More stories

  • in

    Foundation plant species provide resilience and microclimatic heterogeneity in drylands

    Hantson, S., Huxman, T. E., Kimball, S., Randerson, J. T. & Goulden, M. L. Warming as a driver of vegetation loss in the Sonoran Desert of California. J. Geophys. Res. Biogeosci. 126, e2020JG005942. https://doi.org/10.1029/2020JG005942 (2021).Article 
    ADS 

    Google Scholar 
    Lortie, C. J., Filazzola, A., Kelsey, R., Hart, A. K. & Butterfield, H. S. Better late than never: A synthesis of strategic land retirement and restoration in California. Ecosphere 9, e02367. https://doi.org/10.1002/ecs2.2367 (2018).Article 

    Google Scholar 
    Ye, J.-S., Reynolds, J. F., Sun, G.-J. & Li, F.-M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Clim. Change 119, 321–332. https://doi.org/10.1007/s10584-013-0719-2 (2013).Article 
    ADS 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966. https://doi.org/10.1038/s41598-017-17966-y (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 7, eabf8021. https://doi.org/10.1126/sciadv.abf8021 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stahle David, W. Anthropogenic megadrought. Science 368, 238–239. https://doi.org/10.1126/science.abb6902 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318. https://doi.org/10.1126/science.aaz9600 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bryant, B. P. et al. Shaping land use change and ecosystem restoration in a water-stressed agricultural landscape to achieve multiple benefits. Front. Sustain. Food Syst. 4, 138 (2020).Article 

    Google Scholar 
    Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Chang. 11, 449–455. https://doi.org/10.1038/s41558-021-01034-5 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E. & Dennehy, K. F. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob. Change Biol. 11, 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x (2005).Article 
    ADS 

    Google Scholar 
    Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20, 3335–3370. https://doi.org/10.1002/hyp.6335 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kelsey, R., Hart, A., Butterfield, H. S. & Vink, D. Groundwater sustainability in the San Joaquin Valley: Multiple benefits if agricultural lands are retired and restored strategically. Calif. Agric. 2, 151–154 (2018).Article 

    Google Scholar 
    Capdevila, P. et al. Reconciling resilience across ecological systems, species and subdisciplines. J. Ecol. 109, 3102–3113. https://doi.org/10.1111/1365-2745.13775 (2021).Article 

    Google Scholar 
    Thebault, A., Mariotte, P., Lortie, C. & MacDougall, A. Land management trumps the effects of climate change and elevated CO2 on grassland functioning. J. Ecol. 102, 896–904. https://doi.org/10.1111/1365-2745.12236 (2014).Article 

    Google Scholar 
    Turney, C., Ausseil, A.-G. & Broadhurst, L. Urgent need for an integrated policy framework for biodiversity loss and climate change. Nature Ecol. Evol. 4, 996–996. https://doi.org/10.1038/s41559-020-1242-2 (2020).Article 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729. https://doi.org/10.1038/s41586-020-2784-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ellison, A. M. Foundation species, non-trophic interactions, and the value of being common. iScience 13, 254–268. https://doi.org/10.1016/j.isci.2019.02.020 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, M. J., Carbonell, E. P., Losapio, G., Schlüter, P. M. & Schöb, C. Foundation species promote local adaptation and fine-scale distribution of herbaceous plants. J. Ecol. 109, 191–203. https://doi.org/10.1111/1365-2745.13461 (2021).Article 
    CAS 

    Google Scholar 
    Bagley, J. E. et al. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains. J. Geophys. Res.: Atmos. 122, 5793–5807. https://doi.org/10.1002/2017JD026740 (2017).Article 
    ADS 

    Google Scholar 
    Norris, C., Hobson, P. & Ibisch, P. L. Microclimate and vegetation function as indicators of forest thermodynamic efficiency. J. Appl. Ecol. 49, 562–570. https://doi.org/10.1111/j.1365-2664.2011.02084.x (2012).Article 

    Google Scholar 
    Brooker, R. W. et al. Tiny niches and translocations: The challenge of identifying suitable recipient sites for small and immobile species. J. Appl. Ecol. 55, 621–630. https://doi.org/10.1111/1365-2664.13008 (2018).Article 

    Google Scholar 
    Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 10, 356–362. https://doi.org/10.1038/s41558-020-0717-0 (2020).Article 
    ADS 

    Google Scholar 
    Milling, C. R. et al. Habitat structure modifies microclimate: An approach for mapping fine-scale thermal refuge. Methods Ecol. Evol. 9, 1648–1657. https://doi.org/10.1111/2041-210X.13008 (2018).Article 

    Google Scholar 
    Ghazian, N., Zuliani, M. & Lortie, C. J. Micro-climatic amelioration in a california desert: Artificial shelter versus shrub canopy. J. Ecol. Eng. 21, 216–228. https://doi.org/10.12911/22998993/126875 (2020).Article 

    Google Scholar 
    Wright, A. J., Barry, K. E., Lortie, C. J. & Callaway, R. M. Biodiversity and ecosystem functioning: Have our experiments and indices been underestimating the role of facilitation?. J. Ecol. 109, 1962–1968. https://doi.org/10.1111/1365-2745.13665 (2021).Article 

    Google Scholar 
    Germano, D. J. et al. The San Joaquin Desert of California: Ecologically misunderstood and overlooked. Nat. Areas J. 31, 138–147. https://doi.org/10.3375/043.031.0206 (2011).Article 

    Google Scholar 
    Fairbairn, M., LaChance, J., De Master, K. T. & Ashwood, L. In vino veritas, in aqua lucrum: Farmland investment, environmental uncertainty, and groundwater access in California’s Cuyama Valley. Agric. Hum. Values 38, 285–299. https://doi.org/10.1007/s10460-020-10157-y (2021).Article 

    Google Scholar 
    Filazzola, A., Lortie, C. J., Westphal, M. F. & Michalet, R. Species-specificity challenges the predictability of facilitation along a regional desert gradient. J. Veg. Sci. 1, 1–12. https://doi.org/10.1111/jvs.12909 (2020).Article 

    Google Scholar 
    Cutlar, H. C. Monograph of the North American species of the genus Ephedra. Ann. Mo. Bot. Gard. 26, 373–428 (1939).Article 

    Google Scholar 
    Hollander, J. L., Wall, S. B. V. & Baguley, J. G. Evolution of seed dispersal in North American Ephedra. Evol. Ecol. 24, 333–345. https://doi.org/10.1007/s10682-009-9309-1 (2010).Article 

    Google Scholar 
    Filazzola, A., Brown, C., Westphal, M. & Lortie, C. J. Establishment of a desert foundation species is limited by exotic plants and light but not herbivory or water. Appl. Veg. Sci. 1, 1–12. https://doi.org/10.1111/avsc.12515 (2020).Article 

    Google Scholar 
    Lortie, C. J., Gruber, E., Filazzola, A., Noble, T. & Westphal, M. The Groot effect: Plant facilitation and desert shrub regrowth following extensive damage. Ecol. Evol. 8, 706–715. https://doi.org/10.1002/ece3.3671 (2018).Article 
    PubMed 

    Google Scholar 
    Lortie, C. J. et al. Telemetry of the lizard species Gambelia sila at Carrizo plain national monument. Figshare. Dataset. https://doi.org/10.6084/m9.figshare.8239667.v2 (2019).Article 

    Google Scholar 
    Braun, J., Westphal, M. & Lortie, C. J. The shrub Ephedra californica facilitates arthropod communities along a regional desert climatic gradient. Ecosphere 12, e03760. https://doi.org/10.1002/ecs2.3760 (2021).Article 

    Google Scholar 
    Terando, A., Youngsteadt, E., Meineke, E. & Prado, S. Accurate near surface air temperature measurements are necessary to gauge large-scale ecological responses to global climate change. Ecol. Evol. 8, 5233–5234. https://doi.org/10.1002/ece3.3972 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tielborger, K. & Kadmon, R. Indirect effects in a desert plant community: Is competition among annuals more intense under shrub canopies?. Plant Ecol. 150, 53–63 (2000).Article 

    Google Scholar 
    Holzapfel, C., Tielbörger, K., Parag, H. A., Kigel, J. & Sternberg, M. Annual plant–shrub interactions along an aridity gradient. Basic Appl. Ecol. 7, 268–279. https://doi.org/10.1016/j.baae.2005.08.003 (2006).Article 

    Google Scholar 
    Jankju, M. Role of nurse shrubs in restoration of an arid rangeland: Effects of microclimate on grass establishment. J. Arid Environ. 89, 103–109. https://doi.org/10.1016/j.jaridenv.2012.09.008 (2013).Article 
    ADS 

    Google Scholar 
    Baldelomar, M., Atala, C. & Molina-Montenegro, M. A. Top-down and Bottom-up effects deployed by a nurse shrub allow facilitating an endemic mediterranean orchid. Front. Ecol. Evol. 7, 466 (2019).Article 

    Google Scholar 
    Tielborger, K. & Kadmon, R. Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology 81, 1544–1553. https://doi.org/10.1890/0012-9658(2000)081[1544:TEVTTB]2.0.CO;2 (2000).Article 

    Google Scholar 
    Walter, J. Effects of changes in soil moisture and precipitation patterns on plant-mediated biotic interactions in terrestrial ecosystems. Plant Ecol. https://doi.org/10.1007/s11258-018-0893-4 (2018).Article 

    Google Scholar 
    Schob, C., Armas, C. & Pugnaire, F. Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122, 1371–1379. https://doi.org/10.1111/j.1600-0706.2013.00390.x (2013).Article 

    Google Scholar 
    Eldridge, D. J., Beecham, G. & Grace, J. B. Do shrubs reduce the adverse effects of grazing on soil properties?. Ecohydrology 8, 1503–1513. https://doi.org/10.1002/eco.1600 (2015).Article 

    Google Scholar 
    Nerlekar, A. N. & Veldman, J. W. High plant diversity and slow assembly of old-growth grasslands. Proc. Natl. Acad. Sci. 117, 18550. https://doi.org/10.1073/pnas.1922266117 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tielbörger, K. et al. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat. Commun. 5, 5102. https://doi.org/10.1038/ncomms6102 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought?. Geophys. Res. Lett. 41, 9017–9023. https://doi.org/10.1002/2014GL062433 (2014).Article 
    ADS 

    Google Scholar 
    Data, U. C. In US Climate Data Product, New Cuyama, vol. 1. https://www.usclimatedata.com (2021).Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: A global synthesis. Glob. Change Biol. 25, 269–276. https://doi.org/10.1111/gcb.14480 (2019).Article 
    ADS 

    Google Scholar 
    Ding, Y., Li, Z. & Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 92, 102179. https://doi.org/10.1016/j.jag.2020.102179 (2020).Article 

    Google Scholar 
    Liu, H. et al. Analysis of the time-lag effects of climate factors on grassland productivity in Inner Mongolia. Glob. Ecol. Conserv. 30, e01751. https://doi.org/10.1016/j.gecco.2021.e01751 (2021).Article 

    Google Scholar 
    Liancourt, P., Song, X., Macek, M., Santrucek, J. & Dolezal, J. Plant’s-eye view of temperature governs elevational distributions. Glob. Change Biol. 26, 4094–4103. https://doi.org/10.1111/gcb.15129 (2020).Article 
    ADS 

    Google Scholar 
    Ryan, M. J. et al. Too dry for lizards: Short-term rainfall influence on lizard microhabitat use in an experimental rainfall manipulation within a pinon-juniper woodland. Funct. Ecol. https://doi.org/10.1111/1365-2435.12595 (2015).Article 

    Google Scholar 
    Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671. https://doi.org/10.1111/1365-2656.12812 (2018).Article 
    PubMed 

    Google Scholar 
    Gaudenti, N., Nix, E., Maier, P., Westphal, M. F. & Taylor, E. N. Habitat heterogeneity affects the thermal ecology of an endangered lizard. Ecol. Evol. 11, 14843–14856. https://doi.org/10.1002/ece3.8170 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lortie, C. J., Filazzola, A. & Sotomayor, D. A. Functional assessment of animal interactions with shrub-facilitation complexes: A formal synthesis and conceptual framework. Funct. Ecol. 30, 41–51. https://doi.org/10.1111/1365-2435.12530 (2016).Article 

    Google Scholar 
    Lortie, C. J. et al. Shrub and vegetation cover predict resource selection use by an endangered species of desert lizard. Sci. Rep. 10, 4884. https://doi.org/10.1038/s41598-020-61880-9 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Frenne, P. et al. Global buffering of temperatures under forest canopies. Nature Ecol. Evol. 3, 744–749. https://doi.org/10.1038/s41559-019-0842-1 (2019).Article 

    Google Scholar 
    Avolio, M. L. et al. Determinants of community compositional change are equally affected by global change. Ecol. Lett. 24, 1892–1904. https://doi.org/10.1111/ele.13824 (2021).Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C. et al. Protect, manage and then restore lands for climate mitigation. Nat. Clim. Chang. 11, 1027–1034. https://doi.org/10.1038/s41558-021-01198-0 (2021).Article 
    ADS 

    Google Scholar 
    Hedden-Nicely, D. R. Climate change and the future of western US water governance. Nat. Clim. Chang. https://doi.org/10.1038/s41558-021-01141-3 (2021).Article 

    Google Scholar 
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717. https://doi.org/10.1038/s41558-018-0231-9 (2018).Article 
    ADS 

    Google Scholar 
    Hanson, R. T., Flint, L. E., Faunt, C. C., Gibbs, D. R. & Schmid, W. Hydrologic models and analysis of water availability in Cuyama Valley, California. In U.S. Geological Survey Scientific Investigations Report, 2015 1–126 (2015).John, S. In Encyclopedia of World Climatology (ed John, E. O.) 89–94 (Springer Netherlands, 2005).James-Jeremy, J. et al. A systems approach to restoring degraded drylands. J. Appl. Ecol. 50, 730–739. https://doi.org/10.1111/1365-2664.12090 (2013).Article 

    Google Scholar 
    Upson, J. E. & Worts, G. F. In Ground water in the Cuyama Valley, California. Report No. 1110B 1–82 (1951).Hanson, M. T., Randall, T. & Sweetkind, D. Cuyama Valley, California hydrologic study—an assessment of water availability. In U.S. Geological Survey Scientific Investigations Report 2014 1–4. https://doi.org/10.3133/fs20143075 (2014).Greicius, T. NASA data show California’s San Joaquin Valley Still Sinking. JPL 28, 1–9 (2017).
    Google Scholar 
    Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156. https://doi.org/10.1016/j.jog.2011.05.001 (2012).Article 

    Google Scholar 
    Lortie, C. J. & Filazzola, A. US climate data, New Cuyama, CA, 2016–2017. Figshare 1, 2016–2017. https://doi.org/10.6084/m9.figshare.17162600.v1 (2021).Article 

    Google Scholar 
    Lortie, C. J. & Filazzola, A. Vegetation surveys in Cuyama Valley, CA, USA in 2016 and 2017 at the peak of megadrought. Knowl. Netw. Biocompl. 1, 1–15. https://doi.org/10.5063/F1MG7MZH (2021).Article 

    Google Scholar 
    Hickman, J. C. The Jepson Manual (University of California Press, 1996).
    Google Scholar 
    Villanueva-Almanza, L. & Fonseca, R. M. In Taxonomic review and geographic distribution of Ephedra (Ephedraceae) in Mexico. ACTA BOTANICA MEXICANA 96 (2011).Alfieri, F. J. & Mottola, P. M. Seasonal changes in the phloem of Ephedra californica Wats. Bot. Gaz. 144, 240–246 (1983).Article 

    Google Scholar 
    Hoffman, O., de-Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. https://doi.org/10.1111/jvs.12372 (2016).Article 

    Google Scholar 
    Ivey, K. N. et al. Thermal ecology of the federally endangered blunt-nosed leopard lizard (Gambelia sila). Conserv. Physiol. 2020, 8. https://doi.org/10.1093/conphys/coaa014 (2020).Article 

    Google Scholar 
    Grimes, A. J., Corrigan, G., Germano, D. J. & Smith, P. T. Mitochondrial phylogeography of the endangered blunt-nosed leopard lizard, Gambelia sila. Southwestern Natural. 59, 38–46. https://doi.org/10.1894/F06-GC-233.1 (2014).Article 

    Google Scholar 
    Stewart, J. A. E. et al. Habitat restoration opportunities, climatic niche contraction, and conservation biogeography in California’s San Joaquin Desert. PLoS ONE 14, e0210766. https://doi.org/10.1371/journal.pone.0210766 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Germano, D. J., Rathbun, G. B. & Saslaw, L. R. Effects of grazing and invasive grasses on desert vertebrates in California. J. Wildl. Manag. 76, 670–682. https://doi.org/10.1002/jwmg.316 (2012).Article 

    Google Scholar 
    Moss, B. The water framework directive: Total environment or political compromise?. Sci. Total Environ. 400, 32–41. https://doi.org/10.1016/j.scitotenv.2008.04.029 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Denevan, W. M. The “Pristine Myth ” revisited. Geogr. Rev. 101, 576–591. https://doi.org/10.1111/j.1931-0846.2011.00118.x (2011).Article 

    Google Scholar 
    da Cunha, A. R. Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation. Environ. Monit. Assess. 187, 236. https://doi.org/10.1007/s10661-015-4458-x (2015).Article 
    PubMed 

    Google Scholar 
    Terando, A. J., Youngsteadt, E., Meineke, E. K. & Prado, S. G. Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecol. Evol. 7, 9890–9904. https://doi.org/10.1002/ece3.3499 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nature, I. I. U. f. C. o. The IUCN red list of threatened species. IUCN 2019-1 1–142 (2019).Lortie, C. J., Filazzola, A., Butterfield, H. S. & Westphal, M. Cuyama Micronet. Figshare 1, 1–6. https://doi.org/10.6084/m9.figshare.11888199.v2 (2020).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. Vol. 4.2.1 (R foundation for Statistical Computing, 2022).Pinheiro, J., Bates, D., DebRoy, S. & Deepayan, S. nlme: Linear and nonlinear mixed effects models. CRAN 3, 1–153 (2021).
    Google Scholar 
    Pebesma, E. spacetime: Spatio-temporal data in R. J. Stat. Softw. 1(7), 2012. https://doi.org/10.18637/jss.v051.i07 (2012).Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear mixed-effects models using “Eigen” and S4. CRAN 2020, 1–122 (2020).
    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means. CRAN 1, 1–89 (2022).
    Google Scholar  More

  • in

    Drivers of global mangrove loss and gain in social-ecological systems

    Mangrove cover change variables. We used the Global Mangrove Watch (GMW) v2.0 dataset from 1996 to 201656 to calculate four response variables across landscape mangrove geomorphic units24 over two time periods, 1996–2007 and 2007–2016: (1) percent net loss (units that had a net change in mangrove cover of 0), (3) percent gross loss (units that had a decrease in mangrove cover, not accounting for any increase), and (4) percent gross gain (units that had an increase in mangrove cover, not accounting for any decrease). Percent variables were calculated relative to the area at the start of the time period and were log transformed to meet the assumptions of the statistical models. We initially also considered 5 primary response variables (Supplementary Table 3), including net change in mangrove area ranging from negative (loss) to zero (no change) to positive (gain), however, the data did not meet model assumptions of equal variance (Supplementary Table 9). It was therefore necessary to separate areas of net loss and net gain and areas of gross loss and gross gain to remove zeros and log-transform to achieve normal distribution. Area of mangrove change was correlated with size of the mangrove geomorphic unit (higher area of mangrove loss or gain in bigger units), therefore we included geomorphic unit size as an explanatory variable in the models with primary response variables. We selected the transformations of these primary variables – percent net loss, percent net gain, percent gross loss, and percent gross gain to include in the analysis, because the percent changes control for differences in relative sizes of geomorphic units and because net change alone can underestimate the extent of change57.Examining mangrove change across geomorphic settings is likely to be relevant to socioeconomic and environmental conditions. Mangroves occur in the intertidal zone in diverse coastal geomorphic settings (e.g., deltas, estuaries, lagoons) shaped by rivers, tides, and waves58,59. The distribution, structure, and productivity of mangroves varies spatially with regional climate and local geomorphological processes (e.g., river discharge, tidal range, hydroperiod, and wave activity) that control soil biogeochemistry60,61,62,63. These geomorphic settings are defined by natural landscape boundaries (e.g., catchments/bays) which also often delineate boundaries of human settlements. A global mangrove biophysical typology v2.2 dataset64 was used for the delineation of landscape mangrove geomorphic units, which used a composite of the GMW dataset from the 1996, 2007, 2010, and 2016 timesteps to classify the maximal extent of mangrove cover into 4394 units (classified as delta, estuarine, lagoon or open coast). The mangrove geomorphic units do not include non-mangrove patches, unless they have been lost from the unit over time. The mean size of geomorphic units was 33.63 ha. Some splits of geomorphic units were undertaken to reduce size and divide by country boundaries. The four largest deltas (northern Brazil Delta ID 70000, Sundarbans Delta ID 70004, Niger Delta ID 70009, and Papua coast Delta ID 70013) were split into 4, 5, 4, and 2 units, respectively to aid with data processing. Mangrove geomorphic units that overlapped two countries (Peru/Ecuador, Singapore/Malaysia, and Papua New Guinea/Australia) were split by the national boundary.The country governing each geomorphic unit was assigned to match national-level variables to geomorphic units. To capture mangroves that are mapped outside of country coastline boundaries, we did a union of the GADM country shapefile v3.665 and the Exclusive Economic Zones (EEZs) v1166. The following manual country designations were made to resolve overlapping claims in the EEZs: (1) Hong Kong was merged with China as Hong Kong does not have a mapped EEZ; (2) The overlapping claim of Sudan/Egypt was maintained as a joint Sudan/Egypt designation, as this is an area of disputed land called the Halayib Triangle. However, for this study, mangrove units within this area were assigned to Egypt because Egypt currently has military control over the area; (3) Mayotte (claimed by France and Comoros) was assigned to Mayotte as it is a separate overseas territory of France recognised in GADM that has different socioeconomic variables; (4) The protected zone established under the Torres Strait Treaty was assigned to Australia as these islands are Australian territory.Areas of mangrove cover in 1996, 2007, and 2016, and gross losses and gains in each geomorphic units over the two time periods were assessed in ArcMap 10.867. Percent losses and gains were calculated in R 4.0.268. In using the GMW mapping, a minimum mapping unit of 1 ha is recommended for reliable results5, therefore we removed all geomorphic units less than 1 ha from the analysis, which reduced the available sample size from 4394 across 108 countries to 4235 units across 108 countries. In calculating percent net gains, 11 and 12 of the units returned infinity values for 1996–2007 and 2007–2016, respectively, because there was no initial mangrove cover. In these instances, 100% gain was assigned to these units.Socioeconomic variables (Supplementary Table 4)Economic growthPrevious global analyses of mangroves have been limited by data availability on economic activity to national metrics, such as a country’s Gross Domestic Product (GDP)12,18. Night-time lights satellite data provide local measures of economic activity that are comparable through time and available globally9,69. The data improve estimates of GDP in low to middle income countries69 and are strongly correlated with local indicators of human development70 and electricity consumption and GDP at the national-level71. We used the Night-time Lights Time Series v472 stable lights data, where transient lights that are deemed ephemeral, e.g., fires, have been filtered out and non-lit areas set to zero73, choosing the newer satellites where applicable70. As a proxy for local economic growth, we calculated the change in annual average stable lights within a 100 km buffer of the centroid of each geomorphic unit from 1996 to 2007 and 2007 to 2013 (no data available past 2013) using the ‘raster’ package in R74. The 100 km buffer was chosen to account for pressures from human activity within and surrounding the mangrove area, and to avoid bias with larger spatial units70.Market accessibilityTravel time to the nearest major market (national or provincial capital, landmark city, or major population centre) has been shown to be a stronger predictor of fish biomass on coral reefs than population density or linear distance to markets27. We used the global map of travel time to cities for 201575 to estimate the average travel time from each geomorphic unit to the nearest city via surface transport using the ‘raster’ package in R74, as an indicator of access to markets to trade commodities (e.g., rice, shrimp, palm oil).Economic complexityPrevious studies have examined the effect of GDP on mangrove change18, however, this is a blunt measure of country capability. Measuring a country’s economic complexity, that is the diversified capability of a nation’s economy, is preferable. For example, a country with high GDP but low economic complexity can be prone to regulatory capture by high-value natural resource industries and resource corruption26. Therefore, we used the Economic Complexity Index (ECI)76 for countries as an indicator of regulatory independence. The ECI had better coverage of countries in later years (Supplementary Table 4), therefore the ECI for the end of the time periods was used (2007 and 2016), although we recognise this may reduce the detection of trends because of potential time lags in impacts.DemocracyWe used the Varieties of Democracy (VDEM) index v10 which measures a country’s degree of freedom of association, clean elections, freedom of expression, elected executives, and suffrage77, and has been indicated to influence NDC ambition in countries to address climate change78. We adopted the VDEM index for the start of the time periods (1996 and 2007) to account for potential time lags in impacts.Community forestry supportWe determined the extent that community forestry (CF) is implemented across countries through a systematic review of articles returned in the Web of Science database (Core collection; Thomson Reuters, New York, U.S.A.). We used the search terms: TS = (“community forestry” OR “community-based forestry” OR “social forestry”) AND (TI = ”country” OR AB = ”country”) to identify how many CF case studies were reported in each country, and whether any were in mangroves. As scientific literature is biased towards particular regions, we also reviewed relevant FAO global studies79,80,81 and online databases (ICCA registry82 and REDD projects database83) to identify additional case studies (Supplementary Fig. 5). We then generated scores of 0–3 for each country based on summing values assessed using these criteria: +1 (1–50 CF case studies); +2 ( >50 CF case studies); +1 (CF case study in mangroves). There may have been some double counting as we counted the number of case studies in each article, and we will have missed CF projects not published or communicated in English. However, this is likely to have had a limited impact on the scoring method.Indigenous landThe proportion of Indigenous peoples’ land versus other land per country was calculated from national-level data84. Whilst this study involved Indigenous peoples’ land mapping at a global scale, the spatial data was not published, and thus we could only evaluate the influence of Indigenous land at the national level rather than local level.Restoration effortThe number of mangrove restoration sites per country was calculated from combining two datasets collated by C. Lovelock (2020) and Y.M. Gatt and T.A. Worthington (2020) identifying mangrove restoration project locations from web searches in English and for scientific and grey literature using Google Scholar. Duplications were removed and the number of sites was used as an indicator of effort. This will underrepresent effort in countries with few, large sites, and where restoration projects are not published or communicated in English.Climate commitmentsThe Paris Agreement is a global programme for countries to commit to climate action by submitting Nationally Determined Contributions (NDCs) to the United Nations Framework for the Convention of Climate Change (UNFCCC). First, we reviewed NDCs for mangrove-holding nations from the NDC Registry85 submitted as of 07/01/2021 to determine the extent that mangroves or coastal ecosystems were included in national climate policy (scoring method in Supplementary Table 4). We hypothesised that countries with mangrove or coastal ecosystem NDCs may be more likely to promote mangrove conservation or restoration. While the first NDCs were submitted around 2015, at the end of our time series, we suspected higher commitments would point towards a stronger baseline in environmental governance. Most countries submitted updated or second NDCs during 2021 however these were not considered relevant to the time periods assessed. Google Translate was used to interpret NDCs in languages other than English.Ramsar wetlandsThe ecological character of Ramsar wetlands have been found to be significantly better than those of wetlands generally86. The area of Ramsar coastal and marine wetlands from the Ramsar Sites Information Service87 was calculated per country. Thirty-eight mangrove-holding countries are not signatories to the Ramsar Convention, and these countries were assigned a value of 0. The area of Ramsar wetlands per country was scaled by dividing by the country’s area of mangroves in 1996.Environmental governanceWe assessed the Environmental Performance Index (EPI)88 as an indicator of a country’s effectiveness in environmental governance. The biodiversity and habitat (BDH) issue category assesses countries’ actions toward retaining natural ecosystems and protecting the full range of biodiversity within their borders. We took the BDH score for 2020 for the 2007–2016 time period and the BDH score for 2010 for the 1996–2007 time period (calculated by subtracting the ten-year change from BDH 2020). However, due to collinearity with other variables this index was excluded from the analysis (see statistical analysis).Protected area managementWe also assessed Marine Protected Area (MPA) staff capacity as an indicator of the effectiveness of management of protected areas for countries. We used published global marine protected area (MPA) management data14 which is based on the Management Effectiveness Tracking Tool (METT), the World Bank MPA Score Card, and the NOAA Coral Reef Conservation Programme’s MPA Management Assessment Checklist. Adequate staff capacity was the most important factor in explaining fish responses to MPA management globally, followed by budget capacity, but they were significantly correlated14. We, therefore, calculated the mean staff capacity across MPAs per country as our indicator. Mangroves can be included in terrestrial protected areas, which are not represented in this dataset, however, this measure provides an indicator of national governance of protected areas. However, due to collinearity with other variables this indicator was excluded from the analysis (see statistical analysis). The extent of protected areas was not included in the analysis because it has already been found to influence mangrove loss18.Biophysical variables (Supplementary Table 5)Coastal geomorphic typeMangrove extent change likely varies among different coastal geomorphic settings because human activities or environmental changes occur more commonly in some geomorphic settings than others. For example, losses of lagoonal mangroves were nearly twice as large as those in other geomorphic types24. Landscape geomorphic units from the global mangrove typology dataset v2.264 were classified as delta, estuary, lagoon or open coast.Sediment availabilityMangrove expansion and retreat are driven by sediment deposition and erosion, which are influenced by sediment availability from rivers and wave action, and alterations in hydrodynamic regimes47,89. We used the sediment trapping index from the global free-flowing rivers (FFR) dataset90 to indicate sediment availability from rivers within different geomorphic units. A mangrove catchment dataset was created based on the HydroSHEDS database91. River networks that intersected with mangrove geomorphic units were linked to that unit’s ID. Where rivers intersected multiple units, they were manually assigned by visual inspection. River basins that intersected either with the geomorphic units directly or the river networks were also linked to that unit’s ID. The FFR dataset90 was then spatially joined to the mangrove catchment dataset to identify the most downstream (i.e., the coastal outlet) segment of each FFR and its associated sediment trapping index. Not all geomorphic units (n = 3475) were linked to an FFR, however, an individual unit could be linked with several FFRs. Therefore, the unit sediment trapping index was the weighted mean of the river values, with weighting based on each FFR’s average long-term (1971–2000) naturalised discharge (m3s−1), with discharge set to the minimum value for segments with zero flow. Geomorphic units without connecting FFRs were given an index of zero (no sediment trapping). The sediment trapping index represents the percentage of the potential sediment load trapped by anthropogenic barriers along the river section. The focus on river barriers may obscure larger scale oceanic patterns that influence mangrove losses and gains (e.g., movement of mud banks from the Amazon River over 1000’s of kilometres92) or increases in sediment that could be coming from soils with catchment deforestation and erosion.Habitat fragmentationMany countries with high mangrove loss have been associated with elevated fragmentation of mangrove forests, although the relationship is not consistent at the global scale93. We calculated the clumpiness index of mangrove patches within geomorphic units within each time period, as this habitat fragmentation metric is independent of areal extent93. Whilst habitat fragmentation can be human-driven, clumpiness measures the patchy distribution of mangroves, which can also be due to natural factors inducing edge effects. We used a similar approach to Bryan-Brown, et al.86 to quantify the clumpiness index. The ‘landscape’ was defined as the combined extent of the mangrove geomorphic units across four timesteps (1996, 2007, 2010, and 2016) from the GMW dataset56. For the three focal years in this study (1996, 2007, and 2016) each geomorphic unit (n = 4394) was converted into a two-class polygon, where class one represented mangroves present during that time step and class two mangroves present in the other time steps (i.e., areas of mangrove loss). The polygons were transformed to a projected coordinate system (World Cylindrical Equal Area) and converted to rasters with a resolution of 25 m. Each raster was imported into R version 3.6.394, with clumpiness calculated using the package ‘landscapemetrics’ v1.5.095.Clumpiness describes how patches are dispersed across the landscape and ranges between minus one, where patches are maximally disaggregated, to one, where patches are maximally aggregated, a value of zero represents a case whereby patches are randomly distributed across the landscape. The clumpiness index requires that both classes are present in the landscape, therefore a no data value (NA) was returned for units where no loss of mangroves had occurred, or where there was 100% gain of mangroves in a later time period. The number of directions in which patches were connected was set to eight. The following manual fixes were conducted for NA values returned: 1) Where NA was returned for units where no loss of mangroves had occurred in another time period, i.e., class 1 (mangrove present) = 1 and class 2 (mangrove loss) = 0, assume +1 (maximally clumped); and 2) Where NA was returned for units where there was 100% gain of mangroves in a later time period, i.e., class 1 (mangrove present) = 0, class 2 (mangrove present) = 1 (100% gain), assume −1 (maximally disaggregated).Tidal amplitudeIn settings of low tidal range, mangrove vertical accretion is less likely to keep pace with rapid sea level rise3. However, in settings of high tidal range, mangroves may be more extensive and vulnerable to conversion to aquaculture or agriculture because of larger tidal flat extents. The Finite Element Solution global tide model (FES2014)96 is considered one of the most accurate tide models for shallow coastal areas97 and was selected to estimate the mean tidal amplitude within each geomorphic unit using the principal lunar semi-diurnal or M2 tidal amplitude as this is this most dominant tidal constituent98. To account for potential variation in the tidal amplitude across large geomorphic units, the raster pixel value for M2 tidal amplitude96 closest to the centroid of each mangrove patch within each unit was calculated, with the smallest value set at 0.01 m. For each geomorphic unit, the tidal amplitude was calculated as the weighted mean of the patch values, with weighting based on the patch area relative to the total unit area.Antecedent sea-level riseThe distribution of mangroves on shorelines changes over time with sediment accretion, erosion, subsidence, and sea-level rise (SLR)99, and periods of low sea level can cause mangrove dieback100. We used regional mean sea-level trends between January 1993 and December 2015 from the global sea level Essential Climate Variable (ECV) product v.2101,102 to estimate the mean antecedent SLR for each geomorphic unit. Spatial variation in regional sea-level trends generally range between −5 and +5 mm yr−1 (global mean of 3 mm yr−1)13. Extreme values ( >5 mm yr−1) observed in the dataset are subject to high levels of uncertainty (Sea Level CCI team, pers. comm.), and were therefore truncated to 5 mm yr−1. The raster pixel value for SLR102 closest to the centroid of each mangrove patch within each geomorphic unit was calculated. The geomorphic unit antecedent SLR values was calculated as the weighted mean of the patch values within the unit.DroughtWhilst long-term precipitation and temperature influence mangrove distribution globally62, periods of low rainfall have been reported to cause extensive mangrove dieback at regional scales, particularly when combined with high temperatures and low sea levels103. We used the Standardized Precipitation-Evapotranspiration Index (SPEI) from the global SPEI database v.2.6104 as an index of drought severity. SPEI is derived from precipitation and temperature and is considered an improved drought index that allows spatial and temporal comparability105,106. The mean SPEI raster pixel value was calculated for each time period and then averaged across the geomorphic units using the ‘ncdf4’107 and ‘raster’ packages74 in R.Tropical storm frequencyLarge-scale destruction of mangroves across regions have been reported from strong winds, high energy waves, and storm surges associated with tropical storms108. We used the International Best Track Archive for Climate Stewardship (IBTrACS) dataset since 1980 v4109 to calculate the number of tropical cyclone occurrences (points along their paths) within a 200 km buffer of the centroid of geomorphic units within each time period using the sf package110 in R. Maximum wind velocity and surface pressures are likely experienced within 100 km of a cyclone’s eye111, therefore the 200 km buffer zone was selected to cover the average size of geomorphic units (33.63 ha), and all tropical storms potentially influencing mangrove growth. Whilst tropical storms affect only 42% of the world’s mangroves60, they are likely to be important stressors within cyclone-impacted countries.Minimum temperatureExtreme low temperature events were a driver of mangrove loss in subtropical regions, such as Florida and Louisianan of the US, and China28,112. We used the WorldClim bioclimatic variable 6 (minimum temperature of the coldest month averaged for the years 1970–2000)113 to calculate the mean minimum temperature across the geomorphic units using the ‘sf’110 and ‘raster’ packages74 in R. Where NAs were returned due to no overlapping raster layer, the value of the closest raster pixel to the centroid of the geomorphic unit was assigned.Statistical analysisWe used multi-level linear modelling to investigate relationships between mangrove cover change variables and socioeconomic and biophysical variables to consider landscape (level 1) and country (level 2) predictors in a hierarchical approach114. For each response variable, we modelled the response for 1996–2007 and 2007–2016, using explanatory variables specific to the time-period where available. Data inspection revealed that high percent loss or gain was concentrated in small geomorphic units, therefore to avoid bias in our results, we removed geomorphic units less than 100 ha from the analysis, which further reduced the available sample size to 3134 units across 95 countries. Statistical analysis was undertaken in R 4.0.268.The response variables were log-transformed to fit normal distribution. We tested for collinearity between our explanatory variables using Pearson’s correlation coefficient (r  > 0.5) (Supplementary Tables 6 and 7). MPA staff capacity and EPI were excluded from our models because MPA staff capacity was correlated with ECI 2007 and ECI 2016 (both r = 0.54), and EPI 2020 was correlated with VDEM 2016 (r = 0.63). To improve model fit, travel time to the nearest city, mangrove restoration effort and Ramsar wetland area (relative) were log+1-transformed, and tidal amplitude was log-transformed.Two linear multi-level (mixed-effects) models were fitted for each response variable using the lme function in the ‘lme4’ package115 (Supplementary Table 8). First, a random intercept model with intercepts of landscape-level predictors varying by country was fitted. Then a random intercept and slope (coefficients) model with intercepts of landscape-level predictors varying by country, as well as slopes for socioeconomic predictors considered to have between-country variation (travel time to nearest city and night-time lights growth) was fitted, as we expect that mangrove cover change may respond to economic growth and market accessibility depending on national governance. A likelihood ratio test between the null linear model and the null random intercept model for each response variable showed that effects varied across countries and therefore we included country as a random effect (Supplementary Table 9). We also conducted likelihood ratio tests between the random intercept model and the random coefficient model to test whether the effect of travel time and night-time lights on mangrove change varies across countries. If significant, the model including random slopes for travel time and night-time lights was used (Supplementary Table 9). Mixed-effects models were fitted by maximum likelihood and model fit was validated by inspection of residual plots for the four response variables included in the analysis; percent net loss, percent net gain, percent gross loss, and percent gross gain (Supplementary Table 9).To test for spatial autocorrelation we performed spatial autoregressive (SAR) models using the errorsarlm function in the ‘spatialreg’ package116. SAR models were first fitted using a range of neighbourhood distances (50, 500, and 1000 km in 100 km intervals) for the net change variable117. Distance of 500 km showed the smallest AIC and was therefore adopted for all response variables. Neighbourhood lists of the centroid coordinates of the geomorphic units were defined with the row-standardised (‘W’) coding using the ‘spdep’ package118. We then produced Moran’s I correlograms using the correlog function in the ‘ncf’ package119 and the centroid coordinates of the geomorphic units. Correlograms for the multi-level model and SAR model were compared for each response variable (Supplementary Fig. 4). The SAR models did not improve spatial autocorrelation for any of the mangrove cover change variables and therefore the multi-level models were adopted.Hotspot estimatesWe defined hotspots as geomorphic units where raw values of percent net and gross loss and gain between 2007 and 2016 ((gamma)) differed by more than two standard deviations (sd) from the country average ((mu)).$${{{{{{rm{More}}}}}}},{{{{{{rm{loss}}}}}}}/{{{{{{rm{more}}}}}}},{{{{{{rm{gain}}}}}}}=left(gamma -mu right) , > , (2,times {{{{{{rm{sd}}}}}}})$$
    (1)
    $${{{{{{rm{Less}}}}}}},{{{{{{rm{loss}}}}}}},/,{{{{{{rm{less}}}}}}},{{{{{{rm{gain}}}}}}}=left(gamma -mu right) , < , -(2,times {{{{{{rm{sd}}}}}}})$$ (2) We excluded countries with only one geomorphic unit. Large deviations of the raw value from the country average were found for small units at a threshold below 50 km2, therefore we removed all units smaller than 50 km2 to overcome bias of hotspots towards smaller sites. This likely removed the identification of several hotspots. For example, Myanmar has had some large gains due to river sediments in the Gulf of Martaban (net gain of 100 % in Estuary 5834 and 39 % in Open Coast 62244), however, these areas were small (8 and 2 km2, respectively) and were therefore removed from the hotspot estimates.We analysed the factors contributing to hotspots by spatial investigation of satellite imagery in Google Earth with mangrove specialists from those countries. The hotspots were also assessed against protected area datasets for those countries120,121,122,123.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Volcano charges, Omicron boosters and wandering elephants

    A health-care worker in Chicago, Illinois, administers a COVID-19 vaccine aimed at the Omicron subvariant.Credit: Scott Olson/Getty

    Omicron boosters protect against future variantsBooster shots against current SARS-CoV-2 variants can help to arm the human immune system against variants yet to arise. That’s the implication of two studies (W. B. Alsoussi et al. Preprint at bioRxiv https://doi.org/jhht (2022); C. I. Kaku et al. Preprint at bioRxiv https://doi.org/jhhv; 2022) that analysed how a booster shot or breakthrough infection affects antibody-producing cells. The work shows that some cells evolve to exclusively create antibodies targeting new strains, whereas others make antibodies against both new and old strains.The findings have not been peer reviewed, but provide reassurance that vaccines targeting the Omicron variant will be effective. Their utility had been questioned because of evidence that the immune system has trouble pivoting between variants.One study examined people who became infected with Omicron after receiving the original vaccine. One month after infection, nearly 97% of participants’ antibodies against the virus bound to the original strain better than to Omicron BA.1. But six months after infection, nearly half of their B cells produced antibodies that bound to Omicron BA.1 better than to the original strain — showing that the immune system continued to adapt long after the infection had passed.

    White Island, also called Whakaari, is one of New Zealand’s most active volcanos.Credit: Phil Walter/Getty

    Charge dropped in New Zealand volcano caseVolcanologists have applauded a judge’s decision to dismiss one of two criminal charges against New Zealand’s Earth-science research agency, GNS Science. The charges were laid in the wake of a fatal 2019 volcanic eruption on Whakaari White Island, a popular tourist destination, that killed 22 people and injured 25 others.GNS Science issues volcanic-alert bulletins for the country’s active volcanoes, which are disseminated to the media, emergency-response agencies and the public through a service called GeoNet. The dismissed charge alleged that GNS Science should have coordinated with tour operators and other agencies and reviewed its volcanic-alert bulletins to ensure that they effectively communicated the implications of volcanic activity on the island.With the charge dismissed, scientific organizations that provide information on public health and safety risks can now “breathe a bit of a sigh of relief”, says Simon Connell, a lawyer at the University of Otago in Dunedin, New Zealand.GNS Science is also charged with having failed to ensure the health and safety of helicopter pilots whom it hired to take its employees to the island. This charge will go to trial. GNS Science has pleaded not guilty.

    A herd of Asian elephants wandered out of their nature reserve in southwestern China last year.Credit: Wang Zhengpeng/VCG via Getty

    Asian elephants mostly roam outside protected areas — and it’s a problemAsian elephants spend most of their time outside protected areas because they prefer the food that they find there, an international team of scientists reports. But this behaviour is putting the animals and people in harm’s way, say researchers.If protected areas do not contain animals’ preferred habitats, they will wander out, says Ahimsa Campos-Arceiz, who studies Asian elephants (Elephas maximus) at the Chinese Academy of Sciences’ Xishuangbanna Tropical Botanical Garden in Menglun, China.Human–elephant conflict is the biggest threat for Asian elephants. Over the past few decades, animals in protected areas have increasingly wandered into villages. They often cause destruction, damaging crops and infrastructure and injuring and even killing people.Campos-Arceiz and his colleagues set out to get a precise picture of Asian-elephant movements. They collared 102 individuals in Peninsular Malaysia and Borneo, recording 600,000 GPS locations over a decade. They found that elephants tend to spend most of their time in habitats outside the protected areas, at the forest edge and in areas of regrowth. The findings were published in the Journal of Applied Ecology (J. A. de la Torre et al. J. Appl. Ecol. https://doi.org/gq28qp; 2022) on 18 October.The researchers suspect that the elephants venture out because they like to eat grasses, bamboo, palms and fast-growing trees, which are commonly found in disturbed forests and are relatively scarce under the canopy of old-growth forests.Philip Nyhus, a conservation biologist who specializes in human–wildlife conflict at Colby College in Waterville, Maine, says that Asian elephants live deep in dense forest and so are much more difficult to study than African elephants, which roam open savannahs. “The sample size is impressive,” he says.The research provides strong evidence for how to set up suitable protected areas that reduce the risk of elephants wandering out, he says.The results do not diminish the importance of protected areas, which provide long-term safety for the animals, says Campos-Arceiz. “But they are clearly not enough.” More

  • in

    Ancient DNA reveals how Viking-era fishers helped to make herring scarce

    .readcube-buybox { display: none !important;}
    A roaring trans-European herring trade that began in the Viking Age might have depleted stocks1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03431-y

    References

    Subjects

    Latest on: More

  • in

    Predation impact on threatened spur-thighed tortoises by golden eagles when main prey is scarce

    Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman and Hall, 1992).
    Google Scholar 
    Sæther, B. E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 
    Koons, D. N., Pavard, S., Baudisch, A. & Metcalf, J. E. C. Is life-history buffering or lability adaptive in stochastic environments?. Oikos 118, 972–980 (2009).
    Google Scholar 
    Boyce, M. S., Haridas, C. V. & Lee, C. T. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of life histories against environmental stochasticity: Accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness. Am. Nat. 163, 579–590 (2004).PubMed 

    Google Scholar 
    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66(10), 807–812 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. WIREs Water 4, e1208 (2017).
    Google Scholar 
    Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305(5692), 1955–1958 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Courchamp, F., Langlais, M. & Sugihara, G. Rabbits killing birds: Modelling the hyperpredation process. J. Anim. Ecol. 69, 154–164 (2000).
    Google Scholar 
    Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. 4, 307–318 (2001).
    Google Scholar 
    Kristan, W. B. & Boarman, W. I. Spatial patterns of risk of common raven predation on desert tortoises. Ecology 84, 2432–2443 (2003).
    Google Scholar 
    Whelan, C. J., Brown, J. S. & Maina, G. Search biases, frequency-dependent predation and species co-existence. Evol. Ecol. Res. 5, 329–343 (2003).
    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. An emerging infectious disease triggering large-scale hyperpredation. PLoS ONE 3, e2307 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. Inferring ecological mechanisms from hunting bag data in wildlife management: A reply to blanco-aguiar et al. 2012. Eur. J. Wildl. Res. 59, 599–608 (2013).
    Google Scholar 
    Bate, A. M. & Hilker, F. M. Rabbits protecting birds: Hypopredation and limitations of hyperpredation. J. Theor. Biol. 297, 103–115 (2012).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Turner, F. B., Medica, P. A. & Lyons, C. L. Reproduction and survival of the desert tortoise (Scaptochelys agassizii) in Ivanpah Valley California. Copeia 1984(4), 811–820 (1984).
    Google Scholar 
    Graciá, E. et al. Assessment of the key evolutionary traits that prevent extinctions in human altered habitats using a spatially explicit individual-based model. Ecol. Model. 415, 108823 (2020).
    Google Scholar 
    Segura, A., Jiménez, J. & Acevedo, P. Predation of young tortoises by rabbits: The effect of habitat structure on tortoise detectability and abundance. Sci. Rep. 10, 1–9 (2020).
    Google Scholar 
    Watson, J. The golden eagle (Bloomsbury Publishing, 2010).
    Google Scholar 
    Fischer, W., Zenker, D. & Baumgart, W. Ein beitrag zum bestand und zur ernährung des steinadlers Aquila chrysaetos af der balkanhalbinsel. Beiträge zur Vogelskunde 21, 275–287 (1975).
    Google Scholar 
    Delibes, M., Calderón, J. & Hiraldo, F. Selección de presa y alimentación en españa del águila real (Aquila chrysaetos). Ardeola 21, 285–303 (1975).
    Google Scholar 
    Handrinos, G. The Golden Eagle in Greece. Actes 1er Coll. Intern. Aigle Royal en Europe, Arvieux, 1986: 18–22 (1987).Bautista, J., Gil-Sánchez, J. M. & Moleón, M. Dieta del águila real en el sur de españa. Quercus 364, 17–23 (2016).
    Google Scholar 
    Bautista, J., Castillo, S., Paz, J. L., Llamas, J. & Ellis, D. H. Golden eagles (Aquila chrysaetos) as potential predators of barbary macaques (Macaca sylvanus) in northern Morocco: Evidences of predation. Go-South Bull. 15, 172–179 (2018).
    Google Scholar 
    Kouzmanov, G., Stoyanov, R. & Todorov, V. Sur la biologie et la Protection de l`Aigle royal Aquila chrysaetos en Bulgarie. In Eagle studies (eds Meyburg, B. & Chancellor, R.) 505–516 (World Working Group on Birds of Prey, 1996).
    Google Scholar 
    Capper, S. The predation of Testudo spp. By Golden Eagles Aquila chrysaetos in Dadia Forest Reserve, NE Greece. University of Reading (1998).Karyakin, I. V., Kovalenko, A. V., Levin, A. S. & Pazhenkov, A. S. Eagles of the Aral-Caspian region Kazakhstan. Raptors Conserv. 22, 92–152 (2011).
    Google Scholar 
    Papageorgiou, N., Vlachos, C., Bakaloudis, D. E., Kazaklis, A., Birtsas, P. Study on the biology and management of raptors in Dadia forest–Evros. Thessaloniki, GR (1995).Sidiropoulos, L. et al. Pronounced seasonal diet diversity expansion of golden eagles (Aquila chrysaetos) in Northern Greece during the non-breeding season: The role of tortoises. Diversity 14(2), 135 (2022).
    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020–3 (2020).Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines: Testudinidae). Biol. J. Linn. Soc. 121, 641–654 (2017).
    Google Scholar 
    Graciá, E. et al. Genetic patterns of a range expansion: The spur-thighed tortoise Testudo graeca graeca in southeastern Spain. Amphib. Reptil. 32, 49–61 (2011).
    Google Scholar 
    Graciá, E. et al. The uncertainty of late pleistocene range expansions in the western Mediterranean: A case study of the colonization of south-eastern Spain by the spur-thighed tortoise, Testudo graeca.. J. Biogeogr 40, 323–334 (2013).
    Google Scholar 
    Anadón, J. D., Giménez, A., Perez, I., Martinez, M. & Esteve-Selma, M. A. Habitat selection by the spur-thighed tortoise Testudo graeca in a multisuccessional landscape: implications for habitat management. Biodivers. Conserv. 15, 2287–2299 (2006).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas. PLoS ONE 12, e0173485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130(8), 1346–1358 (2021).
    Google Scholar 
    Rodríguez-Caro, R. C., Lima, M., Anadón, J. D., Graciá, E. & Giménez, A. Density dependence, climate and fires determine population fluctuations of the spur-thighed tortoise, Testudo graeca. J. Zool. 300, 265–273 (2016).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. A low cost approach to estimate demographic rates using inverse modeling. Biol. Conserv. 237, 358–365 (2019).
    Google Scholar 
    Jiménez-Franco, M. V. et al. Sperm storage reduces the strength of the mate-finding allee effect. Ecol. Evol. 10(4), 1938–1948 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Graciá, E. et al. From troubles to solutions: Conservation of mediterranean tortoises under global change. Basic Appl. Herpetol. 34, 5–16 (2020).
    Google Scholar 
    Pérez, I. et al. Exurban sprawl increases the extinction probability of a threatened tortoise due to pet collections. Ecol. Model. 245, 19–30 (2012).
    Google Scholar 
    Del Moral, J. C. El águila real en España. Población reproductora en 2008 y método de censo. SEO/BirdLife. Madrid. pp. 30–50 (2009).Virgós, E., Cabezas-Díaz, S. & Lozano, J. Is the wild rabbit (Oryctolagus cuniculus) a threatened species in Spain? Sociological constraints in the conservation of species. Biodivers. Conserv. 16, 3489–3504 (2007).
    Google Scholar 
    Fernández, C. Effect of the viral haemorrhagic pneumonia of the wild rabbit on the diet and breeding success of the golden eagle Aquila chrysaetos (L.). Rev. Ecol. Terre et Vie 48, 323–329 (1993).
    Google Scholar 
    Villafuerte, R., Luco, D. F., Gortázar, C. & Blanco, J. C. Effect on red fox litter size and diet after rabbit haemorrhagic disease in northeastern Spain. J. Zool. 240, 764–767 (1996).
    Google Scholar 
    Martínez, J. A. & Zuberogoitia, I. The response of eagle owl (Bubo bubo) to an outbreak of the rabbit haemorrhagic disease. J. Ornithol. 142, 204–211 (2001).
    Google Scholar 
    Moleón, M. et al. Large-scale spatiotemporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).
    Google Scholar 
    Adamakopoulos, T., Gatzoyannis, S., Poirazidis, K. Study on the assessment, the enhancement of the legal infrastructure and the management of the protected area in the forest of Dadia. Specific Environmental Study, WWF-Greece, Athens (1995).Delibes, M., Hiraldo, F. The rabbit as prey in the Iberian Mediterranean ecosystem. In Proceedings of the World Lagomorph Conference. Guelph: University of Guelph. 1979: 614–622 (1979).Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Google Scholar 
    Moleón, M. et al. Predator–prey relationships in a mediterranean vertebrate system: Bonelli’s eagles, rabbits and partridges. Oecologia 168, 679–689 (2012).ADS 
    PubMed 

    Google Scholar 
    Fedriani, J. M., Ferreras, P. & Delibes, M. Dietary response of the Eurasian badger, Meles meles, to a decline of its main prey in the Doñana national park. J. Zool. 245, 214–218 (1998).
    Google Scholar 
    Ferrer, M. & Negro, J. J. The near extinction of two large European predators: Super specialists pay a price. Conserv. Biol. 18, 344–349 (2004).
    Google Scholar 
    Lozano, J., Moleón, M. & Virgós, E. Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: Factors affecting the trophic diversity. J. Biogeogr. 33, 1076–1085 (2006).
    Google Scholar 
    Burgos, T. et al. Prey density determines the faecal-marking behaviour of a solitary predator, the Iberian lynx (Lynx pardinus). Ethol. Ecol. Evol. 31, 219–230 (2019).
    Google Scholar 
    Ontiveros, D. & Pleguezuelos, J. M. Influence of prey densities in the distribution and breeding success of Bonelli’s eagle (Hieraaetus fasciatus): Management implications. Biol. Conserv. 93, 19–25 (2000).
    Google Scholar 
    Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory 1st edn. (Monographs in Behavior and Ecology. Princeton University Press, 1986).
    Google Scholar 
    Heath, J. A. et al. Golden Eagle dietary shifts following wildfire and shrub loss have negative consequences for nestling survivorship. Ornithol. Appl. 123(4), duabo34 (2021).
    Google Scholar 
    Anadón, J. D., Wiegand, T. & Giménez, A. Individual-based movement models reveal sex-biased effects of landscape fragmentation on animal movement. Ecosphere 3, 1–32 (2012).
    Google Scholar 
    Sanz-Aguilar, A., Anadón, J. D., Giménez, A., Ballestar, R. & Oro, D. Coexisting with fire: The case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol. Conserv. 144, 1040–1049 (2011).
    Google Scholar 
    Arroyo, B. Águila real – Aquila chrysaetos. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ (2017).Arroyo, B., Ferreiro, E., Garza, V. El águila real (Aquila chrysaetos) en España. Censo, distribución, reproducción y conservación. Serie Técnica, ICONA. Madrid (1990).Bautista, J., Gil-Sánchez, J. M., González Miras, E., Gómez, G. J. & Sánchez Balsera, J. L. Increase in the population of golden eagle in andalusian baetic system mountain ranges (southern of Spain): evidences of competition with the Bonelli’s eagle. Quercus 332, 16–22 (2013).
    Google Scholar 
    Rodríguez-Caro, R. C., Graciá, E., Anadón, J. D. & Giménez, A. Maintained effects of fire on individual growth and survival rates in a spur-thighed tortoise population. Eur. J. Wildl. Res. 59, 911–913 (2013).
    Google Scholar 
    Beissinger, S. R. & McCullough, D. R. Population viability analysis (University of Chicago Press, 2002).
    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60(3), 632–638 (1996).
    Google Scholar 
    Moleón, M. et al. Laying the foundations for a human-predator conflict solution: Assessing the impact of Bonelli’s eagle on rabbits and partridges. PLoS ONE 6, e22851 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esteve-Selma, M. A., et al. Effects of climate change on the potential distribution of Testudo graeca in southeastern Iberian Peninsula. In Graciá E, Rodríguez-Caro RC and Giménez A. Conservation of Mediterranean tortoises under global change. Madrid. Asociación Herpetológica Española. ISBN: 978-84-921999-6-9.Anadón, J. D., Giménez, A., Ballestar, R. & Pérez, I. Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conserv. Biol. 23, 617–625 (2009).PubMed 

    Google Scholar 
    Abad, V. Variaciones del Índice corporal en una población de tortuga mora (Testudo graeca) del Sureste Ibérico. MSc thesis, Universidad Miguel Hernández de Elche, Spain (2007).Linden, H., Wikman, M. Goshawk predation on tetraonids: Availability of prey and diet of the predator in the breeding season. J. Anim. Ecol., 953–968 (1983).Fevold, H. R. & Craighead, J. J. Food requirements of the golden eagle. Auk 75, 312–317 (1958).
    Google Scholar 
    Collopy, M. W. Food consumption and growth energetics of nestling golden eagles. Wilson Bull. 445–458 (1986).Blanco, J. C., Villafuerte, R. Factores ecológicos que influyen sobre las poblaciones de conejos. Efectos de la enfermedad hemorrágico vírica. TRAGSA, Madrid Spain (1993). More

  • in

    Weather impacts on interactions between nesting birds, nest-dwelling ectoparasites and ants

    Study areaWe conducted the study in the best-preserved stands of the Białowieża Forest, strictly protected within the Białowieża National Park (hereafter BNP; coordinates of Białowieża village: 52°42′N, 23°52′E). The extensive Białowieża Forest (c. 1500 km2) straddles the Polish-Belarusian border, where the climate is subcontinental with annual mean temperatures during May–July of 13–18 °C, and mean annual precipitation of 426–940 mm66,67.The forest provides a unique opportunity to observe animals under conditions that likely prevailed across European lowlands before widespread deforestation and forest exploitation by humans66,68,69. The stands have retained a primeval character distinguished by a multi-layered structure, frequent fallen and standing dead trees, and a high species richness66,70. The stands are composed of about a dozen tree species of various ages, up to several hundred years old. The interspecific interactions and natural processes have been little affected by direct human activity.We conducted observations mostly within the three permanent study plots (MS, N, W), totalling c. 130 ha, and in other nearby fragments of primeval oak-lime-hornbeam Tilio-Carpinetum or mixed deciduous-coniferous Pino-Quercetum stands. However, a small number of observations from adjacent managed deciduous forest stands were also included. For details of the study area see71,72,73.Study speciesOur study system focused on ground-nesting Wood Warblers Phylloscopus sibilatrix, blowflies Protocalliphora azurea, and Myrmica or Lasius ants, which occurred in the birds’ nests.The Wood Warbler is a small (c. 10 g) insectivorous songbird that winters in equatorial Africa and breeds in temperate European forests, typically rearing one or two broods each year74. Wood Warblers build dome-shaped nests for each breeding attempt, composed of woven grass, leaves and moss, and lined with animal hair73. The nests are situated on the ground among moderately sparse vegetation, often under a tussock of vegetation or near a fallen tree-branch or log (see examples in Supplementary Fig. S2)53,75. The breeding season of Wood Warblers begins in late April–early May and ends in July–August, when nestlings from replacement clutches (after initial loss) or second broods leave the nest. The typical clutch size in BNP is 5–7 eggs, and the nestling stage lasts 12–13 days74,76.Wood Warbler nests are inhabited by various arthropods, including Myrmica ruginodis or M. rubra ants, and less often Lasius platythorax, L. niger or L. brunneus. The ants foraged and/or raised their own broods within the Wood Warbler nests52. The Myrmica and Lasius ant species are common in Europe77,78. Their colonies contain from tens to thousands of workers, and can be found on the forest floor, e.g. in soil, within or under fallen dead wood, in patches of moss, or among fallen tree-leaves53,77,78. All of the ant species found in the Wood Warbler nests are predators of other arthropods77,79,80.Blowflies, Protocalliphora spp., are obligatory blood-sucking (hematophagous) ectoparasites that reproduce within bird nests. The occurrence, abundance, and impact of blowflies on Wood Warbler offspring is largely unknown, similar to many other European songbirds that build dome-shaped nests. Adult blowflies emerge in late spring and summer to lay eggs on the birds’ nesting material or directly onto the skin of typically newly hatched nestlings14,26. The blowfly larvae hatch within two–three days, and develop in the structure of warm bird nests for another 6–15 days, during which they emerge intermittently to feed on host blood, before finally pupating within the nests14,25,26,27.Data collectionNest monitoring and measurements of nestlingsWe searched for Wood Warbler nests daily from late April until mid-July in 2018–2020, by following birds mainly during nest-building. Nests were assigned to a deciduous or mixed deciduous-coniferous habitat type, depending on the tree stand where they were found. We inspected nests systematically, according to the protocol described in Wesołowski and Maziarz76. The number of observer visits was kept to a minimum to reduce disruptions for birds or potential risks of nest predation.We aimed to establish the dates of hatching (day 0 ± 1 day), nestlings vacating the nest (fledging; ± 1 day) or nest failure (± 1–2 days). When nestlings hatched asynchronously, the hatching date corresponded to the earliest record of nestling hatching. The dates of fledging or nest failure were the mid-dates between the last visit when the nestlings were present in the nest, and the following visit, when the nest was found empty. Nest failure was primarily due to predation, which is the main cause of the Wood Warbler nest losses in BNP76,81 and elsewhere in Europe82,83.To assess fitness consequences for birds of variable weather conditions, blowfly abundance and/or ant presence, we measured nestling growth and determined brood reduction (i.e. the mortality of chicks in the nest) from hatching until fledging. To define brood reduction, we assessed the number of hatchlings (nestlings up to 4 days old) and the number of fledglings leaving the nests. To ensure accurate counting and avoid premature fledging of nestlings, we established the number of fledglings on the day of measurement, when all nestlings were temporarily extracted from the nest.We measured nestling growth on a single occasion when they were 6–9 days old (median 8 days), almost fully developed but too young to leave the nest. The measurements lasted for less than 10–15 min at each nest to minimise any potential risk of attracting predators. For each nestling we measured (using a ruler) the emerged length of the longest (3rd) primary feather vane (± 0.5 mm) on the left wing84,85, and body mass to the nearest 0.1 g using an electronic balance. The length of the feather vane is closely linked to feather growth86 and is one of the characteristics of nestling growth85,87. We treated the length of the primary feather vane and body mass as indices of nestling growth rate under varying conditions of weather, blood-sucking ectoparasites, or ant presence.Extraction of arthropods from bird nestsTo assess the number of blowflies and to establish the presence of ants, we checked the contents of 129 nests (including 11 nests from the managed forest stands) at which Wood Warbler nestlings had been measured. The sample included 86 successful breeding attempts (where a minimum of one nestling successfully left the nest), 27 failed (predated) nests (remnants of nestlings were found, but the nest structure remained intact), and 16 nests with an unknown fate (nestlings were large, so were capable of leaving the nest, but no family were located or other signs indicating fledging).Due to ethical reasons, we were unable to collect the Wood Warbler nests and extract the ectoparasites and ants from them while they were in use by the birds. Removing the nests and replacing them with dummy nests would cause unacceptable nest desertion by adults. Therefore, we assessed the occurrence and number of blowflies or ant presence after Wood Warbler nestlings fledged or the breeding attempts failed naturally. We retrospectively explored the changes in blowfly infestation14, including the effect of ant presence53 in the same nests.We collected nests from the field as soon as a breeding attempt ended, within approximately five days (median 1 day) following fledging or nest failure (nest structure remained intact). The delay of nest collection would not bias the ectoparasite infestation, as blowfly larvae pupate within bird nests and stay there after the hosts abandon their nests; puparia can be still found in nests collected in autumn or winter14. As the likelihood of finding ant broods (larvae or pupae associated with workers) was rather stable with the delay of nest collection53, the method seemed reliable also for assessing the presence of ant broods (35 of all 71 Wood Warbler nests containing ants). Only the number of nests with lone foraging ant workers could be underestimated, potentially inflating the uncertainty of tested relationships. However, as ants usually re-use rich food resources88, foraging Myrmica or Lasius ant workers might regularly exploit warbler nests, increasing the chances of finding the insects in the collected nests.Wood Warbler nests were collected in one piece, with each placed into a separate sealed and labelled plastic bag. We carefully inspected the leaf litter around the nests, and the soil surface under them, to make sure that all blowfly larvae or pupae were collected. We transported the collected nests to a laboratory, where we stored them in a fridge for up to 5–6 days before the arthropod extraction.To establish the number of blowflies and the presence of ants, in 2018, we carefully pulled apart the nesting material and searched for the arthropods amongst it 52. We gathered all blowfly pupae or larvae and a sample of ant specimens into separate tubes, labelled and filled with 70–80% alcohol, for later species identification. For nests collected in 2019–2020, we extracted the arthropods with a Berlese-Tullgren funnel. During the extraction, which usually lasted for 72 h, each nest was covered with fine metal mesh and placed c. 15 cm under the heat of a 40 W electric lamp. The arthropods were caught in 100 ml plastic bottles containing 30 ml of 70–80% ethanol, installed under each funnel. After the arthropod extraction, we carefully inspected the nesting material in the same way as in 2018, to collect any blowflies that remained within the nests. The quality of information collected on the number of ectoparasites and ant presence should be comparable each year.Weather dataWe obtained the mean daily temperatures and rainfall sums from a meteorological station, operated by the Meteorology and Water Management National Research Institute in the Białowieża village, 1–7 km from the study areas.Data analysesWeather conditions affecting blowfly ectoparasitesTo explore the impact of weather on blowfly ectoparasites, for each Wood Warbler nest we calculated average temperatures from daily means, and total sums of rainfall from daily sums, for the two time-windows in which we assumed the impact of weather would be of greatest importance:

    i.

    the early nestling stage, when Wood Warbler nestlings were 1–4 days old. During this stage, female blowflies require a minimum temperature of c. 16 °C to become active and oviposit in bird nests27. Thus, cool and wet weather in the early nestling stage should reduce the activity of ovipositing blowflies, leading to less frequent ectoparasite infestation of Wood Warbler nests.

    ii.

    The late nestling stage, when the warbler nestlings were aged between over four days old and until fledging or nest failure. During this stage, blowfly larvae grow and develop in bird nests after hatching a few days after oviposition14,25,26,27. As the temperature of bird nests strongly depends on ambient temperatures21, mortality of blowfly larvae should increase in cool weather, resulting in fewer ectoparasites in nests collected shortly after the fledging of birds29.

    Weather conditions affecting Wood Warbler nestling growthTo explore the impact of weather on nestling growth, for each nest we calculated the average temperatures and total sums of rainfall for the period when nestlings were over four days old and until their measurement, usually on day 8 from hatching (see above). During this stage, nestlings are no longer brooded by a parent74, so must balance their energetic expenditure between growth (feather length and body mass) or thermoregulation89. Thus, we expected that the gain in body mass and the growth of flight feathers would be reduced in nestlings during cool and wet weather, when maintaining a stable body temperature would be costly90.Statistical analysesAll statistical tests were two-tailed and performed in R version 4.1.091.The changes in blowfly infestation of the Wood Warbler nestsTo test the changes in blowfly infestation of warbler nests, we used zero-augmented negative binomial models (package pscl in R;92,93), which deal with the problem of overdispersion and excess of zeros92. In this study, hurdle and zero-inflated models fitted with the same covariates had an almost identical Akaike Information Criterion (AIC). Therefore, we presented only the results of hurdle models, which are easier to interpret than zero-inflated models. Hurdle models consisted of two parts: a left-truncated count with a negative binomial distribution representing the number of blowflies in infested nests, and a zero hurdle binomial estimating the probability of blowfly presence. We used models with a negative binomial distribution, which had a much lower AIC than with a Poisson distribution on a count part.We designed the most complex (global) model that contained a response variable of the number of blowflies in each of the 129 Wood Warbler nests. The covariates were: mean ambient temperature, total sum of rainfall, presence (or absence) of ants in the same nests, habitat type (deciduous vs mixed deciduous-coniferous forest), study year (2018–2020), the number of nestlings hatched (brood size), and nest phenology (the relative hatching date of Wood Warbler nestlings, as days from the median hatching date in a season: 23 May in 2018, 25 May in 2019 and 29 May in 2020). The initial global model also contained the two-way interaction terms that we suspected to be important: between temperature and rainfall, temperature and presence of ants, and rainfall and presence of ants.To explore all potentially meaningful subsets of models, we used the same covariates on both parts (count and binomial) of the global model. We performed automated model selection with the MuMIn package94, starting from the most complex (global) model and using all possible simpler models (i.e. all subsets)95. To attain the minimum sample size of c. 20 data points for each parameter96, we limited the maximum number of parameters to six in each part (count or binomial) of the candidate models.As some of the interaction terms appeared insignificant in the initial model selection, to minimise the risk of over-parametrisation, we included only the significant interaction term on a count part of the final global model. As described above, we performed model selection again. We tested linear relationships, as the quadratic effects of weather variables (presuming temperature or rainfall optima) appeared insignificant.To test whether blowfly infestation changed with weather in the early or late nestling stages, we twice repeated the procedure described above. The first global model included the mean ambient temperature and the total sum of rainfall for the early nestling stage, and the second global model contained weather variables for the late nestling stage. The remaining covariates were the same.A practice of including the same sets of covariates on count and binomial parts has been previously questioned97. However, our approach allowed us to comply with these objections97, as we presented only the most parsimonious models (with ΔAICc  More

  • in

    Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    PubMed 

    Google Scholar 
    Torn, M. S., Vitousek, P. M. & Trumbore, S. E. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8, 352–372 (2005).
    Google Scholar 
    Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ding, X., Liang, C., Zhang, B., Yuan, Y. & Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 84, 137–146 (2015).
    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).PubMed 

    Google Scholar 
    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Global Change Biol. 19, 988–995 (2013).ADS 

    Google Scholar 
    Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).ADS 

    Google Scholar 
    Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).ADS 

    Google Scholar 
    Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: Are current estimates too low?. Environ. Sci. Technol. 41, 8070–8076 (2007).ADS 
    PubMed 

    Google Scholar 
    Liang, C., Fujinuma, R. & Balser, T. C. Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biol. Biochem. 40, 2063–2065 (2008).
    Google Scholar 
    Shao, P., Liang, C., Lynch, L., Xie, H. & Bao, X. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biol. Biochem. 131, 182–190 (2019).
    Google Scholar 
    Ma, S. et al. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma 361, 114034 (2020).ADS 

    Google Scholar 
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 
    Kong, A. Y. Y. et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 43, 20–30 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Müller, K., Marhan, S., Kandeler, E. & Poll, C. Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biol. Biochem. 115, 187–196 (2017).
    Google Scholar 
    Amelung, W. Syntax of Referencing in Assessment Methods for Soil Carbon (Lewis Publishers, 2001).
    Google Scholar 
    Joergensen, R. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).
    Google Scholar 
    Joergensen, R. G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fert. Soils 54, 559–568 (2018).
    Google Scholar 
    Wang, X. et al. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 142, 107723 (2020).
    Google Scholar 
    Wang, J., Chapman, S. J. & Yao, H. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl. Soil Ecol. 101, 11–19 (2016).ADS 

    Google Scholar 
    Cui, S. et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant Soil 429, 335–348 (2018).
    Google Scholar 
    Liu, X., Zhang, X. & Herbert, S. Feeding China’s growing needs for grain. Nature 465, 420 (2010).ADS 
    PubMed 

    Google Scholar 
    Edmeades, D. C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys. 66, 165–180 (2003).
    Google Scholar 
    Chaparro, J., Sheflin, A., Manter, D. & Vivanco, J. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 
    Jin, X. et al. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 313, 154–162 (2018).ADS 

    Google Scholar 
    Chen, X., Li, Z., Liu, M., Jiang, C. & Che, Y. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. J. Soil Sediment. 15, 292–301 (2014).
    Google Scholar 
    Wang, Y. et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 111, 65–72 (2017).
    Google Scholar 
    Joergensen, R. G., Mäder, P. & Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fert. Soils 46, 303–307 (2010).
    Google Scholar 
    Sun, H. et al. Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Appl. Soil Ecol. 108, 16–24 (2016).
    Google Scholar 
    Heijboer, A. et al. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; A 15N tracer-based approach. Appl. Soil Ecol. 107, 251–260 (2016).
    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).
    Google Scholar 
    Wall, D. et al. Soil Ecology and Ecosystem Services (Oxford University Press, 2012).
    Google Scholar 
    Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).
    Google Scholar 
    Blaud, A. et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Appl. Soil Ecol. 53, 1–9 (2012).
    Google Scholar 
    Tisdall, J. M. & Oades, J. M. Organic matter and water stable aggregates in soils. Eur. J. Soil Sci. 33, 141–163 (1982).
    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 

    Google Scholar 
    Li, N. et al. Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol. Appl. Soil Ecol. 88, 9–20 (2015).
    Google Scholar 
    Bidisha, M., Joerg, R. & Yakov, K. Effects of aggregation processes on distribution of aggregate size fractions and organic C content of a long-term fertilized soil. Eur. J. Soil Biol. 46, 365–370 (2010).
    Google Scholar 
    Xiang, X. et al. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Till. Res. 196, 104491 (2020).
    Google Scholar 
    Jin, X. et al. Long-term plastic film mulching and fertilization treatments changed the annual distribution of residual maize straw C in soil aggregates under field conditions: Characterization by 13C tracing. J. Soils Sediment. 18, 169–178 (2018).
    Google Scholar 
    Kemper, W. & Rosenau, R. Syntax of referencing. In Methods of Soil Analysis (ed. Klute, A.) (ASA and SSSA, 1986).
    Google Scholar 
    Bossio, D. A. & Scow, K. M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl. Environ. Microbiol. 61, 4043–4050 (1995).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denef, K. et al. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4, 769–779 (2007).ADS 

    Google Scholar 
    Tavi, N. M. et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biol. Biochem. 58, 207–215 (2013).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).
    Google Scholar 
    Pan, F., Li, Y., Chapman, S. J., Khan, S. & Yao, H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 559, 15–23 (2016).ADS 
    PubMed 

    Google Scholar 
    Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbial Ecol. 29, 303–310 (1999).
    Google Scholar 
    Zhang, X. & Amelung, W. Gas Chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201–1206 (1996).
    Google Scholar 
    Zhang, X. et al. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Appl. Soil Ecol. 11, 271–275 (1999).
    Google Scholar 
    van Groenigen, K.-J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).
    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kastner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol. 25, 3578–3590 (2019).ADS 

    Google Scholar 
    Engelking, B., Flessa, H. & Joergensen, R. G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 39, 2111–2118 (2007).
    Google Scholar 
    Chander, K. & Joergensen, R. G. Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biol. Biochem. 33, 1811–1816 (2001).
    Google Scholar 
    Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil – part 2: turnover and microbial utilization. Plant Soil. 416, 243–257 (2017).
    Google Scholar 
    Appuhn, A. & Joergensen, R. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 38, 1040–1051 (2006).
    Google Scholar 
    Huang, Y., Liang, C., Duan, X., Chen, H. & Li, D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 353, 340–346 (2019).ADS 

    Google Scholar 
    Liang, C. et al. Microorganisms and their residues under restored perennial grassland communities of varying diversity. Soil Biol. Biochem. 103, 192–200 (2016).
    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veresoglou, S. D., Chen, B. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).
    Google Scholar 
    Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).PubMed 

    Google Scholar 
    Xu, Y. et al. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfsols. Soil Biol. Biochem. 148, 107901 (2020).
    Google Scholar 
    Chenu, C. & Stotzky, G. Syntax of referencing in Interactions between soil particles and microorganisms (eds. Huang, P., Bollag, J. & Senesi, N.) 3–39 (Wiley-VCH, 2002).Chantigny, M., Angers, D., Prévost, D., Vézina, L.-P. & Chalifour, F. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci. Soc. Am. J. 61, 262–267 (1997).ADS 

    Google Scholar 
    Liang, C., Duncan, D., Balser, T., Tiedje, J. & Jackson, R. Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA. Soil Biol. Biochem. 57, 939–942 (2013).
    Google Scholar 
    Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glaobal Change Biol. 28, 2779–2789 (2022).
    Google Scholar 
    An, T. et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 80, 53–61 (2015).
    Google Scholar 
    Lauer, F., Kösters, R., du Preez, C. C. & Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 43, 787–794 (2011).
    Google Scholar  More