More stories

  • in

    Global distribution of soil fauna functional groups and their estimated litter consumption across biomes

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro.2017.87 (2017).Article 
    PubMed 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Hicks Pries, C. E., Castanha, C., Porras, R., Phillips, C. & Torn, M. S. Response to comment on “The whole-soil carbon flux in response to warming”. Science 359, 1420–1423 (2018).Article 

    Google Scholar 
    Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Fričová, K. & Bartuška, M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 78, 58–64 (2014).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 25, 130–150 (2016).
    Google Scholar 
    Lavelle, P. et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 34, 26–41 (1998).
    Google Scholar 
    Lavelle, P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 33, 3–16 (1996).
    Google Scholar 
    Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).Xiong, W. et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12, 634–638 (2018).PubMed 
    Article 

    Google Scholar 
    Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).PubMed 
    Article 

    Google Scholar 
    Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014).Article 

    Google Scholar 
    Špaldoňová, A. & Frouz, J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2014.04.012 (2014).Article 

    Google Scholar 
    McCay, T. S., Cardelus, C. L. & Neatrour, M. A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 304, 254–260 (2013).Article 

    Google Scholar 
    Slade, E. M. & Riutta, T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 13, 423–431 (2012).Article 

    Google Scholar 
    Joly, F.-X., Coq, S., Coulis, M., Nahmani, J. & Hättenschwiler, S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. https://doi.org/10.1111/1365-2435.13178 (2018).Article 

    Google Scholar 
    Hättenschwiler, S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. https://doi.org/10.1046/j.1365-2486.2001.00402.x (2015).Article 

    Google Scholar 
    Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    Brussaard, L., Pulleman, M. M., Ouédraogo, É., Mando, A. & Six, J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 50, 447–462 (2007).Article 

    Google Scholar 
    Frouz, J., Elhottová, D., Kuráž, V. & Šourková, M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 33, 308–320 (2006).Article 

    Google Scholar 
    García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melguizo-Ruiz, N. et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 89, 334–346 (2020).PubMed 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13492 (2022).Article 

    Google Scholar 
    Coq, S. et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma 422, 115940 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavelle, P. et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 105, 103561 (2020).Article 

    Google Scholar 
    Filser, J. et al. Soil fauna: Key to new carbon models. Soil 2, 565–582 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Joly, F. X. et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 1–9 (2020).MathSciNet 
    Article 

    Google Scholar 
    Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 68, 18 (2015).CAS 
    Article 

    Google Scholar 
    Lavelle, P., Blanchart, E., Martin, A., Martin, S. & Spain, A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 25, 130–150 (1993).Article 

    Google Scholar 
    Crowther, T. W. & A’Bear, A. D. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 5, 277–281 (2012).Article 

    Google Scholar 
    Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    Tordoff, G. M., Boddy, L. & Jones, T. H. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 40, 434–442 (2008).CAS 
    Article 

    Google Scholar 
    Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE 8, e79694 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frouz, J., Moradi, J., Püschel, D. & Rydlová, J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere 10, e02736 (2019).Article 

    Google Scholar 
    Marichal, R. et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 83, 177–185 (2014).Article 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 498, 119522 (2021).Article 

    Google Scholar 
    Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 84, 375–389 (2009).PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108, 17720–17725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    James, S. W. et al. Comment on Global distribution of earthworm diversity. Science 371, 4629 (2021).Article 

    Google Scholar 
    Cesarz, S. et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 62, 36–45 (2013).CAS 
    Article 

    Google Scholar 
    Eppinga, M. B., Kaproth, M. A., Collins, A. R. & Molofsky, J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 99, 503–514 (2011).
    Google Scholar 
    Harrison, K. A., Bol, R. & Bardgett, R. D. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 40, 228–237 (2008).CAS 
    Article 

    Google Scholar 
    Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 38, 1052–1062 (2006).CAS 
    Article 

    Google Scholar 
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).Article 

    Google Scholar 
    Preston, C. M. & Trofymow, J. A. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany 78, 1269–1287 (2000).Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. PNAS 115, 6506–6511 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, D. C. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 62, 261–286 (1987).Article 

    Google Scholar 
    Cepáková, S. & Frouz, J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 15, 805–815 (2015).
    Google Scholar 
    Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    Article 

    Google Scholar 
    Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 57, 1048–1060 (2013).CAS 
    Article 

    Google Scholar 
    Salmon, S., Mantel, J., Frizzera, L. & Zanella, A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 237, 47–56 (2006).Article 

    Google Scholar 
    Desie, E. et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 34, 2598–2610 (2020).Article 

    Google Scholar 
    Samson, F. B. & Knopf, F. L. (eds) Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings 130–147 (Springer, 1996).
    Google Scholar 
    Araujo, P. I., Yahdjian, L. & Austin, A. T. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168, 221–230 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Frouz, J. et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 67, 212–225 (2013).CAS 
    Article 

    Google Scholar 
    Hattenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 1–69 (2020).Article 

    Google Scholar 
    Héry, M. et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2, 92–104 (2008).
    Google Scholar 
    Roubickova, A., Mudrak, O. & Frouz, J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils 45, 769–774 (2009).Article 

    Google Scholar 
    Bodine, M. C. & Ueckert, D. N. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 28, 353–358 (1975).Article 

    Google Scholar 
    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 

    Google Scholar 
    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).Article 

    Google Scholar 
    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).Article 

    Google Scholar 
    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, 0029616 (2012).ADS 
    Article 

    Google Scholar 
    Clarke, A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18, 252–256 (2004).Article 

    Google Scholar 
    Coq, S. & Ibanez, S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. https://doi.org/10.25674/so91iss3pp107 (2019).Article 

    Google Scholar 
    Frouz, J., Špaldoňová, A., Lhotáková, Z. & Cajthaml, T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 91, 23–31 (2015).CAS 
    Article 

    Google Scholar 
    Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).Frouz, J., Jedlička, P., Šimáčková, H. & Lhotáková, Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 71, 21–27 (2015).Article 

    Google Scholar 
    Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Buis, G. M. et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems 12, 982–995 (2009).CAS 
    Article 

    Google Scholar 
    O’Neill, D. W. & Abson, D. J. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 69, 319–327 (2009).Article 

    Google Scholar 
    Pan, S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015).Article 

    Google Scholar 
    Yanai, R. D. et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 43, 279–287 (1999).
    Google Scholar 
    Shchelchkova, M., Davydov, S., Fyodorov-Davydov, D., Davydova, A. & Boeskorov, G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area). IOP Conf. Ser. Earth Environ. Sci. 438, 012025 (2020).Article 

    Google Scholar 
    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 48, 53–62 (2011).Article 

    Google Scholar 
    Blanchart, E. et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 72, 81–87 (2007).
    Google Scholar 
    Korboulewsky, N., Perez, G. & Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 94, 94–106 (2016).CAS 
    Article 

    Google Scholar 
    Frouz, J., Pizl, V., Cienciala, E. & Kalcik, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94, 111–121 (2009).CAS 
    Article 

    Google Scholar 
    Milton, Y. & Kaspari, M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153, 163–172 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Portela, M. B. et al. Do ecological corridors increase the abundance of soil fauna? Écoscience 27, 45–57 (2020).Article 

    Google Scholar 
    Prieto, I., Almagro, M., Bastida, F. & Querejeta, J. I. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382 (2019).CAS 
    Article 

    Google Scholar 
    Van der Putten, W. H. et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Artz, R. et al. European atlas of soil. Biodiversity. https://doi.org/10.13140/RG.2.1.3178.2880 (2010).Article 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Soil Data Centre, 2016).
    Google Scholar 
    Peng, Y. et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407, 115570 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 255 (Oxford University Press, 2005).Book 

    Google Scholar 
    Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E.-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS 94, 7362–7366 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanchez, G. PLS Path Modeling with R, 235 (2013).Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).Palpurina, S. et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 107, 1038–1050 (2019).CAS 
    Article 

    Google Scholar 
    Green, C. & Byrne, K. A. Biomass: Impact on carbon cycle and greenhouse gas emissions. In Encyclopedia of Energy (ed. Cleveland, C. J.) 223–236 (Elsevier, 2004).Chapter 

    Google Scholar 
    Liang, W. et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 204, 22–36 (2015).ADS 
    Article 

    Google Scholar 
    Ise, T., Litton, C. M., Giardina, C. P. & Ito, A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 115, 1–11 (2010).
    Google Scholar 
    Ni, J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 20, 415–426 (2000).Article 

    Google Scholar 
    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Reeves, M. C., Moreno, A. L., Bagne, K. E. & Running, S. W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change 126, 429–442 (2014).ADS 
    Article 

    Google Scholar 
    Cappai, C. et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma 304, 59–67 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Clark, D. A. et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    Yanai, R. D., Arthur, M. A., Acker, M., Levine, C. R. & Park, B. B. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 42, 1597–1610 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Naturalized alien floras still carry the legacy of European colonialism

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
    Google Scholar 
    Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyšek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).
    Google Scholar 
    Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).Yang, Q. et al. The global loss of floristic uniqueness. Nat. Commun. 12, 7290 (2021).van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).PubMed 

    Google Scholar 
    Dawson, W. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 1, 0186 (2017).Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).Pyšek, P. & Richardson, D. M. The biogeography of naturalization in alien plants. J. Biogeogr. 33, 2040–2050 (2006).
    Google Scholar 
    Moser, D. et al. Remoteness promotes biological invasions on islands worldwide. Proc. Natl Acad. Sci. USA 115, 9270–9275 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Q. et al. Latitudinal patterns of alien plant invasions. J. Biogeogr. 48, 253–262 (2021).
    Google Scholar 
    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).CAS 
    PubMed 

    Google Scholar 
    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).CAS 
    PubMed 

    Google Scholar 
    di Castri, F. in Biological Invasions: A Global Perspective (ed. Drake, J. et al.), Ch. 1 (Wiley, 1989).Crosby, A. W. Ecological Imperialism: The Biological Expansion of Europe, 900–1900 2nd edn (Cambridge Univ. Press, 2004).Diamond, J. M. Guns, Germs, and Steel: The Fates of Human Societies (Norton, 2005).Nunn, N. & Qian, N. The Columbian exchange: a history of disease, food, and ideas. J. Econ. Perspect. 24, 163–188 (2010).
    Google Scholar 
    Beinart, W. & Middleton, K. Plant transfers in historical perspective: a review article. Environ. Hist. Camb. 10, 3–29 (2004).
    Google Scholar 
    Mrozowski, S. A. in Historical Archaeology (eds Hall, M. & Silliman, S. W.) Ch. 2 (Blackwell, 2006).Brockway, L. H. Science and colonial expansion: the role of the British Royal Botanic Gardens. Am. Ethnol. 6, 449–465 (1979).
    Google Scholar 
    Hulme, P. E. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 26, 168–174 (2011).PubMed 

    Google Scholar 
    Baas, P. The golden age of Dutch colonial botany and its impact on garden and herbarium collections. In Proc. Int. Symp. held by The Royal Danish Academy of Sciences and Letters in Copenhagen (eds Friis, I. & Balselv, H.), 53–62 (2017).Anderson, W. Climates of opinion: acclimatization in nineteenth-century France and England. Vic. Stud. 35, 135–157 (1992).CAS 
    PubMed 

    Google Scholar 
    Osborne, M. A. Acclimatizing the world: a history of the paradigmatic colonial science. Osiris 15, 135–151 (2000).CAS 
    PubMed 

    Google Scholar 
    Musgrave, T., Gardner, C. & Musgrave, W. The Plant Hunters Two Hundred Years of Adventure and Discovery (Seven Dials, 1999).Stoner, A. & Hummer, K. 19th and 20th century plant hunters. HortScience 42, 197–199 (2007).
    Google Scholar 
    Williams, K. A. An overview of the U.S. National Plant Germplasm System’s Exploration Program. HortScience 40, 297–301 (2005).
    Google Scholar 
    McCracken, D. P. Gardens of Empire: Botanical Institutions of the Victorian British Empire Garden History Vol. 26 (Leicester Univ. Press, 1997).Mitchener, K. J. & Weidenmier, M. Trade and empire. Econ. J. 118, 1805–1834 (2008).
    Google Scholar 
    World Trade Report 2007: Six Decades of Multilateral Trade Cooperation: What Have We Learnt? (World Trade Organization, 2007).Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Essl, F. et al. Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers. Distrib. 21, 534–547 (2015).
    Google Scholar 
    van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).PubMed 

    Google Scholar 
    Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).
    Google Scholar 
    Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: a meta-analysis of the propagule pressure effect. PLoS Biol. 16, e2005987 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blackburn, T. M., Cassey, P. & Duncan, R. P. Colonization pressure: a second null model for invasion biology. Biol. Invasions 22, 1221–1233 (2020).
    Google Scholar 
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. USA 117, 23643–23651 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Panton, K. J. Historical Dictionary of the British Empire (Rowman & Littlefield, 2015).Brendon, P. The Decline and Fall of the British Empire, 1781–1997 (Cape, 2007).Hulme, P. E. Unwelcome exchange: international trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).
    Google Scholar 
    Levinson, M. The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger (Princeton Univ. Press, 2010).Liebhold, A. M., Brockerhoff, E. G. & Kimberley, M. Depletion of heterogeneous source species pools predicts future invasion rates. J. Appl. Ecol. 54, 1968–1977 (2017).
    Google Scholar 
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273 (2007).PubMed 

    Google Scholar 
    Maltby, W. S. The Rise and Fall of the Spanish Empire (Palgrave Macmillan, 2008).Disdier, A. C. & Head, K. The puzzling persistence of the distance effect on bilateral trade. Rev. Econ. Stat. 90, 37–48 (2008).
    Google Scholar 
    Jiménez, A., Pauchard, A., Cavieres, L. A., Marticorena, A. & Bustamante, R. O. Do climatically similar regions contain similar alien floras? A comparison between the Mediterranean areas of central Chile and California. J. Biogeogr. 35, 614–624 (2008).
    Google Scholar 
    Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P. & Springborn, M. R. Biological invasions and international trade: managing a moving target. Rev. Environ. Econ. Policy 15, 180–190 (2021).
    Google Scholar 
    Bakewell, P. A History of Latin America (Wiley-Blackwell, 2003).Disney, A. R. A History of Portugal and the Portuguese Empire (Cambridge Univ. Press, 2009).De Zwart, P. Globalization in the early modern era: new evidence from the Dutch-Asiatic Trade, c. 1600–1800. J. Econ. Hist. 76, 520–558 (2016).
    Google Scholar 
    Emmer, P. C. & Gommans, J. J. L. The Dutch Overseas Empire, 1600–1800 (Cambridge Univ. Press, 2021).Melitz, J. & Toubal, F. Native language, spoken language, translation and trade. J. Int. Econ. 93, 351–363 (2014).
    Google Scholar 
    Becker, B. Introducing COLDAT: the colonial dates dataset. Preprint at OSF https://doi.org/10.31219/osf.io/apvqm (2019).Pyšek, P., Richardson, D. M. & Williamson, M. Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers. Distrib. 10, 179–187 (2004).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Hui, C. & McGeoch, M. A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).PubMed 

    Google Scholar 
    McGeoch, M. A. et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100, e02832 (2019).Latombe, G., Richardson, D. M., Pyšek, P., Kučera, T. & Hui, C. Drivers of species turnover vary with species commonness for native and alien plants with different residence times. Ecology 99, 2763–2775 (2018).PubMed 

    Google Scholar 
    Latombe, G., McGeoch, M. A., Nipperess, D. A. & Hui, C. zetadiv: an R package for computing compositional change across multiple sites, assemblages or cases. Preprint at bioRxiv https://doi.org/10.1101/324897 (2018).Latombe, G., McGeoch, M. A., Nipperess, D. A. & Hui, C. zetadiv: Functions to compute compositional turnover using zeta diversity. R package version 1.2.0 (2020).Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    Latombe, G., Hui, C. & McGeoch, M. A. Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol. Evol. 8, 431–442 (2017).
    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).
    Google Scholar 
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems, 1695 (2006).Bonacich, P. Power and centrality: a family of neasures. Am. J. Sociol. 92, 1170–1182 (1987).
    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).
    Google Scholar  More

  • in

    Enhanced dust emission following large wildfires due to vegetation disturbance

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).Article 

    Google Scholar 
    Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022).Article 

    Google Scholar 
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).Article 

    Google Scholar 
    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).Article 

    Google Scholar 
    Wagner, R., Schepanski, K. & Klose, M. The dust emission potential of agricultural-like fires—theoretical estimates from two conceptually different dust emission parameterizations. J. Geophys. Res. Atmos. 126, e2020JD034355 (2017).
    Google Scholar 
    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Raupach, M. R. Drag and drag partition on rough surfaces. Boundary Layer Meteorol. 60, 375–395 (1992).Article 

    Google Scholar 
    Webb, N. P. et al. Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangel. Ecol. Manag. 76, 78–83 (2021).Article 

    Google Scholar 
    Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).Article 

    Google Scholar 
    Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, RG3001 (2011).Article 

    Google Scholar 
    Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux. Aeolian Res. 10, 25–36 (2013).Article 

    Google Scholar 
    Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes. Elementa 5, 2 (2017).
    Google Scholar 
    Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res. 39, 13–22 (2019).Article 

    Google Scholar 
    Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future 8, e2020EF001671 (2020).Article 

    Google Scholar 
    Nogrady, B. & Nicky, B. The climate link to Australia’s fires. Nature 577, 610–612 (2020).Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmos. Chem. Phys. 21, 8511–8530 (2021).Article 

    Google Scholar 
    Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).Article 

    Google Scholar 
    Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 45, 6690–6701 (2018).Article 

    Google Scholar 
    Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: a meta-analysis. Glob. Ecol. Conserv. 24, e01380 (2020).Article 

    Google Scholar 
    Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458–463 (2022).Article 

    Google Scholar 
    Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).Ginoux, P. Atmospheric chemistry: warming or cooling dust? Nat. Geosci. 10, 246–247 (2017).Article 

    Google Scholar 
    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).Article 

    Google Scholar 
    Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud–aerosol lidar and infrared Pathfinder satellite observations. Geophys. Res. Lett. 42, 1984–1991 (2015).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).Article 

    Google Scholar 
    Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17 (2021).Article 

    Google Scholar 
    Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat. Commun. 13, 1250 (2022).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018).Article 

    Google Scholar 
    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).Article 

    Google Scholar 
    NCAR Command Language v.6.6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).Article 

    Google Scholar 
    Diner, D. J. et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).Article 

    Google Scholar 
    Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020).Article 

    Google Scholar 
    Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty estimates for MODIS collection 6 ‘Deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872 (2013).Article 

    Google Scholar 
    Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118, 9296–9315 (2013).Article 

    Google Scholar 
    Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 115, D05204 (2010).Article 

    Google Scholar 
    Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).Article 

    Google Scholar 
    Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 110, 1–16 (2005).Article 

    Google Scholar 
    Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 113, 1511–1528 (2009).Article 

    Google Scholar 
    Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 7, 5553 (2017).Article 

    Google Scholar 
    Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019).Article 

    Google Scholar 
    Garay, M. J. et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020).Article 

    Google Scholar 
    Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005).Article 

    Google Scholar 
    Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 13253–13264 (2013).Article 

    Google Scholar 
    Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289–305 (2016).Article 

    Google Scholar 
    Yu, Y. et al. Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett. 47, e2020GL088020 (2020).Article 

    Google Scholar 
    Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209 (2019).Article 

    Google Scholar 
    O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 (2003).
    Google Scholar 
    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).Article 

    Google Scholar 
    Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B 61, 131–143 (2009).Article 

    Google Scholar 
    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (Collection 6) (Univ. Arizona, 2015).Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 103, 31879–31891 (1998).Article 

    Google Scholar 
    Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).Article 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 6 (USGS, 2018).Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI Soil Moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).Article 

    Google Scholar 
    Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020).Article 

    Google Scholar 
    Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).Article 

    Google Scholar 
    Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021).Article 

    Google Scholar 
    Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2, 2277–208170 (2012).
    Google Scholar 
    Yu, Y. & Ginoux, P. Dust emission following large wildfires. figshare. 2022. https://doi.org/10.6084/m9.figshare.20648055.v2 More

  • in

    Strength-mass scaling law governs mass distribution inside honey bee swarms

    Our experimental data reveals a scaling law between the mass of a layer along the vertical coordinate, M(z), and the weight that it supports, W(z), namely: (W(z) sim M(z)^a) with (a approx 1.5). To better understand the physical mechanism that yields this scaling law, we derive the force balance equation of a layer of the swarm and solve for W(z). We then equate the analytical expression for W(z) with the experimentally determined scaling law, (W(z) sim M(z)^a), to connect the swarm mass distribution to the exponent a and formulate the expressions for M(z) and W(z) in terms of a. We then consider a dimensional analysis of the strength of each layer of the swarm, S, or the maximum weight that it can support before the grip of the bees on one another breaks. As will be described in detail below, we find that (S sim M^{1.5}), which is close to the experimentally determined (a = 1.53). Deviation from this value increases the fraction of maximum strength exerted by different parts of the swarm.Force balance model of the weight distribution in the swarmWe assume that the swarm is at quasi-equilibrium (the shape does not change although individual bees may move), that all of the bees in each layer contribute equally to supporting the weight of the bees underneath that layer, that the layer thickness is very small, and that the swarm is radially symmetrical about the z-axis. We use a cylindrical coordinate system with a vertical coordinate z, as shown in Fig. 1e, and we consider layers of the swarm along the z-axis of thickness dz. Variables labeled with a tilde, as in (tilde{W}(z)), represent analytically derived expressions; variables without a tilde, as in W(z), represent values determined with power law fits to experimental data.We begin our analysis by applying the force balance principle to each layer of a swarm. As shown by the free body diagram in Fig. 1f, the force with which each layer of bees has to grasp the layer above it is equal to the weight of that layer and all of the layers underneath it: (tilde{F} = tilde{W}(z)). We express (tilde{W}(z)) using the force balance equation (a continuous version of the discrete definition in Eq. (5).):$$begin{aligned} tilde{W}(z) = g int _z^L tilde{M}(z) dz, end{aligned}$$
    (8)
    where the mass of bees per layer is (tilde{M}(z)), the swarm length is L, and g is the gravitational constant. Inspired by our experimental observation that the mass of the layers near the base is highest and the mass of the layers at the tip of the swarm is lowest in Fig. 3a, we model (tilde{M}(z)) as a monotonically decreasing function of z. To keep the units consistent, we normalize the z coordiante by the length of the swarm:$$begin{aligned} tilde{M}(z) = c left( 1-frac{z}{L}right) ^{tilde{b}}, end{aligned}$$
    (9)
    where the c factor in this expression ensures that the units of the mass per layer are mass/length, and (tilde{b}) is an unknown exponent. Choosing this function form allows us to easily integrate the expression for (tilde{W}(z)) when we substitute (tilde{M}(z)) into it, set this force balance derivation for (tilde{W}(z)) equal to the experimentally determined expression (W(z) = C M(z)^a), and compare the exponents a and (tilde{b}).To solve the expression for (tilde{W}(z)), we substitute the expression for (tilde{M}(z)), Eq. (9), into Eq. (8) and integrate. We then express (tilde{b}) in terms of the experimentally determined a by equating this expression for (tilde{W}(z)) to the scaling law we observe in our experiments, Eq. (7), (W(z) = C tilde{M}(z)^a). The exponent in the expression for (tilde{M(z)}), Eq. (9), is$$begin{aligned} tilde{b} = frac{1}{a-1}. end{aligned}$$
    (10)
    The weight supported by each layer is then:$$begin{aligned} tilde{W}(z) = cLg left( 1 – frac{1}{a}right) left( 1-frac{z}{L}right) ^{frac{a}{a-1}}. end{aligned}$$
    (11)
    Next, we test how well our force balance model predicts the data by comparing the predicted value of (tilde{b}) using the force balance to the value of b calculated using experimental fits. We first separate the expression for the layer mass, Eq. (9) into the product of the layer area, (tilde{A}(z)) and the layer density, (tilde{rho }(z)):$$begin{aligned} tilde{M}(z) sim tilde{A}(z) tilde{rho }(z). end{aligned}$$
    (12)
    To simplify our analysis, we model (tilde{A}(z)) and (tilde{rho }(z)) with a similar monotonically decreasing function to that in Eq. (9):$$begin{aligned} tilde{A}(z) = c_1 left( 1-frac{z}{L}right) ^{tilde{b}_1}, end{aligned}$$
    (13)
    and$$begin{aligned} tilde{rho }(z) =c_2 left( 1-frac{z}{L}right) ^{tilde{b}_2} end{aligned}$$
    (14)
    we can then separately measure the effect of the changes in area and density on the exponent in the mass per layer expression in Eq. (9), (tilde{b} = tilde{b}_1 + tilde{b}_2).We first calculate (tilde{b}) using the expression derived from the force balance, Eq. (10), and our experimental result for a, which yields (tilde{b} = 2 pm 0.47). Second, we calculate b by separately calculating power law fits to the data for A(z) in Fig. 2e according to Eq. (13) and (rho (z)) in Fig. 2d according to Eq. (14), which yields (b_1 = 1.38 pm 0.2) and (b_2 = 0.51 pm 0.09). Thus, (b = b_1 + b_2 = 1.89 pm 0.25). See Supplementary Fig. S5(a–c) for log-log plots of M(z), A(z) and (rho (z)), and Supplementary Fig. S5(d–f) for plots of the resulting b, (b_1), and (b_2).We calculate the deviation of (tilde{b}) from b, (frac{tilde{b} – b}{tilde{b}} = 0.03 pm 0.11), and plot the deviation of b from (tilde{b}) in Supplementary Fig. S5(g) as a comparison for the individual CT scans. The values of b and (tilde{b}) being on the same order of magnitude validates the model and allows us to compare (tilde{W}(z)) to a maximum strength of each layer, which we find with dimensional analysis in the following section.Strength of a swarm layer and individual beesThe strength of the layer, (tilde{S}(z)), or the maximum weight that it could support, can be greater than or equal to (tilde{W}(z)): (tilde{S}(z) ge tilde{W}(z)). If the weight of the bees underneath a layer were to exceed its strength (tilde{S}(z)), the layer would not be able to support the weight of those bees, and the swarm would break apart. We perform a dimensional analysis on the strength of each layer to find the relationship between the mass of a layer and its maximum strength, (tilde{S}(z) sim tilde{M}(z)^{alpha }). Force is proportional to mass, which is proprtional to volume, or a length cubed, so a layer’s strength scales with length cubed, (tilde{S}(z) propto L^3). The mass of each layer, with units of mass/length, is proportional to an area, or a length squared, so (tilde{M}(z)) scales with length squared, (tilde{M}(z) propto L^2). Thus, (alpha) must be 1.5 for (tilde{S}(z) sim tilde{M}(z)^{alpha }) to be dimensionally correct. This is similar to the relationship between weightifting capacity and body weight in Ref.16.Estimating (tilde{W}(z)/tilde{S}(z)) gives a measure of how much of its maximum strength each layer uses to hold up the rest of the swarm:$$begin{aligned} frac{tilde{W}(z)}{tilde{S}(z)} sim left( 1-frac{1}{a}right) left( 1-frac{z}{L}right) ^frac{2a-3}{2a-2} end{aligned}$$
    (15)
    The average number of bees that a bee in a swarm layer supports, (tilde{F}_{bee}(z)), is equal to the mass of bees supported by a layer divided by the sum of the mass of bees in a layer of bees that has the thickness of the length of a bee, (l approx 1.5), as a continuous version of the discrete equation in Eq. (6):$$begin{aligned} tilde{F}_{bee}(z) =frac{int _z^L tilde{M}(z) dz}{int _z^{z+l} tilde{M}(z) dz}. end{aligned}$$
    (16)
    After integrating, we get an expression for (tilde{F}_{bee} (z)):$$begin{aligned} tilde{F}_{bee}(z)= frac{left( 1-frac{z}{L}right) ^{frac{a}{a-1}}}{left( 1-frac{z}{L}right) ^{frac{a}{a-1}} – left( 1-frac{z + l}{L}right) ^{frac{a}{a-1}}}. end{aligned}$$
    (17)
    We use the expression for (frac{tilde{W}(z)}{tilde{S}(z)}), Eq. (15), and (tilde{F}_{bee}(z)), Eq. (17), in the next section to evaluate how the force distribution in the swarm would change for swarms with different values of a.Effect of a on the mass of each layer, the fraction of its maximum stregnth it uses, and the average force per beeWe now consider the effect of varying a on the mass and force distribution inside the swarm. To visualize the effect of a on the distribution of bees, we plot the mass per layer of a 1000-g, 12.5 cm long swarm, (tilde{M}(z)) vs. z/L, with (a = 1.5, 1.01, 1000), and (-0.2) in Fig. 3c and the corresponding average force per bee, (F_{bee}(z)) vs. z/L in Fig. 3d. These values of a are example values for the four possible cases of mass distribution in the swarm. We then evaluate how these values of a affect the fraction of maximum strength each layer uses to support the layers underneath it using Eq. (15).If (a approx alpha), as we found in our experiments, layers with higher mass near the attachment surface support the less massive layers under them, as in the solid black line in Fig. 3c. Correspondingly, Fig. 3d shows (tilde{F}_{bee}(z=0) approx 3) at the top of the swarm, and decreases towards the tip. The strength of each layer and the weight it supports are proportional to one another, (tilde{W}(z)/tilde{S}(z) sim 1/3), meaning that the fraction of maximum strength used by a layer is the same for all z. If (1< a < alpha), the swarm approaches one massive layer of bees, as in the dashed purple line in Fig. 3c. The dimensional analysis results in a very small fraction of the total strength used by this layer, (tilde{W}(z)/tilde{S}(z) rightarrow 0 (1-frac{z}{L})^{-infty }). The force supported by each bee in Fig. 3d shows (tilde{F}_{bee}(z) = 1) for the entire swarm, meaning that each bee only supports its own weight. This configuration would either require packing a large number of bees into one very dense or one very wide layer. A swarm with one very dense layer at the top would compress all of the bees; a swarm with one very wide layer would require a large surface area, which would put the swarm in danger from predators and changes in weather. Thus, despite a potentially lower fraction of strength used by the largest layer of bees, this configuration would put the swarm in danger by requiring a large surface area.For values of (a > alpha), as (a rightarrow infty), all the layers of the swarm have the same mass, as in the dash-dot red line in Fig. 3c. The force per bee in Fig. 3d shows (tilde{F}_{bee}(z=0) approx 8) at the top of the swarm, 2.5 times that of the (a = alpha) configuration. In this configuration, the top layers use a higher percentage of their available strength than the lower layers, (tilde{W}(z)/tilde{S}(z) rightarrow (1-frac{z}{L})). Thus, for large swarms, the bees that support the swarm would be under more strain, and the swarm would be more likely to break under external perturbation.Finally, (a < 0) ((0 le a le 1) results in negative values for (tilde{W}(z))) would suggest that the top layers of the swarm have a lower mass than the bottom layers, as in the dotted orange line in Fig. 3c. This is not a realistic range of values for a, but we include it here as a demonstration of a potential mass distribution with the largest layers being on the bottom of the swarm. This configuration would put even more strain on the layers of bees at the top of the swarm, as smaller layers near the attachment surface have a smaller maximum strength. As (a rightarrow 0) on the (a < 0) side, (tilde{W}(z)/tilde{S}(z) rightarrow infty (1-z/L)^{1.5}), and bees in the top layers use a much greater fraction of their strength than bees in the bottom layers. Accordingly, the mean force per bee in Fig. 3d exceeds the maximum bee grip strength of 35 bee weights, and the swarm could not support itself in this configuration.The swarm configuration with (a approx 1.5) uses the full strength of each layer and puts a lower strain on the bees than most other values of a, and avoids weight distributions that could expose a large number of bees to external danger. More

  • in

    Interconnected marine habitats form a single continental-scale reef system in South America

    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).Article 

    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Divers. Distrib. 25(2), 255–268 (2019).
    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefs in a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116 (2016).Article 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Oliveira, M. D. M. The coral reef province of Brazil. World Seas: An Environmental Evaluation Volume I: Europe, the Americas and West Africa vol. 1 (Elsevier Ltd., 2018).Collette, B. B. & Rützler, K. Reef fishes over sponge bottoms off the mouth of the Amazon River. in Proceedings of Third International Coral Reef Symposium (ed. Taylor, D. L.) vol. 1 305–310 (Rosenstiel School of Marine and Atmospheric Science, 1977).Cordeiro, R. T. S., Neves, B. M., Rosa-Filho, J. S. & Pérez, C. D. Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull. Mar. Sci. 91, 491–510 (2015).Article 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, e1501252 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front Mar Sci 5, 1–5 (2018).ADS 
    Article 

    Google Scholar 
    de Mahiques, M. M. et al. Insights on the evolution of the living Great Amazon Reef System, equatorial West Atlantic. Sci. Rep. 9, 1–8 (2019).Article 

    Google Scholar 
    Vale, N. F. et al. Distribution, morphology and composition of mesophotic ‘reefs’ on the Amazon Continental Margin. Mar. Geol. 447, 106779 (2022).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Tropical rhodolith beds are a major and belittled reef fish habitat. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 31, 22–47 (2008).
    Google Scholar 
    Vale, N. F. et al. Structure and composition of rhodoliths from the Amazon River mouth, Brazil. J. S. Am. Earth Sci. 84, 149–159 (2018).Article 

    Google Scholar 
    IMaRS/USF, IRD, UNEP/WCMC, The WorldFish Center & WRI. Global Coral Reefs composite dataset compiled from multiple sources for use in the Reefs at Risk Revisited project incorporating products from the Millennium Coral Reef Mapping Project. Preprint at (2011).Soares, M. O. et al. Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect. Ecol. Conserv. 19, 267–278 (2021).
    Google Scholar 
    Castro, C. B. & Pires, D. O. Brazilian coral reefs: What we already know and what is still missing. Bull. Mar. Sci. 69, 357–371 (2001).
    Google Scholar 
    Leão, Z., Kikuchi, R. & Testa, V. Corals and coral reefs of Brazil. in Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science Inc., 2003). https://doi.org/10.1016/B978-044451388-5/50003-5.Laborel-Deguen, F., Castro, C. B., Nunes, F. D. & Pires, D. O. Recifes brasileiros: o legado de Laborel. (Museu Nacional, 2019).Carneiro, P. et al. Marine hardbottom environments in the beaches of Ceará state, equatorial coast of Brazil. Arquivos de Ciências do Mar 54, 120–153 (2021).Carneiro, P. B. M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Testa, V., Bosence, D. W. J. & Universita, C. Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46, 279–301 (1999).ADS 
    Article 

    Google Scholar 
    Carneiro, P. & Morais, J. O. de. Carbonate sediment production in the equatorial continental shelf of South America: Quantifying Halimeda incrassata (Chlorophyta) contributions. J. S. Am. Earth Sci. 72, 1–6 (2016).Milliman, J. D. Role of Calcareous Algae in Atlantic Continental Margin Sedimentation. in Fossil algae: recent results and developments (ed. Flügel, E.) 232–247 (Springer, 1977). https://doi.org/10.1007/978-3-642-66516-5_26.Knoppers, B., Ekau, W. & Figueiredo, A. G. The coast and shelf of east and northeast Brazil and material transport. Geo-Mar. Lett. 19, 171–178 (1999).ADS 
    Article 

    Google Scholar 
    Vital, H. The north and northeast Brazilian tropical shelves. in Continental shelves of the world: their evolution during the lasta glacio-eustatic cycle (eds. Chiocci, F. L. & Chivas, A. R.) 35–46 (Geological Society, 2014).Soares, M. de O. et al. Brazilian marine animal forests: A new world to discover in the southwestern Atlantic. Mar. Anim. For. 1–38. https://doi.org/10.1007/978-3-319-17001-5_51-1 (2016).Soares, M. O. et al. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic Ocean. Coast. Manag. 210, 105692 (2021).
    Google Scholar 
    Santos, C. L. A., Vital, H., Amaro, V. E. & de Kikuchi, R. K. P. Mapping of the submerged reefs in the coast of the Rio Grande do Norte, near Brazil: Macau to Maracajau. Revista Brasileira de Geofisica 25, 27–36 (2007).Article 

    Google Scholar 
    Neto, I. C., Córdoba, V. C. & Vital, H. Morfologia, microfaciologia e diagênese de beachrocks costa-afora adjacentes à costa norte do Rio Grande do Norte, brasil. Geociências 32, 471–490 (2013).
    Google Scholar 
    Gomes, M. P. et al. The investigation of a mixed carbonate-siliciclastic shelf, NE Brazil: Side-scan sonar imagery, underwater photography, and surface-sediment data. Ital. J. Geosci. 134, 9–22 (2015).Article 

    Google Scholar 
    Soares, M. O., Rossi, S., Martins, F. A. S. & Carneiro, P. The forgotten reefs: Benthic assemblage coverage on a sandstone reef (Tropical South-western Atlantic). J. Mar. Biol. Assoc. U.K. 97(8), 1585–1592. https://doi.org/10.1017/S0025315416000965 (2017).Article 

    Google Scholar 
    Morais, J. O., Ximenes Neto, A. R., Pessoa, P. R. S. & Souza, L. P. Morphological and sedimentary patterns of a semi-arid shelf, Northeast Brazil. Geo-Ma. Lett. 40, 835–842. https://doi.org/10.1007/s00367-019-00587-x (2019).Cordeiro, R. T., Neves, B. M., Kitahara, M. v., Arantes, R. C. & Perez, C. D. First assessment on Southwestern Atlantic equatorial deep-sea coral communities. Deep-Sea Res. Part I Oceanogr. Res. Papers 163, 103344 (2020).Freitas, J. E. P. & Lotufo, T. M. C. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J. Mar. Biol. Assoc. U.K. 95, 623–633 (2015).Article 

    Google Scholar 
    Soares, M. O., Davis, M., Paiva, C. C. de & Carneiro, P. Mesophotic ecosystems: Coral and fish assemblages in a tropical marginal reef (northeastern Brazil). Mar. Biodivers. 1–6 (2016). https://doi.org/10.1007/s12526-016-0615-x.Carneiro, P. B. M., Sátiro, I., COE, C. M. & Mendonça, K. V. Valoração ambiental do Parque Estadual Marinho da Pedra da Risca do Meio, Ceará, Brasil. Arquivo de Ciências do Mar 50, 25–41 (2017).Gomes, M. P., Vital, H. & Droxler, A. W. Terraces, reefs, and valleys along the Brazil northeast outer shelf: Deglacial sea-level archives?. Geo-Mar. Lett. 40, 699–711. https://doi.org/10.1007/s00367-020-00666-4 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 
    Article 

    Google Scholar 
    Raitsos, D. E. et al. Sensing coral reef connectivity pathways from space. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    Silveira, I. C. A., Miranda, L. B. & Brown, W. S. On the origins of the North Brazil Current. J. Geophys. Res. 99, 22501–22512 (1994).ADS 
    Article 

    Google Scholar 
    Dias, F. J. da S., Castro, B. M. & Lacerda, L. D. Tidal and low-frequency currents off the Jaguaribe River estuary (4° S, 37° 4′ W), northeastern Brazil. Ocean Dynamics 68, 967–985 (2018).Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).Article 

    Google Scholar 
    Victor, B. C. Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90, 317–326 (1986).Article 

    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Gomes, M. P. et al. Nature and condition of outer shelf habitats on the drowned Açu Reef, Northeast Brazil. in Seafloor Geomorphology as Benthic Habitat 571–585 (Elsevier, 2020). https://doi.org/10.1016/b978-0-12-814960-7.00034-8.Neto, I. C., Córdoba, V. C. & Vital, H. Petrografia de beachrock em zona costa afora adjacente ao litoral norte do Rio Grande do Norte Brasil. Quat. Environ. Geosci. 2, 12–18 (2010).
    Google Scholar 
    Gomes, M. P., Vital, H., Bezerra, F. H. R., de Castro, D. L. & Macedo, J. W. de P. The interplay between structural inheritance and morphology in the Equatorial Continental Shelf of Brazil. Mar. Geol. 355, 150–161 (2014).Rovira, D. P. T., Gomes, M. P. & Longo, G. O. Underwater valley at the continental shelf structures benthic and fish assemblages of biogenic reefs. Estuar. Coast. Shelf Sci. 224, 245–252 (2019).ADS 
    Article 

    Google Scholar 
    Tosetto, E. G., Bertrand, A., Neumann-Leitão, S. & Nogueira Júnior, M. The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic. Sci. Rep. 12, 537 (2022).ADS 
    Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169, 61 (2022).Article 

    Google Scholar 
    Moalic, Y. et al. Biogeography revisited with network theory: Retracing the history of hydrothermal vent communities. Syst. Biol. 61, 127 (2012).PubMed 
    Article 

    Google Scholar 
    López-Pérez, A. et al. The coral communities of the Islas Marias archipelago, Mexico: Structure and biogeographic relevance to the Eastern Pacific. Mar. Ecol. 37, 679–690 (2016).ADS 
    Article 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).Article 

    Google Scholar 
    Segal, B. & Castro, C. B. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank Brazil. Braz. J. Oceanogr. 59, 119–129 (2011).Article 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soares, M. O. et al. Marginal Reefs in the Anthropocene: They Are Not Noah’s Ark. in Perspectives on the Marine Animal Forests of the World (eds. Rossi, S. & Bramanti, L.) 87–128 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-57054-5_4.Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Coral frameworks revisited – reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E., Jordán-Garza, A. G., Maldonado, M. A. & Blanchon, P. Controls on coral-ground development along the Northern Mesoamerican Reef Tract. PLoS ONE 6, e28461 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lotufo, T. M. et al. Sessile epifauna of Ceará´s shelf – high dominance of sponges. in 7th International Sponge Symposium – Biodiversity, Innovation, Sustainability 123–123 (Museu Nacional – UFRJ, 2006).Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).Olavo, G., Costa, P. A. S., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshwat. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Carneiro, P. B. de M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).Costa, A. C. P., Garcia, T. M., Paiva, B. P., Ximenes Neto, A. R. & Soares, M. de O. Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar. Environ. Res. 161, 105064 (2020).Testa, V. & Bosence, D. W. J. Carbonate-siliciclastic sedimentation on a high-energy, ocean-facing, tropical ramp, NE Brazil. in Carbonate Ramps (eds. Wright, V. P. & Burchette, T. P.) 55–71 (The Geological Society, 1998).Ximenes Neto, A. R., de Morais, J. O. & Ciarlini, C. Modern and relict sedimentary systems of the semi-arid continental shelf in NE Brazil. J. S. Am. Earth Sci. 84, 56–68 (2018).CAS 
    Article 

    Google Scholar 
    Ximenes Neto, A. R., Morais, J. O. de, Paula, L. F. S. de & Pinheiro, L. de S. Transgressive deposits and morphological patterns in the equatorial Atlantic shallow shelf (Northeast Brazil). Region. Stud. Mar. Sci. 24, 212–224 (2018).Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).ADS 
    Article 

    Google Scholar 
    Cruz, R. et al. Large-scale oceanic circulation and larval recruitment of the spiny lobster Panulirus argus (Latreille, 1804). Crustaceana 88, 298–323 (2015).Article 

    Google Scholar 
    Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).Article 

    Google Scholar 
    Romero-Torres, M., Treml, E. A., Blanchon, P., Acosta, A. & Paz-García, D. A. The Eastern Tropical Pacific coral population connectivity and the role of the Eastern Pacific Barrier. Sci. Rep. 8, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Leal, C. v. et al. Integrative taxonomy of Amazon Reefs’ Arenosclera spp.: A new clade in the Haplosclerida (Demospongiae). Front. Mar. Sci. 4, 291 (2017).Peluso, L. et al. Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 1–17 (2020).Article 

    Google Scholar 
    Barroso, C. X., Lotufo, T. M. da C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965 (2018).Article 

    Google Scholar 
    Medeiros, A. P. M. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sammon, J. W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18, 401–409 (1969).Prim, R. C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957).ADS 
    Article 

    Google Scholar  More

  • in

    Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions

    Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the paris agreement to ocean life, economies, and people. Sci. Adv. 5, 1–10 (2019).Article 

    Google Scholar 
    Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619 (2019).
    Google Scholar 
    Finkbeiner, E. M. The role of diversification in dynamic small-scale fisheries: Lessons from Baja California Sur. Mexico. Glob. Environ. Chang. 32, 139–152 (2015).Article 

    Google Scholar 
    Johnson, J. E. et al. Assessing and reducing vulnerability to climate change: Moving from theory to practical decision-support. Mar. Policy 74, 220–229 (2016).Article 

    Google Scholar 
    IPCC. Climate Change 2007: Synthesis Report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. (2007).Johnson, J. E. & Welch, D. J. Climate change implications for Torres Strait fisheries: Assessing vulnerability to inform adaptation. Clim. Change 135, 611–624 (2016).ADS 
    Article 

    Google Scholar 
    IPCC. Annex I: Glossary. in IPCC special report on the ocean and cryosphere in a changing climate e [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)] 677–702 (Cambridge University Press, 2019). https://doi.org/10.1017/9781009157964.010Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).ADS 
    Article 

    Google Scholar 
    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 80(279), 860 (1998).ADS 
    Article 

    Google Scholar 
    Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Rashid Sumaila, U. Projected change in global fisheries revenues under climate change. Sci. Rep. 6(6), 13 (2016).
    Google Scholar 
    Heck, N. et al. Fisheries at risk: Vulnerability of fisheries to climate change (Nat. Conserv. Tech. Rep, 2020).
    Google Scholar 
    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).Article 

    Google Scholar 
    DuFour, M. R. et al. Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere 6(12), 1 (2015).Article 

    Google Scholar 
    Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. U. S. A. 110, 2076–2081 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bahri, T. et al. Adaptive management of fisheries in response to climate change. FAO Fisheries and Aquaculture Technical Paper 667, (FAO, 2021).Barker, M. J. & Schluessel, V. Managing global shark fisheries: Suggestions for prioritizing management strategies. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 325–347 (2005).Article 

    Google Scholar 
    Fletcher, W. J. F. & Fletcher, W. J. The application of qualitative risk assessment methodology to prioritize issues for fisheries management. ICES J. Mar. Sci. 62, 1576–1587 (2005).Article 

    Google Scholar 
    Cheung, W. W. L. The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92, 790–803 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS ONE 8(9), e74321 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colburn, L. L. et al. Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Mar. Policy 74, 323–333 (2016).Article 

    Google Scholar 
    Pinnegar, J. K. et al. Assessing vulnerability and adaptive capacity of the fisheries sector in Dominica: Long-term climate change and catastrophic hurricanes. ICES J. Mar. Sci. 76, 1353–1367 (2019).
    Google Scholar 
    Aragão, G. M. et al. The importance of regional differences in vulnerability to climate change for demersal fisheries. ICES J. Mar. Sci. 1, 1–13 (2021).
    Google Scholar 
    Payne, M. R., Kudahl, M., Engelhard, G. H., Peck, M. A. & Pinnegar, J. K. Climate risk to European fisheries and coastal communities. Proc. Natl. Acad. Sci. U. S. A. 118, e2018086118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baptista, V., Silva, P. L., Relvas, P., Teodósio, M. A. & Leitão, F. Sea surface temperature variability along the Portuguese coast since 1950. Int. J. Climatol. 38, 1145–1160 (2018).Article 

    Google Scholar 
    Leitão, F. et al. (2019) A 60-year time series analyses of the upwelling along the Portuguese coast. Water 11(11), 1285 (2019).Article 

    Google Scholar 
    Leitão, F., Relvas, P., Cánovas, F., Baptista, V. & Teodósio, A. Northerly wind trends along the Portuguese marine coast since 1950. Theor. Appl. Climatol. 137(1), 19 (2018).
    Google Scholar 
    Bueno-Pardo, J. et al. Trends and drivers of marine fish landings in Portugal since its entrance in the European Union. ICES J. Mar. Sci. 77, 988–1001 (2020).Article 

    Google Scholar 
    Leitão, F., Maharaj, R. R., Vieira, V. M. N. C. S., Teodósio, A. & Cheung, W. W. L. The effect of regional sea surface temperature rise on fisheries along the Portuguese Iberian Atlantic coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1351–1359 (2018).Article 

    Google Scholar 
    Leitão, F., Alms, V. & Erzini, K. A multi-model approach to evaluate the role of environmental variability and fishing pressure in sardine fisheries. J. Mar. Syst. 139, 128–138 (2014).Article 

    Google Scholar 
    Ullah, H., Leitão, F., Baptista, V. & Chícharo, L. An analysis of the impacts of climatic variability and hydrology on the coastal fisheries, Engraulis encrasicolus and Sepia officinalis, of Portugal. Ecohydrol. Hydrobiol. 12, 337–352 (2012).Article 

    Google Scholar 
    EUMOFA. The EU Fish Market – Highlights the EU in the world market supply consumption import-export landings in the EU aquaculture (2021) https://doi.org/10.2771/563899DGPM. Relatório de Monitorização da Estratégia Nacional para o Mar 2013–2020, Documento de Suporte às Políticas do Mar. (2020).Almeida, C., Karadzic, V. & Vaz, S. The seafood market in Portugal: Driving forces and consequences. Mar. Policy 61, 87–94 (2015).Article 

    Google Scholar 
    Pita, C. & Gaspar, M. (2020) Small-Scale Fisheries in Portugal: Current Situation, Challenges and Opportunities for the Future. In Small-Scale Fisheries in Europe: Status, Resilience and Governance. Springer, Cham 283–305https://doi.org/10.1007/978-3-030-37371-9_14Baeta, F., José Costa, M. & Cabral, H. Changes in the trophic level of Portuguese landings and fish market price variation in the last decades. Fish. Res. 97, 216–222 (2009).Article 

    Google Scholar 
    Leitão, F. Landing profiles of Portuguese fisheries: Assessing the state of stocks. Fish. Manag. Ecol. 22, 152–163 (2015).Article 

    Google Scholar 
    Quentin Grafton, R. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Sci. Rep. 11, 2958 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Szynaka, M. J., Erzini, K., Gonçalves, J. M. S. & Campos, A. Identifying métiers using landings profiles: An octopus-driven multi-gear coastal fleet. J. Mar. Sci. Eng. 9, 1022 (2021).Article 

    Google Scholar 
    Gamito, R., Teixeira, C. M., Costa, M. J. & Cabral, H. N. Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg. Environ. Chang. 13, 413–421 (2013).Article 

    Google Scholar 
    Leitão, F., Baptista, V., Zeller, D. & Erzini, K. Reconstructed catches and trends for mainland Portugal fisheries between 1938 and 2009: Implications for sustainability, domestic fish supply and imports. Fish. Res. 155, 33–50 (2014).Article 

    Google Scholar 
    Teixeira, C. M. et al. Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg. Environ. Chang. 14, 657–669 (2014).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 3–900051–07–0 (2020).Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685 (2003).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Smith, G. M. (2007) Analysing Ecological Data. https://doi.org/10.1007/978-0-387-45972-1Anderson, M., Gorley, R. & Clarke, K. PERMANOVA for PRIMER: Guide to software and statistical methods. (PRIMER-E Ltd., 2008).Heppell, S. S., Heppell, S. a, Read, A. J. & Crowder, L. B. Effects of fishing on long-lived marine organisms. In Marine conservation biology: The science of maintaining the sea’s biodiversity (eds. Norse, E. & Crowder, L.) 211–231 (Island Press, 2005).Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean sea based on fishers’ perceptions. PLoS ONE 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rolland, V., Barbraud, C. & Weimerskirch, H. Combined effects of fisheries and climate on a migratory long-lived marine predator. J. Appl. Ecol. 45, 4–13 (2008).Article 

    Google Scholar 
    Alves, L. M. F., Correia, J. P. S., Lemos, M. F. L., Novais, S. C. & Cabral, H. Assessment of trends in the Portuguese elasmobranch commercial landings over three decades (1986–2017). Fish. Res. 230, 105648 (2020).Article 

    Google Scholar 
    Correia, J. P., Morgado, F., Erzini, K. & Soares, A. M. V. M. Elasmobranch landings for the Portuguese commercial fishery from 1986 to 2009. Arquipel. Life Mar. Sci. 33, 81–109 (2016).
    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’ phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    Moura, T. et al. Assessing spatio-temporal changes in marine communities along the Portuguese continental shelf and upper slope based on 25 years of bottom trawl surveys. Mar. Environ. Res. 160, 105044 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martins, M. M., Skagen, D., Marques, V., Zwolinski, J. & Silva, A. Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci. Mar. 77, 551–563 (2013).Article 

    Google Scholar 
    Bordalo-Machado, P. & Figueiredo, I. The fishery for black scabbardfish (Aphanopus carbo Lowe, 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish. 19, 49–67 (2009).Article 

    Google Scholar 
    Gordo, L. S. Black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern Northeast Atlantic: Considerations on its fishery. Sci. Mar. 73, 11–16 (2009).Article 

    Google Scholar 
    Campos, A., Fonseca, P., Fonseca, T. & Parente, J. Definition of fleet components in the Portuguese bottom trawl fishery. Fish. Res. 83, 185–191 (2007).Article 

    Google Scholar 
    Bueno-Pardo, J. et al. Deep-sea crustacean trawling fisheries in Portugal: Quantification of effort and assessment of landings per unit effort using a Vessel Monitoring System (VMS). Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    Gamito, R., Pita, C., Teixeira, C., Costa, M. J. & Cabral, H. N. Trends in landings and vulnerability to climate change in different fleet components in the Portuguese coast. Fish. Res. 181, 93–101 (2016).Article 

    Google Scholar 
    García-Seoane, E., Marques, V., Silva, A. & Angélico, M. M. Spatial and temporal variation in pelagic community of the western and southern Iberian Atlantic waters. Estuar. Coast. Shelf Sci. 221, 147–155 (2019).ADS 
    Article 

    Google Scholar 
    Vinagre, C., Duarte, F., Cabral, H. & Jose, M. Impact of climate warming upon the fish assemblages of the Portuguese coast under different scenarios. Reg. Environ. Change 11(4), 779. https://doi.org/10.1007/s10113-011-0215-z (2011).Article 

    Google Scholar 
    Goulart, P., Veiga, F. J. & Grilo, C. The evolution of fisheries in Portugal: A methodological reappraisal with insights from economics. Fish. Res. 199, 76–80 (2018).Article 

    Google Scholar 
    Pita, C., Pereira, J., Lourenço, S., Sonderblohm, C. & Pierce, G. J. (2015) The Traditional Small-Scale Octopus Fishery in Portugal: Framing Its Governability. 117–132. https://doi.org/10.1007/978-3-319-17034-3_7Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).ADS 
    Article 

    Google Scholar 
    Sbrana, M. et al. Spatiotemporal abundance pattern of deep-water rose shrimp, parapenaeus longirostris, and Norway lobster, nephrops norvegicus, in european mediterranean waters. Sci. Mar. 83, 71–80 (2019).Article 

    Google Scholar 
    Quattrocchi, F., Fiorentino, F., Lauria, V. & Garofalo, G. The increasing temperature as driving force for spatial distribution patterns of Parapenaeus longirostris (Lucas 1846) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 158, 101871 (2020).Article 

    Google Scholar 
    Colloca, F., Mastrantonio, G., Lasinio, G. J., Ligas, A. & Sartor, P. Parapenaeus longirostris (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. J. Mar. Syst. 138, 29–39 (2014).Article 

    Google Scholar 
    Woods, P. J. et al. (2021) A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change. ICES J. Mar. Sci. fsab146Gonzalez-Mon, B. et al. Spatial diversification as a mechanism to adapt to environmental changes in small-scale fisheries. Environ. Sci. Policy 116, 246–257 (2021).Article 

    Google Scholar 
    Garza-Gil, M. D., Torralba-Cano, J. & Varela-Lafuente, M. M. Evaluating the economic effects of climate change on the European sardine fishery. Reg. Environ. Chang. 11, 87–95 (2011).Article 

    Google Scholar 
    Borges, M. F., Santos, A. M. P., Crato, N., Mendes, H. & Mota, B. Sardine regime shifts off Portugal: A time series analysis of catches and wind conditions. Sci. Mar. 67, 235–244 (2003).Article 

    Google Scholar 
    Garrido, S. et al. Temperature and food-mediated variability of European Atlantic sardine recruitment. Prog. Oceanogr. 159, 267–275 (2017).ADS 
    Article 

    Google Scholar 
    ICES. Report of the working group on southern horse mackerel, anchovy and sardine (WGHANSA). (2018).Szalaj, D. et al. Food-web dynamics in the Portuguese continental shelf ecosystem between 1986 and 2017: Unravelling drivers of sardine decline. Estuar. Coast. Shelf Sci. 251, 107259 (2021).Article 

    Google Scholar 
    Feijó, D. et al. Catch and yield trends of the Portuguese purse seine fishery (2006–2018). Front. Mar. Sci. https://doi.org/10.3389/conf.fmars.2019.08.00013 (2019).Article 

    Google Scholar 
    Schickele, A., Francour, P. & Raybaud, V. European cephalopods distribution under climate-change scenarios. Sci. Rep. 11, 3930 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purcell, S. W., Crona, B. I., Lalavanua, W. & Eriksson, H. Distribution of economic returns in small-scale fisheries for international markets: A value-chain analysis. Mar. Policy 86, 9–16 (2017).Article 

    Google Scholar 
    Thiao, D., Leport, J., Ndiaye, B. & Mbaye, A. Need for adaptive solutions to food vulnerability induced by fish scarcity and unaffordability in Senegal. Aquat. Living Resour. 31, 25 (2018).Article 

    Google Scholar 
    Education, A. & Variability, H. Cardoso, C., Lourenço, H., Costa, S., Gonçalves, S. & Leonor Nunes, M. Survey Into the Seafood Consumption Preferences and Patterns in the Portuguese Population. J. Food Prod. Mark. 22, 421–435 (2016).Article 

    Google Scholar 
    Holsten, A. & Kropp, J. P. An integrated and transferable climate change vulnerability assessment for regional application. Nat. Hazards 64, 1977–1999 (2012).Article 

    Google Scholar 
    Umweltbundesamt guidelines for climate impact and vulnerability assessments recommendations of the interministerial working group on adaptation to climate change of the German federal government for our environment. More

  • in

    The effect of putrescine on space use and activity in sea lamprey (Petromyzon marinus)

    Hume, J. B. et al. Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: A prospective assessment of key threats and uncertainties. J. Great Lakes Res. 47, S704–S722 (2021).Article 

    Google Scholar 
    Siefkes, M. J. Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. Conserv. Physiol. 5, 1–18 (2017).Article 

    Google Scholar 
    Hunn, J. B. & Youngs, W. D. Role of physical barriers in the control of Sea Lamprey (Petrorn yzon marinus). Can. J. Fish. Aquat. Sci. 37, 2118–2122 (1980).Article 

    Google Scholar 
    Christie, M. R., Sepúlveda, M. S. & Dunlop, E. S. Rapid resistance to pesticide control is predicted to evolve in an invasive fish. Sci. Rep. 9, 18157. https://doi.org/10.1038/s41598-019-54260-5 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cline, T. J. et al. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 5(6), 68. https://doi.org/10.1890/ES14-00059.1 (2014).Article 

    Google Scholar 
    Lennox, R. J. et al. Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. Glob. Change Biol. 26, 1118–1137. https://doi.org/10.1111/gcb.14957 (2020).ADS 
    Article 

    Google Scholar 
    Siefkes, M. J., Johnson, N. S. & Muir, A. M. A renewed philosophy about supplemental sea lamprey controls. J. Great Lakes Res. 47, S742–S752 (2021).Article 

    Google Scholar 
    Fissette, S. D. et al. Progress towards integrating an understanding of chemical ecology into sea lamprey control. J. Great Lakes Res. 47, S660–S672 (2021).CAS 
    Article 

    Google Scholar 
    Miehls, S. et al. The future of barriers and trapping methods in the sea lamprey (Petromyzon marinus) control program in the Laurentian Great Lakes. Rev. Fish Biol. Fish. 30, 1–24 (2020).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., Belanger, C. F., Brown, G. E. & Johnson, N. S. The behavioural response of adult Petromyzon marinus to damage-released alarm and predator cues. J. Fish Biol. 84, 1490–1502 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).Article 

    Google Scholar 
    Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. B Biol. Sci. 355, 1205–1208 (2000).Wisenden, B. D., Chivers, D. P., Brown, G. E. & Smith, R. J. The role of experience in risk assessment: Avoidance of areas chemically labelled with fathead minnow alarm pheromone by conspecifics and heterospecifics. Ecoscience 2, 116–122 (1995).Article 

    Google Scholar 
    Bairos-Novak, K. R., Ferrari, M. C. O. & Chivers, D. P. A novel alarm signal in aquatic prey: Familiar minnows coordinate group defences against predators through chemical disturbance cues. J. Anim. Ecol. 88, 1281–1290 (2019).PubMed 
    Article 

    Google Scholar 
    Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).Article 

    Google Scholar 
    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).Article 

    Google Scholar 
    Lawrence, B. J. & Smith, R. J. F. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J. Chem. Ecol. 3, 209–219 (1989).Article 

    Google Scholar 
    Bals, J. D. & Wagner, C. M. Behavioral responses of sea lamprey (Petromyzon marinus) to a putative alarm cue derived from conspecific and heterospecific sources. Behaviour 149, 901–923 (2012).Article 

    Google Scholar 
    Hume, J. B. & Wagner, C. M. A death in the family: Sea lamprey (Petromyzon marinus) avoidance of confamilial alarm cues diminishes with phylogenetic distance. Ecol. Evol. 8, 3751–3762 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagner, C. M., Stroud, E. M. & Meckley, T. D. A deathly odor suggests a new sustainable tool for controlling a costly invasive species. Can. J. Fish. Aquat. Sci. 68, 1157–1160 (2011).Article 

    Google Scholar 
    Byford, G. J., Wagner, C. M., Hume, J. B. & Moser, M. L. Do native pacific lamprey and invasive sea lamprey share an alarm cue? Implications for use of a natural repellent to guide imperiled pacific lamprey into fishways. North Am. J. Fish. Manag. 36, 1090–1096 (2016).Article 

    Google Scholar 
    Wagner, C. M., Kierczynski, K. E., Hume, J. B. & Luhring, T. M. Exposure to a putative alarm cue reduces downstream drift in larval sea lamprey Petromyzon marinus in the laboratory. J. Fish Biol. 89, 1897–1904 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Rocco, R. T., Johnson, N. S., Brege, L., Imre, I. & Brown, G. E. Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams. Fish. Manag. Ecol. 23, 548–560 (2016).Article 

    Google Scholar 
    Hume, J. B., Luhring, T. M. & Wagner, C. M. Push, pull, or push–pull? An alarm cue better guides sea lamprey towards capture devices than a mating pheromone during the reproductive migration. Biol. Invasions 22, 2129–2142 (2020).Article 

    Google Scholar 
    Hume, J. B. et al. Application of a putative alarm cue hastens the arrival of invasive sea lamprey (Petromyzon marinus) at a trapping location. Can. J. Fish. Aquat. Sci. 72, 1799–1806 (2015).CAS 
    Article 

    Google Scholar 
    Blumstein, D. T. Habituation and sensitization: New thoughts about old ideas. Anim. Behav. 120, 255–262 (2016).Article 

    Google Scholar 
    Greggor, A. L., Berger-Tal, O. & Blumstein, D. T. the rules of attraction: The necessary role of animal cognition in explaining conservation failures and successes. Ann. Rev. Ecol. Evol. Syst. 51, 483–503 (2020).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., McClure, H., Johnson, N. S. & Brown, G. E. Migratory-stage sea lamprey Petromyzon marinus stop responding to conspecific damage-released alarm cues after 4 h of continuous exposure in laboratory conditions. J. Fish Biol. 90, 1297–1304 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, C. M., Bals, J. D., Hanson, M. E. & Scott, A. M. Attenuation and recovery of an avoidance response to a chemical antipredator cue in an invasive fish: implications for use as a repellent in conservation. Cons. Phys. 10, 1–12 (2022).CAS 

    Google Scholar 
    Hussain, A. et al. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. U. S. A. 110, 19579–19584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, M. et al. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36, 267–281 (2009).Article 

    Google Scholar 
    Wisman, A. & Shrira, I. The smell of death: Evidence that putrescine elicits threat management. Front. Psychol. 6, 1–11 (2015).Article 

    Google Scholar 
    Oliveira, T. A. et al. Death-associated odors induce stress in zebrafish. Horm. Behav. 65, 340–344 (2014).PubMed 
    Article 

    Google Scholar 
    Pinel, J. P. J., Gorzalka, B. B. & Ladak, F. Cadaverine and Putrescine Initiate the Burial of Dead Conspecifics by Rats. Physiol. Behav. 27, 819–824 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prounis, G. S. & Shields, W. M. Necrophobic behavior in small mammals. Behav. Processes 94, 41–44 (2013).PubMed 
    Article 

    Google Scholar 
    Sun, Q., Haynes, K. F. & Zhou, X. Dynamic changes in death cues modulate risks and rewards of corpse management in a social insect. Funct. Ecol. 31, 697–706 (2017).Article 

    Google Scholar 
    Heale, V. R., Petersen, K. & Vanderwolf, C. H. Effect of colchicine-induced cell loss in the dentate gyms and Ammon’s horn on the olfactory control of feeding in rats. Brain. Res. J. 712, 213–220 (1996).CAS 
    Article 

    Google Scholar 
    Rolen, S. H., Sorensen, P. W., Mattson, D. & Caprio, J. Polyamines as olfactory stimuli in the goldfish Carassius auratus. J. Exp. Biol. 206, 1683–1696 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Nitrogenous compounds characterized in the deterrent skin extract of migratory adult sea lamprey from the Great Lakes region. PLoS ONE 14(5), e0217417. https://doi.org/10.1371/journal.pone.0168609 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cooke, M., Leeves, N. & White, C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch. Oral Biol. 9969, 323–327 (2003).Article 

    Google Scholar 
    Tilden, J. An account of a singular property of lamprey eels. Mem. Amer. Acad. Sci. 46, 335–336 (1809).
    Google Scholar 
    Di Rocco, R. T., Belanger, C. F., Imre, I., Brown, G. E. & Johnson, N. S. Daytime avoidance of chemosensory alarm cues by adult sea lamprey (Petromyzon marinus). Can. J. Fish. Aquat. Sci. 830, 824–830 (2014).Article 

    Google Scholar 
    Imre, I., Di Rocco, R. T., Brown, G. E. & Johnson, N. S. Habituation of adult sea lamprey repeatedly exposed to damage-released alarm and predator cues. Environ. Biol. Fishes 99, 613–620 (2016).Article 

    Google Scholar 
    Ferrari, M. C. O., Messier, F. & Chivers, D. P. Degradation of chemical alarm cues under natural conditions: Risk assessment by larval woodfrogs. Chemoecology 17, 263–266 (2008).Article 

    Google Scholar 
    Brown, G. E., Rive, A. C., Ferrari, M. C. O. & Chivers, D. P. The dynamic nature of antipredator behavior: Prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav. Ecol. Sociobiol. 61, 9–16 (2006).Article 

    Google Scholar 
    McCann, E. L., Johnson, N. S., Hrodey, P. J. & Pangle, K. L. Characterization of sea lamprey stream entry using dual-frequency identification sonar. Trans. Am. Fish. Soc. 147, 514–524 (2018).Article 

    Google Scholar 
    Binder, T. R. & McDonald, D. G. Is there a role for vision in the behaviour of sea lampreys (Petromyzon marinus) during their upstream spawning migration?. Can. J. Fish. Aquat. Sci. 64, 1403–1412 (2007).Article 

    Google Scholar 
    Wagner, C. M., Jones, M. L., Twohey, M. B. & Sorensen, P. W. A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes. Can. J. Fish. Aquat. Sci. 63, 475–479 (2006).CAS 
    Article 

    Google Scholar 
    Wagner, C. M., Twohey, M. B. & Fine, J. M. Conspecific cueing in the sea lamprey: Do reproductive migrations consistently follow the most intense larval odour?. Anim. Behav. 78, 593–599 (2009).Article 

    Google Scholar 
    Boulêtreau, S. et al. High predation of native sea lamprey during spawning migration. Sci. Rep. 10, 6122. https://doi.org/10.1038/s41598-020-62916-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sjöberg, K. Time-related predator/prey interactions between birds and fish in a northern Swedish river. Oecologia 80, 1–10 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Processes 166, 103890. https://doi.org/10.1016/j.beproc.2019.103890 (2019).Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Evolution and Learning (ed. Bolles, R.C. & Beecher, M.D.) 185–211 (Earlbaum, 1988).Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Chemical characterization of lipophilic constituents in the skin of migratory adult sea lamprey from the Great Lakes Region. PLoS ONE 11(12), e0168609. https://doi.org/10.1371/journal.pone.0168609 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dissanayake, A. A., Wagner, C. M. & Nair, M. G. Evaluation of health benefits of sea lamprey (Petromyzon marinus) isolates using in vitro antiinflammatory and antioxidant assays. PLoS ONE 16(11), e0259587. https://doi.org/10.1371/journal.pone.0259587 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UFR-Committee. Guidelines for the use of fishes in research. Am. Fish. Soc. Symp., Bethesday, Maryland (2013).Association, A. V. M. Guidelines for the Euthanasia of. Animals https://doi.org/10.1016/B978-012088449-0.50009-1 (2013).Article 

    Google Scholar 
    du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biol. 18, 1–65 (2020).Friard, O. & Gamba, M. BORIS: A free versatile open-source event-logging software for video/ audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Domenici, P. Context-dependent variability in the components of fish escape response: Integrating locomotor performance and behavior. J. Exp. Biol. 313, 59–79 (2010).
    Google Scholar 
    Perrault, K., Imre, I. & Brown, G. E. Behavioural response of larval sea lamprey (Petromyzon marinus) in a laboratory environment to potential damage-released chemical alarm cues. Can. J. Zool. 92, 443–447 (2014).Article 

    Google Scholar 
    Curtis, V., de Barra, M. & Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B Biol. Sci. 366, 389–401 (2011).Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helfman, G. S. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav. Ecol. Sociobiol. 24, 47–58 (1989).Article 

    Google Scholar 
    Stephenson, J. F., Perkins, S. E. & Cable, J. Transmission risk predicts avoidance of infected conspecifics in Trinidadian guppies. J. Anim. Ecol. 87, 1525–1533 (2018).PubMed 
    Article 

    Google Scholar 
    Sepahi, A. et al. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 116, 12428–12436 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Croft, D. P., Edenbrow, M., Darden, S. K. & Cable, J. Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata. Behav. Ecol. Sociobiol. 65, 2219–2227 (2011).Article 

    Google Scholar 
    Luhring, T. M. et al. A semelparous fi sh continues upstream migration when exposed to alarm cue, but adjusts movement speed and timing. Anim. Behav. 121, 41–51 (2016).Article 

    Google Scholar 
    Laframboise, A. J., Ren, X., Chang, S., Dubuc, R. & Zielinski, B. S. Olfactory sensory neurons in the sea lamprey display polymorphisms. Neurosci. Lett. 414, 277–281 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buchinger, T. J., Siefkes, M. J., Zielinski, B. S., Brant, C. O. & Li, W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front. Zool. 12, 1–11 (2015).Article 

    Google Scholar 
    Halgand, F. et al. Defining intact protein primary structures from saliva: A step toward the human proteome project. Anal. Chem. 84, 4383–4395 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mackay, R. N., Wood, T. C. & Moore, P. A. Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety? J. Exp. Biol. 224, jeb242687. https://doi.org/10.1242/jeb.242687 (2021).Meckley, T. D., Gurarie, E., Miller, J. R. & Michaelwagner, C. How fishes find the shore: Evidence for orientation to bathymetry from the non-homing sea lamprey. Can. J. Fish. Aquat. Sci. 74, 2045–2058 (2017).Article 

    Google Scholar 
    Hume, J. B., Lucas, M. C., Reinhardt, U., Hrodey, P. J. & Wagner, C. M. Sea lamprey (Petromyzon marinus) transit of a ramp equipped with studded substrate: Implications for fish passage and invasive species control. Ecol. Eng. 155, 1–11 (2020).Article 

    Google Scholar 
    Ioannou, C. C., Ramnarine, I. W. & Torney, C. J. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish. Sci. Adv. 3, e1602682. https://doi.org/10.1126/sciadv.1602682 (2017).Schaerf, T. M., Dillingham, P. W. & Ward, A. J. W. The effects of external cues on individual and collective behavior of shoaling fish. Sci. Adv. 3, e1603201. https://doi.org/10.1126/SCIADV.ABN2232 (2017).Hoare, D. J., Couzin, I. D., Godin, J. G. J. & Krause, J. Context-dependent group size choice in fish. Anim. Behav. 67, 155–164 (2004).Article 

    Google Scholar 
    Siefkes, M. J., Winterstein, S. R. & Li, W. Evidence that 3-keto petromyzonol sulphate specifically attracts ovulating female sea lamprey Petromyzon marinus. Anim. Behav. 70, 1037–1045 (2005).Article 

    Google Scholar 
    Wisenden, B. D. Evidence for incipient alarm signalling in fish. J. Anim. Ecol. 88, 1278–1280 (2019).PubMed 
    Article 

    Google Scholar 
    Petersen, R. S. The role of traditional ecological knowledge in understanding a species and river system at risk: Pacific Lamprey in the Lower Klamath Basin (Oregon State University, 2006).
    Google Scholar 
    Barton, B. A. Stress in fishes: A diversity of responses with particular reference to changes in. Integ. Comp. Biol. 525, 517–525 (2002).Article 

    Google Scholar 
    Lawrence, M. J., Godin, J. J. & Cooke, S. J. Comparative Biochemistry and Physiology, Part A Does experimental cortisol elevation mediate risk-taking and antipredator behaviour in a wild teleost fish?. Comp. Biochem. Physiol. Part A 226, 75–82 (2018).CAS 
    Article 

    Google Scholar 
    Conrad, J. L., Weinersmith, K. L., Brodin, T. & Saltz, J. B. Behavioural syndromes in fishes: A review with implications for ecology and fisheries management. J. Fish Biol. 78, 395–435 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanches, F. H. C., Miyai, C. A., Pinho-Neto, C. F. & Barreto, R. E. Stress responses to chemical alarm cues in Nile tilapia. Physiol. Behav. 149, 8–13 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehnberg, B. G. & Schreck, C. B. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): Behavioral reaction and the physiological stress response1. Can. J. Zool. 65, 481–485 (1987).CAS 
    Article 

    Google Scholar 
    Rehnberg, B. G., Smith, R. J. F. & Sloley, B. D. The reaction of pearl dace (Pisces, Cyprinidae) to alarm substance: Time-course of behavior, brain amines, and stress physiology. Can. J. Zool. 65, 2916–2921 (1987).CAS 
    Article 

    Google Scholar 
    Close, D. A., Yun, S. S., McCormick, S. D., Wildbill, A. J. & Li, W. 11-Deoxycortisol is a corticosteroid hormone in the lamprey. Proc. Natl. Acad. Sci. U. S. A. 107, 13942–13947 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaughnessy, C. A. & Mccormick, S. D. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J. Exp. Biol. 224, jeb241943. https://doi.org/10.1242/jeb.241943 (2021).Cull, F. et al. Consequences of experimental cortisol manipulations on the thermal biology of the checkered puffer (Sphoeroides testudineus) in laboratory and field environments. J. Therm. Biol. 47, 63–74 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pleizier, N., Wilson, A. D. M., Shultz, A. D. & Cooke, S. J. Puffed and bothered: Personality, performance, and the effects of stress on checkered puffer fish. Physiol. Behav. 152, 68–78 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lawrence, M. J. et al. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp. Biochem. Physiol. Part A 207, 21–29 (2017).CAS 
    Article 

    Google Scholar 
    Atema, J., Kingsford, M. J. & Gerlach, G. Larval reef fish could use odour for detection, retention and orientation to reefs. Mar. Ecol. Prog. Ser. 241, 151–160 (2002).ADS 
    Article 

    Google Scholar 
    Gardiner, J. M. & Atema, J. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J. Exp. Biol. 210, 1925–1934 (2007).PubMed 
    Article 

    Google Scholar 
    Jutfelt, F., Sundin, J., Raby, G. D., Krång, A. S. & Clark, T. D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 8, 379–390 (2017).Article 

    Google Scholar 
    Moser, M. L., Almeida, P. R., Kemp, P. S. & Sorensen, P. W. Lamprey Spawning Migration in Lampreys: Biology, Conservation and Control. (ed. Docker, M. F.) 215–263 (Springer, 2015).Imre, I., Brown, G. E., Bergstedt, R. A. & Mcdonald, R. Use of chemosensory cues as repellents for sea lamprey: Potential directions for population management. J. Great Lakes Res. 36, 790–793 (2010).CAS 
    Article 

    Google Scholar 
    Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).Article 

    Google Scholar  More

  • in

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    All procedures accorded to administrative provision of animal welfare of the Fisheries Research Education Agency Japan. All statistical tests used in this study are two-sided.Otolith samplesFrom the western North Pacific, age-0 JP sardine were collected from samples taken during acoustic and sub-surface trawl surveys in the offshore Oyashio region conducted during 2006–2010 and 2014–2015. The surveys were conducted by Japan Fisheries Research and Education Agency every autumn since 2005 which aim to estimate the abundance of small pelagic species. The abundance of young-of-the-year sardine in the region in the season, approximately 10–15 cm in standard length (SL), is considered a proxy for the abundance of recruits of the Pacific stock and used to tune the cohort analysis in stock assessment4. As representatives of the young-of-the-year population in the region, 2–6 trawl stations each year that had relatively larger catch-per-unit-effort were selected (Supplementary Fig. 1), and 9–20 individuals were randomly selected from each station for otolith analyses (Supplementary Table 1). Age of fish was initially judged by SL (10–15 cm) and later confirmed by the counts of otolith daily increments.From the eastern North Pacific, archived otoliths of CA sardine captured in cruise surveys and in the pelagic fishery of the Southern California Bight during 1987, 1991–1998, and 2005–2007 were collected. Fish in the size range of 10–16 cm SL were regarded as age-1 individuals born in the previous year, following Takahashi and Checkley56. The number of individuals varied between year classes in the range of 4–20 (Supplementary Table 2).Otolith processing, microstructure and somatic growth analysisSagittal otoliths were cleaned to remove the attached tissue in freshwater and then air-dried. Otoliths of JP sardine were embedded in epoxy resin (Petropoxy 154, Burnham Petrographics LLC) on slide-glass, while those of CA were glued to slide-glass using enamel resin and then ground and polished with sandpaper to expose the core. For some otoliths of CA sardine, the polished surface was coated with additional resin to facilitate identification of the daily increment width. Using an otolith measurement system (RATOC System Engineering Co. Ltd.), the number and location of daily increments were examined along the axis in the postrostrum from the core. Although daily increments were clearly observed until the otolith edge for JP sardine, it was difficult to do this for CA sardine probably because they had experienced winter when otolith growth slowed down. Therefore, the rings were counted as far as possible for CA sardine, which typically resulted in more than 150 counts. The first daily increment was assumed to form after 3 days post hatch (dph) for JP and 8 dph for CA sardine following Takahashi et al.26 and Takahashi and Checkley56. The otolith radius at each age was calculated by adding all the increment widths up to that age. Standard lengths at each age were back-calculated assuming a linear relationship between otolith radius and standard length using the biological intercept method34 as follows:$${SL}_{n}=left({{SL}}_{{catch}}-{{SL}}_{{first}}right)times left({{OR}}_{n}-{{OR}}_{{first}}right)/left({OR}_{catch}-{{OR}}_{{first}}right)+{{SL}}_{{first}}$$
    (1)
    where SLn is the standard length at age n, SLcatch is the standard length at catch, SLfirst is the standard length at the age of first daily increment deposition fixed at 5.9 mm for JP sardine and 5.5 mm for CA sardine following the previous studies26,56, ORn is the otolith radius at age n, ORfirst is the otolith radius at the age of first daily increment deposition, and ORcatch is the otolith radius at catch. Based on rearing experiments of field collected eggs, Lasker57 showed the SL of CA sardine at 6–8 dph ranged between 3.8 to 6.5 mm, and Matsuoka and Mitani58 showed the total length at 2–4 dph ranged between 4.8 to 6.2 mm, corresponding to 4.7 to 6.1 mm in SL. To deal with these uncertainties regarding the size at the age of first daily increment deposition, we conducted Monte Carlo simulations (10,000 times) to estimate the uncertainties of back-calculated SL, assuming that the initial SLs fall between 3.8 to 6.5 mm for both sardines. Standard deviations of the temporal back-calculated SL at each age were presented as the uncertainty of each SLn estimation, which varied between 0.51 and 0.73 at the end of larval stage (JP: 45 dph, CA: 60 dph), between 0.34 and 0.64 at the end of early juvenile stage (JP: 75 dph, CA: 90 dph) and between 0.20 and 0.53 at the end of late juvenile stage (JP: 105 dph, CA: 120 dph). These values were significantly smaller than the variability of estimated SL among individuals assuming initial sizes of 5.9 and 5.5 mm for JP and CA sardine, respectively (standard deviations: 4.2, 8.1 and 8.3 in JP sardine and 5.5, 9.1 and 10.3 in CA sardine for the end of larval, early juvenile and late juvenile stages, respectively), suggesting that the back-calculated SL is robust to variations of initial size. Nevertheless, the biological intercept method assumes a constant linear relationship between fish and otolith size within individual59, which can vary depending on physiological or environmental conditions60,61. Therefore, to examine the relationships between temperature and growth, we used both otolith growth, which contains fewer assumptions, and back-calculated somatic growth as growth proxies. Since the use of the two proxies did not show remarkable differences in the relationships between temperature and growth (Supplementary Figs. 11, 12), we mainly used the back-calculated SL in the discussion, which has a more direct ecological implication.To more generally test whether growth trajectories are different between the western and eastern boundary current systems, otolith growth data of JP and CA sardines were compared with those of sardines in the east to south and west coasts of South Africa. The biological intercept method to back-calculate standard length could not be used in sardine from South Africa because the size at catch was large, some over 20 cm, and otolith radius and standard length were not linearly correlated for fish of this size. Therefore, the otolith radius and increment width were directly used as proxy for size and growth in this comparison, respectively. For visualisation (Fig. 2a), the means of year class mean otolith radii were estimated for JP and CA sardines. For CA sardine, otolith radii at ages were simply averaged within each year class. For JP sardine, to account for the variation in the number of individuals captured at the same station, otolith radii were first averaged within each station, and the station means were averaged within each year, weighted by catch-per-unit-effort. For South African sardine, data of otolith daily increment widths from hatch to 100 dph of 67 adults captured at six stations on the east to south coast ( >22oE), and 51 individuals captured at six stations on the west coast ( 0.05). Theoretically, the relationship between metabolism and temperature tends to show a linear trend after the metabolic rate is log-transformed79. Thus, we applied “identity (data without transformed)” and “log (data transformed)” links to evaluate if model shows a better linearity with data transformation. Based on AIC, however, the result showed Moto have a better linearity without data transformation (Supplementary Table 7). We, therefore, used “identity” links for the further model selection. Model selection base on AIC was performed for models including temperature, region (JP and CA sardines), life history stages (larvae, early juvenile and late juvenile) and interactions of these factors. The full model including all the interactions had the lowest AIC (Supplementary Table 7). As the diagnostic for the full model showed normality and homogeneity of residuals (Supplementary Fig. 9), we selected this model for interpretation. The CA sardine at the larval stage as the baseline, we found only JP sardine at early and late juvenile stages has relatively higher Moto values, and the temperature-dependent slope is significantly gentler in JP sardine at early and late juvenile stages (Supplementary Table 8).Next, the diversity of Moto across temperature range was assessed to estimate the optimal temperature in each stage. The relationship between the maximum metabolic rate and temperature is known to be parabolic, while that between the standard metabolic rate and temperature is logarithmic28,79. As the highest field metabolic rate would be constrained by maximum metabolic rate and the lowest field metabolic rate would be close to resting metabolic rate43, fish would have the most diverse metabolic performance at the optimal temperature with the widest aerobic scope. Thus, we modelled the highest and lowest Moto values in each 1 °C bin using a polynomial regression and a generalised linear model with Gaussian distribution and a log link for the 95th and 5th percentile values of each bin, respectively (Supplementary Fig. 10). The values of the bin that included less than four values were excluded from the regression analyses to reduce the uncertainty caused by under-sampled temperature bins. The gap between the two regression lines was considered as a proxy for the aerobic scope, and the temperature at which the gap reached the maximum was regarded as the optimal temperature.Statistical analyses for the relationships between temperature and growthTo understand how variation in ambient water temperature affects early life growth of sardines, we compared back-calculated standard length at around the end of the larval stage (hatch–35 mm; JP: 45 dph, CA: 60 dph), the end of the early juvenile stage (35–60 mm; JP: 75 dph, CA: 90 dph), and the end of the late juvenile stage (60–85 mm; JP: 105 dph, CA: 120 dph) and the mean seawater temperature from hatch to the ages. Median of each sampling batch were used as minimal data unit. Pearson’s r and p-values were first calculated for each comparison (Supplementary Table 9). As the relationship between mean temperature and standard length of JP at 75 dph seemed to be dome-shaped rather than linear, we introduced quadratic term of temperature and tested whether the term increased explanatory power using a linear model and stepwise model selection based on AIC. The model selection showed that the full model (Standard length ∼ Temperature2 + Temperature) was the best model, and the coefficients of the quadratic and linear terms were both significant (Supplementary Table 10). To account for these multiple tests, we corrected the p-values of the coefficients of the quadratic term in the linear model for JP sardine at 75 dph and of the Pearson’s r for the rest using the Benjamini-Hochberg procedure with α = 0.05, and selected the null hypotheses that could be rejected (Supplementary Table 9). To compare the temperature that allow maximisation of growth rate and optimal temperature derived from the analysis of Moto for each stage, median somatic growth rate and otolith increment width in each 1 °C bin was calculated together with its 3-window running mean (Supplementary Figs. 11, 12).Statistical analyses for the relationships between sea surface temperature and survival indexTo test whether habitat temperatures during the first 4 months after hatch affect the survival of sardines in the first year of life on a multidecadal scale, satellite-derived sea surface temperature (SST) since 1982 and survival of JP and CA sardines were compared. The log recruitment residuals from Ricker recruitment models (LNRR)13, representing early life survivals taking into account the effect of population density, were calculated based on the stock assessment data for JP and CA sardines as follows:$${LNR}{R}_{t}={ln}({R}_{t}/{S}_{t}) , – , (a+btimes {S}_{t})$$
    (6)
    where LNRRt is the LNRR at year t, Rt is the recruitment of year-class t, St is the spawning stock biomass in year t, and a and b are the coefficients of linear regression of ln(Rt/St) on St. Pearson’s r between the LNRR and the mean SST values from March to June for JP and from April to July for CA sardine was calculated for each grid points in the western and eastern boundaries of the North Pacific basin, derived from a SST product based on satellite and in situ observations80 (Global Ocean OSTIA Sea Surface Temperature and Sea Ice Reprocessed (https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/INFORMATION), accessed on 11th August and 28th October 2021). The correlations were generally negative and positive in the western and eastern regions, respectively (Supplementary Fig 13a, b). In particular, mean SST values in the area where eggs, larvae and juveniles of JP or CA sardines are mainly found in the months26,39,49,56,78,81,82 (dotted areas in Supplementary Fig 13a, b) were compared with LNRR values to test the relationship between habitat temperature and survival in the early life stages (Supplementary Fig 13c). It should be noted that the mean SST values were not significantly correlated with otolith-derived year-class mean temperatures of JP and CA sardines during the larval to late juvenile stages (JP: r = 0.01, p = 0.98, n = 7, CA: r = 0.29, p = 0.38, n = 11), likely due to the short periods analysed, patchy distribution and inter annual variation in larval and juvenile dispersal and migration patterns. Nevertheless, the regions included areas where SST showed weak to significant (p  More