More stories

  • in

    Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases

    World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).Global Vector Control Response 2017–2030 (World Health Organization & UNICEF, 2017).Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).Article 

    Google Scholar 
    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, J. E. et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B Biol. Sci. 278, 2446–2454 (2011).Article 

    Google Scholar 
    Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. & Galvani, A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 6, e1799 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cavany, S. M. et al. Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Comput. Biol. 16, e1007743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefopoulou, Α et al. Reducing Aedes albopictus breeding sites through education: a study in urban area. PLoS ONE 13, e0202451 (2018).Article 

    Google Scholar 
    Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W.Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Echaubard, P. et al. Fostering social innovation and building adaptive capacity for dengue control in Cambodia: a case study. Infect. Dis. Poverty 9, 126 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vazquez-Prokopec, G. M., Lenhart, A. & Manrique-Saide, P. Housing improvement: a novel paradigm for urban vector-borne disease control? Trans. R. Soc. Trop. Med. Hyg. 110, 567–569 (2016).Article 
    PubMed 

    Google Scholar 
    Malone, R. W. et al. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10, e0004530 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 11, e0005640 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).Article 
    PubMed 

    Google Scholar 
    McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).Article 

    Google Scholar 
    Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juliano, S. A., Westby, K. M. & Ower, G. D. Know your enemy: effects of a predator on native and invasive container mosquitoes. J. Med. Entomol. 56, 320–328 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahendra, A. & Seto, K. C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South (World Resources Institute, 2019).Moretto, L. et al. Challenges of water and sanitation service co-production in the global South. Environ. Urban. 30, 425–443 (2018).Article 

    Google Scholar 
    Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35, 167–194 (2010).Article 

    Google Scholar 
    Estallo, E. L. et al. A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon 6, e04858 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaufman, M. G. & Fonseca, D. M.Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu. Rev. Entomol. 59, 31–49 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kache, P. A. et al. Environmental determinants of Aedes albopictus abundance at a northern limit of its range in the United States. Am. J. Trop. Med. Hyg. 102, 436–447 (2020).Article 
    PubMed 

    Google Scholar 
    Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biehler, D. et al. in The Palgrave Handbook of Critical Physical Geography 295–318 (Springer, 2018).Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis. 3, e481 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and Chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, P. P.-Y., Lai, P.-C., Low, C.-T., Chen, S. & Hart, M. The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 95, 199–208 (2016).Article 

    Google Scholar 
    Rey, J. R. & O’Connell, S. M. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. J. Vector Ecol. 39, 190–196 (2014).Article 
    PubMed 

    Google Scholar 
    Leisnham, P. T. & Juliano, S. Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160, 343–352 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paploski, I. A. D. et al. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit. Vectors 9, 419 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zainon, N., Rahim, F. A. M., Roslan, D. & Abd Samat, A. H. Prevention of Aedes breeding habitats for urban high-rise building in Malaysia. Plan. Malay. 14, 115–128 (2016).
    Google Scholar 
    Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrington, L. C. et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72, 209–220 (2005).Article 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: a mark–release–recapture study using self-marking units. Parasit. Vectors 12, 583 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, H., Wu, W., Li, T. & Yang, Z. Urban villages as transfer stations for dengue fever epidemic: a case study in the Guangzhou, China. PLoS Negl. Trop. Dis. 13, e0007350 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charron, D. F. in Ecohealth Research in Practice 255–271 (Springer, 2012).Lippi, C. A. et al. Exploring the utility of social–ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Negl. Trop. Dis. 15, e0009257 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wijayanti, S. P. et al. The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl. Trop. Dis. 10, e0004964 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zellweger, R. M. et al. Socioeconomic and environmental determinants of dengue transmission in an urban setting: an ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 11, e0005471 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, S. J. et al. Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int. J. Environ. Res. Public Health 16, 682 (2019).Article 
    PubMed Central 

    Google Scholar 
    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez, L. et al. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 12, 800–806 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cromwell, E. A. et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl. Trop. Dis. 11, e0005429 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Honório, N. A. et al. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3, e545 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chadee, D. Dengue cases and Aedes aegypti indices in Trinidad, West Indies. Acta Trop. 112, 174–180 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fustec, B. et al. Complex relationships between Aedes vectors, socio-economics and dengue transmission—lessons learned from a case-control study in northeastern Thailand. PLoS Negl. Trop. Dis. 14, e0008703 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scarpino, S. V. & Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 10, 898 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Batty, M. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 1041–1071 (Springer, 2009).McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).Rus, K., Kilar, V. & Koren, D. Resilience assessment of complex urban systems to natural disasters: a new literature review. Int. J. Disaster Risk Reduct. 31, 311–330 (2018).Article 

    Google Scholar 
    Bettencourt, L. M. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).Handbook for Integrated Vector Management (World Health Organization, 2012).Kolimenakis, A. et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Negl. Trop. Dis. 15, e0009631 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V., Bhatnagar, S., Drake, J. M., Murdock, C. C. & Mukherjee, S.Socio‐ecological dynamics in urban systems: an integrative approach to mosquito‐borne disease in Bengaluru, India. People Nat. 4, 730–743 (2022).Article 

    Google Scholar 
    Cook, E. M., Hall, S. J. & Larson, K. L. Residential landscapes as social–ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 15, 19–52 (2012).Article 

    Google Scholar 
    Bai, X., McAllister, R. R., Beaty, R. M. & Taylor, B. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Curr. Opin. Environ. Sustain. 2, 129–135 (2010).Article 

    Google Scholar 
    Batty, M. Inventing Future Cities (MIT Press, 2018).McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).Article 

    Google Scholar 
    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. in The Routledge Handbook of Urbanization and Global Environmental Change 227–236 (Routledge, 2015).Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Filatova, T., Parker, D. & Van der Veen, A. Agent-based urban land markets: agent’s pricing behavior, land prices and urban land use change. J. Artif. Soc. Soc. Simul. 12, 3 (2009).
    Google Scholar 
    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).Article 

    Google Scholar 
    Collins, M. & Kapucu, N. Early warning systems and disaster preparedness and response in local government. Disaster Prev. Manag. 17, 587–600 (2008).Article 

    Google Scholar 
    Ahern, J. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan. 100, 341–343 (2011).Article 

    Google Scholar 
    Gordon-Larsen, P., Nelson, M. C., Page, P. & Popkin, B. M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 117, 417–424 (2006).Article 
    PubMed 

    Google Scholar 
    Zhou, S. & Lin, R. Spatial–temporal heterogeneity of air pollution: the relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. D Transp. Environ. 76, 305–322 (2019).Article 

    Google Scholar 
    Frank, L. D. & Engelke, P. Multiple impacts of the built environment on public health: walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 28, 193–216 (2005).Article 

    Google Scholar 
    Diuk-Wasser, M. A., VanAcker, M. C. & Fernandez, M. P. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol. 58, 1546–1564 (2021).Article 
    PubMed 

    Google Scholar 
    Sengupta, U., Rauws, W. S. & De Roo, G.Planning and complexity: engaging with temporal dynamics, uncertainty and complex adaptive systems. Environ. Plann. B Plann. Des. 43, 970–974 (2016).Article 

    Google Scholar 
    Shi, Y. et al. Assessment methods of urban system resilience: from the perspective of complex adaptive system theory. Cities 112, 103141 (2021).Article 

    Google Scholar 
    Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2012).Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23, 46–61 (2018).Article 

    Google Scholar 
    Levin, S. et al. Social–ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).Article 

    Google Scholar 
    Waldrop, M. M. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, 1993).Nel, D., du Plessis, C. & Landman, K. Planning for dynamic cities: introducing a framework to understand urban change from a complex adaptive systems approach. Int. Plan. Stud. 23, 250–263 (2018).Article 

    Google Scholar 
    Sharifi, A. Resilient urban forms: a macro-scale analysis. Cities 85, 1–14 (2019).Article 

    Google Scholar 
    Borgström, S. T., Elmqvist, T., Angelstam, P. & Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 11, 16 (2006).Article 

    Google Scholar 
    Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S. & Peterson, G. D. Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17, 30 (2012).Article 

    Google Scholar 
    Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).Article 

    Google Scholar 
    Peters, D. P., Bestelmeyer, B. T. & Turner, M. G. Cross-scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10, 790–796 (2007).Article 

    Google Scholar 
    Crépin, A.-S. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36, 191–213 (2007).Article 

    Google Scholar 
    Soranno, P. A. et al. Cross‐scale interactions: quantifying multi‐scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).Article 

    Google Scholar 
    Pickett, S. T. et al. Theoretical perspectives of the Baltimore Ecosystem Study: conceptual evolution in a social–ecological research project. BioScience 70, 297–314 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunderson, L. H., Holling, C. S. & Light, S. S. Barriers and Bridges to the Renewal of Ecosystems and Institutions (Columbia Univ. Press, 1995).Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).Article 

    Google Scholar 
    Wu, J. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).Article 

    Google Scholar 
    Flores, A., Pickett, S. T., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308 (1998).Article 

    Google Scholar 
    Fauchald, P. & Tveraa, T. Hierarchical patch dynamics and animal movement pattern. Oecologia 149, 383–395 (2006).Article 
    PubMed 

    Google Scholar 
    Linton, J. & Budds, J. The hydrosocial cycle: defining and mobilizing a relational–dialectical approach to water. Geoforum 57, 170–180 (2014).Article 

    Google Scholar 
    Knox, P. & Pinch, S. Urban Social Geography: an Introduction (Routledge, 2014).Geels, F. W. From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory. Res. Policy 33, 897–920 (2004).Article 

    Google Scholar 
    West, S., Haider, L. J., Stålhammar, S. & Woroniecki, S. A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325 (2020).Article 

    Google Scholar 
    Jones, M. Phase space: geography, relational thinking, and beyond. Prog. Hum. Geogr. 33, 487–506 (2009).Article 

    Google Scholar 
    Wohl, S. Considering how morphological traits of urban fabric create affordances for complex adaptation and emergence. Prog. Hum. Geogr. 40, 30–47 (2016).Article 

    Google Scholar 
    Herold, M., Scepan, J. & Clarke, K. C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A 34, 1443–1458 (2002).Article 

    Google Scholar 
    Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).Article 
    PubMed 

    Google Scholar 
    LaCon, G. et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 8, e3038 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai, S. et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl. Trop. Dis. 12, e0006743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gergel, S. E. & Turner, M. G. Learning Landscape Ecology: a Practical Guide to Concepts and Techniques (Springer, 2017).Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Phil. Trans. R. Soc. B Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector‐borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowley, W. A. & Graham, C. L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14, 1251–1257 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am. J. Trop. Med. Hyg. 101, 362–370 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Streutker, D. R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23, 2595–2608 (2002).Article 

    Google Scholar 
    Fikrig, K. et al. Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking. PLoS Negl. Trop. Dis. 14, e0008244 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samson, D. M. et al. Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida. J. Am. Mosq. Control Assoc. 29, 231–236 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grove, J. M., Locke, D. H. & O’Neil-Dunne, J. P. An ecology of prestige in New York City: examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manag. 54, 402–419 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aronson, M. F. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Hemme, R. R., Thomas, C. L., Chadee, D. D. & Severson, D. W. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 4, e634 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Betancourt, T., Higuera-Mendieta, D. R., González-Uribe, C., Cortés, S. & Quintero, J. Understanding water storage practices of urban residents of an endemic dengue area in Colombia: perceptions, rationale and socio-demographic characteristics. PLoS ONE 10, e0129054 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, R., de Loë, R. & Armitage, D. A systematic review of water vulnerability assessment tools. Water Resour. Manag. 26, 4327–4346 (2012).Article 

    Google Scholar 
    Ledogar, R. J. et al. Mobilising communities for Aedes aegypti control: the SEPA approach. BMC Public Health 17, 103–114 (2017).Article 

    Google Scholar 
    Michalos, A. C. Encyclopedia of Quality of Life and Well-being Research (Springer Netherlands, 2014).Reiner, R. C. Jr, Stoddard, S. T. & Scott, T. W. Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics 6, 30–36 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whiteford, L. M. The ethnoecology of dengue fever. Med. Anthropol. Q. 11, 202–223 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ibarra, A. M. S. et al. A social–ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 14, 1135 (2014).Article 

    Google Scholar 
    Mitchell-Foster, K. L. Interdisciplinary Knowledge Translation and Evaluation Strategies for Participatory Dengue Prevention in Machala, Ecuador. PhD thesis, Univ. British Columbia (2013).Kropf, K.Aspects of urban form. Urban Morphol. 13, 105–120 (2009).Article 

    Google Scholar 
    Rose, L. A. Topographical constraints and urban land supply indexes. J. Urban Econ. 26, 335–347 (1989).Article 

    Google Scholar 
    Liu, F. “Interrupted Development”: The Effects of Blighted Neighborhoods and Topographic Barriers on Cities. PhD thesis, George Washington Univ. (2006).Durand-Lasserve, A. & Selod, H. in Urban Land Markets 101–132 (Springer, 2009).Talen, E. City Rules: How Regulations Affect Urban Form (Island Press, 2012).Scheer, B. C. The Evolution of Urban Form: Typology for Planners and Architects (Routledge, 2017).Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C. & Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 64, 1–9 (2013).Article 

    Google Scholar 
    Middel, A., Häb, K., Brazel, A. J., Martin, C. A. & Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc. Urban Plan. 122, 16–28 (2014).Article 

    Google Scholar 
    Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).Article 
    PubMed 

    Google Scholar 
    Seto, K. C. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 923–1000 (Cambridge Univ. Press, 2014).Romeo-Aznar, V., Freitas, L. P., Cruz, O. G., King, A. & Pascual, M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat. Commun. 13, 996 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lafferty, K. D. et al. Local extinction of the Asian tiger mosquito (Aedes albopictus) following rat eradication on Palmyra Atoll. Biol. Lett. 14, 20170743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez, M. C., Dupont-Courtade, L. & Oueslati, W. Air pollution and urban structure linkages: evidence from European cities. Renew. Sustain. Energy Rev. 53, 1–9 (2016).Article 

    Google Scholar 
    Venter, Z. S., Krog, N. H. & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 709, 136193 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Little, E., Barrera, R., Seto, K. C. & Diuk-Wasser, M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. EcoHealth 8, 365–375 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pereira dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban–forest interface in Brazil. Emerg. Microbes Infect. 7, 191 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, J. et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 16, 1918–1924 (2010).Article 
    PubMed Central 

    Google Scholar 
    Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015–2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tonkiss, F. Cities by Design: the Social Life of Urban Form (John Wiley & Sons, 2014).Hillier, B., Greene, M. & Desyllas, J. Self-generated neighbourhoods: the role of urban form in the consolidation of informal settlements. Urban Des. Int. 5, 61–96 (2000).Article 

    Google Scholar 
    Li, X., Mou, Y., Wang, H., Yin, C. & He, Q. How does polycentric urban form affect urban commuting? Quantitative measurement using geographical big data of 100 cities in China. Sustainability 10, 4566 (2018).Article 

    Google Scholar 
    Wen, T.-H., Lin, M.-H., Teng, H.-J. & Chang, N.-T. Incorporating the human–Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Appl. Geogr. 62, 256–266 (2015).Article 

    Google Scholar 
    Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, T. W. & Morrison, A. C. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr. Top. Microbiol. Immunol. 338, 115–128 (2010).PubMed 

    Google Scholar 
    Delmelle, E., Kim, C., Xiao, N. & Chen, W. Methods for space–time analysis and modeling: an overview. Int. J. Appl. Geospat. Res. 4, 1–18 (2013).Article 

    Google Scholar 
    Kua, K. P. & Lee, S. W. H. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: a systematic review and meta-analysis. PLoS ONE 16, e0244284 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chareonviriyaphap, T. et al. The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. J. Vector Ecol. 30, 344–346 (2005).PubMed 

    Google Scholar 
    Maneerat, S. & Daudé, E. A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecol. Model. 333, 66–78 (2016).Article 

    Google Scholar 
    Barbu, C. M. et al. The effects of city streets on an urban disease vector. PLoS Comput. Biol. 9, e1002801 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mesch, G. S. & Manor, O. Social ties, environmental perception, and local attachment. Environ. Behav. 30, 504–519 (1998).Article 

    Google Scholar 
    Matthews, L. & Haydon, D. Introduction. Cross-scale influences on epidemiological dynamics: from genes to ecosystems. J. R. Soc. Interface 4, 763–765 (2007).Article 
    PubMed Central 

    Google Scholar 
    Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).Article 
    PubMed 

    Google Scholar 
    Schreiber, S. J. et al. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol. 7, veaa105 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramalho, C. E. & Hobbs, R. J. Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27, 179–188 (2012).Article 
    PubMed 

    Google Scholar 
    Waggoner, J. J. et al. Homotypic dengue virus reinfections in Nicaraguan children. J. Infect. Dis. 214, 986–993 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezeakacha, N. F. & Yee, D. A. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit. Vectors 12, 123 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit. Vectors 11, 426 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, S.-C. et al. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci. Total Environ. 408, 4069–4075 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Elsinga, J. et al. Knowledge, attitudes, and preventive practices regarding dengue in Maracay, Venezuela. Am. J. Trop. Med. Hyg. 99, 195–203 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong, L. P., Shakir, S. M. M., Atefi, N. & AbuBakar, S. Factors affecting dengue prevention practices: nationwide survey of the Malaysian public. PLoS ONE 10, e0122890 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).Article 
    PubMed 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).Article 

    Google Scholar 
    Combs, M. A. et al. Socio‐ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob. Change Biol. 28, 1705–1724 (2022).Article 
    CAS 

    Google Scholar 
    Zhou, Q.A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6, 976–992 (2014).Article 

    Google Scholar 
    Stewart-Ibarra, A. M. et al. Co-developing climate services for public health: stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Negl. Trop. Dis. 13, e0007772 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).Article 
    PubMed 

    Google Scholar 
    Lippi, C. A. et al. A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. Int. J. Health Geogr. 19, 3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Projection of the Ecuadorian Population, per Calendar Years, by Cantons 2010–2020 (National Institute of Statistics and Census, 2012).Pertumbuhan Ekonomi Indonesia Triwulan II (Badann Pusat Statistik, 2021).Rašić, G. et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasit. Vectors 8, 610 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L. et al. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian tiger mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0006009 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt, T. L., Filipović, I., Hoffmann, A. A. & Rašić, G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120, 386–395 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tantowijoyo, W. et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 14, e0008157 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. The spread of dengue in an endemic urban milieu—the case of Delhi, India. PLoS ONE 11, e0146539 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Telle, O. et al. Social and environmental risk factors for dengue in Delhi city: a retrospective study. PLoS Negl. Trop. Dis. 15, e0009024 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, E. C. & Seto, K. C. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett. 14, 045002 (2019).Article 

    Google Scholar 
    Jackson-Smith, D. B. et al. Differentiating urban forms: a neighborhood typology for understanding urban water systems. Cities Environ. 9, 5 (2016).
    Google Scholar 
    Population Census by Age (Department of Provincial Administration, accessed March 2022); https://stat.bora.dopa.go.th/new_stat/webPage/statByAge.phpSalje, H. et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc. Natl Acad. Sci. USA 109, 9535–9538 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salje, H. et al. Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nat. Commun. 12, 1810 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chai, B. & Seto, K. C. Conceptualizing and characterizing micro-urbanization: a new perspective applied to Africa. Landsc. Urban Plan. 190, 103595 (2019).Article 

    Google Scholar 
    Zhu, G., Liu, J., Tan, Q. & Shi, B. Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLoS Negl. Trop. Dis. 10, e0004633 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Hamid, N. et al. Vertical infestation profile of Aedes in selected urban high-rise residences in Malaysia. Trop. Med. Infect. Dis. 5, 114 (2020).Article 
    PubMed Central 

    Google Scholar 
    Sun, H. et al. Spatio-temporal analysis of the main dengue vector populations in Singapore. Parasit. Vectors 14, 41 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ho, C.-M. et al. Surveillance for dengue fever vectors using ovitraps at Kaohsiung and Tainan in Taiwan. Formos. Entomol. 25, 159–174 (2005).
    Google Scholar 
    McKenzie, D. & Ray, I. Urban water supply in India: status, reform options and possible lessons. Water Policy 11, 442–460 (2009).Article 

    Google Scholar 
    Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G. & Reckhow, K. H. On the application of multilevel modeling in environmental and ecological studies. Ecology 91, 355–361 (2010).Article 
    PubMed 

    Google Scholar 
    Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130551 (2015).Article 

    Google Scholar 
    Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L. & Taylor, W. Effect of climate on wildfire size: a cross-scale analysis. Ecosystems 13, 828–840 (2010).Article 

    Google Scholar 
    Chiu, C.-H., Wen, T.-H., Chien, L.-C. & Yu, H.-L. A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLoS ONE 9, e106334 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Higuera-Mendieta, D. R., Cortés-Corrales, S., Quintero, J. & González-Uribe, C. KAP surveys and dengue control in Colombia: disentangling the effect of sociodemographic factors using multiple correspondence analysis. PLoS Negl. Trop. Dis. 10, e0005016 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. H., Yuan, J. & Wang, T. Direct cost of dengue hospitalization in Zhongshan, China: associations with demographics, virus types and hospital accreditation. PLoS Negl. Trop. Dis. 11, e0005784 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tam, C. C. et al. Estimates of dengue force of infection in children in Colombo, Sri Lanka. PLoS Negl. Trop. Dis. 7, e2259 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. & Castillo-Chavez, C. The role of residence times in two-patch dengue transmission dynamics and optimal strategies. J. Theor. Biol. 374, 152–164 (2015).Article 
    PubMed 

    Google Scholar 
    Adams, B. & Kapan, D. D. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS ONE 4, e6763 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M., Schweigmann, N. & Solari, H. G. A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol. 70, 1297–1325 (2008).Article 
    PubMed 

    Google Scholar 
    Otero, M. & Solari, H. G. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 223, 32–46 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. & Liu, X. Embedding sustainable development strategies in agent‐based models for use as a planning tool. Int. J. Geogr. Inf. Sci. 22, 21–45 (2008).Article 

    Google Scholar 
    Mozaffaree Pour, N. & Oja, T. Urban expansion simulated by integrated cellular automata and agent-based models; an example of Tallinn, Estonia. Urban Sci. 5, 85 (2021).Article 

    Google Scholar 
    Gilbert, N. Agent-Based Models Vol. 153 (Sage Publications, 2019).Roster, K. & Rodrigues, F. A. Neural networks for dengue prediction: a systematic review. Preprint at https://arxiv.org/abs/2106.12905 (2021).Zhao, N. et al. Machine learning and dengue forecasting: comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl. Trop. Dis. 14, e0008056 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhai, Y. et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 34, 1475–1499 (2020).Article 

    Google Scholar 
    Verma, D. & Jana, A. LULC classification methodology based on simple Convolutional Neural Network to map complex urban forms at finer scale: evidence from Mumbai. Preprint at https://arxiv.org/abs/1909.09774 (2019).Djenontin, I. N. S. & Meadow, A. M. The art of co-production of knowledge in environmental sciences and management: lessons from international practice. Environ. Manag. 61, 885–903 (2018).Article 

    Google Scholar 
    Meschede, C. & Mainka, A. Including citizen participation formats for drafting and implementing local sustainable development strategies. Urban Sci. 4, 13 (2020).Article 

    Google Scholar 
    Mansfield, R. G., Batagol, B. & Raven, R. “Critical agents of change?”: opportunities and limits to children’s participation in urban planning. J. Plan. Lit. 36, 170–186 (2021).Article 

    Google Scholar 
    Curtis, A., Quinn, M., Obenauer, J. & Renk, B. M. Supporting local health decision making with spatial video: dengue, Chikungunya and Zika risks in a data poor, informal community in Nicaragua. Appl. Geogr. 87, 197–206 (2017).Article 

    Google Scholar 
    Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).Article 

    Google Scholar 
    Dickens, L. & Butcher, M. Going public? Re‐thinking visibility, ethics and recognition through participatory research praxis. Trans. Inst. Br. Geogr. 41, 528–540 (2016).Article 

    Google Scholar 
    Wallerstein, N. et al. Power dynamics in community-based participatory research: a multiple-case study analysis of partnering contexts, histories, and practices. Health Educ. Behav. 46, 19S–32S (2019).Article 
    PubMed 

    Google Scholar 
    Parra, C. et al. Synergies between technology, participation, and citizen science in a community-based dengue prevention program. Am. Behav. Sci. 64, 1850–1870 (2020).Article 

    Google Scholar 
    Lozano–Fuentes, S. et al. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J. Med. Entomol. 50, 879–889 (2013).Article 
    PubMed 

    Google Scholar 
    Kelvin, A. A. et al. ZIKATracker: a mobile app for reporting cases of ZIKV worldwide. J. Infect. Dev. Ctries. 10, 113–115 (2016).Article 
    PubMed 

    Google Scholar 
    Fernandez, M. P. et al. Usability and feasibility of a smartphone app to assess human behavioral factors associated with tick exposure (The Tick App): quantitative and qualitative study. JMIR mHealth uHealth 7, e14769 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).Article 
    PubMed 

    Google Scholar 
    Van Leeuwen, J. P., Hermans, K., Jylhä, A., Quanjer, A. J. & Nijman, H. Effectiveness of virtual reality in participatory urban planning: a case study. In Proc. Media Architecture Biennale 128–136 (Association for Computing Machinery, 2018).Kahila-Tani, M. Reshaping the Planning Process Using Local Experiences: Utilising PPGIS in Participatory Urban Planning. PhD thesis, Aalto Univ. (2015).Iwaniec, D. M. et al. The co-production of sustainable future scenarios. Landsc. Urban Plan. 197, 103744 (2020).Article 

    Google Scholar 
    Dickin, S. K., Schuster-Wallace, C. J. & Elliott, S. J. Mosquitoes & vulnerable spaces: mapping local knowledge of sites for dengue control in Seremban and Putrajaya Malaysia. Appl. Geogr. 46, 71–79 (2014).Article 

    Google Scholar 
    Chircop, A., Bassett, R. & Taylor, E. Evidence on how to practice intersectoral collaboration for health equity: a scoping review. Crit. Public Health 25, 178–191 (2015).Article 

    Google Scholar 
    Gamache, S., Diallo, T. A., Shankardass, K. & Lebel, A. The elaboration of an intersectoral partnership to perform health impact assessment in urban planning: the experience of Quebec City (Canada). Int. J. Environ. Res. Public Health 17, 7556 (2020).Article 
    PubMed Central 

    Google Scholar 
    Herdiana, H., Sari, J. F. K. & Whittaker, M. Intersectoral collaboration for the prevention and control of vector borne diseases to support the implementation of a global strategy: a systematic review. PLoS ONE 13, e0204659 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. A., Economou, T., de Castro Catão, R., Barcellos, C. & Lowe, R. The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl. Trop. Dis. 15, e0009773 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johansson, M. A., Cummings, D. A. & Glass, G. E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 6, e1000168 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5, e1378 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hess, G. Disease in metapopulation models: implications for conservation. Ecology 77, 1617–1632 (1996).Article 

    Google Scholar 
    Hanski, I. Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol. 4, 113–114 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Masui, H. et al. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities. Theor. Biol. Med. Model. 13, 12 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Negl. Trop. Dis. 13, e0007479 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Reilly, K. M. et al. Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Med. 16, 180 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santé, I., García, A. M., Miranda, D. & Crecente, R. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan. 96, 108–122 (2010).Article 

    Google Scholar 
    Yang, J., Gong, J., Tang, W. & Liu, C. Patch-based cellular automata model of urban growth simulation: integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 79, 101402 (2020).Article 

    Google Scholar 
    Rozos, E., Butler, D. & Makropoulos, C. An integrated system dynamics–cellular automata model for distributed water-infrastructure planning. Water Sci. Technol. Water Supply 16, 1519–1527 (2016).Article 

    Google Scholar 
    Enduri, M. K. & Jolad, S. Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018).Article 
    PubMed 

    Google Scholar 
    Medeiros, L. C. et al. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl. Trop. Dis. 5, e942 (2011).Article 
    PubMed Central 

    Google Scholar 
    Ali, A. M., Shafiee, M. E. & Berglund, E. Z. Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain. Cities Soc. 28, 420–434 (2017).Article 

    Google Scholar 
    Philippon, D. et al. in Multi-Agent Based Simulation XVII. MABS 2016. Lecture Notes in Computer Science Vol 10399 (eds Nardin, L. & Antunes, L.) 111–127 (Springer, 2016).Agyemang, F. S., Silva, E. & Fox, S.Modelling and simulating ‘informal urbanization’: an integrated agent-based and cellular automata model of urban residential growth in Ghana. Urban Anal. City Sci. 0, 1–15 (2022).
    Google Scholar 
    Chouhan, S. S., Kaul, A. & Singh, U. P. Image segmentation using computational intelligence techniques. Arch. Comput. Methods Eng. 26, 533–596 (2019).Article 

    Google Scholar 
    Andersson, V. O., Birck, M. A. F. & Araujo, R. M. Towards predicting dengue fever rates using convolutional neural networks and street-level images. Proc. 2018 Int. Jt Conf. Neural Netw. 1–8 (IEEE, 2018).Chrysler, A., Gunarso, R., Puteri, T. & Warnars, H. A Literature Review of Crowd-Counting System on Convolutional Neural Network 012029 (IOP Conference Series: Earth and Environmental Science Volume 729, IOP Publishing, 2021).Bharambe, A., Chandorkar, A. A. & Kalbande, D. A deep learning approach for dengue tweet classification. Proc. 3rd Int. Conf. Invent. Res. Comput. Appl. 1043–1047 (IEEE, 2021).Kumar, A. & Garg, G. Sentiment analysis of multimodal twitter data. Multimed. Tools Appl. 78, 24103–24119 (2019).Article 

    Google Scholar 
    Marin, A. & Wellman, B. in The SAGE Handbook of Social Network Analysis Ch. 2 (2011).Snijders, T. A. & Steglich, C. E. Representing micro–macro linkages by actor-based dynamic network models. Sociol. Methods Res. 44, 222–271 (2015).Article 
    PubMed 

    Google Scholar 
    Warren, C. R., Burton, R., Buchanan, O. & Birnie, R. V. Limited adoption of short rotation coppice: the role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 45, 175–183 (2016).Article 

    Google Scholar 
    Beal Cohen, A. A., Muneepeerakul, R. & Kiker, G. Intra-group decision-making in agent-based models. Sci. Rep. 11, 17709 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frederiks, E. R., Stenner, K. & Hobman, E. V. Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 41, 1385–1394 (2015).Article 

    Google Scholar 
    Spiegel, J. et al. Barriers and bridges to prevention and control of dengue: the need for a social–ecological approach. EcoHealth 2, 273–290 (2005).Article 

    Google Scholar 
    Arellano, C. et al. Knowledge and beliefs about dengue transmission and their relationship with prevention practices in Hermosillo, Sonora. Front. Public Health 3, 142 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gertler, M. S. & Wolfe, D. A. Local social knowledge management: community actors, institutions and multilevel governance in regional foresight exercises. Futures 36, 45–65 (2004).Article 

    Google Scholar 
    Brown, R. R., Farrelly, M. A. & Loorbach, D. A. Actors working the institutions in sustainability transitions: the case of Melbourne’s stormwater management. Glob. Environ. Change 23, 701–718 (2013).Article 

    Google Scholar 
    Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. & Kelly, B. F. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ. Model. Softw. 73, 305–323 (2015).Article 

    Google Scholar 
    Sabatier, P. A. Toward better theories of the policy process. PS Polit. Sci. Polit. 24, 147–156 (1991).Article 

    Google Scholar 
    Abrantes, P. et al. Modelling urban form: a multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 46, 47–65 (2019).Article 

    Google Scholar 
    McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure Vol. 351 (US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995).Vazquez-Prokopec, G. M. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE 8, e58802 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ligtenberg, A., van Lammeren, R. J., Bregt, A. K. & Beulens, A. J. Validation of an agent-based model for spatial planning: a role-playing approach. Comput. Environ. Urban Syst. 34, 424–434 (2010).Article 

    Google Scholar  More

  • in

    Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts

    Molecular Phylogeny of Paramecium bursaria and Identification of its EndosymbiontsThe SSU and ITS rDNA of the nuclear ribosomal operon were sequenced to infer the genetic variability of the investigated strains. The SSU and ITS rDNA sequences were aligned according to their secondary structure (examples are presented for the strain SAG 27.96; Fig. 1 and Supplementary Fig. 1). Additional sequences acquired from GenBank were incorporated into a dataset, which included all syngens also from references known for P. bursaria. The phylogenetic analyses revealed five highly supported lineages among the P. bursaria strains, which corresponded to their syngen assignment. As demonstrated in Fig. 2, all investigated strains belonging to the syngens R1, R2 and R5 originated from Europe, whereas the others of the syngens R3-R4 showed a worldwide distribution. The three known green algal endosymbionts, i.e., Chlorella variabilis (Cvar), Chlorella vulgaris (Cvul) and Micractinium conductrix (Mcon) showed no or only little affiliation to specific syngens.Figure 1ITS‐1 (A) and ITS-2 (B) secondary structures of Paramecium protobursaria, SAG 27.96 (syngen R1).Full size imageFigure 2Molecular phylogeny of the Paramecium bursaria species complex based on SSU and ITS rDNA sequence comparisons. The phylogenetic tree shown was inferred using the maximum likelihood method based on the datasets (2197 aligned positions of 19 taxa) using the computer program PAUP 4.0a169. For the analyses, the best model was calculated by PAUP 4.0a169. The setting of the best model was given as follows: TVM + I (base frequencies: A 0.2983, C 0.1840, G 0.2271, T 0.2906; rate matrix A–C 2.6501, A–G 8.6851, A–U 5.3270, C–G 0.91732, C–U 8.6851, G–U 1.0000) with the proportion of invariable sites (I = 0.9544). The branches in bold are highly supported in all bootstrap analyses (bootstrap values  > 50% calculated with PAUP using the maximum likelihood, neighbour—joining, and maximum parsimony). The clades are named after the syngens (color‐coded) proposed by Greczek‐Stachura et al.10 and Bomford9 in brackets. The accession numbers are given after the strain numbers. The endosymbiotic green algae identified are highlighted (Mcon—Micractinium conductrix, Cvar—Chlorella variabilis and Cvul—Chlorella vulgaris) after the origin of the P. bursaria strains. The reference strain of each syngen is marked with an asterisk. The strains used for morphological comparisons are marked with a green dot next to the strain number.Full size imageSynapomorphies of the Paramecium bursaria SyngensAs demonstrated in Fig. 2, the subdivision of the P. bursaria strains into syngens is supported by the phylogenetic analyses of the SSU and ITS rDNA sequences. To figure out if these splits were also supported by characteristic molecular signatures, we studied the secondary structures of both SSU and ITS of all available sequences. We discovered 30, respectively 23 variable positions among the SSU and ITS sequences (numbers of these positions in the respective alignments are given in Fig. 3). All syngens showed characteristic patterns among the SSU and ITS. Only the syngens R1 and R2 could not be distinguished using the SSU only, however, in combination with the ITS, each syngen is characterized by unique synapomorphies as highlighted in yellow (Fig. 3). In addition, few variable base positions within syngens (marked in blue in Fig. 3) have been recognized in the ITS regions. For comparison with literature data, we also analyzed all available sequences of the mitochondrial COI gene to find synapomorphies for the five syngens. Within this gene, only 18 variable positions at the amino acid level could be discovered of which 13 are diagnostic for the five syngens (Fig. 3).Figure 3Variable base positions among the SSU, ITS rRNA, and COI sequences of the five syngens among the Paramecium bursaria species complex. The unique synapomorphies are highlighted in yellow, variable positions marked in blue.Full size imageThe synapomorphies discovered above were used to get insights into the geographical distribution of each P. bursaria syngen. Despite the complete SSU and ITS rDNA sequences included in the phylogeny presented in Fig. 2, records of the partial SSU or ITS rDNA sequences are available in GenBank (BLASTn search; 100% identity;13). Considering the metadata of our investigated strains and of the entries in GenBank (Supplementary Table 1), we constructed three haplotype networks using the Templeton-Crandall-Sing (TCS) approach. The SSU haplotype network (Fig. 4) containing 84 records showed that the syngens R1, R2 and R5 were only found in Europe, whereas the other three syngens have been discovered around the world. A similar distribution pattern occurred when using the ITS (101 entries in GenBank). Records of syngens R1 and R5 have only been found in Europe, whereas all other syngens were distributed around the world. The 132 COI records found in GenBank by the BLASTn search were used for the haplotype network, which also showed the similar pattern (Fig. 4).Figure 4TCS haplotype networks of the five syngens inferred from SSU, ITS rRNA, and COI sequences of the Paramecium bursaria species complex. This network was inferred using the algorithm described by Clement et al.40,41. Sequence nodes corresponding to samples collected from different geographical regions.Full size imageCiliate TaxonomyConsidering all our findings, P. bursaria is morphologically highly variable, and obviously represents a cryptic species complex (Figs. 5, 6; Supplementary Table 2). The known five syngens most likely represent biological species according to Mayr14 and can be attributed to the cryptic species described by Greczek-Stachura et al.11. As mentioned above, the assignments of these cryptic species by Greczek-Stachura et al.11 have not been validly described according to the ICZN. In addition, the naming using a mixture of Latin prefix and Greek suffix is also not appropriate (the epithet bursa derived from the Greek word byrsa). Therefore, we describe the five syngens as new species as follows. The general morphological features of these species are summarized in Table 1.Figure 5Ventral views of Paramecium bursaria morphotypes in vivo: P. protobursaria (syngen R1), i.e., strains SAG 2645 (A) and PB-25 (B); P. deuterobursaria (syngen R2), i.e., strains CCAP 1660/36 (C) and CCAP 1660/34 (D); P. tritobursaria (syngen R3), i.e., strains CCAP 1660/28 (E), CCAP 1660/26 (F) and CCAP 1660/31 (G); P. tetratobursaria (syngen R4), i.e., strains CCAP 1660/25 (H) and CCAP 1660/33 (I); P. pentobursaria (syngen R5), i.e., strain CCAP 1660/30 (J). Scale bar 20 µm.Full size imageFigure 6Morphological details of the Paramecium bursaria species complex from specimens of strains PB-25 (A), CCAP 1660/30 (B), SAG 2645 (C, F, G, I, L–N), CCAP 1660/36 (D), CCAP 1660/26 (E, H), CCAP 1660/30 (J, O), CCAP 1660/16 (K) in vivo (A–F, H–O) and after silver nitrate staining (G). Adoral membranelles (A, B), endosymbiotic algae Micractinium conductrix (C), caudal and somatic cilia (D), arrows denote excretory pores of the contractile vacuoles: extruded extrusomes are shown and caudal cilia (E), ventral views showing the preoral suture and the oral opening (F), the ciliary pattern (G), arrows denote excretory pores of the contractile vacuoles (H), trichocysts and symbiotic algae underneath the pellicula (I, J), cell size variations (K), radial collecting channels (white arrows) and excretory pores (black arrows) of contractile vacuoles (L), macro- and micronucleus (M), cytopyge and characteristic rectangular pellicular pattern (N), pattern of the pellicula (O). AS anterior suture, CC caudal cilia, CP cytopyge (cell after), CV contractile vacuole, EP excretory pore of a contractile vacuole, EX extrusomes, M1–M3 membranelles 1–3, MA macronucleus, MI micronucleus, OO oral opening, S symbiotic algae, SC somatic cilia, SK somatic kineties, UM undulating membrane. Scale bars 10 µm (A, I), 20 µm (B, D–H, J, L–O), 50 µm (K).Full size imageTable 1 Main morphometric and morphological characteristics of the Paramecium bursaria syngens (min and max values).Full size table
    Paramecium protobursaria sp. nov.Synonym: Paramecium primabursaria nom. inval.Description: The strains SAG 27.96 and PB-25 belong to syngen R1 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231333). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 70–164 × 44–65 µm; the single macronucleus is located around mid-cell and measures 25–38 × 11–22 µm; the adjacent single compact micronucleus measures 11–20 × 5–8 µm; the usually two (rarely one) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–22; the length of the caudal cilia is 9–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 4–7 × 4–7 µm; the smaller algal cells measure 2–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R1 were found in Europe: Göttingen, Germany; Lake Mondsee, Austria. In addition, this species has been reported from different places in Europe, Asia and North America (see details in Supplementary Table 1).Reference material: Strain SAG 27.96 and the clonal strain SAG 2645 derived from SAG 27.96 are available at the Culture Collection of Algae (SAG), University of Göttingen, Germany.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the clonal culture SAG 2645, which derived from the reference material SAG 27.96, isolated from the pond of the Old Botanical Garden of the University of Göttingen (Germany), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: AFD967ED-BC2A-43FD-847E-5DF588BB025C.
    Paramecium deuterobursaria sp. nov.Synonym: Paramecium bibursaria nom. inval.Description: The strains CCAP 1660/34 and CCAP 1660/36 belong to syngen R2 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (OK318487). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 81–167 × 35–83 µm; the single macronucleus is located around mid-cell and measures 24–46 × 10–32 µm; the adjacent single compact micronucleus measures 10–18 × 5–9 µm, no micronucleus seen in live cells of strain CCAP 1660/34; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 13–22; the length of the caudal cilia is 11–20 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to M. conductrix; the larger algae measure 5–7 × 4–7 µm; the smaller algal cells measure 3–5 × 2–5 µm.Geographic distribution: The investigated strains of syngen R2 were found in Europe: Zurich, Switzerland; Lake Piburg, Austria. In addition, this species has been reported from different places in Europe, Asia and Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/36 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/36, isolated from Lake Piburg (Tyrol, Austria), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: D1C20BE6-9A15-4A3D-A7E5-DFC31FF04679.
    Paramecium tritobursaria sp. nov.Synonym: Paramecium tribursaria nom. inval.Description: The strains CCAP 1660/26, CCAP 1660/28 and CCAP 1660/31 belong to syngen R3 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231339). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 80–153 × 49–73 µm; the single macronucleus is located around mid-cell and measures 21–53 × 12–31 µm; the adjacent single compact micronucleus measures 9–17 × 3–6 µm; no micronucleus seen in live cells of strain CCAP 1660/28; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 12–20; the length of the caudal cilia is 8–19 µm; the numerous trichocysts located in the cell cortex are 4–6 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 4–7 × 3–6 µm; the smaller algal cells measure 3–5 × 2–4 µm.Geographic distribution: The investigated strains of syngen R3 were found in Europe and Asia: Lake Piburg, Austria; Tokyo, Japan; Khabarovsk region, Amur River, Russia. In addition, this species has been reported from different places in Europe, Asia, North and South America as well as in Australia (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/26 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/26, isolated from Japan, have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: CC0FBA7E-9E3A-4C37-B424-C9BFF2018EC0.
    Paramecium tetratobursaria sp. nov.Synonym: Paramecium tetrabursaria nom. inval.Description: The strains CCAP 1660/25 and CCAP 1660/33 belong to syngen R4 according to Greczek-Stachura et al.10,11 and differ from other syngens by their SSU and ITS rDNA sequences (MT231347). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 65–179 × 37–79 µm; the single macronucleus is located around mid-cell and measures 18–53 × 10–29 µm; the adjacent single compact micronucleus measures 8–18 × 4–10 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–3 excretory pores each; the number of ciliary rows/20 µm is 14–19; the length of the caudal cilia is 12–20 µm; the numerous trichocysts located in the cell cortex are 4–7 µm in length. The symbiotic algae belong to C. variabilis (CCAP 1660/25) and M. conductrix (CCAP 1660/33); the larger algae measure 3–6 × 3–6 µm; the smaller algal cells measure 2–5 × 1–4 µm.Geographic distribution: The investigated strains of syngen R4 are found in North- and South America: Burlington, North Carolina, USA; San Pedro de la Paz, Laguna Grande, Chile. In addition, this species has been reported from Europe (see details in Supplementary Table 1).Reference material: Strain CCAP 1660/25 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/25, isolated from a pond in Burlington (North Carolina, USA), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 78BA9923-07A9-4918-AD7C-9E5E15CC9CDB.
    Paramecium pentobursaria sp. nov.Synonym: Paramecium pentabursaria nom. inval.Description: The strain CCAP 1660/30 belongs to syngen R5 according to Greczek-Stachura et al.10,11 and differs from other syngens by their SSU and ITS rDNA sequences (MT231348). From morphology, the cells are ellipsoidal to broadly ellipsoidal and dorso-ventrally flattened in vivo. The cells measure 161–194 × 76–99 µm; the single macronucleus is located around mid-cell and measures 24–47 × 19–31 µm; the adjacent single compact micronucleus measures 13–20 × 4–9 µm; the usually two (rarely one or three) contractile vacuoles, one in the anterior and one in the posterior cell portion have radial collecting channels and 1–4 excretory pores each; the number of ciliary rows/20 µm is 13–19; the length of the caudal cilia is 14–25 µm; the numerous trichocysts located in the cell cortex are 5–7 µm in length. The symbiotic algae belong to C. variabilis; the larger algae measure 5–6 × 5–6 µm; the smaller algal cells measure 4–5 × 3–4 µm.Geographic distribution: The investigated strain of Syngen R5 was found in Europe: Astrakhan Nature Reserve, Russia.Reference material: Strain CCAP 1660/30 is available at the Culture Collection of Algae and Protozoa (CCAP) at the Scottish Association for Marine Science, Oban, Scotland.Holotype: Two slides (one holotype, one paratype) with protargol-impregnated specimens from the reference material CCAP 1660/30, isolated from Astrakhan Nature Reserve (Russia), have been deposited in the Oberösterreichisches Landesmuseum at Linz (LI, Austria).Zoobank Registration LSID: 6629FA71-E00F-48C6-83AB-61C0CA4823B6.Syngen Affiliation related to Ciliate Morphology, Endosymbionts and Geographic DistributionPearson-correlations of morphometric, syngen-specific and endosymbiont datasets of the P. bursaria strains revealed four significant positive correlations (p  r  > 0.75) between ciliate cell length (BLEN) and width (BWID), BWID and macronucleus width (MACWID), as well as length and width of large symbiotic algae (LSALEN and LSAWID; Fig. 7).Figure 7Pearson-correlations of morphometric, symbiont and syngen data of Paramecium strains under study. Colored dots indicate the strength of correlation, and the size of dots represent p-values. Bold squares highlight significant correlations, with − 0.75  > r  > 0.75 and p  1, accounting for 73.1% variation in total (Supplementary Table 3). Principal component axis 1 (PC1) appears to be most negatively weighted by syngen (SYN) and width of the macronucleus (MACWID), separating CCAP 1660/30 and CCAP 1660/33 from the other strains. Principal component axis 2 (PC2) is primarily positively influenced by symbiotic algae characteristics (LSALEN, LSAWID, small symbiotic algal length (SSALEN) and width (SSAWID)) and, ciliate cell length (BLEN) and width (BWID; Supplementary Table 4), partitioning strain PB-25, CCAP 1660/26 and CCAP 1660/36 from CCAP 1660/31 and SAG 27.96 (Fig. 8).Figure 8PCA of morphometric data of Paramecium bursaria strains. Only the top eight contributing variables are shown.Full size imageThe redundancy analysis (RDA; Fig. 9) revealed a large difference between morphometric features and the tested set of explanatory variables (i.e., algal species (ALSPEC), LSAWID, SSALEN, SYN and GEO) as only 26.9% of the total variation could be explained.Figure 9Ordination diagram for redundancy analysis (RDA) of morphometric data and shown syngen (SYN), geographic region (GEO), and algal features (ALSPEC, LSAWID and SSALEN) as explanatory features.Full size image More

  • in

    Smaller birds with warmer temperatures

    Gill, J. A. et al. Proc. R. Soc. B 281, 20132161 (2014).Article 

    Google Scholar 
    Tomotani, B. M. et al. Glob. Chang. Biol. 24, 823–835 (2018).Article 

    Google Scholar 
    Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Proc. Natl Acad. Sci. USA 105, 13492–13496 (2008).Article 
    CAS 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Youngflesh, C., Saracco, J. F., Siegel, R. B. & Tingley, M. W. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01893-x (2022).Article 

    Google Scholar 
    Hughes, E. C. et al. Ecol. Lett. 25, 598–610 (2022).Article 

    Google Scholar 
    Tobias, J. A. et al. Ecol. Lett. 25, 581–597 (2022).Article 

    Google Scholar 
    Shine, R. Q. Rev. Biol. 64, 419–461 (1989).Article 
    CAS 

    Google Scholar 
    Dubiner, S. & Meiri, S. Glob. Ecol. Biogeogr. 31, 791–801 (2022).Article 

    Google Scholar 
    Jirinec, V. et al. Sci. Adv. 7, eabk1743 (2021).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Parmesan, C. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Bonamour, S., Chevin, L. M., Charmantier, A. & Teplitsky, C. Phil. Trans. R. Soc. Lond. B 374, 20180178 (2019).Article 

    Google Scholar 
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Ecol. Lett. 15, 365–377 (2012).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. Glob. Change Biol. 12, 450–455 (2006).Article 

    Google Scholar 
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Conserv. Biol. 25, 163–171 (2011).Article 

    Google Scholar 
    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).Berg, M. P. & Ellers, J. Evol. Ecol. 24, 617–629 (2010).Article 

    Google Scholar  More

  • in

    Experimentally increased snow depth affects high Arctic microarthropods inconsistently over two consecutive winters

    Callaghan, T. V. et al. Multiple effects of changes in arctic snow cover. Ambio 40, 32–45 (2011).
    Google Scholar 
    Cooper, E. J. Warmer shorter winters disrupt arctic terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 271 (2014).
    Google Scholar 
    IPCC. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324. (Cambridge University Press, 2013).Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25–46 (1984).
    Google Scholar 
    Osler, G. H. & Sommerkorn, M. Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology 88, 1611–1621 (2007).PubMed 

    Google Scholar 
    Coulson, S. J. et al. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68, 440–470 (2014).CAS 

    Google Scholar 
    Hodkinson, I. D. Terrestrial and freshwater invertebrates. In Arctic Biodiversity Assessment (ed. Barry, T.) 246–274 (Arctic Council, 2013).
    Google Scholar 
    Strathdee, A. T. & Bale, J. S. Life on the edge: Insect ecology in arctic environments. Annu. Rev. Entomol. 43, 85–106 (1998).CAS 
    PubMed 

    Google Scholar 
    Templer, P. H. et al. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biol. Fertil. Soils 48, 413–424 (2012).
    Google Scholar 
    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).CAS 

    Google Scholar 
    Slatyer, R. A., Nash, M. A. & Hoffmann, A. A. Measuring the effects of reduced snow cover on Australia’s alpine arthropods. Austral Ecol. 42, 844–857 (2017).
    Google Scholar 
    Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Glob. Change Biol. 18, 1152–1162 (2012).ADS 

    Google Scholar 
    Sulkava, P. & Huhta, V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Appl. Soil Ecol. 22, 225–239 (2003).
    Google Scholar 
    Konestabo, H. S., Michelsen, A. & Holmstrup, M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Appl. Soil Ecol. 36, 136–146 (2007).
    Google Scholar 
    Coulson, S. J., Leinaas, H. P., Ims, R. A. & Søvik, G. Experimental manipulation of the winter surface ice layer: The effects on a high arctic soil microarthropod community. Ecography 23, 299–306 (2000).
    Google Scholar 
    Dollery, R., Hodkinson, I. D. & Jonsdottir, I. S. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography 29, 111–119 (2006).
    Google Scholar 
    Ávila-Jimenez, M. L., Coulson, S. J., Solhoy, T. & Sjoblom, A. Overwintering of terrestrial Arctic arthropods: The fauna of Svalbard now and in the future. Polar Res. 29, 127–137 (2010).
    Google Scholar 
    Makkonen, M. et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43, 377–384 (2011).CAS 

    Google Scholar 
    Lindo, Z. Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biol. Biochem. 91, 271–278 (2015).CAS 

    Google Scholar 
    Hågvar, S. A review of Fennoscandian arthropods living on and in snow. Eur. J. Entomol. 107, 281–298 (2010).
    Google Scholar 
    Hao, C., Chen, T.-W., Wu, Y., Chang, L. & Wu, D. Snow microhabitats provide food resources for winter-active Collembola. Soil Biol. Biochem. 143, 107731 (2020).CAS 

    Google Scholar 
    Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: Implications for decomposition in the Northern Forest. Northeast. Nat. 24, B209–B234 (2017).
    Google Scholar 
    Convey, P. et al. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. J. Therm. Biol. 54, 111–117 (2015).PubMed 

    Google Scholar 
    Krab, E. J., Monteux, S., Weedon, J. T. & Dorrepaal, E. Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biol. Biochem. 138, 107569 (2019).CAS 

    Google Scholar 
    Sörensen, J. G. & Holmstrup, M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 57, 1147–1153 (2011).PubMed 

    Google Scholar 
    Convey, P., Coulson, S. J., Worland, M. R. & Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 41, 1587–1605 (2018).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Reproductive biology of the arctic collembolan Hypogastrura tullbergi. Ecography 22, 31–39 (1999).
    Google Scholar 
    Birkemoe, T. & Leinaas, H. P. Effects of temperature on the development of an arctic Collembola (Hypogastrura tullbergi). Funct. Ecol. 14, 693–700 (2001).
    Google Scholar 
    Kankaanpää, T. et al. Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna. Arct. Antarct. Alp. Res. 50, e1415624 (2018).
    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the high arctic. Plant Sci. 180, 157–167 (2011).CAS 
    PubMed 

    Google Scholar 
    Krab, E. J. et al. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J. Ecol. 106, 599–612 (2018).CAS 

    Google Scholar 
    Wheeler, H. C., Hoye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions-implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).PubMed 

    Google Scholar 
    Wheeler, J. A. et al. The snow and the willows: Earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. J. Ecol. 104, 1041–1050 (2016).CAS 

    Google Scholar 
    Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007).PubMed 

    Google Scholar 
    Coulson, S. J., Hodkinson, I. D. & Webb, N. R. Microscale distribution patterns in high Arctic soil microarthropod communities: The influence of plant species within the vegetation mosaic. Ecography 26, 801–809 (2003).
    Google Scholar 
    Hodkinson, I. D. et al. Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct. Alp. Res. 30, 306–313 (1998).
    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at Svalbard 1900–2100. Adv. Meteorol. 2011, 893790 (2011).
    Google Scholar 
    Alatalo, J. M., Jagerbrand, A. K. & Cuchta, P. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Sci. Rep. 5, 18161 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coulson, S. J. et al. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol. 16, 147–153 (1996).
    Google Scholar 
    Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in Northern Vermont. Soil Sci. Soc. Am. J. 67, 1234–1242 (2003).ADS 
    CAS 

    Google Scholar 
    van Pelt, W. J. J. et al. Multidecadal climate and seasonal snow conditions in Svalbard. J. Geophys. Res. Earth Surf. 121, 2100–2117 (2016).ADS 

    Google Scholar 
    Semenchuk, P. R. et al. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry 124, 81–94 (2015).
    Google Scholar 
    Sjursen, H., Michelsen, A. & Jonasson, S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol. 30, 148–161 (2005).
    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).
    Google Scholar 
    Harte, J., Rawa, A. & Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).CAS 

    Google Scholar 
    Siepel, H. Life history tactics of soil microarthropods. Biol. Fertil. Soils 18, 263–278 (1994).
    Google Scholar 
    Chernova, N. M., Potapov, M. B., Savenkova, Y. Y. & Bokova, A. I. Ecological significance of parthenogenesis in Collembola. Zool. Zhurnal 88, 1455–1470 (2009).
    Google Scholar 
    Birkemoe, T. & Somme, L. Population dynamics of two collembolan species in an Arctic tundra. Pedobiologia 42, 131–145 (1998).
    Google Scholar 
    Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).
    Google Scholar 
    Widenfalk, L. A., Malmstrom, A., Berg, M. P. & Bengtsson, J. Small-scale Collembola community composition in a pine forest soil—Overdispersion in functional traits indicates the importance of species interactions. Soil Biol. Biochem. 103, 52–62 (2016).CAS 

    Google Scholar 
    Morgner, E. The importance of winter in annual ecosystem respiration in the High Arctic: Effects of snow depth in two vegetation types. Polar Res. 29, 474–474 (2010).
    Google Scholar 
    Green, K. & Slatyer, R. Arthropod community composition along snowmelt gradients in snowbeds in the Snowy Mountains of south-eastern Australia. Austral Ecol. 45, 144–157 (2020).
    Google Scholar 
    Ayres, E. et al. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol. 33, 897–907 (2010).
    Google Scholar 
    Semenchuk, P. R., Elberling, B. & Cooper, E. J. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol. Evol. 3, 2586–2599 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Morsdorf, M. A. et al. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem. 135, 222–234 (2019).CAS 

    Google Scholar 
    Cooper, E. J., Little, C. J., Pilsbacher, A. K. & Morsdorf, M. A. Disappearing green: Shrubs decline and bryophytes increase with nine years of increased snow accumulation in the High Arctic. J. Veg. Sci. 30, 857–867 (2019).
    Google Scholar 
    Mundra, S. et al. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiologyopen 5, 856–869 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneider, K. & Maraun, M. Feeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49, 61–67 (2005).
    Google Scholar 
    Krab, E. J., Berg, M. P., Aerts, R., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Vascular plant litter input in subarctic peat bogs changes Collembola diets and decomposition patterns. Soil Biol. Biochem. 63, 106–115 (2013).CAS 

    Google Scholar 
    Jucevica, E. & Melecis, V. Global warming affect Collembola community: A long-term study. Pedobiologia 50, 177–184 (2006).
    Google Scholar 
    Krab, E. J., Oorsprong, H., Berg, M. P. & Cornelissen, J. H. C. Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct. Ecol. 24, 1362–1369 (2010).
    Google Scholar 
    Zettel, J. Alpine Collembola—Adaptations and strategies for survival in harsh environments. Zool. Anal. Complex Syst. 102, 73–89 (2000).
    Google Scholar 
    Block, W. Terrestrial arthropods and low-temperature. Cryobiology 18, 436–444 (1981).CAS 
    PubMed 

    Google Scholar 
    Semenchuk, P. R., Christiansen, C. T., Grogan, P., Elberling, B. & Cooper, E. J. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem. J. Geophys. Res. Biogeosci. 121, 1236–1248 (2016).
    Google Scholar 
    Semenchuk, P. R. et al. Soil organic carbon depletion and degradation in surface soil after long-term non-growing season warming in High Arctic Svalbard. Sci. Total Environ. 646, 158–167 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillespie, M. A. K. et al. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 49, 718–731 (2020).PubMed 

    Google Scholar 
    Andriuzzi, W. S., Adams, B. J., Barrett, J. E., Virginia, R. A. & Wall, D. H. Observed trends of soil fauna in the Antarctic Dry Valleys: Early signs of shifts predicted under climate change. Ecology 99, 312–321 (2018).CAS 
    PubMed 

    Google Scholar 
    Staub, B. & Delaloye, R. Using near-surface ground temperature data to derive snow insulation and melt indices for mountain permafrost applications. Permafr. Periglac. Process. 28, 237–248 (2017).
    Google Scholar 
    Rendos, M. et al. Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur. J. Soil Biol. 75, 180–187 (2016).
    Google Scholar 
    Fjellberg, A. The Collembola of the Norwegian Arctic Islands (Norsk Polarinstitutt, 1994).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020). Accessed 06 June 2020. More

  • in

    Abiotic conditions shape spatial and temporal morphological variation in North American birds

    Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning-Gaese, K. & Schleuning, M. Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283, 20152444 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Grant, P. R. Inheritance of size and shape in a population of Darwin’s finches, Geospiza conirostris. Proc. R. Soc. Lond. B 220, 219–236 (1983).
    Google Scholar 
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).PubMed 

    Google Scholar 
    Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Gött. Stud. 3, 595–708 (1847).
    Google Scholar 
    Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    Altshuler, D. L. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).PubMed 

    Google Scholar 
    Teplitsky, C. & Millien, V. Climate warming and Bergmann’s rule through time: is there any evidence? Evol. Appl. 7, 156–168 (2014).PubMed 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).PubMed 

    Google Scholar 
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. J. R. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
    Google Scholar 
    Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Declining body sizes in North American birds associated with climate change. Oikos 119, 1047–1055 (2010).
    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 

    Google Scholar 
    DeSante, D. F., Saracco, J. F., O’Grady, D. R., Burton, K. M. & Walker, B. L. Methodological considerations of the Monitoring Avian Productivity and Survivorship (MAPS) program. Stud. Avian Biol. 29, 28–45 (2004).West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 

    Google Scholar 
    Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dubiner, S. & Meiri, S. Widespread recent changes in morphology of Old World birds, global warming the immediate suspect. Glob. Ecol. Biogeogr. 31, 791–801 (2022).
    Google Scholar 
    Ballinger, M. A. & Nachman, M. W. The contribution of genetic and environmental effects to Bergmann’s rule and Allen’s rule in house mice. Am. Nat. https://doi.org/10.1086/719028 (2022).Andrew, S. C., Hurley, L. L., Mariette, M. M. & Griffith, S. C. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).CAS 
    PubMed 

    Google Scholar 
    Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B 286, 20191332 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Salewski, V., Siebenrock, K.-H., Hochachka, W. M., Woog, F. & Fiedler, W. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE 9, e101927 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 

    Google Scholar 
    Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010).PubMed 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rollinson, C. R. et al. Working across space and time: nonstationarity in ecological research and application. Front. Ecol. Environ. 19, 66–72 (2021).
    Google Scholar 
    Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. eLife 7, e27166 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).PubMed 

    Google Scholar 
    Baldwin, M. W., Winkler, H., Organ, C. L. & Helm, B. Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol. 23, 1050–1063 (2010).CAS 
    PubMed 

    Google Scholar 
    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, M. P., Jahn, A. E. & Mason, N. A. Morphology of migration: associations between wing shape, bill morphology and migration in kingbirds (Tyrannus). Biol. J. Linn. Soc. 135, 71–83 (2022).
    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Elsevier, 2010).Clegg, S. M., Kelly, J. F., Kimura, M. & Smith, T. B. Combining genetic markers and stable isotopes to reveal population connectivity and migration patterns in a neotropical migrant, Wilson’s warbler (Wilsonia pusilla). Mol. Ecol. 12, 819–830 (2003).CAS 
    PubMed 

    Google Scholar 
    Bell, C. P. Leap-frog migration in the fox sparrow: minimizing the cost of spring migration. Condor 99, 470–477 (1997).
    Google Scholar 
    Billerman, S., Keeney, B., Rodewald, P. & Schulenberg, T. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).Desrochers, A. Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91, 1577–1582 (2010).CAS 
    PubMed 

    Google Scholar 
    Swaddle, J. P. & Lockwood, R. Morphological adaptations to predation risk in passerines. J. Avian Biol. 29, 172–176 (1998).
    Google Scholar 
    Chown, S. L. & Klok, C. J. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455 (2003).
    Google Scholar 
    Hsiung, A. C., Boyle, W. A., Cooper, R. J. & Chandler, R. B. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications: animal altitudinal migration review. Biol. Rev. 93, 2049–2070 (2018).PubMed 

    Google Scholar 
    Barras, A. G., Liechti, F. & Arlettaz, R. Seasonal and daily movement patterns of an alpine passerine suggest high flexibility in relation to environmental conditions. J. Avian Biol. 52, jav.02860 (2021).
    Google Scholar 
    Spence, A. R. & Tingley, M. W. Body size and environment influence both intraspecific and interspecific variation in daily torpor use across hummingbirds. Funct. Ecol. 35, 870–883 (2021).CAS 

    Google Scholar 
    Moreau, R. E. Variation in the western Zosteropidae (Aves). Bull. Br. Mus. Nat. Hist. Zool. 4, 311–433 (1957).
    Google Scholar 
    Hamilton, T. H. The adaptive significances of intraspecific trends of variation in wing length and body size among bird species. Evolution 15, 180–194 (1961).
    Google Scholar 
    Hodkinson, I. D. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80, 489–513 (2005).PubMed 

    Google Scholar 
    Feinsinger, P., Colwell, R. K., Terborgh, J. & Chaplin, S. B. Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. Am. Nat. 113, 481–497 (1979).
    Google Scholar 
    Aldrich, J. W. Ecogeographical Variation in Size and Proportions of Song Sparrows (Melospiza melodia) (American Ornithological Society, 1984).Sun, Y. et al. The role of climate factors in geographic variation in body mass and wing length in a passerine bird. Avian Res. 8, 1 (2017).Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed 

    Google Scholar 
    McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).PubMed 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).CAS 
    PubMed 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. 5, 987–994 (2021).PubMed 

    Google Scholar 
    Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).CAS 
    PubMed 

    Google Scholar 
    Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).CAS 
    PubMed 

    Google Scholar 
    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).
    Google Scholar 
    Prum, R. O. Interspecific social dominance mimicry in birds: social mimicry in birds. Zool. J. Linn. Soc. 172, 910–941 (2014).
    Google Scholar 
    Pyle, P. Identification Guide to North American Birds: A Compendium of Information on Identifying, Ageing, and Sexing ‘Near-Passerines’ and Passerines in the Hand (Slate Creek Press, 1997).Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).
    Google Scholar 
    Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) (US Geological Survey, 2011).Thornton, M. M. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4 (ORNL Distributed Active Archive Center, 2020).Greenewalt, C. H. The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans. Am. Philos. Soc. 65, 1–67 (1975).
    Google Scholar 
    Longo, G. & Montévil, M. Perspectives on Organisms: Biological Time, Symmetries, and Singularities (Springer, 2014).Harvey, P. H. in Scaling in Biology (eds Brown, J. H. & West, G. B.) 253–265 (Oxford Univ. Press, 2000).Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5 (2013).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 

    Google Scholar 
    Nudds, R. L., Kaiser, G. W. & Dyke, G. J. Scaling of avian primary feather length. PLoS ONE 6, e15665 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nudds, R. Wing-bone length allometry in birds. J. Avian Biol. 38, 515–519 (2007).
    Google Scholar 
    Anderson, S. C., Branch, T. A., Cooper, A. B. & Dulvy, N. K. Black-swan events in animal populations. Proc. Natl Acad. Sci. USA 114, 3252–3257 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0 (Stan Development Team, 2018); http://mc-stan.orgCarpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Youngflesh, C. MCMCvis: tools to visualize, manipulate, and summarize MCMC output. J. Open Source Softw. 3, 640 (2018).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).
    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2018).Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdisCramp, S. & Brooks, D. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic, Vol. VI. Warblers (Oxford Univ. Press, 1992).Che-Castaldo, J., Che-Castaldo, C. & Neel, M. C. Predictability of demographic rates based on phylogeny and biological similarity. Conserv. Biol. 32, 1290–1300 (2018).PubMed 

    Google Scholar 
    Villemereuil, P., de, Wells, J. A., Edwards, R. D. & Blomberg, S. P. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 

    Google Scholar 
    Hendry, A. P. & Kinnison, M. T. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).PubMed 

    Google Scholar 
    Gingerich, P. Rates of evolution: effects of time and temporal scaling. Science 222, 159–162 (1983).CAS 
    PubMed 

    Google Scholar 
    Bird, J. P. et al. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 34, 1252–1261 (2020).Gingerich, P. D. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40, 657–675 (2009).
    Google Scholar 
    Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151–163 (1995).PubMed 

    Google Scholar 
    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).PubMed 

    Google Scholar  More

  • in

    Thermal acclimation and metabolic scaling of a groundwater asellid in the climate change scenario

    Li, J. & Thompson, D. W. Widespread changes in surface temperature persistence under climate change. Nature 599(7885), 425–430. https://doi.org/10.1038/s41586-021-03943-z (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Raftery, A. E., Zimmer, A., Frierson, D. M., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7, 637–641 (2017).ADS 
    CAS 

    Google Scholar 
    Olabi, A. G. et al. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sustain. Energy Rev. 153, 111710. https://doi.org/10.1016/j.rser.2021.111710 (2022).CAS 

    Google Scholar 
    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 103–114 (2004).
    Google Scholar 
    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11(12), 926–932 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figura, S., Livingstone, D. M., Hoehn, E. & Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 38(23), 401–405 (2011).
    Google Scholar 
    Mueller, M. H., Huggenberger, P. & Epting, J. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources. Sci. Total Environ. 627, 1121–1136 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375, 601–612 (2009).ADS 
    CAS 

    Google Scholar 
    Dehghani, R., Poudeh, H. T. & Izadi, Z. The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Ground. Sustain. Dev. 16, 100702. https://doi.org/10.1016/j.gsd.2021.100702 (2022).
    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—Too risky to bet against. Nature 57, 592–595 (2019).ADS 

    Google Scholar 
    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50(1), 85–94 (2021).PubMed 

    Google Scholar 
    Stein, H. et al. Stygoregions—A promising approach to a bioregional classification of groundwater systems. Sci. Rep. 2, 673. https://doi.org/10.1038/srep00673 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baković, N., Matoničkin Kepčija, R. & Siemensma, F. J. Transitional and small aquatic cave habitats diversification based on protist assemblages in the Veternica cave (Medvednica Mt., Croatia). Subterr. Biol. 42, 43–60 (2022).
    Google Scholar 
    Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11(10), 707–717 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, Z. et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 25, 771–785 (2017).ADS 

    Google Scholar 
    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41(2), 424–436 (2018).
    Google Scholar 
    Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: conservation issues. J. Nat. Conserv. 45, 90–97 (2018).
    Google Scholar 
    Zagmajster, M., Malard, F., Eme, D. & Culver, D. C. Subterranean biodiversity patterns from global to regional scales. In Cave Ecology, Ecological Studies—Analysis and Synthesis (eds Moldovan, O. et al.) 19–227 (Springer, 2018).
    Google Scholar 
    Hose, G. C. et al. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct. Ecol. 36, 2200. https://doi.org/10.1111/1365-2435.14125 (2022).CAS 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
    Google Scholar 
    Pallarées, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2020).
    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612. https://doi.org/10.1098/rspb.2013.2612 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: A review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Salinity and temperature increase impact groundwater crustaceans. Sci. Rep. 10(1), 1–9 (2020).
    Google Scholar 
    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. Mol. Amp Integr. Physiol. 141, 1–7 (2005).
    Google Scholar 
    Issartel, J., Voituron, Y. & Hervant, F. Impact of temperature on the survival, the activity and the metabolism of the cave-dwelling Niphargus virei, the ubiquitous stygobiotic N. rhenorhodanensis and the surface-dwelling Gammarus fossarum (Crustacea, Amphipoda). Subterr. Biol. 5, 9–14 (2007).
    Google Scholar 
    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 216, 1683–1694 (2013).CAS 
    PubMed 

    Google Scholar 
    Di Lorenzo, T. et al. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 60, 426–435 (2015).
    Google Scholar 
    Di Lorenzo, T. & Galassi, D. M. P. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: Does global warming affect groundwater populations? Water 9, 951. https://doi.org/10.3390/w9120951 (2017).ADS 
    CAS 

    Google Scholar 
    Mammola, S. et al. Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthr. Rev. 6(1–2), 98–116 (2019).
    Google Scholar 
    Jones, K. et al. The critical thermal maximum of diving beetles (Coleoptera: Dytiscidae): A comparison of subterranean and surface-dwelling species. Curr. Opin. Insect. Sci. 1, 100019 (2021).
    Google Scholar 
    Pörtner, H. O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217–2230 (2022).
    Google Scholar 
    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (Wiley, 2009).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hervant, F., Mathieu, J., Barré, H., Simon, K. & Pinon, C. Comparative study on the behavioural, ventilatory, and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. B 118A, 1277–1283 (1997).CAS 

    Google Scholar 
    Wilhelm, F. M., Taylor, S. J. & Adams, G. L. Comparison of routine metabolic rates of the stygobite, Gammarus acherondytes (Amphipoda: Gammaridae) and the stygophile, Gammarus troglophilus. Freshwat. Biol. 51, 1162–1174 (2006).
    Google Scholar 
    Reboleira, A. S. P. S., Borges, P., Gonçalves, F., Serrano, A. R. M. & Oromí, P. The subterranean fauna of a biodiversity hotspot region—Portugal: An overview and its conservation. Int. J. Speleol. 40(1), 23–37 (2011).
    Google Scholar 
    Reboleira, A. S. P. S., Abrantes, N., Oromí, P. & Gonçalves, F. J. M. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: General aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224, 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).ADS 
    CAS 

    Google Scholar 
    Morvan, C. et al. Timetree of Aselloidea reveals species diversification dynamics in groundwater. Syst. Biol. 62(4), 512–522 (2013).CAS 
    PubMed 

    Google Scholar 
    Castaño-Sánchez, A., Malard, F., Kalčikova, G. & Reboleira, A. S. P. S. Novel protocol for acute in situ ecotoxicity test using native crustaceans applied to groundwater ecosystems. Water 13(8), 1132. https://doi.org/10.3390/w13081132 (2021).CAS 

    Google Scholar 
    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681(1), 292–304 (2019).ADS 
    MathSciNet 
    PubMed 

    Google Scholar 
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptative potential of critical thermal limits: Methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4” law of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall/CRC Press, 2006).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018).Simčič, T. & Sket, B. Comparison of some epigean and troglobiotic animals regarding their metabolism intensity. Examination of a classical assertion. Int. J. Speleol. 48, 133–144 (2019).
    Google Scholar 
    Hazell, S. P., Pedersen, B. P., Worland, M. R., Blackburn, T. M. & Bale, J. S. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol. Entomol. 33(4), 389–394 (2008).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224. https://doi.org/10.1038/s41558-018-0067-3 (2018).ADS 

    Google Scholar 
    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43(5), 724–734 (2020).
    Google Scholar 
    Sánchez-Fernández, D., Rizzo, V. & Bourdeau, C. The deep subterranean environment as a model system in ecological, biogeographical and evolutionary research. Subterr. Biol. 25, 1–7 (2018).
    Google Scholar 
    Pallarés, S. et al. Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change. Anim. Conserv. 24(3), 482–490 (2021).MathSciNet 

    Google Scholar 
    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34(1), 355–367 (2015).
    Google Scholar 
    Saccò, M. et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: The Australian paradigm. Freshw. Biol. https://doi.org/10.1111/fwb.13987 (2022).
    Google Scholar 
    Ikeda, T., Kanno, Y., Ozaki, K. & Shinada, A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol. 139, 587–596 (2001).
    Google Scholar 
    Mezek, T., Simčič, T., Arts, M. T. & Brancelj, A. Effect of fasting on hypogean (Niphargus stygius) and epigean (Gammarus fossarum) amphipods: A laboratory study. Aquat. Ecol. 44(2), 397–408 (2010).CAS 

    Google Scholar 
    Hüppop, K. The role of metabolism in the evolution of cave animals. NSS Bulletin 47, 136–146 (1985).
    Google Scholar 
    Humphreys, W. F. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17(1), 5–21 (2009).ADS 
    CAS 

    Google Scholar 
    Glazier, D. S. The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 56(4), 325–332 (2006).
    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Change 11, 458–459 (2021).ADS 

    Google Scholar 
    Reboleira, A. S. P. S. et al. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environ. Microbiome 17, 41 (2022).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Characterizing phenotypic diversity in marine populations of the threespine stickleback

    Bell, M. A. & Foster, S. A. The Evolutionary Biology of the Threespine Stickleback (Oxford University Press, 1994).
    Google Scholar 
    Seebacher, F., Webster, M. M., James, R. S., Tallis, J. & Ward, A. J. W. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). R. Soc. Open Sci. 3, 160316 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63, 2004–2016 (2009).PubMed 

    Google Scholar 
    Svanbäck, R. & Schluter, D. Niche specialization influences adaptive phenotypic plasticity in the threespine stickleback. Am. Nat. 180, 50–59 (2012).PubMed 

    Google Scholar 
    Caldecutt, W. J. & Adams, D. C. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998, 827–838 (1998).
    Google Scholar 
    Yershov, P. & Sukhotin, A. Age and growth of marine three-spined stickleback in the White Sea 50 years after a population collapse. Polar Biol. 38, 1813–1823 (2015).
    Google Scholar 
    Dorgham, A. S. et al. Morphological variation of threespine stickleback (Gasterosteus aculeatus) on different stages of spawning period. Proc. KarRC RAS 59–73 (2018). https://doi.org/10.17076/them819.DeFaveri, J. & Merilä, J. Evidence for adaptive phenotypic differentiation in Baltic Sea sticklebacks. J. Evol. Biol. 26, 1700–1715 (2013).CAS 
    PubMed 

    Google Scholar 
    Shaw, K. A., Scotti, M. L. & Foster, S. A. Ancestral plasticity and the evolutionary diversification of courtship behaviour in threespine sticklebacks. Anim. Behav. 73, 415–422 (2007).
    Google Scholar 
    McGee, M. D., Schluter, D. & Wainwright, P. C. Functional basis of ecological divergence in sympatric stickleback. BMC Evol. Biol. 13, 277 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Berner, D., Grandchamp, A.-C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).PubMed 

    Google Scholar 
    Walker, J. A. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linn. Soc. 61, 3–50 (1997).
    Google Scholar 
    Hagen, D. W. & Gilbertson, L. G. Geographic variation and environmental selection in Gasterosteus aculeatus L. in the Pacific Northwest America. Evolution 26, 32–51 (1972).CAS 
    PubMed 

    Google Scholar 
    Smith, C., Zięba, G., Spence, R., Klepaker, T. & Przybylski, M. Three-spined stickleback armour predicted by body size, minimum winter temperature and pH. J. Zool. 311, 13–22 (2020).
    Google Scholar 
    Aguirre, W. E. & Bell, M. A. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment: Stickleback body shape evolution. Biol. J. Linn. Soc. 105, 817–831 (2012).
    Google Scholar 
    Lavin, P. A. & McPhail, J. D. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): Site-specific differentiation of trophic morphology. Can. J. Zool. 63, 2632–2638 (1985).
    Google Scholar 
    Matthews, B., Marchinko, K. B., Bolnick, D. I. & Mazumder, A. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Ecology 91, 1025–1034 (2010).PubMed 

    Google Scholar 
    Lefébure, R., Larsson, S. & Byström, P. A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 79, 1815–1827 (2011).PubMed 

    Google Scholar 
    Foster, S. A. Inference of evolutionary pattern: Diversionary displays of three-spined sticklebacks. Behav. Ecol. 5, 114–121 (1992).
    Google Scholar 
    Taylor, E. B. & McPhail, J. D. Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biol. J. Linn. Soc. 66, 271–291 (1999).
    Google Scholar 
    Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, J. A. & Bell, M. A. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). J. Zool. 252, 293–302 (2000).
    Google Scholar 
    Kristjánsson, B. K., Skúlason, S. & Noakes, D. L. G. Rapid divergence in a recently isolated population of threespine stickleback (Gasterosteus aculeatus L.). Evol. Ecol. Res. 4, 659–672 (2002).
    Google Scholar 
    Wund, M. A., Baker, J. A., Clancy, B., Golub, J. L. & Foster, S. A. A test of the “flexible stem” model of evolution: Ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am. Nat. 172, 449–462 (2008).PubMed 

    Google Scholar 
    Arif, S., Aguirre, W. E. & Bell, M. A. Evolutionary diversification of opercle shape in Cook Inlet threespine stickleback. Biol. J. Linn. Soc. 97, 832–844 (2009).
    Google Scholar 
    Terekhanova, N. V. et al. Fast evolution from precast bricks: Genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus. PLoS Genet. 10, e1004696 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Miller, S. E., Roesti, M. & Schluter, D. A single interacting species leads to widespread parallel evolution of the stickleback genome. Curr. Biol. 29, 530–537 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ab Ghani, N. I., Herczeg, G. & Merilä, J. Effects of perceived predation risk and social environment on the development of three-spined stickleback (Gasterosteus aculeatus) morphology. Biol. J. Linn. Soc. 118, 520–535 (2016).
    Google Scholar 
    DeFaveri, J. & Merilä, J. Local adaptation to salinity in the three-spined stickleback?. J. Evol. Biol. 27, 290–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Jakubavičiūtė, E., De Blick, Y., Dainys, J., Ložys, L. & Olsson, J. Morphological divergence of three-spined stickleback in the Baltic Sea—Implications for stock identification. Fish. Res. 204, 305–315 (2018).
    Google Scholar 
    Yanos, C. L. et al. Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecol. Evol. 00, 1–12 (2021).
    Google Scholar 
    Fang, B., Merilä, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol. Phylogenet. Evol. 127, 613–625 (2018).PubMed 

    Google Scholar 
    Ortí, G., Bell, M. A., Reimchen, T. E. & Meyer, A. Global survey of mitochondrial DNA sequences in the threespine sticklebacks: Evidence for recent migrations. Evolution 48, 608–622 (1994).PubMed 

    Google Scholar 
    Mäkinen, H. S. & Merilä, J. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe: Evidence for multiple glacial refugia. Mol. Phylogenet. Evol. 46, 167–182 (2008).PubMed 

    Google Scholar 
    Thomson, R. E. Oceanography of the British Columbia Coast (Department of Fisheries and Oceans, 1981).
    Google Scholar 
    Emmett, R. et al. Geographic signatures of North American west coast estuaries. Estuaries 23, 765 (2000).CAS 

    Google Scholar 
    Dallimore, A. & Jmieff, D. Canadian west coast fjords and inlets. Geol. Soc. Spec. Pub. 344, 143–162 (2010).
    Google Scholar 
    Schoch, G. C., Albert, D. M. & Shanley, C. S. An estuarine habitat classification for a complex fjordal island archipelago. Estuaries Coasts 37, 160–176 (2014).
    Google Scholar 
    Rudnick, D. L. & Ferrari, R. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283, 526–529 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback. Evolution 63, 2831–2837 (2009).PubMed 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Plasticity and heritability of morphological variation within and between parapatric stickleback demes. J. Evol. Biol. 25, 1097–1112 (2012).CAS 
    PubMed 

    Google Scholar 
    Webster, M. M., Atton, N., Hart, P. J. B. & Ward, A. J. W. Habitat-specific morphological variation among threespine sticklebacks (Gasterosteus aculeatus) within a drainage basin. PLoS ONE 6, e21060 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J. Fish. Biol. 70, 1484–1503 (2007).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biol. J. Linn. Soc. 95, 505–516 (2008).
    Google Scholar 
    Spoljaric, M. A. & Reimchen, T. E. Habitat-specific trends in ontogeny of body shape in stickleback from coastal archipelago: Potential for rapid shifts in colonizing populations. J. Morphol. 272, 590–597 (2011).CAS 
    PubMed 

    Google Scholar 
    Morris, M. R. J. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol. 23, 3226–3240 (2014).PubMed 

    Google Scholar 
    Ramler, D., Mitteroecker, P., Shama, L. N. S., Wegner, K. M. & Ahnelt, H. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J. Evol. Biol. 27, 497–507 (2014).CAS 
    PubMed 

    Google Scholar 
    Mazzarella, A. B., Voje, K. L., Hansson, T. H., Taugbøl, A. & Fischer, B. Strong and parallel salinity-induced phenotypic plasticity in one generation of threespine stickleback. J. Evol. Biol. 28, 667–677 (2015).CAS 
    PubMed 

    Google Scholar 
    Leinonen, T., Cano, J. M., Mäkinen, H. & Merilä, J. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J. Evol. Biol. 19, 1803–1812 (2006).CAS 
    PubMed 

    Google Scholar 
    Schluter, D., Marchinko, K. B., Barrett, R. D. H. & Rogers, S. M. Natural selection and the genetics of adaptation in threespine stickleback. Phil. Trans. R. Soc. B 365, 2479–2486 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Rogers, S. M. et al. Genetic signature of adaptive peak shift in threespine stickleback. Evolution 66, 2439–2450 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Jamniczky, H. A., Barry, T. N. & Rogers, S. M. Eco-evo-devo in the study of adaptive divergence: Examples from threespine stickleback (Gasterosteus aculeatus). Integr. Comp. Biol. 55, 166–178 (2015).PubMed 

    Google Scholar 
    Gow, J. L., Rogers, S. M., Jackson, M. & Schluter, D. Ecological predictions lead to the discovery of a benthic–limnetic sympatric species pair of threespine stickleback in Little Quarry Lake, British Columbia. Can. J. Zool. 86, 564–571 (2008).
    Google Scholar 
    McPhail, J. D. Genetic evidence for a species pair in Enos Lake, British Columbia. Can. J. Zool. 62, 1402–1408 (1984).
    Google Scholar 
    McPhail, J. D. Ecology and evolution of sympatric sticklebacks (Gasterosteus): Origin of the species pairs. Can. J. Zool. 71, 515–523 (1993).
    Google Scholar 
    Kimmel, C. B., Aguirre, W., Ullmann, B., Currey, M. & Cresko, W. Allometric change accompanies opercular shape evolution in Alaskan threespine sticklebacks. Behaviour 145, 669–691 (2008).
    Google Scholar 
    Wootton, R. J. A Functional Biology of Sticklebacks (Croom Helm, 1984).
    Google Scholar 
    Kitano, J., Mori, S. & Peichel, C. L. Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2, 336–349 (2007).
    Google Scholar 
    Aguirre, W. E., Ellis, K. E., Kusenda, M. & Bell, M. A. Phenotypic variation and sexual dimorphism in anadromous threespine stickleback: Implications for postglacial adaptive radiation. Biol. J. Linn. Soc. 95, 465–478 (2008).
    Google Scholar 
    Davenne, E. & Masson, D. Water properties in the Straits of Georgia and Juan de Fuca. 41 http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/straitofgeorgia/JdFG_e.pdf (2001).Irvine, J. R. & Crawford, W. R. State of the Ocean Report for the Pacific North Coast Integrated Management Area (PNCIMA). 51 (2011).DFO. Data from British Columbia (BC) Lighthouses. Department of Fisheries and Oceans https://www.dfo-mpo.gc.ca/science/data-donnees/lightstations-phares/index-eng.html (2020).Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst. 25, 547–572 (1994).
    Google Scholar 
    Griffin, D. A. & LeBlond, P. H. Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast Shelf. Sci. 30, 275–297 (1990).ADS 

    Google Scholar 
    Vaz, N., Dias, J. M., Leitão, P. & Martins, I. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dyn. 55, 416–429 (2005).ADS 

    Google Scholar 
    Rybkina, E. V., Ivanova, T. S., Ivanov, M. V., Kucheryavyy, A. V. & Lajus, D. L. Habitat preference of three-spined stickleback juveniles in experimental conditions and in wild eelgrass. J. Mar. Biol. Ass. UK 97, 1437–1445 (2017).
    Google Scholar 
    Flynn, S., Cadrin, C. & Filatow, D. Estuaries in British Columbia. 6 (2006).Kelly, J. R., Proctor, H. & Volpe, J. P. Intertidal community structure differs significantly between substrates dominated by native eelgrass (Zostera marina L.) and adjacent to the introduced oyster Crassostrea gigas (Thunberg) in British Columbia, Canada. Hydrobiologia 596, 57–66 (2008).
    Google Scholar 
    Fagherazzi, S. et al. Ecogeomorphology of Salt Marshes. In The Ecogeomorphology of Tidal Marshes (eds Blum, L. K. & Marani, M.) 182–200 (American Geophysical Union, 2004).
    Google Scholar 
    Campbell, A. Vegetation-environment relationships and plant community classification and ordination in British Columbia coastal salt marshes. Master’s Thesis. (University of British Columbia, 1986).Kjerfve, B. Comparative oceanography of coastal lagoons. in Estuarine Variability (ed. Wolfe, D. A.) 63–81 (Academic Press, 1986). https://doi.org/10.1016/B978-0-12-761890-6.50009-5.Barnes, R. S. K. & de Villiers, C. J. Animal abundance and food availability in coastal lagoons and intertidal marine sediments. J. Mar. Biol. Ass. UK 80, 193–202 (2000).
    Google Scholar 
    Saimoto, R. K. Life history of marine stickleback in Oyster Lagoon, British Columbia. Master’s Thesis. (University of British Columbia, 1993).King, R. W. The threespine stickleback adaptive radiation: Salinity, plasticity, and the important of ancestry. Doctoral Dissertation. (Clark University, 2016).Ahnelt, H. Imprecise naming: the anadromous and the sea spawning threespine stickleback should be discriminated by names. Biologia 73, 389–392 (2018).
    Google Scholar 
    Morris, M. R. J., Bowles, E., Allen, B. E., Jamniczky, H. A. & Rogers, S. M. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol. Biol. 18, 113 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kim, S.-Y., Costa, M. M., Esteve-Codina, A. & Velando, A. Transcriptional mechanisms underlying life-history responses to climate change in the three-spined stickleback. Evol. Appl. 10, 718–730 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sambrook, R. J. Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh. Master’s Thesis. (University of British Columbia, 1990). https://doi.org/10.14288/1.0098704.Jakubavičiūtė, E., Bergström, U., Eklöf, J. S., Haenel, Q. & Bourlat, S. J. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE 12, e0186929 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, G. J. A. & Strange, C. D. The distribution of salmonids in upland streams in relation to depth and gradient. J. Fish Biol. 20, 579–591 (1982).
    Google Scholar 
    Macdonald, J. S., Birtwell, I. K. & Kruzynski, G. M. Food and habitat utilization by juvenile salmonids in the Campbell River estuary. Can. J. Fish. Aquat. Sci. 44, 1233–1246 (1987).
    Google Scholar 
    Everest, F. H. & Chapman, D. W. Habitat selection and spatial interaction by juvenile chinook salmon and steelhead trout in two Idaho streams. J. Fish. Res. Bd. Can. 29, 91–100 (2011).
    Google Scholar 
    McPhail, J. D. Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of south-western British Columbia. In The Evolutionary Biology of the Threespine Stickleback (eds Bell, M. A. & Foster, S. A.) 399–471 (Oxford University Press, 1994).
    Google Scholar 
    Kimmel, C. B. et al. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 66, 419–434 (2012).PubMed 

    Google Scholar 
    Østbye, K. et al. The temporal window of ecological adaptation in postglacial lakes: A comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evol. Biol. 16, 102 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Aguirre, W. E. & Akinpelu, O. Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 77, 802–821 (2010).CAS 
    PubMed 

    Google Scholar 
    Reimchen, T. E. & Nosil, P. Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58, 1274 (2004).CAS 
    PubMed 

    Google Scholar 
    Pistore, A. Ontogeny of population-specific phenotypic variation in the threespine stickleback. Master’s Thesis. (University of Calgary, 2018).Yurtseva, A. O. et al. Aging three-spined sticklebacks Gasterosteus aculeatus: Comparison of estimates from three structures. J. Fish Biol. 95, 802–811 (2019).PubMed 

    Google Scholar 
    Picard, P. Jr., Dodson, J. J. & FitzGerald, G. J. Habitat segregation among the age groups of Gasterosteus aculeatus (Pisces: Gasterosteidae) in the middle St. Lawrence estuary, Canada. Can. J. Zool. 68, 1202–1208 (1990).
    Google Scholar 
    Reimchen, T. E., Bergström, C. A. & Nosil, P. Natural selection and the adaptive radiation of Haida Gwaii stickleback. Evol. Ecol. Res. 15, 241–269 (2013).
    Google Scholar 
    Raeymaekers, J. A. M., Delaire, L. & Hendry, A. P. Genetically based differences in nest characteristics between lake, inlet, and hybrid threespine stickleback from the Misty system, British Columbia, Cananda. Evol. Ecol. Res. 11, 905–919 (2009).
    Google Scholar 
    Di Poi, C., Lacasse, J., Rogers, S. M. & Aubin-Horth, N. Evolution of stress reactivity in stickleback. Evol. Ecol. Res. 17, 395–405 (2016).
    Google Scholar 
    Weber, J. N., Bradburd, G. S., Stuart, Y. E., Stutz, W. E. & Bolnick, D. I. Partitioning the effects of isolation by distance, environment, and physical barriers on genomic divergence between parapatric threespine stickleback. Evolution 71, 342–356 (2017).PubMed 

    Google Scholar 
    Rohlf, F. J. Package: tpsUtil, tps file utility program. Version 1. 61. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2015).Rohlf, F. J. Package: tpsDig, digitize landmarks and outlines. Version 2. 05. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY. (2005).Adams, D. C., Collyer, M. L. & Kaliontzopoupou, A. Geomorph: Software for geometric morphometric analysis (2020).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2012).MATH 

    Google Scholar 
    Galipaud, M., Gillingham, M. A. F., David, M. & Dechaume-Moncharmont, F.-X. Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods Ecol. Evol. 5, 983–991 (2014).
    Google Scholar 
    Scheipl, F., Greven, H. & Kuechenhoff, H. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput. Stat. Data Anal. 52, 3283–3299 (2008).MathSciNet 
    MATH 

    Google Scholar 
    Robinson, J. James Robinson’s functions. Version 0. 0. 0. 1. Retrieved from https://rdrr.io/github/jpwrobinson/funk/. (2019).Bartoń, K. R Package: MuMIn: Multi-model inference. Version 1. 43. 17. Retrieved from https://CRAN.R-project.org/package=MuMIn. (2020).Frank, A. Diagnosing collinearity in mixed models from lme4 R package, vif.mer function [R script]. Retrieved from https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. GitHub https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R. (2011).Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impacts of Lysinibacillus sphaericus on mosquito larval community composition and larval competition between Culex pipiens and Aedes albopictus

    Project 1: mesocosm field experimentsMesocosm experiments took place at Lockwood Farm located in Hamden, Connecticut. Individual mesocosms were composed of black 20 L cylindrical plastic containers filled with 12 L tap water and seeded with 10 mg of a 3:2 ratio liver powder/brewer’s yeast mixture and 1 g of grass hay. Drain-holes were drilled into the sides of each container 5 mm from the 12 L surface to allow flooding for Aedes spp. egg emergence and to allow overflow beyond this level due to precipitation. Four experimental mesocosm clusters were dispersed throughout the Lockwood Farm in microhabitats previously sampled in Eastwood et al.22. Clusters contained 4 mesocosms spaced 3 m apart in a 2 × 2 grid. We utilized four L. sphaericus treatment levels in each cluster: no L. sphaericus, the LC50 (0.053 ITU/ml) and LC95 (1.0 ITU/ml) for Culex pipiens derived from Burtis et al.3, and the label rate of L. sphaericus (~ 1.2 ITU/ml). All treatments were derived from VectoLex WDG. Prior to insecticide application, we prepared 1 L of a 1000 ITU/ml stock solution. To inoculate each mesocosm, we measured the depth of the container’s water column, calculated water volume, and applied the appropriate amount of stock to achieve the target LC value. Replicate insecticide treatments were randomized within each cluster, and insecticides were applied 30-days post mesocosm seeding with nutrients. All mesocosms in each cluster were rotated within the 2 × 2 grid each week. Two clusters were then randomly chosen for a second application of L. sphaericus 30-days post initial insecticide application.To sample the larval habitat of each mesocosm, we performed a figure-8 sweep with an aquarium fish net (4 × 3-in. opening, Penn-Plax) each Monday and Thursday of the week for each week of the experiment. Sweep contents were washed from the net into a white photo development pan, and pupae were removed for in-lab identification after eclosion following a dichotomous key23. All larvae were then returned to the mesocosm. This sampling protocol minimized destruction of larval habitats and influence of interspecific interactions due to removal sampling.In addition to sampling containers for pupae, we collected water samples from each container for an in-lab bioassay to determine the realized mortality of the larval environment. Due to time constraints of the field crew, a 50% randomized sample of containers were sampled on Monday with the remaining 50% sampled on Thursday of each sampling week. Bioassay procedures followed McMillan et al.24 for Cx. pipiens with the addition of screening mortality in CAES’ Ae. albopictus colonies. We finally performed in-lab susceptibility trials to L. sphaericus with larvae from CAES’ Cx. pipiens and Ae. albopictus colonies to confirm each species’ colony varied in their sensitivity to the product. Briefly, 15 3rd to 4th instar larvae of each species per replicate dose were exposed to a wide range of L. sphaericus concentrations and mortality was recorded 24-h post-exposure. Lethal concentrations were then estimated from a generalized linear model with mortality (corrected for mortality in untreated control replicates) as the response term and the log10-dose as the predictor term.Primary endpoints from the field experiment included the number and species identity of pupae collected from each mesocosm. We compared total weekly pupal collections per mesocosm using a generalized linear mixed model (GLMM) framework with treatment level and cluster ID as fixed effects, species ID and week of collection as a random effect, and a Poisson-error distribution. We repeated this analysis excluding all collected Culex spp. to examine how the L. sphaericus treatments impacted the more tolerant Aedes spp. The primary endpoint for the mortality assays was the corrected larval mortality. We initially compared mortality using a species-specific GLMM with L. sphaericus treatment concentration and treatment period as fixed effects, week of collection as a random effect, and a binomial-error distribution. Preliminary analyses revealed negligible variance attributed to week of collection, so all subsequent models were a GLM. All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, ggplot228, ggeffects29, and glmmTMB30.Project 2: laboratory competition assaysCompetition assays took place at CAES’ main facility in New Haven, CT. This facility contains an Ae. albopictus colony (founded circa 2014 from Stratford, CT) and a Cx. pipiens colony (founded circa 2018 from New Haven, CT;). Colony maintenance for each species was similar: larval rearing pans consisted of approx. 200 eggs (on papers, Ae. albopictus, or as egg rafts, Cx. pipiens) in ~ 2 L RO water and initiated with ~ 20 ml of a 1% 3:2 liver powder/brewer’s yeast slurry. Pans were held at 25.5 °C and 80% humidity and fed ~ 20 ml of the 1% slurry every other day. Pupae were removed to an eclosion chamber and adults were allowed access to 10% sucrose solution ad libitum. Aedes albopictus females were given access to defibrinated sheep’s blood (HemoStat©) through a Hemotek membrane feeder for 1 h every 2–3 weeks and moistened, fluted filter paper was provided to collect eggs. Culex pipiens females were given access to a live, restrained buttonquail overnight once per week and a small cup seeded with 5 ml 1% slurry and 15 RO ml water was provided to collect egg rafts. The use of buttonquail was reviewed and approved in accordance with CAES Institutional Animal Care and Use Committee.We performed two experiments. All experiments consisted of the following treatments: variable ratios of Ae:Cx larvae and two L. sphaericus treatments (no treatment and 0.01 ITU/ml). Larval density (40 per container) remained constant across all replicate treatments, but Ae:Cx ratios varied from 40/0, 30/10, 20/20, 10/30, and 0/40. Nutrients supplied were a low concentration (3 mg larva−1) of a 3:2 liver powder/brewer’s yeast mix applied at the beginning of the experiment. Temperature was held constant at the colony maintenance level. Assays took place in 300 ml disposable plastic cups filled with 100 ml of RO water. The first experiments consisted of the addition of the 40 larvae as newly hatched individuals (+/− 1 day between species’ hatch) at the appropriate ratios, the larval diet, and the 0.01 ITU/ml concentration (diluted from a lab stock of 1000 ITU/ml). Assays were monitored daily until all larvae were dead and/or all larvae pupated. Experiment 2 consisted of the addition of only the Cx. pipiens larvae and the larval diet. After all Cx. pipiens had pupated, containers were treated with L. sphaericus and then the Ae. Albopictus larvae were added.Primary endpoints included species-specific pupation success. Preliminary analyses in a GLMM framework revealed negligible variance attributed to a replicate ID random effect; replicate as a random term also interfered with model convergence. Preliminary analyses further revealed there was neither a significant interaction nor an improvement in the Akaike Information Criterion between the L. sphaericus treatment and initial starting condition terms. Thus, we adopted a GLM rather than a GLMM framework in all further analyses, and species-specific mortality was analyzed as a binomial response term with treatment and initial starting conditions included as fixed effects All analyses were performed in R V4.1.325 using the following packages: tidyverse26, gridExtra27, and ggplot228. More