More stories

  • in

    Coupling phenotypic changes to extinction and survival in an endemic prey community threatened by an invasive snake

    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. 113, 11261–11265 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salo, P., Korpimäki, E., Banks, P. B., Nordström, M. & Dickman, C. R. Alien predators are more dangerous than native predators to prey populations. Proc. R. Soc. B Biol. Sci. 274, 1237–1243 (2007).
    Google Scholar 
    Losos, J. B., Schoener, T. W. & Spiller, D. A. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432, 505–508 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Komine, H., Iwai, N. & Kaji, K. Rapid responses in morphology and performance of native frogs induced by predation pressure from invasive mongooses. Biol. Invasions 23, 1293–1305 (2021).
    Google Scholar 
    Nunes, A. L. et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. B Biol. Sci. 286, 20182528 (2019).
    Google Scholar 
    Berthon, K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol. Invasions 17, 2199–2211 (2015).
    Google Scholar 
    Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: What do introductions tell us about natural communities?. Ecol. Lett. 9, 354–371 (2006).
    Google Scholar 
    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).
    Google Scholar 
    Gould, S. J. & Vrba, E. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).
    Google Scholar 
    Komine, H. et al. Rapid behavioural responses of native frogs caused by past predation pressure from invasive mongooses. J. Zool. 310, 126–134 (2020).
    Google Scholar 
    Hoare, J. M., Pledger, S., Nelson, N. J. & Daugherty, C. H. Avoiding aliens: Behavioural plasticity in habitat use enables large, nocturnal geckos to survive Pacific rat invasions. Biol. Conserv. 136, 510–519 (2007).
    Google Scholar 
    Trompeter, W. P. & Langkilde, T. Invader danger: Lizards faced with novel predators exhibit an altered behavioral response to stress. Horm. Behav. 60, 152–158 (2011).CAS 
    PubMed 

    Google Scholar 
    Thawley, C. J., Goldy-Brown, M., McCormick, G. L., Graham, S. P. & Langkilde, T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. Glob. Change Biol. 25, 620–628 (2019).ADS 

    Google Scholar 
    Melotto, A., Manenti, R. & Ficetola, G. F. Rapid adaptation to invasive predators overwhelms natural gradients of intraspecific variation. Nat. Commun. 11, 3608 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90, 208–217 (2009).PubMed 

    Google Scholar 
    Moore, R. D., Griffiths, R. A., O’Brien, C. M., Murphy, A. & Jay, D. Induced defences in an endangered amphibian in response to an introduced snake predator. Oecologia 141, 139–147 (2004).ADS 
    PubMed 

    Google Scholar 
    Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu. Rev. Ecol. Syst. 29, 113–140 (1998).
    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Dietary shift of an invasive predator: Rats, seabirds and sea turtles. J. Appl. Ecol. 45, 428–437 (2008).PubMed 

    Google Scholar 
    Bonnaud, E. et al. The diet of feral cats on islands: A review and a call for more studies. Biol. Invasions 13, 581–603 (2011).
    Google Scholar 
    Guiden, P. W., Bartel, S. L., Byer, N. W., Shipley, A. A. & Orrock, J. L. Predator–prey interactions in the Anthropocene: Reconciling multiple aspects of novelty. Trends Ecol. Evol. 34, 616–627 (2019).PubMed 

    Google Scholar 
    Savidge, J. A. Extinction of an island forest avifauna by an introduced snake. Ecology 68, 660–668 (1987).
    Google Scholar 
    Wu, N. C., Alton, L. A., Clemente, C. J., Kearney, M. R. & White, C. R. Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.). J. Exp. Biol. 218, 2416–2426 (2015).PubMed 

    Google Scholar 
    Losos, J. B. The evolution of form and function: Morphology and locomotor performance in West Indian lizards. Evolution 44, 1189–1203 (1990).PubMed 

    Google Scholar 
    Irschick, D. J. et al. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 59, 21–35 (1996).
    Google Scholar 
    Winchell, K. M., Maayan, I., Fredette, J. R. & Revell, L. J. Linking locomotor performance to morphological shifts in urban lizards. Proc. R. Soc. B Biol. Sci. 285, 20180229 (2018).
    Google Scholar 
    Tan, W. C., Vanhooydonck, B., Measey, J. & Herrel, A. Morphology, locomotor performance and habitat use in southern African agamids. Biol. J. Linn. Soc. 130, 166–177 (2020).
    Google Scholar 
    Snyder, R. C. The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. Am. J. Anat. 95, 1–45 (1954).CAS 
    PubMed 

    Google Scholar 
    Losos, J. B., Schoener, T. W., Langerhans, R. B. & Spiller, D. A. Rapid temporal reversal in predator-driven natural selection. Science 314, 1111 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anson, J. R., Dickman, C. R., Boonstra, R. & Jessop, T. S. Stress triangle: Do introduced predators exert indirect costs on native predators and prey?. PLoS One 8, e60916 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: A dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).PubMed 

    Google Scholar 
    Cabrera-Pérez, M. Á., Gallo-Barneto, R., Esteve, I., Patiño-Martínez, C. & López-Jurado, L. F. The management and control of the California kingsnake in Gran Canaria (Canary Islands): Project LIFE+ Lampropeltis. Aliens Invasive Species Bull. 32, 20–28 (2012).
    Google Scholar 
    Hubbs, B. Common Kingsnakes: A Natural History of Lampropeltis getula (Tricolor Books, 2009).
    Google Scholar 
    Pyron, R. A. & Burbrink, F. T. Systematics of the common kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa 2241, 22–32 (2009).
    Google Scholar 
    Monzón-Argüello, C. et al. Snakes on an island: Independent introductions have different potentials for invasion. Conserv. Genet. 16, 1225–1241 (2015).
    Google Scholar 
    Piquet, J. C. & López-Darias, M. Invasive snake causes massive reduction of all endemic herpetofauna on Gran Canaria. Proc. R. Soc. B Biol. Sci. 288, 20211939 (2021).
    Google Scholar 
    Martín-González, E. & Sánchez-Pinto, L. Nuevos hallazgos de vertebrados fósiles de Fuerteventura: Identificación de una especie de serpiente utilizando técnicas de micro-escáner. Boletín la Asoc. Amigos del Mus. la Nat. y el Hombre Tenerife 15, 76–85 (2013).
    Google Scholar 
    García-Talavera, F., Rage, J.-C. & Barahona, F. The first record of snakes on the Canary Islands: A vertebra from the Upper Miocene of Lanzarote. Amphibia-Reptilia 19, 419–425 (1998).
    Google Scholar 
    Martín, A. & Lorenzo, J. Aves del archipiélago Canario (Francisco Lemus Editor S.L., 2001).
    Google Scholar 
    Nogales, M. & Medina, F. M. Trophic ecology of feral cats (Felis silvestris f. catus) in the main environments of an oceanic archipelago (Canary Islands): An updated approach. Mamm. Biol. 74, 169–181 (2009).
    Google Scholar 
    Salvador, A. & Pleguezuelos, J. Reptiles españoles: Identificación, historia natural y distribución (Esfagnos, 2002).
    Google Scholar 
    Vernet, R., Castanet, J. & Baez, M. Comparative water fux and daily energy expenditure of lizards of the genus Gallotia (Lacertidae) from the Canary Islands. Amphibia-Reptilia 16, 55–66 (1995).
    Google Scholar 
    Brown, R. P. Microevolution and Ecophysiology of Canary Island Skinks (Chalcides) (Thesis from the University of Aberdeen, 1990).
    Google Scholar 
    Penado, A. et al. Where to “rock”? Choice of retreat sites by a gecko in a semi-arid habitat. Acta Herpetol. 10, 47–54 (2015).
    Google Scholar 
    Brown, R. P. Thermal biology of the gecko Tarentola boettgeri: Comparisons among populations from different elevation within Gran Canaria. Herpetologica 52, 396–405 (1996).
    Google Scholar 
    Wiseman, K. D., Greene, H. W., Koo, M. S. & Long, D. J. Feeding ecology of generalist predator, the California kingsnake (Lampropeltis californiae): Why rare prey matter. Herpetol. Conserv. Biol. 14, 1–30 (2019).
    Google Scholar 
    King, R. B. Predicted and observed maximum prey size—Snake size allometry. Funct. Ecol. 16, 766–772 (2002).
    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).
    Google Scholar 
    del Arco Aguilar, M. J. & Rodríguez Delgado, O. Vegetation of the Canary Islands (Springer, 2018).
    Google Scholar 
    AEMET. Standard climate values. AEMET (2022). http://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?k=mur#tab2 (Accessed 9th February 2021)GESPLAN. Action A.1: Desarrollo de protocolos para la sistematización de las labores de captura y la recolección de datos. Official report (2015).Atzori, A. et al. Advances in methodologies of sexing and marking less dimorphic gekkonid lizards: The study case of the Moorish gecko, Tarentola mauritanica. Amphibia-Reptilia 28, 449–454 (2007).
    Google Scholar 
    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar 
    Peig, J. & Green, A. J. The paradigm of body condition: A critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).
    Google Scholar 
    Molina-Borja, M. & Rodríguez-Domínguez, M. A. Evolution of biometric and life-history traits in lizards (Gallotia) from the Canary Islands. J. Zool. Syst. Evol. Res. 42, 44–53 (2004).
    Google Scholar 
    Suárez, C. R., Rodríguez-Domínguez, M. A. & Molina-Borja, M. Sexual dimorphism in morphological traits and scaling relationships in two populations of Gallotia stehlini (Fam. Lacertidae: Squamata) from Gran Canaria. Afr. J. Herpetol. 65, 1–20 (2016).
    Google Scholar 
    Tejangkura, T. Hybrid Zone Genetics and Within-Island Diversity of the Gecko Tarentola boettgeri (Liverpool John Moores University, 2012).
    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Zapatero-Ramos, L. M., Gonzalez-Santiago, P. M., Solera-Puertas, M. A. & Carvajal-Gallardo, M. M. Estudio de nuevas especies de Pterigosomidae (Acari: Actinedida) sobre geckónidos de las Islas Canarias. Descripción de Geckobia canariensis n. sp. y Geckobia tinerfensis n. sp. Rev. Ibérica Parasitol. 49, 51–64 (1989).
    Google Scholar 
    Fain, A. & Bannert, B. Two new species of Ophionyssus Mégnin (Acari: Macronyssidae) parasitic on lizards of the genus Gallotia Boulenger (Reptilia: Lacertidae) from the Canary Islands. Int. J. Acarol. 26, 41–50 (2000).
    Google Scholar 
    Rosner, B. On the detection of many outliers. Technometrics 17, 221–227 (1975).MathSciNet 
    MATH 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.1 (2021).Langsrud, Ø. ANOVA for unbalanced data: Use type II instead of type III sums of squares. Stat. Comput. 13, 163–167 (2003).MathSciNet 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.5-1 (2021).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
    Google Scholar 
    Halliday, T. R. & Verrell, P. A. Body size and age in amphibians and reptiles. J. Herpetol. 22, 253–265 (1988).
    Google Scholar 
    Lopez-Darias, M., Vanhooydonck, B., Cornette, R. & Herrel, A. Sex-specific differences in ecomorphological relationships in lizards of the genus Gallotia. Funct. Ecol. 29, 506–514 (2015).
    Google Scholar 
    Márquez, R. & Cejudo, D. Defensive behavior as an escape strategy in four species of Gallotia (Sauria, Lacertidae) from the Canary Islands. Copeia 2000, 601–605 (2000).
    Google Scholar 
    Moon, B. R., Penning, D. A., Segall, M. & Herrel, A. Feeding in snakes: Form, function, and evolution of the feeding system. In Feeding in Vertebrates: Evolution, Morphology, Behavior, Biomechanics (eds Bels, V. & Whishaw, I. Q.) 527–574 (Springer, 2019).
    Google Scholar 
    Castanet, J. & Baéz, M. Adaptation and evolution in Gallotia lizards from the Canary Islands: Age, growth, maturity and longevity. Amphibia-Reptilia 12, 81–102 (1991).
    Google Scholar 
    Zamora-Camacho, F. J., Reguera, S., Rubiño-Hispán, M. V. & Moreno-Rueda, G. Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol. Biol. 41, 509–517 (2014).
    Google Scholar 
    Glossip, D. & Losos, J. B. Ecological correlates of number of subdigital lamellae in anoles. Herpetologica 53, 192–199 (1997).
    Google Scholar 
    Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B. & Autumn, K. Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology 117, 363–369 (2014).PubMed 

    Google Scholar 
    Landová, E., Jančúchová-Lásková, J., Musilová, V., Kadochová, Š & Frynta, D. Ontogenetic switch between alternative antipredatory strategies in the leopard gecko (Eublepharis macularius): Defensive threat versus escape. Behav. Ecol. Sociobiol. 67, 1113–1122 (2013).
    Google Scholar 
    Eifler, M. A., Marchand, R., Eifler, D. A. & Malela, K. Habitat use and activity patterns in the nocturnal gecko, Chondrodactylus turneri. Herpetologica 73, 43–47 (2017).
    Google Scholar 
    Hielen, B. Unterschiedliche Fortpflanzungsstrategien bei Geckos der Gattung Tarentola Gray, 1825. Salamandra 28, 179–194 (1993).
    Google Scholar 
    Magnhagen, C. Predation risk as a cost of reproduction. Trends Ecol. Evol. 6, 183–186 (1991).CAS 
    PubMed 

    Google Scholar 
    Shine, R. ‘Costs’ of reproduction in reptiles. Oecologia 46, 92–100 (1980).ADS 
    PubMed 

    Google Scholar 
    Moran, E. V. & Alexander, J. M. Evolutionary responses to global change: Lessons from invasive species. Ecol. Lett. 17, 637–649 (2014).PubMed 

    Google Scholar 
    Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford University Press, 2007).
    Google Scholar 
    Pinya, S., Tejada, S., Capó, X. & Sureda, A. Invasive predator snake induces oxidative stress responses in insular amphibian species. Sci. Total Environ. 566–567, 57–62 (2016).ADS 
    PubMed 

    Google Scholar 
    Genovart, M. et al. The young, the weak and the sick: Evidence of natural selection by predation. PLoS One 5, e9774 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sand, H., Wikenros, C., Ahlqvist, P., Strømseth, T. H. & Wabakken, P. Comparing body condition of moose (Alces alces) selected by wolves (Canis lupus) and human hunters: Consequences for the extent of compensatory mortality. Can. J. Zool. 90, 403–412 (2012).
    Google Scholar 
    Vedder, O., Bouwhuis, S. & Sheldon, B. C. The contribution of an avian top predator to selection in prey species. J. Anim. Ecol. 83, 99–106 (2014).PubMed 

    Google Scholar 
    Lopez, L. K. & Duffy, M. A. Mechanisms by which predators mediate host–parasite interactions in aquatic systems. Trends Parasitol. 37, 890–906 (2021).CAS 
    PubMed 

    Google Scholar 
    Garrido, M. & Pérez-Mellado, V. Human pressure, parasitism and body condition in an insular population of a Mediterranean lizard. Eur. J. Wildl. Res. 61, 617–621 (2015).
    Google Scholar 
    Amo, L., López, P. & Martín, J. Habitat deterioration affects body condition of lizards: A behavioral approach with Iberolacerta cyreni lizards inhabiting ski resorts. Biol. Conserv. 135, 77–85 (2007).
    Google Scholar 
    Kindinger, T. L. & Albins, M. A. Consumptive and non-consumptive effects of an invasive marine predator on native coral-reef herbivores. Biol. Invasions 19, 131–146 (2017).
    Google Scholar 
    Main, A. R. & Bull, C. M. The impact of tick parasites on the behaviour of the lizard Tiliqua rugosa. Oecologia 122, 574–581 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Garrido, M. & Pérez-Mellado, V. Sprint speed is related to blood parasites, but not to ectoparasites, in an insular population of lacertid lizards. Can. J. Zool. 92, 67–72 (2014).
    Google Scholar 
    Wirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P. & Schmitz, O. J. The context dependence of non-consumptive predator effects. Ecol. Lett. 24, 113–129 (2021).PubMed 

    Google Scholar 
    Civantos, E., López, P. & Martín, J. Non-lethal effects of predators on body growth and health state of juvenile lizards, Psammdromus algirus. Physiol. Behav. 100, 332–339 (2010).CAS 
    PubMed 

    Google Scholar 
    Graham, S. P., Freidenfelds, N. A., McCormick, G. L. & Langkilde, T. The impacts of invaders: Basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen. Comp. Endocrinol. 176, 400–408 (2012).CAS 
    PubMed 

    Google Scholar 
    Donihue, C. M. et al. Hurricane-induced selection on the morphology of an island lizard. Nature 560, 88–91 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Donihue, C. M. et al. Hurricane effects on Neotropical lizards span geographic and phylogenetic scales. Proc. Natl. Acad. Sci. 117, 10429–10434 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodman, B. A., Miles, D. B. & Schwarzkopf, L. Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology 89, 3462–3471 (2008).PubMed 

    Google Scholar 
    Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human influences on evolution, and the ecological and societal consequences. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160028 (2017).
    Google Scholar  More

  • in

    The trophic niche of subterranean populations of Speleomantes italicus

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/sqb.1957.022.01.039 (1957).Article 

    Google Scholar 
    Manenti, R., Melotto, A., Guillaume, O., Ficetola, G. F. & Lunghi, E. Switching from mesopredator to apex predator: How do responses vary in amphibians adapted to cave living?. Behav. Ecol. Sociobiol. 74, 126. https://doi.org/10.1007/s00265-020-02909-x (2020).Article 

    Google Scholar 
    Pekár, S., García, L. F. & Viera, C. Behaviour and Ecology of Spiders (Springer, 2017).
    Google Scholar 
    Nawrocki, B., Colborne, S. F., Yurkowski, D. J. & Fisk, A. T. Foraging ecology of Bowfin (Amia calva), in the Lake Huron-Erie Corridor of the Laurentian Great Lakes: Individual specialists in generalist populations. J. Great Lakes Res. 42, 1452–1460. https://doi.org/10.1016/j.jglr.2016.08.002 (2016).Article 

    Google Scholar 
    Nifong, J. C. Living on the edge: Trophic ecology of Alligator mississippiensis (American alligator) with access to a shallow estuarine impoundment. Bull. Fla. Mus. Nat. Hist. 54, 13–49 (2016).
    Google Scholar 
    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786. https://doi.org/10.1126/science.1103538 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jaeger, A. et al. Age, sex, and breeding status shape a complex foraging pattern in an extremely long-lived seabird. Ecology 95, 2324–2333 (2014).Article 
    PubMed 

    Google Scholar 
    Salwiczek, L. H. et al. Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner: Client reef fish cooperation. PLoS ONE 7, e49068. https://doi.org/10.1371/journal.pone.0049068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juáres, M. A., Santos, M., Mennucci, J. A., Coria, N. R. & Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar. Biol. 163, 105. https://doi.org/10.1007/s00227-016-2886-y (2016).Article 
    CAS 

    Google Scholar 
    Rosenblatt, A. E. et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 178, 5–16. https://doi.org/10.1007/s00442-014-3201-6 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Casper, R. M. et al. The influence of diet on foraging habitat models: A case study using nursing Antarctic fur seals. Ecography 33, 748–759. https://doi.org/10.1111/j.1600-0587.2009.06155.x (2010).Article 

    Google Scholar 
    Pagani-Núñez, E., Barnett, C. A., Gu, H. & Goodale, E. The need for new categorizations of dietary specialism incorporating spatio-temporal variability of individual diet specialization. J. Zool. 300, 1–7. https://doi.org/10.1111/jzo.12364 (2016).Article 

    Google Scholar 
    Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274. https://doi.org/10.1890/07-1580.1 (2009).Article 
    PubMed 

    Google Scholar 
    Ćirović, D., Penezić, A., Milenković, M. & Paunović, M. Winter diet composition of the Golden jackal (Canis aureus L. 1758) in Serbia. Mamm. Biol. 79, 132–137. https://doi.org/10.1016/j.mambio.2013.11.003 (2014).Article 

    Google Scholar 
    Moser, C. F., de Avila, F. R., de Oliveira, M. & Tozetti, A. M. Diet composition and trophic niche overlap between two sympatric species of Physalaemus (Anura, Leptodactylidae, Leiuperinae) in a subtemperate forest of southern Brazil. Herpeto. Notes 10, 9–15 (2017).
    Google Scholar 
    Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE 13, e0205672. https://doi.org/10.1371/journal.pone.0205672 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evangelista, C., Boiche, A., Lecerf, A. & Cucherousset, J. Ecological opportunities and intraspecific competition alter trophic niche specialization in an opportunistic stream predator. J. Anim. Ecol. 83, 1025–1034. https://doi.org/10.1111/1365-2656.12208 (2014).Article 
    PubMed 

    Google Scholar 
    Cloyed, C. S. & Eason, P. K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 4, 170060. https://doi.org/10.1098/rsos.170060 (2017).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dehnhard, N. et al. Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird?. Ecol. Evol. 6, 4488–4501. https://doi.org/10.1002/ece3.2213 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jirka, K. J. & Kraft, C. E. Diet niche width and individual specialization of Brook trout in Adirondack lakes. Trans. Am. Fish Soc. 146, 716–731. https://doi.org/10.1080/00028487.2017.1290680 (2017).Article 

    Google Scholar 
    Reading, C. & Jofré, G. Diet composition changes correlated with body size in the Smooth snake, Coronella austriaca, inhabiting lowland heath in southern England. Amphib. Reptil. 34, 463–470. https://doi.org/10.1163/15685381-00002899 (2013).Article 

    Google Scholar 
    Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecol. 36, 522–529. https://doi.org/10.1016/j.actao.2010.07.005 (2010).Article 
    ADS 

    Google Scholar 
    Stamp, N. E. & Bowers, M. D. Presence of predatory wasps and stinkbugs alters foraging behavior of cryptic and non-cryptic caterpillars on plantain (Plantago lanceolata). Oncologic 95, 376–384 (1993).ADS 

    Google Scholar 
    Magnusson, W. E. & Lima, A. P. The ecology of a cryptic predator, Paleosuchus tigonatus, in a tropical rainforest. J. Herpetol. 25, 41–48 (1991).Article 

    Google Scholar 
    Riesch, R., Tobler, M. & Plath, M. Extremophile Fishes Ecology, Evolution, and Physiology of Teleosts in Extreme Environments (Springer, 2015).
    Google Scholar 
    Horikoshi, K. Barophiles: Deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1, 291–295 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926. https://doi.org/10.1002/ece3.7556 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildl. Res. 39, 266–270. https://doi.org/10.1071/WR11103 (2012).Article 

    Google Scholar 
    Wake, D. B. The enigmatic history of the European. Asian and American plethodontid salamanders. Amphib-reptile 34, 323–336 (2013).Article 

    Google Scholar 
    Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti Mus. Civ. Stor. Nat. Trieste 52, 5–135 (2006).
    Google Scholar 
    Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).European Community. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. J. Eur. Union 206(7), 1–44 (1992).
    Google Scholar 
    Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 20. https://doi.org/10.1007/s00114-017-1443-y (2017).Article 
    CAS 

    Google Scholar 
    Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species?. Acta Oecol. 55, 29–35. https://doi.org/10.1016/j.actao.2013.11.003 (2014).Article 
    ADS 

    Google Scholar 
    Salvidio, S., Oneto, F., Ottonello, D., Costa, A. & Romano, A. Trophic specialization at the individual level in a terrestrial generalist salamander. Can. J. Zool. 93, 79–83. https://doi.org/10.1139/cjz-2014-0204 (2015).Article 

    Google Scholar 
    Lunghi, E. et al. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 8, 7527. https://doi.org/10.1038/s41598-018-25704-1 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 8, 10575. https://doi.org/10.1038/s41598-018-28796-x (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. in Scripta Herpetologica. Studies on Amphibians and Reptiles in honour of Benedetto Lanza (eds M. Capula & C. Corti) (Edizioni Belvedere, 2014).Lunghi, E., Mascia, C., Mulargia, M. & Corti, C. Is the Sardinian grass snake (Natrix natrix cetti) an active hunter in underground environments?. Spixiana 41, 160 (2018).
    Google Scholar 
    Ficetola, G. F., Canedoli, C. & Stock, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216. https://doi.org/10.1111/cobi.13179 (2019).Article 
    PubMed 

    Google Scholar 
    Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 5, 180083. https://doi.org/10.1038/sdata.2018.83 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Updating salamander datasets with phenotypic and stomach content information for two mainland Speleomantes. Sci. Data 8, 150. https://doi.org/10.1038/s41597-021-00931-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deban, S. M. & Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 207, 2071–2081. https://doi.org/10.1242/jeb.00978 (2004).Article 
    PubMed 

    Google Scholar 
    Deban, S. M., O’Reilly, J. C., Dicke, U. & van Leeuwen, J. L. Extremely high-power tongue projection in plethodontid salamanders. J. Exp. Biol. 210, 655–667. https://doi.org/10.1242/jeb.02664 (2007).Article 
    PubMed 

    Google Scholar 
    Vignoli, L., Caldera, F. & Bologna, M. A. Trophic niche of cave populations of Speleomantes italicus. J. Nat. Hist. 40, 1841–1850 (2006).Article 

    Google Scholar 
    Salvidio, S. et al. Consistency in trophic strategies between populations of the Sardinian endemic salamander Speleomantes imperialis. Anim. Biol. 67, 1–16. https://doi.org/10.1163/15707563-00002517 (2017).Article 

    Google Scholar 
    Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection?. PeerJ 3, e1122. https://doi.org/10.7717/peerj.1122 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. J. Therm. Biol. 60, 79–85. https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).Article 
    PubMed 

    Google Scholar 
    Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).Article 

    Google Scholar 
    Manenti, R., Lunghi, E. & Ficetola, G. F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebr. Biol. 134, 242–251. https://doi.org/10.1111/ivb.12092 (2015).Article 

    Google Scholar 
    Yurkowski, D. J. et al. Latitudinal variation in ecological opportunity and intraspecific competition indicates differences in niche variability and diet specialization of Arctic marine predators. Ecol. Evol. 6, 1666–1678. https://doi.org/10.1002/ece3.1980 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Araújo, M. S., Bolnick, D. L. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958. https://doi.org/10.1111/j.1461-0248.2011.01662.x (2011).Article 
    PubMed 

    Google Scholar 
    Lunghi, E. et al. Same diet, different strategies: Variability of individual feeding habits across three populations of Ambrosi’s cave salamander (Hydromantes ambrosii). Diversity 12, 180. https://doi.org/10.3390/d12050180 (2020).Article 

    Google Scholar 
    Costa, A., Crovetto, F. & Salvidio, S. European plethodontid salamanders on the forest floor: Local abundance is related to fine-scale environmental factors. Herpetol. Conserv. Biol. 11, 344–349 (2016).
    Google Scholar 
    Salvidio, S., Romano, A., Oneto, F., Ottonello, D. & Michelon, R. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol. 43, 42–50 (2012).Article 
    ADS 

    Google Scholar 
    Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats 2nd edn. (Oxford University Press, 2019).Book 

    Google Scholar 
    Lunghi, E., Manenti, R. & Ficetola, G. F. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. PeerJ 5, e3169. https://doi.org/10.7717/peerj.3169 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E., Ficetola, G. F., Zhao, Y. & Manenti, R. Are the neglected Tipuloidea crane flies (Diptera) an important component for subterranean environments?. Diversity 12, 333. https://doi.org/10.3390/d12090333 (2020).Article 

    Google Scholar 
    Manenti, R. et al. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 45, 90–97. https://doi.org/10.1016/j.jnc.2018.08.001 (2018).Article 

    Google Scholar 
    Lunghi, E. et al. Ecological observations on hybrid populations of European plethodontid salamanders, genus Speleomantes. Diversity 13, 285. https://doi.org/10.3390/d13070285 (2021).Article 

    Google Scholar 
    Lunghi, E., Guillaume, O., Blaimont, P. & Manenti, R. The first ecological study on the oldest allochthonous population of European cave salamanders (Hydromantes sp.). Amphib-Reptile 39, 113–119. https://doi.org/10.1163/15685381-00003137 (2018).Article 

    Google Scholar 
    Bolnick, D. I. et al. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B 277, 1789–1797. https://doi.org/10.1098/rspb.2010.0018 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): Nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).
    Google Scholar 
    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 724–734. https://doi.org/10.1111/ecog.04798 (2020).Article 

    Google Scholar 
    Lormée, H., Jouventin, P., Trouve, C. & Chastel, O. Sex-specific patterns in baseline corticosterone and body condition changes in breeding Red-footed Boobies Sula sula. Ibis 145, 212–219 (2003).Article 

    Google Scholar 
    Du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob Change Biol 18, 3063–3070. https://doi.org/10.1111/j.1365-2486.2012.02778.x (2012).Article 
    ADS 

    Google Scholar 
    Lunghi, E. & Corti, C. Predation of European cave salamanders (Speleomantes) by the spider Meta bourneti. Spixiana 44, 54 (2021).
    Google Scholar 
    Lunghi, E. Doubling the lifespan of European plethodontid salamanders. Ecology 103, e03581. https://doi.org/10.1002/ecy.3581 (2022).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Pennati, R. & Manenti, R. Spatial segregation among age classes in cave salamanders: Habitat selection or social interactions?. Popul Ecol 55, 217–226 (2013).Article 

    Google Scholar 
    Lunghi, E. et al. Interspecific and inter-population variation in individual diet specialization: Do environmental factors have a role?. Ecology 101, e03088. https://doi.org/10.1002/ecy.3088 (2020).Article 
    PubMed 

    Google Scholar 
    Blamires, S. J. Plasticity in extended phenotypes: Orb web architectural responses to variations in prey parameters. J. Exp. Biol. 213, 3207–3212. https://doi.org/10.1242/jeb.045583 (2010).Article 
    PubMed 

    Google Scholar 
    Costa, A. et al. Generalisation within specialization: Inter-individual diet variation in the only specialized salamander in the world. Sci. Rep. 5, 13260. https://doi.org/10.1038/srep13260 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E. et al. Capture-mark-recapture data on the strictly protected Speleomantes italicus. Ecology 103, e3641. https://doi.org/10.1002/ecy.3641 (2022).Article 
    PubMed 

    Google Scholar 
    Lunghi, E. & Bruni, G. Long-term reliability of visual implant elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).
    Google Scholar 
    Lunghi, E., Bacci, F. & Zhao, Y. How can we record reliable information on animal colouration in the wild?. Diversity 13, 356. https://doi.org/10.3390/d13080356 (2021).Article 

    Google Scholar 
    Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253. https://doi.org/10.3897/herpetozoa.32.e39030 (2019).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-7. https://cran.r-project.org, https://github.com/vegandevs/vegan (2020).R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021) http://www.R-project.org/.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    Băncilă, R. I., Hartel, T. R. P., Smets, J. & Cogălniceanu, D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib-Reptile 31, 558–562. https://doi.org/10.1163/017353710X518405 (2010).Article 

    Google Scholar 
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2014).Article 

    Google Scholar 
    Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes. Sci. Data 7, 171. https://doi.org/10.1038/s41597-020-0513-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 3, 319. https://doi.org/10.1038/s41559-019-0803-8 (2019).Article 
    PubMed 

    Google Scholar  More

  • in

    Evidence of sweet corn yield losses from rising temperatures

    Brown, M. E. et al. In Climate Change, global food security, and the U.S. food system (2015).Masson-Delmotte, V. et al. AR6 Climate Change 2021: The Physical Science Basis—IPCC. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Douris, J. et al. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-No. 1267). In WMO Statement on the state of the Global Climate vol. 1267 (WMO, 2021).Smith, A. B. U.S. Billion-dollar Weather and Climate Disasters, 1980–present (NCEI Accession 0209268). In National Centers for Environmental Information (2020).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 
    ADS 

    Google Scholar 
    Mann, M. E. et al. Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv. 4, 5 (2018).Article 

    Google Scholar 
    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 2325–2337 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Daloz, A. S. et al. Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. J. Agric. Food Res. 4, 100–132 (2021).
    Google Scholar 
    Leng, G. Maize yield loss risk under droughts in observations and crop models in the Unites States. Environ. Res. Lett. 16, 24016 (2021).Article 

    Google Scholar 
    Backlund, P., Janetos, A., & Schimel, D. In The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States Synthesis and Assessment Product, vol. 4.3 (2008).Scheelbeek, P. F. D., Tuomisto, H. L., Bird, F. A., Haines, A. & Dangour, A. D. Effect of environmental change on yield and quality of fruits and vegetables: Two systematic reviews and projections of possible health effects. Lancet Glob. Health 5, S21 (2017).Article 

    Google Scholar 
    Drewnowski, A., Dwyer, J., King, J. C. & Weaver, C. M. A proposed nutrient density score that includes food groups and nutrients to better align with dietary guidance. Nutr. Rev. 77, 404–416 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinberger, K. & Lumpkin, T. A. Diversification into horticulture and poverty reduction: A research agenda. World Dev. 35, 1464–1480 (2007).Article 

    Google Scholar 
    Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38 (2008).PubMed 

    Google Scholar 
    Kazan, K. & Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 67, 47–60 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Messina, C. D. et al. On the dynamic determinants of reproductive failure under drought in maize. In Silico Plants 1, 1–14 (2019).Article 

    Google Scholar 
    Yang, X., Wang, B., Chen, L., Li, P. & Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 9, 3742 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).Article 
    ADS 

    Google Scholar 
    Owen, P. C. Responses of a semi-dwarf wheat to temperatures representing a tropical dry season. II. Extreme temperatures. Exp. Agric. 7, 43–47 (1971).Article 

    Google Scholar 
    Liu, F., Jensen, C. R. & Andersen, M. N. A review of drought adaptation in crop plants: Changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust. J. Agric. Res. 56, 1245–1252 (2005).Article 
    CAS 

    Google Scholar 
    Turc, O., Bouteillé, M., Fuad-Hassan, A., Welcker, C. & Tardieu, F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytol. 212, 377–388 (2016).Article 
    PubMed 

    Google Scholar 
    Fuad-Hassan, A., Tardieu, F. & Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: A spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ. 31, 1349–1360 (2008).Article 
    PubMed 

    Google Scholar 
    USDA–National Agricultural Statistics Service (2021). https://data.nal.usda.gov/dataset/nass-quick-stats, accessed 29 December 2021.Challinor, A. J., Parkes, B. & Ramirez-Villegas, J. Crop yield response to climate change varies with cropping intensity. Glob. Chang. Biol. 21, 1679–1688 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kukal, M. S. & Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 8, 1–18 (2018).Article 
    ADS 

    Google Scholar 
    Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 7, 1–7 (2020).Article 

    Google Scholar 
    Thornton, M. M. et al. In Daymet: Daily surface weather data on a 1-km grid for North America, Version 4. ORNL DAAC (2020).Ritchie, S. W., Hanway, J. J., Benson, G. O., & Herman, J. C. How a corn plant develops: Special report no. 48. In Ames: Iowa State University of Science and Technology Cooperative Extension Service (1986).Nicholls, N. Increased Australian wheat yield due to recent climate trends. Nature 387, 484–485 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 106, 15594–15598 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dhaliwal, D. S. & Williams, M. M. I. I. Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn. PLoS ONE 15, e0228809 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).Article 
    ADS 

    Google Scholar 
    Gilmore, E. C. & Rogers, J. S. heat units as a method of measuring maturity in corn. Agron. J. 50, 611–615 (1958).Article 

    Google Scholar 
    Wang, J. Y. A critique of the heat unit approach to plant response studies. Ecology 41, 785–790 (1960).Article 

    Google Scholar 
    Cross, H. Z. & Zuber, M. S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron. J. 64, 351–355 (1972).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 
    ADS 

    Google Scholar 
    Díaz, E. L. et al. In Chapter 20: US Caribbean. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II,(2018).Wang, Y. et al. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 158, 80–88 (2019).Article 

    Google Scholar 
    Lohani, N., Singh, M. B. & Bhalla, P. L. High temperature susceptibility of sexual reproduction in crop plants. J. Exp. Bot. 71, 555–568 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jagadish, S. V. K., Craufurd, P. Q. & Wheeler, T. R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58, 1627–1635 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).Article 
    ADS 

    Google Scholar 
    Hedhly, A., Hormaza, J. I. & Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 14, 30–36 (2008).Article 
    PubMed 

    Google Scholar 
    Zhao, F. et al. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron. Sin. 39, 1644–1651 (2013).Article 
    CAS 

    Google Scholar 
    Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 35, 9705 (2008).Article 
    ADS 

    Google Scholar 
    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).Article 
    ADS 

    Google Scholar 
    Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 26, 3065–3078 (2020).Article 
    ADS 
    PubMed 

    Google Scholar  More

  • in

    The emergence and development of behavioral individuality in clonal fish

    All animal care and experimental protocols complied with local and federal laws and guidelines and were approved by the appropriate governing body in Berlin, Germany, the Landesamt fur Gesundheit und Soziales (LaGeSo G-0224/20).Experimental breeding and designThe all-female Amazon molly (Poecilia formosa) is a naturally clonal, live-bearing fish species that gives birth to broods of genetically identical offspring. Like all unisexual vertebrates, Amazon mollies are the result of inter-specific hybridization44,45. As such, this ‘frozen hybrid’ has a heterozygous genome from its ancestral P. mexicana mother and P. latipinna father alleviating concerns about reduced genetic variation and the resulting inbreeding depression often associated with artificially selected isogenic animals. Additionally, despite their clonal nature, the Amazon’s genome shows no evidence of increased mutation accumulation, genomic decay or transposable element activity suggesting the genomes of these animals are evolving in similar ways as sexual species46. They reproduce through gynogenesis where the meiotic process is disrupted so that the eggs contain a full maternal genome. The egg must be fused with a sperm from one of their ancestral species to stimulate embryogenesis, but this paternal DNA is not incorporated into the egg. This provides the opportunity to control when reproduction occurs by controlling the females’ access to male sperm donors.We placed adult females, as potential mothers of experimental fish, in individual (5-gallon) breeding tanks with two Atlantic molly (P. mexicana) males for one week to act as sperm donors. Amazon mollies give birth to broods of generally ~8-30 individuals. A brood is born at once (i.e. all individuals are born within minutes of each other) and birth generally happens early in the day close to dawn. These parental fish were lab-bred and themselves sisters, so of the same age and lineage, and were kept at similar social densities and under standardized environmental conditions throughout their lives to further minimize potential variation in maternal experience. Each breeding tank contained an artificial plant as refuge and was checked frequently each day for the presence of offspring, especially during the morning hours when births are most likely. Newborn mollies were always found in the morning and then singly netted by trained animal caretakers, into individual experimental tanks where their behavior was automatically recorded for the next 70 days (see below). Moving the fish from the maternal tank to the experimental tanks was done in a standardized manner (i.e. individual fish were netted and placed into small dishes of water and then placed in the tracking tanks to limit exposure to the air) by the same caretakers to minimize variation in experience among individual fish. Altogether, eight mothers provided offspring that completed the entire 10-week experiment (Supplementary Table 1).Experimental tanks (27 x 27 cm), made of white Perspex, consisted of four equally sized compartments, and were evenly lit from below using 6500K-LEDs. Environmental conditions were highly standardized across tanks: all tanks were on the same 11:13 (L:D) light schedule, water depth was maintained at 10 cm depth, temperature was maintained at 25 ± 1 °C by a room air conditioning system, and fish received a standardized amount of powdered flake fish food (TetraMin™) twice daily. Opaque blinds surrounded the tanks to further limit outside disturbances. All experimental tanks were connected to the same filtration system where water could mix in the sump tank, allowing chemical cues to be shared across all experimental fish. Previous work has shown exposure to just chemical cues of conspecifics is sufficient in preventing the developmental of pathological behavior that could be associated with development in complete isolation14. We initially placed a total of 40 newborn individuals into the tracking tanks. At the end of the 10-week experiment, we were able to achieve complete tracking data on 26 individuals; camera malfunctions prevented data collection on four individuals, two individuals jumped into neighboring tanks causing the loss of data of all four individuals as we could not verify their identity; four newborn individuals escaped through holes in the water outlet of the tanks; and four individuals died as newborns. All results in the manuscript are on these 26 animals, though including data from all 40 (e.g. patterns of individual variation on the first day post birth) did not change the results or their interpretation (see Supplementary Table 2).Behavioral trackingWe developed a custom recording system using Raspberry Pi computers, which are an upcoming low-cost, highly adaptable solution for many applications in the biological sciences25. Specifically, we created a local network of Raspberry Pi 3B + ’s, each connected to a Raspberry Pi camera positioned exactly above an experimental tank, commanded by a lab computer, and connected to the server on the institute network (Supplementary Fig. 1). We programmed the Raspberry Pi’s using pirecorder26 to take timestamped photos every 3 s across the daily light period, each day, for 10 weeks, and store them automatically in dedicated, automatically named folders on the server. Image settings and resolution were thereby optimized to minimize file size while assuring image quality. After the experimental period, we created videos of all the recorded images of each fish of each day. These videos were subsequently tracked with the Biotracker software27, using background subtraction, providing the x, y coordinates of each fish in each frame. We then processed the data, including scaling and converting the coordinates to mm, and, for each frame, computed fish’s swimming speed (cm/s) and distance from the tank walls (cm). We then summarized these variables both on an hourly and daily basis to compute fish’s median swimming speed, inter-quartile range of swimming speeds, activity (proportion of time spent moving >0.5 cm/s), and median border distance. To quantify fish’s body size over time, we randomly selected five photos per week of each compartment, making sure the fish was away from the compartment walls and did not show strong body curvature, and then used ImageJ software to measure total body length (mm) from the tip of the snout to the end of the body. By averaging the measurements of the five images, we acquired one body size measurement per week.Error checkingWe collected up to 924,000 photos on each individual throughout the experimental period resulting in a total of over 24 million data points collected on our experimental animals (N = 26 individuals). To ensure that our tracking software accurately captured the behavior of our fish, we checked for potential tracking errors in two ways. First, we estimated overall error rates. To do this, we selected at random a starting frame from within a day; then we manually checked each of the subsequent 200 frames and identified whether an error was made (fish was not properly located by BioTracker) or not (fish was properly located) by visual inspection of the videos. We estimated the error rate as the number of errors divided by the total number of checked frames. The overall median error rate over the entire observation period was estimated to be 7%. Error rates increased earlier in the observation period when the fish were smaller (Supplementary Note I). As such, as a second step, we manually went through and corrected all frames for the very first day of tracking (i.e. day 1 post-birth) for all fish (~13,200 frames per individual) as this is a critical time period for one of our research questions. This ensured that the resulting behavioral data were completely accurate for this day. This manual correction allowed us the additional opportunity to compare how well our automatically tracked (i.e. not manually corrected) data performed compared to the manually corrected data. We found that the automatically tracked data re-created near identical estimates of among- and within-individual variance components and most importantly the among-individual correlation between the automatically tracked and manually corrected data was over 0.98 for our behavioral variables (Supplementary Note I). This strongly suggests that any errors introduced by our automated tracking software have minimal influence of our behavioral variables at best and do not affect our interpretation of the results.Statistical analysesWe used linear mixed, or hierarchical, models to partition the behavioral variation across different times periods into its among- and within-individual components. Throughout we focused our analysis on the 26 individuals for which we had complete data for the entire 10-week observation period to ensure comparable variation over time and across models.Our first question of interest was to test when individual differences in behavior first appeared over the course of the experiment. We started by investigating behavior on the first day post birth (Fig. 1A, Supplementary Table 2) and then planned to proceed in a day-by-day fashion until significant repeatability in behavior was apparent (Supplementary Table 3). We used hourly median swimming speed (11 observations for each of 26 individuals) as our response variable and included ‘hour’ and ‘total length (TL)’ as fixed effects and ‘individual’ was included as our random effect of interest. Including TL as a covariate allowed us to test whether behavior was related to an offspring’s body size on its first day of life. We set the first hour of the day as 0 and mean-centered TL as this would allow the among- (and within-) individual variance components to be estimated at these values (i.e. the earliest possible moment from when we could record behavior in the fish). We estimated the adjusted repeatability of median swimming speed as the variance attributable to individual identity over the total variance not explained by the fixed effects. We additionally estimated both marginal and conditional R-squared values which estimate the variance explained by the fixed effects only and the variance explained by the fixed and random effects combined, respectively. As our individual experimental fish came from different mothers, we first explored a number of different variance structures including random intercepts and slopes for both individual ID and maternal ID. This allowed us to test whether maternal identity explained variation in individual behavior. However, the most supported model included random intercepts and slopes for individual ID and not for mother ID, indicating that our methods to reduce variation among mothers were successful (Table 1). We used median swimming speed as our behavioral variable of interest throughout the main manuscript, as this behavior was tightly correlated with most of our other behavioral variables (Supplementary Fig. 2); though results using the other behavioral variables yielded the same interpretation (i.e. that significant individuality in (any) behavior was present on the very first day post-birth; Supplementary Table 2).Our second research question was to investigate how individual behavioral variance changed over the course of the entire observation period (70 days). Again, we first explored several different variance structures to test the importance of maternal identity and/or individual identity on behavioral variation. We found support for the inclusion of random slopes at the individual level, but not maternal level (Table 1). This indicates that levels of among- (and within-) individual variation may differ throughout the observation period. To investigate patterns of change in the variance components, we ran a series of models where we centered the observation covariate on different days. Individual intercepts are estimated when all covariates are set to zero, so this allowed us to ‘slice’ the data to estimate the among- and within-individual variance at different time points over the ten weeks. We ran 11 models as we chose to center the data every 7 days (first model was centered on observation 1; 11th model was centered on observation 70). The predicted individual intercepts (best linear unbiased predictors) and estimated variance components from each model are plotted in Fig. 3.We also closely investigated any potential influence of body size and/or growth rate differences on behavioral expression and individual behavioral variation in this entire 10-week data set. First, we estimated the repeatability of both weekly total length and weekly growth rates to determine if individuals consistently differed in these traits. Then, we ran a series of models with median weekly swimming speed as the response variable and included either weekly total length, weekly growth rate, and/or overall growth rate (estimated over the entire 10 weeks), as our fixed effects of interest. Each model also included the random effects of individual intercepts and slopes. Finally, because body size varies both among individuals (some individuals are on average larger than others) and within individuals (as they grow), we also performed within-individual centering of total length. In this fifth model, we included each individual’s average total length and their weekly deviation from their average length as the two fixed effects of interest. Individual identity and slopes were included as random effects. For all models, we estimated the variance explained by the fixed effects (marginal R2) and the fixed and random effects together (conditional R2). These results are reported in Table 2.For our third and final research question, we tested whether early-life behavior predicted later-life behavior. To test this, we estimated the among-individual correlation (including ‘individual ID’ as our random effect) in behavior using multivariate mixed models where the daily median swimming speeds in each week were the response variables (7 observations per week per individual; 10 weeks total; Fig. 4A). Then to investigate how the strength of these correlations may change over development, we used a linear model to test whether the correlation strength was predicted by the interaction between the first week included in the correlation and distance to the next week in the correlation (1, 2, 3, 4 or 5 weeks away in time; Fig. 4B).All models were performed using Markov Chain Monte Carlo estimation with the MCMCglmm package38 in R v3.6.139. We set our models to run 510,000 iterations with a 10,000 burn-in and thinning every 200 iterations. To ensure proper model mixing and convergence, we initially ran 5 independent chains and inspected posterior trace plots of parameter estimates (Supplementary Note II). In a preliminary analysis we tested three different prior settings (Supplementary Note II); results did not change with prior settings so we chose parameter-expanded priors for all models reported here as these are generally considered to be more robust. An R Markdown file with all the results presented here is included in Supplementary Note II.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis

    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).
    Google Scholar 
    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).
    Google Scholar 
    McCauley, D. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 

    Google Scholar 
    Pereira, H. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oliver, S., Braccini, M., Newman, S. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).
    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–574 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gilman, E. et al. Shark interactions in pelagic longline fisheries. Mar. Policy 32, 1–18 (2008).
    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Google Scholar 
    Bowlby, H. & Gibson, A. Implications of life history uncertainty when evaluating status in the Northwest Atlantic population of white shark (Carcharodon carcharias). Ecol. Evol. 10, 4990–5000 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Dulvy, N. et al. Overfishing drives over one third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 4773-4787.e8 (2021).CAS 
    PubMed 

    Google Scholar 
    Heino, M., Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).
    Google Scholar 
    Mitchell, J., McLean, D., Collins, S. & Langlois, T. Shark depredation in commercial and recreational fisheries. Rev. Fish Biol. Fish 28, 715–748 (2018).
    Google Scholar 
    Jaiteh, V. F., Loneragan, N. & Warren, C. The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar. Policy 82, 224–233 (2017).
    Google Scholar 
    Seidu, I. et al. Fishing for survival: Importance of shark fisheries for the livelihoods of coastal communities in Western Ghana. Fish. Res. 246, 106157 (2022).
    Google Scholar 
    Gilman, E., Weijerman, M. & Suuronen, P. Ecological data from observer programs underpin ecosystem-based fisheries management. ICES J. Mar. Sci. 74, 1481–1495 (2017).
    Google Scholar 
    Melnychuk, M. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. https://doi.org/10.1038/s41893-020-00668-1 (2021).Article 

    Google Scholar 
    Musyl, M. & Gilman, E. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish Fish. 20, 466–500 (2019).
    Google Scholar 
    Clarke, S. A status snapshot of key shark species in the western and central pacific and potential management options. in WCPFC-SC7-2011/EB-WP-04. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2011).Dapp, D., Walker, T., Huveneers, C. & Reina, R. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish Fish. 17, 507–524 (2016).
    Google Scholar 
    ICES. Report of the working group on elasmobranch fishes. in ICES CM 2018/ACOM:16. International Council for the Exploration of the Sea, Copenhagen (2018).Dicks, L. et al. A transparent process for “evidence-informed” policy making. Conserv. Lett. 7, 119–125 (2014).
    Google Scholar 
    Nichols, J., Kendall, W. & Boomer, G. Accumulating evidence in ecology: Once is not enough. Ecol. Evol. 9, 13991–14004 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).
    Google Scholar 
    Pfaller, J., Chaloupka, M., Bolten, A. & Bjorndal, K. Phylogeny, biogeography and methodology: A meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci. Rep. 8, 5852. https://doi.org/10.1038/s41598-018-24262-w (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Godin, A., Carlson, J. & Burgener, V. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bull. Mar. Sci. 88, 469–483 (2012).
    Google Scholar 
    Reinhardt, J. et al. Catch rate and at-vessel mortality of circle hooks versus J-hooks in pelagic longline fisheries: A global meta-analysis. Fish Fish. 19, 413–430 (2018).
    Google Scholar 
    Rosa, D., Santos, C. & Coelho, R. Assessing the effects of hook, bait and leader type as potential mitigation measures to reduce bycatch and mortality rates of shortfin mako: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in ICCAT Collective Volume of Scientifics Papers 76, 247–278 (2020).Santos, C., Rosa, D. & Coelho, R. Hook, bait and leader type effects on surface pelagic longline retention and mortality rates: A meta-analysis with comparisons for target, bycatch and vulnerable fauna interactions. in IOTC-2019-WPEB15-39. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Santos, C., Rosa, D. & Coelho, R. Progress on a meta-analysis for comparing hook, bait and leader effects on target, bycatch and vulnerable fauna interactions. in Collective Volume of Scientifics Papers ICCAT 77, 182–217 (2020).Condamine, F., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. PNAS 116, 20584–20590 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: An improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).MathSciNet 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
    Google Scholar 
    Lajeunesse, M. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).PubMed 

    Google Scholar 
    Chamberlain, S. et al. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627–636 (2012).PubMed 

    Google Scholar 
    Burns, J. & Strauss, S. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. USA 108, 5302–5307 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cachera, M. & Le Loc’h, F. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol. 7, 6292–6303 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—Common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bazzi, M., Campione, N., Kear, B., Pimiento, C. & Ahlberg, P. Feeding ecology has shaped the evolution of modern sharks. Curr. Biol. 31, 5138–5148 (2021).CAS 
    PubMed 

    Google Scholar 
    Sepulveda, C., Wegner, N., Bernal, D. & Graham, J. The red muscle morphology of the thresher sharks (family Alopiidae). J. Exp. Biol. 208, 4255–4261 (2005).CAS 
    PubMed 

    Google Scholar 
    Wosnick, N. et al. Multispecies thermal dynamics of air-exposed ectothermic sharks and its implications for fisheries conservation. J. Exp. Mar. Biol. Ecol. 513, 1–9 (2019).
    Google Scholar 
    French, R. et al. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (Isurus oxyrinchus). Conserv. Physiol. https://doi.org/10.1093/conphys/cov044 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59, 1834–1843 (2002).
    Google Scholar 
    Massey, Y., Sabarros, P., Rabearisoa, N. & Bach, P. Drivers of at-haulback mortality of sharks caught during pelagic longline fishing experiments. in IOTC-2019-WPEB15-14_Rev1. Indian Ocean Tuna Commission, Mahe, Seychelles (2019).Musyl, M., Moyes, C., Brill, R. & Fragoso, N. Factors influencing mortality estimates in post-release survival studies: Comment on Campana et al. (2009). Mar. Ecol. Prog. Ser. 396, 157–159 (2009).Pimiento, C., Cantalapiedra, J., Shimada, K., Field, D. & Smaers, J. Evolutionary pathways towards gigantism in sharks and rays. Evolution 73, 588–599 (2019).PubMed 

    Google Scholar 
    Musyl, M. & Gilman, E. Post-release fishing mortality of blue (Prionace glauca) and silky shark (Carcharhinus falciformes) from a Palauan-based commercial longline fishery. Rev. Fish Biol. Fish. 28, 567–658 (2018).
    Google Scholar 
    Childs, D., Sheldon, B. & Rees, M. The evolution of labile traits in sex- and age-structured populations. J. Anim. Ecol. 85, 329–342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 5053 (2014).ADS 
    PubMed Central 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. www.iucnredlist.org. ISSN 2307-8235 (International Union for the Conservation of Nature, Gland, Switzerland, 2022).García, V., Lucifora, L. & Ransom, M. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed 

    Google Scholar 
    Cortes, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).
    Google Scholar 
    Ellis, J. et al. A review of capture and post-release mortality of elasmobranchs. J. Fish Biol. 90, 653–722 (2017).CAS 
    PubMed 

    Google Scholar 
    Gallagher, A., Orbesen, E., Hammerschlag, N. & Serafy, J. Vulnerability of oceanic sharks as pelagic longline bycatch. Glob. Ecol. Conserv. 1, 50–59 (2014).
    Google Scholar 
    Afonso, A., Santiago, R., Hazin, H. & Hazin, F. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fish. Res. 131–133, 9–14 (2012).
    Google Scholar 
    Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish Biol. Fish. 28, 417–433 (2018).
    Google Scholar 
    Epperly, S., Watson, J., Foster, D. & Shah, A. Anatomical hooking location and condition of animals captured with pelagic longlines: The grand banks experiments 2002–2003. Bull. Mar. Sci. 88, 513–527 (2012).
    Google Scholar 
    Amorim, S., Santos, M., Coelho, R. & Fernandez-Carvalho, J. Effects of 17/0 circle hooks and bait on fish catches in a southern Atlantic swordfish longline fishery. Aquat. Conserv. 25, 518–533 (2014).
    Google Scholar 
    Coelho, R., Fernandez-Carvalho, J., Lino, P. & Santos, M. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat. Living Resour. 25, 311–319 (2012).
    Google Scholar 
    Gilman, E. et al. A decision support tool for integrated fisheries bycatch management. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09693-5 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).
    Google Scholar 
    Somers, K., Pfeiffer, L., Miller, S. & Morrison, W. Using incentives to reduce bycatch and discarding: Results under the west coast catch share program. Coast. Manag. 46, 1–17 (2019).
    Google Scholar 
    Abbott, J. & Wilen, J. Regulation of fisheries bycatch with common-pool output quotas. J. Environ. Econ. Manag. 57, 195–204 (2009).MATH 

    Google Scholar 
    Gilman, E. et al. Increasing the functionalities and accuracy of fisheries electronic monitoring systems. Aquat. Conserv. 29, 901–926 (2019).
    Google Scholar 
    Watling, J. Fishing observers ‘intimidated and bribed by EU crews’. Quota checks allegedly being compromised aboard Northwest Atlantic fishery boats, as observers report surveillance and theft. The Guardian (2012, accessed 21 July 2022). https://www.theguardian.com/environment/2012/may/18/fishing-inspectors-intimidated-bribed-crews.Clarke, S., Harley, S., Hoyle, S. & Rice, J. Population trends in Pacific oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 

    Google Scholar 
    Tolotti, M. T. et al. Banning is not enough: The complexities of oceanic shark management by tuna regional fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7 (2015).
    Google Scholar 
    Gilman, E., Chaloupka, M., Merrifield, M., Malsol, N. & Cook, C. Standardized catch and survival rates, and effect of a ban on shark retention, Palau pelagic longline fishery. Aquat. Conserv. 26, 1031–1062 (2016).
    Google Scholar 
    CITES. Appendices I, II and III. Valid from 22 June 2021. Convention on International Trade in Endangered Species of Wild Fauna and Flora, United Nations Environment Program, Geneva (2021).Ward-Paige, C. A global overview of shark sanctuary regulations and their impact on shark fisheries. Mar. Policy 82, 87–97 (2017).
    Google Scholar 
    E.U. Regulation (E.U.) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union L354, 22–61 (2013).FAO. International Guidelines on Bycatch Management and Reduction of Discards (Food and Agriculture Organization of the United Nations, Rome, 2011).CCSBT. Resolution to Align CCSBT’s Ecologically Related Species Measures with those of other Tuna RFMOs (Commission for the Conservation of Southern Bluefin Tuna, Deakin West, Australia, 2021).IATTC. Active Resolutions and Recommendations (Inter-American Tropical Tuna Commission, La Jolla, 2022).ICCAT. Compendium. Management Recommendations and Resolutions Adopted by ICCAT for the Conservation of Atlantic Tunas and Tuna-like Species (International Commission for the Conservation of Atlantic Tunas, Madrid, 2021).IOTC. Compendium of Active Conservation and Management Measures for the Indian Ocean Tuna Commission (Indian Ocean Tuna Commission, Mahe, 2021).WCPFC. Conservation and Management Measures and Resolutions of the Western and Central Pacific Fisheries Commission. Compiled 31 August 2021 (Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia, 2021).Faith, D. Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv. Biol. 22, 1461–1470 (2008).PubMed 

    Google Scholar 
    Dolce, J. & Wilga, C. Evolutionary and ecological relationships of gill slit morphology in extant sharks. Bull. Mus. Comp. 161, 79–109 (2013).
    Google Scholar 
    MacLeod, N. & Forey, P. Morphology, Shape and Phylogeny (CRC Press, 2002).
    Google Scholar 
    Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. https://doi.org/10.1186/s13750-018-0121-7 (2018).Article 

    Google Scholar 
    Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G., Eds. Section 5. Conducting a Search. Key CEE Standards for Conduct and Reporting. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G., Eds. Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2020).Pullin, A., Frampton, G., Livoreil, B. & Petrokofsky, G. (eds) Section 3. Planning a CEE Evidence Synthesis. In Pullin, A., Frampton, G., Livoreil, B., Petrokofsky, G. (eds) Guidelines and Standards for Evidence Synthesis in Environmental Management. Version 5.0. Collaboration for Environmental Evidence (2021).Page, M. et al. The PRISMA statement: An updated guideline for reporting systematic reviews. BMJ https://doi.org/10.1136/bmj.n.71 (2020).Article 
    PubMed 

    Google Scholar 
    Tuyl, F., Gerlach, R. & Mengersen, K. Comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events. Am. Stat. 62, 40–44 (2008).MathSciNet 

    Google Scholar 
    Dorai-Raj, S. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom (2014).van Lissa, C. Small sample meta-analyses: Exploring heterogeneity using MetaForest. Chapter 13. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners (eds Van De Schoot, R. & Miočević, M.) 186–202 (Routledge, Oxford, 2020).
    Google Scholar 
    Wright, M. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
    Google Scholar 
    Janitza, S., Celik, E. & Boulesteix, A. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Mayer, M. missRanger: Fast imputation of missing values. R package version 2.1.3. https://CRAN.R-project.org/package=missRanger (2021).Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis. Methods 2, 61–76 (2011).
    Google Scholar 
    Amaral, C., Pereira, F., Silva, D., Amorim, A. & de Carvalho, E. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A 29, 867–878 (2017).
    Google Scholar 
    Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).PubMed 

    Google Scholar 
    Naylor, G. et al. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. 367, 1–262 (2012).
    Google Scholar 
    Stein, R. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol. 2, 288–298 (2018).PubMed 

    Google Scholar 
    Maddison, D., Swofford, D., Maddison, W. & Cannatella, D. Nexus: An extensible file format for systematic information. Syst. Biol. 46, 590–621 (1997).CAS 
    PubMed 

    Google Scholar 
    Upham, N., Esselstyn, J. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 69, e96. https://doi.org/10.1002/cpbi.96 (2020).Article 

    Google Scholar 
    Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol 23, 494–508 (2010).CAS 
    PubMed 

    Google Scholar 
    Lin, L. & Chu, H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 31, 713–717 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).
    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).PubMed 

    Google Scholar 
    Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).PubMed 

    Google Scholar 
    Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 2.1.1. https://doi.org/10.5281/zenodo.1308151 (2020).Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS 

    Google Scholar 
    Searle, S., Speed, F. & Milliken, G. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 34, 216–221 (1980).MathSciNet 
    MATH 

    Google Scholar 
    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans (2020).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).MathSciNet 
    MATH 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Lazic, S., Mellor, J., Ashby, M. & Munafo, M. A Bayesian predictive approach for dealing with pseudoreplication. Sci. Rep. 10, 2020. https://doi.org/10.1038/s41598-020-59384-7 (2020).Article 
    CAS 

    Google Scholar 
    Page, M., Sterne, J., Higgins, J. & Egger, M. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Res. Synth. Methods 12, 248–259 (2021).PubMed 

    Google Scholar 
    Peters, J., Sutton, A., Jones, D., Abrams, K. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31, 3821–3839 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Growth characteristics of Cunninghamia lanceolata in China

    FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development (FAO, 2018).
    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993. https://doi.org/10.1126/science.1201609 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luyssaert, S. et al. Tradeoffs in using European forests to meet climate objectives. Nature 562(7726), 259–262. https://doi.org/10.1038/s41586-018-0577-1 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. https://doi.org/10.1038/s41467-019-10174-4 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).Article 
    CAS 

    Google Scholar 
    Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580(7802), 227–231. https://doi.org/10.1038/s41586-020-2128-9 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351(6273), 597–599. https://doi.org/10.1126/science.aad7270 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tong, X. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. https://doi.org/10.1038/s41467-019-13798-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu, K. et al. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of Southern China. CATENA 178, 313–321. https://doi.org/10.1016/j.catena.2019.03.038 (2019).Article 
    CAS 

    Google Scholar 
    Mei, G., Sun, Y. & Sajjad, S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China. PLoS ONE 12, e0169747. https://doi.org/10.1371/journal.pone.0169747 (2017).Article 
    CAS 

    Google Scholar 
    Wu, H. et al. Soil phosphorus bioavailability and recycling increasedwith stand age in Chinese fir plantations. Ecosystems 23, 973–988. https://doi.org/10.1007/s10021-019-00450-1 (2019).Article 

    Google Scholar 
    State Forestry Administration. General situation of forest resources in China. The 8th National Forest Inventory (State Forestry Administration, 2014).Wang, X. et al. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. Ecol. 12(1), 13–16 (2001) (in Chinese with English Abstract).ADS 
    CAS 

    Google Scholar 
    Kang, H. et al. Simulating the impact of climate change on the growth of Chinese fir plantations in Fujian province, China. NZ J. For. Sci. 47(1), 20. https://doi.org/10.1186/s40490-017-0102-6 (2017).Article 

    Google Scholar 
    Lu, Y. et al. A process-based approach to estimate Chinese fir (Cunninghamia lanceolata) distribution and productivity in southern China under climate change. Forests 6, 360–379. https://doi.org/10.3390/f6020360 (2015).Article 

    Google Scholar 
    Zhang, X. et al. Relative contributions of competition, stand structure, age, and climate factors to tree mortality of Chinese fir plantations: Long-term spacing trials in southern China. For. Ecol. Manag. 465, 118103. https://doi.org/10.1016/j.foreco.2020.118103 (2020).Article 

    Google Scholar 
    You, R. et al. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci. Rep. https://doi.org/10.1038/s41598-021-83500-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djomo, A. N., Ibrahima, A., Saborowski, J. & Gravenhorst, G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manag. 260(10), 1873–1885. https://doi.org/10.1016/j.foreco.2010.08.034 (2010).Article 

    Google Scholar 
    Peng, D. et al. Estimating the aboveground biomass for planted forests based on stand age and environmental variables. Remote Sens. 11(19), 2270. https://doi.org/10.3390/rs11192270 (2019).Article 
    ADS 

    Google Scholar 
    Zhou, X. et al. Dynamic allometric scaling of tree biomass and size. Nat. Plants. 7(1), 42–49. https://doi.org/10.1038/s41477-020-00815-8 (2021).Article 
    PubMed 

    Google Scholar 
    Li, L. Study on the tree volume table compilation of Chinese fir in Kaihua Forest Farm (Beijing Forestry University, 2011) http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134655.htm (in Chinese).Wang, J. P. et al. Study on the effect of Chinese fir volume formula on estimating the volume of fir standing trees in different sites. Guizhou For. Technol. 19(1), 26–29 (1991) (in Chinese).
    Google Scholar 
    Zeng, W. S. et al. Compatible tree volume and aboveground biomass equations for Chinese fir plantation in Guizhou. J. Beijing For. Univ. 33(4), 1–6 (2011) (in Chinese).
    Google Scholar 
    Xia, Z. S. et al. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China. J. Beijing For. Univ. 34(1), 1–5 (2012) (in Chinese).
    Google Scholar 
    Lin, H. Study on biomass and carbon storage of main coniferous forest in Jiangle state-owned forestry farm. J. Fujian For. Sci. Technol. 45(1), 30–34. https://doi.org/10.13428/j.cnki.fjlk.2018.01.007 (2018) (in Chinese with English Abstract).Article 
    ADS 

    Google Scholar 
    Cai, Z. A study on biomass models of Cunninghamia lanceolata plantation in Fujian. (Beijing Forestry University, 2014), http://cdmd.cnki.com.cn/Article/CDMD-10022-1014327550.htm (in Chinese).Chen, G. et al. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For. Ecol. Manag. 300, 68–76. https://doi.org/10.1016/j.foreco.2012.07.046 (2013).Article 

    Google Scholar 
    Zhang, G. et al. Biomass Characteristics of dominant tree species (group) at Lingnan forest farm in Anhui province. Scientia Silvae Sinicae. 48(5), 136–140. https://doi.org/10.1007/s11783-011-0280-z (2012) (in Chinese with English abstract).Article 
    ADS 
    CAS 

    Google Scholar 
    Shi, W. et al. Biomass model and carbon storage of Chinese fir plantation in Dabieshan Mountains in Anhui. Resour. Environ. Yangtze Basin. 24(5), 758–764. https://doi.org/10.11870/cjlyzyyhj201505007 (2015) (in Chinese with English abstract).Article 

    Google Scholar 
    Li, H. & Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 289, 153–163. https://doi.org/10.1016/j.foreco.2012.10.002 (2013).Article 

    Google Scholar 
    Zeng, W. & Tang, S. A new general allometric biomass model. Nat. Precedings. https://doi.org/10.1038/npre.2011.6704.1 (2011).Article 

    Google Scholar 
    Schumacher, F. X. & Hall, F. D. S. Logarithmic expression of timber-tree volume. J. Agric. Res. 47(9), 719–734 (1933).
    Google Scholar 
    Honer, T. G. A new total cubic foot volume function. For. Chron. 41(4), 476–493. https://doi.org/10.5558/tfc41476-4 (1965).Article 

    Google Scholar 
    Burkhart, H. E. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 2, 7–9. https://doi.org/10.1093/sjaf/1.2.7 (1977).Article 

    Google Scholar 
    Lee, D., Seo, Y. & Choi, J. Estimation and validation of stem volume equations for Pinus densiflora, Pinus koraiensis, and Larix kaempferi in South Korea. For. Sci. Technol. 13(2), 77–82. https://doi.org/10.1080/21580103.2017.1315963 (2017).Article 

    Google Scholar 
    Chen, B. H. & Chen, C. Y. A preliminary study on the biomass and productivity of Picea koraiensis forests in the dunes. Scientia Silvae Sinicae 4, 269–278 (1980) (in Chinese).
    Google Scholar 
    Niklas, K. J. Plant Allometry: The Scaling of Form and Process (University of Chicago Press, 1994).
    Google Scholar 
    Ketterings, Q. M. et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 146, 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6 (2001).Article 

    Google Scholar 
    Chen, X. G. The biomass and allometric equation of a 20-years-old Cunninghamia lanceolata plantation. Prot. For. Sci. Technol. 4, 28–29, 40. https://doi.org/10.3969/j.issn.1005-5215.2007.04.010.(inChinese) (2007).Article 

    Google Scholar 
    Wang, X. P. et al. Climatic control of primary forest structure and DBH–height allometry in Northeast China. For. Ecol. Manag. 234, 264–274. https://doi.org/10.1016/j.foreco.2006.07.007 (2006).Article 

    Google Scholar 
    Peng, C. et al. Developing and evaluating tree height–diameter models at three geographic scales for black spruce in Ontario. N. J. Appl. For. 21(2), 83–92. https://doi.org/10.1093/njaf/21.2.83 (2004).Article 

    Google Scholar 
    López-Serrano, F. R. et al. Site and weather effects in allometries: A simple approach to climate change effect on pines. For. Ecol. Manag. 215(1–3), 251–270. https://doi.org/10.1016/j.foreco.2005.05.014 (2005).Article 

    Google Scholar 
    Zhang, C. et al. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single trees in Poplar plantations in Jiangsu Province, China. Forests 7, 32. https://doi.org/10.3390/f7020032 (2016).Article 

    Google Scholar 
    Liu, J. C. et al. Comparing non-destructive methods to estimate volume of three tree taxa in Beijing, China. Forests 10, 92. https://doi.org/10.3390/f10020092 (2019).Article 

    Google Scholar 
    Thangjam, U. et al. Developing tree volume equation for Parkia timoriana grown in home gardens and shifting cultivation areas of North-East India. For. Trees Livelihoods 28(12), 1–13. https://doi.org/10.1080/14728028.2019.1624200 (2019).Article 

    Google Scholar 
    Dutcă, I. et al. Does slope aspect affect the aboveground tree shape and volume allometry of European Beech (Fagus sylvatica L.) trees?. Forests 13, 1071. https://doi.org/10.3390/f13071071 (2022).Article 

    Google Scholar 
    Segura, M. & Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37(1), 2–8. https://doi.org/10.2307/30045500 (2005).Article 

    Google Scholar 
    Wang, X. W. et al. Additive tree biomass equations for Betula platyphylla Suk. plantations in Northeast China. Ann. For. Sci. 75, 60. https://doi.org/10.1007/s13595-018-0738-2 (2018).Article 

    Google Scholar 
    Niklas, K. J. & Enquist, B. J. Canonical rules for plant organ biomass partitioning and annual allocation. Am. J. Bot. 89(5), 812–819. https://doi.org/10.3732/ajb.89.5.812 (2002).Article 
    PubMed 

    Google Scholar 
    Xiang, W. H. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 697–711. https://doi.org/10.1007/s11284-011-0829-0 (2011).Article 

    Google Scholar 
    Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 116, 363–372. https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brassard, B. W. et al. Influence of environmental variability on root dynamics in northern forests. Crit. Rev. Plant Sci. 28, 179–197. https://doi.org/10.1080/07352680902776572 (2009).Article 

    Google Scholar 
    Montagu, K. D. et al. Developing general allometric relationship for regional estimates of carbon sequestration—An example using Eucalyptus pilularis from seven contrasting sites. For. Ecol. Manag. 204, 113–127. https://doi.org/10.1016/j.foreco.2004.09.003 (2005).Article 

    Google Scholar 
    Williams, R. J. et al. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: Towards general predictive equations. Aust. J. Bot. 53, 607–619. https://doi.org/10.1071/BT04149 (2005).Article 

    Google Scholar 
    Ouimet, R. et al. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can. J. For. Res. 38, 92–100. https://doi.org/10.1139/x07-134 (2008).Article 

    Google Scholar 
    Peichl, M. & Arain, M. A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests. For. Ecol. Manag. 253, 68–80. https://doi.org/10.1016/j.foreco.2007.07.003 (2007).Article 

    Google Scholar 
    Bond-Lamberty, B. et al. Aboveground and below-ground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450. https://doi.org/10.1139/x02-063 (2002).Article 

    Google Scholar 
    King, J. S. et al. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can. J. For. Res. 37(1), 93–102. https://doi.org/10.1139/x06-217 (2007).Article 

    Google Scholar 
    Ziania, D. & Mencuccini, M. Aboveground biomass relation-ships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60(5), 439–448. https://doi.org/10.1051/forest:2003036 (2003).Article 

    Google Scholar 
    Martin, J. G. et al. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can. J. For. Res. 28(11), 1648–1659. https://doi.org/10.1139/x98-146 (1998).Article 

    Google Scholar 
    Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 222, 9–16. https://doi.org/10.1016/j.foreco.2005.10.074 (2006).Article 

    Google Scholar  More

  • in

    The Blob marine heatwave transforms California kelp forest ecosystems

    The Santa Barbara Coastal Long Term Ecological Research program has monitored benthic communities in five kelp forests seasonally since 2008 using fixed transect diver surveys, and moored sensors at each reef have recorded bottom temperatures every 15 min. Blob-associated positive bottom temperature anomalies began in winter 2014 and persisted through autumn 2016 (Fig. 1a)18. Peak temperature anomalies occurred during the summer and autumn of 2014 and 2015 (Fig. 1a), and the average temperature anomaly in autumn 2015 was +3.1 °C, equivalent to an average daily temperature of 19.6 °C. In 2014 and 2015, 91 and 69% of autumn days, respectively, were classified as heatwave days as defined by Hobday et al.20. Seasonal chlorophyll-a concentration, a proxy for phytoplankton abundance, was obtained from satellite imagery at each of the five reefs over the 14-year period. The average chlorophyll-a concentration was anomalously low throughout the warming period, and exceptionally low during the springs of 2014 and 2015 (Fig. 1a), when upwelling-driven nutrient enrichment typically supports dense phytoplankton blooms.Fig. 1: Average seasonal bottom temperature anomaly, chlorophyll-a concentration anomaly, and percent cover and species richness of sessile invertebrates across five sites.The Blob, an anomalous warming period from spring of 2014 to winter of 2016, is highlighted in gray, coincident with (a) positive temperature anomalies (°C; solid line), negative chlorophyll-a anomalies (mg/m3; dashed line), and declines in (b) invertebrate cover (solid line) and species richness (number of unique species/taxa/80 contact points; dashed line). Seasons are denoted by Sp (Spring), Su (Summer), A (Autumn) and W (Winter).Full size imageMean sessile invertebrate cover averaged across all sites declined 71% during the Blob, reaching a 14-year minimum of 7% in autumn of 2015 (Fig. 1b and Supplementary Fig. 1). Species richness declined 69% during the same period (Fig. 1b and Supplementary Fig. 1). The responses of invertebrates to warming were not consistent across time even though the duration and intensity of warming was similar in 2014 and 2015, suggesting that extended periods of elevated seawater temperature were not solely responsible for the most severe loss of invertebrates. For ectotherms, increases in ambient seawater temperature should be met with increases in metabolic rate and food requirements to sustain metabolism21. Because of their sedentary lifestyle, sessile invertebrates cannot actively forage for food or seek spatial refuge from thermal extremes, and limitations in their planktonic food supply can result in metabolic stress over extended periods22,23. Anomalously low chlorophyll-a concentrations during the Blob (Fig. 1a), particularly in the spring of 2015, indicated that food limitation was a likely driver of invertebrate decline. Results from piecewise structural equation modeling (Fig. 2) that incorporated biological interactions with space competitors (understory macroalgae), predators (sea urchins), and foundation species (giant kelp) showed that the severity of warming had both a direct and indirect effect on the sessile invertebrate community. The proportion of heatwave days was a direct negative predictor of sessile invertebrate cover (−0.11) and species richness (−0.21). The proportion of heatwave days was an even stronger negative predictor of chlorophyll-a concentration (−0.26), yielding negative indirect effects on invertebrate cover (−0.07) and species richness (−0.05) due to the positive influence of chlorophyll-a concentration on sessile invertebrate cover (+0.26) and richness (+0.20).Fig. 2: Piecewise structural equation modeling (SEM) for sessile invertebrate cover and species richness.Arrows indicate directionality of effects on (a) invertebrate cover and (b) species richness. Red arrows show negative relationships; black arrows show positive relationships. R2 values are conditional R2. Arrow widths are proportional to effect sizes as measured by standardized regression coefficients (shown next to arrows). ***p  More

  • in

    Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks

    Conception of the workflow to demonstrate the microbial associations from co-occurrence networks with microbial cultivationMicrobial co-occurrence networks are composed of nodes and edges, which usually represent microbes and statistically significant associations between microbes, respectively. We hypothesized that the microbial associations could be validated if the topological properties of networks are simplified, and if the microbes representing the nodes can be cultivated. To test this hypothesis, we designed a workflow as shown in Fig. 1. A total of 12,096 wells from 126 96-well plates were inoculated with droplets of series diluted environmental samples, wells from each 96-well plate represented the same combination of given culture condition, sample type (plants, roots, and sediments) and dilution rate (from 10–1 to 10–7). After being cultivated at 30 °C for 10 days, 69 effective (Supplementary Table S3) plates with  > 30% wells showing microbial growth were retained for downstream microbial community analysis. Microbial DNA in each well was extracted, bar-coded, and sequenced for the inference of co-occurrence networks. The wells of plates showing high abundances of target Zotus were targeted for microbial isolations. Lastly, the cultivated microbial isolates were matched to Zotus in the network and used for demonstration of microbial interactions.Figure 1Overview of experimental demonstration of microbial interactions in co-occurrence networks. For detailed description, please refer to the method section.Full size imagePrevalent Zotu pairs in the co-occurrence networksDepending on the microbial density in samples, the 96-well plates harbored different numbers of wells with microbial growth. We obtained 65 96-well plates (6,091 wells) that were effective with microbial growth and data analysis for co-occurrence network reconstruction. After quality control and denoise, we obtained 130 Gbp sequence data. A total of 14,377 Zotus were annotated (Supplementary Table S4). There were 217 ± 94 (average ± standard deviation) prevalent Zotus, i.e., these Zotus appeared at frequencies ≥ 30% of wells in a given 96-well plate.Next, we analyzed Zotus compositions and abundances in each well of the 65 plates. Accordingly, we reconstructed 65 independent microbial co-occurrence networks and further retrieved the robust (Spearman’s |ρ| > 0.6 and P  More