More stories

  • in

    Marine heatwaves of different magnitudes have contrasting effects on herbivore behaviour

    Abram, P. K., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biol. Rev. 92, 1859–1876 (2017).Article 

    Google Scholar 
    Horwitz, R. et al. Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc. Sci. Rep. 10, 5461 (2020).ADS 
    Article 

    Google Scholar 
    Minuti, J. J., Byrne, M., Hemraj, D. A. & Russell, B. D. Capacity of an ecologically key urchin to recover from extreme events: Physiological impacts of heatwaves and the road to recovery. Sci. Total Environ. 785, 147281 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Angilletta Jr., M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis. (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780198570875.001.1.Mertens, N. L., Russell, B. D. & Connell, S. D. Escaping herbivory: Ocean warming as a refuge for primary producers where consumer metabolism and consumption cannot pursue. Oecologia 179, 1223–1229 (2015).ADS 
    Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).Article 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).Article 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, J., King, N. G., Wilmes, S. B. & Moore, P. J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56, 1591–1600 (2020).CAS 
    Article 

    Google Scholar 
    Hemraj, D. A., Posnett, N. C., Minuti, J. J., Firth, L. B. & Russell, B. D. Survived but not safe: Marine heatwave hinders metabolism in two gastropod survivors. Mar. Environ. Res. 162, 105117 (2020).CAS 
    Article 

    Google Scholar 
    Vinagre, C. et al. Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. Ecol. Indic. 62, 317–327 (2016).Article 

    Google Scholar 
    Vinagre, C. et al. Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms. PLoS ONE 13, e0192700 (2018).Article 

    Google Scholar 
    Falkenberg, L. J., Russell, B. D. & Connell, S. D. Future herbivory: The indirect effects of enriched CO2 may rival its direct effects. Mar. Ecol. Prog. Ser. 492, 85–95 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lorda, J., Hechinger, R. F., Cooper, S. D., Kuris, A. M. & Lafferty, K. D. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails. Ecosphere 7, e01262 (2016).Article 

    Google Scholar 
    Falkenberg, L. J., Connell, S. D. & Russell, B. D. Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Mar. Ecol. Prog. Ser. 497, 87–92 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).Article 

    Google Scholar 
    Brothers, C. J. & McClintock, J. B. The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle’s lantern reflex of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol. Ecol. 467, 33–38 (2015).Article 

    Google Scholar 
    DeWhatley, M. C. & Alexander, J. E. Impacts of elevated water temperatures on righting behavior and survival of two freshwater caenogastropod snails. Mar. Freshw. Behav. Physiol. 51, 251–262 (2018).Article 

    Google Scholar 
    Sokolova, I. M. & Pörtner, H.-O. Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J. Exp. Biol. 206, 195–207 (2003).Article 

    Google Scholar 
    Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    Article 

    Google Scholar 
    Monaco, C. J., McQuaid, C. D. & Marshall, D. J. Decoupling of behavioural and physiological thermal performance curves in ectothermic animals: a critical adaptive trait. Oecologia 185, 583–593 (2017).ADS 
    Article 

    Google Scholar 
    Anderson, K. M. & Falkenberg, L. J. Variation in thermal performance curves for oxygen consumption and loss of critical behaviors in co-occurring species indicate the potential for ecosystem stability under ocean warming. Mar. Environ. Res. 172, 105487 (2021).CAS 
    Article 

    Google Scholar 
    Lemmnitz, G., Schuppe, H. & Wolff, H. G. Neuromotor bases of the escape behaviour of Nassa Mutabilis. J. Exp. Biol. 143, 493–507 (1989).Article 

    Google Scholar 
    Poore, A. G. B. et al. Global patterns in the impact of marine herbivores on benthic primary producers. Ecol. Lett. 15, 912–922 (2012).Article 

    Google Scholar 
    Britton, D. et al. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C. Agardh. Glob. Change Biol. 26, 3512–3524 (2020).ADS 
    Article 

    Google Scholar 
    Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. 111, 5610–5615 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).ADS 
    Article 

    Google Scholar 
    Nguyen, H. M. et al. Stress memory in seagrasses: First insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).Article 

    Google Scholar 
    Xu, Y. et al. Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure. Mar. Pollut. Bull. 173, 112932 (2021).CAS 
    Article 

    Google Scholar 
    Schram, J. B., Schoenrock, K. M., McClintock, J. B., Amsler, C. D. & Angus, R. A. Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. J. Exp. Mar. Biol. Ecol. 457, 90–96 (2014).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienne Austria (2020).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-16. (2020).Therneau, T. M. & Grambsch, P. M. The cox model. In Modeling Survival Data: Extending the Cox Model 39–77 (Springer, 2000).Fox, J. & Weisburg, S. An R Companion to Applied Regression. (Sage, 2011).Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.3. (2020). More

  • in

    Intra-specific variation in sensitivity of Bombus terrestris and Osmia bicornis to three pesticides

    Model substancesWe used the sulfoximine insecticide sulfoxaflor, the methoxy-acrylate fungicide Amistar (azoxystrobin 250 g/l, Suspension Concentrate, see supplementary methods, S1) and the glycine herbicide glyphosate (as active substance, RoundUp ProActive or RoundUp FL, see supplementary methods, S1) as model substances. Our choice was justified by their widespread use, regulatory status and systemic uptake in plants. Because of these characteristics, the likelihood of bees being exposed in the field was considered similarly plausible across model substances. Additionally, we are not aware of published evidence of the acute toxicity of these substances across castes and sexes of B. terrestris and O. bicornis.Sulfoxaflor is a relatively novel insecticide55,56,57, developed to replace or complement the use of older chemical classes against which insect pest populations had developed resistance57. However, because of its risks to bees58, its uses have been recently restricted in the EU to indoor growing conditions. As a nicotinic acetylcholine receptor (nAChR) competitive modulator, sulfoxaflor targets the same neural receptor as the bee-harming neonicotinoid insecticides55,56,57. Despite evidence that sulfoxaflor may target the nAChR in a distinct way compared to recently banned neonicotinoids55,56,57, these substances were shown to be similarly lethal in acute exposure laboratory settings for individuals of Apis mellifera, B. terrestris and O. bicornis38. Additionally, sulfoxaflor was shown to reduce reproduction59,60,61 (but not learning62,63) in bumble bees under field-realistic laboratory settings. When applied pre-flowering in a semi-field study design, sulfoxaflor impacted colony growth, colony size and foraging in bumble bees64 but not honey bees65. Azoxystrobin is a broad-spectrum, systemic fungicide, which has been widely used in agriculture since its first marketing authorisation in 199666. Azoxystrobin shows low acute toxicity to honey bees67. Azoxystrobin residues were found in nectar and pollen from treated crops68,69 and subsequently in the bodies of wild bees70. In a semi-field experimental setting, foraging, but not colony growth, was significantly impaired in B. terrestris exposed to Amistar (azoxystrobin 250 g/L SC)64, while no lethal or sublethal effects could be observed in honey bees65 or in O. bicornis71. However, a recent study showed that, when formulated as Amistar this pesticide induced acute mortality in bumble bees at high doses, which was attributed to the dietary toxicity of the co-formulant C16-18 alcohol ethoxylates50.Glyphosate is a broad-spectrum systemic herbicide and the most widely used pesticide in the world72. Products containing glyphosate may be applied to flowering weeds73 and contaminate their pollen and nectar54, thus driving bee contact and oral exposure. Glyphosate showed low lethal hazards in regulatory-ready laboratory74 and semi-field designs when dosed as pure active substance or as MON 52276 (SL formulation containing 360 g glyphosate/L)75. A recent study found ready-to-use consumer products containing glyphosate to be lethally hazardous to bumble bees73. However, this toxicity was attributed to co-formulants, rather than the active substance itself.We characterised the acute oral and contact toxicity to B. terrestris and O. bicornis of sulfoxaflor, azoxystrobin and glyphosate as either pure active substances or formulation (see supplementary material S2 Table S1). Each test was repeated across castes and sexes of these two species. For bumble bees we used workers, males and gynes (i.e., unmated queens), hereby referred to as queens, whereas for O. bicornis we used males and females. Bumble bee experiments were designed following OECD protocols30,31, while O. bicornis was tested following published76 and ring-tested protocols32, as an OECD protocol for this latter species is not yet available.We used a dose response design whenever the test item was found to drive significant mortality in the tested species. In all other cases, a limit test design using a single, high pesticide dose was used. Details on the methods and results of the limit tests are reported in the supplementary materials (S2 and S4).Pesticide treatmentsAll dose response tests were performed with pure sulfoxaflor, while azoxystrobin was tested as a plant protection product (Amistar 250 g a.s./l, SC, Syngenta, UK) in all oral tests, as its solubility in water was insufficient (6.7 mg a.s./L, see EFSA, 2010) to achieve the desired concentrations. Amistar contains co-formulants with hazard classification (54 C16-18 alcohols, ethoxylated  More

  • in

    Warming and predation risk only weakly shape size-mediated priority effects in a cannibalistic damselfly

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angert, A. L., LaDeau, S. L. & Ostfeld, R. S. Climate change and species interactions: ways forward. Ann. N. Y. Acad. Sci. 1297, 1–7 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kersting, D. K. et al. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci. Rep. 5, 18635 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, Y. et al. Warming reshaped the microbial hierarchical interactions. Glob. Chang. Biol. 27, 6331–6347 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grainger, T. N., Rego, A. I. & Gilbert, B. Temperature-dependent species interactions shape priority effects and the persistence of unequal competitors. Am. Nat. 191, 197–209 (2018).PubMed 
    Article 

    Google Scholar 
    Ørsted, M., Schou, M. F. & Kristensen, T. N. Biotic and abiotic factors investigated in two Drosophila species: evidence of both negative and positive effects of interactions on performance. Sci. Rep. 7, 40132 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648 (2019).PubMed 
    Article 

    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 13, 1860–1872 (2007).ADS 
    Article 

    Google Scholar 
    Carter, S. K. & Rudolf, V. H. W. Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology 100, e02826 (2019).PubMed 
    Article 

    Google Scholar 
    Rudolf, V. H. W. Nonlinear effects of phenological shifts link interannual variation to species interactions. J. Anim. Ecol. 87, 1395–1406 (2018).PubMed 
    Article 

    Google Scholar 
    Rasmussen, N. L., Allen, B. G. V. & Rudolf, V. H. W. Linking phenological shifts to species interactions through size-mediated priority effects. J. Anim. Ecol. 83, 1206–1215 (2014).PubMed 
    Article 

    Google Scholar 
    Bailey, L. D. & Pol, M. van de. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96 (2016).Walker, R., Wilder, S. M. & González, A. L. Temperature dependency of predation: increased killing rates and prey mass consumption by predators with warming. Ecol. Evol. 10, 9696–9706 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 
    Article 

    Google Scholar 
    Anholt, B. R. Cannibalism and early instar survival in a larval damselfly. Oecologia 99, 60–65 (1994).ADS 
    PubMed 
    Article 

    Google Scholar 
    Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. in Aquatic insects: challenges to populations (eds. Lancaster, J. & Briers, R. A.) 36–54 (CABI, 2008). doi:https://doi.org/10.1079/9781845933968.0036.Takashina, N. & Fiksen, Ø. Optimal reproductive phenology under size-dependent cannibalism. Ecol. Evol. 10, 4241–4250 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).Article 

    Google Scholar 
    Op de Beeck, L., Verheyen, J. & Stoks, R. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy. Environ. Pollut. 233, 226–234 (2018).Enriquez-Urzelai, U., Nicieza, A. G., Montori, A., Llorente, G. A. & Urrutia, M. B. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. Oikos 2022, e08566 (2022).Article 

    Google Scholar 
    Knight, C. M., Parris, M. J. & Gutzke, W. H. N. Influence of priority effects and pond location on invaded larval amphibian communities. Biol. Invasions 11, 1033–1044 (2009).Article 

    Google Scholar 
    Raczyński, M., Stoks, R., Johansson, F., Bartoń, K. & Sniegula, S. Phenological shifts in a warming world affect physiology and life history in a damselfly. Insects 13, 622 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murillo-Rincón, A. P., Kolter, N. A., Laurila, A. & Orizaola, G. Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian. J. Anim. Ecol. 86, 128–135 (2017).PubMed 
    Article 

    Google Scholar 
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar 
    Jermacz, Ł. et al. Continuity of chronic predation risk determines changes in prey physiology. Sci. Rep. 10, 6972 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raczyński, M., Stoks, R., Johansson, F. & Sniegula, S. Size-mediated priority effects are trait-dependent and consistent across latitudes in a damselfly. Oikos 130, 1535–1547 (2021).Article 

    Google Scholar 
    Peacor, S. D. & Werner, E. E. Predator effects on an assemblage of consumers through induced changes in consumer foraging behavior. Ecology 81, 1998–2010 (2000).Article 

    Google Scholar 
    Stoks, R., Block, M. D., Meutter, F. V. D. & Johansson, F. Predation cost of rapid growth: behavioural coupling and physiological decoupling. J. Anim. Ecol. 74, 708–715 (2005).Article 

    Google Scholar 
    Hermann, S. L. & Landis, D. A. Scaling up our understanding of non-consumptive effects in insect systems. Curr. Opin. Insect. Sci. 20, 54–60 (2017).PubMed 
    Article 

    Google Scholar 
    Sniegula, S., Nsanzimana, J. d’Amour & Johansson, F. Predation risk affects egg mortality and carry over effects in the larval stages in damselflies. Freshw. Biol. 64, 778–786 (2019).Preisser, E. L. & Orrock, J. L. The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3, art77 (2012).Gehr, B. et al. Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behav. Ecol. 29, 724–735 (2018).Article 

    Google Scholar 
    Jiménez-Cortés, J. G., Serrano-Meneses, M. A. & Córdoba-Aguilar, A. The effects of food shortage during larval development on adult body size, body mass, physiology and developmental time in a tropical damselfly. J. Insect Physiol. 58, 318–326 (2012).PubMed 
    Article 

    Google Scholar 
    Weissburg, M., Smee, D. L., Ferner, M. C., Schmitz, A. E. O. J. & Bronstein, E. J. L. The sensory ecology of nonconsumptive predator effects. Am. Nat. 184, 141–157 (2014).PubMed 
    Article 

    Google Scholar 
    Zhang, D.-W., Xiao, Z.-J., Zeng, B.-P., Li, K. & Tang, Y.-L. Insect behavior and physiological adaptation mechanisms under starvation stress. Front. Physiol. 10, 163 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arnett, H. A. & Kinnison, M. T. Predator-induced phenotypic plasticity of shape and behavior: parallel and unique patterns across sexes and species. Curr. Zool. 63, 369–378 (2017).PubMed 

    Google Scholar 
    Bell, A. M., Dingemanse, N. J., Hankison, S. J., Langenhof, M. B. W. & Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks. J. Evol. Biol. 24, 943–953 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Block, M. & Stoks, R. Compensatory growth and oxidative stress in a damselfly. Proc. Royal Soc. B 275, 781–785 (2008).Article 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. The trade-off between growth rate and locomotor performance varies with perceived time until breeding. J. Exp. Biol. 213, 3289–3298 (2010).PubMed 
    Article 

    Google Scholar 
    Catalán, A. M. et al. Community-wide consequences of nonconsumptive predator effects on a foundation species. J. Anim. Ecol. 90, 1307–1316 (2021).PubMed 
    Article 

    Google Scholar 
    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).Article 

    Google Scholar 
    Gjoni, V., Basset, A. & Glazier, D. S. Temperature and predator cues interactively affect ontogenetic metabolic scaling of aquatic amphipods. Biol. Lett. 16, 20200267 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, L. P., Matassa, C. M. & Trussell, G. C. Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob. Chang. Biol. 20, 3834–3844 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).PubMed 
    Article 

    Google Scholar 
    Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372, 20160046 (2017).Sniegula, S., Janssens, L. & Stoks, R. Integrating multiple stressors across life stages and latitudes: combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly. Aquat. Toxicol. 186, 113–122 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoks, R., Block, M. D., Slos, S., Doorslaer, W. V. & Rolff, J. Time constraints mediate predator-induced plasticity in immune function, condition, and life history. Ecology 87, 809–815 (2006).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Pintanel, P., Tejedo, M., Salinas-Ivanenko, S., Jervis, P. & Merino-Viteri, A. Predators like it hot: thermal mismatch in a predator-prey system across an elevational tropical gradient. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13516 (2021).Article 
    PubMed 

    Google Scholar 
    Stoks, R., Swillen, I. & Block, M. D. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. J. Anim. Ecol. 81, 1034–1040 (2012).PubMed 
    Article 

    Google Scholar 
    Wang, Y.-J., Sentis, A., Tüzün, N. & Stoks, R. Thermal evolution ameliorates the long-term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct. Ecol. 35, 1538–1549 (2021).Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Cannibalism and activity rate in larval damselflies increase along a latitudinal gradient as a consequence of time constraints. BMC Evol. Biol. 17, 167 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gyssels, F. & Stoks, R. Behavioral responses to fish kairomones and autotomy in a damselfly. J. Ethol. 24, 79–83 (2006).Article 

    Google Scholar 
    McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).Article 

    Google Scholar 
    Beermann, J., Boos, K., Gutow, L., Boersma, M. & Peralta, A. C. Combined effects of predator cues and competition define habitat choice and food consumption of amphipod mesograzers. Oecologia 186, 645–654 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    Dijkstra, K., Schröter, A. & Lewington, R. Field Guide to the Dragonflies of Britain and Europe. Second edition. (Bloomsbury Publishing, 2020).Corbet, P. S., Suhling, F. & Soendgerath, D. Voltinism of Odonata: a review. Int. J. Odonatol. 9, 1–44 (2006).Article 

    Google Scholar 
    Zwick, P. & Corbet, P. S. Dragonflies: behaviour and ecology of Odonata. (Comstock Publishing Associates, 1999).Fontana-Bria, L., Selfa, J., Tur, C. & Frago, E. Early exposure to predation risk carries over metamorphosis in two distantly related freshwater insects. Ecol. Entomol. 42, 255–262 (2017).Article 

    Google Scholar 
    Sniegula, S., Raczyński, M., Golab, M. J. & Johansson, F. Effects of predator cues carry over from egg and larval stage to adult life-history traits in a damselfly. Freshw. Sci. 39, 804–811 (2020).Article 

    Google Scholar 
    Chivers, D. P., Wisenden, B. D. & Smith, R. J. F. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Anim. Behav. 52, 315–320 (1996).Article 

    Google Scholar 
    Mikolajczuk, P. Stwierdzenie wylotu drugiej generacji tężnicy małej Ischnura pumilio (Charpentier, 1825) i tężnicy wytwornej Ischnura elegans (Vander Linden, 1820) (Odonata: Coenagrionidae) w Polsce środkowo-wschodniej. Odonatrix 1, (2014).De Block, M., Pauwels, K., Van Den Broeck, M., De Meester, L. & Stoks, R. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions. Glob. Chang. Biol. 19, 689–696 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).Buskirk, J. V., Krügel, A., Kunz, J., Miss, F. & Stamm, A. The rate of degradation of chemical cues indicating predation risk: an experiment and review. Ethology 120, 942–949 (2014).Article 

    Google Scholar 
    Hagler, J. R. & Jackson, C. G. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46, 511–543 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crumrine, P. W. Size structure and substitutability in an odonate intraguild predation system. Oecologia 145, 132–139 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Strobbe, F. & Stoks, R. Life history reaction norms to time constraints in a damselfly: differential effects on size and mass. Biol. J. Linn. Soc. 83, 187–196 (2004).Article 

    Google Scholar 
    De Block, M., McPeek, M. A. & Stoks, R. Stronger compensatory growth in a permanent-pond Lestes damselfly relative to temporary-pond Lestes. Oikos 117, 245–254 (2008).Article 

    Google Scholar 
    Marsh, J. B. & Weinstein, D. B. Simple charring method for determination of lipids. J. Lipid Res. 7, 574–576 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoks, R., Block, M. D. & McPeek, M. A. Physiological costs of compensatory growth in a damselfly. Ecology 87, 1566–1574 (2006).PubMed 
    Article 

    Google Scholar 
    R Development Core Team. R: The R Project for Statistical Computing. Vienna, Austria https://www.r-project.org/ (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Cyrus, A. Z., Swiggs, J., Santidrian Tomillo, P., Paladino, F. V. & Peters, W. S. Cannibalism causes size-dependent intraspecific predation pressure but does not trigger autotomy in the intertidal gastropod Agaronia propatula. J. Molluscan Stud. 81, 388–396 (2015).Jara, F. G. Trophic ontogenetic shifts of the dragonfly Rhionaeschna variegata: the role of larvae as predators and prey in Andean wetland communities. Ann. Limnol. 50, 173–184 (2014).Article 

    Google Scholar 
    Fréchette, M. & Lefaivre, D. On self-thinning in animals. Oikos 73, 425–428 (1995).Article 

    Google Scholar 
    Johansson, F., Stoks, R., Rowe, L. & De Block, M. Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology 82, 1857–1869 (2001).Article 

    Google Scholar 
    Mikolajewski, D. J., Conrad, A. & Joop, G. Behaviour and body size: plasticity and genotypic diversity in larval Ischnura elegans as a response to predators (Odonata: Coenagrionidae). Int. J. Odonatol. 18, 31–44 (2015).Article 

    Google Scholar 
    Antoł, A. & Sniegula, S. Damselfly eggs alter their development rate in the presence of an invasive alien cue but not a native predator cue. Ecol. Evol. 11, 9361–9369 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Debecker, S. & Stoks, R. Pace of life syndrome under warming and pollution: integrating life history, behavior, and physiology across latitudes. Ecol. Monogr. 89, e01332 (2019).Article 

    Google Scholar 
    Anderson, T. L. & Semlitsch, R. D. Top predators and habitat complexity alter an intraguild predation module in pond communities. J. Anim. Ecol. 85, 548–558 (2016).PubMed 
    Article 

    Google Scholar 
    Norling, U. Growth, winter preparations and timing of emergence in temperate zone odonata: control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).Article 

    Google Scholar 
    Abrams, P. A., Leimar, O., Nylin, S. & Wiklund, C. The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147, 381–395 (1996).Article 

    Google Scholar 
    Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article 

    Google Scholar 
    Bobrek, R. Odonate phenology recorded in a Central European location in an extremely warm season. Biologia 76, 2957–2964 (2021).Article 

    Google Scholar 
    Dmitriew, C. M. The evolution of growth trajectories: what limits growth rate?. Biol. Rev. 86, 97–116 (2011).PubMed 
    Article 

    Google Scholar 
    Śniegula, S., Johansson, F. & Nilsson-Örtman, V. Differentiation in developmental rate across geographic regions: a photoperiod driven latitude compensating mechanism?. Oikos 121, 1073–1082 (2012).Article 

    Google Scholar 
    Angell, C. S. et al. Development time mediates the effect of larval diet on ageing and mating success of male antler flies in the wild. Proc. R. Soc. B 287, 20201876 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johansson, F., Watts, P. C., Sniegula, S. & Berger, D. Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity. Evolution 75, 464–475 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nilsson-Örtman, V. & Rowe, L. The evolution of developmental thresholds and reaction norms for age and size at maturity. PNAS 118, (2021).Rohner, P. T. & Moczek, A. P. Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles. Ecol. Evol. 11, 15098–15110 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rolff, J., Fellowes, M & Holloway, G. Insect Evolutionary Ecology: Proceedings of the Royal Entomological Society’s 22nd Symposium. (CABI Oxford University Press, 2006).Beukeboom, L. W. Size matters in insects: an introduction. Entomol. Exp. Appl. 166, 2–3 (2018).Article 

    Google Scholar 
    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).Article 

    Google Scholar 
    Lee, W.-S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate–lifespan trade-off. Proc. R. Soc. B 280, 20122370 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burraco, P., Díaz-Paniagua, C. & Gomez-Mestre, I. Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Sci. Rep. 7, 7494 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dańko, M. J., Dańko, A., Golab, M. J., Stoks, R. & Sniegula, S. Latitudinal and age-specific patterns of larval mortality in the damselfly Lestes sponsa: Senescence before maturity?. Exp. Gerontol. 95, 107–115 (2017).PubMed 
    Article 

    Google Scholar 
    Kong, J. D., Hoffmann, A. A. & Kearney, M. R. Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180547 (2019).Śniegula, S., Gołąb, M. J. & Johansson, F. Time constraint effects on phenology and life history synchrony in a damselfly along a latitudinal gradient. Oikos 125, 414–423 (2016).Article 

    Google Scholar 
    Popova, O. N. & Haritonov, AYu. Disclosure of biotopical groups in the population of the dragonfly Coenagrion armatum (Charpentier, 1840). Contemp. Probl. Ecol. 7, 175–181 (2014).Article 

    Google Scholar 
    Mikolajewski, D. J., De Block, M. & Stoks, R. The interplay of adult and larval time constraints shapes species differences in larval life history. Ecology 96, 1128–1138 (2015).PubMed 
    Article 

    Google Scholar 
    Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 1107–1115 (2009).Zehnder, C. B., Parris, M. A. & Hunter, M. D. Effects of maternal age and environment on offspring vital rates in the Oleander Aphid (Hemiptera: Aphididae). Environ. Entomol. 36, 910–917 (2007).PubMed 
    Article 

    Google Scholar 
    Hernández, C. M., van Daalen, S. F., Caswell, H., Neubert, M. G. & Gribble, K. E. A demographic and evolutionary analysis of maternal effect senescence. PNAS 117, 16431–16437 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shama, L. N. S., Campero-Paz, M., Wegner, K. M., De Block, M. & Stoks, R. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol. Ecol. 20, 2929–2941 (2011).PubMed 
    Article 

    Google Scholar 
    Sniegula, S., Golab, M. J., Drobniak, S. M. & Johansson, F. Seasonal time constraints reduce genetic variation in life-history traits along a latitudinal gradient. J. Anim. Ecol. 85, 187–198 (2016).PubMed 
    Article 

    Google Scholar 
    De Block, M. & Stoks, R. Adaptive sex-specific life history plasticity to temperature and photoperiod in a damselfly. J. Evol. Biol. 16, 986–995 (2003).PubMed 
    Article 

    Google Scholar 
    Verberk, W. C. E. P. et al. Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 96, 247–268 (2021).PubMed 
    Article 

    Google Scholar 
    Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: a dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).PubMed 
    Article 

    Google Scholar 
    Wirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P. & Schmitz, O. J. The context dependence of non-consumptive predator effects. Ecol. Lett 24, 113–129 (2021).PubMed 
    Article 

    Google Scholar 
    McCauley, S. J., Rowe, L. & Fortin, M.-J. The deadly effects of ‘nonlethal’ predators. Ecology 92, 2043–2048 (2011).PubMed 
    Article 

    Google Scholar 
    Palacios, M. del M. & McCormick, M. I. Positive indirect effects of top-predators on the behaviour and survival of juvenile fishes. Oikos 130, 219–230 (2021).Thaler, J. S., McArt, S. H. & Kaplan, I. Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. PNAS 109, 12075–12080 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Janssens, L., Van Dievel, M. & Stoks, R. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry. Ecology 96, 3270–3280 (2015).PubMed 
    Article 

    Google Scholar 
    Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).PubMed 
    Article 

    Google Scholar 
    Nation, J. L. Insect Physiology and Biochemistry. (CRC Press, 2011). doi:https://doi.org/10.1201/9781420061789.Rudolf, V. H. W. & Singh, M. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size. Oecologia 173, 1043–1052 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: a trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).PubMed 
    Article 

    Google Scholar 
    Lee, K. P., Simpson, S. J. & Wilson, K. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 22, 1052–1061 (2008).Article 

    Google Scholar 
    Wu, Q., Patočka, J. & Kuča, K. Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel) 10, 461 (2018).Bullard, B. et al. The molecular elasticity of the insect flight muscle proteins projectin and kettin. PNAS 103, 4451–4456 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mamat-Noorhidayah, Yazawa, K., Numata, K. & Norma-Rashid, Y. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS One 13, e0193147 (2018).Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K. J. 7 – Chitin Metabolism in Insects. in Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 193–235 (Academic Press, 2012). doi:https://doi.org/10.1016/B978-0-12-384747-8.10007-8.Van Dievel, M., Stoks, R. & Janssens, L. Beneficial effects of a heat wave: higher growth and immune components driven by a higher food intake. J. Exp. Biol. 220, 3908–3915 (2017).PubMed 

    Google Scholar  More

  • in

    GABB: A global dataset of alpine breeding birds and their ecological traits

    Defining alpine habitat and mountain regionsWe defined alpine habitat as the area above climatic treeline, including the nival belt, where temperature, wind, drought, snow, or nightly frost limit vegetation growth to shrubs, krummholz, or fragmented tree patches less than 3 m in height3,23,24. Realized treeline can be markedly lower than the climatic treeline due to the absence of continuous forest at lower elevations, or human activities such as logging, burning, and livestock grazing25. While anthropogenically influenced treeline produces habitat reminiscent of alpine meadows, these habitats are not climatically representative of alpine ecosystems and thus they were not included when assembling this dataset. Climatic treeline elevation varies globally based on latitude, topography, aspect, and proximity to the coast (i.e., oceanic influence)11. Therefore, we defined alpine habitat separately for each mountain region based on local climate and published accounts of alpine vegetation. While alpine habitats usually occur above at least 1,500 m elevation globally, at high latitudes ( >55°N or 41°S) this elevation can be as low as ~400 m26 (Fig. 2).Fig. 2The median (triangular points) and range (error bars) of treeline elevation for each of the main mountain regions covered in the dataset (Fig. 1). The mountain regions are arranged from north to south (left to right) and the grey dashed line represents the relative position of the equator. Treeline elevation was derived from different sources depending on the region (see ‘Data sources’ in the dataset). The abbreviation ‘NA’, such as in ‘Northwestern NA’, refers to North America.Full size imageThe alpine habitats we identified broadly align with the ‘lower alpine’, ‘upper alpine’, and ‘nival’ belts mapped by Korner et al.9 and made available by the Global Mountain Biodiversity Assessment project (http://www.mountainbiodiversity.org/explore)27,28. However, certain areas, such as the Sierras de Córdoba, Argentina or the Isthmian Páramo on volcanoes in Central America were classified as ‘upper montane’ by Korner et al.9 based on thermal belts alone. For the purposes of this dataset, we considered these regions alpine habitat based on published measurements of treeline and distinct alpine plant communities facilitated by a mixture of temperature, precipitation, nightly frost, and wind constraints. For example, the Drakensberg range in South Africa was identified as ‘upper montane’ only, but botanical studies have characterized the region as Themeda-Festuca grassland from 1,900–2,800 m and alpine heathlands above 2,800 m13, representing extensive habitat above treeline. As a result, our definition of alpine habitat expands on the thermal belts mapped by Korner et al.9. In this way, the avian communities we identified retain species lineages that are confined to cooler high elevation habitats, representing remnants of more extensive alpine ecosystems from the last glaciation event.We grouped mountain ranges into 12 global regions and 38 subregions based on similar climates and alpine vegetation stemming from shared geographic position (Tables 2, 3; Fig. 1). The ‘Islands’ category represents very limited alpine habitat on four disparate islands that do not easily fit within any other major region, but nevertheless occur in subtropical or tropical realms: Hawaii, Sumatra, Borneo, and the Canary Islands. Alpine breeding birds and life-history traits were identified for each individual region so that future analyses can either include or remove mountain ranges depending on their definition of alpine habitat. This approach also promotes comparisons of avian communities at a finer scale across the full diversity of alpine habitats.Table 2 Description of the major regions and specific mountain ranges in the Americas that are included in the dataset.Full size tableTable 3 Description of the major regions and specific mountain ranges from Eurasia, Africa, and Oceania, plus the miscellaneous mountain ‘Islands’ region.Full size tableAlpine breeding bird speciesFor each region described in Tables 2 and 3, we assembled a list of alpine breeding species from published literature, environmental assessment reports, regional monitoring schemes, bird atlases, and expert knowledge following the most recent International Ornithology Committee taxonomy, version 12.129. An alpine breeding bird is any species that nests above treeline, regardless of how frequently, such that all or a certain proportion of a species is dependent on alpine habitat during the breeding season. Due to certain data-deficiencies underlying existing species range estimates above treeline, using knowledge from regional experts was the most accurate method to assemble a global list of alpine breeding birds for most mountain regions. See the Technical Validation section for specifics on how we validated the use of expert knowledge when assembling species and their traits for the Global Alpine Breeding Bird list.Species traitsWe included species traits that fall under three general topics: 1) alpine breeding propensity, 2) ecological traits, and 3) conservation value. Alpine breeding propensity includes breeding habitat specialization and alpine breeding status, ecological traits include migration behaviour and nest traits, while conservation value encompasses mountain endemism and conservation status. Together, these variables broadly reflect alpine habitat use during the breeding season globally, as well as provide the basis for evaluating the conservation potential and risks for alpine bird communities. We recorded general trait specifications for each species using available resources such as Birds of the World30, the IUCN Red List31, and AVONET21. We then solicited region-specific traits from regional experts and the same review process was conducted for these traits as for alpine breeding evidence (see Technical Validation). All traits were specific to alpine breeding birds whenever possible. The global distribution of each species trait can be visualized in Fig. 3.Fig. 3The global distribution for each trait included in the dataset, including (a–c) alpine breeding propensity, (d–f) ecological traits, and (g–i) traits relevant to conservation status and data uncertainty. In all cases except panel c the y-axis is the proportion of all 1,310 alpine breeding species identified in the dataset. Panel c depicts the elevational breeding distribution expected from the different combinations of breeding specialization and alpine breeding status to visualize the probability of breeding above treeline. In Panel e, ‘BP’ refers to brood parasite. See Table 4 or the metadata for full descriptions of each trait.Full size imageSpecialization for breeding in alpine habitats (hereafter ‘breeding specialization’) and the propensity to breed in alpine habitats (hereafter ‘breeding status’) form a tiered estimate of alpine breeding behaviour. First, we classified each species into one of three breeding specialization categories to differentiate among species that predominantly breed above treeline (alpine specialists), breed both above and below treeline (elevational generalists) or are limited to high latitude tundra habitats (tundra specialists). The latter includes alpine-Arctic or alpine-Antarctic transition zones, where species nest in higher, drier tundra (approximately >400 m elevation) but may also breed in wet tundra at lower or coastal elevations. In this way, we clearly identified species that breed in alpine tundra habitat, but where tundra is the primary driver of breeding presence, not necessarily selection for high elevation. Under breeding status, we quantified the likelihood of breeding above treeline relative to below treeline as common, uncommon, or rare. Alpine specialists are always common alpine breeders (regardless of their density and distribution), but generalists or tundra specialists can be common, uncommon, or rare breeders in alpine habitats depending on whether they are found breeding consistently above treeline, more often breeding below treeline, or only incidentally breeding in the alpine, respectively. Together, these variables identify a species’ relative probability of breeding along the elevational gradient and with respect to the treeline (Fig. 3).We used two nest traits to identify the general breeding niche of each species: nest type and nest site. Nest type included three primary category levels (open cup, cavity, domed nest), while nest site was subdivided into seven levels (ground, bank, shrub, tree, rock, cliff, and glacier). Brood parasite species, which will use a range of nest types and sites depending on the host species, were placed in an additional ‘brood parasite’ category for each nest trait. A species with an open cup or domed nest is limited to placing the nest on the ground, in vegetation (e.g., a shrub or stunted tree), or on a cliff, while cavity nesters may be in a bank (i.e., burrow/tunnel), in a rock (e.g., crevice), or in a tree (e.g., natural or excavated cavity). If nest traits were undescribed for a certain species, we inferred nest traits from the most closely related species in similar high elevation habitats (see Data uncertainty).Species were assigned to three migration categories based on their predominant behaviour: resident, short-distance, and long-distance migrants. Resident species remain near their breeding habitat year-round, allowing for occasional, short-term movements in response to extreme weather events. Short-distance migrants conduct seasonal altitudinal migrations, short latitudinal migrations, or nomadic movements where the species remains within the general breeding region (e.g., within the temperate zone). Long-distance migrants travel extensive distances to winter in an entirely different region than their breeding habitat (e.g., temperate breeders to tropical habitats). A general threshold of 3,000 km was used to distinguish between short- and long-distance migrants because it approximates the distance traveled from the Himalayas to the southern coast of India, Northern Europe to the Mediterranean coast, or Alaska to California. In other words, this distance represents a relatively consistent reference across global regions. While there are finer-scale migration designations that could be made, such as partial or altitudinal migration, we lack detailed movement data for most species and regions. Although a global list of potential altitudinal migrants exists that can be incorporated with this alpine breeding bird dataset if desired32, altitudinal migration often co-occurs with short-distance latitudinal movements and there are considerable differences in migration behaviour among subspecies, populations, and even individuals33. We therefore chose to use established migration categories that align with other global trait databases. In fact, our migration designations were largely congruent with those in AVONET21, with the primary difference being between resident and short-distance migrants. We identified ~200 short-distance migrants that were considered sedentary (resident) under the AVONET classification. This difference is to be expected given that we defined migration behaviour for alpine breeding populations compared to global trait values for all populations. For many species, alpine breeding birds will depart higher elevations during winter to avoid severe weather conditions, even though low elevation populations of the same species may be predominantly resident34. Therefore, the three broad categories chosen here are intended to balance available information with sufficient accuracy to provide data useful for large-scale life-history and biogeographic analyses of alpine breeding birds.Mountain endemism refers to a species whose breeding range is restricted by physical, environmental, or biological barriers to a general mountain region and the surrounding low elevation habitat. For example, a species breeding only on the Tibetan Plateau was classified as an endemic species, but a species that breeds across the Tibetan Plateau, the Himalayas, and the Altai Mountains was classified as non-endemic. When possible, we also classified endemism for defined subspecies. Species endemism is a more conservative metric, while subspecies endemism attempts to estimate additional cryptic endemism given that species differentiation is not well-defined for many high elevation birds. For example, the Caucasus Mountains support several distinct subspecies isolated from their primary distributions, including the Great rosefinch (Carpodacus rubicilla rubicilla), Dunnock (Prunella modularis obscura), and Güldenstädt’s redstart (Phoenicurus erythrogastrus erythrogastrus).Finally, conservation status refers to the IUCN Red List designations, version 2022-131. In addition to the traditional IUCN categories (e.g., Least Concern, Near Threatened, Vulnerable, etc.), we also included a Not Assessed (NA) category that generally occurred when a species was recently split. See Table 4 for complete definitions of all traits.Table 4 Definitions of species traits included in the Global Alpine Breeding Bird dataset.Full size tableData uncertaintyGlobally, there is significant variation in accessibility to alpine habitats and funding for alpine research. As a result, uncertainty in alpine breeding status may differ among regions and species. For example, in New Guinea, mist-net surveys and point counts across elevation have identified species that frequently use alpine habitat, but a dearth of breeding biology studies means that there are few nest records above treeline. It is thus necessary to codify this level of uncertainty for each species.To this effect, we included a variable termed ‘Data reliability’, which is a four-level categorical variable from 0 to 3 that is based on the number of reported nests that have been found and described for each species. We used the presence of nest descriptions to evaluate uncertainty because active nests are the must fundamental form of evidence for breeding above treeline, and therefore it is reasonable that a species with less existing knowledge about nest traits or nesting behaviours will have considerably more uncertainty around its designation as an alpine breeding species. For this variable, 0 indicates that nest traits are undescribed for a given species, 1 means less than five nests have been described, 2 indicates more than five nests have been described, but all from a single population, and therefore there is limited understanding of geographic variation, while 3 occurs when nests have been described from multiple populations or regions. If nest traits were undescribed for a species (data reliability = 0), then nest type and site were inferred from the most closely related species with available data, and whenever possible, a congener was selected that also breeds at high elevations or in alpine habitats. While the nest traits of most species have been sufficiently described, there is a significant proportion of alpine breeding birds with less available data (27.0%; Fig. 3i). The relative number of described nests was derived from Birds of the World30. We recognize that these data may not reflect true knowledge of nest traits given that not all species accounts have been recently updated. However, it does represent a consistent data source that allowed us to approximate data reliability sufficiently for our purposes.In combination, data reliability and alpine breeding status fully characterize alpine breeding uncertainty. For example, a species considered a rare alpine breeder with a data reliability of 3, means that there is strong evidence for breeding above treeline, but only incidentally under very specific circumstances. However, a rare alpine breeder with a data reliability of zero (i.e., nest undescribed), means that the likelihood of breeding above treeline may be probable based on behavioural observations, but further confirmation is required. When using this dataset for analyses, one must decide whether to use a conservative approach or consider all potential alpine breeding species with the appropriate caveats (see Usage Notes). More

  • in

    Ecological factors are likely drivers of eye shape and colour pattern variations across anthropoid primates

    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye. Nature 387(6635), 767–768 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40(5), 419–435 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015).PubMed 
    Article 

    Google Scholar 
    Perea-García, J. O. Quantifying ocular morphologies in extant primates for reliable interspecific comparisons. J. Lang. Evol. 1(2), 151–158 (2016).Article 

    Google Scholar 
    Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. 116(39), 19248–19250 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caspar, K., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021).Article 

    Google Scholar 
    Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos?. J. Hum. Evol. 157, 103043. https://doi.org/10.1016/J.JHEVOL.2021.103043 (2021).Article 
    PubMed 

    Google Scholar 
    Perea-García, J. O., Danel, D. P. & Monteiro, A. Diversity in primate external eye morphology: Previously undescribed traits and their potential adaptive value. Symmetry 13, 1270 (2021).ADS 
    Article 

    Google Scholar 
    Banks, M. S., Sprague, W. W., Schmoll, J., Parnell, J. A. & Love, G. D. Why do animal eyes have pupils of different shapes?. Sci. Adv. 1(7), e1500391 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corfield, J. R. et al. Anatomical specializations for nocturnality in a critically endangered parrot, the kakapo (Strigops habroptilus). PLoS ONE 6(8), e22945 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lisney, T. J. et al. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. J. Comp. Physiol. A. 199(5), 385–402 (2013).Article 

    Google Scholar 
    Lisney, T. J., Iwaniuk, A. N., Bandet, M. V. & Wylie, D. R. Eye shape and retinal topography in owls (Aves: Strigiformes). Brain Behav. Evol. 79(4), 218–236 (2012).PubMed 
    Article 

    Google Scholar 
    Duke-Elder, S. S. The eye in evolution. In System of Ophthalmology (ed. Duke-Elder, S. S.) 453 (Henry Kimpton, 1985).
    Google Scholar 
    -Miller, D., & Sanghvi, S. (1990). Contrast sensitivity and glare testing in corneal disease. In Glare and Contrast Sensitivity for Clinicians (pp. 45–52). Springer.De Broff, B. M. & Pahk, P. J. The ability of periorbitally applied antiglare products to improve contrast sensitivity in conditions of sunlight exposure. Arch. Ophthalmol. 121(7), 997–1001 (2003).Article 

    Google Scholar 
    Caspar, K. R., Mader, L., Pallasdies, F., Lindenmeier, M. & Begall, S. Captive gibbons (Hylobatidae) use different referential cues in an object-choice task: Insights into lesser ape cognition and manual laterality. PeerJ 6, e5348 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaplan, G. & Rogers, L. J. Patterns of gazing in orangutans (Pongo pygmaeus). Int. J. Primatol. 23(3), 501–526 (2002).Article 

    Google Scholar 
    Kamilar, J. M. & Bradley, B. J. Interspecific variation in primate coat colour supports Gloger’s rule. J. Biogeogr. 38(12), 2270–2277 (2011).Article 

    Google Scholar 
    Santana, S. E., Lynch Alfaro, J. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279(1736), 2204–2211 (2012).Article 

    Google Scholar 
    Santana, S. E., Alfaro, J. L., Noonan, A. & Alfaro, M. E. Adaptive response to sociality and ecology drives the diversification of facial colour patterns in catarrhines. Nat. Commun. 4(1), 1–7 (2013).Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94(4), 1294–1316 (2019).PubMed 

    Google Scholar 
    Zhang, P. & Watanabe, K. Preliminary study on eye colour in Japanese macaques (Macaca fuscata) in their natural habitat. Primates 48(2), 122–129 (2007).PubMed 
    Article 

    Google Scholar 
    Bradley, B. J., Pedersen, A. & Mundy, N. I. Brief communication: blue eyes in lemurs and humans: Same phenotype, different genetic mechanism. Am. J. Phys. Anthropol. 139(2), 269–273 (2009).PubMed 
    Article 

    Google Scholar 
    Meyer, W. K., Zhang, S., Hayakawa, S., Imai, H. & Przeworski, M. The convergent evolution of blue iris pigmentation in primates took distinct molecular paths. Am. J. Phys. Anthropol. 151(3), 398–407 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Negro, J. J., Blázquez, M. C. & Galván, I. Intraspecific eye color variability in birds and mammals: A recent evolutionary event exclusive to humans and domestic animals. Front. Zool. 14(1), 1–6 (2017).Article 

    Google Scholar 
    van den Berg, T. J. T. P., IJspeert, J. K. & De Waard, P. W. T. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vis. Res. 31(7–8), 1361–1367 (1991).PubMed 
    Article 

    Google Scholar 
    Mure, L. S. Intrinsically photosensitive retinal ganglion cells of the human retina. Front. Neurol. 12, 636330 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wald, L. (2018). Basics in solar radiation at earth surface. ffhal-01676634ff.Workman, L. Blue eyes keep away the winter blues: Is blue eye pigmentation an evolved feature to provide resilience to seasonal affective disorder. OA J. Behav. Sci. Psychol. 1(1), 180002 (2018).MathSciNet 

    Google Scholar 
    Smith, A. R. Color gamut transform pairs. ACM Siggraph Comput. Graph. 12(3), 12–19 (1978).CAS 
    Article 

    Google Scholar 
    Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B: Biol. Sci. 368(1618), 20120341 (2013).Article 

    Google Scholar 
    Leutenegger, W. & Kelly, J. T. Relationship of sexual dimorphism in canine size and body size to social, behavioral, and ecological correlates in anthropoid primates. Primates 18(1), 117–136. https://doi.org/10.1007/bf02382954 (1977).Article 

    Google Scholar 
    Gómez, J. C. (1996). Ostensive behavior in great apes: The role of eye contact. Reaching into thought: The minds of the great apes, 131–151.Dovidio, J. F., & Ellyson, S. L. (1985). Pattern of visual dominance behavior in humans. In Power, Dominance, and Nonverbal Behavior (pp. 129–149). Springer.Nakatsukasa, M. Locomotor differentiation and different skeletal morphologies in mangabeys (Lophocebus and Cercocebus). Folia Primatol. 66(1–4), 15–24 (1996).CAS 
    Article 

    Google Scholar 
    Smith, R. J. & Jungers, W. L. Body mass in comparative primatology. J. Hum. Evol. 32(6), 523–559 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fioletov, V., Kerr, J. B. & Fergusson, A. The UV index: Definition, distribution and factors affecting it. Can. J. Public Health 101(4), I5–I9 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107(Supplement 2), 8962–8968 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Do, M. T. H. & Yau, K. W. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. (2010).Pickard, G. E. & Sollars, P. J. Intrinsically photosensitive retinal ganglion cells. Rev. Physiol. Bioch. Pharmacol. 162, 59–90 (2012).Goel, N., Terman, M. & Terman, J. S. Depressive symptomatology differentiates subgroups of patients with seasonal affective disorder. Depress. Anxiety 15(1), 34–41 (2002).PubMed 
    Article 

    Google Scholar 
    Münch, M. et al. Blue-enriched morning light as a countermeasure to light at the wrong time: Effects on cognition, sleepiness, sleep, and circadian phase. Neuropsychobiology 74(4), 207–218 (2016).PubMed 
    Article 

    Google Scholar 
    Davidson, G. L., Thornton, A. & Clayton, N. S. Evolution of iris colour in relation to cavity nesting and parental care in passerine birds. Biol. Let. 13(1), 20160783 (2017).Article 

    Google Scholar 
    Volpato, G. L., Luchiari, A. C., Duarte, C. R. A., Barreto, R. E. & Ramanzini, G. C. Eye color as an indicator of social rank in the fish Nile tilapia. Braz. J. Med. Biol. Res. 36, 1659–1663 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fosbury, R. A. & Jeffery, G. Reindeer eyes seasonally adapt to ozone-blue Arctic twilight by tuning a photonic tapetum lucidum. Proc. R. Soc. B 289(1977), 20221002 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, W. L., Stevens, M. & Higham, J. P. Character displacement of Cercopithecini primate visual signals. Nat. Commun. 5(1), 1–10 (2014).Article 

    Google Scholar 
    Frost, P. European hair and eye color: A case of frequency-dependent sexual selection?. Evol. Hum. Behav. 27(2), 85–103 (2006).Article 

    Google Scholar 
    Hart, D. (2000). Primates as prey: Ecological, morphological and behavioral relationships between primate species and their predators.Liebal, K., Waller, B. M., Slocombe, K. E. & Burrows, A. M. Primate communication: a multimodal approach. (Cambridge University Press, 2014).
    Google Scholar 
    Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances. Sci. Rep. 12(1), 1–7 (2022).Article 

    Google Scholar 
    Kano, F., Kawaguchi, Y. & Hanling, Y. Experimental evidence that uniformly white sclera enhances the visibility of eye-gaze direction in humans and chimpanzees. Elife 11, e74086 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emery, N. J. The eyes have it: The neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581–604 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    -Bourjade, M. (2016). Social attention. Int. Encycl. Primatol. 1–2.Petersen, R. M., Dubuc, C. & Higham, J. P. Facial displays of dominance in non-human primates. In The facial displays of leaders (pp. 123–143) (Palgrave Macmillan, Cham, 2018).Laitly, A., Callaghan, C. T., Delhey, K. & Cornwell, W. K. Is color data from citizen science photographs reliable for biodiversity research?. Ecol. Evol. 11(9), 4071–4083 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chan, I. Z., Stevens, M. & Todd, P. A. PAT-GEOM: A software package for the analysis of animal patterns. Methods Ecol. Evol. 10(4), 591–600 (2019).Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125(1), 1–15 (1985).Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3(2), 217–223 (2012).Article 

    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Orme, D. et al. The caper package: Comparative analysis of phylogenetics and evolution in R. R Pack. Vers. 5(2), 1–36 (2013).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    -Williamson, E. A., Maisels, F. G., Groves, C. P., Fruth, B. I., Humle, T., & Morton, F. B. (2013). Handbook of the Mammals of the World Volume 3: Primates. More

  • in

    Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate

    Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 102, 8245–8250. https://doi.org/10.1073/pnas.0409902102 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagundez, J. Heathlands confronting global change: Drivers of biodiversity loss from past to future scenarios. Ann. Bot. 111, 151–172. https://doi.org/10.1093/aob/mcs257 (2013).Article 
    PubMed 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, 25. https://doi.org/10.7554/eLife.05255 (2015).Article 

    Google Scholar 
    Herrera, C. M., Medrano, M. & Bazaga, P. Comparative spatial genetics and epigenetics of plant populations: Heuristic value and a proof of concept. Mol. Ecol. 25, 1653–1664. https://doi.org/10.1111/mec.13576 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590. https://doi.org/10.1111/ele.12858 (2017).Article 
    PubMed 

    Google Scholar 
    Münzbergová, Z., Latzel, V., Šurinová, M. & Hadincová, V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128, 124–134. https://doi.org/10.1111/oik.05591 (2019).CAS 
    Article 

    Google Scholar 
    Thiebaut, F., Hemerly, A. S. & Ferreira, P. C. G. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front. Plant Sci. 10, 25. https://doi.org/10.3389/fpls.2019.00246 (2019).Article 

    Google Scholar 
    Verhoeven, K. J. F., Vonholdt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: What we know and what we need to know. Mol. Ecol. 25, 1631–1638. https://doi.org/10.1111/mec.13617 (2016).Article 
    PubMed 

    Google Scholar 
    Lisch, D. How important are transposons for plant evolution?. Nat. Rev. Genet. 14, 49–61. https://doi.org/10.1038/nrg3374 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paszkowski, J. Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 32, 200–206. https://doi.org/10.1016/j.copbio.2015.01.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245-U127. https://doi.org/10.1038/nature10555 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373. https://doi.org/10.1126/science.1212959 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x (2008).Article 
    PubMed 

    Google Scholar 
    Walsh, M. R. et al. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.2271 (2016).Article 

    Google Scholar 
    Foust, C. M. et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol. Ecol. 25, 1639–1652. https://doi.org/10.1111/mec.13522 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gugger, P. F., Fitz-Gibbon, S., Pellegrini, M. & Sork, V. L. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 25, 1665–1680. https://doi.org/10.1111/mec.13563 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol. Ecol. 20, 1675–1688. https://doi.org/10.1111/j.1365-294X.2011.05026.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Medrano, M., Herrera, C. M. & Bazaga, P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol. Ecol. 23, 4926–4938. https://doi.org/10.1111/mec.12911 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera, C. M., Medrano, M. & Bazaga, P. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence. Am. J. Bot. 104, 1195–1204. https://doi.org/10.3732/ajb.1700162 (2017).Article 
    PubMed 

    Google Scholar 
    Sheldon, E. L., Schrey, A., Andrew, S. C., Ragsdale, A. & Griffith, S. C. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia. R. Soc. Open Sci. https://doi.org/10.1098/rsos.172185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaspar, B., Bossdorf, O. & Durka, W. Structure, stability and ecological significance of natural epigenetic variation: A large-scale survey in Plantago lanceolata. New Phytol. 221, 1585–1596. https://doi.org/10.1111/nph.15487 (2019).Article 
    PubMed 

    Google Scholar 
    Medrano, M., Alonso, C., Bazaga, P., Lopez, E. & Herrera, C. M. Comparative genetic and epigenetic diversity in pairs of sympatric, closely related plants with contrasting distribution ranges in south-eastern Iberian mount. Aob Plants https://doi.org/10.1093/aobpla/plaa013 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. Z., Li, H. L., Li, J. M. & Yu, F. H. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity 124, 146–155. https://doi.org/10.1038/s41437-019-0261-8 (2020).Article 
    PubMed 

    Google Scholar 
    Miryeganeh, M. & Saze, H. Epigenetic inheritance and plant evolution. Popul. Ecol. 62, 17–27. https://doi.org/10.1002/1438-390x.12018 (2020).Article 

    Google Scholar 
    Becklin, K. M. et al. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 172, 635–649. https://doi.org/10.1104/pp.16.00793 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Szymanska, R., Slesak, I., Orzechowska, A. & Kruk, J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165–177. https://doi.org/10.1016/j.envexpbot.2017.05.002 (2017).CAS 
    Article 

    Google Scholar 
    Agrawal, A. A., Erwin, A. C. & Cook, S. C. Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (Asclepias incarnata). J. Ecol. 96, 536–542. https://doi.org/10.1111/j.1365-2745.2008.01365.x (2008).Article 

    Google Scholar 
    Azhar, A., Sathornkich, J., Rattanawong, R. & Kasemsap, P. Responses of chlorophyll fluorescence, stomatal conductance, and net photosynthesis rates of four rubber (Hevea brasiliensis) genotypes to drought. Adv. Rubber 844, 11–14. https://doi.org/10.4028/www.scientific.net/AMR.844.11 (2014).CAS 
    Article 

    Google Scholar 
    Bussotti, F., Pancrazi, M., Matteucci, G. & Gerosa, G. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: Results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol. 25, 211–219. https://doi.org/10.1093/treephys/25.2.211 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carlson, J. E., Adams, C. A. & Holsinger, K. E. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Ann. Bot. 117, 195–207. https://doi.org/10.1093/aob/mcv146 (2016).Article 
    PubMed 

    Google Scholar 
    De Frenne, P. et al. Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob. Change Biol. 17, 3240–3253. https://doi.org/10.1111/j.1365-2486.2011.02449.x (2011).ADS 
    Article 

    Google Scholar 
    Reinhardt, K., Castanha, C., Germino, M. J. & Kueppers, L. M. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol. 31, 615–625. https://doi.org/10.1093/treephys/tpr055 (2011).Article 
    PubMed 

    Google Scholar 
    Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C-3, C-4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117. https://doi.org/10.1007/s11120-013-9874-6 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stojanova, B. et al. Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS One https://doi.org/10.1371/journal.pone.0194670 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, S. K. & Wagner, D. Role of chromatin in water stress responses in plants. J. Exp. Bot. 65, 2785–2799. https://doi.org/10.1093/jxb/ert403 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, S. K. & Torii, K. U. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development 143, 1259–1270. https://doi.org/10.1242/dev.127712 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Torii, K. U. Stomatal differentiation: The beginning and the end. Curr. Opin. Plant Biol. 28, 16–22. https://doi.org/10.1016/j.pbi.2015.08.005 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tricker, P. J., Gibbings, J. G., Lopez, C. M. R., Hadley, P. & Wilkinson, M. J. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot. 63, 3799–3813. https://doi.org/10.1093/jxb/ers076 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vrablova, M., Hronkova, M., Vrabl, D., Kubasek, J. & Santrucek, J. Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environ. Exp. Bot. 156, 316–324. https://doi.org/10.1016/j.envexpbot.2018.09.012 (2018).CAS 
    Article 

    Google Scholar 
    Tricker, P. J., Lopez, C. M. R., Gibbings, G., Hadley, P. & Wilkinson, M. J. Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int. J. Mol. Sci. 14, 6674–6689. https://doi.org/10.3390/ijms14046674 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Puy, J. et al. Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application. Methods Ecol. Evol. 9, 744–753. https://doi.org/10.1111/2041-210x.12903 (2018).Article 

    Google Scholar 
    Kosová, V., Hájek, T., Hadincová, V. & Münzbergová, Z. The importance of ecophysiological traits in response of Festuca rubra to changing climate. Physiol. Plant. 174, e13608. https://doi.org/10.1111/ppl.13608 (2022).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maricle, B. R. & Adler, P. B. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ. Exp. Bot. 72, 223–231. https://doi.org/10.1016/j.envexpbot.2011.03.011 (2011).Article 

    Google Scholar 
    Münzbergová, Z. et al. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate. Front. Plant Sci. 11, 400. https://doi.org/10.3389/fpls.2020.00400 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beerling, D. J. & Chaloner, W. G. The impact of atmospheric CO2 and temperature change on stomatal density—observations from Quercus robur lammas leaves. Ann. Bot. 71, 231–235. https://doi.org/10.1006/anbo.1993.1029 (1993).CAS 
    Article 

    Google Scholar 
    Tang, Y. L. et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143, 629–638. https://doi.org/10.1104/pp.106.090712 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jahns, P. & Holzwarth, A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA-Bioenerget. 1817, 182–193. https://doi.org/10.1016/j.bbabio.2011.04.012 (2012).CAS 
    Article 

    Google Scholar 
    Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 55, 1607–1621. https://doi.org/10.1093/jxb/erh196 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Baker, H. G. In The Genetics of Colonizing Species (eds Baker, H. G. & Stebbins, G. L.) 147–168 (Academic Press, 1965).
    Google Scholar 
    Bartlett, M. K. et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590. https://doi.org/10.1111/ele.12374 (2014).Article 
    PubMed 

    Google Scholar 
    Raven, J. A. Selection pressures on stomatal evolution. New Phytol. 153, 371–386. https://doi.org/10.1046/j.0028-646X.2001.00334.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, F. F. et al. Effects of CO2 enrichment on growth and development of Impatiens hawkeri. Sci. World J. https://doi.org/10.1100/2012/601263 (2012).ADS 
    Article 

    Google Scholar 
    Gonzalez, A. P. R. et al. Stress-induced memory alters growth of clonal off spring of white clover (Trifolium repens). Am. J. Bot. 103, 1567–1574. https://doi.org/10.3732/ajb.1500526 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, P. A., Taylor, S. M. & Wilson, V. L. Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res. 84, 202–211 (1983).CAS 
    PubMed 

    Google Scholar 
    Meineri, E., Skarpaas, O., Spindelbock, J., Bargmann, T. & Vandvik, V. Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. J. Veg. Sci. 25, 275–286. https://doi.org/10.1111/jvs.12062 (2014).Article 

    Google Scholar 
    Šurinová, M., Hadincová, V., Vandvik, V. & Münzbergová, Z. Temperature and precipitation, but not geographic distance, explain genetic relatedness among populations in the perennial grass Festuca rubra. J. Plant Ecol. 12, 730–741. https://doi.org/10.1093/jpe/rtz010 (2019).Article 

    Google Scholar 
    Münzbergová, Z., Hadincová, V., Skálová, H. & Vandvik, V. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105, 1358–1373. https://doi.org/10.1111/1365-2745.12762 (2017).Article 

    Google Scholar 
    Klanderud, K., Vandvik, V. & Goldberg, D. The importance of biotic vs abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One 10, e0130205. https://doi.org/10.1371/journal.pone.0130205 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meineri, E., Skarpaas, O. & Vandvik, V. Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter?. Ecol. Model. 231, 1–10. https://doi.org/10.1016/j.ecolmodel.2012.01.021 (2012).Article 

    Google Scholar 
    Meineri, E., Spindelbock, J. & Vandvik, V. Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecol. 214, 607–619. https://doi.org/10.1007/s11258-013-0193-y (2013).Article 

    Google Scholar 
    Vandvik, V., Klanderud, K., Meineri, E., Maren, I. E. & Topper, J. Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground. Oikos 125, 218–228. https://doi.org/10.1111/oik.02022 (2016).Article 

    Google Scholar 
    Stojanova, B. et al. Evolutionary potential of a widespread clonal grass under changing climate. J. Evol. Biol. 32, 1057–1068. https://doi.org/10.1111/jeb.13507 (2019).Article 
    PubMed 

    Google Scholar 
    Osorio-Montalvo, P., Saenz-Carbonell, L. & De-la-Pena, C. 5-azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int. J. Mol. Sci. 19, 20. https://doi.org/10.3390/ijms19103182 (2018).CAS 
    Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).Article 

    Google Scholar 
    Münzbergová, Z. & Hadincová, V. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7, 5236–5247. https://doi.org/10.1002/ece3.3105 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, L. Logic of experiments in ecology: Is pseudoreplication a pseudoissue?. Oikos 94, 27–38. https://doi.org/10.1034/j.1600-0706.2001.11311.x (2001).Article 

    Google Scholar 
    Johnson, S. N., Gherlenda, A. N., Frew, A. & Ryalls, J. M. W. The importance of testing multiple environmental factors in legume-insect research: Replication, reviewers, and rebuttal. Front. Plant Sci. 7, 489. https://doi.org/10.3389/fpls.2016.00489 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurlbert, S. H. On misinterpretations of pseudoreplication and related matters: A reply to Oksanen. Oikos 104, 591–597. https://doi.org/10.1111/j.0030-1299.2004.12752.x (2004).Article 

    Google Scholar 
    Scheepens, J. F. & Stocklin, J. Flowering phenology and reproductive fitness along a mountain slope: Maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia 171, 679–691. https://doi.org/10.1007/s00442-012-2582-7 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gugger, S., Kesselring, H., Stoecklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Ann. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bezemer, T. M., Thompson, L. J. & Jones, T. H. Poa annua shows inter-generational differences in response to elevated CO2. Glob. Change Biol. 4, 687–691. https://doi.org/10.1046/j.1365-2486.1998.00184.x (1998).ADS 
    Article 

    Google Scholar 
    Cavieres, L. A. & Arroyo, M. T. K. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae)—altitudinal variation in the mediterranean Andes of central Chile. Plant Ecol. 149, 1–8. https://doi.org/10.1023/a:1009802806674 (2000).Article 

    Google Scholar 
    Souther, S., Lechowicz, M. J. & McGraw, J. B. Experimental test for adaptive differentiation of ginseng populations reveals complex response to temperature. Ann. Bot. 110, 829–837. https://doi.org/10.1093/aob/mcs155 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matias, L. & Jump, A. S. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 65, 299–310. https://doi.org/10.1093/jxb/ert376 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, H. X. et al. Germination shifts of C-3 and C-4 species under simulated global warming scenario. PLoS One 9, e105139. https://doi.org/10.1371/journal.pone.0105139 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190. https://doi.org/10.1007/s11099-013-0021-6 (2013).CAS 
    Article 

    Google Scholar 
    Majekova, M., Martinkova, J. & Hajek, T. Grassland plants show no relationship between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in soil moisture. Funct. Ecol. 33, 774–785. https://doi.org/10.1111/1365-2435.13312 (2019).Article 

    Google Scholar 
    Volis, S., Ormanbekova, D., Yermekbayev, K., Song, M. S. & Shulgina, I. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro—but not micro-geographical scale. PLoS One 10, 19. https://doi.org/10.1371/journal.pone.0121153 (2015).CAS 
    Article 

    Google Scholar 
    Younginger, B. S., Sirova, D., Cruzan, M. B. & Ballhorn, D. J. Is biomass a reliable estimate of plant fitness?. Appl. Plant Sci. https://doi.org/10.3732/apps.1600094 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Development Core Team. Version 4.0.3 A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).
    Google Scholar 
    Bossdorf, O., Arcuri, D., Richards, C. L. & Pigliucci, M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol. Ecol. 24, 541–553. https://doi.org/10.1007/s10682-010-9372-7 (2010).Article 

    Google Scholar 
    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226. https://doi.org/10.2307/2408842 (1983).Article 
    PubMed 

    Google Scholar 
    Rolhauser, A. G., Nordenstahl, M., Aguiar, M. R. & Pucheta, E. Community-level natural selection modes: A quadratic framework to link multiple functional traits with competitive ability. J. Ecol. 107, 1457–1468. https://doi.org/10.1111/1365-2745.13094 (2019).Article 

    Google Scholar 
    Yan, W. M., Zhong, Y. Q. W. & Shangguan, Z. P. Contrasting responses of leaf stomatal characteristics to climate change: A considerable challenge to predict carbon and water cycles. Glob. Change Biol. 23, 3781–3793. https://doi.org/10.1111/gcb.13654 (2017).ADS 
    Article 

    Google Scholar 
    González, A. P. R., Dumalasová, V., Rosenthal, J., Skuhrovec, J. & Latzel, V. The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol. Ecol. 31, 345–361. https://doi.org/10.1007/s10682-016-9844-5 (2017).Article 

    Google Scholar 
    Shi, W. et al. Transient stability of epigenetic population differentiation in a clonal invader. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01851 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quan, J., Münzbergová, Z. & Latzel, V. Time dynamics of stress legacy in clonal transgenerational effects: A case study on Trifolium repens. Ecol. Evol. https://doi.org/10.1002/ece3.8959 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harris, C. J. et al. A DNA methylation reader complex that enhances gene transcription. Science 362, 1182. https://doi.org/10.1126/science.aar7854 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, K. R., Cheng, X. L., Shu, X., Liu, Y. & Zhang, Q. F. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 431, 19–36. https://doi.org/10.1007/s11104-018-3743-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiao, X. L. et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 61, 110–119. https://doi.org/10.1111/jipb.12768 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gallego-Bartolome, J. DNA methylation in plants: Mechanisms and tools for targeted manipulation. New Phytol. 227, 38–44. https://doi.org/10.1111/nph.16529 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Z. W., Bossdorf, O., Prati, D., Fischer, M. & van Kleunen, M. Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia 180, 409–420. https://doi.org/10.1007/s00442-015-3480-6 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Muir, C. D., Pease, J. B. & Moyle, L. C. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae). Genetics 198, 1629. https://doi.org/10.1534/genetics.114.169276 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramirez-Valiente, J. A. et al. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Mol. Ecol. 27, 2176–2192. https://doi.org/10.1111/mec.14566 (2018).Article 
    PubMed 

    Google Scholar 
    Jueterbock, A. et al. The seagrass methylome is associated with variation in photosynthetic performance among clonal shoots. Front. Plant Sci. 11, 19. https://doi.org/10.3389/fpls.2020.571646 (2020).Article 

    Google Scholar 
    Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol. 175, 1893–1912. https://doi.org/10.1104/pp.17.00744 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ. 41, 1657–1672. https://doi.org/10.1111/pce.13324 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nixon, P. J., Michoux, F., Yu, J. F., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16. https://doi.org/10.1093/aob/mcq059 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perez, T. M. & Feeley, K. J. Photosynthetic heat tolerances and extreme leaf temperatures. Funct. Ecol. 34, 2236–2245. https://doi.org/10.1111/1365-2435.13658 (2020).Article 

    Google Scholar 
    Kitayama, K., Pattison, R., Cordell, S., Webb, D. & MuellerDombois, D. Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. Ann. Bot. 80, 491–497. https://doi.org/10.1006/anbo.1996.0473 (1997).Article 

    Google Scholar 
    Konopkova, A. et al. Nucleotide polymorphisms associated with climate and physiological traits in silver fir (Abies alba Mill.) provenances. Flora 250, 37–43. https://doi.org/10.1016/j.flora.2018.11.012 (2019).Article 

    Google Scholar 
    Baer, A., Wheeler, J. K. & Pittermann, J. Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Ann. Bot. 125, 691–700. https://doi.org/10.1093/aob/mcaa006 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hao, X. F., Jin, Z. P., Wang, Z. Q., Qin, W. S. & Pei, Y. X. Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italic L.. Plant Soil 453, 355–370. https://doi.org/10.1007/s11104-020-04590-5 (2020).CAS 
    Article 

    Google Scholar 
    Colaneri, A. C. & Jones, A. M. Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One 8, 10. https://doi.org/10.1371/journal.pone.0059878 (2013).CAS 
    Article 

    Google Scholar 
    Becker, C. & Weigel, D. Epigenetic variation: Origin and transgenerational inheritance. Curr. Opin. Plant Biol. 15, 562–567. https://doi.org/10.1016/j.pbi.2012.08.004 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Spens, A. E. & Douhovnikoff, V. Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets. Biol. Invas. 18, 2457–2462. https://doi.org/10.1007/s10530-016-1223-1 (2016).Article 

    Google Scholar 
    Herrera, C. M., Pozo, M. I. & Bazaga, P. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol. Ecol. 21, 2602–2616. https://doi.org/10.1111/j.1365-294X.2011.05402.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot. J. Linn. Soc. 171, 441–452. https://doi.org/10.1111/boj.12007 (2013).Article 

    Google Scholar 
    Keller, T. E., Lasky, J. R. & Yi, S. V. The multivariate association between genomewide DNA methylation and climate across the range of Arabidopsis thaliana. Mol. Ecol. 25, 1823–1837. https://doi.org/10.1111/mec.13573 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Madliger, C. L., Love, O. P., Hultine, K. R. & Cooke, S. J. The conservation physiology toolbox: Status and opportunities. Conserv. Physiol. 6, 16. https://doi.org/10.1093/conphys/coy029 (2018).CAS 
    Article 

    Google Scholar 
    Münzbergová, Z. & Haisel, D. Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth. Res. 140, 289–299. https://doi.org/10.1007/s11120-018-0604-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Balachandran, S. et al. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol. Plant. 100, 203–213. https://doi.org/10.1034/j.1399-3054.1997.1000201.x (1997).CAS 
    Article 

    Google Scholar 
    Pavlíková, Z., Holá, D., Vlasáková, B., Procházka, T. & Münzbergová, Z. Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS One https://doi.org/10.1371/journal.pone.0188795 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, B. B., Zhang, H., Jing, Q. & Wang, J. X. Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.). Ecol. Indic. 115, 9. https://doi.org/10.1016/j.ecolind.2020.106448 (2020).CAS 
    Article 

    Google Scholar 
    Cameron, D. D., Geniez, J. M., Seel, W. E. & Irving, L. J. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann. Bot. 101, 573–578. https://doi.org/10.1093/aob/mcm324 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molina-Montenegro, M. A., Salgado-Luarte, C., Oses, R. & Torres-Diaz, C. Is physiological performance a good predictor for fitness? Insights from an invasive plant species. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0076432 (2013).CAS 
    Article 

    Google Scholar 
    dos Santos, V. & Ferreira, M. J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 460, 9. https://doi.org/10.1016/j.foreco.2020.117900 (2020).Article 

    Google Scholar 
    Shi, Q. W. et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L.. Plant Soil 447, 99–116. https://doi.org/10.1007/s11104-019-04041-w (2020).CAS 
    Article 

    Google Scholar 
    Madriaza, K., Saldana, A., Salgado-Luarte, C., Escobedo, V. M. & Gianoli, E. Chlorophyll fluorescence may predict tolerance to herbivory. Int. J. Plant Sci. 180, 81–85. https://doi.org/10.1086/700583 (2019).Article 

    Google Scholar 
    Franks, P. J., Drake, P. L. & Beerling, D. J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 32, 1737–1748. https://doi.org/10.1111/j.1365-3040.2009.002031.x (2009).Article 
    PubMed 

    Google Scholar 
    Belluau, M. & Shipley, B. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS One 13, 25. https://doi.org/10.1371/journal.pone.0193130 (2018).CAS 
    Article 

    Google Scholar 
    Jerbi, A. et al. High biomass yield increases in a primary effluent wastewater phytofiltration are associated to altered leaf morphology and stomatal size in Salix miyabeana. Sci. Total Environ. 738, 12. https://doi.org/10.1016/j.scitotenv.2020.139728 (2020).CAS 
    Article 

    Google Scholar 
    Sakoda, K. et al. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Front. Plant Sci. 11, 11. https://doi.org/10.3389/fpls.2020.589603 (2020).Article 

    Google Scholar 
    Liu, J. Y. et al. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 40, 1178–1191. https://doi.org/10.1093/treephys/tpaa069 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Griffin, P. T., Niederhuth, C. E. & Schmitz, R. J. A comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 Genes Genomes Genet. 6, 2773–2780. https://doi.org/10.1534/g3.116.030262 (2016).CAS 
    Article 

    Google Scholar 
    Zhang, Y. X. et al. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. Plant Physiol. Biochem. 147, 91–100. https://doi.org/10.1016/j.plaphy.2019.12.010 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sammarco, I., Muenzbergova, Z. & Latzel, V. DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: Evidence from a European-scale reciprocal transplant experiment. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827166 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atighi, M. R., Verstraeten, B., De Meyer, T. & Kyndt, T. Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol. 227, 545–558. https://doi.org/10.1111/nph.16532 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowicka, A. et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 102, 68–84. https://doi.org/10.1111/tpj.14612 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Christman, J. K. 5-Azacytidine and 5-aza-2 ’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Issa, J. P. J. & Kantarjian, H. M. Targeting DNA methylation. Clin. Cancer Res. 15, 3938–3946. https://doi.org/10.1158/1078-0432.ccr-08-2783 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amoah, S. et al. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol. https://doi.org/10.1186/1471-2229-12-193 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGuigan, K., Hoffmann, A. A. & Sgro, C. M. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need?. Philos. Trans. R. Soc. B Biol. Sci. 376, 10. https://doi.org/10.1098/rstb.2020.0119 (2021).Article 

    Google Scholar 
    Sano, H., Kamada, I., Youssefian, S., Katsumi, M. & Wabiko, H. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol. Gen. Genet. 220, 441–447. https://doi.org/10.1007/bf00391751 (1990).CAS 
    Article 

    Google Scholar 
    Kondo, H., Ozaki, H., Itoh, K., Kato, A. & Takeno, K. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant. 127, 130–137. https://doi.org/10.1111/j.1399-3054.2005.00635.x (2006).CAS 
    Article 

    Google Scholar 
    Kumpatla, S. P. & Hall, T. C. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Biol. 38, 1113–1122. https://doi.org/10.1023/a:1006071018039 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One https://doi.org/10.1371/journal.pone.0010326 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raj, S. et al. Clone history shapes Populus drought responses. Proc. Natl. Acad. Sci. USA 108, 12521–12526. https://doi.org/10.1073/pnas.1103341108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).Article 
    PubMed 

    Google Scholar 
    Platt, A., Gugger, P. F., Pellegrini, M. & Sork, V. L. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol. Ecol. 24, 3823–3830. https://doi.org/10.1111/mec.13230 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pfeifer, G. P. Mutagenesis at methylated CpG sequences. DNA Methyl. Basic Mech. 301, 259–281 (2006).CAS 
    Article 

    Google Scholar 
    Walsh, C. P. & Xu, G. L. Cytosine methylation and DNA repair. DNA Methyl. Basic Mech. 301, 283–315 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade

    Angélil, O. et al. An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J. Clim. 30(1), 5–16 (2017).ADS 

    Google Scholar 
    Rosenzweig, C. et al. Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philos. Trans. R. Soc. A. 376, 20160455 (2018).ADS 

    Google Scholar 
    Mitchell, D. et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model Dev. 10, 571–583 (2017).ADS 
    CAS 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 

    Google Scholar 
    IPCC: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 4–6 (Cambridge University Press, 2013).Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. PNAS 114(19), 4881–4886 (2016).ADS 

    Google Scholar 
    Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).ADS 
    CAS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. PNAS 117(8), 4211–4217 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, W. H., Liu, Z., Liao, H., Tang, Q. H. & Li, X. E. New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Clim. Change 130(4), 505–518 (2015).ADS 

    Google Scholar 
    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).ADS 

    Google Scholar 
    Fischer, H., Amelung, D. & Said, N. The accuracy of German citizens’ confidence in their climate change knowledge. Nat. Clim. Change 9, 776–780 (2020).ADS 

    Google Scholar 
    Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).ADS 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    UNFCCC. The Paris Agreement. 2015, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.Roche, K. R., Müller-Itten, M., Dralle, D. N., Bolster, D. & Müller, M. F. Climate change and the opportunity cost of conflict. PNAS 117(4), 1935–1940 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 

    Google Scholar 
    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2017).
    Google Scholar 
    Lv, S. et al. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agric. For. Meteorol. 205, 1–10 (2015).ADS 

    Google Scholar 
    Chao, W., Kehui, C. & Shah, F. Heat stress decreases rice grain weight: Evidence and physiological mechanisms of heat effects prior to flowering. Int. J. Mol. Sci. 23(18), 10922 (2022).
    Google Scholar 
    Chao, W. et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: A 5-year case study. Sci. Rep. 11, 13604 (2021).ADS 

    Google Scholar 
    IPCC. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change 485–533 (Cambridge University Press, 2014).Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. PNAS 115(26), 6644–6649 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114, 9326–9331 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diffenbaugh, N. S., Hertel, T. W., Scherer, M. & Verma, M. Response of corn markets to climate volatility under alternative energy futures. Nat. Clim. Change 2, 514–518 (2012).ADS 

    Google Scholar 
    Jensen, H. G. & Anderson, K. Grain price spikes and beggar-thy-neighbor policy responses: A global economywide analysis. World Bank Econ. Rev. 31, 158–175 (2017).
    Google Scholar 
    Fraser, E. D. G., Simelton, E., Termansen, M., Gosling, S. N. & South, A. “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agric. For. Meteorol. 170, 195–205 (2013).ADS 

    Google Scholar 
    Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10, 024007 (2015).ADS 

    Google Scholar 
    Wheeler, T. & Braun, J. V. Climate change impacts on global food security. Science 341(6145), 508–513 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lunt, T., Jones, A. W., Mulhern, W. S., Lezaks, D. P. M. & Jahn, M. M. Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector. Clim. Risk Manag. 13, 1–9 (2016).
    Google Scholar 
    Jägermeyr, J. & Frieler, K. Spatial variations in crop growing seasons pivotal to reproduce global fluctuations in maize and wheat yields. Sci. Adv. 4(11), eaat4517 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elliott, J. et al. Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agric. Syst. 159, 275–281 (2017).
    Google Scholar 
    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. 112, 6931–6936 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tao, F., Zhang, Z., Liu, J. & Yokozawa, M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemblebased probabilistic projection. Agric. For. Meteorol. 149, 1266–1278 (2009).ADS 

    Google Scholar 
    Parent, B. et al. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. PNAS 115(42), 10642–10647 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, C. Y., Fraga, H., Ieperen, W. V. & Santos, J. A. Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agric. Water Manag. 184, 178–190 (2017).
    Google Scholar 
    Miller, S. A. & Moore, F. C. Climate and health damages from global concrete production. Nat. Clim. Change https://doi.org/10.1038/s41558-020-0733-0 (2020).Article 

    Google Scholar 
    Kassie, B. T. et al. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models. Clim. Change 129, 145–158 (2015).ADS 

    Google Scholar 
    Tao, F. & Zhang, Z. Climate change, high-temperature stress, rice productivity, and water use in Eastern China: A new superensemble-based probabilistic projection. J. Appl. Meteorol. Climatol. 52, 531–551 (2013).ADS 

    Google Scholar 
    Glotter, M. & Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 3, 16193 (2016).PubMed 

    Google Scholar 
    Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).ADS 

    Google Scholar 
    Cammarano, D. et al. Using historical climate observations to understand future climate change crop yield impacts in the Southeastern US. Clim. Change 134, 311–326 (2016).ADS 

    Google Scholar 
    Etten, J. V. et al. Crop variety management for climate adaptation supported by citizen science. PNAS 116(10), 4194–4199 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, D. W., Sheffield, J. & Lobell, D. B. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 045003 (2015).ADS 

    Google Scholar 
    IPCC. Summary for policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty 32 (World Meteorological Organization, 2018).Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agr. For. Meteorol. 200, 233–248 (2015).
    Google Scholar 
    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trendpreserving bias correction-the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).ADS 

    Google Scholar 
    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, 1022 (2008).ADS 

    Google Scholar 
    You, L.Z., et al. Spatial Production Allocation Model (SPAM) 2000 Version 3.2. http://mapspam.info (2015).Hoogenboom, G., et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (DSSAT Foundation, 2015). http://dssat.net (2015).Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
    Google Scholar 
    Batjes, H.N. A Homogenized Soil Data File for Global Environmental Research: A Subset of FAO. ISRIC and NRCS Profiles (Version 1.0). Working Paper and Preprint 95/10b (International Soil Reference and Information Centre, 1995).Xiong, W. et al. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China?. Agric. Ecosyst. Environ. 196, 125–136 (2014).
    Google Scholar 
    Hertel, T. W. Global Trade Analysis: Modeling and Applications 5–30 (Cambridge University Press, 1997).
    Google Scholar 
    Corong, E. L., Hertel, T. W., McDougall, R., Tsigas, M. E. & Mensbrugghe, D. V. The standard GTAP model, version 7. J. Glob. Econ. Anal. 2(1), 1–119 (2017).
    Google Scholar 
    Ciscar, J. C. et al. Physical and economic consequences of climate change in Europe. PNAS 108, 2678–2683 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356(6345), 1362–1369 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taheripour, F., Hertel, T. W. & Liu, J. The role of irrigation in determining the global land use impacts of biofuels. Energy Sustain. Soc. 3(1), 4 (2013).
    Google Scholar 
    Ali, T., Huang, J. K. & Yang, J. Impact assessment of global and national biofuels developments on agriculture in Pakistan. Appl. Energy 104, 466–474 (2013).
    Google Scholar 
    Yang, J., Huang, J. K., Qiu, H. G., Rozelle, S. & Sombilla, M. A. Biofuels and the greater Mekong Subregion: Assessing the impact on prices, production and trade. Appl. Energy 86, S37–S46 (2009).
    Google Scholar 
    Horridge, M. SplitCom, programs to disaggregate a GTAP sector (Centre of Policy Studies, Vitorial University). https://www.copsmodels.com/splitcom.htm (2005).Taylor, K. E., Stouffer, B. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 

    Google Scholar 
    Zhou, B. T., Wen, H. Q. Z., Xu, Y., Song, L. C. & Zhang, X. B. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Clim. 27, 6591–6611 (2014).ADS 

    Google Scholar 
    Knutti, R., Rogelj, J., Sedláček, J. & Ficher, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9(1), 1–6 (2015).
    Google Scholar 
    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat. Clim. Change 5(6), 519–527 (2015).ADS 

    Google Scholar 
    Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7(10), 709–715 (2014).ADS 
    CAS 

    Google Scholar 
    Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8(3), 1345–1346 (2013).
    Google Scholar 
    Liu, B. et al. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob. Change Biol. 22, 1890–1903 (2016).ADS 

    Google Scholar 
    Elad, Y. & Pertot, I. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28, 99–139 (2014).CAS 

    Google Scholar 
    Challinora, A. J. et al. Improving the use of crop models for risk assessment and climate change adaptation. Agric. Syst. 159, 296–306 (2018).
    Google Scholar 
    Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors?. Glob. Change Biol. 20, 2301–2320 (2014).ADS 

    Google Scholar 
    Wang, N. et al. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. Eur. J. Agron. 71, 19–33 (2015).
    Google Scholar 
    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the twenty-first century in a global gridded crop model intercomparison. PNAS 111, 3268–3273 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Genomic basis for early-life mortality in sharpsnout seabream

    Sale, P. F. & Steneck, R. S. Critical Science Gaps Impede Use of No-take Fishery Reserves (University of Maine/University of New Hampshire Sea Grant College Program, 2005).Book 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer, 2013).
    Google Scholar 
    Hamilton, S. L., Regetz, J. & Warner, R. R. Postsettlement survival linked to larval life in a marine fish. Proc. Natl. Acad. Sci. 105, 1561–1566 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).ADS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R., Stallings, C. D., Pusack, T. J. & Hixon, M. A. Using post-settlement demography to estimate larval survivorship: A coral reef fish example. Oecologia 179, 729–739 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Garrido, S. et al. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 17065 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shima, J. S. et al. Reproductive phenology across the lunar cycle: Parental decisions, offspring responses, and consequences for reef fish. Ecology 101, e03086 (2020).PubMed 
    Article 

    Google Scholar 
    Pini, J., Planes, S., Rochel, E., Lecchini, D. & Fauvelot, C. Genetic diversity loss associated to high mortality and environmental stress during the recruitment stage of a coral reef fish. Coral Reefs 30, 399–404 (2011).ADS 
    Article 

    Google Scholar 
    Bourret, V., Dionne, M. & Bernatchez, L. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: Polygenic multilocus analysis surpasses genome scan. Mol. Ecol. 23, 4444–4457 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planes, S. & Lenfant, P. Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol. Ecol. 11, 1515–1524 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planes, S. & Romans, P. Evidence of genetic selection for growth in new recruits of a marine fish. Mol. Ecol. 13, 2049–2060 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davidson, W. S. Adaptation genomics: Next generation sequencing reveals a shared haplotype for rapid early development in geographically and genetically distant populations of rainbow trout. Mol. Ecol. 21, 219–222 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carreras, C. et al. East is east and west is west: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).Article 

    Google Scholar 
    Carreras, C. et al. Population genomics of an endemic Mediterranean fish: Differentiation by fine scale dispersal and adaptation. Sci. Rep. 7, 43417 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Babbucci, M. et al. An integrated genomic approach for the study of mandibular prognathism in the European seabass (Dicentrarchus labrax). Sci. Rep. 6, 38673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbanti, A. et al. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol. Ecol. Resour. 20, 795–806 (2020).CAS 
    Article 

    Google Scholar 
    Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xuereb, A. et al. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol. Ecol. 27, 2347–2364 (2018).PubMed 
    Article 

    Google Scholar 
    Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, S., Meyer, E., McKay, J. K. & Matz, M. V. 2b-RAD: A simple and flexible method for genome-wide genotyping. Nat. Methods 9, 808–810 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).Article 

    Google Scholar 
    Torrado, H. et al. Impact of individual early life traits in larval dispersal: A multispecies approach using backtracking models. Prog. Oceanogr. 192, 102518 (2021).Article 

    Google Scholar 
    Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixon, M. A. & Carr, M. H. Synergistic predation, density dependence, and population regulation in marine fish. Science 277, 946–949 (1997).CAS 
    Article 

    Google Scholar 
    Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).ADS 
    Article 

    Google Scholar 
    Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    Eckert, G. J. Estimates of adult and juvenile mortality for labrid fishes at One Tree Reef, Great Barrier Reef. Mar. Biol. 95, 167–171 (1987).Article 

    Google Scholar 
    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schunter, C. et al. Matching genetics with oceanography: Directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciotti, B. J. & Planes, S. Within-generation consequences of postsettlement mortality for trait composition in wild populations: An experimental test. Ecol. Evol. 9, 2550–2561 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoklavich, M. M. & Bailey, K. M. Hatching period, growth and survival of young walleye pollock Theragra chalcogramma as determined from otolith analysis. Mar. Ecol. Prog. Ser. 64, 13–23 (1990).ADS 
    Article 

    Google Scholar 
    Cargnelli, L. M. & Gross, M. R. The temporal dimension in fish recruitment: Birth date, body size, and size-dependent survival in a sunfish (bluegill: Lepomis macrochirus). Can. J. Fish. Aquat. Sci. 53, 360–367 (1996).Article 

    Google Scholar 
    Moginie, B. F. & Shima, J. S. Hatch date and growth rate drives reproductive success in nest-guarding males of a temperate reef fish. Mar. Ecol. Prog. Ser. 592, 197–206 (2018).ADS 
    Article 

    Google Scholar 
    Sponaugle, S., Boulay, J. N. & Rankin, T. L. Growth- and size-selective mortality in pelagic­larvae of a common reef fish. Aquat. Biol. 13, 263–273 (2011).Article 

    Google Scholar 
    Biro, P. A., Abrahams, M. V., Post, J. R. & Parkinson, E. A. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J. Anim. Ecol. 75, 1165–1171 (2006).PubMed 
    Article 

    Google Scholar 
    Litvak, M. K. & Leggett, W. C. Age and size-selective predation on larval fishes: the bigger-is-better hypothesis revisited. Mar. Ecol. Prog. Ser. 81, 13–24 (1992).ADS 
    Article 

    Google Scholar 
    D’Alessandro, E. K., Sponaugle, S. & Cowen, R. K. Selective mortality during the larval and juvenile stages of snappers (Lutjanidae) and great barracuda Sphyraena barracuda. Mar. Ecol. Prog. Ser. 474, 227–242 (2013).ADS 
    Article 

    Google Scholar 
    Meekan, M. G. et al. Bigger is better: Size-selective mortality throughout the life history of a fast-growing clupeid, Spratelloides gracilis. Mar. Ecol. Progress Ser. 317, 237–244 (2006).ADS 
    Article 

    Google Scholar 
    Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).ADS 
    Article 

    Google Scholar 
    Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).PubMed 
    Article 

    Google Scholar 
    Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90, 1419–1432 (2021).PubMed 
    Article 

    Google Scholar 
    Logsdon, N. J., Deshpande, A., Harris, B. D., Rajashankar, K. R. & Walter, M. R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. 109, 12704–12709 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eldon, B., Riquet, F., Yearsley, J., Jollivet, D. & Broquet, T. Current hypotheses to explain genetic chaos under the sea. Curr. Zool. 62, 551–566 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macpherson, E., Gordoa, A. & Garcia-Rubies, A. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuarine Coast. Shelf Sci. 55, 777–788 (2002).ADS 
    Article 

    Google Scholar 
    Garcia-Rubies, A. & Zabala I Limousin, M. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54(4), 317–328 (1990).
    Google Scholar 
    Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 168, 45–56 (1998).ADS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wickham, H. ggplot2. (2009). https://doi.org/10.1007/978-0-387-98141-3.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27, 2215–2233 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natsidis, P., Tsakogiannis, A., Pavlidis, P., Tsigenopoulos, C. S. & Manousaki, T. Phylogenomics investigation of sparids (Teleostei: Spariformes) using high-quality proteomes highlights the importance of taxon sampling. Commun. Biol. 2, 400 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Al-Shahrour, F. et al. FatiGO: A functional profiling tool for genomic data: Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 35, W91–W96 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More