv.12721 (2021).Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, 89 (2021).Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 1198 (2018).Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).Article 
    CAS 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer (2020); https://automeris.io/WebPlotDigitizerAssis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    Dee, D. P. et al. The ERA–interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 137, 553–597 (2011).Article 

    Google Scholar 
    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).Article 
    CAS 

    Google Scholar 
    Helmuth, B. Thermal biology of rocky intertidal mussels: quantifying body temperature using climatological data. Ecology 80, 15–34 (1999).Article 

    Google Scholar 
    Bell, E. C. Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29–55 (1995).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Software 36, 1–48 (2010).Article 

    Google Scholar 
    Sasaki, M. et al. Data for ‘greater local adaptation to temperature in the ocean than on land’. figshare https://doi.org/10.6084/m9.figshare.20173571 (2022). More

  • in

    Populations adapt more to temperature in the ocean than on land

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Sasaki, M. et al. Greater evolutionary divergence of thermal limits within marine than terrestrial species. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01534-y (2022). More

  • in

    Moss establishment success is determined by the interaction between propagule size and species identity

    Ebenhard, T. Colonization in metapopulations: A review of theory and observations. Biol. J. Linn. Soc. 42, 105–121 (1991).Article 

    Google Scholar 
    Szucs, M., Melbourne, B. A., Tuff, T. & Hufbauer, R. A. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 281, 20141073 (2014).Article 

    Google Scholar 
    Williamson, M. Biological invasions Vol. 15 (Springer, 1996).
    Google Scholar 
    Dai, Z. C. et al. Synergy among hypotheses in the invasion process of alien plants: A road map within a timeline. Perspect. Plant Ecol. Evol. Syst. 47, 125575 (2020).Article 

    Google Scholar 
    Briski, E. et al. Beyond propagule pressure: Importance of selection during the transport stage of biological invasions. Front. Ecol. Environ. 16, 345–353 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to nutrient gradients. Bryologist 97, 357–364 (1994).Article 

    Google Scholar 
    Li, Y. & Vitt, D. H. The dynamics of moss establishment: Temporal responses to a moisture gradient. J. Bryol. 18, 677–687 (1995).Article 

    Google Scholar 
    Wiklund, K. & Rydin, H. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 18, 907–913 (2004).Article 

    Google Scholar 
    Zanatta, F. et al. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nat. Commun. 11, 1–9 (2020).Article 

    Google Scholar 
    Seaborn, T. J., Goldberg, C. S. & Crespi, E. J. Integration of dispersal data into distribution modeling: What have we done and what have we learned?. Front. Biogeogr. 12, 1–14 (2020).Article 

    Google Scholar 
    Glime, J. M. Bryophyte Ecology (Vol. 1, Issue Physiological Ecology, Chapter 4–10 Adaptive strategies: vegetative propagules, pp. 1–44). (2021).Guerra, J., Brugués, M., Cano, M. J. & Cros, R. M. Bryum Hedw. in Flora Briofítica Ibérica, Vol. IV, Funariales, Splachnales, Schistostegales, Bryales, Timmiales (eds. Brugués, M. & Cros, R. M.) 105–178 (Universidad de Murcia. Sociedad Española de Briología, 2010).
    Google Scholar 
    Medina, N. G., Draper, I. & Lara, F. Biogeography of mosses and allies: Does size matter? in Biogeography of microscopic organisms: is everything small everywhere? 209–233 (2011). https://doi.org/10.1017/CBO9780511974878.012Miles, C. J. & Longton, R. E. The role of spores in reproduction in mosses. Bot. J. Linn. Soc. 104, 149–173 (1990).Article 

    Google Scholar 
    Estébanez, B., Draper, I. & Bujalance, R. M. Bryophytes: An approximation to the simplest land plants. in Biodiversidad. Aproximación a la diversidad botánica y zoológica de España 19 (2011).Frey, W. & Kürschner, H. Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 173–184 (2011).Article 

    Google Scholar 
    Giordano, S. et al. Regeneration from detached leaves of Pleurochaete squarrosa (Brid.) Lindb. in culture and in the wild. J. Bryol. 19, 219–227 (1996).Article 

    Google Scholar 
    La Farge, C., Williams, K. H. & England, J. H. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc. Natl. Acad. Sci. U. S. A. 110, 9839–9844 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, S. C. & Miller, N. G. Bryophyte diversity on Adirondack alpine summits is maintained by dissemination and establishment of vegetative fragments and spores. Bryologist 116, 382–391 (2013).Article 

    Google Scholar 
    Glime, J. M. Chapter 2–1 Meet the bryophytes. in Bryophyte Ecology 1 (2020).Korpelainen, H., Pohjamo, M. & Laaka-Lindberg, S. How efficiently does bryophyte dispersal lead to gene flow?. J. Hattori Bot. Lab. 205, 195–205 (2005).
    Google Scholar 
    Schuster, R. M. Phytogeography of the Bryophyta. in New manual of Bryology 1, 463–626 (Hattori Bot. Lab, 1983).Löbel, S., Schröder, B. & Snäll, T. Projected shifts in deadwood bryophyte communities under national climate and forestry scenarios benefit large competitors and impair small species. J. Biogeogr. https://doi.org/10.1111/jbi.14278 (2021).Article 

    Google Scholar 
    Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. Dispersal of asexual propagules in bryophytes. J. Hattori Bot. Lab. 330, 319–330 (2003).
    Google Scholar 
    Miller, N. G. & Mogensen, G. S. Cyrtomnium hymenophylloides (Bryophyta, Mniaceae) in North America and Greenland: Male plants, sex-differential geographical distribution, and reproductive characteristics. Bryologist 100, 499–506 (1997).Article 

    Google Scholar 
    Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304, 1144–1147 (2004).Article 
    PubMed 

    Google Scholar 
    Patiño, J. & Vanderpoorten, A. Bryophyte biogeography. CRC. Crit. Rev. Plant Sci. 37, 175–209 (2018).Article 

    Google Scholar 
    Pasiche-Lisboa, C. J., Booth, T., Belland, R. J. & Piercey-Normore, M. D. Moss and lichen asexual propagule dispersal may help to maintain the extant community in boreal forests. Ecosphere 10, e02823 (2019).Article 

    Google Scholar 
    Barbé, M., Fenton, N. J. & Bergeron, Y. So close and yet so far away: Long-distance dispersal events govern bryophyte metacommunity reassembly. J. Ecol. 104, 1707–1719 (2016).Article 

    Google Scholar 
    Hansson, L., Söderström, L. & Solbreck, C. The ecology of dispersal in relation to conservation. in Ecological principles of nature conservation. Conservation Ecology series: principles, practices and management. (ed. Hansson, L.) (Springer, 1992). https://doi.org/10.1007/978-1-4615-3524-9Chapter 

    Google Scholar 
    Miller, N. G. & Ambrose, L. J. H. Growth in culture of wind-blown bryophyte gametophyte fragments from Arctic Canada. Bryologist 79, 55 (1976).Article 

    Google Scholar 
    Barbé, M., Fenton, N. J., Caners, R. & Bergeron, Y. Inter-annual variation in bryophyte dispersal: Linking bryophyte phenophases and weather conditions. Botany 95, 1151–1169 (2017).Article 

    Google Scholar 
    Chmielewski, M. W. & Eppley, S. M. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc. R. Soc. B Biol. Sci. 286, 20182253 (2019).Article 
    CAS 

    Google Scholar 
    Davison, G. W. H. Role of birds in moss dispersal. Br. Birds 69, 65–66 (1976).
    Google Scholar 
    Heinken, T., Lees, R., Raudnitschka, D. & Runge, S. Epizoochorous dispersal of bryophyte stem fragments by roe deer (Capreolus capreolus) and wild boar (Sus scrofa). J. Bryol. 23, 293–300 (2001).Article 

    Google Scholar 
    Parsons, J. G. et al. Bryophyte dispersal by flying foxes: A novel discovery. Oecologia 152, 112–114 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Glime, J. M. Bryophyte Ecology (Vol. 2, Issue Bryological Interaction) (2021).Ware, C., Bergstrom, D. M., Müller, E. & Alsos, I. G. Humans introduce viable seeds to the Arctic on footwear. Biol. Invasions 14, 567–577 (2012).Article 

    Google Scholar 
    Shacklette, H. T. Unattached moss polsters on Amchitka Island, Alaska. Bryologist 69, 346–352 (1966).Article 

    Google Scholar 
    Moles, A. T. & Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 92, 372–383 (2004).Article 

    Google Scholar 
    Kimmerer, R. W. Patterns of dispersal and establishment of bryophytes colonizing natural and experimental treefall mounds in northern hardwood forests. Bryologist 108, 391–401 (2005).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Stieha, C. R., Middleton, A. R., Stieha, J. K., Trott, S. H. & Mcletchie, D. N. The dispersal process of asexual propagules and the contribution to population persistence in Marchantia (Marchantiaceae). Am. J. Bot. 101, 348–356 (2014).Article 
    PubMed 

    Google Scholar 
    Hugonnot, V. Comparative investigations of niche, growth rates and reproduction between the native moss Campylopus pilifer and the invasive C. introflexus. J. Bryol. 39, 79–84 (2017).Article 

    Google Scholar 
    Benscoter, B. W. Post-fire bryophyte establishment in a continental bog. J. Veg. Sci. 17, 647–652 (2006).Article 

    Google Scholar 
    Esposito, A., Mazzoleni, S. & Strumia, S. Post-fire bryophyte dynamics in Mediterranean vegetation. J. Veg. Sci. 10, 261–268 (1999).Article 

    Google Scholar 
    Naeth, M. A. & Wilkinson, S. R. Establishment of restoration trajectories for upland tundra communities on diamond mine wastes in the Canadian arctic. Restor. Ecol. 22, 534–543 (2014).Article 

    Google Scholar 
    Lamarre, J. J. M. Tundra bryophyte revegetation: novel methods for revegetating northern ecosystems (University of Alberta, 2016).Dierßen, K. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. (Bryophytorum Bibliotheca 56. J. Cramer, Berlin, 289 pp., 2001).Smith, A. J. E. The moss flora of Britain and Ireland (Cambridge University Press, 2004).Book 

    Google Scholar 
    Casas, C., Brugués, M., Cros, R. M. & Sérgio, C. Handbook of Mosses of the Iberian Peninsula and the Balearic Islands. (Instituts d’Estudis Catalans, 2006).Medina, N., Mazimpaka Nibarere, V., Hortal, J. & Lara García, F. Catálogo de los briófitos epífitos que crecen en bosques de quercíneas del cuadrante noroccidental ibérico. Boletín la Soc. Esp. Briol. 30, 1–30 (2015).
    Google Scholar 
    Ron Alvarez, M. E. & Vicente, J. Contribución al conocimiento de la flora briológica de Canencia, Sierra de Guadarrama (Madrid). Bot. Complut. https://doi.org/10.5209/BOCM.7415 (1989).Article 

    Google Scholar 
    Pressel, S., Matcham, H. W. & Duckett, J. G. Studies of protonemal morphogenesis in mosses. XI. Bryum and allied genera: A plethora of propagules. J. Bryol. 29, 241–258 (2007).Article 

    Google Scholar 
    Söderström, L. & Herben, T. Dynamics of bryophyte metapopulations. in Advances in Briology 6. Population studies (ed. Longton, R. E.) 6, 205–240 (International Association of Briologists. Schweizerbart Science Publishers, 1997).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, E. P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1, 179–183 (1927).
    Google Scholar 
    R Core Team. R: A language and environment for Statistical Computing (2021).Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests (2020).Zeileis, A., Meyer, D. & Hornik, K. Residual-based shadings for visualizing (conditional) independence. J. Comput. Graph. Stat. 16, 507–525 (2007).Article 
    MathSciNet 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of Data Manipulation (2022).Fox, J. & Weisberg, S. An R Companion to Applied Regression (2019).Maechler, M. et al. robustbase: Basic Robust Statistics (2022).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).Revelle, W. psych: Procedures for psychological, psychometric, and personality research (2021).Kuhn, M., Jackson, S. & Cimentada, J. corrr: correlations in R. R package version 0.4.3 (2020).Wei, T. & Simko, V. R package ‘corrplot’: visualization of a correlation matrix (Version 0.84) (2017).Wilke, C. O. ggtext: improved text rendering support for ‘ggplot2’ (2020).Auguie, B. gridExtra: miscellaneous functions for ‘Grid’ graphics (2017).Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1 (2020).Stark, L. R., Nichols, L. II., McLetchie, D. N., Smith, S. D. & Zundel, C. Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis. Am. J. Bot. 91, 1–9 (2004).Article 
    PubMed 

    Google Scholar 
    Fernandez-Mendoza, F., Estebanez, B., Gomez-Sanz, D. & Ron, E. Sporophyte-bearing specimens of Pleurochaete squarrosa in Zamora, Spain. Cryptogam. Bryol. 23, 211–215 (2002).
    Google Scholar 
    Chen, K. H., Liao, H. L., Arnold, A. E., Bonito, G. & Lutzoni, F. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi. New Phytol. 218, 1597–1611 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kruijer, H. J. D., Raes, N. & Stech, M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nov. Hedwigia 91, 399–420 (2010).Article 

    Google Scholar 
    Van Zanten, B. O. Preliminary report on germination experiments designed to estimate the survival chances of moss spores during aerial trans-oceanic long-range dispersal in the Southern Hemisphere, with particular reference to New Zealand. J. Hattori Bot. Lab. 41, 133–140 (1976).
    Google Scholar 
    Van Zanten, B. O. Experimental studies on trans-oceanic long-range dispersal of moss spores in the Southern Hemisphere. J. Hattori Bot. Lab. 44, 455–482 (1978).
    Google Scholar 
    De Meester, L., Gómez, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135 (2002).Article 

    Google Scholar 
    Izquieta-Rojano, S. et al. Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ15N signatures in a Mediterranean area. Ecol. Indic. 60, 1221–1228 (2016).Article 
    CAS 

    Google Scholar 
    Kimmerer, R. W. & Young, C. C. Effect of gap size and regeneration niche on species coexistence in bryophyte communities. J. Torrey Bot. Soc. 123, 16–24 (1996).Article 

    Google Scholar 
    Refoyo, P., Peláez, M., García-Rodríguez, M., López-Sánchez, A. & Perea, R. Moss cover and browsing scores as sustainability indicators of mountain ungulate populations in Mediterranean environments. Biodivers. Conserv. https://doi.org/10.1007/s10531-022-02454-1 (2022).Article 

    Google Scholar  More