More stories

  • in

    Incorporating evolutionary and threat processes into crop wild relatives conservation

    We applied a modified version of a planning framework for CWR conservation25,26 which has been used by numerous countries of Europee.g.29,63,64, Americae.g.65, Africa30 and Asia66,67. We addressed the following main steps of the toolkit (see Spanish version49): (i) CWR checklist, i.e., creating a list of CWR taxa distributed in an area (Supplementary Data 1), (ii) CWR inventory, i.e., taxa selection and collation of ancillary data, including taxonomic data (Supplementary Data 2), (iii) taxa extinction risk assessment (Table 1, Supplementary Data 3), and (iv) a systematic conservation planning assessment, i.e., spatial analyses to assess conservation areas (Fig. 1). We only provide a brief description of steps i-iii, as these are thoroughly described in Goettsch et al.2. Here, we focus on the systematic conservation planning assessment, introducing an approach in order to identify conservation areas for CWR that account for genetic differentiation in a spatially explicit way, through the use of proxies of genetic differentiation (Fig. 1).During the process -framed under the project “Safeguarding Mesoamerican crop wild relatives” (https://www.darwininitiative.org.uk/project/23007/)- more than 100 experts from academic, governmental, and non-governmental organizations from El Salvador, Guatemala, Honduras, Mexico, the UK, and IUCN participated in six workshops, shared data, and provided fundamental knowledge and feedback at each project stage to ensure accurate, reliable and robust information for next steps. The checklist, inventory and risk assessment were collaboratively developed between partners of El Salvador, Guatemala, and Mexico (hereafter, Mesoamerica; Goettsch et al.2). The spatial analysis to identify areas for in situ and ex situ conservation of CWR was done independently by each country.To assess conservation areas of CWR in Mexico, we developed proxies of genetic differentiation that account for evolutionary processes by including historical and environmental drivers of genetic diversity (see the Methods section ‘Proxies of genetic differentiation’). In addition, we used criteria such as information on taxon-specific tolerance to human-modified habitats and IUCN extinction risk category. We applied a systematic conservation planning approach and performed spatial analysis using the software Zonation50. We compared different scenarios to represent genetic diversity of CWR based on potential species distribution models (SDM) and proxies of genetic differentiation.Study areaMesoamerica is a cultural region encompassing the territories of Belize, Guatemala, El Salvador, the southern part of Mexico and parts of Honduras, Nicaragua and Costa Ricasee 2. In this study, we also included the dry areas of northern Mexico that are part of Aridamerica68 and the Nearctic biogeographic realm69 to account for the full extent of the geographic range of many taxa included in the extinction risk assessment2.For the assessment of conservation areas, we focused on Mexico, which is one of the most biodiverse countries in the world70. The Mexican territory covers 80% of the landscapes of the region called Mesoamerica. Its high biological diversity is attributed to its geographic, topographic, climatic, geological and cultural characteristics, which, among other factors, shaped the distribution of an extraordinary variety of ecosystems and species with high levels of endemism and species turnover among different regions32,71,72,73. In particular, the high genetic variation within populations of landraces and CWR is the result of past and ongoing sociocultural processes occurring in a wide range of distinct environmental conditions74,75.(i) CWR checklist and (ii) CWR inventoryThe compiled CWR checklist included ~3000 species and subspecies of 92 genera and 45 families of plants that belong to the same genus of a crop cultivated in Mesoamerica, or wild plant collected for food or other uses in the region (Supplementary Data 1).The first set of criteria were established in preparation for the first stakeholder workshop. The following criteria were applied at the genus level to compile the CWR inventory: (1) occurrence of wild relatives of cultivated plants or crops that were domesticated in Mesoamerica; (2) existence of research groups working on taxa that could support the extinction risk assessment; and (3) relation to a crop of economic and nutritional importance at local, national and regional levels, or cultivars known to require genetic improvement.To narrow the list for the inventory and extinction risk assessment, similar criteria were agreed upon in the same workshop and applied at the species level: (1) native distribution in Mesoamerica, incl. Aridamerica; (2) related to a crop of economic or social importance based on production and nutritional value; (3) related to a taxon for which Mesoamerica is the center of origin or domestication; (4) constitutes part of the primary or secondary gene pool, and in some cases the tertiary gene pool76. The primary gene pool consists of wild plants of the same species as the crop and thus their mating produces strong fertile progeny. The secondary gene pool is composed of wild relatives distinct from cultivated species but closely related as to produce some fertile offspring (same taxonomic series or section in the absence of crossing and genetic diversity information, see the ‘taxon group’ concept proposed by Maxted and collaborators77, Supplementary Note 5). The tertiary gene pool (same subgenus in the taxon group concept) corresponds to CWR that are more distant relatives to the taxa of the primary gene pool, but can have important adaptive traits which can be used with specific breeding techniques. This provided a preliminary list of 514 CWR taxa related to avocado, cotton, amaranth, cocoa, squash, sweet potato, chayote, chili pepper, cempasuchil, bean, sunflower, maize, papaya, potato, vanilla, and yuca (Supplementary Data 2).The list had to be further reduced due to time and funding restrictions to include those genera which when added together would include no more than 250 taxa, and that the taxonomic groups could be comprehensively assessed and their taxa evaluated throughout their entire range. Thus, not all species in the group necessarily met the criteria previously mentioned. See the final Mesoamerican CWR inventory in Supplementary Data 3; see summary in Table 1.(iii) Taxa extinction risk assessmentFull methodological details and results of this section are described in Goettsch et al.2. Summarizing, during the process 224 taxa were evaluated according to the International Union for Conservation of Nature, IUCN, Red List Categories and Criteria78. The IUCN Red List is a critical indicator to identify species most vulnerable to extinction considering a set of criteria, i.e., species’ population trends, size, structure, and geographic ranges. A Red List workshop with the participation of 25 experts from different project partner institutions and IUCN specialists was organized to assess the extinction risk of taxa. The threat analysis included not only species, but subspecies and subpopulations (i.e. races) for some groups (Supplementary Data 3, see summary in Table 1).(iv) Systematic conservation planning assessmentTo undertake the following spatial analyses we focused on the dataset of 224 CWR described above, which is representative of the CWR of the main crops of Mesoamerica (10 genera, Table 1).Species distribution modelingTo compile occurrence records, hundreds of data sources were consulted, including published and personal databases of the project participantse.g.79,80,81,82, the Agrobiodiversity Atlas of Guatemala (https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/national-germplasm-resources-laboratory/docs/atlas-of-guatemalan-crop-wild-relatives), the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/), and Mexico’s Biodiversity Information System (SNIB, http://snib.mx/).To generate potential species distribution models (SDM), we used more than 13,000 occurrence records (Supplementary Data 4), that were standardized and curated by experts to generate the range maps of taxa as part of the extinction risk assessment, which were published in IUCN Red List (https://www.iucn.org/news/species/202109/threats-crop-wild-relatives-compromising-food-security-and-livelihoods). Spatial resolution of the SDM was 1 km2. SDM were obtained for taxa with more than 20 unique occurrence data in a 1 km2 grid covering the study extent to reduce uncertainty when using smaller sample sizes83. We used 19 bioclimatic variables and other climatic variables, such as annual potential evapotranspiration, aridity index, annual radiation, slope, and altitude84,85,86. Climate data represents annual and seasonal patterns of climate between 1950 and 2000. Also, we used a variable that described the percentage of bare soil and cultivated areas87. Collinearity between variables was assessed with the ‘corselect’ function of the package fuzzySim version 1.088, using a value of 0.8 and the variance inflation factors as criteria to exclude highly correlated variables.We used MaxEnt version 3.3.1, a machine-learning algorithm that uses the maximum entropy principle to identify a target probability distribution, subject to a set of constraints related to the occurrence records and environmental data89,90. Model calibration area for each taxon included those ecoregions where the taxon has been recorded; we used the terrestrial ecoregions dataset69. We did this based on the calibration area or ‘M element’ of the BAM diagram that refers to areas that have been accessible to the taxon via dispersal over relevant periods of time91,92. We randomly sampled 10,000 background localities from the selected areas.To reduce model complexity without compromising model performance, we built several models by varying the feature classes (FC) and regularization multipliers (RM) (see refs. 93,94,95) using R 3.6.096 and ‘ENMeval’ version 0.3.0 package97. FC determines the flexibility of the modeled response to the predictor variables, while the RM penalizes model complexity93. Occurrence records were randomly divided into 70% for model selection, and 30% of data was withheld for model validation. ENMeval carries out an internal partition of localities to test each combination of settings. Therefore, we selected the random k-fold method to divide localities into four bins. We build models with six FC combinations and varied RM values ranging from 0.5 to 4.0 in 0.5 increments. Optimal models were selected using Akaike’s Information Criterion corrected for small sample sizes (⍙AICc = 0). This method penalizes overly complex models and helps to choose those with an optimal number of parameters. However, it has been shown that the number of model parameters may not correctly estimate degrees of freedom98, and that model selection should not be selected solely with one measure99. Thus, we used 30% of the withheld data to test the area under the curve (AUC) of the receiver operating characteristic, and the omission error under a 10 percentile training threshold.We used the ten percentile or minimum training presence threshold to obtain binary maps of the presence and absence of suitable areas for species distribution. We asked experts of each taxonomic group who were also involved in the extinction risk assessment to select one of these two options and to indicate possible overestimated areas, which were then eliminated case by case using the information of Mexican ecoregions100 and watersheds101. Eight models were binarized with the minimum training presence threshold; for the other models we used the 10 percentile threshold. See MaxEnt performance and significance of SDM at Supplementary Data 5. AUC values ranged from 0 to 1; 0.5 indicated a model performance not better than random, while values closer to 1 indicated a better model performance; here we used SDM showing AUC values higher than 0.7. For Phaseolus and Zea, we used SDM that were previously generated by Delgado-Salinas et al.102, and Sánchez González et al.103, respectively. SDM for 116 taxa were validated by experts of each taxonomic group. See references and download links at Supplementary Data 6.For the conservation planning analysis of Mexico, we clipped the models to the Mexican territory, and trimmed the continuous SDM using the binary SDM to keep pixel values of areas with elevated probability of taxa presence. For taxa without SDM, we included the occurrence records of these taxa in the spatial analysis by using the information on observation location, i.e., coordinates (see Supplementary Data 3). This is done by enabling the function ‘species of special interest’ (SSI). See further details in the method section ‘Final conservation analysis’.Proxies of genetic differentiationTo identify proxies of genetic differentiation in an explicit, efficient, and repeatable way, we included environmental and historical drivers of genetic diversity. For this, we first divided Mexico into 27 Holdridge life zones (Supplementary Fig. 2, Supplementary Data 8), which we then subdivided according to phylogeographic studies that have found genetic differentiation among populations of several taxa (see division of each life zone into proxies in Supplementary Fig. 4; Supplementary Fig. 3 provides a general geographical overview of Mexico and main geographic references mentioned in Supplementary Fig. 4). The literature review was done searching for the words “phylogeography” and one of the following: (i) name of the Mexican biogeographic zones, (ii) “Mexico” + an ecosystem name (e.g. “Mexico” “rainforest”) or (iii) “Mexico” + lowlands/highlands. See list of references used in this study in Supplementary Data 9.In addition, we manually reviewed the citations to the most cited papers of the previous search. Reviews and meta-analyses were also included, although we excluded studies performed in CWR to show that our approach can be used without prior information on this group. As more studies on such taxa become available, they can be used to fine-tune the proxies of genetic differentiation. We focused on terrestrial species including plants, animals, and fungi (Supplementary Data 10) except to subdivide a life zone covering the coasts of the California Peninsula, where we could not find studies on terrestrial taxa so we included studies on fish species (see Supplementary Fig. 4).Since most of the life zones cover large territories, and complete phylogeographic congruence among different taxa is uncommon, we targeted to represent general trends that would likely occur across diverse species, instead of trying to represent fine idiosyncratic patterns of genetic differentiation. For instance, although distribution ranges of highland taxa shifted during the Pleistocene climate fluctuations, in general populations persisted (glacial-interglacial periods) within the main mountain ranges, while lowland populations were ephemeral (only glacial periods). So, gene flow among mountain ranges was more limited than within them. As a result, genetic differentiation among mountain ranges of different biogeographic provinces has been widely documented32, so we used this general pattern to subdivide the life zones that occur in highlands. These types of patterns are particularly relevant for a country like Mexico, due to its complex topography, tropical latitude, and geographic features of different ages, which promote population differentiation among the Mexican main geographic features. To translate the phylogeographic information into a spatial context, we used biogeographic regions, basins, topographic or edaphic data to split the life zones into different subzones using the best fitting cartography to represent the phylogeographic patterns (Supplementary Fig. 4).We obtained 102 proxies of genetic differentiation for Mexico (Supplementary Fig. 5). We validated our findings by using available genomic data of an empirical study of a wild relative of maize, the teosinte Zea mays subsp. parviglumis, which was not included in the literature review in order to test the usefulness of our approach regarding the lack of genetic data. The dataset includes ca. 1800 occurrence records and ca. 30,000 SNPs48. Sampling localities were not used for distribution modeling. Admixture groups per population were estimated for K1 to 60. According to the population analysis, Z. mays subsp. parviglumis is structured in 13 genetic clusters along a longitudinal gradient (Fig. 3a–c). We used the K = 13 for plotting based on the Cross-Validation error. The proportion of each genetic cluster was estimated by sampling locality and plotted using pie charts over the map (Supplementary Fig. 6). Then, using the data layer of the SDM subdivided by proxies of genetic differentiation, we extracted which was the proxy most frequent in a 5 km buffer for each sampling locality. The Admixture plot was ordered by all genetic clusters and subdivided by the proxy of genetic differentiation most frequent for each locality. In addition, we calculated a principal component analysis (PCA) and projected into a score plot the first three components. Individual samples were colored by the proxies where they fell in the 5 km buffer (Fig. 3c). To compare how genetic variation was represented by the different scenarios we plotted the proportion of the area of each proxy as given by the potential SDM according to two different scenarios (only considering SDM; combining SDM*PGD) considering 20% of Mexico’s terrestrial area (Fig. 3d). Analyses were run in R version 3.5.196 using the R packages pcadapt version 4.3.3104, ggplot2 version 2_3.3.3105, readr version 1.4.0106, gridExtra version 2.3107, ggnewscale version 0.4.5108, scatterpie version 0.1.5109, pophelper version 2.3.1110, raster version 3.4-5111, rgdal version 1.4-8112, rgl version 0.107.10113, and sp version 1.4-4114,115.Habitat preferenceWe considered habitat preference to refine the presence of CWR in the planning process; thus minimizing commission errors and highlighting areas that more probably contain taxa116. For each taxon, experts assessed its habitat preference (1: high preference; 0.5: low preference; 0.1: no preference) according to the following categories: (i) well-conserved vegetation (i.e. primary vegetation), (ii) human-impacted vegetation (i.e. secondary vegetation), (iii) less intensive rainfed and moisture agriculture, (iv) intensive rainfed and moisture agriculture, (v) irrigated agriculture, (vi) induced and cultivated grasslands and forests, and vii) urban areas (Supplementary Data 11). To spatially delimit these classes, we used the land use cover and vegetation map for Mexico117, and assessed seven main categories of land cover by grouping the map legend (Supplementary Fig. 9). To differentiate between less intensive and intensive cultivated areas, we followed Bellon et al.56, who associated the presence of native maize varieties of Mexico to occur in municipalities with average yields of less than or equal to 3 t ha-1 using agricultural production data from 2010 from the Information System of Agrifood and Fisheries (SIAP), and selected the municipalities with the established average maize yield. We combined the municipality layer with the land cover map to differentiate areas of high and low agricultural intensity. To generate taxon-specific habitat layers, we associated the habitat preference classes established by experts to the land cover map aggregated into seven major land cover categories, using R 3.6.096 and the following packages: raster version 3.4-5111 and rgdal version 1.4-8112. We obtained habitat maps for 116 taxa with SDM.Preliminary analysisWe generated five preliminary scenarios to explore different approaches to include conservation features for maximizing the representation of intraspecific diversity as given by taxa and proxies of genetic differentiation, i.e., representation of proxies within a taxa range (Supplementary Fig. 7): (i) “SDM” scenario, included 116 SDM, which we used as base scenario to examine the representation of taxa and proxies of genetic variability (n = 116); (ii) “SDM + LZ” scenario, included 116 SDM and 27 layers representing Holdridge life zones to consider environmental variation (n = 143); (iii) “SDM + PGD” scenario, included 116 SDM and 102 layers representing each proxy of genetic differentiation individually (n = 218); (iv) “SDM*PGD” scenario, included 5004 input layers representing the intersection of SDM and PGD (n = 5004; combining 116 SDM with 102 proxies resulted in 11,832 layers, but as some of the intersections produced empty outputs given the extension of SDM that do not cover all Mexico, for further analysis we used 5004 input layers with value data. To subdivide the layers, we used ArcGIS version 10.2.2118; to filter the layers, we used R 3.5.196.); (v) “SDM and PGD as ADMU” scenario, included 116 SDM as the main conservation features, while integrating one single layer of proxies of genetic differentiation to consider each of them as planning units by using the ‘Administrative units’ function. Analysis was done in Zonation50,119.We compared the results by assessing 20% of Mexico’s terrestrial area (Fig. 5b) to perform statistical analysis in R 3.5.196 using the following packages: purrr version 0.3.4120, ‘dplyr’ version 1.0.2121, ‘ggplot2’ version 2_3.3.3105, ‘raster’ version 3.4-5111, ‘scales’ version 1.2.0122, ‘sp’ version 1.4-4114,115, ‘tidyr’ version 1.0.2123, and ‘vegan’ version 2.6-2124. The area threshold was established based on Aichi target 11 and on comparisons of performance curves to efficiently represent taxa ranges delimited by SDM and proxies of genetic differentiation (Fig. 6). As using SDM combined with proxies of genetic differentiation showed the highest representation of genetic diversity (“SDM*PGD” scenario), we used this approach for the final analyses.Final conservation analysisWe identified areas of high conservation value for CWR in Mexico by using the software Zonation version 4.050,119, a systematic conservation planning tool that allows optimizing representation of species, taxa, or other conservation features, e.g., proxies of genetic differentiation, in a given study area. The program hierarchically ranks areas by removing cells of low conservation value, as given, for example, by a reduced number of taxa or occurrence of low weighted features, while considering multiple criteria such as the weighting of taxa and habitat preference of taxa. We applied the core-area zonation removal rule (CAZ) to maximize the representation of all conservation features in a minimal possible area51. Zonation generates two main outputs: (a) a hierarchical landscape priority rank map, that allows decision makers establishing different area thresholds to highlight areas of conservation interest; and (b) a representation curve showing species or conservation features range distribution in a given area. The curve also allows identifying how much area is needed to cover a certain taxon range or the distribution of a feature of conservation interest.For the conservation scenarios, we integrated the following inputs in the Zonation software: (1) 5,004 layers, i.e., SDM intersected with proxies of genetic differentiation (as described by “SDM*PGD” scenario, Fig. 4), (2) occurrence records of 98 taxa; only for those taxa without SDM, see Supplementary Data 3), (3) taxa specific habitat layers (according to Supplementary Data 11 and Supplementary Fig. 9), and (4) IUCN threat category (Supplementary Data 3) as an additional parameter to weight taxa differently to consider their vulnerability to extinction, see details below. See Zonation configuration at Supplementary Note 6.Data from different sources can be mixed in the same analysis, which is useful to not lose or omit information of any taxa of interest in the assessment. Here, we included information of a total of 214 taxa (see Supplementary Data 3). Distribution data of 116 taxa were represented by 5004 layers that resulted from combining 116 SDM and 102 PGD. This approach showed the highest proportion of area of taxa ranges (on average 41%) and highest representation of PGD within the area of each taxon (on average 76%; Fig. 4; see description in the main text). For some taxa, e.g. Cucurbita pepo, Physalis cinerascens, and Zea mays information on its distribution was assessed at subspecies level rather than at species level, explaining the difference in numbers of CWR taxa.In addition, we included occurrence data of 98 taxa without SDM to prevent missing important areas of taxa known distribution that are important to conserve (see Supplementary Data 3). We enabled the function ‘species of special interest’ (SSI) of Zonation, and included a SSI feature list file, listing the taxon names, as well as taxon-specific coordinate file for each of the 98 taxa that have been reviewed by the experts of each group. The spatial reference system was World Mercator projection. Occurrence data and SDM are treated similarly in the Zonation analysis, i.e., cells where taxa occur will be retained in the solution as long as possible to maximize its representation in the solution.We assigned weights to the 116 taxa with SDM by using IUCN threat categories (according to Supplementary Data 3), giving highest values to taxa with highest risk of extinction that urgently need management actions to further avoid genetic erosion. By including conservation feature weights, Zonation estimates the conservation value of a cell not only based on the presences of a taxa and their distribution range, but also on the weight. A high weight indicates a high conservation value of cells where these taxa are distributed. As there is no rule for weight setting, we assigned values between 1 and 0 regardless of taxa distribution ranges, which is automatically considered in the Zonation algorithm to guarantee the representation of locations where limited-range distributed taxa occur within the most valuable conservation area. Thus, weights were assigned as follows: Critically endangered, CR: 1; Endangered, EN: 1; Vulnerable, VU: 0.8; Near threatened, NT: 0.5; Data deficient, DD: 0.3; Least concern, LC: 0.2 Not evaluated, NE: 0.1. SSI taxa were all weighted similarly with 1 in order to represent the 98 SSI taxa and their occurrences in the top fraction of the most valuable conservation area, as these areas could be considered as ‘irreplaceable’ in terms of conservation. The conservation of these taxa that are only known in a few locations is crucial to maintain their populations. Information on weights for taxa with and without SDM is included in the file that lists the 5004 conservation features and the SSI file, respectively.To include the information on habitat, we included 116 habitat maps which guide the selection of cells to areas where its presence is more probable (see the Methods section: “Habitat preference”). This option can only be used for taxa represented by a raster layer, and is not available for SSI taxa included via occurrence records. By enabling the “landscape condition” option of Zonation, each habitat map is linked to a specific conservation feature layer. Areas with unfavorable habitats will quickly be masked out during the selection of cells in order to obtain a solution that favors conservation areas within areas of preferred habitat.We generated three final scenarios to identify conservation areas for (a) all taxa, (b) taxa exclusively distributing in natural vegetation, and (c) taxa associated with a wider range of habitats such as natural vegetation, agricultural and urban areas. The Zonation configuration remained similar among the three scenarios. When taxa were not included in a given scenario, we assigned a value weight of 0. This excluded the feature to be considered for the hierarchical prioritization of the landscape, but still allowed to evaluate the taxa during post-processing.To evaluate the spatial results (Supplementary Fig. 11), we analyzed performance curves to represent proxies of genetic differentiation within each taxon range (Supplementary Fig. 12). Also, we considered the most valuable 20% area of Mexico to calculate the coincidence of the three scenarios (Supplementary Fig. 13), and the overlap with federal protected areas125 and indigenous regions126,127 (Supplementary Fig. 14), and land cover data used in the analyses (Supplementary Figs. 9, 15).We discussed the proposed methodological framework, input layer and criteria during a fourth workshop in Mexico. It is worth mentioning that we ran several analyses including additional layers, such as areas where indigenous communities live that promote the presence of CWR in the landscape6. However, as the output indicated no evident difference by including this information, final analyses did not consider these data. We neither included protected areas nor tried to expand on the current 12% protected area system, because most management plans do not specifically address CWR management (but see the management program of the Protected Area of ‘Sierra de Manantlán’128), and thus generally do not adequately plan for wild and native genetic resources129. We also discussed different approaches to consider connectivity for taxa, habitats and proxies of genetic differentiation in the Zonation processing. Still, we finally decided to run the analysis without particularly accounting for connectivity as we had no taxa-specific information on dispersal abilities or possible effects of fragmentation, and we did not want to lose efficiency of the solution to represent taxa by or include lower-quality habitats by forcing the solution to an aggregation of pixels.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    High-resolution crop yield and water productivity dataset generated using random forest and remote sensing

    Blatchford, M. L., Mannaerts, C. M., Zeng, Y., Nouri, H. & Karimi, P. Status of accuracy in remotely sensed and in-situ agricultural water productivity estimates: A review. Remote Sensing of Environment 234, 111413, https://doi.org/10.1016/j.rse.2019.111413 (2019).Article 
    ADS 

    Google Scholar 
    Geerts, S. & Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management 96, 1275–1284, https://doi.org/10.1016/j.agwat.2009.04.009 (2009).Article 

    Google Scholar 
    Hellegers, P., Soppe, R., Perry, C. & Bastiaanssen, W. Combining remote sensing and economic analysis to support decisions that affect water productivity. Irrigation Science 27, 243–251, https://doi.org/10.1007/s00271-008-0139-7 (2009).Article 

    Google Scholar 
    Bastiaanssen, W. G. M. & Steduto, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. The Science of the total environment 575, https://doi.org/10.1016/j.scitotenv.2016.09.032 (2017).Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Science Reviews 99, https://doi.org/10.1016/j.earscirev.2010.02.004 (2010).Hu, X., Shi, L., Lin, L. & Zha, Y. Nonlinear boundaries of land surface temperature–vegetation index space to estimate water deficit index and evaporation fraction. Agricultural and Forest Meteorology 279, https://doi.org/10.1016/j.agrformet.2019.107736 (2019).Bowen, I. S. The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Physical Review 27, 779–787, https://doi.org/10.1103/PhysRev.27.779 (1926).Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 
    Penman, H. L. Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences 193, https://doi.org/10.1098/rspa.1948.0037 (1948).Monteith, J. L. Evaporation and environment. The stage and movement of water in living organisms. Symp.soc.exp.biol.the Company of Biologists (1965).Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics 50, https://doi.org/10.1029/2011RG000373 (2012).Bastiaanssen, W. G. et al. A remote sensing surface energy balance algorithm for land (SEBAL) Part 1: Fomulation. Journal of hydrology 212, 213–229, https://doi.org/10.1016/S0022-1694(98)00253-4 (1998).Article 
    ADS 

    Google Scholar 
    Bastiaanssen, W. G. M. et al. A remote sensing surface energy balance algorithm for land (SEBAL) Part 2. Validation. Journal of Hydrology 212, https://doi.org/10.1016/S0022-1694(98)00254-6 (1998).Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Science 6, 85–99, https://doi.org/10.5194/hess-6-85-2002 (2002).Article 
    ADS 

    Google Scholar 
    Norman, J. M., Kustas, W. P. & Humes, K. S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology 77, https://doi.org/10.1016/0168-1923(95)02265-y (1995).Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment 111, https://doi.org/10.1016/j.rse.2007.04.015 (2007).Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019 (2011).Article 
    ADS 

    Google Scholar 
    Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment 112, 901–919, https://doi.org/10.1016/j.rse.2007.06.025 (2008).Article 
    ADS 

    Google Scholar 
    Kim, H. W., Hwang, K., Mu, Q., Lee, S. O. & Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering 16, https://doi.org/10.1007/s12205-012-0006-1 (2012).Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S. & Verdin, J. P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment 139, https://doi.org/10.1016/j.rse.2013.07.013 (2013).Jin, X. et al. Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data. Precision Agriculture 19, 1–17, https://doi.org/10.1007/s11119-016-9469-2 (2016).Article 

    Google Scholar 
    Felix, R., Clement, A., Igor, S. & Oscar, R. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sensing 5, 1704–1733, https://doi.org/10.3390/rs5041704 (2013).Article 

    Google Scholar 
    Lu, Y. et al. Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model. Agricultural Water Management 252, https://doi.org/10.1016/j.agwat.2021.106884 (2021).Jin, X., Kumar, L., Li, Z., Feng, H. & Wang, J. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy 92, https://doi.org/10.1016/j.eja.2017.11.002 (2018).Weiss, M., Jacob, F. & Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment 236, https://doi.org/10.1016/j.rse.2019.111402 (2019).Jin, X. et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS Journal of Photogrammetry and Remote Sensing 126, 24–37 (2017).Article 
    ADS 

    Google Scholar 
    Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H. & Schulman, A. H. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology 24, https://doi.org/10.1111/gcb.14019 (2017).Jin, X. et al. A review of data assimilation of remote sensing and crop models. European Journal of Agronomy 92, 141–152, https://doi.org/10.1016/j.eja.2017.11.002 (2018).Article 

    Google Scholar 
    Anikó, K. et al. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology 260-261, 300–320, https://doi.org/10.1016/j.agrformet.2018.06.009 (2018).Article 

    Google Scholar 
    Wang, Y., Zhang, Z., Feng, L., Du, Q. & Runge, T. Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States. Remote Sensing 12, 1232, https://doi.org/10.3390/rs12081232 (2020).Article 
    ADS 

    Google Scholar 
    Franz, T. E. et al. The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield. Field Crops Research 252, https://doi.org/10.1016/j.fcr.2020.107788 (2020).Noland, R. L. et al. Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Research 222, 189–196, https://doi.org/10.1016/j.fcr.2018.01.017 (2018).Article 

    Google Scholar 
    Cao, J., Zhang, Z., Luo, Y., Zhang, L. & Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. European Journal of Agronomy, 126204, https://doi.org/10.1016/j.eja.2020.126204 (2021).Jacinta, H. & Kerrie, M. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10, 1365, https://doi.org/10.3390/rs10091365 (2018).Article 

    Google Scholar 
    Jin, X., Liu, S., Baret, F., Hemerlé, M. & Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment 198, 105–114, https://doi.org/10.1016/j.rse.2017.06.007 (2017).Article 
    ADS 

    Google Scholar 
    Maimaitijiang, M. et al. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment 237, 111599, https://doi.org/10.1016/j.rse.2019.111599 (2020).Article 
    ADS 

    Google Scholar 
    Hossein, A., Mohsen, A., Davoud, A., Salehi, S. H. & Soheil, R. Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing PP, 1–15, https://doi.org/10.1109/JSTARS.2018.2823361 (2018).Johansen, K. et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Frontiers in Artificial Intelligence 3, 28, https://doi.org/10.3389/frai.2020.00028 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, L., Ding, X., Shen, Y., Wang, Z. & Wang, X. Spatial Heterogeneity and Influencing Factors of Agricultural Water Use Efficiency in China. Resources and Environment in the Yangtze Basin 28, https://doi.org/10.11870/cjlyzyyhj201904008 (2019).Cheng, M. et al. Satellite time series data reveal interannual and seasonal spatiotemporal evapotranspiration patterns in China in response to effect factors. Agric. Water Manage. 255, https://doi.org/10.1016/j.agwat.2021.107046 (2021).Zhou, L. Comprehensive agricultural regionalization in China. (Agricultural Press of China, 1985).Luo, Y., Zhang, Z., Chen, Y., Li, Z. & Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000-2015 based on LAI products. Figshare https://doi.org/10.6084/m9.figshare.8313530.v6 (2019).Luo, Y., Zhang, Z., Chen, Y., Li, Z. & Tao, F. ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth System Science Data 12, 197–214, https://doi.org/10.5194/essd-12-197-2020 (2020).Article 
    ADS 

    Google Scholar 
    Song, D. Second China Soil Survey. (Chinese Science Press, 1979).Zhang, T., Yang, X., Wang, H., Li, Y. & Ye, Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Global Change Biology 20, 1289–1298, https://doi.org/10.1111/gcb.12428 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chen, Y., Zhang, Z. & Tao, F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. European Journal of Agronomy 101, 163–173, https://doi.org/10.1016/j.eja.2018.09.006 (2018).Article 

    Google Scholar 
    Cheng, M. et al. Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China. Agricultural and Forest Meteorology 323, https://doi.org/10.1016/j.agrformet.2022.109057 (2022).Amir, J. & Sinclair, T. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Research 28, 47–58, https://doi.org/10.1016/0378-4290(91)90073-5 (1991).Article 

    Google Scholar 
    Prince, S. D., Haskett, J., Steininger, M. & Wright, S. R. Net Primary Production of U.S. Midwest Croplands from Agricultural Harvest Yield Data. Ecological Applications 11, 1194–1205, https://doi.org/10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2 (2001).Article 

    Google Scholar 
    Gilardelli, C. et al. Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data. European journal of agronomy 103, 108–116, https://doi.org/10.1016/j.eja.2018.12.003 (2019).Article 

    Google Scholar 
    Shakoor, R., Hassan, M. Y., Raheem, A. & Wu, Y.-K. Wake effect modeling: A review of wind farm layout optimization using Jensen׳ s model. Renewable and Sustainable Energy Reviews 58, 1048–1059, https://doi.org/10.1016/j.rser.2015.12.229 (2016).Article 

    Google Scholar 
    Breiman, L. Random Forests. Machine Learning https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    Li, L. et al. Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China. Agricultural and Forest Meteorology 308–309, https://doi.org/10.1016/j.agrformet.2021.108558 (2021).Wang, L. A., Zhou, X., Zhu, X., Dong, Z. & Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal 4, 212–219, https://doi.org/10.1016/j.cj.2016.01.008 (2016).Article 

    Google Scholar 
    Feng, P. et al. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology 285-286, 107922, https://doi.org/10.1016/j.agrformet.2020.107922 (2020).Article 
    ADS 

    Google Scholar 
    Lu, F., Sun, Y. & Hou, F. Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water 12, 2334, https://doi.org/10.3390/w12092334 (2020).Article 
    CAS 

    Google Scholar 
    Wang, S. et al. High spatial resolution monitoring land surface energy, water and CO2 fluxes from an Unmanned Aerial System. Remote Sensing of Environment 229, 14–31, https://doi.org/10.1016/j.rse.2019.03.040 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Y. et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment 140, 279–293, https://doi.org/10.1016/j.rse.2013.08.045 (2014).Article 
    ADS 

    Google Scholar 
    Peralta, N., Assefa, Y., Du, J., Barden, C. & Ciampitti, I. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield. Remote Sensing 8, 848, https://doi.org/10.3390/rs8100848 (2016).Article 
    ADS 

    Google Scholar 
    Russello, H. Convolutional neural networks for crop yield prediction using satellite images. IBM Center for Advanced Studies (2018).You, J., Li, X., Low, M., Lobell, D. & Ermon, S. in Proceedings of the AAAI Conference on Artificial Intelligence.Moran, P. A. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Imran, M., Stein, A. & Zurita-Milla, R. Using geographically weighted regression kriging for crop yield mapping in West Africa. International Journal of Geographical Information Systems 29, 234–257, https://doi.org/10.1080/13658816.2014.959522 (2015).Article 

    Google Scholar 
    Harries, K. Extreme spatial variations in crime density in Baltimore County, MD. Geoforum 37, 404–416, https://doi.org/10.1016/j.geoforum.2005.09.004 (2006).Article 

    Google Scholar 
    Ghulam, A. et al. Remote Sensing Based Spatial Statistics to Document Tropical Rainforest Transition Pathways. Remote Sensing 7, 6257–6279, https://doi.org/10.3390/rs70506257 (2015).Article 
    ADS 

    Google Scholar 
    Maimaitijiang, M., Ghulam, A., Sandoval, J. S. O. & Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. International Journal of Applied Earth Observation Geoinformation 35, 161–174, https://doi.org/10.1016/j.jag.2014.08.020 (2015).Article 
    ADS 

    Google Scholar 
    Cheng, M. Long time series (2001-2015) high-resolution crop yield and water productivity dataset of China, Zenodo, https://doi.org/10.5281/zenodo.5121842 (2021).Martens, B., Miralles, D. G., Lievens, H., Schalie, R. D. & Verhoest, N. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development 10, https://doi.org/10.5194/gmd-10-1903-2017 (2017).Wang, W., Cui, W., Wang, X. & Chen, X. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at the monthly scale. Journal of Hydrometeorology 17, 2815–2833, https://doi.org/10.1175/JHM-D-15-0191.1 (2016).Article 
    ADS 

    Google Scholar 
    Chen, X. et al. Development of a 10-year (2001–2010) 0.1° data set of land-surface energy balance for mainland China. Atmospheric Chemistry and Physics 14, 14471–14518, https://doi.org/10.5194/acp-14-13097-2014 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ramoelo, A. et al. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sensing 6, https://doi.org/10.3390/rs6087406 (2014).Yang, X., Yong, B., Ren, L., Zhang, Y. & Long, D. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements. International Journal of Remote Sensing https://doi.org/10.1080/01431161.2017.1346400 (2017).Article 

    Google Scholar 
    Hu, G., Jia, L. & Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment 156, 510–526, https://doi.org/10.1016/j.rse.2014.10.017 (2015).Article 
    ADS 

    Google Scholar 
    Khan, M. S., Liaqat, U. W., Baik, J. & Choi, M. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agricultural and Forest Meteorology 252, 256–268, https://doi.org/10.1016/j.agrformet.2018.01.022 (2018).Article 
    ADS 

    Google Scholar 
    Glenn, E. P. et al. Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology 1, 316–329, https://doi.org/10.1002/eco.19 (2008).Article 

    Google Scholar 
    Gamon, J. A. Reviews and Syntheses: optical sampling of the flux tower footprint. Biogeosciences 12, 4509–4523, https://doi.org/10.5194/bg-12-4509-2015 (2015).Article 
    ADS 

    Google Scholar 
    Cai, Y. et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology 274, 144–159, https://doi.org/10.1016/j.agrformet.2019.03.010 (2019).Article 
    ADS 

    Google Scholar 
    Chen, X. et al. Prediction of Maize Yield at the City Level in China Using Multi-Source Data. Remote Sensing 13, https://doi.org/10.3390/rs13010146 (2021).Guo, Y. et al. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators 120, 106935, https://doi.org/10.1016/j.ecolind.2020.106935 (2021).Article 

    Google Scholar 
    Yuan, W. et al. Estimating crop yield using a satellite-based light use efficiency model. Ecological Indicators 60, 702–709, https://doi.org/10.1016/j.ecolind.2015.08.013 (2016).Article 

    Google Scholar 
    Anandhi, A. Growing degree days – Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecological Indicators 61, 149–158, https://doi.org/10.1016/j.ecolind.2015.08.023 (2016).Article 

    Google Scholar 
    Wart, J. V. Estimating Crop Yield Potential At National Scales. Field Crops Research 143, 34–43, https://doi.org/10.1016/j.fcr.2012.11.018 (2013).Article 

    Google Scholar 
    Kang, Y. S. et al. Yield prediction and validation of onion (Allium cepa L.) using key variables in narrowband hyperspectral imagery and effective accumulated temperature. Computers and Electronics in Agriculture 178, https://doi.org/10.1016/j.compag.2020.105667 (2020).Long, D., Singh, V. P. & Li, Z.-L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research: Atmospheres 116, https://doi.org/10.1029/2011jd016542 (2011).Liu, Z., Wang, L. & Wang, S. Comparison of Different GPP Models in China Using MODIS Image and ChinaFLUX Data. Remote Sensing 6, 10215–10231, https://doi.org/10.3390/rs61010215 (2014).Article 
    ADS 

    Google Scholar 
    Edreira, J., Guilpart, N., Sadras, V., Cassman, K. G. & Grassini, P. Water productivity of rainfed maize and wheat: A local to global perspective. Agricultural and Forest Meteorology 259, 364–373, https://doi.org/10.1016/j.agrformet.2018.05.019 (2018).Article 
    ADS 

    Google Scholar 
    Li, H. et al. Water Use Characteristics of Maize-Green Manure Intercropping Under Different Nitrogen Application Levels in the Oasis Irrigation Area Scientia Agricultura Sinica 54, 2608–2618 (2021).
    Google Scholar 
    Wang, S., Ibrom, A., Bauer-Gottwein, P. & Garcia, M. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest. Agricultural and Forest Meteorology https://doi.org/10.1016/j.agrformet.2017.10.023 (2018).Article 

    Google Scholar 
    Cheng, M. High-resolution crop yield and water productivity dataset generated using random forest and remote sensing. Zenodo https://doi.org/10.5281/zenodo.6444614 (2022). More

  • in

    Fluctuating insect diversity, abundance and biomass across agricultural landscapes

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Uchida, K. & Ushimaru, A. Biodiversity declines due to abandonment and intensification of agricultural lands: Patterns and mechanisms. Ecol. Monogr. 84, 637–658 (2014).
    Google Scholar 
    Habel, J. C. et al. Butterfly community shifts over two centuries: Shifts in butterfly communities. Conserv. Biol. 30, 754–762 (2016).PubMed 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wenzel, M., Schmitt, T., Weitzel, M. & Seitz, A. The severe decline of butterflies on western German calcareous grasslands during the last 30 years: A conservation problem. Biol. Cons. 128, 542–552 (2006).
    Google Scholar 
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H. & Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511, 341–343 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).
    Google Scholar 
    Uhl, B., Wölfling, M. & Fiedler, K. Understanding small-scale insect diversity patterns inside two nature reserves: The role of local and landscape factors. Biodivers. Conserv. 29, 2399–2418 (2020).
    Google Scholar 
    Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Thomas, J. A. Butterfly communities under threat. Science 353, 216–218 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanders, J. & Hess, J. Benefits of organic farming to environment and society. Thünen Report 65, 362 (2019).
    Google Scholar 
    Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177 (2019).
    Google Scholar 
    Brühl, C. A. et al. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 11, 24144 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Den Boer, P. J. & van Dijk, T. S. Carabid Beetles in A Changing Environment (Agricultural Univ, 1995).
    Google Scholar 
    Cristescu, M. E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol. 29, 566–571 (2014).PubMed 

    Google Scholar 
    Hausmann, A. et al. Toward a standardized quantitative and qualitative insect monitoring scheme. Ecol. Evol. 10, 4009–4020 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS One 8, e66213 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hausmann, A. et al. Genetic patterns in european geometrid moths revealed by the Barcode Index Number (BIN) system. PLoS One 8, e84518 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 1–14 (2010).
    Google Scholar 
    Schlick-Steiner, B. C. et al. Integrative taxonomy: A multisource approach to exploring biodiversity. Ann. Rev. Entomol. 55, 421–438 (2010).CAS 

    Google Scholar 
    Schlick‐Steiner, B. C., Arthofer, W., & Steiner, F. M. Take up the challenge! Opportunities for evolution research from resolving conflict in integrative taxonomy (2014).Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27, 480–488 (2012).PubMed 

    Google Scholar 
    Morinière, J. et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding-based biomonitoring. Mol. Ecol. Res. 19, 900–928 (2019).
    Google Scholar 
    Kortmann, M. et al. Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. Ecol. Appl. 32, e2516 (2022).PubMed 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    Boggs, C. L. & Inouye, D. W. A single climate driver has direct and indirect effects on insect population dynamics: Climate drivers of population dynamics. Ecol. Lett. 15, 502–508 (2012).PubMed 

    Google Scholar 
    Conrad, K. F., Fox, R. & Woiwod, I. P. Monitoring biodiversity: Measuring long-term changes in insect abundance. In Insect Conservation Biology (eds Stewart, A. J. A. et al.) 203–225 (CABI, 2007). https://doi.org/10.1079/9781845932541.0203.Chapter 

    Google Scholar 
    Flohre, A. et al. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol. Appl. Publ. Ecol. Soc. Am. 21, 1772–1781 (2011).
    Google Scholar 
    Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. In Advances in Ecological Research, vol ***55 43–97 (Elsevier, 2016).
    Google Scholar 
    Segerer, A. H. & Rosenkranz, E. Das grosse Insektensterben: Was es Bedeutet und was Wir Jetzt tun Müssen (Oekom Verlag, 2019).
    Google Scholar 
    Batáry, et al. The former Iron Curtain still drives biodiversity-profit trade-offs in German agriculture. Nat. Ecol. Evol. 1, 1279–1284 (2017).PubMed 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).PubMed 

    Google Scholar 
    Birkhofer, K., Smith, H. G., Weisser, W. W., Wolters, V. & Gossner, M. M. Land-use effects on the functional distinctness of arthropod communities. Ecography 38, 889–900 (2015).
    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).
    Google Scholar 
    Habel, J. C., Seibold, S., Ulrich, W. & Schmitt, T. Seasonality overrides differences in butterfly species composition between natural and anthropogenic forest habitats. Anim. Conserv. 21, 405–413 (2018).
    Google Scholar 
    Schmitt, T., Ulrich, W., Delic, A., Teucher, M. & Habel, J. C. Seasonality and landscape characteristics impact species community structure and temporal dynamics of East African butterflies. Sci. Rep. 11, 15103 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ssymank, A. et al. Praktische Hinweise und Empfehlungen zur Anwendung von Malaisefallen für Insekten in der Biodiversitätserfassung und im Monitoring. Entomol. Verein Krefeld 1, 1–12 (2018).
    Google Scholar 
    Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Elbrecht, V. & Steinke, D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw. Biol. 64, 380–387 (2019).CAS 

    Google Scholar 
    Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl. Acad. Sci. 118, 25 (2021).
    Google Scholar 
    Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 1–9 (2021).
    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Morinière, J. et al. Species identification in malaise trap samples by DNA barcoding based on NGS Technologies and a scoring matrix. PLoS One 11, e0155497 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).
    Google Scholar  More

  • in

    Chemical forms of cadmium in soil and its distribution in French marigold sub-cells in response to chelator GLDA

    Sarwar, N. et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171, 710–721 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lin, H. M. et al. Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul.: Int. J. Nat. Synthetic Regul. 81(1), 91–101 (2017).Article 
    CAS 

    Google Scholar 
    Pan, F. S. et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int. J. Phytorem. 19(1/6), 281–289 (2017).Article 
    CAS 

    Google Scholar 
    Puangprasert, S. & Prueksasit, T. Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252, 109601 (2019).Article 
    CAS 

    Google Scholar 
    Tipu, M. I. et al. Growth and physiology of maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. J. Plant Growth Regul. 40(2), 774–786 (2021).Article 
    CAS 

    Google Scholar 
    Chaturvedi, N., Dhal, N. K. & Patra, H. K. EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata: A comparative study. Int. J. Min. Reclam. Environ. 29(1), 33–46 (2015).Article 
    CAS 

    Google Scholar 
    Wang, G. Y. et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 569–570, 557–568 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kołodyńska, D. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267(2–3), 175–183 (2011).Article 

    Google Scholar 
    Guo, X. F. et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J. Soils Sediments 18(2), 835–844 (2017).
    Google Scholar 
    Wang, X. et al. Subcellular distribution and chemical forms of cadmiun in Bechmeria nivea L. Gaud. Environ. Exp. Bot. 62(3), 389–395 (2008).Article 
    CAS 

    Google Scholar 
    Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46 (2012).Article 
    CAS 

    Google Scholar 
    Clemens, S., Aarts, M. G. M., Thomine, S. & Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18(2), 92–99 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, J. T. et al. Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Front. Plant Sci. 8, 966 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, L. P., Zhu, J., Wang, P., Lyu, D. G. & Li, H. F. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol. Environ. Saf. 160, 10–18 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, W. J., Zhang, M. Z. & Liu, J. N. Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer: An integrated consideration. Int. J. Phytorem. 20(11), 1087–1095 (2017).Article 

    Google Scholar 
    Weigel, H. J. & Jäger, H. J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65(3), 480–482 (1980).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R. & Ahmad, P. Agroecotoxicological aspect of Cd in soil–plant system: Uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 29, 30908–30934 (2022).Article 
    CAS 

    Google Scholar 
    Wei, Z. B., Chen, X. H., Wu, Q. T. & Tan, M. Biodegradable chelator GLDA induced remediation of heavy metal contaminated soil in Southeast Jingtian. Environ. Sci. 36(5), 1864–1869 (2015).CAS 

    Google Scholar 
    Wang, K., Liu, Y. H., Song, Z. G., Wang, D. & Qiu, W. W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237, 124480 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meng, N., Wang, M., Chen, L., Zheng, H. & Chen, S. B. Remediation effects of different herbaceous plants intercropping on Cd-contaminated soil. China Environ. Sci. 38(7), 2618–2624 (2018).CAS 

    Google Scholar 
    Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (don) and dissolved organic carbon (doc) in soil. Soil Biol. Biochem. 38(5), 991–999 (2006).Article 
    CAS 

    Google Scholar 
    Su, F. L. et al. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. Environ. Monit. Assess.: Int. J. 190(6), 1–9 (2018).Article 
    CAS 

    Google Scholar 
    Shahid, M., Dumat, C. & Khalid, S. Reviews of Environmental Contamination and Toxicology Vol. 241, 3–137 (Springer, 2016).
    Google Scholar 
    Yuliya, V. et al. Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Sci. Hortic. 192, 89–96 (2015).Article 

    Google Scholar 
    Liu, Q. Q., Chen, Y. H., Shen, Z. G. & Zheng, L. Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol. J. 50(5), 605–611 (2014).
    Google Scholar 
    Zhen, S. et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Sci. Total Environ. 770, 145302 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shi, Y. X. et al. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ. Sci. 37(10), 3996–4003 (2016).
    Google Scholar 
    Yan, X. X. et al. Effect of foliar application of different manganese fertilizers on cadmium accumulation and subcellular distribution in pak choi. J. Agro Environ. Sci. 38(8), 1872–1881 (2019).
    Google Scholar 
    He, S., Wu, Q. & He, Z. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93(11), 2782–2788 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, C. C. et al. Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant Soil 384(1/2), 201–212 (2014).Article 
    CAS 

    Google Scholar 
    Li, D., He, T., Saleem, M. & He, G. Metalloprotein-specific or critical amino acid residues: Perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int. J. Mol. Sci. 23(3), 1734 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perriguey, J., Sterckeman, T. & Morel, J. L. Effect of rhizosphere and plantrelated factors on the cadmium uptake by maize(Zea mays L.). Environ. Exp. Bot. 63(1/3), 333–341 (2008).Article 
    CAS 

    Google Scholar 
    Dai, S. et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess. Int. J. 24(7), 1887–1900 (2018).Article 
    CAS 

    Google Scholar 
    Hou, S., Zheng, N., Tang, L., Ji, X. F. & Li, Y. Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 191(10), 634 (2019).Article 
    PubMed 

    Google Scholar 
    Wu, H. J. et al. Effects of Astragalus smicuson cadmium effectiveness in paddy soil and cadmium accumulation in rice plant. Chin. Agric. Sci. Bull. 33(16), 105–111 (2017).ADS 

    Google Scholar 
    Jin, P. K., Liu, K. J. & Wang, X. B. Conversion and utilization of slowly biodegradable organic matter. Chin. J. Environ. Eng. 10(5), 2168–2174 (2016).CAS 

    Google Scholar 
    Kopáček, J. et al. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environ. Sci. Technol. 52(11), 6291–6299 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Anwar, S. et al. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int. J. Phytorem. 19(6), 505–513 (2017).Article 
    CAS 

    Google Scholar 
    Wu, J. M., Xi, M. & Kong, F. L. Review of researches on the factors influencing the dynamics of dissolved organic carbon in soils. Geol. Rev. 59(5), 953–961 (2013).CAS 

    Google Scholar 
    AkzoNobel. Dissolvine GL® Technichal Brochure 1–5 (AkzoNobel Amsterdam, 2010).
    Google Scholar 
    Beygi, M. & Jalali, M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337, 1009–1020 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gul, I. et al. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. J. Soils Sediments 19(5), 2346–2356 (2019).Article 
    CAS 

    Google Scholar 
    Wang, H., Sun, L. N., Li, H. B. & Sun, T. Y. Effect of different chelators application on Cd accumulation in metal polluted soils by Beta vulgaris var. cicla L. Ecol. Environ. 17(6), 2249–2252 (2008).
    Google Scholar 
    Zhang, G. X. et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 218, 513–522 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gu, M. H. et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil. Ecol. Environ. Sci. 229(2), 360–368 (2020).
    Google Scholar 
    Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    A sustainable pathway to increase soybean production in Brazil

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Marin, F. R. et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. https://doi.org/10.1038/s41893-022-00968-8 (2022). More

  • in

    Tuna catch rates soared after creation of no-fishing zone in Hawaii

    Longline fishing boats such as these at Honolulu’s harbour in Hawaii must respect a large no-fishing zone off the western side of the archipelago.Credit: Sarah Medoff

    Large no-fishing areas can drive the recovery of commercially valuable fish species, a study suggests. Ten years’ worth of fisheries data have shown that catch rates of two important types of tuna increased drastically in the vicinity of a marine protected area surrounding the northwestern Hawaiian islands.“It’s a win–win for fish and fishermen,” says Jennifer Raynor, an economist at the University of Wisconsin–Madison and a co-author of the study, which was published on 20 October in Science1.The results highlight the value of large-scale marine protected areas — a type of environmental management that has emerged in the past two decades, mostly in the Pacific Ocean, says Kekuewa Kikiloi, who studies Hawaiian culture at the University of Hawaii at Mānoa. Countries around the world have committed to protecting 30% of their land and oceans by 2030.Previous research showed that marine protected areas can help to restore populations of creatures that don’t move around much or at all, such as corals2 and lobsters3. Raynor and her colleagues wanted to test whether the areas could also drive the recovery of migratory species and provide spillover benefits for fisheries. The researchers looked at one of the largest such areas in the world, the 1.5-million-square-kilometre Papahānaumokuākea Marine National Monument, which was created in 2006 and expanded in 2016 to protect biological and cultural resources.The team focused on the Hawaiian ‘deep-set’ longline fishery, which mainly targets yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus).The researchers analysed catch data collected on fishing vessels between 2010 and late 2019. Then, they compared catch rates at various distances up to 600 nautical miles (1,111 kilometres) from the protected area, before and after its expansion in 2016. (The protected area itself currently extends for 200 nautical miles from the northwestern part of the Hawaiian archipelago.) They found that after the expansion, catch rates — defined as the number of fish caught for every 1,000 hooks deployed — went up, and that the increases were greater the closer the boats were to the no-fishing zone. At distances of up to 100 nautical miles, the catch rate for yellowfin tuna increased by 54%, and that for bigeye tuna by 12%. Some other types of catch rate also increased, but not by equally significant margins.The size of the Papahānaumokuākea Marine National Monument — more than three times the surface area of California — probably played a part in the positive effects, as did its shape. It spans about 2,000 kilometres from west to east, protecting large swathes of ocean waters at tropical latitudes. This means that tropical fish such as yellowfin and bigeye tuna — which tend to move along an east–west axis to stay in their preferred temperature range — can travel a long way and still stay in the no-fishing zone.What’s more, says Raynor, Papahānaumokuākea is a spawning ground for yellowfin tuna. Because the animals don’t travel far from their birthplace, the no-take zone provides refuge from fishing, helping tuna to aggregate and reproduce.“It is exciting to see that there are benefits to the fishing industry from this marine protected area,” says David Kroodsma, director of research and innovation at Global Fishing Watch in Oakland, California, a US non-governmental organization that monitors fishing activity worldwide. However, he adds, it’s unclear whether the results can be generalized to other areas of the world.Regardless, the findings could help others to design marine protected areas so that benefits trickle down to fisheries, says Steve Gaines, a marine ecologist at the University of California, Santa Barbara. The study, he says, “provides a platform to definitively evaluate what is working and what isn’t”.Co-managed by Indigenous populations, the state of Hawaii and the US government, Papahānaumokuākea is an example of a collaborative management strategy that bridges Indigenous knowledge and modern science, Kikiloi says. The approach, he adds, “can work successfully in other places too, if given a chance”. More

  • in

    Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish

    Field samplingLake Masoko fish were chased into fixed gill nets and SCUBA by a team of professional divers at different target depths determined by diver depth gauge (12× male benthic, 12× male littoral). Riverine fish (11× Mbaka River and 1× Itupi river) were collected by local fishermen. On collection, all fish were euthanized using clove oil. Collection of wild fish was done in accordance with local regulations and permits in 2015, 2016, 2018 and 2019. On collection, fish were immediately photographed with color and metric scales, and tissues were dissected and stored in RNAlater (Sigma-Aldrich); some samples were first stored in ethanol. Only male specimens (showing bright nuptial coloration) were used in this study for the practical reason of avoiding any misassignment of individuals to the wrong population (only male individuals show clear differences in phenotypes and could therefore be reliably assigned to a population). Furthermore, we assumed that any epigenetic divergence relevant to speciation should be contributing to between-population differences in traits possessed by both sexes (habitat occupancy, diet). To investigate the role of epigenetics in phenotypic diversification and adaptation to different diets, homogenized liver tissue – a largely homogenous and key organ involved in dietary metabolism, hormone production and hematopoiesis – was used for all RNA-seq and WGBS experiments.Common-garden experimentCommon-garden fish were bred from wild-caught fish specimens, collected and imported at the same time by a team of professional aquarium fish collectors according to approved veterinary regulations of the University of Bangor, UK. Wild-caught fish were acclimatized to laboratory tanks and reared to produce first-generation (G1) common-garden fish, which were reared under the same controlled laboratory conditions in separate tanks (light–dark cycles, diet: algae flakes daily, 2–3 times weekly frozen diet) for approximately 6 months (post hatching). G1 adult males showing bright nuptial colors were culled at the same biological stages (6 months post hatching) using MS222 in accordance with the veterinary regulations of the University of Bangor, UK. Immediately on culling, fish were photographed and tissues collected and snap-frozen in tubes.Stable isotopesTo assess dietary/nutritional profiles in the three ecomorph populations, carbon (δ13C) and nitrogen (δ15N) isotope analysis of muscle samples (for the same individuals as RRBS; 12, 12 and 9 samples for benthic, littoral and riverine populations, respectively) was undertaken by elemental analyzer isotope ratio mass spectrometry by Iso-Analytical Limited. It is important to note that stable isotope analysis does not depend on the use of the same tissue as the ones used for the RRBS/WGBS samples45. Normality tests (Shapiro–Wilk, using the R package rstatix v.0.7.0), robust for small sample sizes, were performed to assess sample deviation from a Gaussian distribution. Levene’s test for homogeneity of variance was then performed (R package carData v.3.0-5) to test for homogeneity of variance across groups. Finally, Welch’s ANOVA was performed followed by Games–Howell all-pairs comparison tests with adjusted P value using Tukey’s method (rstatix v.0.7.0). Mean differences in isotope measurements and 95% CI mean differences were calculated using Dabestr v.0.3.0 with 5,000 bootstrapped resampling.Throughout this manuscript, all box plots are defined as follows: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.RNA-seqNext-generation sequencing library preparationTotal RNA from liver tissues stored in RNAlater was extracted using a phenol/chloroform approach (TRIzol reagent; Sigma-Aldrich). Of note, when tissues for bisulphite sequencing samples were not available, additional wild-caught samples were used (Supplementary Table 3). The quality and quantity of RNA extraction were assessed using TapeStation (Agilent Technologies), Qubit and NanoDrop (Thermo Fisher Scientific). Next-generation sequencing (NGS) libraries were prepared using poly(A) tail-isolated RNA fraction and sequenced on a NovaSeq system (S4; paired-end 100/150 bp; Supplementary Table 3), yielding on average 32.9 ± 3.9 Mio reads.Read alignment and differential gene expression analysisAdaptor sequence in reads, low-quality bases (Phred score  More

  • in

    Statistical power from the people

    Wolf, S. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01904-x (2022).Article 

    Google Scholar 
    Kattge, J. et al. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    Sabatini, F. M. et al. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Łopucki, R., Kiersztyn, A., Pitucha, G. & Kitowski, I. Ecol. Modell. 468, 109964 (2022).Article 

    Google Scholar 
    Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    White, C. R. et al. Funct. Ecol. 35, 1572–1578 (2021).Article 

    Google Scholar 
    Xirocostas, Z. A., Debono, S. A., Slavich, E. & Moles, A. T. Methods Ecol. Evol. 13, 596–602 (2022).Article 

    Google Scholar 
    Callaghan, C. T. et al. Bioscience 71, 55–63 (2020).
    Google Scholar  More