Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 102, 8245–8250. https://doi.org/10.1073/pnas.0409902102 (2005).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Fagundez, J. Heathlands confronting global change: Drivers of biodiversity loss from past to future scenarios. Ann. Bot. 111, 151–172. https://doi.org/10.1093/aob/mcs257 (2013).Article
PubMed
Google Scholar
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).CAS
Article
PubMed
Google Scholar
Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, 25. https://doi.org/10.7554/eLife.05255 (2015).Article
Google Scholar
Herrera, C. M., Medrano, M. & Bazaga, P. Comparative spatial genetics and epigenetics of plant populations: Heuristic value and a proof of concept. Mol. Ecol. 25, 1653–1664. https://doi.org/10.1111/mec.13576 (2016).CAS
Article
PubMed
Google Scholar
Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590. https://doi.org/10.1111/ele.12858 (2017).Article
PubMed
Google Scholar
Münzbergová, Z., Latzel, V., Šurinová, M. & Hadincová, V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128, 124–134. https://doi.org/10.1111/oik.05591 (2019).CAS
Article
Google Scholar
Thiebaut, F., Hemerly, A. S. & Ferreira, P. C. G. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front. Plant Sci. 10, 25. https://doi.org/10.3389/fpls.2019.00246 (2019).Article
Google Scholar
Verhoeven, K. J. F., Vonholdt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: What we know and what we need to know. Mol. Ecol. 25, 1631–1638. https://doi.org/10.1111/mec.13617 (2016).Article
PubMed
Google Scholar
Lisch, D. How important are transposons for plant evolution?. Nat. Rev. Genet. 14, 49–61. https://doi.org/10.1038/nrg3374 (2013).CAS
Article
PubMed
Google Scholar
Paszkowski, J. Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 32, 200–206. https://doi.org/10.1016/j.copbio.2015.01.003 (2015).CAS
Article
PubMed
Google Scholar
Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245-U127. https://doi.org/10.1038/nature10555 (2011).ADS
CAS
Article
PubMed
Google Scholar
Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373. https://doi.org/10.1126/science.1212959 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x (2008).Article
PubMed
Google Scholar
Walsh, M. R. et al. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.2271 (2016).Article
Google Scholar
Foust, C. M. et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol. Ecol. 25, 1639–1652. https://doi.org/10.1111/mec.13522 (2016).ADS
CAS
Article
PubMed
Google Scholar
Gugger, P. F., Fitz-Gibbon, S., Pellegrini, M. & Sork, V. L. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 25, 1665–1680. https://doi.org/10.1111/mec.13563 (2016).CAS
Article
PubMed
Google Scholar
Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol. Ecol. 20, 1675–1688. https://doi.org/10.1111/j.1365-294X.2011.05026.x (2011).CAS
Article
PubMed
Google Scholar
Medrano, M., Herrera, C. M. & Bazaga, P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol. Ecol. 23, 4926–4938. https://doi.org/10.1111/mec.12911 (2014).CAS
Article
PubMed
Google Scholar
Herrera, C. M., Medrano, M. & Bazaga, P. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence. Am. J. Bot. 104, 1195–1204. https://doi.org/10.3732/ajb.1700162 (2017).Article
PubMed
Google Scholar
Sheldon, E. L., Schrey, A., Andrew, S. C., Ragsdale, A. & Griffith, S. C. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia. R. Soc. Open Sci. https://doi.org/10.1098/rsos.172185 (2018).Article
PubMed
PubMed Central
Google Scholar
Gaspar, B., Bossdorf, O. & Durka, W. Structure, stability and ecological significance of natural epigenetic variation: A large-scale survey in Plantago lanceolata. New Phytol. 221, 1585–1596. https://doi.org/10.1111/nph.15487 (2019).Article
PubMed
Google Scholar
Medrano, M., Alonso, C., Bazaga, P., Lopez, E. & Herrera, C. M. Comparative genetic and epigenetic diversity in pairs of sympatric, closely related plants with contrasting distribution ranges in south-eastern Iberian mount. Aob Plants https://doi.org/10.1093/aobpla/plaa013 (2020).Article
PubMed
PubMed Central
Google Scholar
Wang, M. Z., Li, H. L., Li, J. M. & Yu, F. H. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity 124, 146–155. https://doi.org/10.1038/s41437-019-0261-8 (2020).Article
PubMed
Google Scholar
Miryeganeh, M. & Saze, H. Epigenetic inheritance and plant evolution. Popul. Ecol. 62, 17–27. https://doi.org/10.1002/1438-390x.12018 (2020).Article
Google Scholar
Becklin, K. M. et al. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 172, 635–649. https://doi.org/10.1104/pp.16.00793 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Szymanska, R., Slesak, I., Orzechowska, A. & Kruk, J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165–177. https://doi.org/10.1016/j.envexpbot.2017.05.002 (2017).CAS
Article
Google Scholar
Agrawal, A. A., Erwin, A. C. & Cook, S. C. Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (Asclepias incarnata). J. Ecol. 96, 536–542. https://doi.org/10.1111/j.1365-2745.2008.01365.x (2008).Article
Google Scholar
Azhar, A., Sathornkich, J., Rattanawong, R. & Kasemsap, P. Responses of chlorophyll fluorescence, stomatal conductance, and net photosynthesis rates of four rubber (Hevea brasiliensis) genotypes to drought. Adv. Rubber 844, 11–14. https://doi.org/10.4028/www.scientific.net/AMR.844.11 (2014).CAS
Article
Google Scholar
Bussotti, F., Pancrazi, M., Matteucci, G. & Gerosa, G. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: Results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol. 25, 211–219. https://doi.org/10.1093/treephys/25.2.211 (2005).CAS
Article
PubMed
Google Scholar
Carlson, J. E., Adams, C. A. & Holsinger, K. E. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Ann. Bot. 117, 195–207. https://doi.org/10.1093/aob/mcv146 (2016).Article
PubMed
Google Scholar
De Frenne, P. et al. Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob. Change Biol. 17, 3240–3253. https://doi.org/10.1111/j.1365-2486.2011.02449.x (2011).ADS
Article
Google Scholar
Reinhardt, K., Castanha, C., Germino, M. J. & Kueppers, L. M. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol. 31, 615–625. https://doi.org/10.1093/treephys/tpr055 (2011).Article
PubMed
Google Scholar
Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C-3, C-4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117. https://doi.org/10.1007/s11120-013-9874-6 (2014).CAS
Article
PubMed
Google Scholar
Stojanova, B. et al. Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS One https://doi.org/10.1371/journal.pone.0194670 (2018).Article
PubMed
PubMed Central
Google Scholar
Han, S. K. & Wagner, D. Role of chromatin in water stress responses in plants. J. Exp. Bot. 65, 2785–2799. https://doi.org/10.1093/jxb/ert403 (2014).CAS
Article
PubMed
Google Scholar
Han, S. K. & Torii, K. U. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development 143, 1259–1270. https://doi.org/10.1242/dev.127712 (2016).CAS
Article
PubMed
Google Scholar
Torii, K. U. Stomatal differentiation: The beginning and the end. Curr. Opin. Plant Biol. 28, 16–22. https://doi.org/10.1016/j.pbi.2015.08.005 (2015).CAS
Article
PubMed
Google Scholar
Tricker, P. J., Gibbings, J. G., Lopez, C. M. R., Hadley, P. & Wilkinson, M. J. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot. 63, 3799–3813. https://doi.org/10.1093/jxb/ers076 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
Vrablova, M., Hronkova, M., Vrabl, D., Kubasek, J. & Santrucek, J. Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environ. Exp. Bot. 156, 316–324. https://doi.org/10.1016/j.envexpbot.2018.09.012 (2018).CAS
Article
Google Scholar
Tricker, P. J., Lopez, C. M. R., Gibbings, G., Hadley, P. & Wilkinson, M. J. Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int. J. Mol. Sci. 14, 6674–6689. https://doi.org/10.3390/ijms14046674 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
Puy, J. et al. Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application. Methods Ecol. Evol. 9, 744–753. https://doi.org/10.1111/2041-210x.12903 (2018).Article
Google Scholar
Kosová, V., Hájek, T., Hadincová, V. & Münzbergová, Z. The importance of ecophysiological traits in response of Festuca rubra to changing climate. Physiol. Plant. 174, e13608. https://doi.org/10.1111/ppl.13608 (2022).CAS
Article
PubMed
Google Scholar
Maricle, B. R. & Adler, P. B. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ. Exp. Bot. 72, 223–231. https://doi.org/10.1016/j.envexpbot.2011.03.011 (2011).Article
Google Scholar
Münzbergová, Z. et al. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate. Front. Plant Sci. 11, 400. https://doi.org/10.3389/fpls.2020.00400 (2020).Article
PubMed
PubMed Central
Google Scholar
Beerling, D. J. & Chaloner, W. G. The impact of atmospheric CO2 and temperature change on stomatal density—observations from Quercus robur lammas leaves. Ann. Bot. 71, 231–235. https://doi.org/10.1006/anbo.1993.1029 (1993).CAS
Article
Google Scholar
Tang, Y. L. et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143, 629–638. https://doi.org/10.1104/pp.106.090712 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
Jahns, P. & Holzwarth, A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA-Bioenerget. 1817, 182–193. https://doi.org/10.1016/j.bbabio.2011.04.012 (2012).CAS
Article
Google Scholar
Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 55, 1607–1621. https://doi.org/10.1093/jxb/erh196 (2004).CAS
Article
PubMed
Google Scholar
Baker, H. G. In The Genetics of Colonizing Species (eds Baker, H. G. & Stebbins, G. L.) 147–168 (Academic Press, 1965).
Google Scholar
Bartlett, M. K. et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590. https://doi.org/10.1111/ele.12374 (2014).Article
PubMed
Google Scholar
Raven, J. A. Selection pressures on stomatal evolution. New Phytol. 153, 371–386. https://doi.org/10.1046/j.0028-646X.2001.00334.x (2002).CAS
Article
PubMed
Google Scholar
Zhang, F. F. et al. Effects of CO2 enrichment on growth and development of Impatiens hawkeri. Sci. World J. https://doi.org/10.1100/2012/601263 (2012).ADS
Article
Google Scholar
Gonzalez, A. P. R. et al. Stress-induced memory alters growth of clonal off spring of white clover (Trifolium repens). Am. J. Bot. 103, 1567–1574. https://doi.org/10.3732/ajb.1500526 (2016).CAS
Article
PubMed
Google Scholar
Jones, P. A., Taylor, S. M. & Wilson, V. L. Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res. 84, 202–211 (1983).CAS
PubMed
Google Scholar
Meineri, E., Skarpaas, O., Spindelbock, J., Bargmann, T. & Vandvik, V. Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. J. Veg. Sci. 25, 275–286. https://doi.org/10.1111/jvs.12062 (2014).Article
Google Scholar
Šurinová, M., Hadincová, V., Vandvik, V. & Münzbergová, Z. Temperature and precipitation, but not geographic distance, explain genetic relatedness among populations in the perennial grass Festuca rubra. J. Plant Ecol. 12, 730–741. https://doi.org/10.1093/jpe/rtz010 (2019).Article
Google Scholar
Münzbergová, Z., Hadincová, V., Skálová, H. & Vandvik, V. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105, 1358–1373. https://doi.org/10.1111/1365-2745.12762 (2017).Article
Google Scholar
Klanderud, K., Vandvik, V. & Goldberg, D. The importance of biotic vs abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One 10, e0130205. https://doi.org/10.1371/journal.pone.0130205 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Meineri, E., Skarpaas, O. & Vandvik, V. Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter?. Ecol. Model. 231, 1–10. https://doi.org/10.1016/j.ecolmodel.2012.01.021 (2012).Article
Google Scholar
Meineri, E., Spindelbock, J. & Vandvik, V. Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecol. 214, 607–619. https://doi.org/10.1007/s11258-013-0193-y (2013).Article
Google Scholar
Vandvik, V., Klanderud, K., Meineri, E., Maren, I. E. & Topper, J. Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground. Oikos 125, 218–228. https://doi.org/10.1111/oik.02022 (2016).Article
Google Scholar
Stojanova, B. et al. Evolutionary potential of a widespread clonal grass under changing climate. J. Evol. Biol. 32, 1057–1068. https://doi.org/10.1111/jeb.13507 (2019).Article
PubMed
Google Scholar
Osorio-Montalvo, P., Saenz-Carbonell, L. & De-la-Pena, C. 5-azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int. J. Mol. Sci. 19, 20. https://doi.org/10.3390/ijms19103182 (2018).CAS
Article
Google Scholar
Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).Article
Google Scholar
Münzbergová, Z. & Hadincová, V. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7, 5236–5247. https://doi.org/10.1002/ece3.3105 (2017).Article
PubMed
PubMed Central
Google Scholar
Oksanen, L. Logic of experiments in ecology: Is pseudoreplication a pseudoissue?. Oikos 94, 27–38. https://doi.org/10.1034/j.1600-0706.2001.11311.x (2001).Article
Google Scholar
Johnson, S. N., Gherlenda, A. N., Frew, A. & Ryalls, J. M. W. The importance of testing multiple environmental factors in legume-insect research: Replication, reviewers, and rebuttal. Front. Plant Sci. 7, 489. https://doi.org/10.3389/fpls.2016.00489 (2016).Article
PubMed
PubMed Central
Google Scholar
Hurlbert, S. H. On misinterpretations of pseudoreplication and related matters: A reply to Oksanen. Oikos 104, 591–597. https://doi.org/10.1111/j.0030-1299.2004.12752.x (2004).Article
Google Scholar
Scheepens, J. F. & Stocklin, J. Flowering phenology and reproductive fitness along a mountain slope: Maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia 171, 679–691. https://doi.org/10.1007/s00442-012-2582-7 (2013).ADS
CAS
Article
PubMed
Google Scholar
Gugger, S., Kesselring, H., Stoecklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Ann. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).Article
PubMed
PubMed Central
Google Scholar
Bezemer, T. M., Thompson, L. J. & Jones, T. H. Poa annua shows inter-generational differences in response to elevated CO2. Glob. Change Biol. 4, 687–691. https://doi.org/10.1046/j.1365-2486.1998.00184.x (1998).ADS
Article
Google Scholar
Cavieres, L. A. & Arroyo, M. T. K. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae)—altitudinal variation in the mediterranean Andes of central Chile. Plant Ecol. 149, 1–8. https://doi.org/10.1023/a:1009802806674 (2000).Article
Google Scholar
Souther, S., Lechowicz, M. J. & McGraw, J. B. Experimental test for adaptive differentiation of ginseng populations reveals complex response to temperature. Ann. Bot. 110, 829–837. https://doi.org/10.1093/aob/mcs155 (2012).Article
PubMed
PubMed Central
Google Scholar
Matias, L. & Jump, A. S. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 65, 299–310. https://doi.org/10.1093/jxb/ert376 (2014).CAS
Article
PubMed
Google Scholar
Zhang, H. X. et al. Germination shifts of C-3 and C-4 species under simulated global warming scenario. PLoS One 9, e105139. https://doi.org/10.1371/journal.pone.0105139 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190. https://doi.org/10.1007/s11099-013-0021-6 (2013).CAS
Article
Google Scholar
Majekova, M., Martinkova, J. & Hajek, T. Grassland plants show no relationship between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in soil moisture. Funct. Ecol. 33, 774–785. https://doi.org/10.1111/1365-2435.13312 (2019).Article
Google Scholar
Volis, S., Ormanbekova, D., Yermekbayev, K., Song, M. S. & Shulgina, I. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro—but not micro-geographical scale. PLoS One 10, 19. https://doi.org/10.1371/journal.pone.0121153 (2015).CAS
Article
Google Scholar
Younginger, B. S., Sirova, D., Cruzan, M. B. & Ballhorn, D. J. Is biomass a reliable estimate of plant fitness?. Appl. Plant Sci. https://doi.org/10.3732/apps.1600094 (2017).Article
PubMed
PubMed Central
Google Scholar
R Development Core Team. Version 4.0.3 A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).
Google Scholar
Bossdorf, O., Arcuri, D., Richards, C. L. & Pigliucci, M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol. Ecol. 24, 541–553. https://doi.org/10.1007/s10682-010-9372-7 (2010).Article
Google Scholar
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226. https://doi.org/10.2307/2408842 (1983).Article
PubMed
Google Scholar
Rolhauser, A. G., Nordenstahl, M., Aguiar, M. R. & Pucheta, E. Community-level natural selection modes: A quadratic framework to link multiple functional traits with competitive ability. J. Ecol. 107, 1457–1468. https://doi.org/10.1111/1365-2745.13094 (2019).Article
Google Scholar
Yan, W. M., Zhong, Y. Q. W. & Shangguan, Z. P. Contrasting responses of leaf stomatal characteristics to climate change: A considerable challenge to predict carbon and water cycles. Glob. Change Biol. 23, 3781–3793. https://doi.org/10.1111/gcb.13654 (2017).ADS
Article
Google Scholar
González, A. P. R., Dumalasová, V., Rosenthal, J., Skuhrovec, J. & Latzel, V. The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol. Ecol. 31, 345–361. https://doi.org/10.1007/s10682-016-9844-5 (2017).Article
Google Scholar
Shi, W. et al. Transient stability of epigenetic population differentiation in a clonal invader. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01851 (2019).Article
PubMed
PubMed Central
Google Scholar
Quan, J., Münzbergová, Z. & Latzel, V. Time dynamics of stress legacy in clonal transgenerational effects: A case study on Trifolium repens. Ecol. Evol. https://doi.org/10.1002/ece3.8959 (2022).Article
PubMed
PubMed Central
Google Scholar
Harris, C. J. et al. A DNA methylation reader complex that enhances gene transcription. Science 362, 1182. https://doi.org/10.1126/science.aar7854 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, K. R., Cheng, X. L., Shu, X., Liu, Y. & Zhang, Q. F. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 431, 19–36. https://doi.org/10.1007/s11104-018-3743-1 (2018).ADS
CAS
Article
Google Scholar
Xiao, X. L. et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 61, 110–119. https://doi.org/10.1111/jipb.12768 (2019).CAS
Article
PubMed
Google Scholar
Gallego-Bartolome, J. DNA methylation in plants: Mechanisms and tools for targeted manipulation. New Phytol. 227, 38–44. https://doi.org/10.1111/nph.16529 (2020).CAS
Article
PubMed
Google Scholar
Wang, Z. W., Bossdorf, O., Prati, D., Fischer, M. & van Kleunen, M. Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia 180, 409–420. https://doi.org/10.1007/s00442-015-3480-6 (2016).ADS
Article
PubMed
Google Scholar
Muir, C. D., Pease, J. B. & Moyle, L. C. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae). Genetics 198, 1629. https://doi.org/10.1534/genetics.114.169276 (2014).Article
PubMed
PubMed Central
Google Scholar
Ramirez-Valiente, J. A. et al. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Mol. Ecol. 27, 2176–2192. https://doi.org/10.1111/mec.14566 (2018).Article
PubMed
Google Scholar
Jueterbock, A. et al. The seagrass methylome is associated with variation in photosynthetic performance among clonal shoots. Front. Plant Sci. 11, 19. https://doi.org/10.3389/fpls.2020.571646 (2020).Article
Google Scholar
Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol. 175, 1893–1912. https://doi.org/10.1104/pp.17.00744 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ. 41, 1657–1672. https://doi.org/10.1111/pce.13324 (2018).CAS
Article
PubMed
Google Scholar
Nixon, P. J., Michoux, F., Yu, J. F., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16. https://doi.org/10.1093/aob/mcq059 (2010).CAS
Article
PubMed
PubMed Central
Google Scholar
Perez, T. M. & Feeley, K. J. Photosynthetic heat tolerances and extreme leaf temperatures. Funct. Ecol. 34, 2236–2245. https://doi.org/10.1111/1365-2435.13658 (2020).Article
Google Scholar
Kitayama, K., Pattison, R., Cordell, S., Webb, D. & MuellerDombois, D. Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. Ann. Bot. 80, 491–497. https://doi.org/10.1006/anbo.1996.0473 (1997).Article
Google Scholar
Konopkova, A. et al. Nucleotide polymorphisms associated with climate and physiological traits in silver fir (Abies alba Mill.) provenances. Flora 250, 37–43. https://doi.org/10.1016/j.flora.2018.11.012 (2019).Article
Google Scholar
Baer, A., Wheeler, J. K. & Pittermann, J. Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Ann. Bot. 125, 691–700. https://doi.org/10.1093/aob/mcaa006 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Hao, X. F., Jin, Z. P., Wang, Z. Q., Qin, W. S. & Pei, Y. X. Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italic L.. Plant Soil 453, 355–370. https://doi.org/10.1007/s11104-020-04590-5 (2020).CAS
Article
Google Scholar
Colaneri, A. C. & Jones, A. M. Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One 8, 10. https://doi.org/10.1371/journal.pone.0059878 (2013).CAS
Article
Google Scholar
Becker, C. & Weigel, D. Epigenetic variation: Origin and transgenerational inheritance. Curr. Opin. Plant Biol. 15, 562–567. https://doi.org/10.1016/j.pbi.2012.08.004 (2012).CAS
Article
PubMed
Google Scholar
Spens, A. E. & Douhovnikoff, V. Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets. Biol. Invas. 18, 2457–2462. https://doi.org/10.1007/s10530-016-1223-1 (2016).Article
Google Scholar
Herrera, C. M., Pozo, M. I. & Bazaga, P. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol. Ecol. 21, 2602–2616. https://doi.org/10.1111/j.1365-294X.2011.05402.x (2012).CAS
Article
PubMed
Google Scholar
Herrera, C. M. & Bazaga, P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot. J. Linn. Soc. 171, 441–452. https://doi.org/10.1111/boj.12007 (2013).Article
Google Scholar
Keller, T. E., Lasky, J. R. & Yi, S. V. The multivariate association between genomewide DNA methylation and climate across the range of Arabidopsis thaliana. Mol. Ecol. 25, 1823–1837. https://doi.org/10.1111/mec.13573 (2016).CAS
Article
PubMed
Google Scholar
Madliger, C. L., Love, O. P., Hultine, K. R. & Cooke, S. J. The conservation physiology toolbox: Status and opportunities. Conserv. Physiol. 6, 16. https://doi.org/10.1093/conphys/coy029 (2018).CAS
Article
Google Scholar
Münzbergová, Z. & Haisel, D. Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth. Res. 140, 289–299. https://doi.org/10.1007/s11120-018-0604-y (2019).CAS
Article
PubMed
Google Scholar
Balachandran, S. et al. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol. Plant. 100, 203–213. https://doi.org/10.1034/j.1399-3054.1997.1000201.x (1997).CAS
Article
Google Scholar
Pavlíková, Z., Holá, D., Vlasáková, B., Procházka, T. & Münzbergová, Z. Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS One https://doi.org/10.1371/journal.pone.0188795 (2017).Article
PubMed
PubMed Central
Google Scholar
Zhang, B. B., Zhang, H., Jing, Q. & Wang, J. X. Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.). Ecol. Indic. 115, 9. https://doi.org/10.1016/j.ecolind.2020.106448 (2020).CAS
Article
Google Scholar
Cameron, D. D., Geniez, J. M., Seel, W. E. & Irving, L. J. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann. Bot. 101, 573–578. https://doi.org/10.1093/aob/mcm324 (2008).CAS
Article
PubMed
PubMed Central
Google Scholar
Molina-Montenegro, M. A., Salgado-Luarte, C., Oses, R. & Torres-Diaz, C. Is physiological performance a good predictor for fitness? Insights from an invasive plant species. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0076432 (2013).CAS
Article
Google Scholar
dos Santos, V. & Ferreira, M. J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 460, 9. https://doi.org/10.1016/j.foreco.2020.117900 (2020).Article
Google Scholar
Shi, Q. W. et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L.. Plant Soil 447, 99–116. https://doi.org/10.1007/s11104-019-04041-w (2020).CAS
Article
Google Scholar
Madriaza, K., Saldana, A., Salgado-Luarte, C., Escobedo, V. M. & Gianoli, E. Chlorophyll fluorescence may predict tolerance to herbivory. Int. J. Plant Sci. 180, 81–85. https://doi.org/10.1086/700583 (2019).Article
Google Scholar
Franks, P. J., Drake, P. L. & Beerling, D. J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 32, 1737–1748. https://doi.org/10.1111/j.1365-3040.2009.002031.x (2009).Article
PubMed
Google Scholar
Belluau, M. & Shipley, B. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS One 13, 25. https://doi.org/10.1371/journal.pone.0193130 (2018).CAS
Article
Google Scholar
Jerbi, A. et al. High biomass yield increases in a primary effluent wastewater phytofiltration are associated to altered leaf morphology and stomatal size in Salix miyabeana. Sci. Total Environ. 738, 12. https://doi.org/10.1016/j.scitotenv.2020.139728 (2020).CAS
Article
Google Scholar
Sakoda, K. et al. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Front. Plant Sci. 11, 11. https://doi.org/10.3389/fpls.2020.589603 (2020).Article
Google Scholar
Liu, J. Y. et al. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 40, 1178–1191. https://doi.org/10.1093/treephys/tpaa069 (2020).CAS
Article
PubMed
Google Scholar
Griffin, P. T., Niederhuth, C. E. & Schmitz, R. J. A comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 Genes Genomes Genet. 6, 2773–2780. https://doi.org/10.1534/g3.116.030262 (2016).CAS
Article
Google Scholar
Zhang, Y. X. et al. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. Plant Physiol. Biochem. 147, 91–100. https://doi.org/10.1016/j.plaphy.2019.12.010 (2020).CAS
Article
PubMed
Google Scholar
Sammarco, I., Muenzbergova, Z. & Latzel, V. DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: Evidence from a European-scale reciprocal transplant experiment. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827166 (2022).Article
PubMed
PubMed Central
Google Scholar
Atighi, M. R., Verstraeten, B., De Meyer, T. & Kyndt, T. Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol. 227, 545–558. https://doi.org/10.1111/nph.16532 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Nowicka, A. et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 102, 68–84. https://doi.org/10.1111/tpj.14612 (2020).CAS
Article
PubMed
Google Scholar
Christman, J. K. 5-Azacytidine and 5-aza-2 ’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699 (2002).CAS
Article
PubMed
Google Scholar
Issa, J. P. J. & Kantarjian, H. M. Targeting DNA methylation. Clin. Cancer Res. 15, 3938–3946. https://doi.org/10.1158/1078-0432.ccr-08-2783 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
Amoah, S. et al. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol. https://doi.org/10.1186/1471-2229-12-193 (2012).Article
PubMed
PubMed Central
Google Scholar
McGuigan, K., Hoffmann, A. A. & Sgro, C. M. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need?. Philos. Trans. R. Soc. B Biol. Sci. 376, 10. https://doi.org/10.1098/rstb.2020.0119 (2021).Article
Google Scholar
Sano, H., Kamada, I., Youssefian, S., Katsumi, M. & Wabiko, H. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol. Gen. Genet. 220, 441–447. https://doi.org/10.1007/bf00391751 (1990).CAS
Article
Google Scholar
Kondo, H., Ozaki, H., Itoh, K., Kato, A. & Takeno, K. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant. 127, 130–137. https://doi.org/10.1111/j.1399-3054.2005.00635.x (2006).CAS
Article
Google Scholar
Kumpatla, S. P. & Hall, T. C. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Biol. 38, 1113–1122. https://doi.org/10.1023/a:1006071018039 (1998).CAS
Article
PubMed
Google Scholar
Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One https://doi.org/10.1371/journal.pone.0010326 (2010).Article
PubMed
PubMed Central
Google Scholar
Raj, S. et al. Clone history shapes Populus drought responses. Proc. Natl. Acad. Sci. USA 108, 12521–12526. https://doi.org/10.1073/pnas.1103341108 (2011).ADS
Article
PubMed
PubMed Central
Google Scholar
Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).Article
PubMed
Google Scholar
Platt, A., Gugger, P. F., Pellegrini, M. & Sork, V. L. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol. Ecol. 24, 3823–3830. https://doi.org/10.1111/mec.13230 (2015).CAS
Article
PubMed
Google Scholar
Pfeifer, G. P. Mutagenesis at methylated CpG sequences. DNA Methyl. Basic Mech. 301, 259–281 (2006).CAS
Article
Google Scholar
Walsh, C. P. & Xu, G. L. Cytosine methylation and DNA repair. DNA Methyl. Basic Mech. 301, 283–315 (2006).CAS
Article
Google Scholar More