More stories

  • in

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Battaglini, L., Bovolenta, S., Gusmeroli, F., Salvador, S. & Sturaro, E. Environmental sustainability of alpine livestock farms. Ital. J. Anim. Sci. 13, 3155 (2014).
    Google Scholar 
    Lavorel, S. et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Change 17, 2251–2264 (2017).PubMed Central 

    Google Scholar 
    Pan, Y., Wu, J. & Xu, Z. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem. Ecol. Complex. 17, 79–86 (2014).
    Google Scholar 
    Rossi, M. et al. A comparison of the signal from diverse optical sensors for monitoring alpine grassland dynamics. Remote Sens. 11, 296 (2019).ADS 

    Google Scholar 
    Körner, C. Plant ecology at high elevations. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 1–7 (Springer, 2003). https://doi.org/10.1007/978-3-642-18970-8_1.Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113 (2008).Körner, C. Impact of atmospheric changes on high mountain vegetation. In Mountain Environments in Changing Climates 155–166 (Routledge, 1994).Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences 12, 3885–3897 (2015).ADS 

    Google Scholar 
    Schirmer, M., Wirz, V., Clifton, A. & Lehning, M. Persistence in intra-annual snow depth distribution: 1. Measurements and topographic control. Water Resour. Res. 47, 09516 (2011).ADS 

    Google Scholar 
    Revuelto, J., Jonas, T. & López-Moreno, J.-I. Backward snow depth reconstruction at high spatial resolution based on time-lapse photography. Hydrol. Process. 30, 2976–2990 (2016).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv. Water Resour. 55, 40–52 (2013).ADS 

    Google Scholar 
    Clark, M. P. et al. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 47, (2011).Wayand, N. E., Hamlet, A. F., Hughes, M., Feld, S. I. & Lundquist, J. D. Intercomparison of meteorological forcing data from empirical and mesoscale model sources in the north fork american river basin in northern sierra Nevada, California. J. Hydrometeorol. 14, 677–699 (2013).ADS 

    Google Scholar 
    Revuelto, J., López-Moreno, J. I., Azorin-Molina, C. & Vicente-Serrano, S. M. Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: Intra- and inter-annual persistence. Cryosphere 8, 1989–2006 (2014).ADS 

    Google Scholar 
    Winkler, D. E., Butz, R. J., Germino, M. J., Reinhardt, K. & Kueppers, L. M. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front. Plant Sci. (2018).Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
    Google Scholar 
    Billings, W. D. Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance. Bioscience 23, 697–704 (1973).
    Google Scholar 
    Hua, X., Ohlemüller, R. & Sirguey, P. Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environ. Adv. 8, 100234 (2022).
    Google Scholar 
    Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380 (2020).ADS 
    CAS 

    Google Scholar 
    Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J.-P. & Thuiller, W. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities. Ann. Bot. 116, 1023–1034 (2015).PubMed Central 

    Google Scholar 
    Beniston, M. et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).ADS 

    Google Scholar 
    Stöckli, R. & Vidale, P. L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 25, 3303–3330 (2004).
    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).ADS 
    CAS 

    Google Scholar 
    Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H. & Faramarzi, M. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theor. Appl. Climatol. 136, 169–184 (2019).ADS 

    Google Scholar 
    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).ADS 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 (2011).ADS 

    Google Scholar 
    Qiao, D. & Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 8, 42 (2019).
    Google Scholar 
    Zong, S. et al. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change. Remote Sens. Environ. 268, 112773 (2022).ADS 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).ADS 

    Google Scholar 
    Zheng, J., Jia, G. & Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 315, 108828 (2022).ADS 

    Google Scholar 
    Dedieu, J.-P. et al. On the importance of high-resolution time series of optical imagery for quantifying the effects of snow cover duration on alpine plant habitat. Remote Sens. 8, 481 (2016).ADS 

    Google Scholar 
    Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12 (2014).ADS 

    Google Scholar 
    Fontana, F., Rixen, C., Jonas, T., Aberegg, G. & Wunderle, S. Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series—A comparison with in situ measurements. Sensors 8, 2833–2853 (2008).ADS 
    PubMed Central 

    Google Scholar 
    Carlson, B. Z. et al. Observed long-term greening of alpine vegetation—A case study in the French Alps. Environ. Res. Lett. 12, 114006 (2017).ADS 

    Google Scholar 
    Tomaszewska, M. A., Nguyen, L. H. & Henebry, G. M. Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 240, 111675 (2020).ADS 

    Google Scholar 
    Rumpf, S. B. et al. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 376, 1119–1122 (2022).ADS 
    CAS 

    Google Scholar 
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).ADS 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).
    Google Scholar 
    Asam, S. et al. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the alps—An earth observation-based analysis. Remote Sens. 10, 1757 (2018).ADS 

    Google Scholar 
    Rossini, M. et al. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 9, 2565–2584 (2012).ADS 

    Google Scholar 
    Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 28, 9–22 (1989).ADS 

    Google Scholar 
    Hall, D. K. & Riggs, G. A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 21, 1534–1547 (2007).ADS 

    Google Scholar 
    Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).ADS 

    Google Scholar 
    Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecol. Ind. 115, 106455 (2020).
    Google Scholar 
    Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M. & Daskalova, G. N. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environ. Res. Lett. 15, 125002 (2020).ADS 
    CAS 

    Google Scholar 
    Revuelto, J. et al. Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017. Earth Syst. Sci. Data 9, 993–1005 (2017).ADS 

    Google Scholar 
    Nadal Romero, E. et al. Sediment balance in four small catechumen’s with different land cover in the Central Pyrenes (Spain). (2009).Gartzia, M., Alados, C. L. & Pérez-Cabello, F. Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Progr. Phys. Geogr. Earth Environ. 38, 201–217 (2014).
    Google Scholar 
    Fillat, F., González, R. G., García, D. G., Gómez, D. & Reiné, R. Pastos del Pirineo. (Editorial CSIC-CSIC Press, 2008).Gómez-García, D., Ferrández, J. V., Tejero, P. & Font, X. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees. Pirineos 172, e027–e027 (2017).
    Google Scholar 
    Gascoin, S. et al. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 19, 2337–2351 (2015).ADS 

    Google Scholar 
    López-Moreno, J. I. et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 12, 074006 (2017).ADS 

    Google Scholar 
    Cernusca, A. Standörtliche Variabilität in Mikroklima und Energiehaushalt Alpiner Zwergstrauchbestände. In Verhandlungen der Gesellschaft für Ökologie Wien 1975: 5. Jahresversammlung vom 22. bis 24. September 1975 in Wien (ed. Müller, P.) 9–21 (Springer Netherlands, 1976). https://doi.org/10.1007/978-94-015-7168-5_2.Cernusca, A. & Seeber, M. C. Canopy structure, microclimate and the energy budget in different alpine plant communities. In Symposium—British Ecological Society (1981).Kudo, G., Nordenhäll, U. & Molau, U. Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Écoscience 6, 439–450 (1999).
    Google Scholar 
    Baptist, F. & Choler, P. A simulation of the importance of length of growing season and canopy functional properties on the seasonal gross primary production of temperate alpine meadows. Ann. Bot. 101, 549–559 (2008).PubMed Central 

    Google Scholar 
    Baptist, F., Flahaut, C., Streb, P. & Choler, P. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol. 12, 755–764 (2010).CAS 

    Google Scholar 
    Wipf, S., Rixen, C. & Mulder, C. P. H. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob. Change Biol. 12, 1496–1506 (2006).ADS 

    Google Scholar 
    Sierra-Almeida, A. & Cavieres, L. A. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163, 267–276 (2010).ADS 

    Google Scholar 
    Camarero, J. J., Gutiérrez, E. & Fortin, M.-J. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For. Ecol. Manag. 134, 1–16 (2000).
    Google Scholar 
    Dadic, R., Mott, R., Lehning, M. & Burlando, P. Parameterization for wind-induced preferential deposition of snow. Hydrol. Process. 24, 1994–2006 (2010).
    Google Scholar 
    Vionnet, V. et al. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. Cryosphere 8, 395–415 (2014).ADS 

    Google Scholar 
    Burns, S. F., Tonkin, P. J. & Thorn, C. E. Soil-geomorphic models and the spatial distribution and development of alpine soils. In Space and Time in Geomorphology: Binghamton Geomorphology Symposium, vol. 12 (2020).Lana-Renault, N. et al. Comparative analysis of the response of various land covers to an exceptional rainfall event in the central Spanish Pyrenees, October 2012. Earth Surf. Proc. Land. 39, 581–592 (2014).ADS 

    Google Scholar 
    Freppaz, M., Williams, B. L., Edwards, A. C., Scalenghe, R. & Zanini, E. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability. Appl. Soil. Ecol. 35, 247–255 (2007).
    Google Scholar 
    López-Moreno, J. I. et al. Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees. Int. J. Climatol. 40, 6122–6136 (2020).
    Google Scholar 
    López-Moreno, J. I., Vicente-Serrano, S. M. & Lanjeri, S. Mapping snowpack distribution over large areas using GIS and interpolation techniques. Clim. Res. 33, 257–270 (2007).
    Google Scholar 
    Revuelto, J., López-Moreno, J. I. & Alonso-González, E. Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resour. Res. 57, e2020WR028980 (2021).ADS 

    Google Scholar 
    Eberhard, L. A. et al. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere 15, 69–94 (2021).ADS 

    Google Scholar 
    Harder, P., Schirmer, M., Pomeroy, J. & Helgason, W. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere 10, 2559–2571 (2016).ADS 

    Google Scholar 
    Stanton, M. L., Rejmánek, M. & Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arct. Alp. Res. 26, 364–374 (1994).
    Google Scholar 
    Winkler, D. E., Chapin, K. J. & Kueppers, L. M. Soil moisture mediates alpine life form and community productivity responses to warming. Ecology 97, 1553–1563 (2016).
    Google Scholar 
    Litaor, M. I., Williams, M. & Seastedt, T. R. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res. Biogeosci. 113, (2008).Keller, F., Kienast, F. & Beniston, M. Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg. Environ. Change 1, 70–77 (2000).
    Google Scholar 
    Running, S. W. Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In Remote Sensing of Biosphere Functioning (eds. Hobbs, R. J. & Mooney, H. A.) 65–86 (Springer, 1990). https://doi.org/10.1007/978-1-4612-3302-2_4.Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33, 481–486 (1995).ADS 

    Google Scholar 
    Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32, 1–6 (2021).
    Google Scholar 
    Floyd, D. A. & Anderson, J. E. A comparison of three methods for estimating plant cover. J. Ecol. 75, 221–228 (1987).
    Google Scholar 
    Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).
    Google Scholar 
    Mouillot, D. & Leprêtre, A. A comparison of species diversity estimators. Res. Popul. Ecol. 41, 203–215 (1999).
    Google Scholar  More

  • in

    Future biological control

    The success of biological control agents — organisms used to reduce the success of other, usually non-native invasive species — is complicated by ongoing climate change. Chosen for their host-specificity and introduced into new locations, biological agents can succumb to both direct and indirect climate-related stressors, compromising their biology and activity against target organisms. Adding to this is the fact that environmental stressors often occur in concert, making it hard to predict the efficacy of biological control programs. More

  • in

    El Niño enhances wildfire emissions

    Lerato Shikwambana from the South African National Space Agency and the University of the Witwatersrand, South Africa, and colleagues also from South Africa compared the wildfire emissions of a strong El Niño event in 2015–2016 and a pronounced La Niña event in 2010–2011. They find that both a strong El Niño and La Niña event can increase emissions from wildfires compared with average years, but they affect different regions, with the effect of La Niña reaching farther south than El Niño. Overall, emissions are stronger during the El Niño phase, mainly driven by higher air temperatures. ENSO variability is expected to increase with future warming, which would also make strong El Niño events more likely. Therefore, these findings indicate that the exposure to wildfire air pollution could grow in southern Africa. More

  • in

    Mechanisms of prey division in striped marlin, a marine group hunting predator

    Jolles, J. W., King, A. J. & Killen, S. S. The Role of Individual Heterogeneity in Collective Animal Behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 
    PubMed 

    Google Scholar 
    Lang, S. D. J. & Farine, D. R. A multidimensional framework for studying social predation strategies. Nat. Ecol. Evol. 1, 1230–1239 (2017).Article 
    PubMed 

    Google Scholar 
    Kissui, B. M. & Packer, C. Top–down population regulation of a top predator: lions in the Ngorongoro Crater. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 1867–1874 (2004).Article 

    Google Scholar 
    Atwood, T. C. & Gese, E. M. Coyotes and recolonizing wolves: social rank mediates risk-conditional behaviour at ungulate carcasses. Anim. Behav. 75, 753–762 (2008).Article 

    Google Scholar 
    Pitman, R. L. & Durban, J. W. Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (Orcinus orca), type B, in Antarctic Peninsula waters. Mar. Mammal. Sci. 28, 16–36 (2012).Article 

    Google Scholar 
    Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).Article 
    PubMed 

    Google Scholar 
    Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 1–13 (2016).Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Schaller, G. B. The Serengeti Lion.,(University of Chicago Press: Chicago, IL.). (1972).Packer, C., Pusey, A. E. & Eberly, L. E. Egalitarianism in female African lions. Science 293, 690–693 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tilson, R. L. & Hamilton, W. J. III Social dominance and feeding patterns of spotted hyaenas. Anim. Behav. 32, 715–724 (1984).Article 

    Google Scholar 
    Frank, L. G. Social organization of the spotted hyaena Crocuta crocuta. II. Dominance and reproduction. Anim. Behav. 34, 1510–1527 (1986).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Frame, L. H., Malcolm, J. R., Frame, G. W. & Van Lawick, H. Social Organization of African Wild Dog on the Serengeti Plains. Z. Tierpsychol. 50, 225–249 (1979).Article 

    Google Scholar 
    Bertram, B. C. R. Social factors influencing reproduction in wild lions. J. Zool. 177, 463–482 (1975).Article 

    Google Scholar 
    Packer, C. & Pusey, A. Asymmetric contests in social mammals: respect, manipulation and age-specific aspects. Evol. essays honour John Maynard Smith 173–186 (1985).Domenici, P., Batty, R. S., Similä, T. & Ogam, E. Killer whales (Orcinus orca) feeding on schooling herring (Clupea harengus) using underwater tail-slaps: Kinematic analyses of field observations. J. Exp. Biol. 203, 283–294 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benoit-Bird, K. J. & Au, W. W. L. Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J. Acoust. Soc. Am. 125, 125–137 (2009).Article 
    PubMed 

    Google Scholar 
    Gazda, S. K. Driver-barrier feeding behavior in bottlenose dolphins (Tursiops truncatus): New insights from a longitudinal study. Mar. Mammal. Sci. 32, 1152–1160 (2016).Article 

    Google Scholar 
    Herbert-Read, J. E. et al. Proto-Cooperation: Group hunting sailfish improve hunting success by alternating attacks on grouping prey. Proc. R. Soc. B Biol. Sci. 283, 1–14 (2016).
    Google Scholar 
    Rieucau, G., Holmin, A. J., Castillo, J. C., Couzin, I. D. & Handegard, N. O. School level structural and dynamic adjustments to risk promote information transfer and collective evasion in herring. Anim. Behav. 117, 69–78 (2016).Article 

    Google Scholar 
    Rieucau, G., Fernö, A., Ioannou, C. C. & Handegard, N. O. Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Rev. Fish. Biol. Fish. 25, 21–37 (2014).Article 

    Google Scholar 
    Ford, J. K. B. & Ellis, G. M. Transients: mammal-hunting killer whales of British Columbia, Washington, and southeastern Alaska. (UBC Press, 1999).Bailey, I., Myatt, J. P. & Wilson, A. M. Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behav. Ecol. Sociobiol. 67, 1–17 (2013).Article 

    Google Scholar 
    Packer, C., Scheel, D. & Pusey, A. E. Why Lions Form Groups: Food is Not Enough. Am. Nat. 136, 1–19 (1990).Article 

    Google Scholar 
    Creel, S. & Creel, N. M. The African wild dog: behavior, ecology, and conservation. (Princeton University Press, 2002).Carbone, C. et al. Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: The effects of group size and kleptoparasitism. J. Zool. 266, 153–161 (2005).Article 

    Google Scholar 
    Chakrabarti, S. & Jhala, Y. V. Selfish partners: Resource partitioning in male coalitions of Asiatic lions. Behav. Ecol. 28, 1532–1539 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amorós, M., Gil-Sánchez, J. M., López-Pastor, B., de las, N. & Moleón, M. Hyaenas and lions: how the largest African carnivores interact at carcasses. Oikos 129, 1820–1832 (2020).Article 

    Google Scholar 
    Wilmers, C. C. & Stahler, D. R. Constraints on active-consumption rates in gray wolves, coyotes, and grizzly bears. Can. J. Zool. 80, 1256–1261 (2002).Article 

    Google Scholar 
    Schmidt, P. A. & Mech, L. D. Wolf pack size and food acquisition. Am. Nat. 150, 513–517 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major, P. F. Predator-prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus. Anim. Behav. 26, 760–777 (1978).Article 

    Google Scholar 
    Thiebault, A., Semeria, M., Lett, C. & Tremblay, Y. How to capture fish in a school? Effect of successive predator attacks on seabird feeding success. J. Anim. Ecol. 85, 157–167 (2016).Article 
    PubMed 

    Google Scholar 
    Handegard, N. O. et al. The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr. Biol. 22, 1213–1217 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding Collective Behaviour: An Ecological Perspective. Trends Ecol. Evol. 33, 347–357 (2018).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J. et al. Linking hunting weaponry to attack strategies in sailfish and striped marlin. Proc. R. Soc. B Biol. Sci. 287, 20192228 (2020).Rieucau, G. et al. Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: a case study on reef sharks Carcharhinus melanopterus shoaling behaviour. J. Fish. Biol. 93, 119–127 (2018).Article 
    PubMed 

    Google Scholar 
    Krause, J. The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia 93, 356–359 (1993).Article 
    PubMed 

    Google Scholar 
    DeBlois, E. M. & Rose, G. A. Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua). Oecologia 108, 192–196 (1996).Article 
    PubMed 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M. & Ward, A. J. W. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    Hansen, M. J., Schaerf, T. M., Krause, J. & Ward, A. J. W. Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement. PLoS One 11, 1–17 (2016).Article 

    Google Scholar 
    McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Domenici, P. et al. How sailfish use their bills to capture schooling prey. Proc. R. Soc. B Biol. Sci. 281, 20140444 (2014).Kurvers, R. H. J. M. et al. The Evolution of Lateralization in Group Hunting Sailfish. Curr. Biol. 27, 521–526 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ward, A. & Webster, M. Sociality: The behaviour of group-living animals. (Springer, 2016).Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour Published by: Brill Stable URL: http://www.jstor.org/stable/23034261 REFERENCES Linked references are available on JSTOR for this article: You may need to log in to JSTOR to access th. 148, 575–602 (2017).D’Vincent, C. G., Nilson, R. M. & Hanna, R. E. Vocalization and coordinated feeding behavior of the humpback whale Megaptera novaeangliae in Southeastern Alaska, USA. Sci. Rep. Whale Res. Inst. Tokyo 36, 41–47 (1985).
    Google Scholar 
    Jurasz, C. M. & Jurasz, V. P. Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci. Rep. Whales Res. Inst. 31, 69–83 (1979).
    Google Scholar 
    Similä, T. & Ugarte, F. Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Can. J. Zool. 71, 1494–1499 (1993).Article 

    Google Scholar 
    Clua, É. & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).Article 

    Google Scholar 
    Uchiyama, J. H. & Kazama, T. K. Updated weight-on-length relationships for pelagic fishes caught in the central North Pacific Ocean and bottomfishes from the northwestern Hawaiian Islands. (2003).Ponce-Díaz, G., Ortega-García, S. & González-Ramírez, P. G. Analysis of sizes and weight-length relation of the striped marlin, Tetrapturus sudax (Philippi, 1887) in Baja California Sur, Mexico. Cienc. Mar. 17, 69–82 (1991).Article 

    Google Scholar 
    Abitı́a-Cárdenas, L. A., Muhlia-Melo, A., Cruz-Escalona, V. & Galván-Magaña, F. Trophic dynamics and seasonal energetics of striped marlin Tetrapturus audax in the southern Gulf of California, Mexico. Fish. Res. 57, 287–295 (2002).Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Hansen, Matthew Mechanisms prey Div. a Mar. group-Hunt. Predat., Dryad, Dataset https://doi.org/10.5061/dryad.b2rbnzshx (2022).Article 

    Google Scholar  More

  • in

    Contributions of distemper control and habitat expansion to the Amur leopard viability

    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).CAS 
    PubMed 

    Google Scholar 
    Morrison, J. C., Sechrest, W., Dinerstein, E., Wilcove, D. S. & Lamoreux, J. F. Persistence of large mammal faunas as indicators of global human impacts. J. Mammal. 88, 1363–1380 (2007).
    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 

    Google Scholar 
    Finnegan, S. P. et al. Reserve size, dispersal and population viability in wide ranging carnivores: the case of jaguars in Emas National Park, Brazil. Anim. Conserv. 24, 3–14 (2021).
    Google Scholar 
    Wang, T. et al. Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landsc. Ecol. 31, 491–503 (2016).
    Google Scholar 
    Gilbert, M. et al. Distemper, extinction, and vaccination of the Amur tiger. Proc. Natl. Acad. Sci. 117, 31954–31962 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).
    Google Scholar 
    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Courchamp, F. et al. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).CAS 
    PubMed 

    Google Scholar 
    Wittmann, M. J., Stuis, H. & Metzler, D. Genetic Allee effects and their interaction with ecological Allee effects. J. Anim. Ecol. 87, 11–23 (2018).PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic Downgrading of Planet Earth. Science 333, 301–306 (2011).CAS 
    PubMed 

    Google Scholar 
    Stein, A. B. et al. IUCN Red List of Threatened Species: Panthera pardus. IUCN Red List Threat. Species (2020).Vitkalova, A. V. et al. Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards. Conserv. Lett. 11, e12574 (2018).
    Google Scholar 
    Wang, T. et al. A science-based approach to guide Amur leopard recovery in China. Biol. Conserv. 210, 47–55 (2017).
    Google Scholar 
    Lewis, J. et al. Assessing the health risks of reintroduction: The example of the Amur leopard, Panthera pardus orientalis. Transbound. Emerg. Dis. 67, 1177–1188 (2020).PubMed 

    Google Scholar 
    Terio, K. A. & Craft, M. E. Canine distemper virus (CDV) in another big cat: should CDV be renamed carnivore distemper virus? mBio 4, e00702–e00713 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Adhikari, R. B., Shrestha, M., Puri, G., Regmi, G. R. & Ghimire, T. R. Canine Distemper Virus (CDV): an emerging threat to Nepal’s wildlife. Appl. Sci. Technol. Ann. 1, 149–154 (2020).
    Google Scholar 
    Roelke-Parker, M. E. et al. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379, 441–445 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mulia, B. H. et al. Exposure of Wild Sumatran Tiger (Panthera tigris sumatrae) to Canine Distemper Virus. J. Wildl. Dis. 57, 464–466 (2021).PubMed 

    Google Scholar 
    Gordon, C. H. et al. Canine distemper in endangered Ethiopian wolves. Emerg. Infect. Dis. 824–832 (2015) https://doi.org/10.3201/eid2105.141920.Timm, S. F. et al. A suspected canine distemper epidemic as the cause of a catastrophic decline in Santa Catalina Island foxes (Urocyon littoralis catalinae). J. Wildl. Dis. 45, 333–343 (2009).PubMed 

    Google Scholar 
    Sulikhan, N. S. et al. Canine distemper virus in a wild Far Eastern leopard (Panthera pardus orientalis). J. Wildl. Dis. 54, 170–174 (2018).PubMed 

    Google Scholar 
    Gilbert, M. et al. Canine distemper virus as a threat to wild tigers in Russia and across their range. Integr. Zool. 10, 329–343 (2015).PubMed 

    Google Scholar 
    Almberg, E. S., Cross, P. C. & Smith, D. W. Persistence of canine distemper virus in the Greater Yellowstone Ecosystem’s carnivore community. Ecol. Appl. 20, 2058–2074 (2010).PubMed 

    Google Scholar 
    Cleaveland, S. et al. The conservation relevance of epidemiological research into carnivore viral diseases in the Serengeti. Conserv. Biol. 21, 612–622 (2007).PubMed 

    Google Scholar 
    Haydon, D. T. et al. Low-coverage vaccination strategies for the conservation of endangered species. Nature 443, 692–695 (2006).CAS 
    PubMed 

    Google Scholar 
    Hebblewhite, M., Miquelle, D. G., Murzin, A. A., Aramilev, V. V. & Pikunov, D. G. Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East. Biol. Conserv. 144, 2403–2413 (2011).
    Google Scholar 
    Jiang, G. et al. New hope for the survival of the Amur leopard in China. Sci. Rep. 5, 15475 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Licht, D. S., Moen, R. A. & Romanski, M. Modeling viability of a potential Canada lynx reintroduction to Isle Royale national park. Nat. Areas J. 37, 170–177 (2017).
    Google Scholar 
    Menges, E. S. Population viability analysis for an endangered plant. Conserv. Biol. 4, 52–62 (1990).
    Google Scholar 
    Beissinger, S. R. & McCullough, D. R. Population viability analysis. J. Wildl. Manag. 67, 481–506 (2003).
    Google Scholar 
    Aresu, M. et al. Assessing the effects of different management scenarios on the conservation of small island vulture populations. Bird. Conserv. Int. 31, 111–128 (2021).
    Google Scholar 
    Benson, J. F. et al. Extinction vortex dynamics of top predators isolated by urbanization. Ecol. Appl. 29, e01868 (2019).PubMed 

    Google Scholar 
    Franklin, A. D., Lacy, R. C., Bauman, K. L., Traylor-Holzer, K. & Powell, D. M. Incorporating drivers of reproductive success improves population viability analysis. Anim. Conserv. 24, 386–400 (2021).
    Google Scholar 
    McCallum, H. Models for managing wildlife disease. Parasitology 143, 805–820 (2016).PubMed 

    Google Scholar 
    Bradshaw, C. J. A. et al. Novel coupling of individual-based epidemiological and demographic models predicts realistic dynamics of tuberculosis in alien buffalo. J. Appl. Ecol. 49, 268–277 (2012).
    Google Scholar 
    Shoemaker, K. T. et al. Effects of prey metapopulation structure on the viability of black-footed ferrets in plague-impacted landscapes: a metamodelling approach. J. Appl. Ecol. 51, 735–745 (2014).
    Google Scholar 
    Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).
    Google Scholar 
    Seimon, T. A. et al. Canine distemper virus: an emerging disease in wild endangered Amur tigers (Panthera tigris altaica). mBio 4, e00410–e00413 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, T. et al. An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China. Biodivers. Sci. 28, 1059 (2020).
    Google Scholar 
    Gilbert, M. et al. Estimating the potential impact of canine distemper virus on the Amur tiger population (Panthera tigris altaica) in Russia. PLOS ONE 9, e110811 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Fahrig, L. How much habitat is enough? Biol. Conserv. 100, 65–74 (2001).
    Google Scholar 
    Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E. & Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Conserv. 218, 181–191 (2018).
    Google Scholar 
    Hostetler, J. A., Onorato, D. P., Jansen, D. & Oli, M. K. A cat’s tale: the impact of genetic restoration on Florida panther population dynamics and persistence. J. Anim. Ecol. 82, 608–620 (2013).PubMed 

    Google Scholar 
    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sankar, K. et al. Monitoring of reintroduced tigers in Sariska Tiger Reserve, Western India: preliminary findings on home range, prey selection and food habits. Trop. Conserv. Sci. 3, 301–318 (2010).
    Google Scholar 
    Kelly, P., Stack, D. & Harley, J. A review of the proposed reintroduction program for the Far Eastern leopard (Panthera pardus orientalis) and the role of conservation organizations, veterinarians, and zoos. Top. Companion Anim. Med. 28, 163–166 (2013).PubMed 

    Google Scholar 
    Hayward, M. W. & Somers, M. J. Reintroduction of top-order predators: using science to restore one of the drivers of biodiversity. in Reintroduction of Top-Order Predators 1–9 (John Wiley & Sons, Ltd, 2009). https://doi.org/10.1002/9781444312034.ch1.Pujol, B., Zhou, S.-R., Sanchez Vilas, J. & Pannell, J. R. Reduced inbreeding depression after species range expansion. Proc. Natl Acad. Sci. 106, 15379–15383 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, C., Du, J., Zhu, D. & Zhang, L. Population viability analysis of small population: a case study for Asian elephant in China. Integr. Zool. 15, 350–362 (2020).PubMed 

    Google Scholar 
    Sugimoto, T., Aramilev, V. V., Nagata, J. & McCullough, D. R. Winter food habits of sympatric carnivores, Amur tigers and Far Eastern leopards, in the Russian Far East. Mamm. Biol. 81, 214–218 (2016).
    Google Scholar 
    Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50, 156–162 (2016).
    Google Scholar 
    Steinmetz, R., Seuaturien, N., Intanajitjuy, P., Inrueang, P. & Prempree, K. The effects of prey depletion on dietary niches of sympatric apex predators in Southeast Asia. Integr. Zool. 16, 19–32 (2021).CAS 
    PubMed 

    Google Scholar 
    Appel, M. J. G. et al. Canine distemper epizootic in lions, tigers, and leopards in North America. J. Vet. Diagn. Invest. 6, 277–288 (1994).CAS 
    PubMed 

    Google Scholar 
    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).PubMed 

    Google Scholar 
    Fox, C. W. & Reed, D. H. Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65, 246–258 (2011).PubMed 

    Google Scholar 
    Feng, L. et al. Collaboration brings hope for the last Amur leopards. Cat. N. 65, 20 (2017).
    Google Scholar 
    Lacy, R. C., Pollak, J. P., Miller, P. S., Hungerford, L. & Bright, P. Outbreak. Version 2.10. (2020).Lacy, R. C. & Pollak, J. P. Vortex: A stochastic simulation of the extinction process. Version 10.4. (2021).Pollak, J. P. & Lacy, R. C. Metamodel manager. Version 1.0.6. (2020).Pacioni, C., Sullivan, S., Lees, C. M., Miller, P. S. & Lacy, R. C. Outbreak user’s manual. Version 1.1. (2020).Roscoe, D. E. Epizootiology of canine-distemper in new-jersey raccoons. J. Wildl. Dis. 29, 390–395 (1993).CAS 
    PubMed 

    Google Scholar 
    Odden, M. & Wegge, P. Spacing and activity patterns of leopards Panthera pardus in the Royal Bardia National Park, Nepal. Wildl. Biol. 11, 145–152 (2005).
    Google Scholar 
    Stander, P. E., Haden, P. J., Kaqece, I. & Ghau, I. The ecology of asociality in Namibian leopards. J. Zool. 242, 343–364 (1997).
    Google Scholar 
    Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl Acad. Sci. 113, 3585–3590 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl Acad. Sci. 42, 855–863 (1956).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda–Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).
    Google Scholar 
    Kumbhojkar, S., Yosef, R., Mehta, A. & Rakholia, S. A camera-trap home-range analysis of the Indian leopard (Panthera pardus fusca) in Jaipur, India. Animals 10, 1600 (2020).PubMed Central 

    Google Scholar 
    Rozhnov, V. V. et al. Home range structure and space use of a female Amur leopard, Panthera pardus orientalis (Carnivora, Felidae). Biol. Bull. 42, 821–830 (2015).
    Google Scholar 
    Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2, 185–193 (1988).
    Google Scholar 
    Hammersley, J. M. & Handscomb, D. C. General principles of the Monte Carlo method. in Monte Carlo Methods (eds. Hammersley, J. M. & Handscomb, D. C.) 50–75 (Springer Netherlands, 1964). https://doi.org/10.1007/978-94-009-5819-7_5.Kenney, J. S., Allendorf, F. W., McDougal, C. & Smith, J. L. D. How much gene flow is needed to avoid inbreeding depression in wild tiger populations? Proc. R. Soc. B Biol. Sci. 281, 20133337 (2014).
    Google Scholar 
    O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).
    Google Scholar 
    Miller, P. S., Lacy, R. C., Medina-Miranda, R., López-Ortiz, R. & Díaz-Soltero, H. Confronting the invasive species crisis with metamodel analysis: An explicit, two-species demographic assessment of an endangered bird and its brood parasite in Puerto Rico. Biol. Conserv. 196, 124–132 (2016).
    Google Scholar  More

  • in

    Increases in multiple resources promote competitive ability of naturalized non-native plants

    Study speciesTo increase our ability to generalize the results, we conducted two multispecies experiments34. The experiments were designed independently, but, as they used similar treatments, we analyzed them jointly to further increase generalizability. For the experiment in China, we selected eight species that are either native or non-native in China (Supplementary Table 1). For the experiment in Germany, we selected 16 species that are either native or non-native in Germany (Supplementary Table 1). All 24 species, representing seven families, are herbaceous, mainly occur in grasslands, and are common in the respective regions. To control for phylogenetic non-independence of species, we selected at least one non-native and one native species in each of the seven families. All non-native species are fully established (i.e. naturalized sensu Richardson et al.35) in the country where the respective experiment was conducted, and, as they are common, most of them could be considered invasive36,37. We classified the species as naturalized non-native or native to China or Germany based on the following databases: (1) “The Checklist of the Alien Invasive Plants in China”38, (2) the Flora of China (www.efloras.org), and (3) BiolFlor (www.ufz.de/biolflor). Seeds or stem fragments of the study species were obtained from local botanical gardens, local commercial seed companies, or from wild populations (Supplementary Table 1).The experiment in ChinaFrom 21 May to 27 June 2020, we planted or sowed the eight study species into plastic trays filled with potting soil (Pindstrup Plus, Pindstrup Mosebrug A/S, Denmark). We sowed the species at different times (Supplementary Table 1) because they were known to require different times until germination. Three species were grown from stem fragments because they mainly rely on clonal propagation, and the others were propagated from seeds (Supplementary Table 1).On 13 July 2020, we transplanted the cuttings or seedlings into 2.5-L circular plastic pots filled with a mixture of sand and vermiculite (1:1 v/v). Three competition treatments were imposed: (1) competition-free, in which plants were grown alone; (2) intraspecific competition, in which two individuals of the same species were grown together; (3) interspecific competition, in which two individuals, each from a different species were grown together. We grew all eight species without competition, in intraspecific competition, and in all 28 possible pairs of interspecific competition. For the competition-free and intraspecific-competition treatments, we replicated each species seven times (i.e. we had seven technical replicates). For the interspecific-competition treatment, for which we had many pairs of species (i.e. biological replicates), we replicated each pair two times.The experiment took place in a greenhouse at the Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (Changchun, China). The greenhouse had a transparent plastic film on the top, which reduced the ambient light intensity by 12%. It was open on the sides so that insects and other organisms could enter. To vary nutrient availability, we applied to each pot either 5 g (low-nutrient treatment) or 10 g (high-nutrient treatment) of a slow-release fertilizer (Osmocote® Exact Standard, Everris International B.V., Geldermalsen, The Netherlands; 15% N + 9% P2O5 + 12% K2O + 2% MgO + trace elements). To vary light availability, we used two cages (size: 9 m × 4.05 m × 1.8 m). One of them was covered with two layers of black netting material, which reduced the light intensity by 71% (low light-intensity treatment, where the light intensity was on average 233.5 μmol m−2 s−1, measured on a sunny day). The other was left uncovered (high light-intensity treatment, where the light intensity was on average 826.7 μmol m−2 s−1).The experiment included a total of 672 pots ([8 no-competition × 7 replicates + 8 intraspecific-competition × 7 replicates + 28 interspecific-competition × 2 replicates]×2 nutrient treatments × 2 light treatments). The pots were randomly assigned to positions and were randomized once on 15 August within each block (i.e. the low or high light-intensity treatment). The initial height of each plant was measured on 15 July 2020, two days after the transplanting. We watered the plants daily to avoid water limitations. On 1 September 2020, we harvested the aboveground biomass of all plants. The biomass was dried at 65°C for 72 h to constant weight and then weighed to the nearest mg.The experiment in GermanyOn 15 June 2020, we sowed seeds of the 16 species into plastic trays filled with potting soil (Topferde, Einheitserde Co). On 6 July 2020, we transplanted the seedlings into 1.5-L pots filled with a mixture of potting soil and sand (1:1 v/v). Like the experiment in China, we imposed three competition treatments: competition-free, intraspecific competition, and interspecific competition. However, in this experiment, which had two times more species than the experiment in China, we only included 24 randomly chosen species pairs for the interspecific-competition treatment, and all of these pairs consisted of one naturalized non-native and one native species. For the competition-free treatment, we replicated each species two times (i.e. we had two technical replicates). For the competition treatments, we did not use technical replicates for any of the species combinations for logistic reasons. However, as we had a large number of species pairs in the inter-specific competition treatment, we had many biological replicates.The experiment took place outdoors in the Botanical Garden of the University of Konstanz (Konstanz, Germany). To vary nutrient availability, we applied to each pot once a week either 100 ml of a low-concentration liquid fertilizer (low-nutrient treatment; 0.5‰ Universol ® Blue oxide fertilizer, 18% N + 11% P + 18% K + 2.5% MgO + trace elements) or 100 ml of a high-concentration of the same liquid fertilizer (high-nutrient treatment; 1‰). In total, pots in the low- and high-nutrient treatment received 0.4 and 0.8 g fertilizer, respectively. To vary light availability, we used eight metal wire cages (size: 2 m × 2 m × 2 m). Four of the cages were covered with one layer of white and one layer of green netting material, which reduced the ambient light intensity by 84% (low light-intensity treatment; where the light intensity was on average 219.0 μmol m−2 s−1, measured on a sunny day). The remaining four cages were covered only with one layer of the white netting material, which served as a positive control for the effect of netting and reduced light intensity by 53% (high light-intensity treatment; where the light intensity was on average 678.4 μmol m−2 s−1). In other words, the low light-intensity treatment received 34% (66% reduction) of the light intensity in the high light-intensity treatment.The experiment included a total of 320 pots ([16 no-competition × 2 replicates + 16 intraspecific-competition + 32 interspecific-competition]×2 nutrient treatments × 2 light treatments). The eight cages were randomly assigned to fixed positions in the botanical garden. The pots were randomly assigned to the eight cages (40 pots in each cage) and were re-randomized once within and across cages of the same light treatment on 3 August 2020. Besides the weekly fertilization, we watered the plants two or three times a week to avoid water limitations. On 7 and 8 September 2020, we harvested the aboveground biomass of all plants. The biomass was dried at 70 °C for 96 h to constant weight and then weighed to the nearest 0.1 mg.Statistical analysesAll analyses were performed using R version 3.6.139. To test whether resource availability affected competitive outcomes between native and non-native species, we applied linear mixed-effects models to analyze the biomass of the plants in the two experiments jointly and separately, using the nlme package40. For the model used to analyze the two experiments jointly, we excluded interspecific competition between two non-natives and interspecific competition between two natives from the experiment in China, because non-native-non-native and native-non-native combinations were not included in the experiment in Germany. When we analyzed each experiment separately, the results were overall similar to the results of the joint analysis. Therefore, we focus in the manuscript on the joint analysis and present the results of the separate analyses in Supplementary Note 2.Because plant mortality was low and mainly happened after transplanting, we excluded pots in which plants had died. The final dataset contained 1180 individuals from 871 pots. In the model, we included the aboveground biomass of individuals as the response variable. We included the origin of the species (non-native or native), competition treatment (see below for details), nutrient treatment, light treatment and their interactions as fixed effects; study site (China or Germany), and identity and family of the species as random effects. In addition, we allowed each species to respond differently to the nutrient and light treatments (i.e. we included random slopes). To account for pseudoreplication41, we also included pots as random effects and cages (ten cages, eight from Germany and two from China) as random block effects. In the competition treatment, we had three levels: (1) no competition, (2) intraspecific competition, and (3) interspecific competition between native and non-native species. To split them into two contrasts, we created two variables42 testings (1) the effect of the presence of competitors, and (2) the difference between intra- and interspecific competition (see Supplementary Note 3 for details). To improve the normality of the residuals, we natural-log-transformed aboveground biomass. To improve the homoscedasticity of the residuals, we allowed the species and competition treatment to have different variances by using the varComb and varIdent functions43. Significances of the fixed effects were assessed with likelihood-ratio tests (type II) with the car package44.To determine the ‘competitive outcome’, i.e. which species will exclude or dominate over the other species at the endpoint for the community45,46, one should ideally conduct a long-term study. Alternatively, one could vary the density of each species, which mimics the dynamics of species populations across time (see refs. 47,48 for examples). However, applying this space-for-time-substitution method would have largely increased the size of the experiment, especially when combined with the light and nutrient treatments. Still, by growing plants alone, in intraspecific competition and in interspecific competition, our experiments meet the minimal requirement for measuring competitive outcome, at least in terms of short-term biomass production46,49.In the linear mixed-effects model of individual biomass, a significant effect of origin would indicate that native and naturalized non-native species differed in their biomass production, across all competition and resource-availability (light and nutrients) treatments. This would tell us the competitive outcome between non-natives and natives across different resource availabilities. For example, an overall higher level of biomass production of non-native species would indicate that non-natives would dominate when competing with natives. A significant interaction between a resource-availability treatment and the origin of the species would indicate that resource availability affects the biomass production of native and non-native species differently, averaged across all competition treatments. In other words, it would indicate that resource availability affects the competitive outcome between natives and non-natives. A significant interaction between a resource-availability treatment and the competition treatment would indicate that resource availabilities modify the effect of competition (e.g. no competition vs. competition). Other studies frequently have inferred competitive outcomes from the effect of competition by calculating the relative interaction intensity50. However, while the competitive outcome and effect of competition are often related, they are not equivalent45. This is because the competitive outcome is both determined by the effect of competition and intrinsic growth rate48,49. For example, a plant species that strongly suppress other species but has a low intrinsic growth rate still cannot dominate the community.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    Hayes, S. M. & McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 59, 192–199 (2018).
    Google Scholar 
    Saatz, J., Vetterlein, D., Mattusch, J., Otto, M. & Daus, B. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ. Pollut. 204, 32–38 (2015).CAS 
    PubMed 

    Google Scholar 
    Gonzalez, V., Vignati, D. A. L., Leyval, C. & Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 71, 148–157 (2014).CAS 
    PubMed 

    Google Scholar 
    Kovarikova, M., Tomaskova, I. & Soudek, P. Rare earth elements in plants. Biol. Plant. 63, 20–32 (2019).CAS 

    Google Scholar 
    Thomas, P. J., Carpenter, D., Boutin, C. & Allison, J. E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 96, 57–66 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ramos, S. J. et al. Rare earth elements in the soil environment. Curr. Pollut. Rep. 2, 28–50 (2016).CAS 

    Google Scholar 
    Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L. & Ellis, D. M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 10, e0129936 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kotelnikova, A., Fastovets, I., Rogova, O. & Volkov, D. S. La, Ce and Nd in the soil-plant system in a vegetation experiment with barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 206, 111193 (2020).CAS 
    PubMed 

    Google Scholar 
    Hu, Z., Richter, H., Sparovek, G. & Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 27, 183–220 (2004).CAS 

    Google Scholar 
    Tao, Y. et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ. Pollut. 298, 118540 (2022).CAS 
    PubMed 

    Google Scholar 
    Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 267, 191–206 (2004).CAS 

    Google Scholar 
    Ding, S. et al. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: An application for metal accumulation by plants. Environ. Sci. Technol. 40, 2686–2691 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grosjean, N. et al. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 9, 18458 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yuan, M. et al. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int. J. Phytoremediat. 20, 415–423 (2018).CAS 

    Google Scholar 
    Yuan, M. et al. The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L.. Plant Soil 421, 67–82 (2017).CAS 

    Google Scholar 
    Liu, C. et al. Element case studies: Rare earth elements. In Agromining: Farming for Metals (eds Van der Ent, A. et al.) 297–308 (Springer, 2018).
    Google Scholar 
    Purwadi, I., Nkrumah, P. N., Paul, A. L. D. & van der Ent, A. Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology 31, 335–342 (2021).CAS 

    Google Scholar 
    Shan, X. et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 165, 1343–1353 (2003).CAS 

    Google Scholar 
    Wu, J., Chen, A., Peng, S., Wei, Z. & Liu, G. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 373, 329–338 (2013).CAS 

    Google Scholar 
    Zhenggui, W. et al. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut. 114, 345–355 (2001).
    Google Scholar 
    Okoroafor, P. U., Ogunkunle, C. O., Heilmeier, H. & Wiche, O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. Int. J. Phytoremediat. 24, 1310–1320 (2022).CAS 

    Google Scholar 
    Taggart, R. K. et al. Differences in bulk and microscale yttrium speciation in coal combustion fly ash. Environ. Sci. Process. Impacts 20, 1390–1403 (2018).CAS 
    PubMed 

    Google Scholar 
    Fehlauer, T. et al. Uptake patterns of critical metals in alpine plant species growing in an unimpaired natural site. Chemosphere 287, 132315 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, W.-S. et al. Spatially resolved localization of lanthanum and cerium in the rare earth element hyperaccumulator fern Dicranopteris linearis from China. Environ. Sci. Technol. 54, 2287–2294 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saatz, J. et al. Location and speciation of gadolinium and yttrium in roots of Zea mays by LA-ICP-MS and ToF-SIMS. Environ. Pollut. 216, 245–252 (2016).CAS 
    PubMed 

    Google Scholar 
    Mantienne, J. L. Minéralisation thallifère de Jas Roux (Hautes-Alpes)—Alpes françaises (Université Pierre et Marie Curie—Paris VI, 1974).
    Google Scholar 
    Kabata-Pendias, A. Trace Elements in Soils and Plants (CRC Press, 2011).
    Google Scholar 
    Kastori, R., Maksimovic, I., Zeremski-Skoric, T. & Putnik-Delic, M. Rare earth elements: Yttrium and higher plants. Zb. Matice Srp. Za Prir. Nauke 118, 87–98 (2010).Salminen, R., Vos, W. D. & Tarvainen, T. Geochemical Atlas of Europe—Part 1: Background Information, Methodology and Maps (Geological Survey of Finland, 2005).
    Google Scholar 
    Soil Quality—Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil-Like Materials—Part 2: Batch Test Using a Liquid to Solid Ratio of 10 l/kg Dry Matter. https://doi.org/10.31030/3069638 (2020).R Core Team. R: A Language and Environment for Statistical Computing (2021).RStudio Team. RStudio: Integrated Development Environment for R (RStudio, PBC, 2020).
    Google Scholar 
    Radziemska, M., Vaverková, M. & Baryła, A. Phytostabilization—Management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 14, 958 (2017).PubMed Central 

    Google Scholar 
    Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil. J. Synchrotron Radiat. 22, 1118–1129 (2015).CAS 
    PubMed 

    Google Scholar 
    Sancho-Tomás, M. et al. Geochemical evidence for arsenic cycling in living microbialites of a high altitude Andean Lake (Laguna Diamante, Argentina). Chem. Geol. 549, 11 (2020).
    Google Scholar 
    Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. J. Synchrotron Radiat. 20, 293–299 (2013).CAS 
    PubMed 

    Google Scholar 
    Aubineau, J. et al. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat. Commun. 10, 2670 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 

    Google Scholar 
    Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 62, 63–68 (2007).ADS 

    Google Scholar 
    Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: Fast density-based clustering with R. J. Stat. Softw. 91, 1 (2019).
    Google Scholar 
    Hennig, C. fpc: Flexible Procedures for Clustering (2020).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (2021).Wei, T. & Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix (2021).van der Ent, A. et al. (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants (Springer, 2021).
    Google Scholar 
    Liu, C. et al. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere 282, 131096 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Han, F. et al. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165, 481–492 (2005).CAS 
    PubMed 

    Google Scholar 
    Ruíz-Herrera, L. F., Sánchez-Calderón, L., Herrera-Estrella, L. & López-Bucio, J. Rare earth elements lanthanum and gadolinium induce phosphate-deficiency responses in Arabidopsis thaliana seedlings. Plant Soil 353, 231–247 (2012).
    Google Scholar 
    González-Guerrero, M., Escudero, V., Saéz, Á. & Tejada-Jiménez, M. Transition metal transport in plants and associated endosymbionts: Arbuscular mycorrhizal fungi and rhizobia. Front. Plant Sci. 7, 1088 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Jogawat, A., Yadav, B., Chhaya, & Narayan, O. P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 173, 259–275. https://doi.org/10.1111/ppl.13370 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Krämer, U., Talke, I. N. & Hanikenne, M. Transition metal transport. FEBS Lett. 581, 2263–2272 (2007).PubMed 

    Google Scholar 
    Tuduri, J. et al. Lumière sur la géologie des terres rares, pourquoi tant d’attraits? Géologues 204, 48–54 (2020).
    Google Scholar 
    Tiziani, R. et al. Root handling affects carboxylates exudation and phosphate uptake of white lupin roots. Front. Plant Sci. 11, 584568 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).CAS 
    PubMed 

    Google Scholar 
    Wen, Z. et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply. Plant Soil 465, 31–46 (2021).CAS 

    Google Scholar 
    Wiche, O., Kummer, N.-A. & Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402, 235–245 (2016).CAS 

    Google Scholar 
    Chen, A., Husted, S., Salt, D. E., Schjoerring, J. K. & Persson, D. P. The intensity of manganese deficiency strongly affects root endodermal suberization and ion homeostasis. Plant Physiol. 181, 729–742 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rengel, Z. et al. (eds) Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012).
    Google Scholar 
    Brioschi, L. et al. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 366, 143–163 (2013).CAS 

    Google Scholar 
    Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1767 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    St-Cyr, L. & Campbell, P. G. C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry 33, 969 (1996).
    Google Scholar 
    Tripathi, R. D. et al. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6, 1789–1800 (2014).CAS 
    PubMed 

    Google Scholar 
    Pourret, O. et al. The ‘europium anomaly’ in plants: Facts and fiction. Plant Soil 476, 721–728 (2022).CAS 

    Google Scholar 
    Liu, C. et al. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Sci. Total Environ. 805, 150335 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Poschenrieder, C., Busoms, S. & Barceló, J. How plants handle trivalent (+3) elements. Int. J. Mol. Sci. 20, 3984 (2019).CAS 
    PubMed Central 

    Google Scholar 
    Ma, J. F. & Hiradate, S. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360 (2000).CAS 
    PubMed 

    Google Scholar 
    Rellán-Álvarez, R. et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51, 91–102 (2010).PubMed 

    Google Scholar 
    Ding, S. et al. Role of ligands in accumulation and fractionation of rare earth elements in plants: Examples of phosphate and citrate. Biol. Trace Elem. Res. 107, 073–086 (2005).CAS 

    Google Scholar 
    Wu, J., Wei, Z., Zhao, H., Li, H. & Hu, F. The role of amino acids in the long-distance transport of La and Y in the xylem sap of tomato. Biol. Trace Elem. Res. 129, 239–250 (2009).CAS 
    PubMed 

    Google Scholar 
    Singh, S. Guttation: New insights into agricultural implications. In Advances in Agronomy Vol. 128 (ed. Sparks, D. L.) 97–135 (Elsevier, 2014).
    Google Scholar 
    Hossain, Md. B., Sawada, A., Noda, K. & Kawasaki, M. Hydathode function and changes in contents of elements in eddo exposed to zinc in hydroponic solution. Plant Prod. Sci. 20, 423–433 (2017).CAS 

    Google Scholar 
    Singh, S. Guttation: Path, principles and functions. Aust. J. Bot. 61, 497 (2013).
    Google Scholar 
    Wightman, R., Wallis, S. & Aston, P. Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora 241, 27–34 (2018).
    Google Scholar 
    Brüggemann, W., Maas-Kantel, K. & Moog, P. R. Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190, 196606 (1993).
    Google Scholar 
    Ma, J. F., Ryan, P. R. & Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278 (2001).CAS 
    PubMed 

    Google Scholar 
    Tolrà, R. et al. Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J. Plant Res. 124, 165–172 (2011).PubMed 

    Google Scholar  More

  • in

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail

    Lucas, S. G. Permian tetrapod extinction events. Earth Sci. Rev. 170, 31–60 (2017).
    Google Scholar 
    Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? Hist. Biol. 33, 716–722 (2019).
    Google Scholar 
    Day, M. O. & Rubidge, B. S. The late capitanian mass extinction of terrestrial vertebrates in the Karoo Basin of South Africa. Front. Earth Sci. 9, 631198 (2021).
    Google Scholar 
    Bordy, E. M. & Paiva, F. Stratigraphic architecture of the karoo river channels at the end-capitanian. Front. Earth Sci. 8, 521766 (2021).
    Google Scholar 
    Erwin, D. H., Bowring, S. A. & Yugan, J. In Catastrophic events and mass extinctions: impacts and beyond (eds. Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, 2002).Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rubidge, B. S. Did mammals originate in Africa? South African fossils and the Russian connection. Syd. Haughton Meml. Lect. 4, 1–14 (1995).
    Google Scholar 
    Day, M. O. & Rubidge, B. S. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin-wide stratigraphic scheme for the Middle Permian Karoo. J. Afr. Earth Sci. 100, 227–242 (2014).
    Google Scholar 
    Day, M., Ramezani, J., Frazer, R. & Rubidge, B. U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. J. Afr. Earth Sci. 186, 104435 (2022).CAS 

    Google Scholar 
    Koch, N. M., Garwood, R. & Parry, L. Fossils improve phylogenetic analyses of morphological characters. Proc. R. Soc. B Biol. Sci. 288, 1–8 (2021).
    Google Scholar 
    McLoughlin, S. Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
    Google Scholar 
    Slater, B. J., McLoughlin, S. & Hilton, J. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 27, 1446–1473 (2015).
    Google Scholar 
    Plumstead, E. P. Three thousand million years of plant life in Africa. (Geological Society of South Africa, 1969).Lacey, W. S., van Dijk, D. E. & Gordon-Gray, K. D. Fossil plants from the Upper Permian in the Mooi River district of Natal, South Africa. Ann. Natal. Mus. 22, 349–420 (1975).
    Google Scholar 
    Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa. Prodomus of South African megafloras. Devonian to Lower Cretaceous. (Balkema, 1985).Bordy, E. M. & Prevec, R. Sedimentology, palaeontology and palaeo-environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South Afr. J. Geol. 111, 429–458 (2008).Prevec, R. et al. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454–493 (2009).
    Google Scholar 
    Mcloughlin, S. & Prevec, R. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa Australas. J. Palaeontol. 43, 480–510 (2019).
    Google Scholar 
    McLoughlin, S. & Prevec, R. The reproductive biology of glossopterid gymnosperms—a review. Rev. Palaeobot. Palynol. 295, 104527 (2021).
    Google Scholar 
    Riek, E. F. New Upper Permian insects from Natal, South Africa. Ann. Natal. Mus. 22, 755–789 (1976).
    Google Scholar 
    Riek, E. F. Fossil insects from the Middle Ecca (Lower Permian) of southern Africa. Palaeontol. Afr. 19, 145–148 (1976).
    Google Scholar 
    Riek, E. F. An entomobryid collembolan (Hexapoda: Collembola) from the Lower Permian of Southern Africa. Palaeontol. Afr. 19, 141–143 (1976).
    Google Scholar 
    McLachlan, I. R. & Anderson, A. M. Fossil insect wings from the Early Permian White Band Formation, South Africa. Palaeontol. Afr. 20, 83–86 (1977).
    Google Scholar 
    Pinto, I. D. & Pinto De Ornellas, L. New fossil insects from the White Band Formation (Permian), South Africa. Pesqui. Zool. 10, 96–104 (1978).
    Google Scholar 
    van Dijk, D. E. & Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal. Mus. 40, 137–171 (1999).
    Google Scholar 
    Geertsema, H., van Dijk, D. E. & van den Heever, A. J. Palaeozoic insects of southern Africa: a review. Palaeontol. Afr. 38, 19–25 (2002).
    Google Scholar 
    Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).CAS 

    Google Scholar 
    Mcloughlin, S., Prevec, R. & Slater, B. J. Arthropod interactions with the Permian Glossopteris flora. J. Palaeosciences 70, 43–133 (2021).
    Google Scholar 
    Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).
    Google Scholar 
    Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257–261 (2013).CAS 
    PubMed 

    Google Scholar 
    Nicholson, D. B., Mayhew, P. J. & Ross, A. J. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10, 1421–1435 (2015).
    Google Scholar 
    Glenister, B. F., Wardlaw, B. R., Lambert, L. L., Spinosa, C. & Bowring, S. A. Proposal of Guadalupian and component Roadian. Wordian Capitanian Stages Int. Stand. middle Permian Ser. Permophiles 34, 3–11 (1999).
    Google Scholar 
    Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–344 (1988).
    Google Scholar 
    Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).Tian, Q. et al. Experimental investigation of insect deposition in lentic environments and implications for formation of Konservat Lagerstätten. Palaeontology 63, 565–578 (2020).
    Google Scholar 
    McCurry, M. R. et al. A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. Sci. Adv. 8, 1–11 (2022).
    Google Scholar 
    Beckemeyer, R. J. & Hall, J. D. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebr. 48, 17 (2007).
    Google Scholar 
    Jell, P. A. The fossil insects of Australia. Mem. Qld. Mus. 50, 1–124 (2004).
    Google Scholar 
    Wickens, H., de, V. & Cole, D. I. Lithostratigraphy of the Skoorsteenberg Formation (Ecca Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 120, 433–446 (2017).
    Google Scholar 
    Rubidge, B. S., Hancox, P. J. & Catuneaunu, O. Sequence analysis of the Ecca–Beaufort contact in the southern Karoo of South Africa. South Afr. J. Geol. 103, 81–96 (2000).
    Google Scholar 
    Lanci, L., Tohver, E., Wilson, A. & Flint, S. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet. Sci. Lett. 375, 123–134 (2013).CAS 

    Google Scholar 
    Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophys. J. Int. 211, 1354–1374 (2017).CAS 

    Google Scholar 
    Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 123, 141–148 (2020).
    Google Scholar 
    Nel, A., Garrouste, R. & Prevec, R. The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2067996 (2022).Cawood, R. et al. The first ‘Grylloblattida’ of the family Liomopteridae from the Middle Permian in the Onder Karoo, South Africa (Insecta: Polyneoptera). Comptes Rendus Palevol. https://doi.org/10.5852/cr-palevol2022v21a22 (2022).Surange, K. R. & Chandra, S. Morphology of the gymnospermous fructifications of the Glossopteris flora and their relationships. Palaeontogr. B 149, 153–180 (1975).
    Google Scholar 
    White, M. E. Reproductive structures of the Glossopteridales in the plant fossil collection of the Australian Museum. Rec. Aust. Mus. 31, 473–504 (1978).
    Google Scholar 
    Nishida, H., Pigg, K. B. & DeVore, M. L. In Transformative Paleobotany, Ch. 8 (eds. Krings, M., Harper, C. J., Cúneo, N. R. & Rothwell, G. W.) 145–154 (Academic Press, 2018).McLoughlin, S. New records of Bergiopteris and glossopterid fructifications from the Permian of Western Australia and Queensland. Alcheringa Australas. J. Palaeontol. 19, 175–192 (1995).
    Google Scholar 
    McLoughlin, S. In Gondwana Eight (eds. Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.) 253–264 (Balkema, 1993).Nishida, H., Pigg, K. B., Kudo, K. & Rigby, J. F. New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov. J. Plant Res. 127, 233–240 (2014).PubMed 

    Google Scholar 
    Tomescu, A. M. F., Bomfleur, B., Bippus, A. C. & Savoretti, A. In Transformative Paleobotany (eds. Krings, M., Harper, C. J., Cuneo, N. R. & Rothwell, G. W.) 375–416 (Elsevier Academic Press, 2018).Bomfleur, B. et al. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120–132 (2014).
    Google Scholar 
    Nel, A., Bechly, G., Prokop, J., Béthoux, O. & Fleck, G. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘protozygopteran’ grade. J. Paleontol. 86, 81–104 (2012).
    Google Scholar 
    Riek, E. F. Fossil insects from the Upper Permian of Natal, South Africa. Ann. Natal. Mus. 21, 513–532 (1973).
    Google Scholar 
    Gallego, O. F. et al. The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana 48, 447–461 (2011).
    Google Scholar 
    Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zool. Cracoviensia 46, 229–256 (2003).
    Google Scholar 
    van Dijk, D. E. & Geertsema, H. A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. Palaeontogr. B 12, 268–270 (2004).
    Google Scholar 
    Béthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol. Biol. 11, 248 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa Australas. J. Palaeontol. 43, 1–6 (2019).
    Google Scholar 
    Sharov, A. G. In Fundamentals of Paleontology: Arthropoda, Tracheata, Chelicerata. (eds. Rohdendorf, B. B. & Davis, D. R.) vol. 9 173–179 (Smithsonian Institution Libraries and NSCF, 1991).Sinitshenkova, N. D. In History of insects. (eds. Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 3.3, 388–426 (Kluwer Academic Publishers, 2002).Hayes, P. A. & Collinson, M. E. The Flora of the insect limestone (latest Eocene) from the Isle of Wight, southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 104, 245–261 (2014).
    Google Scholar 
    Zhang, Q. et al. Mayflies as resource pulses in Jurassic lacustrine ecosystems. Geology 50, 1043–1047 (2022).CAS 

    Google Scholar 
    Prokop, J. et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6, 190460 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Prokop, J., Nel, A., Engel, M. S., Pecharová, M. & Hörnschemeyer, T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178–190 (2016).
    Google Scholar 
    Dos Santos, T. B., de Souza Pinheiro, E. R. & Iannuzzi, R. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). PALAIOS 35, 292–301 (2020).
    Google Scholar 
    Nel, A., Garrouste, R. & Prokop, J. The first African Anthracoptilidae (Insecta: Paoliida) near the Permian—Triassic boundary in Kenya. Zootaxa 3925, 145 (2015).PubMed 

    Google Scholar 
    Riek, E. F. An unusual immature insect from the Upper Permian of Natal. Ann. Natal. Mus. 22, 271–274 (1974).
    Google Scholar 
    Dunlop, J. A., Penney, D., Tetlie, O. E. & Anderson, L. I. How many species of fossil arachnids are there? J. Arachnol. 36, 267–272 (2008).
    Google Scholar 
    Rasnitsyn, A. P. et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61, 234–255 (2016).
    Google Scholar 
    Manum, S. B., Bose, M. N. & Sawyer, R. T. Clitellate cocoons in freshwater deposits since the Triassic. Zool. Scr. 20, 347–366 (1991).
    Google Scholar 
    Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).CAS 
    PubMed 

    Google Scholar 
    Parry, L., Tanner, A. & Vinther, J. The origin of annelids. Palaeontology 57, 1091–1103 (2014).
    Google Scholar 
    Mikulic, D. G., Briggs, D. E. G. & Kluessendorf, J. A Silurian soft-bodied biota. Science 228, 715–717 (1985).CAS 
    PubMed 

    Google Scholar 
    Prokop, J., Szwedo, J., Lapeyrie, J., Garrouste, R. & Nel, A. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soci.été Entomol. Fr. NS 51, 14–51 (2015).
    Google Scholar 
    Cai, C. et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srivastava, A. K. & Agnihotri, D. Dilemma of late Palaeozoic mixed floras in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 54–69 (2010).
    Google Scholar 
    Raff, R. A. Written in stone: fossils, genes and evo–devo. Nat. Rev. Genet. 8, 911–920 (2007).CAS 
    PubMed 

    Google Scholar 
    Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1–12 (2017).PubMed 

    Google Scholar 
    McCulloch, G. A., Wallis, G. P. & Waters, J. M. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Mol. Phylogenet. Evol. 96, 150–160 (2016).PubMed 

    Google Scholar 
    Cui, Y. et al. Rhythms of Insect Evolution. (John Wiley & Sons, Ltd, 2019).Letsch, H. et al. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Syst. Entomol. 46, 952–967 (2021).
    Google Scholar 
    Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).PubMed 

    Google Scholar 
    Beattie, R. The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. Afr. Invertebr. 48, 18 (2007).
    Google Scholar 
    Bernardi, M. et al. Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth Sci. Rev. 175, 18–43 (2017).
    Google Scholar 
    Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).CAS 

    Google Scholar 
    Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).
    Google Scholar 
    Wiedenbeck, M. et al. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (2007).
    Google Scholar 
    Horstwood, M. S. A. et al. Community‐derived standards for LA ‐ ICP ‐ MS U‐(Th‐)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).CAS 

    Google Scholar 
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).CAS 

    Google Scholar 
    Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–280 (2012).CAS 

    Google Scholar 
    Rees, P. Mc. A., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891 (1999).
    Google Scholar 
    Walter, H. Vegetation of the Earth and ecological systems of the geo-biosphere. (Springer-Verlag, 1985).Lucas, S. G., Schneider, J. W. & Cassinis, G. Non-marine Permian biostratigraphy and biochronology: an introduction. Geol. Soc. Lond. Spec. Publ. 265, 1–14 (2006).
    Google Scholar 
    Scotese, C. In Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43–52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. (PALEOMAP Project, 2014). More