More stories

  • in

    Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment

    Retrieval of E. coli plasmid sequencesAll E. coli sequences were downloaded from the NCBI FTP server in May 2020. To establish an initial collection of plasmids, only complete genomes with an associated plasmid were retained. All genomes were verified for belonging to the species E. coli using kmerfinder (https://cge.cbs.dtu.dk/services/KmerFinder/). Sequence type (ST) was determined via multi-locus sequence typing (MLST) based on the 7-gene Achtman scheme using pubMLST (https:/github.com/tseemann/mlst). Only genomes with exact matches were assigned for each ST and used for subsequent analysis. To ensure our sequences were sufficiently representative of E. coli pathogens expected in nature, a systematic literature search (see description below and Fig. S1) was conducted to establish an expected distribution of STs (Table S1). This information was used to update our initial collection to match the top 4 most prevalent STs (131, 11, 73, and 95). Specifically, to identify supplementary plasmid sequences, genome accession IDs were chosen from EnteroBase based on the following criteria: the strain was matched to the correct ST and had a high-quality genome sequence (based on N50  > 20,000 and the number of contigs  0.1, 2-tailed student t test). For the second method, all kanR plasmids were used, and instead changed the hosts such that DH5αPro cells were in competition with DH5αPro containing a spontaneous rifampicin-resistant mutant (rifR). Any rifR strain was quantified on rifampicin-containing plates, and the second strain was quantified by rifampicin CFU minus CFU obtained on blank plates. We established that rifR exhibited no fitness defects by (1) growth rates between the wild-type (WT) strain (W) and rifR (M) (Fig. S5D), and (2) directly competing the two control strains (Fig. S5E). In both cases, results were statistically indistinguishable (p  > 0.1, two-tailed student t test). KanR/cmR and WT/rifR experiments were each conducted in LB or M9CAG, respectively. In all cases, experiments were repeated with at least three independent biological replicates.Time-kill measurements in the presence of carbenicillinAll strains were grown as previously described. Time-kill experiments entailed hourly measurements of CFU in presence of carbenicillin at either 3.75 μg/mL (3x IC50) or 5 μg/mL (4x IC50) over a span of 2 or 3 h, including time 0. Specifically, overnight cultures were first diluted 1:100 into LB media containing 1 mM IPTG and 50 μg/mL kanamycin and sub-cultured for two hours in a 37 °C incubator with shaking at 250 rpm. Following this, cell density was adjusted as necessary to achieve a starting OD600 of ~0.15 in all cases. Adjusted subcultures were then aliquoted into a 96-well plate and the appropriate carbenicillin treatments were added directly to the well. Plates were sealed with a paper film and placed in a 37 °C incubator with shaking at 250 rpm. Initial collection for time=0 was acquired before carbenicillin treatment. Thereafter, 10 μL of culture was removed from the well every hour, 10-fold serial dilutions were performed and 10 μL was plated on blank LB agar with three technical replicates at each time point. Colonies were counted after plates were grown for 16 h in a 37 °C incubator to determine CFU. This procedure utilized 14 strains of DH5αPro transformed with kanR plasmids of interest – ctrl, katG, lpxM, yfbR, aroH, pld, fdtC, agp, eptC, arcA, argF, mmuM, ahr, and fabG. CFUs were averaged for all technical replicates, and experiments were conducted with at least three independent biological replicates.Oxygen consumption rateOxygen consumption rates (OCR) were obtained with the Resipher device from Lucid Scientific. The selected strains were grown overnight as previously described. Overnight cultures were resuspended in M9CAG media with 1 mM IPTG and 50 μg/mL kanamycin, and placed in 25 °C for one hour to initiate gene expression. Following this, cells were diluted 10x into M9CAG media containing kanamycin and IPTG, and 100 μL was aliquoted per well into a 96-well microtiter plate according to the manufacturer’s instructions. Plates were placed at 30 °C to minimize growth, and oxygen concentration (μM) was measured immediately thereafter. 24 wells were measured consisting of 6 technical replicates for each strain. Given the clear well-well variability (Fig. S8B, C), data shown are for one biological replicate. However, qualitative trends were consistently reproduced in multiple independent experiments.StatisticsIn all cases where t tests and ANOVA’s were used, data was first verified to be normally distributed using Kolmogorov test for normality. Otherwise, Mann-Whitney U-tests were conducted. For panels with multiple tests, Bonferroni correction was used to adjust the p values. To determine whether any metabolic category was significantly dependent on incompatibility groups, we implemented logistic regressions in MATLAB with the function fitglm. Random forest classification was used to establish the relative importance of prevalent metabolic genes and gene categories predicting the presence of antibiotic resistance genes. Chi-square tests were conducted to determine significant co-occurrence of individual antibiotic resistant and metabolism genes. Dissociative relationships were distinguished by the odds ratios from the chi-square tests. To investigate whether the strong associations and disassociations were driven by evolutionary constraints, or simply artifacts of a common ancestor, we re-ran our statistical analysis using Coinfinder [29] to take in our gene presence-absence data, along with the genome phylogeny, and compute the Bonferroni-corrected statistical likelihood of coincidence (either associations or dissociations), thereby accounting for evolutionary relatedness. More

  • in

    Waterbody loss due to urban expansion of large Chinese cities in last three decades

    This study quantitatively assessed waterbody loss due to urban expansion of large Chinese cities. We first extracted multi-temporal urban boundaries to determine the expansion of cities of over one million in population from 1990 to 2018. The monthly surface-water dataset was then used to identify surface waterbodies in the study period. Depending on the ratio of surface waterbody area to urban area, cities were further divided into three categories (i.e. water-abundant, water-medium, water-deficient). Finally, we quantified the rate of waterbody loss and evaluated the spatial and temporal variation of waterbody loss as a function of urban expansion and according to city type.GUB datasetThe Global Urban Boundary (GUB) dataset (http://data.ess.tsinghua.edu.cn) was used to determine urban expansion. GUB provides data on built-up areas over 30 years, with a spatial resolution of 30 m. In the GUB dataset, nonurban areas (such as green space and water space) surrounded by artificial impervious areas are filled within the urban boundary and removed by the algorithm, which is consistent with global mapping methods. The continuous urban boundary was demarcated by morphological image processing methods, which have an overall accuracy of over 90%. In this dataset, extensive water and forests are excluded, and the impervious surface within the urban boundaries accounts for about 60% of the total surface area47. Compared with urban boundaries obtained from night-time light, GUB better separates urban areas from surrounding nonurban areas.Monthly waterbody datasetWe selected the JRC Monthly Water History V1.3 dataset(https://global-surface-water.appspot.com/), which is available from the Google Earth Engine, as the basis for representing surface waterbodies48. This data collection, which was produced by using images from the Landsat series, contains 442 images of global monthly waterbody area from March 1984 to December 2020. In this dataset, the validation confirmed that fewer than 1% of waterbodies were incorrectly detected, and fewer than 5% of waterbodies were missed altogether. We chose this dataset due to the long-term spatial distribution of waterbodies and due to mountain shadows and urban-constructions masking, which reflects the real changes in waterbodies.Theoretical backgroundIt is well known that cities have high concentrations of population and resources and expand spatially during development. There are many different perspectives on the size of cities, and studies have mostly used urban density and population to characterize them. However, because it is challenging to standardize data sources and quality, there is no unified quantitative standard49. Urban construction has concentrated human activity and brought about changes in land types. Cities are also identified as physical spaces, which can be defined as the built environment50,51. The built environment, which includes structures like buildings, roads, and other artificial constructions, is sometimes referred to as a non-natural environment52.Rural is the antithesis of urban. As large cities have spread outward in developing nations like Asia, a transitional fringe has been created by the gradual blurring of the line separating urban and rural areas53. According to McGee, good locations, easy access, and sizable agricultural land all contribute to the development potential of large cities. Thus, between urban and rural areas, there are transitional areas of active spatial morphological change known as desakota33,54. The peri-urban areas, like desakota, are gradually developed and incorporated into original built-up urban areas in urbanization. The original landscape, which included agricultural land, vegetation, and waterbodies, gradually changed into an urban land use type, i.e. impervious surface, and thus the city continues to expand outwards. Waterbody, an essential ecological element, has been heavily developed or filled in during urbanization, which may present dangerous ecological risks. In this paper, we identified the urban boundaries based on physical space to explore the encroachment activities on waterbodies during the urbanization of large cities. We determined whether existing waterbodies were transformed into urban waterbodies or encroached upon and whether waterbodies were increased in the expansion of urban boundaries, thus proposing strategies for protecting waterbodies in the future.Extracting the extent of large Chinese cities from GUB datasetTo characterize urban expansion, GUB data are selected as the original data for urban boundary selection. The Chinese administrative scale of municipalities is not exclusively urban, but also includes rural areas. In our study, cities were defined as municipal districts excluding the vast countryside within the administrative boundaries of prefecture-level cities. We identified urban areas based on the physical boundaries from the perspective of remote sensing, which can precisely track urban expansion51.In this work, we selected 159 cities with a population of over one million in 2018 based on the average annual population of urban districts from the 2019 China City Statistical Yearbook (Fig. S1). Taiwan, Hong Kong, and Macau are omitted. According to statistics, China had 160 cities with populations exceeding one million in 2018. However, due to the lack of data for the built-up area in 1990, Guang’an was not included in the study. We thus obtained 159 cities from the GUB dataset. Due to numerous fragmented patches within the administrative boundary, the population identified the main urban areas, and max patch areas were comprehensively based on the urban boundaries. Through manual detection and adjustment of the map, we determined that the location of the extracted urban area was consistent with that of the municipal government, and the boundary was extracted for each period. We took the growth area as the expansion area, with the original area being the city at the onset of each period (Fig. S3).We used the average annual urban growth (AUG) rate to characterize the rate of urban expansion, as is widely done to evaluate urban expansion55,56. It is calculated as$${text{AUG}} = left[ {frac{{Land_{t1} }}{{Land_{t0} }}^{{frac{1}{t1 – t0}}} – 1} right] times 100% ,$$
    where (Land_{t0}) and (Land_{t1}) represent the urban land area at time t0 and t1, where t0 and t1 are the start and end of the given study period.Identification of urban waterbodiesUrban waterbodies contain all the components of urban flow networks above the ground and include natural waterbodies such as lakes, rivers, streams, and wetlands and artificial waterbodies such as parks and ponds48. We identified all waterbodies existing within the urban boundary as urban waterbody. Considering urban expansion, urban waterbodies vary as urban boundary shift at different stages. Our study explored how the original waterbodies changed under urban expansion, including whether they were kept as urban waterbodies or encroached upon. Considering the dryness or wetness of each year, we used the data for 3 years (36 months) around each period (1990, 1995, 2000, 2005, 2010, 2015, and 2018) to describe the waterbody. Not all waterbodies could be detected for each month of the year; for example, freezing may prevent waterbodies from being detected. To cover seasonal and permanent waterbodies, we used the waterbody frequency index (WFI), which is calculated as the fraction of waterbody months within the 3 years to identify stable waterbodies pixel by pixel57. The spatial distribution of each waterbody was then mapped comprehensively for each period. By comparing the extracted waterbody with the long-time-series high-resolution remote-sensing images from Google Earth, we found that the extracted waterbodies fit the actual waterbody distribution quite well (Fig. S2):$$WFIleft( i right) = frac{WMleft( i right)}{{DMleft( i right)}}$$
    where WFI(i) is the water occurrence for pixel i in the images before and after the given year, and i is the pixel number for the study area. WM(i) is the number of months during which the waterbody is detected in i pixel over the 3 years. DM(i) is the number of months during which the data are available in pixel i. If the waterbody frequency index of a pixel is greater than 25%, this pixel is considered as a waterbody; otherwise, it is not.City classification based on surface waterbodyCities with over one million in population may not be short of waterbodies, but significant differences remain in surface waterbody abundance. Due to large differences in city size, it is inappropriate to use waterbody area as a criterion. Considering the influence of urban expansion, we ranked 159 cities according to the indicator of waterbody fraction (WF), namely the fraction of the original surface water within the urban boundary in 2018. Waterbodies not impacted by urbanization were taken as the original surface waterbody, which used the average surface waterbody from 1985 to 1991 as baseline. We used the natural break method to divide cities into abundant, moderate, and deficient levels (referred to as Type I, Type II, and Type III, respectively) and evaluate the abundance of waterbodies in cities. Based on the waterbody fraction (WF) value, which is calculated as follows:$${text{WF}} = frac{{Water_{origin} }}{{Land_{2018} }}$$
    where WF is used to judge the urban waterbody abundance in cities. (Water_{1990}) is the origin surface waterbody area (used the year in 1985–1991) in the urban boundary of 2018, (Land_{2018}) the urban land area in the urban boundary of 2018.Temporal characteristic of waterbody loss and gainTo understand the spatial–temporal features of surface waterbodies, we used five normalized indicators to compare waterbody variations between cities during urban expansion from the overall perspective and from the city perspective.The variation in original natural waterbodies reflects the intensity of the natural resource development in urban expansion. We summarized the reduction and preservation of original waterbodies in urban expansion areas with a population of over one million to represent the encroachment of urban expansion on waterbodies:$$WL = frac{{sum NWL_{t0_t1} left( i right)}}{{sum W_{t0} left( i right)}} times 100%$$$$WP = frac{{sum (W_{t0} left( i right) – NWL_{t0_t1} left( i right))}}{{sum W_{t0} left( i right)}} times 100%$$
    where i labels the city within the 159 cities, WL and WP are the fractions of waterbody loss and preservation in urban expansion areas of all cities, (NWL_{t0_t1}) is the net waterbody loss during period t0–t1 (, and W_{t0}) is the natural waterbody in the urban expansion area at time t0.To estimate the net waterbody loss caused by urban expansion at various stages, we used the standardized indicator, annual average net waterbody loss rate (ANWL), to compare waterbody loss speeds over time. This indicator is independent of the difference in waterbody abundance and can be compared over time. Waterbody loss is one part of the impact of urbanization; the other is waterbody gain. We used the same method to evaluate the annual average net waterbody gain rate (ANWG). The formulas are$$A{text{NWL}} = frac{{NWL_{t0_t1} }}{{W_{t0} left( {t1 – t0} right)}} times 100%$$$$ANWG = frac{{NWG_{t0 – t1} }}{{W_{t0} left( {t1 – t0} right)}} times 100%$$
    where NWL and NWG are the net waterbody loss and gain, respectively, and the other abbreviations are the same as above.Considering the direct impact of urban expansion, we used a normalized indicator, the average net waterbody loss velocity of urban expansion ((AWLV)), which refers to the amount of waterbody encroachment per unit urban expansion area. It quantifies the time-heterogeneity of waterbody loss due to urban expansion and is calculated as follows:$$AWLV = frac{{NWL_{t0_t1} }}{{Land_{t1} – Land_{t0} }}$$We calculated these indicators for the six expansion periods (1990–1995, 1995–2000, 2000–2005, 2005–2010, 2010–2015, and 2015–2018) (Fig. 3). In the study, if the waterbody pixel count is zero at the onset of the period, the indicator for the period is abnormal and thus excluded. More

  • in

    Spatial assortment of soil organisms supports the size-plasticity hypothesis

    Geisen S, Wall DH, van der Putten WH. Challenges and opportunities for soil biodiversity in the anthropocene. Curr Biol. 2019;29:R1036–44.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature. 2016;540:266–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA. 2015;112:10967–72.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP, Gotanda KM, et al. Global urban signatures of phenotypic change in animal and plant populations. Proc Natl Acad Sci USA. 2017;114:8951–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Sabaawi R. Trophic structure in a rapidly urbanizing planet. Funct Ecol. 2018;32:1718–28.Article 

    Google Scholar 
    Yu S, Wu Z, Xu G, Li C, Wu Z, Li Z, et al. Inconsistent patterns of soil fauna biodiversity and soil physicochemical characteristic along an urbanization gradient. Front Ecol Evol. 2022;9:824004.Article 

    Google Scholar 
    Zambrano L, Aronson MFJ, Fernandez T. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: a case study of the National Autonomous University of Mexico. Front. Environ Sci. 2019;7:152.
    Google Scholar 
    Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol. 2016;31:219–27.Article 

    Google Scholar 
    Guilland C, Maron PA, Damas O, Ranjard L. Biodiversity of urban soils for sustainable cities. Environ Chem Lett. 2018;16:1267–82.Article 
    CAS 

    Google Scholar 
    Dou Y, Kuang W. A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Sci. Total Environ. 2020;706:135828.Article 
    CAS 
    PubMed 

    Google Scholar 
    Francini G, Hui N, Jumpponen A, Kotze D, Romantschuk M, Allen J, et al. Soil biota in boreal urban greenspace: responses to plant type and age. Soil Biol Biochem. 2018;118:145–55.Article 
    CAS 

    Google Scholar 
    Corline NJ, Peek RA, Montgomery J, Katz JVE, Jeffres CA. Understanding community assembly rules in managed floodplain food webs. Ecosphere. 2021;12:e03330.Article 

    Google Scholar 
    Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 2018;12:1072–83.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu W, Graham EB, Dong Y, Zhong L, Zhang J, Qiu C, et al. Balanced stochastic versus deterministic assembly processes benefit diverse yet uneven ecosystem functions in representative agroecosystems. Environ Microbiol. 2021;23:391–404.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thakur MP, Phillips HR, Brose U, De Vries FT, Lavelle P, Loreau M, et al. Towards an integrative understanding of soil biodiversity. Biol Rev. 2020;95:350–64.Article 
    PubMed 

    Google Scholar 
    Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 2016;10:885–96.Article 
    PubMed 

    Google Scholar 
    Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q, et al. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun. 2020;11:1–11.Article 

    Google Scholar 
    Isabwe A, Yang JR, Wang Y, Wilkinson DM, Graham EB, Chen H, et al. Riverine bacterioplankton and phytoplankton assembly along an environmental gradient induced by urbanization. Limnol Oceanogr. 2022;67:1943–58.Article 
    CAS 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, et al. Body size determines soil community assembly in a tropical forest. Mol Ecol. 2019;28:528–43.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jiao S, Yang Y, Xu Y, Zhang J, Lu Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020;14:202–16.Article 
    PubMed 

    Google Scholar 
    Jiao S, Chen W, Wei G. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil‐contaminated soils. Mol Ecol. 2017;26:5305–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wu W, Lu H-P, Sastri A, Yeh Y-C, Gong G-C, Chou W-C, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.Article 
    PubMed 

    Google Scholar 
    Farjalla VF, Srivastava DS, Marino NA, Azevedo FD, Dib V, Lopes PM, et al. Ecological determinism increases with organism size. Ecology. 2012;93:1752–9.Article 
    PubMed 

    Google Scholar 
    Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q Rev Biol. 2020;95:179–214.Article 

    Google Scholar 
    Beissinger SR. Ecological mechanisms of extinction. Proc Natl Acad Sci USA. 2000;97:11688–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poiani KA, Richter BD, Anderson MG, Richter HE. Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. Bioscience. 2000;50:133–46.Article 

    Google Scholar 
    Yang J, Zhang X, Jin X, Seymour M, Richter C, Logares R, et al. Recent advances in environmental DNA-based biodiversity assessment and conservation. Divers Distrib. 2021;27:1876–9.Article 

    Google Scholar 
    Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJC, et al. The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet. 2019;20:615–28.Article 
    CAS 
    PubMed 

    Google Scholar 
    Department of Economic and Social Affairs (DESA). World Urbanization Prospects. The 2018 Revision. United Nations. 2019. https://population.un.org/wup/publications/Files/WUP2018-Report.pdf. Accessed 13 Mar 2022.Qiao Z, Wang B, Yao H, Li Z, Scheu S, Zhu Y-G, et al. Urbanization and greenspace type as determinants of species and functional composition of collembola communities. Geoderma. 2022;428:116175.Article 

    Google Scholar 
    Shrestha S, Cui S, Xu L, Wang L, Manandhar B, Ding S. Impact of land use change due to urbanisation on surface runoff using GIS-based SCS–CN Method: a case study of Xiamen City, China. Land. 2021;10:839.Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2022. Vienna, Austria. https://www.R-project.org/.Wickham. H ggplot2: elegant graphics for data analysis. Springer-Verlag New York, 2016.Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. 2020. https://CRAN.R-project.org/package=ggpubr.Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, et al. A general framework for the distance–decay of similarity in ecological communities. Ecol Lett. 2008;11:904–17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goslee S, D. Urban, Goslee, MS. ecodist: dissimilarity-based functions for rcological analysis. 2020. https://cran.r-project.org/web/packages/ecodist/index.html.Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci USA. 2010;107:15345–50.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen W, Ren K, Isabwe A, Chen H, Liu M, Yang J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome. 2019;7:138.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase JM, Kraft NJ, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α‐diversity. Ecosphere. 2011;2:1–11.Article 

    Google Scholar 
    Pandit SN, Kolasa J, Cottenie K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology. 2009;90:2253–62.Article 
    PubMed 

    Google Scholar 
    Salazar G. EcolUtils: utilities for community ecology analysis. 2019. https://github.com/GuillemSalazar/EcolUtils.Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol. 2015;29:592–9.Article 

    Google Scholar 
    Cadotte MW, Tucker CM. Should environmental filtering be abandoned? Trends Ecol Evol. 2017;32:429–37.Article 
    PubMed 

    Google Scholar 
    Leibold MA, McPeek MA. Coexistence of the niche and neutral perspectives in community ecology. Ecology. 2006;87:1399–410.Article 
    PubMed 

    Google Scholar 
    Evans S, Martiny JB, Allison SD. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017;11:176–85.Article 
    PubMed 

    Google Scholar 
    Jiang Y, Liu M, Zhang J, Chen Y, Chen X, Chen L, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. ISME J. 2017;11:2705–17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douhan GW, Vincenot L, Gryta H, Selosse M-A. Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol. 2011;115:569–97.Article 
    PubMed 

    Google Scholar 
    Granot I, Belmaker J. Niche breadth and species richness: correlation strength, scale and mechanisms. Glob Ecol Biogeogr. 2020;29:159–70.Article 

    Google Scholar 
    Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA. Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst Annu Rev Ecol Evol S. 2017;48:183–206.Article 

    Google Scholar 
    Fraaije RGA, ter Braak CJF, Verduyn B, Verhoeven JTA, Soons MB. Dispersal versus environmental filtering in a dynamic system: drivers of vegetation patterns and diversity along stream riparian gradients. J Ecol. 2015;103:1634–46.Article 

    Google Scholar 
    Soininen J, McDonald R, Hillebrand H. The distance decay of similarity in ecological communities. Ecography. 2007;30:3–12.Article 

    Google Scholar 
    Zhang K, Delgado-Baquerizo M, Zhu Y-G, Chu H. Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems. 2020;5:e00783–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma B, Dai Z, Wang H, Dsouza M, Liu X, He Y, et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China. mSystems. 2017;2:e00174–16.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang J, Zhang T, Li L, Li J, Feng Y, Lu Q. The patterns and drivers of bacterial and fungal β-diversity in a typical dryland ecosystem of northwest China. Front Microbiol. 2017;8:2126.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang L, Chen L, Zhang D, Peng Y, Song Y, Kou D, et al. Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environ Microbiol. 2021;24:179–94.Article 
    PubMed 

    Google Scholar 
    Chen Q-L, Hu H-W, Yan Z-Z, Li C-Y, Nguyen B-AT, Sun A-Q, et al. Deterministic selection dominates microbial community assembly in termite mounds. Soil Biol Biochem. 2021;152:108073.Article 
    CAS 

    Google Scholar 
    Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J. Scale-dependent effects of niche specialisation: the disconnect between individual and species ranges. Ecol Lett. 2021;24:1408–19.Article 
    PubMed 

    Google Scholar 
    Rapacciuolo G, Blois JL. Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography. 2019;42:1247–66.
    Google Scholar 
    van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.Article 
    PubMed 

    Google Scholar 
    Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. ISME J. 2019;13:950–63.Article 
    CAS 
    PubMed 

    Google Scholar 
    De Gannes V, Bekele I, Dipchansingh D, Wuddivira MN, De Cairies S, Boman M, et al. Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests. Front Microbiol. 2016;7:1976.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Männistö M, Vuosku J, Stark S, Saravesi K, Suokas M, Markkola A, et al. Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions. FEMS Microbiol. 2018;94:fiy123.
    Google Scholar 
    Sakarika M, Spanoghe J, Sui Y, Wambacq E, Grunert O, Haesaert G, et al. Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microb Biotechnol. 2020;13:1336–65.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kernaghan G, Patriquin G. Diversity and host preference of fungi co-inhabiting Cenococcum mycorrhizae. Fungal Ecol. 2015;17:84–95.Article 

    Google Scholar 
    Lumibao CY, Kimbrough ER, Day RH, Conner WH, Krauss KW, Van Bael SA. Divergent biotic and abiotic filtering of root endosphere and rhizosphere soil fungal communities along ecological gradients. FEMS Microbiol. 2020;96:fiaa124.Article 
    CAS 

    Google Scholar 
    Rueckert S, Betts EL, Tsaousis AD. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 2019;35:687–94.Article 
    PubMed 

    Google Scholar 
    Butaeva F, Paskerova G, Entzeroth R. Ditrypanocystis sp.(Apicomplexa, Gregarinia, Selenidiidae): the mode of survival in the gut of Enchytraeus albidus (Annelida, Oligochaeta, Enchytraeidae) is close to that of the coccidian genus Cryptosporidium. Tsitologiia. 2006;48:695–704.CAS 
    PubMed 

    Google Scholar 
    Pavao-Zuckerman MA, Coleman DC. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Appl Soil Ecol. 2007;35:329–39.Article 

    Google Scholar 
    Gaspar C, Borges PA, Gaston KJ. Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquipelago: Life Mar Sci. 2008;25:1–30.
    Google Scholar 
    Suter RB, Doyle G, Shane CM. Oviposition site selection by Frontinella pyramitela (Araneae, Linyphiidae). J Arachnol. 1987;15:349–54.Tian T, Ren Q, Fan J, Haseeb M, Zhang R. Too dry or too wet soils have a negative impact on larval pupation of fall armyworm. J Appl Entomol. 2022;146:196–202.Article 

    Google Scholar 
    Marczylo EL, Macchiarulo S, Gant TW. Metabarcoding of soil fungi from different urban greenspaces around Bournemouth in the UK. EcoHealth. 2021;18:315–30.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corline NJ, Peek RA, Montgomery J, Katz JVE, Jeffres CA. Understanding community assembly rules in managed floodplain food webs. Ecosphere. 2021;12:e03330.Article 

    Google Scholar 
    Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard JA, et al. Movement-mediated community assembly and coexistence. Biol Rev Camb Philos Soc. 2020;95:1073–96.Article 
    PubMed 

    Google Scholar 
    Stubner S. Enumeration of 16S rDNA of desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen™ detection. J Microbiol Methods. 2002;50:155–64.Article 
    CAS 
    PubMed 

    Google Scholar 
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PloS One. 2012;7:e40863.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 2010;186:281–5.Article 
    PubMed 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:D597–604.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porazinska DL, Giblin‐Davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, et al. Evaluating high‐throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Res. 2009;9:1439–50.Article 
    CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–96.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool. 2013;10:1–14.Article 

    Google Scholar 
    Porter TM, Hajibabaei M. Over 2.5 million COI sequences in GenBank and growing. PloS One. 2018;13:e0200177.Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Asian elephants mostly roam outside protected areas — and it’s a problem

    Asian elephants spend most of their time outside protected areas because they prefer the food they find there, an international team of scientists reports. But this behaviour is putting the animals and people in harm’s way, say researchers.The finding has important implications for the long-term survival of the animals because protected areas are a cornerstone of global conservation strategies to protect threatened species, say researchers.If protected areas do not contain animals’ preferred habitats, they will wander out, says Ahimsa Campos-Arceiz, who studies Asian elephants (Elephas maximus) at the Chinese Academy of Sciences’ Xishuangbanna Tropical Botanical Garden in Menglun, China. “It’s a good intention, but doesn’t always work out that way.”Human–elephant conflict is the biggest threat for Asian elephants. Over the past few decades, animals in protected areas have increasingly wandered into villages. They often cause destruction, damaging crops and infrastructure and injuring and even killing people.Wandering elephantsTo understand how effective protected areas are for conserving Asian elephants, Campos-Arceiz and his colleagues set out to get a precise picture of Asian-elephant movements. They collared 102 individuals in Peninsular Malaysia and Borneo, recording 600,000 GPS locations over a decade. They found that most elephants spent most of their time in habitats outside the protected areas, at the forest edge and in areas of regrowth. The findings were published in the Journal of Applied Ecology1 on 18 October.The researchers suspect that the elephants venture out because they like to eat grasses, bamboo, palms and fast-growing trees, which are common in disturbed forests and relatively scarce under the canopy of old-growth forests.Philip Nyhus, a conservation biologist who specializes in human–wildlife conflict at Colby College in Waterville, Maine, says Asian elephants live deep in dense forest and so are much more difficult to study than African elephants, which roam open savannahs. “The sample size is impressive,” he says.The finding is not unexpected given past anecdotal observations of elephant behaviour, says Nyhus. But now the data show that this is a common strategy for the survival of these animals, and not just something seen in a subset of the population. The research provides strong evidence for how to set up suitable protected areas that reduce the risk of elephants wandering out, he says.‘There will be conflict’The results do not diminish the importance of protected areas, which provide long-term safety for the animals, says Campos-Arceiz, who did the field work while at the University of Nottingham Malaysia in Selangor. “But they are clearly not enough.”The study suggests that “there will be conflict between humans and elephants”, says Guo Xianming, director of the Research Institute of Xishuangbanna National Nature Reserve in Jinghong.Asian elephants wander into villages owing to a combination of reasons: an increase in elephant populations, forests in many reserves have grown denser and have become unsuitable for the animals, and increasing habitat loss and degradation outside.Last year, two herds of elephants made global headlines as they wandered out of the Xishuangbanna National Nature Reserve and travelled for hundreds of kilometers, wreaking havoc along the way. One herd spent five weeks at the botanical garden where Campos-Arceiz works. “It was intense,” he says.There is an urgent need to understand how people and elephants can better share the landscape, says Guo. And the first step is by better protecting people’s lives and livelihoods. “It’s the only way of peaceful co-existence.”
    The reporting of the story was supported by International Women’s Media Foundation’s Howard G. Buffett Fund for Women Journalists. More

  • in

    How monkeypox is spreading, and more — this week’s best science graphics

    Adolescents losing sleepEpidemiological studies in US school students aged 14–18 have shown that declines in mental health mirror reductions in the amount of sleep they are getting. Although it is hard to show a causal link between these changes, the authors of this Comment article argue that ensuring that young people get enough sleep is crucial for them to thrive. Various factors could be contributing to this drop-off in sleep, they say, including the use of digital media before bed, schoolwork pressures and extracurricular activities late in the evening or early in the morning.

    Sources: J. M. Twenge et al. Sleep Med. 39, 47–53 (2017)/US CDC YRBSS

    Monkeypox trajectoryAlmost six months after the monkeypox virus started to spread globally, vaccination efforts and behavioural changes seem to be containing the current strain — at least in the United States and Europe. The number of cases in these regions peaked in August and is now falling. But the situation could still play out in several ways, as this News story reports. At best, the outbreak might fizzle out over the next few months or years. At worst, the virus could become endemic outside Africa.

    Source: WHO

    The most valuable soilsThis map shows the regions of the world where the conservation of soil should be prioritized. Soils contain a wealth of biodiversity, such as bacteria, fungi, nematode worms and earthworms. These organisms have important roles in ecosystem processes, such as carbon and nutrient cycling, water storage and supporting plant growth. The authors of a paper in Nature set out to identify global hotspots for conservation by surveying soil biodiversity and ecosystem functions at 615 sites around the world. They found hotspots of biodiversity in temperate and Mediterranean regions and in alpine tundra, whereas hotspots of species uniqueness occurred in the tropics and drylands. More than 70% of the hotspots are not adequately covered by protected areas. More

  • in

    ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences 110, 19456–19459 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riedel, T., Polley, H. & Klatt, S. Germany. in National Forest Inventories (eds. Vidal, C., Alberdi, I. A., Hernández Mateo, L. & Redmond, J. J.) 405–421, https://doi.org/10.1007/978-3-319-44015-6 (Springer International Publishing, 2016).Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde. vol. Seite: (Julius Springer, 1928).Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Change Biol 21, 3726–3737 (2015).Article 
    ADS 

    Google Scholar 
    Ahrns, C. & Hofmann, G. Vegetationsdynamik und Florenwandel im ehemaligen mitteldeutschen Waldschutzgebiet ‘Hainich’ im Intervall 1963–1995. Hercynia N.F. 31, 33–64 (1998).
    Google Scholar 
    Dittmann, T., Heinken, T. & Schmidt, M. Die Wälder von Magdeburgerforth (Fläming, Sachsen-Anhalt) – eine Wiederholungsuntersuchung nach sechs Jahrzehnten, https://doi.org/10.14471/2018.38.009 (2018).Günther, K., Schmidt, M., Quitt, H. & Heinken, T. Veränderungen der Waldvegetation im Elbe-Havelwinkel von 1960 bis 2015. Tuexenia 41, 53–85 (2021).
    Google Scholar 
    Janiesch, P. Vegetationsökologische Untersuchungen in einem Erlenbruchwald im nördlichen Münsterland. 25 Jahre im Vergleich. Abhandlungen aus dem Westfälischen Museum für Naturkunde 71–80 (2003).Naaf, T. & Wulf, M. Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biological Conservation 143, 848–855 (2010).Article 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J Veg Sci 25, 113–121 (2014).Article 

    Google Scholar 
    Mölder, A., Streit, M. & Schmidt, W. When beech strikes back: How strict nature conservation reduces herb-layer diversity and productivity in Central European deciduous forests. Forest Ecology and Management 319, 51–61 (2014).Article 

    Google Scholar 
    Fischer, C., Parth, A. & Schmidt, W. Vegetationsdynamik in Buchen-Naturwäldern. Ein Vergleich aus Süd-Niedersachsen. Hercynia N.F. 45–68 (2009).Schmidt, W. Die Naturschutzgebiete Hainholz und Staufenberg am Harzrand – Sukzessionsforschung in Buchenwäldern ohne Bewirtschaftung (Exkursion E). Tuexenia 22, 151–213 (2002).
    Google Scholar 
    Strubelt, I., Diekmann, M. & Zacharias, D. Changes in species composition and richness in an alluvial hardwood forest over 52 yrs. J Veg Sci 28, 401–412 (2017).Article 

    Google Scholar 
    Strubelt, I., Diekmann, M., Peppler-Lisbach, C., Gerken, A. & Zacharias, D. Vegetation changes in the Hasbruch forest nature reserve (NW Germany) depend on management and habitat type. Forest Ecology and Management 444, 78–88 (2019).Article 

    Google Scholar 
    Wilmanns, O. & Bogenrieder, A. Veränderungen der Buchenwälder des Kaiserstuhls im Laufe von vier Jahrzehnten und ihre Interpretation – pflanzensoziologische Tabellen als Dokumente. Abh. Landesmus. Naturk. Münster Westfalen 48, 55–79 (1986).
    Google Scholar 
    Huwer, A. & Wittig, R. Changes in the species composition of hedgerows in the Westphalian Basin over a thirty-five-year period. Tuexenia 32, 31–53 (2012).
    Google Scholar 
    Immoor, A., Zacharias, D., Müller, J. & Diekmann, M. A re-visitation study (1948–2015) of wet grassland vegetation in the Stedinger Land near Bremen, North-western Germany, https://doi.org/10.14471/2017.37.013 (2017).Rosenthal, G. Erhaltung und Regeneration von Feuchtwiesen. Vegetationsökologische Untersuchungen auf Dauerflächen. Diss. Bot. 182, 1–283 (1992).
    Google Scholar 
    Poptcheva, K., Schwartze, P., Vogel, A., Kleinebecker, T. & Hölzel, N. Changes in wet meadow vegetation after 20 years of different management in a field experiment (North-West Germany). Agriculture, Ecosystems & Environment 134, 108–114 (2009).Article 

    Google Scholar 
    Diekmann, M. et al. Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe. J Veg Sci 30, 187–202 (2019).Article 

    Google Scholar 
    Hundt, R. Ökologisch‐geobotanische Untersuchungen an den mitteldeutschen Wiesengesellschaften unter besonderer Berücksichtigung ihres Wasserhaushaltes und ihrer Veränderung durch die Intensivbewirtschaftung. (Wehry-Druck OHG, 2001).Kuhn, G., Heinz, S. & Mayer, F. Grünlandmonitoring Bayern. Ersterhebung der Vegetation 2002–2008. Schriftenreihe LfL Bayerische Landesanstalt für Landwirtschaft 3, 1–161 (2011).
    Google Scholar 
    Raehse, S. Veränderungen der hessischen Grünlandvegetation seit Beginn der 50er Jahre am Beispiel ausgewählter Tal- und Bergregionen Nord- und Mittelhessens. (University Press GmbH, 2001).Scheidel, U. & Bruelheide, H. Versuche zur Beweidung von Bergwiesen im Harz. Hercynia N.F 37, 87–101 (2004).
    Google Scholar 
    Sommer, S. & Hachmöller, B. Auswertung der Vegetationsaufnahmen von Dauerbeobachtungenflächen auf Bergwiesen im NSG Oelsen bei variierter Mahd im Vergleich zur Brache. Ber. Arbeitsgem. Sächs. Bot. N.F. 18, 99–135 (2001).
    Google Scholar 
    Wegener, U. Vegetationswandel des Berggrünlands nach Untersuchungen von 1954 bis 2016 – Wege zur Erhaltung der Bergwiesen. Mountain grasslands vegetation change after research from 1954 to 2016 – ways to preserve mountain meadows. Abhandlungen und Berichte aus dem Museum Heineanum 11, 35–101 (2018).
    Google Scholar 
    Wittig, B., Müller, J. & Mahnke-Ritoff, A. Talauen-Glatthaferwiesen im Verdener Wesertal (Niedersachsen). Tuexenia 39, 249–265 (2019).
    Google Scholar 
    Heinrich, W., Marstaller, R. & Voigt, W. Eine Langzeitstudie zur Sukzession in Halbtrockenrasen – Strukturwandlungen in einer Dauerbeobachtungsfläche im Naturschutzgebiet “Leutratal und Cospoth” bei Jena (Thüringen). Artenschutzreport Jena 30, 1–80 (2012).
    Google Scholar 
    Hüllbusch, E., Brand, L. M., Ende, P. & Dengler, J. Little vegetation change during two decades in a dry grassland complex in the Biosphere Reserve Schorfheide-Chorin (NE Germany). Tuexenia 36, 395–412 (2016).
    Google Scholar 
    Knapp, R. Dauerflächen-Untersuchungen über die Einwirkung von Haustieren und Wild während trockener und feuchter Zeiten in Mesobromion-Halbtrockenrasen in Hessen. Mitt. Florist.-Soziol. Arbeitsgem. N.F. 19/20, 269–274 (1977).
    Google Scholar 
    Matesanz, S., Brooker, R. W., Valladares, F. & Klotz, S. Temporal dynamics of marginal steppic vegetation over a 26-year period of substantial environmental change: Temporal dynamics of marginal steppic vegetation over a 26-year period. Journal of Vegetation Science 20, 299–310 (2009).Article 

    Google Scholar 
    Schwabe, A., Zehm, A., Nobis, M., Storm, C. & Süß, K. Auswirkungen von Schaf-Erstbeweidung auf die Vegetation primär basenreicher Sand-Ökosysteme. NNA Berichte 1/2004, 39–54 (2004).
    Google Scholar 
    Schwabe, A., Süss, K. & Storm, C. What are the long-term effects of livestock grazing in steppic sandy grassland with high conservation value? Results from a 12-year field study. Tuexenia 33, 189–212 (2013).
    Google Scholar 
    Peppler‐Lisbach, C., Stanik, N., Könitz, N. & Rosenthal, G. Long‐term vegetation changes in Nardus grasslands indicate eutrophication, recovery from acidification, and management change as the main drivers. Appl Veg Sci 23, 508–521 (2020).Article 

    Google Scholar 
    Peppler-Lisbach, C. & Könitz, N. Vegetationsveränderungen in Borstgrasrasen des Werra-Meißner-Gebietes (Hessen, Niedersachsen) nach 25 Jahren. Tuexenia 37, 201–228 (2017).
    Google Scholar 
    Wittig, B., Müller, J., Quast, R. & Miehlich, H. Arnica montana in Calluna-Heiden auf dem Schießplatz Unterlüß (Niedersachsen). Tuexenia 40, 131–146 (2020).
    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci USA 115, 1848–1853 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kudernatsch, T. et al. Vegetationsveränderungen alpiner Kalk-Magerrasen im Nationalpark Berchtesgaden während der letzten drei Jahrzehnte. Tuexenia 36, 205–221 (2016).
    Google Scholar 
    Poschlod, P. et al. Long‐term monitoring in rivers of south Germany since the 1970ies. Macrophytes as indicators for the assessment of water quality. in Long‐term ecological research. Between Theory and Application (eds. Müller, F., Baessler, C., Schubert, H. & Klotz, S.) 189–199 (Springer, 2006).Dierschke, H. Dynamik und Konstanz an naturnahen Flussufern. 27 Jahre Dauerflächenuntersuchungen am Oderufer (Harzvorland). Braunschweiger Geobotanische Arbeiten 9, 119–138 (2008).
    Google Scholar 
    Kreyling, J. et al. Rewetting does not return drained fen peatlands to their old selves. Nat Commun 12, 5693 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohn, U. & Schniotalle, S. Hochmoor-, Grünland- und Waldrenaturierung im Naturschutzgebiet ‘Rotes Moor’/Hohe Rhön 1981–2001. (Landwirtschaftsverlag, 2008).Koch, M. & Jurasinski, G. Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecology & Diversity 8, 49–60 (2015).Article 

    Google Scholar 
    Walther, K. Die Vegetation des Maujahn 1984. Wiederholung der vegetationskundlichen Untersuchung eines wendländischen Moores. Tuexenia 6, 145–193 (1986).
    Google Scholar 
    Berg, C. & Mahn, E.-G. Anthropogene Vegetationsveränderungen der Straßenrandvegetation in den letzten 30 Jahren – die Glatthaferwiesen des Raumes Halle/Saale. Tuexenia 10, 185–195 (1990).
    Google Scholar 
    Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s – a cross-regional analysis. Diversity Distribution 19, 1175–1187 (2013).Article 

    Google Scholar 
    Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Veränderungen in der Segetalflora in den letzten Jahrzehnten und mögliche Konsequenzen für Agrarvögel. Julius-Kühn-Archiv 442, 64–78 (2013).
    Google Scholar 
    Kutzelnigg, H. Veränderungen der Ackerwildkrautflora im Gebiet um Moers/Niederrhein seit 1950 und ihre Ursachen. Tuexenia 4, 81–102 (1984).
    Google Scholar 
    Milligan, G., Rose, R. J. & Marrs, R. H. Winners and losers in a long-term study of vegetation change at Moor House NNR: Effects of sheep-grazing and its removal on British upland vegetation. Ecological Indicators 68, 89–101 (2016).Article 

    Google Scholar 
    Wittig, B., Waldman, T. & Diekmann, M. Veränderungen der Grünlandvegetation im Holtumer Moor über vier Jahrzehnte. Hercynia N.F 40, 285–300 (2007).
    Google Scholar 
    Henning, K., Lorenz, A., von Oheimb, G., Härdtle, W. & Tischew, S. Year-round cattle and horse grazing supports the restoration of abandoned, dry sandy grassland and heathland communities by supressing Calamagrostis epigejos and enhancing species richness. Journal for Nature Conservation 40, 120–130 (2017).Article 

    Google Scholar 
    Blüml, V. Langfristige Veränderungen von Flora und Vegetation des Grünlandes in der Dümmerniederung (Niedersachsen) unter dem Einfluss von Naturschutzmaßnahmen. (Bremen, 2011).Von Oheimb, G. et al. Halboffene Weidelandschaft Höltigbaum. Perspektiven für den Erhalt und die naturverträgliche Nutzung von Offenlandlebensräumen. (Landwirschaftsverlag, 2006).Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecol Biogeogr 27, 760–786 (2018).Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. The Biodiversity Conservation Paradox. Am. Sci. 105, 94 (2017).Article 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biological Conservation 219, 175–183 (2018).Article 

    Google Scholar 
    Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution 242, 1787–1799 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Braun-Blanquet, J. Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrb. St. Gallischen Naturwiss. Ges. 57, 305–351 (1921).
    Google Scholar 
    Becking, R. W. The Zürich-Montpellier school of phytosociology. Bot. Rev. 23, 411–488 (1957).Article 

    Google Scholar 
    Bruelheide, H. et al. sPlot – A new tool for global vegetation analyses. J Veg Sci 30, 161–186 (2019).Article 

    Google Scholar 
    O L Pescott, T A Humphrey & K J Walker. A short guide to using British and Irish plant occurrence data for research, https://doi.org/10.13140/RG.2.2.33746.86720 (2018).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Global Change Biology 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci 19, 173–180 (2016).Article 

    Google Scholar 
    Van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article 

    Google Scholar 
    Tichý, L. et al. Optimal transformation of species cover for vegetation classification. Appl Veg Sci 23, 710–717 (2020).Article 

    Google Scholar 
    Podani, J. Braun-Blanquet’s legacy and data analysis in vegetation science. Journal of Vegetation Science 17, 113–117 (2006).Article 

    Google Scholar 
    Londo, G. Dezimalskala für die vegetationskundliche Aufnahme von Dauerquadraten. in Sukzessionsforschung (ed. Schmidt, W.). Ber. Int. Symp. Int. Vereinig. Vegetationsk. Rinteln vol. 1973, 613–617 (Cramer, 1975).Bruelheide, H. & Luginbühl, U. Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90, 1314–1325 (2009).Article 
    PubMed 

    Google Scholar 
    Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sc. 12, 589–591 (2001).Article 

    Google Scholar 
    Gaston, K. J. & Curnutt, J. L. The dynamics of abundance-range size relationships. Oikos 81, 38 (1998).Article 

    Google Scholar 
    Gaston, K. J. et al. Abundance-occupancy relationships. J Appl Ecology 37, 39–59 (2000).Article 

    Google Scholar 
    Sporbert, M. et al. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J Biogeogr jbi.13926, https://doi.org/10.1111/jbi.13926 (2020).European Commission. Report on the Conservation Status of Habitat Types and Species as required under Article 17 of the Habitats Directive. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52009DC0358 (2009).Poschlod, P. Geschichte der Kulturlandschaft. (Ulmer, 2017).Mcgill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21, 178–185 (2006).Article 

    Google Scholar 
    Jandt, U. et al. More losses than gains during one century of plant biodiversity change in Germany. Nature https://doi.org/10.1038/s41586-022-05320-w (2022).Schaminée, J. H. J., Hennekens, S. M., Chytrý, M. & Rodwell, J. S. Vegetation-plot data and databases in Europe: an overview. Preslia 81, 173–185 (2009).
    Google Scholar 
    ESA. Land Cover CCI product user guide ver. 2. Tech. Rep. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2017).Kadmon, R., Farber, O. & Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications 14, 401–413 (2004).Article 

    Google Scholar 
    Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. 310 https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification/documentation/eunis-2004-report.pdf/download (2004).Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl Veg Sci 23, 648–675 (2020).Article 

    Google Scholar 
    Bruelheide, H., Tichý, L., Chytrý, M. & Jansen, F. Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Appl Veg Sci, https://doi.org/10.1111/avsc.12562 (2021).Jandt, U., Bruelheide, H. & ReSurveyGermany Consortium. ReSurvey Germany: vegetation-plot resurvey data from Germany. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig https://doi.org/10.25829/idiv.3514-0qsq70 (2022).Jansen, F. & Dengler, J. GermanSL – eine universelle taxonomische Referenzliste für Vegetationsdatenbanken. Tuexenia 28, 239–253 (2008).
    Google Scholar 
    Wisskirchen, R. & Haeupler, H. Standardliste der Farn-und Blütenpflanzen Deutschlands. (Ulmer, 1998).Jansen, F. & Dengler, J. Plant names in vegetation databases–a neglected source of bias. Journal of Vegetation Science 21, 1179–1186 (2010).Article 

    Google Scholar 
    Fischer, H. S. On the combination of species cover values from different vegetation layers. Applied Vegetation Science 18, 169–170 (2015).Article 

    Google Scholar 
    Schwabe, A. & Kratochwil, A. Pflanzensoziologische Dauerflächen-Untersuchungen im Bannwald ‘Flüh’ (Südschwarzwald) unter besonderer Berücksichtigung der Weidfeld-Sukzession. Standort.Wald 49, 5–49 (2015).
    Google Scholar 
    Poschlod, P., Schreiber, K.-F., Mitlacher, K., Römermann, C. & Bernhardt-Römermann, M. Entwicklung der Vegetation und ihre naturschutzfachliche Bewertung. in Landschaftspflege und Naturschutz im Extensivgrünland. 30 Jahre Offenhaltungsversuche Baden-Württemberg (eds. Schreiber, K.-F., Brauckmann, H.-J., Broll, G., Krebs, S. & Poschlod, P.) vol. 97 243–288 (2009).Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Determining the potential distribution of Oryctes monoceros and Oryctes rhinoceros by combining machine-learning with high-dimensional multidisciplinary environmental variables

    Manjeri, G., Muhamad, R. & Tan, S. G. Oryctes rhinoceros beetles, an oil palm pest in Malaysia. Annu. Res. Rev. Biol. 4, 3429–3439 (2014).Article 

    Google Scholar 
    Allou, K., Morin, J. P., Kouassi, P., Nklo, F. H. & Rochat, D. Oryctes monoceros trapping with synthetic pheromone and palm material in Ivory Coast. J. Chem. Ecol. 32, 1743–1754 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alibert, H. Study on the insect pests of oil palm in Dahomey. Rev. Botan. Appl. 18, 745–773 (1936).
    Google Scholar 
    Catley, A. The coconut rhinoceros beetle Oryctes rhinoceros (L) [Coleoptera: Scarabaeidae: Dynastinae]. PANS Pest Articles News Summar. 15, 18–30 (1969).Article 

    Google Scholar 
    Fauzana, H., Sutikno, A. & Salbiah, D. Population fluctuations Oryctes rhinoceros L. beetle in plant oil palm (Elaeis guineensis Jacq.) given mulching oil palm empty bunch. Cropsaver Int. J. Trop. Insect Sci. 1, 42–47 (2018).
    Google Scholar 
    Paudel, S., Mansfield, S., Villamizar, L. F., Jackson, T. A. & Marshall, S. D. Can biological control overcome the threat from newly invasive coconut rhinoceros beetle populations (Coleoptera: Scarabaeidae)? A review. Ann. Entomol. Soc. Am. 114, 247–256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molet, T. In CPHST Pest Datasheet for Oryctes rhinoceros. USDA-APHIS-PPQCPHST. Revised July 2014 (2013).Hinckley, A. D. Ecology of the coconut rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Dynastidae). Biotropica 1973, 111–116 (1973).Article 

    Google Scholar 
    Sitepu, D., Kharie, S., Waroka, JS & Motulo, HFJ. Methods for the production and use of Marhizium anisopliae against Oryctes rhinoceros. In Integrated Coconut Pest Control Project—Annual report of Coconut Research Institute—Manado, North Sulawesi, Indonesia 104–111 (1988).Philippe, R. & Dery, S. K. Coconut research and development. CORD 20, 43–51 (2004).
    Google Scholar 
    Purrini, K. Baculovirus oryctes release into Oryctes monoceros population in Tanzania, with special reference to the interaction of virus isolates used in our laboratory infection experiments. J. Invertebr. Pathol. 53, 285–300 (1989).Article 

    Google Scholar 
    Ukeh, D. A., Usua, E. J. & Umoetok, S. B. A. Notes on the biology of Oryctes monoceros (OLIV.) A pest of palms in Nigeria. World J. Agric. Res. 2, 33–36 (2003).
    Google Scholar 
    Dry, F. W. Notes on the coconut beetle (Oryctes monoceros, Ol.) in Kenya Colony. Bull. Entomol. Res. 13, 103–107 (1922).Article 

    Google Scholar 
    Bedford, G. O. Biology, ecology, and control of palm rhinoceros beetles. Annu. Rev. Entomol. 25, 309–339 (1980).Article 

    Google Scholar 
    Khoo, K. C., Yusoff, M. N. M. & Lee, T. W. Pulp and paper of oil palm trunk. In Research Pamphlet No.107: Oil Palm Stem Utilisation, Kuala Lumpur, Malaysia, FRIM 51–65 (1991).Giblin-Davis, R. M. Borers of palms. In Insects on Palms (eds Moore, D. et al.) (CABI Publishing, Wallingford, 2001).
    Google Scholar 
    Drumoni, A. & Ponchel, Y. Première capture au Yémen d’ Oryctes (Rykanoryctes) monoceros (Olivier, 1789) et confirmation de la présence de cette espèce africaine dans la Péninsule Arabique (Coleoptera, Dynastidae). Entomol. Afr. 15, 25–29 (2010).
    Google Scholar 
    Lever, R. J. A. W. Pests of the Coconut Palm (Food and Agriculture Organization of the United Nations, Rome, 1969).Moore, A. Rhinoceros beetle pest found in Guam and Saipan. In Pest Alert, Suva, Fiji: Plant Protection Service, Secretariat of the Pacific Community (2007).Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. Sci. 634, 1326–1334 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ding, F., Fu, J., Jiang, D., Hao, M. & Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 178, 155–162 (2018).Article 
    PubMed 

    Google Scholar 
    Valencia-Rodríguez, D., Jiménez-Segura, L., Rogéliz, C. A. & Parra, J. L. Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16, e0247876 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Escobar, L. E., Qiao, H., Cabello, J. & Peterson, A. T. Ecological niche modeling re-examined: A case study with the Darwin’s fox. Ecol. Evol. 8, 4757–4770 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article 
    PubMed 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 31, 272–278 (2008).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    Arnold, J. D., Brewer, S. C. & Dennison, P. E. Modeling climate-fire connections within the Great basin and Upper Colorado River Basin. Fire Ecol. 10, 64–75 (2014).Article 

    Google Scholar 
    Phillips, J. S. & Elith, J. On estimating probability of presence from use-availability or presence-background data. Ecology 94, 1409–1419 (2013).Article 
    PubMed 

    Google Scholar 
    Santana, P. A. Jr., Kumar, L., Da Silva, R. S., Pereira, J. L. & Picanço, M. C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest. Manag. Sci. 75, 2706–2715 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, et al. Predicting the current and future distributions of Brontispa longissima (Coleoptera: Chrysomelidae) under climate change in China. Glob. Ecol. Conserv. 25, e01444 (2021).Article 

    Google Scholar 
    Li, T. et al. Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant diversity of montane forests. Ecol. Evol. 10, 557–568 (2020).Article 
    PubMed 

    Google Scholar 
    Namgung, H., Kim, M. J., Baek, S., Lee, J. H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (Hemiptera: Fulgoridae) using MaxEnt model in South Korea. J. Asia Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Ji, W., Gao, G. & Wei, J. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects. 12, 347 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ji, W., Han, K., Lu, Y. & Wei, J. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. J. Crop. Prot. 137, 105268 (2020).Article 

    Google Scholar 
    Sharma, HC & Prabhakar, CS. Impact of climate change on pest management and food security. In Integrated Pest Management 23–36 (Academic Press, Cambridge, 2014).Skendžić, S., Zovko, M., Živković, I. P., Lešic, V. & Lemić, D. The impact of climate change on agricultural insect pests. Insects. 12, 440 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13, 1605–1615 (2007).Article 
    ADS 

    Google Scholar 
    De Queiroz, D. L., Burckhardt, D. & Majer, J. Integrated pest management of eucalypt psyllids (Insecta, Hemiptera, Psylloidea). In Integrated pest management and pest control-current and future tactics. INTECH 2012, 385–412 (2012).
    Google Scholar 
    Hochberg, M. E. & Waage, J. K. A model for the biological control of Oryctes rhinoceros (Coleoptera: Scarabaeidae) by means of pathogens. J. Appl. Ecol. 28, 514–531 (1991).Article 

    Google Scholar 
    Liu, Y. et al. MaxEnt modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol. Eng. 141, 105612 (2019).Article 

    Google Scholar 
    Wang, R. et al. Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios. Sci. Rep. 10, 1–9 (2020).CAS 

    Google Scholar 
    Wood, B. J. Studies on the effect of ground vegetation on infestations of Oryctes rhinoceros (L.) (Col., Dynastidae) in young oil palm replantings in Malaysia. Bull Entomol. Res. 59, 85–96 (1969).Article 

    Google Scholar 
    Mittal, I. C. Survey of scarabaeid (Coleoptera) fauna of Himachal Pradesh (India). J. Entomol. Res. 24, 259–269 (2000).
    Google Scholar 
    Zheng, C., Jiang, D., Ding, F., Fu, J. & Hao, M. Spatiotemporal patterns and risk factors for scrub typhus from 2007 to 2017 in southern China. Clin. Infect. Dis. 69, 1205–1211 (2019).Article 
    PubMed 

    Google Scholar 
    Chen, S., Ding, F., Hao, M. & Jiang, D. Mapping the potential global distribution of red imported fire ant (Solenopsis invicta Buren) based on a machine learning method. Sustainability. 12, 10182 (2020).Article 

    Google Scholar 
    Ding, F. et al. Infection and risk factors of human and avian influenza in pigs in south China. Prev. Vet. Med. 190, 105317 (2021).Article 
    PubMed 

    Google Scholar 
    Jiang, D. et al. Spatiotemporal patterns and spatial risk factors for Visceral leishmaniasis from 2007 to 2017 in Western and Central China: A modelling analysis. Sci. Total Environ Sci. 764, 144275 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Méndez-Rojas, D. M., Cultid-Medina, C. & Escobar, F. Influence of land use change on rove beetle diversity: A systematic review and global meta-analysis of a mega-diverse insect group. Ecol. Indic. 122, 107239 (2021).Article 

    Google Scholar 
    Oke, T. R. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).Article 
    ADS 

    Google Scholar 
    Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Eco. Model. 341, 5–13 (2016).Article 

    Google Scholar 
    Fand, B. B. et al. Invasion risk of the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions based on MaxEnt ecological niche modelling. Int. J. Trop. Insect Sci. 40, 1–11 (2020).Article 

    Google Scholar 
    Li, W. J. et al. Potential distribution prediction of natural Pseudotsuga sinensis forest in Guizhou based on Maxent model. J. For. Res. 48, 47–52 (2019).
    Google Scholar 
    McIntyre, S., Rangel, E. F., Ready, P. D. & Carvalho, B. M. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasit. Vectors 10, 1–15 (2017).Article 

    Google Scholar 
    Hao, M. et al. Global potential distribution of Oryctes rhinoceros, as predicted by boosted regression tree model. Glob. Ecol. Conserv. 37, e02175 (2022).Article 

    Google Scholar 
    Aidoo, O. F. et al. The impact of climate change on potential invasion risk of Oryctes monoceros worldwide. Front. Ecol. Evol. 10, 633 (2022).Article 

    Google Scholar 
    Aidoo, O. F. et al. Lethal yellowing disease: Insights from predicting potential distribution under different climate change scenarios. J. Plant Dis. Prot. 2021, 1–13 (2021).
    Google Scholar 
    Ruheili, A. M. A., Boluwade, A. & Subhi, A. M. A. Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-D) Phytoplasma Disease Using MaxEnt. Plants. 10, 460 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R. et al. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 7, e7323 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, S. T. & Jing, P. F. Prediction of potential distribution areas of Salvia bowleyana Dunn. in China based on MaxEnt and suitability analysis. J Anhui Agri. Sci. 8, 2311–2314 (2014).
    Google Scholar 
    Chahouki, M. A. Z. & Sahragard, H. P. Maxent modelling for distribution of plant species habitats of rangelands (Iran). Pol. J. Ecol. 64, 453–467 (2016).
    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Glob. Int. J. Hum. Soc. Sci. 18, 6–18 (2018).
    Google Scholar 
    Baloch, M. N., Fan, J., Haseeb, M. & Zhang, R. Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in central Asia. Insects. 11, 172 (2020).Article 
    PubMed Central 

    Google Scholar 
    Wang, N., Li, Z., Wu, J., Rajotte, E. G., Wan, F & Wang, Z. The potential geographical distribution of Bactrocera dorsalis (Diptera: Tephrididae) in China based on emergence rate model and ArcGIS. In International Conference on Computer and Computing Technologies in Agriculture 399–411. (Springer, Boston, 2008).Manrique, V., Cuda, J. P., Overholt, W. A. & Diaz, R. Temperature-dependent development and potential distribution of Episimus utilis (Lepidoptera: Tortricidae), a candidate biological control agent of Brazilian peppertree (Sapindales: Anacardiaceae) in Florida. Environ. Entomol. 37, 862–870 (2008).Article 
    PubMed 

    Google Scholar 
    Das, D. K., Singh, J. & Vennila, S. Emerging crop pest scenario under the impact of climate change–a brief review. AgroPhysics. 11, 13–20 (2011).CAS 

    Google Scholar 
    Porter, J. H., Parry, M. L. & Carter, T. R. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 57, 221–240 (1991).Article 
    ADS 

    Google Scholar 
    Trenberth, K. E. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law. 36, 463–481 (2018).Article 

    Google Scholar 
    Xu, D., Zhuo, Z., Li, X. & Wang, R. Distribution and invasion risk assessment of Oryctes rhinoceros (L.) in China under changing climate. J. Appl. Entomol. 146, 385–395 (2022).Article 

    Google Scholar 
    Sushil, K. & Mukhtar, A. Effect of temperature and humidity on biology of rhinoceros beetle, Oryctes rhinoceros Linn. on oil palm. J. Appl. Anim. Res. 18, 108–112 (2007).
    Google Scholar 
    Sabidin, N. N. E. The effect of climate change to the population of rhinoceros beetle (Oryctes rhinoceros) at selected oil palm plantation. In Bachelor of Science Thesis Dissertation. Universiti Teknologi MARA. https://ir.uitm.edu.my/id/eprint/22754. (2018).Yadav, R. & Chang, N. T. Effects of temperature on the development and population growth of the melon thrips, Thrips palmi, on eggplant, Solanum melongena. J. Insect Sci. 14, 78 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ju, R. T., Wang, F. & Li, B. Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. J. Insect Sci. 11, 1–12 (2011).Article 

    Google Scholar 
    Zheng, F. S., Du, Y. Z., Wang, Z. J. & Xu, J. J. Effect of temperature on the demography of Galerucella birmanica (Coleoptera: Chrysomelidae). Insect Sci. 15, 375–380 (2008).Article 

    Google Scholar 
    Azrag, A. G. et al. Modelling the effect of temperature on the biology and demographic parameters of the African coffee white stem borer, Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae). J. Therm. Biol. 89, 102534 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aidoo, O. F. et al. The African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae): Temporal dynamics and susceptibility to entomopathogenic fungi in East Africa. Int. J. Trop. Insect Sci. 41, 563–573 (2021).Article 

    Google Scholar 
    Leonard, A. et al. Predicting the current and future distribution of the edible long-horned grasshopper Ruspolia differens (Serville) using temperature-dependent phenology models. J. Therm. Biol. 95, 102786 (2021).Article 
    PubMed 

    Google Scholar 
    Roy, B. A. et al. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12, 457–465 (2014).Article 

    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cianci, D., Hartemink, N. & Ibáñez-Justicia, A. Modelling the potential spatial distribution of mosquito species using three different techniques. Int. J. Health Geogr. 14, 10 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zelazny, B. & Alfiler, A. Oryctes rhinoceros (Coleoptera: Scarabaeidae) larva abundance and mortality factors in the Philippines. Environ. Entomol. 15, 84–87 (1986).Article 

    Google Scholar 
    Wood, B.J. Studies on the effect of ground vegetation on infestations of Oryctes rhinoceros (L.)(Col., Dynastidae) in young oil palm replantings in Malaysia. Bull. Entomol. Res. 59, 85–96 (1969). More

  • in

    More losses than gains during one century of plant biodiversity change in Germany

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crossley, M. S. et al. No net insect abundance and diversity declines across US long term ecological research sites. Nat. Ecol. Evol. 4, 1368–1376 (2020).Article 
    PubMed 

    Google Scholar 
    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).Article 

    Google Scholar 
    Vellend, M. The biodiversity conservation paradox. Am. Sci. 105, 94 (2017).Article 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).Article 

    Google Scholar 
    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).Article 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Beck, J. J., Larget, B. & Waller, D. M. Phantom species: adjusting estimates of colonization and extinction for pseudo-turnover. Oikos 127, 1605–1618 (2018).Article 

    Google Scholar 
    Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Avolio, M. L. et al. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere 10, e02881 (2019).Article 

    Google Scholar 
    Diekmann, M. et al. Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe. J. Veg. Sci. 30, 187–202 (2019).Article 

    Google Scholar 
    Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gini, C. Il diverso accrescimento delle classi sociali e la concentrazione della ricchezza. Giornale degli Economisti38, 27–83 (1909).Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar 
    Hundt, R. Ökologisch‐geobotanische Untersuchungen an den mitteldeutschen Wiesengesellschaften unter besonderer Berücksichtigung ihres Wasserhaushaltes und ihrer Veränderung durch die Intensivbewirtschaftung (Wehry-Druck OHG, 2001).Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jansen, F., Bonn, A., Bowler, D. E., Bruelheide, H. & Eichenberg, D. Moderately common plants show highest relative losses. Conserv. Lett. 13, e12674 (2020).Article 

    Google Scholar 
    Bruelheide, H. et al. Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends. Divers. Distrib. 26, 782–794 (2020).Article 

    Google Scholar 
    Sperle, T. & Bruelheide, H. Climate change aggravates bog species extinctions in the Black Forest (Germany). Divers. Distrib. 27, 282–295 (2020).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Timmermann, A., Damgaard, C., Strandberg, M. T. & Svenning, J.-C. Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J. Appl. Ecol. 52, 21–30 (2015).Article 

    Google Scholar 
    Milligan, G., Rose, R. J. & Marrs, R. H. Winners and losers in a long-term study of vegetation change at Moor House NNR: effects of sheep-grazing and its removal on British upland vegetation. Ecol. Indic. 68, 89–101 (2016).Baskin, Y. Winners and losers in a changing world. BioScience 48, 788–792 (1998).Article 

    Google Scholar 
    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Naaf, T. & Wulf, M. Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biol. Conserv. 143, 848–855 (2010).Article 

    Google Scholar 
    Heinrichs, S. & Schmidt, W. Biotic homogenization of herb layer composition between two contrasting beech forest communities on limestone over 50 years. Appl. Veg. Sci. 20, 271–281 (2017).Article 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J. Veg. Sci. 25, 113–121 (2014).Article 

    Google Scholar 
    Metzing, D. et al. Rote Liste und Gesamtartenliste der Farn- und Blütenpflanzen (Trachaeophyta) Deutschlands (Landwirtschaftsverlag, 2018).Poschlod, P. Geschichte der Kulturlandschaft (Ulmer, 2017).Sukopp, H. ‘Rote Liste’ der in der Bundesrepublik Deutschland gefährdeten Arten von Farn- und Blütenpflanzen. (1. Fassung). Nat. Landsch. 49, 315–322 (1974).
    Google Scholar 
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 
    PubMed 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jandt, U., von Wehrden, H. & Bruelheide, H. Exploring large vegetation databases to detect temporal trends in species occurrences. J. Veg. Sci. 22, 957–972 (2011).Article 

    Google Scholar 
    Jones, F. A. M. & Magurran, A. E. Dominance structure of assemblages is regulated over a period of rapid environmental change. Biol. Lett. 14, 20180187 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chytrý, M., Tichý, L., Hennekens, S. M. & Schaminée, J. H. J. Assessing vegetation change using vegetation-plot databases: a risky business. Appl. Veg. Sci. 17, 32–41 (2014).Article 

    Google Scholar 
    Jandt, U. et al. ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany. Sci. Data, https://doi.org/10.1038/s41597-022-01688-6 (2022)Bohn, U. & Schniotalle, S. Hochmoor-, Grünland- und Waldrenaturierung im Naturschutzgebiet ‘Rotes Moor’/Hohe Rhön 1981–2001 (Landwirtschaftsverlag, 2008).Rosenthal, G. Erhaltung und Regeneration von Feuchtwiesen. Vegetationsökologische Untersuchungen auf Dauerflächen. Diss. Bot. 182, 1–283 (1992).
    Google Scholar 
    Schwabe, A. & Kratochwil, A. Pflanzensoziologische Dauerflächen-Untersuchungen im Bannwald ‘Flüh’ (Südschwarzwald) unter besonderer Berücksichtigung der Weidfeld-Sukzession. Standort Wald 49, 5–49 (2015).
    Google Scholar 
    Poschlod, P., Schreiber, K.-F., Mitlacher, K., Römermann, C. & Bernhardt-Römermann, M. in Landschaftspflege und Naturschutz im Extensivgrünland. 30 Jahre Offenhaltungsversuche Baden-Württemberg Vol. 97 (eds. Schreiber, K.-F. et al.) 243–288 (2009).Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12, 589–591 (2001).Article 

    Google Scholar 
    Chytrý, M. et al. EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).Article 

    Google Scholar 
    Bruelheide, H., Tichý, L., Chytrý, M. & Jansen, F. Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Appl. Veg. Sci. 12, e12562 (2021).Jansen, F. & Dengler, J. GermanSL—eine universelle taxonomische Referenzliste für Vegetationsdatenbanken. Tuexenia 28, 239–253 (2008).
    Google Scholar 
    Wisskirchen, R. & Haeupler, H. Standardliste der Farn-und Blütenpflanzen Deutschlands (Ulmer, 1998).Jansen, F. & Dengler, J. Plant names in vegetation databases–a neglected source of bias. J. Veg. Sci. 21, 1179–1186 (2010).Article 

    Google Scholar 
    Wegener, U. Vegetationswandel des Berggrünlands nach Untersuchungen von 1954 bis 2016—Wege zur Erhaltung der Bergwiesen (Mountain grasslands vegetation change after research from 1954 to 2016—ways to preserve mountain meadows). Abh. Berichte Aus Dem Mus. Heine. 11, 35–101 (2018).
    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Weiner, J. & Solbrig, O. T. The meaning and measurement of size hierarchies in plant populations. Oecologia 61, 334–336 (1984).Article 
    ADS 
    PubMed 

    Google Scholar 
    Signorell, A. et al. DescTools: tools for descriptive statistics. R version 0.99.32 https://CRAN.R-project.org/package=DescTools (2020).BiolFlor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).INSPIRE. D2.8.III.18 Data Specification on Habitats and Biotopes—Technical Guidelines https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_HB_v3.0rc2.pdf (2013).Jandt, U. & Bruelheide, H. German Vegetation Reference Database (GVRD). Biodivers. Ecol. 4, 355–355 (2012).Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. Biometry (Freeman, 1995).Chytrý, M., Tichý, L., Holt, J. & Botta‐Dukát, Z. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13, 79–90 (2002).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co‐occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci. 32, e12976 (2021).Sabatini, F. M., Jiménez‐Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta‐diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    MacArthur, R. On the relative abundance of species. Am. Nat. 94, 25–36 (1960).Article 

    Google Scholar 
    Prado, P. I., Miranda, M. D. & Chalom, A. sads: maximum likelihood models for species abundance distributions. R version 0.4.2. https://CRAN.R-project.org/package=sads (2018).Kuhn, G., Heinz, S. & Mayer, F. Grünlandmonitoring Bayern. Ersterhebung der Vegetation 2002–2008. Schriftenreihe LfL Bayer. Landesanst. Für Landwirtsch. 3, 1–161 (2011).
    Google Scholar  More