More stories

  • in

    High deforestation trajectories in Cambodia slowly transformed through economic land concession restrictions and strategic execution of REDD+ protected areas

    Deforestation trajectories and economic driversCambodia has undergone significant forest loss in recent decades—with 2.6 million hectares of forest cover loss occurring since 2001, equating to 29.5% of forest cover7 and 1.45 billion tonnes of CO2 emissions8. The deforestation rates have increased by 76% in the last decade (2011–2021) compared to the previous (2001–2010; Fig. 1b)7. We find forest loss has occurred within three distinct Phases demonstrated by changepoint analysis: (1) Phase 1: steady rise from 2000 to 2009 (average = 0.82%/year), (2) Phase 2: peak years from 2010 to 2013 (average = 2.3%/year), (3) Phase 3: moderate phase from 2014 to 2021 (average = 1.6%/year). Whilst the annual rate of deforestation has declined since the Phase 2, Cambodia currently has the highest country-level annual rate of forest loss globally7, illustrating the relentless deforestation spreading across the landscape. Critically, much of this forest loss and degradation is occurring in mature primary forests (Fig. 1b), which hold significant carbon and are home to rich biodiversity and keystone species17,18,19.
    This deforestation in Cambodia has been attributed to the widespread development of Economic Land Concessions (ELCs), the expansion of numerous agricultural frontiers and relentless illegal logging20,21,22. These drivers have been abetted by the establishment of an extensive national road network (Fig. 1a)20—developed to promote economic growth and urban–rural connectivity23. The majority (88.4%) of these roads have been funded by foreign governments (the People’s Republic of China: 38.5%, Japan: 37.9%, and Republic of Korea: 12.0%)18—all of whom have established land concessions within Cambodia’s borders24 through the allocation of state land into private land for long-term industrial plantations22,25. The expansion of ELCs across Cambodia (average addition of 105,000 ha/year of ELC land since 1998) has been directly attributed to up to 40% of the country’s deforestation21, with further indirect impacts due to encroachment into rural community lands (indigenous areas, community forests, subsistence agricultural fields). This results in landlessness, poverty, and land conflicts, forcing communities to migrate in search of arable land, further contributing to the growing degradation and destruction of forests22,26,27,28,29.Strategic government interventionProtected areas expanded across Cambodia in 1993 following a royal decree26; the legal details of which were delineated in the 2008 Protected Areas Law, introducing protected categories, wildlife corridors and strict laws prohibiting development9. While over 80 protected areas currently exist covering 35% of Cambodian land10, they are still under substantial threat30. In further efforts to curb deforestation, the Royal Government of Cambodia ordered the suspension of new ELCs and revocation of a subset of existing ELCs in 2012 (Order 01BB)31. This resulted in a reduction of ELCs from a peak of ~ 2.1 million ha in 2012 to ~ 1.6 million ha from 2014 onward (Fig. 1b), with a significant positive correlation between the quantity of land classified as ELCs and the country-level deforestation rate (R = 0.87, p  More

  • in

    Canopy arthropod declines along a gradient of olive farming intensification

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Wilson, E. O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    Isaacs, R., Tuell, J., Fiedler, A., Gardiner, M. & Landis, D. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: The role of native plants. Front. Ecol. Environ. 7, 196–203 (2009).
    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neves, B. & Pires, I. M. The Mediterranean diet and the increasing demand of the olive oil sector: Shifts and environmental consequences. Region. 5, 101–112 (2018).
    Google Scholar 
    Silveira, A. et al. The sustainability of agricultural intensification in the early 21st century: Insights from the olive oil production in Alentejo (Southern Portugal). In Changing Societies: Legacies and Challenges. The Diverse Worlds of Sustainability, 247–275 (2018).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salomone, R. & Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 28, 88–100 (2012).
    Google Scholar 
    Rallo, L. et al. High-density olive plantations. Hortic. Rev. Am. Soc. Hortic. Sci. 41, 303–383 (2013).
    Google Scholar 
    Santos, S. A. P., Pereira, J. A., Torres, L. M. & Nogueira, A. J. A. Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 67, 131–139 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gkisakis, V., Volakakis, N., Kollaros, D., Bàrberi, P. & Kabourakis, E. M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 218, 178–189 (2016).
    Google Scholar 
    Beaufoy, G. EU Policies for Olive Farming. Unsustainable on all counts (WWF and Birdlife International, Brussels, 2001).
    Google Scholar 
    EFNCP. The environmental impact of olive oil production in the EU: Practical options for improving the environmental impact. European Forum on Nature Conservation and Pastoralism & Asociación para el Análisis y Reforma de la Política Agro-rural, Brussels. https://ec.europa.eu/environment/agriculture/pdf/oliveoil.pdf (2000).Vanwalleghem, T. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 142, 341–351 (2011).
    Google Scholar 
    Simões, M. P., Belo, A. F., Pinto-Cruz, C. & Pinheiro, A. C. Natural vegetation management to conserve biodiversity and soil water in olive orchards. Span. J. Agric. Res. 12, 633–643 (2014).
    Google Scholar 
    Milgroom, J., Soriano, M. A., Garrido, J. M., Gómez, J. A. & Fereres, E. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renew. Agric. Food Syst. 22, 1–10 (2007).
    Google Scholar 
    Lodolini, E. M. & Neri, D. Organic olive farming. African J. Agric. Res. 8, 6426–6434 (2013).
    Google Scholar 
    Rallo, L. Iberian olive growing in a time of change. Chron. Horticult. 49, 27–30 (2010).
    Google Scholar 
    Diez, C. M. et al. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 7, 1–13 (2016).
    Google Scholar 
    Allen, H. D., Randall, R. E., Amable, G. S. & Devereux, B. J. The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece. L. Degrad. Dev. 17, 249–327 (2006).
    Google Scholar 
    Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).
    Google Scholar 
    Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).
    Google Scholar 
    Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).
    Google Scholar 
    Ruano, F. et al. Use of arthropods for the evaluation of the olive-orchard management regimes. Agric. For. Entomol. 6, 111–120 (2004).
    Google Scholar 
    Jerez-Valle, C., García, P. A., Campos, M. & Pascual, F. A simple bioindication method to discriminate olive orchard management types using the soil arthropod fauna. Appl. Soil Ecol. 76, 42–51 (2014).
    Google Scholar 
    Carpio, A. J., Castro, J. & Tortosa, F. S. Arthropod biodiversity in olive groves under two soil management systems: Presence versus absence of herbaceous cover crop. Agric. For. Entomol. 21, 58–68 (2018).
    Google Scholar 
    Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: Implications for regional biodiversity conservation. Agric. Ecosyst. Environ. 277, 61–73 (2019).
    Google Scholar 
    Mccomb, W. C. & Noble, R. E. Invertebrate use of natural tree cavities and vertebrate nest boxes. Am. Midl. Nat. 107, 163–172 (1982).
    Google Scholar 
    Bovyn, R. A., Lordon, M. C., Grecco, A. E., Leeper, A. C. & LaMontagne, J. M. Tree cavity availability in urban cemeteries and city parks. J. Urban Ecol. 5, 1–9 (2019).
    Google Scholar 
    Ribera, I., Dolédec, S., Downie, I. & Foster, G. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).
    Google Scholar 
    Barbaro, L. & van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).
    Google Scholar 
    Steffan-Dewenter, I. & Tscharntke, T. Butterfly community structure in fragmented habitats. Ecol. Lett. 3, 449–456 (2000).
    Google Scholar 
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).ADS 
    PubMed 

    Google Scholar 
    Medinas, D. et al. Road effects on bat activity depend on surrounding habitat type. Sci. Total Environ. 660, 340–347 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    INE. Estatísticas Agrícolas – 2018. Lisboa. Instituto Nacional de Estatística. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=358629204&PUBLICACOESmodo=2 (2019).Rodríguez-Cohard, J. C., Sánchez-Martínez, J. D. & Garrido-Almonacid, A. Strategic responses of the European olive-growing territories to the challenge of globalization. Eur. Plan. Stud. 28, 2261–2283 (2020).
    Google Scholar 
    Reis, P. O olival em Portugal. Dinâmicas, tecnologias e relação com o desenvolvimento rural. Instituto Nacional de Investigação Agrária e Veterinária. http://www.iniav.pt/fotos/editor2/caderno_olivalemportugal.pdf (2014).Yi, Z., Jinchao, F., Dayuan, X., Weiguo, S. & Axmacher, J. C. A comparison of terrestrial arthropod sampling methods. J. Resour. Ecol. 3, 174–182 (2012).
    Google Scholar 
    Leather, S. R. Insect Sampling in Forest Ecosystems (Wiley-Blackwell, New Jersey, 2008).
    Google Scholar 
    Paredes, D., Cayuela, L. & Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 173, 72–80 (2013).
    Google Scholar 
    Porcel, M., Cotes, B., Castro, J. & Campos, M. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. J. Pest Sci. 90, 195–206 (2017).
    Google Scholar 

    Álvarez, H. A. et al. Semi-natural habitat complexity affects abundance and movement of natural enemies in organic olive orchards. Agric. Ecosyst. Environ. 285, 106618 (2019).
    Google Scholar 
    Paredes, D., Cayuela, L., Gurr, G. M. & Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?. PLoS ONE 10, e0117265 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gkisakis, V. D. et al. Olive canopy arthropods under organic, integrated, and conventional management. The effect of farming practices, climate and landscape. Agroecol. Sustain. Food Syst. 42, 843–858 (2018).
    Google Scholar 
    Sanz-Cortés, F. et al. Phenological growth stages of olive trees (Olea europaea). Ann. Appl. Biol. 140, 151–157 (2002).
    Google Scholar 
    Rodríguez, E., González, B. & Campos, M. Natural enemies associated with cereal cover crops in olive groves. Bullet. Insectol. 65, 43–49 (2012).
    Google Scholar 
    Morente, M., Campos, M. & Ruano, F. Evaluation of two different methods to measure the effects of the management regime on the olive-canopy arthropod community. Agric. Ecosyst. Environ. 259, 111–118 (2018).
    Google Scholar 
    Cardenas, M., Pascual, F., Campos, M. & Pekar, S. The spider assemblage of olive groves under three management systems. Environ. Entomol. 44, 509–518 (2015).PubMed 

    Google Scholar 
    Hegazi, E. M. et al. Seasonality in the occurrence of two lepidopterous olive pests in Egypt. Insect Sci. 18, 565–574 (2011).
    Google Scholar 
    Markó, V., Keresztes, B., Fountain, M. T. & Cross, J. V. Prey availability, pesticides and the abundance of orchard spider communities. Biol. Control 48, 115–124 (2009).
    Google Scholar 
    Picchi, M. S., Marchi, S., Albertini, A. & Petacchi, R. Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Biol. Control 108, 9–15 (2017).
    Google Scholar 
    Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: Is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol. 30, 46–53 (2006).ADS 

    Google Scholar 
    Schipper, A. M., Lotterman, K., Geertsma, M., Leuven, R. S. E. W. & Hendriks, A. J. Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. Biodivers. Conserv. 19, 2087–2110 (2010).
    Google Scholar 
    Timms, L. L., Bowden, J. J., Summerville, K. S. & Buddle, C. M. Does species-level resolution matter? Taxonomic sufficiency in terrestrial arthropod biodiversity studies. Insect Conserv. Divers. 6, 453–462 (2013).
    Google Scholar 
    Unwin, D. M. A Key to the Families of British Beetles (Field Studies Council, 1984).Goulet, H. & Huber, J. Hymenoptera of the World: An identification Guide to Families. (Agriculture Canada publication, 1993).Johnson, N. F. & Triplehorn, C. A. Borror and DeLong’s Introduction to the Study of Insects 7th edn. (Thomson Brooks/Cole, Belmont, 2005).
    Google Scholar 
    Fletcher, M. J., and updates. Identification keys and checklists for the leafhoppers, planthoppers and their relatives occurring in Australia and neighbouring areas (Hemiptera: Auchenorrhyncha). https://idtools.dpi.nsw.gov.au/keys/auch/index.html (2009).Mata, L. & Goula, M. Clave de familias de Heterópteros de la Península Ibérica (Insecta, Hemiptera, Heteroptera). Versión 1. Publicaciones del Centre de Recursos de Biodiversitat Animal, Universitat de Barcelona. http://www.ub.edu/crba/publicacions/Clau%20heteropters/Volum4_Clave_de_Familias_de_Heteropteros_de_la_P.Iberica.pdf (2011).Oosterbroek, P. The European families of the Diptera. Identification, diagnosis, biology. (Royal Dutch Society for Natural History (KNNV) Publishing, Utrecht, 2015).World Spider Catalog. Version 19. Natural History Museum Bern. http://wsc.nmbe.ch (2018).Campos, M. Lacewing in Andalusian olive orchards. In Lacewing in the Crop Environment (eds McEwen, P. et al.) 492–497 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Wilson, E. O. & Hölldobler, B. The rise of the ants: A phylogenetic and ecological explanation. Proc. Natl. Acad. Sci. U. S. A. 102, 7411–7414 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Núñez, C. et al. Ant community potential for pest control in olive groves: Management and landscape effects. Agric. Ecosyst. Environ 305, 107185 (2021).
    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holland, J. M. et al. Semi-natural habitats support biological control, pollination and soil conservation in Europe. A review. Agron. Sustain. Dev. 37, 31 (2017).
    Google Scholar 

    Paredes, D. et al. Landscape simplification increases Bactrocera oleae abundance in olive groves: Adult population dynamics in different land uses. J. Pest Sci. https://doi.org/10.1007/s10340-022-01489-1 (2022).Article 

    Google Scholar 
    Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid–parasitoid interactions. Proc. R. Soc. B. 285, 203–210 (2005).
    Google Scholar 
    Pinto-Correia, T., Ribeiro, N. & Sá-Sousa, P. Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor. Syst. 82, 99–104 (2011).
    Google Scholar 
    Morgado, R. et al. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 225, 104429 (2022).
    Google Scholar 
    Direção-Geral do Território. Carta de Uso e Ocupação do Solo de Portugal Continental para 2015 (COS2015). http://www.dgterritorio.pt/dados_abertos/cos/ (2015).Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Penado, A. et al. From pastures to forests: Changes in Mediterranean wild bee communities after rural land abandonment. Insect Conserv. Divers. 15, 325–336 (2022).
    Google Scholar 
    Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling. With Applications in R. (Cambridge University Press, 2020).Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Macgregor-Fors, I. & Payton, M. E. Contrasting diversity values: Statistical inferences based on overlapping confidence intervals. PLoS ONE 8, e56794 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tikhonov, G. et al. Joint species distribution modelling with the r-package Hmsc. Methods Ecol. Evol. 11, 442–447 (2019).
    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).
    Google Scholar 
    Wickramasinghe, L. P., Harris, S. H., Jones, G. & Jennings, N. V. Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging. Conserv. Biol. 8, 1283–1292 (2004).
    Google Scholar 
    Galloway, A. D., Seymour, C. L., Gaigher, R. & Pryke, J. S. Organic farming promotes arthropod predators, but this depends on neighbouring patches of natural vegetation. Agric. Ecosyst. Environ. 310, 107295 (2021).
    Google Scholar 
    Hevia, V., Ortega, J., Azcárate, F. M., López, C. A. & González, J. A. Exploring the effect of soil management intensity on taxonomic and functional diversity of ants in Mediterranean olive groves. Agric. For. Entomol. 21, 109–118 (2019).
    Google Scholar 
    Vitanović, E. et al. Arthropod communities within the olive canopy as bioindicators of different management systems. Span. J. Agric. Res. 16, e0301 (2018).
    Google Scholar 
    Vasconcelos, S. et al. Long-term consequences of agricultural policy decisions: How are forests planted under EEC regulation 2080/92 affecting biodiversity 20 years later?. Biol. Conserv. 236, 393–403 (2019).
    Google Scholar 
    Tscharntke, T. et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204, 449–458 (2016).
    Google Scholar 
    Ortega, M., Pascual, S. & Rescia, A. J. Spatial structure of olive groves and scrublands affects Bactrocera oleae abundance: A multi-scale analysis. Basic Appl. Ecol. 17, 696–705 (2016).
    Google Scholar 
    Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).
    Google Scholar 
    Paredes, D., Karp, D. S., Chaplin-Kramer, R., Benítez, E. & Campos, M. Natural habitat increases natural pest control in olive groves: Economic implications. J. Pest Sci. 92, 1111–1121 (2019).
    Google Scholar 
    Attwood, S. J., Maron, M., House, P. N. & Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?. Glob. Ecol. Biogeogr. 17, 585–599 (2008).
    Google Scholar 
    Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera; Tephritidae) by Psyttalia concolor (Hymenoptera; Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).
    Google Scholar 
    Álvarez, H. A., Morente, M., Campos, M. & Ruano, F. L. madurez de las cubiertas vegetales aumenta la presencia de enemigos naturales y la resiliencia de la red trófica de la copa del olivo. Ecosistemas 28, 92–106 (2019).
    Google Scholar 
    Rusch, A., Valantin-Morison, M., Sarthou, J. P. & Roger-Estrade, J. Biological control of insect pests in agroecosystems. Effects of crop management, farming systems, and seminatural habitats at the landscape scale: A review. Adv. Agron. 109, 219–259 (2010).
    Google Scholar 
    Greenop, A., Cook, S. M., Wilby, A., Pywell, R. F. & Woodcock, B. A. Invertebrate community structure predicts natural pest control resilience to insecticide exposure. J. Appl. Ecol. 57, 2441–2453 (2020).CAS 

    Google Scholar 
    Porcel, M., Ruano, F., Cotes, B., Peña, A. & Campos, M. Agricultural management systems affect the green lacewing community (Neuroptera: Chrysopidae) in olive orchards in southern Spain. Environ. Entomol. 42, 97–106 (2013).CAS 
    PubMed 

    Google Scholar 
    Stamou, G. P. Arthropods of Mediterranean-Type Ecosystems (Springer, 2012).Santos, J. L. et al. A farming systems approach to linking agricultural policies with biodiversity and ecosystem services. Front. Ecol. Environ. 19, 168–175 (2021).
    Google Scholar 
    Ribeiro, P. F. et al. An applied farming systems approach to infer conservation-relevant agricultural practices for agri-environment policy design. Land Use Policy 58, 165–172 (2016).
    Google Scholar 
    Herrera, J. M. et al. A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Solomou, A. D. & Sfougaris, A. I. Bird community characteristics as indicators of sustainable management in olive grove ecosystems of Central Greece. J. Nat. Hist. 49, 301–325 (2015).
    Google Scholar 
    Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat Sustain. 3, 809–820 (2020).
    Google Scholar  More

  • in

    Cross-cutting research themes for future mangrove forest research

    Sievers, M. et al. Trends Ecol. Evol. 34, 807–817 (2019).Article 

    Google Scholar 
    Barbier, E. B. et al. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    zu Ermgassen, P. S. E. et al. Estuar. Coast. Shelf Sci. 248, 107159 (2021).Article 

    Google Scholar 
    Spalding, M. & Parrett, C. L. Mar. Policy 110, 103540 (2019).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. Estuar. Coast. Shelf Sci. 248, 106942 (2021).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. Front. Mar. Sci. 7, 603651 (2020).Article 

    Google Scholar 
    Friess, D. A. & McKee, K. L. in Dynamic Sedimentary Environments of Mangrove Coasts (eds Sidik, F. & Friess, D.A.) Ch. 7 (Elsevier, 2021).Lee, S. Y. et al. Glob. Ecol. Biogeogr. 23, 726–743 (2014).Article 

    Google Scholar 
    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Glob. Change Biol. 26, 5844–5855 (2020).Article 

    Google Scholar 
    Cannicci, S. et al. Proc. Natl Acad. Sci. USA 118, e2016913118 (2021).CAS 
    Article 

    Google Scholar 
    Bouillon, S., Koedam, N., Raman, A. & Dehairs, F. Oecologia 130, 441–448 (2002).CAS 
    Article 

    Google Scholar 
    Adame, M. F. et al. Glob. Chang. Biol. 27, 2856–2866 (2021).CAS 
    Article 

    Google Scholar 
    Pittman, S. et al. Mar. Ecol. Prog. Ser. 663, 1–29 (2021).Article 

    Google Scholar 
    Nagelkerken, I., Sheaves, M. T., Baker, R. & Connolly, R. M. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    Huxham, M., Whitlock, D., Githaiga, M. & Dencer-Brown, A. Curr. For. Rep. 4, 101–110 (2018).
    Google Scholar 
    Bryan-Brown, D. N. et al. Sci. Rep. 10, 7117 (2020).CAS 
    Article 

    Google Scholar 
    Curnick, D. J. et al. Science 363, 239–239 (2019).Article 

    Google Scholar 
    Dahdouh-Guebas, F. & Cannicci, S. Front. Mar. Sci. 8, 799543 (2021).Article 

    Google Scholar 
    Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Trends Ecol. Evol. 37, 20–29 (2021).Article 

    Google Scholar 
    Rahman, M. M. et al. Nat. Commun. 12, 3875 (2021).CAS 
    Article 

    Google Scholar 
    Yando, E. S. et al. Biol. Conserv. 263, 109355 (2021).Article 

    Google Scholar 
    Krauss, K. W. & Osland, M. J. Ann. Bot. 125, 213–234 (2020).PubMed 

    Google Scholar 
    Asbridge, E. F. et al. Estuar. Coast. Shelf Sci. 228, 106353 (2019).Article 

    Google Scholar 
    Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).Article 

    Google Scholar 
    Erftemeijer, P. L. A. & Hamerlynck, O. J. Coast. Res. 42, 228–235 (2005).
    Google Scholar 
    Abhik, S. et al. Sci. Rep. 11, 20411 (2021).CAS 
    Article 

    Google Scholar 
    Osland, M. J., Day, R. H. & Michot, T. C. Divers. Distrib. 26, 1366–1382 (2020).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. Curr. Biol. 15, 579–586 (2005).CAS 
    Article 

    Google Scholar 
    Turschwell, M. P. et al. Biol. Conserv. 247, 108637 (2020).Article 

    Google Scholar 
    Saintilan, N. et al. Science 368, 1118–1121 (2020).CAS 
    Article 

    Google Scholar 
    Xie, D. et al. Environ. Res. Lett. 15, 114033 (2020).Article 

    Google Scholar 
    Ewel, K. C., Twilley, R. R. & Ong, J. E. Glob. Ecol. Biogeogr. Lett. 7, 83–94 (1998).Article 

    Google Scholar 
    Dahdouh-Guebas, F. in Vers une Nouvelle Synthèse Ecologique: de L’écologie Scientifique au Développement Durable. (ed. Meerts, P.) 182–193 (Centre Paul Duvigneaud de Documentation Ecologique, 2013).Gallup, L., Sonnenfeld, D. A. & Dahdouh-Guebas, F. Ocean Coast. Manage. 185, 105001 (2020).Article 

    Google Scholar 
    Rist, S. & Dahdouh-Guebas, F. Environ. Dev. Sustain. 8, 467–493 (2006).Article 

    Google Scholar 
    Foell, J., Harrison, E. & Stirrat, R. L. Participatory Approaches to Natural Resource Management: The Case of Coastal Zone Management in the Puttalam District, Sri Lanka. Project R6977 (School of African and Asian Studies, University of Sussex, 2000).Beymer-Farris, B. A. & Bassett, T. J. Glob. Environ. Change 22, 332–341 (2012).Article 

    Google Scholar 
    Lovelock, C. E. & Brown, B. M. Nat. Ecol. Evol. 3, 1135 (2019).Article 

    Google Scholar 
    Dahdouh-Guebas, F. et al. J. Ethnobiol. Ethnomed. 2, 24 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate

    Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 102, 8245–8250. https://doi.org/10.1073/pnas.0409902102 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagundez, J. Heathlands confronting global change: Drivers of biodiversity loss from past to future scenarios. Ann. Bot. 111, 151–172. https://doi.org/10.1093/aob/mcs257 (2013).Article 
    PubMed 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. https://doi.org/10.1016/j.tplants.2010.09.008 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, 25. https://doi.org/10.7554/eLife.05255 (2015).Article 

    Google Scholar 
    Herrera, C. M., Medrano, M. & Bazaga, P. Comparative spatial genetics and epigenetics of plant populations: Heuristic value and a proof of concept. Mol. Ecol. 25, 1653–1664. https://doi.org/10.1111/mec.13576 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Richards, C. L. et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 20, 1576–1590. https://doi.org/10.1111/ele.12858 (2017).Article 
    PubMed 

    Google Scholar 
    Münzbergová, Z., Latzel, V., Šurinová, M. & Hadincová, V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128, 124–134. https://doi.org/10.1111/oik.05591 (2019).CAS 
    Article 

    Google Scholar 
    Thiebaut, F., Hemerly, A. S. & Ferreira, P. C. G. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front. Plant Sci. 10, 25. https://doi.org/10.3389/fpls.2019.00246 (2019).Article 

    Google Scholar 
    Verhoeven, K. J. F., Vonholdt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: What we know and what we need to know. Mol. Ecol. 25, 1631–1638. https://doi.org/10.1111/mec.13617 (2016).Article 
    PubMed 

    Google Scholar 
    Lisch, D. How important are transposons for plant evolution?. Nat. Rev. Genet. 14, 49–61. https://doi.org/10.1038/nrg3374 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paszkowski, J. Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 32, 200–206. https://doi.org/10.1016/j.copbio.2015.01.003 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245-U127. https://doi.org/10.1038/nature10555 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373. https://doi.org/10.1126/science.1212959 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x (2008).Article 
    PubMed 

    Google Scholar 
    Walsh, M. R. et al. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.2271 (2016).Article 

    Google Scholar 
    Foust, C. M. et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol. Ecol. 25, 1639–1652. https://doi.org/10.1111/mec.13522 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gugger, P. F., Fitz-Gibbon, S., Pellegrini, M. & Sork, V. L. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 25, 1665–1680. https://doi.org/10.1111/mec.13563 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol. Ecol. 20, 1675–1688. https://doi.org/10.1111/j.1365-294X.2011.05026.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Medrano, M., Herrera, C. M. & Bazaga, P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol. Ecol. 23, 4926–4938. https://doi.org/10.1111/mec.12911 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera, C. M., Medrano, M. & Bazaga, P. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence. Am. J. Bot. 104, 1195–1204. https://doi.org/10.3732/ajb.1700162 (2017).Article 
    PubMed 

    Google Scholar 
    Sheldon, E. L., Schrey, A., Andrew, S. C., Ragsdale, A. & Griffith, S. C. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia. R. Soc. Open Sci. https://doi.org/10.1098/rsos.172185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaspar, B., Bossdorf, O. & Durka, W. Structure, stability and ecological significance of natural epigenetic variation: A large-scale survey in Plantago lanceolata. New Phytol. 221, 1585–1596. https://doi.org/10.1111/nph.15487 (2019).Article 
    PubMed 

    Google Scholar 
    Medrano, M., Alonso, C., Bazaga, P., Lopez, E. & Herrera, C. M. Comparative genetic and epigenetic diversity in pairs of sympatric, closely related plants with contrasting distribution ranges in south-eastern Iberian mount. Aob Plants https://doi.org/10.1093/aobpla/plaa013 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. Z., Li, H. L., Li, J. M. & Yu, F. H. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity 124, 146–155. https://doi.org/10.1038/s41437-019-0261-8 (2020).Article 
    PubMed 

    Google Scholar 
    Miryeganeh, M. & Saze, H. Epigenetic inheritance and plant evolution. Popul. Ecol. 62, 17–27. https://doi.org/10.1002/1438-390x.12018 (2020).Article 

    Google Scholar 
    Becklin, K. M. et al. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 172, 635–649. https://doi.org/10.1104/pp.16.00793 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Szymanska, R., Slesak, I., Orzechowska, A. & Kruk, J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165–177. https://doi.org/10.1016/j.envexpbot.2017.05.002 (2017).CAS 
    Article 

    Google Scholar 
    Agrawal, A. A., Erwin, A. C. & Cook, S. C. Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (Asclepias incarnata). J. Ecol. 96, 536–542. https://doi.org/10.1111/j.1365-2745.2008.01365.x (2008).Article 

    Google Scholar 
    Azhar, A., Sathornkich, J., Rattanawong, R. & Kasemsap, P. Responses of chlorophyll fluorescence, stomatal conductance, and net photosynthesis rates of four rubber (Hevea brasiliensis) genotypes to drought. Adv. Rubber 844, 11–14. https://doi.org/10.4028/www.scientific.net/AMR.844.11 (2014).CAS 
    Article 

    Google Scholar 
    Bussotti, F., Pancrazi, M., Matteucci, G. & Gerosa, G. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: Results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol. 25, 211–219. https://doi.org/10.1093/treephys/25.2.211 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carlson, J. E., Adams, C. A. & Holsinger, K. E. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Ann. Bot. 117, 195–207. https://doi.org/10.1093/aob/mcv146 (2016).Article 
    PubMed 

    Google Scholar 
    De Frenne, P. et al. Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob. Change Biol. 17, 3240–3253. https://doi.org/10.1111/j.1365-2486.2011.02449.x (2011).ADS 
    Article 

    Google Scholar 
    Reinhardt, K., Castanha, C., Germino, M. J. & Kueppers, L. M. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol. 31, 615–625. https://doi.org/10.1093/treephys/tpr055 (2011).Article 
    PubMed 

    Google Scholar 
    Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C-3, C-4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117. https://doi.org/10.1007/s11120-013-9874-6 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stojanova, B. et al. Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS One https://doi.org/10.1371/journal.pone.0194670 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, S. K. & Wagner, D. Role of chromatin in water stress responses in plants. J. Exp. Bot. 65, 2785–2799. https://doi.org/10.1093/jxb/ert403 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Han, S. K. & Torii, K. U. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development 143, 1259–1270. https://doi.org/10.1242/dev.127712 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Torii, K. U. Stomatal differentiation: The beginning and the end. Curr. Opin. Plant Biol. 28, 16–22. https://doi.org/10.1016/j.pbi.2015.08.005 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tricker, P. J., Gibbings, J. G., Lopez, C. M. R., Hadley, P. & Wilkinson, M. J. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot. 63, 3799–3813. https://doi.org/10.1093/jxb/ers076 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vrablova, M., Hronkova, M., Vrabl, D., Kubasek, J. & Santrucek, J. Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environ. Exp. Bot. 156, 316–324. https://doi.org/10.1016/j.envexpbot.2018.09.012 (2018).CAS 
    Article 

    Google Scholar 
    Tricker, P. J., Lopez, C. M. R., Gibbings, G., Hadley, P. & Wilkinson, M. J. Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int. J. Mol. Sci. 14, 6674–6689. https://doi.org/10.3390/ijms14046674 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Puy, J. et al. Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application. Methods Ecol. Evol. 9, 744–753. https://doi.org/10.1111/2041-210x.12903 (2018).Article 

    Google Scholar 
    Kosová, V., Hájek, T., Hadincová, V. & Münzbergová, Z. The importance of ecophysiological traits in response of Festuca rubra to changing climate. Physiol. Plant. 174, e13608. https://doi.org/10.1111/ppl.13608 (2022).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maricle, B. R. & Adler, P. B. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ. Exp. Bot. 72, 223–231. https://doi.org/10.1016/j.envexpbot.2011.03.011 (2011).Article 

    Google Scholar 
    Münzbergová, Z. et al. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate. Front. Plant Sci. 11, 400. https://doi.org/10.3389/fpls.2020.00400 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beerling, D. J. & Chaloner, W. G. The impact of atmospheric CO2 and temperature change on stomatal density—observations from Quercus robur lammas leaves. Ann. Bot. 71, 231–235. https://doi.org/10.1006/anbo.1993.1029 (1993).CAS 
    Article 

    Google Scholar 
    Tang, Y. L. et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143, 629–638. https://doi.org/10.1104/pp.106.090712 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jahns, P. & Holzwarth, A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA-Bioenerget. 1817, 182–193. https://doi.org/10.1016/j.bbabio.2011.04.012 (2012).CAS 
    Article 

    Google Scholar 
    Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 55, 1607–1621. https://doi.org/10.1093/jxb/erh196 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Baker, H. G. In The Genetics of Colonizing Species (eds Baker, H. G. & Stebbins, G. L.) 147–168 (Academic Press, 1965).
    Google Scholar 
    Bartlett, M. K. et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590. https://doi.org/10.1111/ele.12374 (2014).Article 
    PubMed 

    Google Scholar 
    Raven, J. A. Selection pressures on stomatal evolution. New Phytol. 153, 371–386. https://doi.org/10.1046/j.0028-646X.2001.00334.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, F. F. et al. Effects of CO2 enrichment on growth and development of Impatiens hawkeri. Sci. World J. https://doi.org/10.1100/2012/601263 (2012).ADS 
    Article 

    Google Scholar 
    Gonzalez, A. P. R. et al. Stress-induced memory alters growth of clonal off spring of white clover (Trifolium repens). Am. J. Bot. 103, 1567–1574. https://doi.org/10.3732/ajb.1500526 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, P. A., Taylor, S. M. & Wilson, V. L. Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res. 84, 202–211 (1983).CAS 
    PubMed 

    Google Scholar 
    Meineri, E., Skarpaas, O., Spindelbock, J., Bargmann, T. & Vandvik, V. Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. J. Veg. Sci. 25, 275–286. https://doi.org/10.1111/jvs.12062 (2014).Article 

    Google Scholar 
    Šurinová, M., Hadincová, V., Vandvik, V. & Münzbergová, Z. Temperature and precipitation, but not geographic distance, explain genetic relatedness among populations in the perennial grass Festuca rubra. J. Plant Ecol. 12, 730–741. https://doi.org/10.1093/jpe/rtz010 (2019).Article 

    Google Scholar 
    Münzbergová, Z., Hadincová, V., Skálová, H. & Vandvik, V. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105, 1358–1373. https://doi.org/10.1111/1365-2745.12762 (2017).Article 

    Google Scholar 
    Klanderud, K., Vandvik, V. & Goldberg, D. The importance of biotic vs abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One 10, e0130205. https://doi.org/10.1371/journal.pone.0130205 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meineri, E., Skarpaas, O. & Vandvik, V. Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter?. Ecol. Model. 231, 1–10. https://doi.org/10.1016/j.ecolmodel.2012.01.021 (2012).Article 

    Google Scholar 
    Meineri, E., Spindelbock, J. & Vandvik, V. Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecol. 214, 607–619. https://doi.org/10.1007/s11258-013-0193-y (2013).Article 

    Google Scholar 
    Vandvik, V., Klanderud, K., Meineri, E., Maren, I. E. & Topper, J. Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground. Oikos 125, 218–228. https://doi.org/10.1111/oik.02022 (2016).Article 

    Google Scholar 
    Stojanova, B. et al. Evolutionary potential of a widespread clonal grass under changing climate. J. Evol. Biol. 32, 1057–1068. https://doi.org/10.1111/jeb.13507 (2019).Article 
    PubMed 

    Google Scholar 
    Osorio-Montalvo, P., Saenz-Carbonell, L. & De-la-Pena, C. 5-azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int. J. Mol. Sci. 19, 20. https://doi.org/10.3390/ijms19103182 (2018).CAS 
    Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211. https://doi.org/10.2307/1942661 (1984).Article 

    Google Scholar 
    Münzbergová, Z. & Hadincová, V. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7, 5236–5247. https://doi.org/10.1002/ece3.3105 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, L. Logic of experiments in ecology: Is pseudoreplication a pseudoissue?. Oikos 94, 27–38. https://doi.org/10.1034/j.1600-0706.2001.11311.x (2001).Article 

    Google Scholar 
    Johnson, S. N., Gherlenda, A. N., Frew, A. & Ryalls, J. M. W. The importance of testing multiple environmental factors in legume-insect research: Replication, reviewers, and rebuttal. Front. Plant Sci. 7, 489. https://doi.org/10.3389/fpls.2016.00489 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurlbert, S. H. On misinterpretations of pseudoreplication and related matters: A reply to Oksanen. Oikos 104, 591–597. https://doi.org/10.1111/j.0030-1299.2004.12752.x (2004).Article 

    Google Scholar 
    Scheepens, J. F. & Stocklin, J. Flowering phenology and reproductive fitness along a mountain slope: Maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia 171, 679–691. https://doi.org/10.1007/s00442-012-2582-7 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gugger, S., Kesselring, H., Stoecklin, J. & Hamann, E. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Ann. Bot. 116, 953–962. https://doi.org/10.1093/aob/mcv155 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bezemer, T. M., Thompson, L. J. & Jones, T. H. Poa annua shows inter-generational differences in response to elevated CO2. Glob. Change Biol. 4, 687–691. https://doi.org/10.1046/j.1365-2486.1998.00184.x (1998).ADS 
    Article 

    Google Scholar 
    Cavieres, L. A. & Arroyo, M. T. K. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae)—altitudinal variation in the mediterranean Andes of central Chile. Plant Ecol. 149, 1–8. https://doi.org/10.1023/a:1009802806674 (2000).Article 

    Google Scholar 
    Souther, S., Lechowicz, M. J. & McGraw, J. B. Experimental test for adaptive differentiation of ginseng populations reveals complex response to temperature. Ann. Bot. 110, 829–837. https://doi.org/10.1093/aob/mcs155 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matias, L. & Jump, A. S. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 65, 299–310. https://doi.org/10.1093/jxb/ert376 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, H. X. et al. Germination shifts of C-3 and C-4 species under simulated global warming scenario. PLoS One 9, e105139. https://doi.org/10.1371/journal.pone.0105139 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190. https://doi.org/10.1007/s11099-013-0021-6 (2013).CAS 
    Article 

    Google Scholar 
    Majekova, M., Martinkova, J. & Hajek, T. Grassland plants show no relationship between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in soil moisture. Funct. Ecol. 33, 774–785. https://doi.org/10.1111/1365-2435.13312 (2019).Article 

    Google Scholar 
    Volis, S., Ormanbekova, D., Yermekbayev, K., Song, M. S. & Shulgina, I. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro—but not micro-geographical scale. PLoS One 10, 19. https://doi.org/10.1371/journal.pone.0121153 (2015).CAS 
    Article 

    Google Scholar 
    Younginger, B. S., Sirova, D., Cruzan, M. B. & Ballhorn, D. J. Is biomass a reliable estimate of plant fitness?. Appl. Plant Sci. https://doi.org/10.3732/apps.1600094 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Development Core Team. Version 4.0.3 A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).
    Google Scholar 
    Bossdorf, O., Arcuri, D., Richards, C. L. & Pigliucci, M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol. Ecol. 24, 541–553. https://doi.org/10.1007/s10682-010-9372-7 (2010).Article 

    Google Scholar 
    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226. https://doi.org/10.2307/2408842 (1983).Article 
    PubMed 

    Google Scholar 
    Rolhauser, A. G., Nordenstahl, M., Aguiar, M. R. & Pucheta, E. Community-level natural selection modes: A quadratic framework to link multiple functional traits with competitive ability. J. Ecol. 107, 1457–1468. https://doi.org/10.1111/1365-2745.13094 (2019).Article 

    Google Scholar 
    Yan, W. M., Zhong, Y. Q. W. & Shangguan, Z. P. Contrasting responses of leaf stomatal characteristics to climate change: A considerable challenge to predict carbon and water cycles. Glob. Change Biol. 23, 3781–3793. https://doi.org/10.1111/gcb.13654 (2017).ADS 
    Article 

    Google Scholar 
    González, A. P. R., Dumalasová, V., Rosenthal, J., Skuhrovec, J. & Latzel, V. The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol. Ecol. 31, 345–361. https://doi.org/10.1007/s10682-016-9844-5 (2017).Article 

    Google Scholar 
    Shi, W. et al. Transient stability of epigenetic population differentiation in a clonal invader. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01851 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quan, J., Münzbergová, Z. & Latzel, V. Time dynamics of stress legacy in clonal transgenerational effects: A case study on Trifolium repens. Ecol. Evol. https://doi.org/10.1002/ece3.8959 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harris, C. J. et al. A DNA methylation reader complex that enhances gene transcription. Science 362, 1182. https://doi.org/10.1126/science.aar7854 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, K. R., Cheng, X. L., Shu, X., Liu, Y. & Zhang, Q. F. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil 431, 19–36. https://doi.org/10.1007/s11104-018-3743-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiao, X. L. et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 61, 110–119. https://doi.org/10.1111/jipb.12768 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gallego-Bartolome, J. DNA methylation in plants: Mechanisms and tools for targeted manipulation. New Phytol. 227, 38–44. https://doi.org/10.1111/nph.16529 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Z. W., Bossdorf, O., Prati, D., Fischer, M. & van Kleunen, M. Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia 180, 409–420. https://doi.org/10.1007/s00442-015-3480-6 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Muir, C. D., Pease, J. B. & Moyle, L. C. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae). Genetics 198, 1629. https://doi.org/10.1534/genetics.114.169276 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramirez-Valiente, J. A. et al. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Mol. Ecol. 27, 2176–2192. https://doi.org/10.1111/mec.14566 (2018).Article 
    PubMed 

    Google Scholar 
    Jueterbock, A. et al. The seagrass methylome is associated with variation in photosynthetic performance among clonal shoots. Front. Plant Sci. 11, 19. https://doi.org/10.3389/fpls.2020.571646 (2020).Article 

    Google Scholar 
    Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol. 175, 1893–1912. https://doi.org/10.1104/pp.17.00744 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganguly, D. R., Crisp, P. A., Eichten, S. R. & Pogson, B. J. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ. 41, 1657–1672. https://doi.org/10.1111/pce.13324 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nixon, P. J., Michoux, F., Yu, J. F., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16. https://doi.org/10.1093/aob/mcq059 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perez, T. M. & Feeley, K. J. Photosynthetic heat tolerances and extreme leaf temperatures. Funct. Ecol. 34, 2236–2245. https://doi.org/10.1111/1365-2435.13658 (2020).Article 

    Google Scholar 
    Kitayama, K., Pattison, R., Cordell, S., Webb, D. & MuellerDombois, D. Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. Ann. Bot. 80, 491–497. https://doi.org/10.1006/anbo.1996.0473 (1997).Article 

    Google Scholar 
    Konopkova, A. et al. Nucleotide polymorphisms associated with climate and physiological traits in silver fir (Abies alba Mill.) provenances. Flora 250, 37–43. https://doi.org/10.1016/j.flora.2018.11.012 (2019).Article 

    Google Scholar 
    Baer, A., Wheeler, J. K. & Pittermann, J. Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Ann. Bot. 125, 691–700. https://doi.org/10.1093/aob/mcaa006 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hao, X. F., Jin, Z. P., Wang, Z. Q., Qin, W. S. & Pei, Y. X. Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italic L.. Plant Soil 453, 355–370. https://doi.org/10.1007/s11104-020-04590-5 (2020).CAS 
    Article 

    Google Scholar 
    Colaneri, A. C. & Jones, A. M. Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One 8, 10. https://doi.org/10.1371/journal.pone.0059878 (2013).CAS 
    Article 

    Google Scholar 
    Becker, C. & Weigel, D. Epigenetic variation: Origin and transgenerational inheritance. Curr. Opin. Plant Biol. 15, 562–567. https://doi.org/10.1016/j.pbi.2012.08.004 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Spens, A. E. & Douhovnikoff, V. Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets. Biol. Invas. 18, 2457–2462. https://doi.org/10.1007/s10530-016-1223-1 (2016).Article 

    Google Scholar 
    Herrera, C. M., Pozo, M. I. & Bazaga, P. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol. Ecol. 21, 2602–2616. https://doi.org/10.1111/j.1365-294X.2011.05402.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot. J. Linn. Soc. 171, 441–452. https://doi.org/10.1111/boj.12007 (2013).Article 

    Google Scholar 
    Keller, T. E., Lasky, J. R. & Yi, S. V. The multivariate association between genomewide DNA methylation and climate across the range of Arabidopsis thaliana. Mol. Ecol. 25, 1823–1837. https://doi.org/10.1111/mec.13573 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Madliger, C. L., Love, O. P., Hultine, K. R. & Cooke, S. J. The conservation physiology toolbox: Status and opportunities. Conserv. Physiol. 6, 16. https://doi.org/10.1093/conphys/coy029 (2018).CAS 
    Article 

    Google Scholar 
    Münzbergová, Z. & Haisel, D. Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth. Res. 140, 289–299. https://doi.org/10.1007/s11120-018-0604-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Balachandran, S. et al. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol. Plant. 100, 203–213. https://doi.org/10.1034/j.1399-3054.1997.1000201.x (1997).CAS 
    Article 

    Google Scholar 
    Pavlíková, Z., Holá, D., Vlasáková, B., Procházka, T. & Münzbergová, Z. Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS One https://doi.org/10.1371/journal.pone.0188795 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, B. B., Zhang, H., Jing, Q. & Wang, J. X. Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.). Ecol. Indic. 115, 9. https://doi.org/10.1016/j.ecolind.2020.106448 (2020).CAS 
    Article 

    Google Scholar 
    Cameron, D. D., Geniez, J. M., Seel, W. E. & Irving, L. J. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann. Bot. 101, 573–578. https://doi.org/10.1093/aob/mcm324 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molina-Montenegro, M. A., Salgado-Luarte, C., Oses, R. & Torres-Diaz, C. Is physiological performance a good predictor for fitness? Insights from an invasive plant species. PLoS One 8, 9. https://doi.org/10.1371/journal.pone.0076432 (2013).CAS 
    Article 

    Google Scholar 
    dos Santos, V. & Ferreira, M. J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 460, 9. https://doi.org/10.1016/j.foreco.2020.117900 (2020).Article 

    Google Scholar 
    Shi, Q. W. et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L.. Plant Soil 447, 99–116. https://doi.org/10.1007/s11104-019-04041-w (2020).CAS 
    Article 

    Google Scholar 
    Madriaza, K., Saldana, A., Salgado-Luarte, C., Escobedo, V. M. & Gianoli, E. Chlorophyll fluorescence may predict tolerance to herbivory. Int. J. Plant Sci. 180, 81–85. https://doi.org/10.1086/700583 (2019).Article 

    Google Scholar 
    Franks, P. J., Drake, P. L. & Beerling, D. J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 32, 1737–1748. https://doi.org/10.1111/j.1365-3040.2009.002031.x (2009).Article 
    PubMed 

    Google Scholar 
    Belluau, M. & Shipley, B. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS One 13, 25. https://doi.org/10.1371/journal.pone.0193130 (2018).CAS 
    Article 

    Google Scholar 
    Jerbi, A. et al. High biomass yield increases in a primary effluent wastewater phytofiltration are associated to altered leaf morphology and stomatal size in Salix miyabeana. Sci. Total Environ. 738, 12. https://doi.org/10.1016/j.scitotenv.2020.139728 (2020).CAS 
    Article 

    Google Scholar 
    Sakoda, K. et al. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Front. Plant Sci. 11, 11. https://doi.org/10.3389/fpls.2020.589603 (2020).Article 

    Google Scholar 
    Liu, J. Y. et al. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 40, 1178–1191. https://doi.org/10.1093/treephys/tpaa069 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Griffin, P. T., Niederhuth, C. E. & Schmitz, R. J. A comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 Genes Genomes Genet. 6, 2773–2780. https://doi.org/10.1534/g3.116.030262 (2016).CAS 
    Article 

    Google Scholar 
    Zhang, Y. X. et al. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. Plant Physiol. Biochem. 147, 91–100. https://doi.org/10.1016/j.plaphy.2019.12.010 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sammarco, I., Muenzbergova, Z. & Latzel, V. DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: Evidence from a European-scale reciprocal transplant experiment. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.827166 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atighi, M. R., Verstraeten, B., De Meyer, T. & Kyndt, T. Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol. 227, 545–558. https://doi.org/10.1111/nph.16532 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowicka, A. et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 102, 68–84. https://doi.org/10.1111/tpj.14612 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Christman, J. K. 5-Azacytidine and 5-aza-2 ’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Issa, J. P. J. & Kantarjian, H. M. Targeting DNA methylation. Clin. Cancer Res. 15, 3938–3946. https://doi.org/10.1158/1078-0432.ccr-08-2783 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amoah, S. et al. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol. https://doi.org/10.1186/1471-2229-12-193 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGuigan, K., Hoffmann, A. A. & Sgro, C. M. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need?. Philos. Trans. R. Soc. B Biol. Sci. 376, 10. https://doi.org/10.1098/rstb.2020.0119 (2021).Article 

    Google Scholar 
    Sano, H., Kamada, I., Youssefian, S., Katsumi, M. & Wabiko, H. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol. Gen. Genet. 220, 441–447. https://doi.org/10.1007/bf00391751 (1990).CAS 
    Article 

    Google Scholar 
    Kondo, H., Ozaki, H., Itoh, K., Kato, A. & Takeno, K. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant. 127, 130–137. https://doi.org/10.1111/j.1399-3054.2005.00635.x (2006).CAS 
    Article 

    Google Scholar 
    Kumpatla, S. P. & Hall, T. C. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Biol. 38, 1113–1122. https://doi.org/10.1023/a:1006071018039 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One https://doi.org/10.1371/journal.pone.0010326 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raj, S. et al. Clone history shapes Populus drought responses. Proc. Natl. Acad. Sci. USA 108, 12521–12526. https://doi.org/10.1073/pnas.1103341108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).Article 
    PubMed 

    Google Scholar 
    Platt, A., Gugger, P. F., Pellegrini, M. & Sork, V. L. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol. Ecol. 24, 3823–3830. https://doi.org/10.1111/mec.13230 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pfeifer, G. P. Mutagenesis at methylated CpG sequences. DNA Methyl. Basic Mech. 301, 259–281 (2006).CAS 
    Article 

    Google Scholar 
    Walsh, C. P. & Xu, G. L. Cytosine methylation and DNA repair. DNA Methyl. Basic Mech. 301, 283–315 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    Substantial differences in soil viral community composition within and among four Northern California habitats

    To compare soil viral community composition within and across terrestrial habitats on a regional scale, viromes were generated from 34 near-surface (top 15 cm) soil samples, with a total of 30 viromes included in downstream ecological analyses (see Supplementary Methods). The analyzed viromes were collected from four distinct habitats (wetlands, grasslands, chaparral shrublands, and woodlands, each with 7, 14, 4, and 5 viromes, respectively) across five field sites (Fig. S1 for sampling scheme, Table S1 for soil properties). Following quality filtering, the 30 viromes generated an average of 72,950,833 reads and 416 contigs ≥10 Kbp per virome (Table S2). Wetland viromes yielded more contigs ≥10 Kbp than viromes from other habitats, both in total and on average per virome (Table S2). We used VIBRANT to identify 3490 viral contigs in our assemblies, which were clustered into 3,432 viral operational taxonomic units (vOTUs), defined as ≥10 Kbp viral contigs sharing ≥ 95% average nucleotide identity over 85% contig length [17]. Constrained analysis of principal coordinates (CAP analysis) revealed strong clustering by habitat rather than by site, implying that, where environmental parameters are substantially different, environmental conditions are stronger drivers of viral community composition than geographic distance (Fig. S2).Multiple lines of evidence suggest that wetter soils harbored greater viral diversity than drier soils. We recovered the most vOTUs from wetlands, both in total (56% of all vOTUs were from wetlands) and per virome (on average, 307 vOTUs were recovered per wetland virome, compared to 116 from all habitats) (Fig. 1A). Unsurprisingly, wetlands had significantly greater moisture content than other habitats (Fig. 1B; ANOVA followed by Tukey multiple comparisons of means, p 100 Km distances here. Taken together, we propose that soil viral communities often display high heterogeneity within and among habitats, presumably due to a combination of host adaptations and microdiversity, dispersal limitation, and fluctuating environmental conditions over space and time. More

  • in

    Brain de novo transcriptome assembly of a toad species showing polymorphic anti-predatory behavior

    Sample collection and RNA preparationWe analyzed 6 adult yellow-bellied toad individuals representative of distinct behavioral profiles, i.e. prolonged unken-reflex display vs no unken-reflex display (thereafter referred as “ + ” and “-“, respectively). Behavioral profiles were scored as in Chiocchio et al.12: 3 toads showed prolonged unken-reflex (+), whereas the other 3 did not show unken-reflex (−), as reported in Table 1. Sampling procedures were approved by the Italian Ministry of Ecological Transition and the Italian National Institute for Environmental Protection and Research (ISPRA; permit number: 20824, 18-03-2020). After dissection, brain tissue was immediately stored in RNAprotect Tissue Reagent (Quiagen) until RNA extraction. RNA extractions were performed using the RNeasy Plus Kit (Quiagen), according to the manufacturer’ instructions. RNA quality and concentration were assessed by means of both a spectrophotometer and a Bioanalyzer (Agilent Cary60 UV-vis and Agilent 2100, respectively – Agilent Technologies, Santa Clara, USA).Table 1 Summary of the 6 libraries deposited in the Sequence Read Archive (SRA) of NCBI, in terms of number of raw and trimmed reads per sample.Full size tableLibrary preparation and sequencingLibrary preparation and RNA sequencing were performed by NOVOGENE (UK) COMPANY LIMITED using Illumina NovaSeq platform. Library construction was carried out using the NEBNext® Ultra ™ RNA Library Prep Kit for Illumina®, following manufacturer instructions. Briefly, after the quality control check, the mRNA sample was isolated from the total RNA by using magnetic beads made of oligos d(T)25 (i.e. polyA-tail mRNA enrichment). Subsequently, mRNA was randomly fragmented, and a cDNA synthesis step proceeded using random hexamers and the reverse transcriptase enzyme. Once the synthesis of the first chain has finished, the second chain was synthesized with the addition of the Illumina buffer, dNTPs, RNase H and polymerase I of E.coli, by means of the Nick translation method. Then, the resulting products went through purification, repair, A-tailing and adapter ligation. Fragments of the appropriate size were enriched by PCR, the indexed P5 and P7 primers were introduced, and the final products were purified. Finally, the Illumina Novaseq 6000 sequencing system was used to sequence the libraries, through a paired-end 150 bp (PE150) strategy. We obtained on average 52.7 million reads for each library. The sequencing data are available at the NCBI Sequence Read Archive (project ID PRJNA76401320).Pre-assembly processing stageA total of 316,329,573 pairs of reads was generated by Illumina sequencing. All of them went to a cleaning analytic step. The quality of the raw reads was assessed with the FastQC 0.11.5 tool (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc), in order to estimate the RNAseq quality profiles. The quality estimators were generated for both the raw and trimmed data. The quality assessment metrics for trimmed data were aggregated across all samples into a single report for a summary visualization with MultiQC software tool21 v.1.9 (see Fig. 1). To remove low quality bases and adapter sequences, raw reads were also analyzed through a quality trimming step with Trimmomatic22, v.0.39 (setting the option SLIDINGWINDOW: 4: 15, MINLEN: 36, and HEADCROP: 13). All the unpaired reads were discarded. After the cleaning step and removal of low-quality reads, 297,354,405 clean reads (i.e. 94% of raw reads) were maintained for building the de novo transcriptome assembly (see Table 1).Fig. 1The cleaned reads from all samples were assessed with FastQC and visualized with MultiQC. (a) Read count distribution for mean sequence quality. (b) Mean quality scores distribution. (c) Read length distribution. (d) Per Sequence GC Content.Full size image
    De novo transcriptome assembly and quality assessmentAs there is no reference genome for B. pachypus, we performed a de novo transcriptome assembly procedure. The workflow of the bioinformatic pipelines is shown in Fig. 2. All the described bioinformatics analyses were performed on the high-performance computing systems provided by ELIXIR-IT HPC@CINECA23.Fig. 2Workflow of the bioinformatic pipeline, from raw input data to annotated contigs, for the de novo transcriptome assembly of B. pachypus.Full size imageTo construct an optimized de novo transcriptome, avoiding chimeric transcripts, we employed rnaSPAdes24, a tool for de novo transcriptome assembly from RNA-Seq data implemented in the SPAdes v.3.14.1 package. rnaSPAdes automatically detected two k-mer sizes, approximately one third and half of the maximal read length (the two detected k-mer sizes were 45 and 67 nucleotides, respectively). At this stage, a total of 1,118,671 assembled transcripts were generated by rnaSPAdes runs, with an average length of 689.41 bp and an N50 of 1474 bp (Table 2).Table 2 Similarity rate of newly assembled transcripts versus the de novo transcriptome of B. pachypus.Full size tableResults from the assembly procedures were validated through three independent validator algorithms implemented in BUSCO25 v.4.1.4, DETONATE26 v.1.11 and TransRate27 v.1.0.3. These tools generate several metrics used as a guide to evaluate error sources in the assembly process and provide evidence about the quality of the assembled transcriptome. Busco provides a quantitative measure of transcriptome quality and completeness, based on evolutionarily-informed expectations of gene content from the near-universal, ultra-conserved eukaryotic proteins (eukaryota_odb9) database. Detonate (DE novo TranscriptOme rNa-seq Assembly with or without the Truth Evaluation) is a reference-free evaluation method based on a novel probabilistic model that depends only on the assembly and the RNA-Seq reads used to construct it. Transrate generates standard metrics and remapping statistics. No reference protein sequences were used for the assessment with Transrate. The main metrics resulted from the assembly validators are shown in Table 2 (“Before CD-HIT-est” column). After this triple assessment validation step, the result of the assembly procedure become the input for the CD-HIT-est v.4.8.128 program, a hierarchical clustering tool used to avoid redundant transcripts and fragmented assemblies common in the process of de novo assembly, providing unique genes. CD-HIT-est was run using the default parameters, corresponding to a similarity of 95%. Subsequently, a second validation step was launched on the CD-HIT-est output file. To refine the final transcriptome dataset, a further hierarchical clustering step was performed by running CORSET v1.0629. Then, the output of CORSET was validated by BUSCO, and quality assessment was performed with HISAT230,31 by mapping the trimmed reads to the reference transcriptome (unigenes). Results from all validation steps are shown in Table 2 and discussed in the “Technical Validation” paragraph.Finally, the CORSET output was run on TransDecoder32,33, the current standard tool that identifies long open read frames (ORFs) in assembled transcripts, using default parameters. TransDecoder by default performs ORF prediction on both strands of assembled transcripts regardless of the sequenced library. It also ranks ORFs based on their completeness, and determines if the 5 ‘end is incomplete by looking for any length of AA codons upstream of a start codon (M) without a stop codon. We adopted the “Longest ORF” rule and selected the highest 5 AUG (relative to the inframe stop codon) as the translation start site.Transcriptome annotationWe employed different kinds of annotations for the de novo assembly. We introduced DIAMOND34, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity. Like BLASTX, DIAMOND attempts to determine exhaustively all significant alignments for a given query. Most sequence comparison programs, including BLASTX, follow the seed-and-extend paradigm. In this two-phase approach, users search first for matches of seeds (short stretches of the query sequence) in the reference database, and this is followed by an ‘extend’ phase that aims to compute a full alignment. The following parameter settings were applied: DIAMOND-fast DIAMOND BLASTX-t 48 -k 250 -min-score 40; DIAMOND-sensitive: DIAMOND BLASTX -t 48 -k 250 -sensitive -min-score 40.Contigs were aligned with DIAMOND on Nr, SwissProt and TrEMBL to retrieve the corresponding best annotations. An annotation matrix was then generated by selecting the best hit for each database. Following the analysis of BLASTX against Nr, SwissProt and TremBL, we obtained respectively: 123,086 (64.57%), 77,736 (40.78%), 122,907 (64.48%) contigs. The results obtained following the analysis with BLASTP against Nr, SwissProt and TrEMBL were 96,321 (50.53%), 57,877 (30.36%) and 97,256 (51.02%) contigs respectively. All the information on the resulting datasets is resumed in Table 3.Table 3 Summary of homology annotation hits on the different databases queried in this study.Full size tableThe output obtained by the BLASTX annotation consisted in a total of 77391 sequences simultaneously mapped on the three queried databases (i.e., Nr, SwissProt and TrEMBL). The output obtained following the BLASTP annotation consisted in a total of 57704 sequences simultaneously mapped on the three databases. Venn diagrams are presented in Fig. 3, showing the redundancy of the annotations in the different databases for both DIAMOND BLASTX (Fig. 3a) and DIAMOND BLASTP (Fig. 3b). Furthermore, the ten most represented species and the ten hits of the gene product obtained respectively with BLASTX and BLASTP by mapping the transcripts against the reference database Nr are shown in Figs. 4 and 5. Since BLASTX translated nucleotide sequence searches against protein sequences the BLASTX results are more exhaustive than BLASTP results. Contigs were also processed with InterProScan35 to detect InterProScan signatures. The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or ‘signatures’ representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. The obtained InterProScan results for all the unigenes are available on Figshare in the form of Tab Separated Values (tsv) file format, which includes the GO and KEGG annotated contigs, respectively.Fig. 3Venn diagrams for the number of contigs annotated with DIAMOND (BLASTX (a) and BLASTP (b) functions) against the three databases: Nr, SwissProt, TREMBL.Full size imageFig. 4Most represented species and gene product hits. Top 10 best species (a) and protein (b) hits present in the reference database (Nr, BLASTX).Full size imageFig. 5Most represented species and gene product hits. Top 10 best species (a) and protein (b) hits present in the reference database (Nr, BLASTP).Full size imageComparison with Bombina orientalis brain transcriptomeWe compared the brain de novo transcriptome of B. pachypus with the brain de novo transcriptome of B. orientalis, recently produced in the frame of a prey-catching conditioning experiment17,18. The B. orientalis transcriptome resource was downloaded from GEO archive of NCBI (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171766). To make the datasets comparable, we first performed ORF prediction on B. orientalis trascriptome using Transdecoder, using default settings. Results from the B. orientalis trascriptome ORF prediction are available in Figshare at the following link https://doi.org/10.6084/m9.figshare.20319633/). We also applied the makedb function implemented in DIAMOND to create the protein database index. Then, we aligned the B. pachypus predicted coding sequences and proteins (query files) against the B. orientalis protein database (reference) using DIAMOND BLASTX and BLASTP, respectively. We obtained 167041 matches from BLASTX and 156248 matches for BLASTP. Results from the BLASTX and BLASTP comparisons, and the most matched proteins, are available on Figshare36 (link available in next paragraph). More

  • in

    Wildfires disproportionately affected jaguars in the Pantanal

    Global climate change combined with regional and local anthropic activities suggest an increase in recurrence and extent of wildfires on ecosystems worldwide31,47,48, affecting in particular regions with higher likelihood of fire occurrences31 and making natural systems more prone to fire occurrences21. Estimates of accumulated burned area in Brazil between 1985–2020 revealed that, among the Brazilian biomes, the Pantanal is the most affected by the fires (with accumulated burned area equivalent to 57.5% of the biome within Brazil)46. But 43% of 2020 burned area (≈13% of the Pantanal) had not burned since 200319. Therefore, it is impressive that nearly 1/3 of the Pantanal burned in a single year17,18,19 (Figs. 1, 2 and S1, S2). The high number of human-induced fires17,18,19,21 combined with the hottest and driest conditions since 198017,22,38,49 led 2020 to record the highest daily severity rating (DSR) index of fires for this time period17,49. With documented increase of 2 °C in the average temperature22 and a 40% shortage in rainfall26,38. But the fire risk got even higher with the simultaneous occurrence of dry and hot spells, between August and November, when the maximum temperature reached, on average, 6 °C above the normal, accounting for 55% of the burned area of 202049.Most fires started close to the agriculture frontiers21, but they predominantly affected the natural vegetation (reaching between 91–95% of it in occurrence of fire50,51 and 96% of it in estimated burned area)31,46, with tragic consequences for jaguars and the Pantanal biota17,19,26. Along with the fires, the severity of the 2020 drought22,52,53 dropped minimum river depths at around 86% below normal25,54 (Fig. 2 and S1, S3, S4). Consequently, resulting in several records of animal starvation, dehydration, and death17,19,26. And late mortality from indirect causes of fires certainly increased these numbers26. Besides, post-fire ecosystem and hydrology changes also had ecological effects with long-term impacts on ecosystem recovery and fire risk31, impacting resource quality, availability, and productivity26,31. Vegetation productivity declined below −1.5 σ over more than 30% of the natural areas and evaporation decreased (by ~ 9%)31. Burned vegetation made the soil more vulnerable to erosion, increasing the runoff (by ~ 5%) over the natural areas31, and the resulting charcoal and ash contaminated rivers17.Many reasons may have contributed to the intensity of the 2020 drought in the Pantanal, from climate8,22,24,49 to direct and indirect human impacts in the Upper Paraguay River Basin (UPRB)21,55,56. In fact, anthropic changes in land use also increased the biome sensitivity to fire-climate extremes)31. The shortage of rain throughout the UPRB, particularly in the summer season, is among the main factors, as the basin water balance controls the hydroclimatological dynamics in the Pantanal (Fig. 2 and S3–S9)22. The shortage of rain may also be a consequence of increased deforestation in the Amazon rainforest57,58, as summer rainfall in the Pantanal is strongly associated with the climate of the Amazon59. Furthermore, the reduction in wetland flooded areas is historically correlated with the spread of fires (Fig. 2 and S1)22,28,29. Low water levels led to the absence of flooding and reduced wetland areas, and the remaining dry vegetation provided flammable material and created favourable conditions for fires to occur22,23,24. In addition, the lack of governmental and human resources and delayed response at federal and local levels58,60,61 amplified the negative effects of water shortage17,19,58.Although historical hydrological series show that extreme drought events occurred in the past22,25,38,62 (e.g., from the late 1960s to early 1970s, Fig. S3), they also show that the recovery of the Pantanal was conditioned to the subsequent 15 years of regular to exceptional floods (1974 to early 1990s, Figs. S1, S3). Savanna-like vegetation, the predominant vegetation type in the Pantanal, usually recovers from the effects of fires in relatively short periods (months to a few years)23, depending on the severity and frequency of fires and climate conditions in the subsequent years23,28,29. But the resilience of many species may decrease with the annual repetition of extreme fire events28,29,30. Thus, human interventions to prevent (instead to promote) sequential fire events in the same area are paramount19,23,62,63.Estimating the effects that uncontrolled extensive fires can cause to the apex predator of the Neotropics in a region considered one of the strongholds for the species can contribute to the conservation of jaguar and other wildlife species, as well as to the debate regarding potential cumulative impact of recurrent wildfires on ecosystems26,31,51,62,63. Our results revealed the drastic impact of fire on estimated numbers of jaguars, home ranges, and priority areas for jaguar conservation in the Pantanal was exceptionally high in 2020 and proportionally more severe than the nominal 31% of burned area across the Pantanal (e.g., fires affected 45% of the jaguars and 79% of their HRs). Moreover, the annual comparison showed that 2019 was the second-worst year regarding fire impacts (only behind 2020) and equally extreme compared to historical means22. Although the Pantanal is well known for its annual and pluri-annual cycles of wet and dry seasons7,64, the unusual levels of droughts22,25,65,66 and fires17,20,21 in subsequent years are alarming. Furthermore, climate assessment and projections of warmer and dryer conditions for the region in the coming years are equally worrying22,24,37,38.We found that 45% of the jaguar population estimated for the Pantanal occupied areas affected by the 2020 fires (Fig. 1). This finding suggests that the fires heavily impacted the jaguars in the Pantanal, even if we assume that the major effects were only temporary displacement. This potential displacement may make it more difficult for jaguars to find new suitable areas, thus increasing territorial disputes and decreasing survival and reproductive success. Furthermore, 2019 ranked as the second-highest year of impact of fire on jaguar population estimates among the 16 years considered (Table 1, Fig. 1). Importantly, we did not consider cumulative impacts on sequential years or fire recurrence in these estimates. Moreover, the available estimates for jaguar abundance we used36 are very conservative and probably underestimated jaguar populations from the Pantanal by a maximum of 3 jaguars/100 km2. However, the reported density of jaguars may reach up to 12.4 jaguars/100 km2 in northern PAs5,67,68 and up to 6.5–7 jaguars/100 km2 in the southern Pantanal farms5,69,70. Considering that PAs in the northern Pantanal were severely damaged by the 2020 fires, our results show conservative figures for the actual number of jaguars affected by fires.We used densities estimated from an ecosystem-wide assessment of impacts as a proxy of the proportion of total population reached by fire each year on a regional scale. Fires affected a substantial proportion of estimated individuals in the Pantanal in 2019–2020. In 2020, for instance, 87% of all jaguars affected by fire were in the Brazilian Pantanal. In contrast, the smaller population in the Paraguayan and Bolivian Pantanal had a higher median percentage of individuals affected by fire between 2005–2019. While 45% of jaguars were affected by fire in a single year (2020) in the Pantanal, a study45 using the same conservative estimates36 for jaguar abundance in the Brazilian Amazon revealed that 1.8% of the population (1422 individuals) was killed or displaced by fire between 2016–2019. Another report estimated that more than 500 individuals were affected by the 2019 fires in the Brazilian and Bolivian Amazon71,72. Based on the same density estimates we found that in the Pantanal — a much smaller biome — more jaguars were affected by fire in single years (n = 513 in 2019 and n = 746 in 2020). This recent increase in the number of jaguars affected by fire raises a red flag to the supposed stability of the species in the Pantanal, which is currently globally and locally classified as Near Threatened1,5. Therefore, we recommend that future assessments by IUCN specialists carefully consider the frequency and intensity of fires as a potentially significant and growing threat to jaguars in the Pantanal, and their effects on long-term populational trends.Quantifying the occurrence of fire on HRs introduced a functional perspective to understanding the impact of fire on individual jaguars. Similarly, our estimates of the number of affected jaguars revealed a vast amount and extent of affected HRs in the last two years (Figs. 2 and 3). Jaguars are apex predators, often considered as a keystone73,74,75,76 and umbrella species45,77, highly dependent on large habitat areas78, dense native vegetation cover35,79,80, and abundance of prey67,81. Considering that jaguars often select areas with high environmental integrity35,68,78,79,80, the higher impact of recent fires on HRs corroborates reports showing the increase of natural areas burned in the Pantanal31,46,50,51. The proportion of burned forests, for instance, was 10 times higher in 2020 than the estimated median between 1985 and 201931. Sadly, it is likely that much of these burned forests in Northern Pantanal included areas pointed as suitable jaguar habitat and of great interest to the creation of additional PAs82.In the Pantanal, HRs are smaller35,83 and population densities are high5,67,68,69,70 because the biome is a highly productive system7,55,67, with an abundance of prey species and quality habitat, thus allowing jaguars to meet their spatial needs using smaller areas35,68,83. Consequently, floodplain jaguars are also usually larger44,84. However, a trend of increasing drought, rising temperatures, and repeated occurrences of exceptional fires would weaken the Pantanal’s resilience22,32. Importantly to note as well that the occurrence and intensity of fires are frequently higher in the dry season, peaking within jaguars HRs in the years with intense fire occurrence in the Pantanal. This apparent higher impact over jaguar habitat agrees with studies pointing out highest damage in PAs17,27 (Fig. S20), natural vegetation and particularly in forested areas in 202031,46,50,51. Recurrent impacts may particularly affect the most sensitive species28,29,30, resulting in a less productive environment32, which ultimately decreases the habitat quality of many species. These effects would likely push jaguars to expand their HRs, which would increase disputes for territories and favour a decrease in body size, consequently decreasing reproductive rates and population size.The extent of protected areas burned is another indicator of how fire can impact biodiversity. Like the HRs, the Pantanal PAs were affected differently in space and time, but the greatest fires occurred in recent years (2019 and 2020). In 2020, fires occurred in 62% of Brazilian PAs — particularly in northern Pantanal — where several portions of PAs overlapping with jaguar HRs were entirely or almost entirely affected by fires (Figs. 1–3). In 2019, however, fires affected the Pantanal PAs in Bolivia, Paraguay and southern Brazil more severely in areas that also overlapped with HRs (Figs. 1–3). Several causes can explain the spread of fires across PAs, including a combination of heat, drought, miscalculated human use of fires, lack of resources and personnel for surveillance and fire control improvement17,18,19,20,21,22,23.The displacement, injuries, and deaths caused by fire to animals within PAs are worrying because these areas are reportedly richer in diversity and biomass85,86 (including higher jaguars densities36,67,87 and are fundamental to safeguarding biodiversity and ensuring the long-term provision of ecosystem services88,89. Protected areas are important to jaguars because they provide larger continuous areas of natural dense vegetation cover (such as forests and shrublands), flooded habitats and limit contact with humans, attributes of great influence in jaguar habitat selection35,78,79,80,82, and particularly important to females90,91. However, although some PAs support up to 12.4 jaguars/100 km2 (e.g., Taiamã Ecological Station – TES)67, the currently availability of Pantanal PAs alone would not support viable jaguar populations for more than 50 years87. Therefore, sustainable management that allows coexistence in private lands is also fundamental for the conservation of jaguars in the Pantanal5,9,10,11. Protected areas of integral protection, such as TES, currently occupy only 5.7% of the Pantanal7 but were the most affected by fires in absolute area (Fig. S20, Table S5)27. The total number of PAs, including the sustainable use ones, corresponds to only 5% of the Brazilian Pantanal (Tables S1–S3)7,92,93,94,95,96 and around 10% of the entire Pantanal7, most of it in Bolivia97. These percentages are much lower than the minimum of 17% recommended in the Aichi goals for terrestrial ecosystems7,56. Furthermore, PAs are also scarce in the Pantanal headwaters (6% of the surrounding Cerrado uplands) (Tables S1–S3, Fig. S19)7,92,93,94,95,96. To make matters worse, PAs were reduced by almost 20% in the Brazilian Pantanal in 2007 and have not been expanded in the Cerrado uplands since 2006 (Tables S1–S3, Fig. S19)93. The relatively small coverage of protected areas in the Pantanal, which serve as refuges, increases the negative effects of fires, as jaguars are likely displaced into sub-optimal habitats. Consequently, jaguars and other species may struggle to find equally resource-rich sites after being displaced from PAs.For the long-term survival of the jaguar, it is essential to implement conservation plans that consider the dispersal and reproduction of the species along the Paraguay River98, increase the network and size of PAs82, and adequately allocate funding and personnel to maintain the PAs. Furthermore, careful implementation of strategies to mitigate the risk of fire18,19,62 and other human impacts outside PAs5,6,7,8,9,10,11,12,13,14,15,16,89,99 are urgent needs for conservation of the Pantanal. In any case, our results highlight that to sustain viable populations of jaguars and other species, conservation plans for the Pantanal must account for fire impact on PAs and other vital areas for biodiversity.Although jaguar HRs often overlap with PAs67,68,87, some individuals may settle in unprotected areas69,70. In our sample, we found that 38 HRs partially overlapped with PAs (Fig. 1) and 10 HRs did not. On the other hand, considering the sum of the HR extents and the total area overlapped with the PAs, we found that 20% of the HR extent matched the PAs. Notably, jaguars coexist with different levels of anthropic pressures outside the PAs4,5,9,10,11,12,13,14,15,16. Jaguar distribution range has been restricted to 63% of the Pantanal5 and even more restricted in the UPRB100. Agriculture expansion, particularly cattle ranching and soybean cultivation (Figs. S17, S18)65, has been identified as the main causes of jaguars’ disappearance or decline due to killing and habitat loss5,9,13.Sustainable use has been advocated as a conservation strategy in the Pantanal, mainly due to the characteristics of the region, where cattle ranching uses as pastures the natural areas restricted by the Pantanal flooding regime since the 17th century7,23. In recent years, ecotourism has also gained great importance55,101,102. However, there are risks in relying on sustainable use as a core strategy for 90% of the biome (95% of Brazilian Pantanal), and exposure to human-induced fires is one of them21,31.Fire is a fundamental factor acting on the dynamics of the Pantanal vegetation23,28,29. However, repeated uncontrolled fires can drastically impact forests and other habitats critical to the jaguars and increase the area for cattle ranching, therefore increasing the risk of livestock depredation and retaliatory hunting11. Thus, the conservation of the jaguar and other animal species in the Pantanal is critically linked to fire management and the use of private lands because the increased fire may extend and aggravate other anthropic impacts (Fig. 4). This work highlights the significant increase in the extent and severity of recent fires in the Pantanal and how these fires have affected jaguars. Further studies that estimate natural habitat recovery and fire recurrence and assess real-time and long-term effects of fire on jaguars and other species are critical to guide fire management and conservation.Fig. 4: Scheme summarizing the main impacts of fires in the Pantanal.The red arrows are intentionally larger and show a feedback loop linking increased negative human impacts, climate change, and drought to increased fires and burned areas, with a consequent negative impact on biodiversity. The blue arrows describe a feedback loop for fire control and impact mitigation. The dashed arrows denote other relevant effects in the biome (e.g., cumulative effects from infrastructure such as hydroelectric power plants, river waterways, water and soil pollution from legal and illegal mining and agriculture, poaching and illegal wildlife trade, opportunistic exploitation of burned areas, as well as natural climate constraints.Full size imageChanges in the climate8,22,24,37,38, landscape and water use in the UPRB over the last four decades7,18,56,65 are cumulative threats that may interfere with water recharge and vegetation resilience in the Pantanal. Global temperatures may increase up to 1.5 °C over the next five years37, in addition to the 2 °C already recorded since 1980. By the end of the 21st century, scientists estimate increases of 5 − 7 °C in the temperature and the frequency of climatic extremes and a 30% reduction in average rainfall8,37,38. Until 2019, pastures covered 15.5% of the Brazilian Pantanal and agriculture about 0.14%25. However, agriculture and pastures occupied 60–65% of the surrounding Cerrado uplands within the UPRB7,55,56, an occupation similar to the adjacent Paraguayan Chaco and Bolivian Chiquitano Forest7,103,104. And future projections estimate a loss of 14,005 km2 of native vegetation from 2018 through 2050105. Consequently, this land occupation impacted the main headwaters of the Pantanal rivers and ultimately the entire Pantanal6,56,106,107. Furthermore, by 2019, 47 hydroelectric power plants were installed or in operation, and another 133 were planned, totalling about 180 potential dam projects in the Brazilian UPRB108. Besides, most of these projected hydropower infrastructures will overlap with the distribution of jaguars, also in the adjacent biomes, impacting negatively the species particularly in Brazil15. These economic and infrastructure activities in the surrounding highlands frequently ignore their cumulative impacts109 and affect the Pantanal in different ways (Fig. 4, S17, S18), including its drainage dynamics and flood pulses, with consequent impacts on drought duration and fire spread17,19,22,23,24(Figs. 1–4, SI). This combination of factors probably intensifies the Pantanal droughts, particularly the periodic sequence of dry years.Therefore, a critical point is how human actions can exacerbate such extreme events7,21,31,55,106,110 and make fire control even more difficult19,23,62 or, on the opposite, contribute to minimize the overall impacts of drought and fires and promote biodiversity conservation19,63 (Fig. 4). Given that the rainfall remained below average in the last wet seasons53 (Figs. S1, S3–S8) and that a severe drought persisted in 2021111, a surveillance protocol for rapid response and programs for fire management, mitigation of human impacts and ecosystem recovery are needed19,23,62,63. If such measures keep lacking, a tragedy similar to the 2020 fires may be repeated in the coming years (Fig. 4). And Pantanal native vegetation may be reduced to only about 62% by 203021. To make matters worse, the government budget allocated for fire control and firefighting for 2021 was reduced to 65.5% of the 2019 budget61 and all funds allocated to the environment were reduced to the lowest level in 20 years61,112, with serious complaints of misuse113, embezzlement114 and wood-smuggling probe115.The extent of the recent wildfire in the Pantanal has signalled that fire is a potential threat to the long-term conservation of the jaguar. Furthermore, fires severely affected other species and human activities17,19,23, demanding an immediate mitigation plan18,19,62. In fact, permanent fire brigades have been established, and an animal rescue centre is under construction in response to the effects of the recent extensive fires in the Pantanal. Although actions are underway at local levels, the warming and drying trend22,24,37,38 is also a combination of global warming8,37 and rapid land-use changes7,18,65 (Figs. S17, S18), with cumulative impacts in the UPRB and Pantanal wetlands (Fig. 4). Therefore, the immediate reduction of deforestation in the Amazon and Pantanal and the establishment of a forest restoration plan in the UPRB are critical. The lack of sufficient mitigatory actions may throw the Pantanal into a perverse vortex (increasing feedback of cumulative negative impacts, (Fig. 4), thus affecting the survival of jaguars and the various species under their umbrella, as well as human welfare. More