More stories

  • in

    Dark plumes of glacial meltwater affect vertical distribution of zooplankton in the Arctic

    Meredith, M. et al. Polar regions. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Pörtner, H.‐O. et al. Eds.). 203–320 (2019).Nummelin, A., Ilicak, M., Li, C. & Smedsrud, L. H. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 121, 617–637 (2016).ADS 

    Google Scholar 
    Smedsrud, L. H., Sorteberg, A. & Kloster, K. Recent and future changes of the Arctic sea-ice cover. Geophys. Res. Lett. 35, L20503 (2008).ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903. https://doi.org/10.1038/s41558-020-0905-y (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Tripathy, S. C. et al. Summer variability in bio-optical properties and phytoplankton pigment signatures in two adjacent high Arctic fjords, Svalbard. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03767-4 (2021).Article 

    Google Scholar 
    Sagan, S. & Darecki, M. Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen. Oceanologia 60, 65–75 (2018).
    Google Scholar 
    Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. in Proceedings of the National Academy of Sciences of the United States of America. Vol. 116. 9239–9244. Preprint at https://doi.org/10.1073/pnas.1904242116 (2019).Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around antarctica. Science 1979(341), 266–270 (2013).ADS 

    Google Scholar 
    Konik, M., Darecki, M., Pavlov, A. K., Sagan, S. & Kowalczuk, P. Darkening of the Svalbard Fjords waters observed with satellite ocean color imagery in 1997–2019. Front. Mar. Sci. 8, 27 (2021).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).Szeligowska, M. et al. The interplay between plankton and particles in the Isfjorden waters influenced by marine- and land-terminating glaciers. Sci. Total Environ. 780, 146491 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Trudnowska, E., Dąbrowska, A. M., Boehnke, R., Zajączkowski, M. & Blachowiak-Samolyk, K. Particles, protists, and zooplankton in glacier-influenced coastal svalbard waters. Estuar. Coast Shelf Sci. 242, 106842 (2020).
    Google Scholar 
    Maekakuchi, M., Matsuno, K., Yamamoto, J., Abe, Y. & Yamaguchi, A. Abundance, horizontal and vertical distribution of epipelagic ctenophores and scyphomedusae in the northern Bering Sea in summer 2017 and 2018: Quantification by underwater video imaging analysis. Deep Sea Res. 2 Top. Stud. Oceanogr. 181–182, 104818 (2020).
    Google Scholar 
    Norrbin, F., Eilertsen, H. C. & Degerlund, M. Vertical distribution of primary producers and zooplankton grazers during different phases of the Arctic spring bloom. Deep Sea Res. 2 Top. Stud. Oceanogr. 56, 1945–1958 (2009).
    Google Scholar 
    Stemmann, L. et al. Vertical distribution (0–1000 m) of macrozooplankton, estimated using the Underwater Video Profiler, in different hydrographic regimes along the northern portion of the Mid-Atlantic Ridge. Deep Sea Res. 2 Top. Stud. Oceanogr. 55, 94–105 (2008).
    Google Scholar 
    Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526–1537 (2011).CAS 

    Google Scholar 
    Arimitsu, M., Piatt, J. & Mueter, F. Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords. Mar. Ecol. Prog. Ser. 560, 19–40 (2016).ADS 

    Google Scholar 
    Renner, M., Arimitsu, M. L. & Piatt, J. F. Structure of marine predator and prey communities along environmental gradients in a glaciated fjord. Can. J. Fish. Aquat. Sci. 69, 2029–2045 (2012).
    Google Scholar 
    Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471. https://doi.org/10.1016/j.jmarsys.2013.09.006 (2014).Article 

    Google Scholar 
    Falk-Petersen, S., Pavlov, V., Timofeev, S. & Sargent, J. R. Climate variability and possible effects on arctic food chains: The role of Calanus. in Arctic Alpine Ecosystems and People in a Changing Environment. 147–166. https://doi.org/10.1007/978-3-540-48514-8_9 (Springer, 2007).Stempniewicz, L. et al. Visual prey availability and distribution of foraging little auks (Alle alle) in the shelf waters of West Spitsbergen. Polar Biol. 36, 949–955 (2013).
    Google Scholar 
    CAFF. Arctic Coastal Biodiversity Monitoring Plan (CAFF Monitoring Series Report No. 29). (2019).Arendt, K. E., Nielsen, T. G., Rysgaard, S. & Tönnesson, K. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49–62 (2010).ADS 
    CAS 

    Google Scholar 
    Blachowiak-Samolyk, K. et al. Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar. Ecol. Prog. Ser. 308, 101–116 (2006).ADS 

    Google Scholar 
    Cottier, F. R., Tarling, G. A., Wold, A. & Falk-Petersen, S. Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol. Oceanogr. 51, 2586–2599 (2006).ADS 

    Google Scholar 
    Hobbs, L. et al. A marine zooplankton community vertically structured by light across diel to interannual timescales. Biol Lett 17, 20200810 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wallace, M. I. et al. Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: An insight into the influence of sea ice cover on zooplankton behavior. Limnol. Oceanogr. 55, 831–845 (2010).ADS 

    Google Scholar 
    Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 

    Google Scholar 
    Rabindranath, A. et al. Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumn midnight sun of 2008. Mar. Biodivers. 41, 365–382 (2011).
    Google Scholar 
    Piwosz, K. et al. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol. 32, 549–559 (2009).
    Google Scholar 
    Frank, T. M. & Widder, E. A. Effects of a decrease in downwelling irradiance on the daytime vertical distribution patterns of zooplankton and micronekton. Mar. Biol. 140, 1181–1193 (2002).
    Google Scholar 
    Ortega, J. C. G., Figueiredo, B. R. S., da Graça, W. J., Agostinho, A. A. & Bini, L. M. Negative effect of turbidity on prey capture for both visual and non-visual aquatic predators. J. Anim. Ecol. 89, 2427–2439. https://doi.org/10.1111/1365-2656.13329 (2020).Article 
    PubMed 

    Google Scholar 
    Aksnes, D. et al. Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar. Ecol. Prog. Ser. 387, 39–49 (2009).ADS 
    CAS 

    Google Scholar 
    Urbanski, J. A. et al. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 7, 1–12 (2017).
    Google Scholar 
    Weslawski, J. M., Pedersen, G., Petersen, S. F. & Porazinski, K. Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42, 1 (2000).
    Google Scholar 
    Berge, J. et al. Arctic complexity: A case study on diel vertical migration of zooplankton. J. Plankton Res. 36, 1279–1297 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Darnis, G. et al. From polar night to midnight sun: Diel vertical migration, metabolism and biogeochemical role of zooplankton in a high Arctic fjord (Kongsfjorden, Svalbard). Limnol. Oceanogr. 62, 1586–1605 (2017).ADS 
    CAS 

    Google Scholar 
    Descamps, S. et al. Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Glob. Chang Biol. 23, 490–502 (2017).ADS 
    PubMed 

    Google Scholar 
    Cottier, F. R. et al. Arctic fjords: A review of the oceanographic environment and dominant physical processes. Geol. Soc. Spec. Publ. 344, 35–50 (2010).ADS 

    Google Scholar 
    Inall, M. E., Nilsen, F., Cottier, F. R. & Daae, R. Shelf/fjord exchange driven by coastal-trapped waves in the Arctic. J. Geophys. Res. Oceans 120, 8283–8303 (2015).ADS 

    Google Scholar 
    Promińska, A., Cisek, M. & Walczowski, W. Kongsfjorden and Hornsund hydrography—Comparative study based on a multiyear survey in fjords of west Spitsbergen. Oceanologia 59, 397–412 (2017).
    Google Scholar 
    Agrawal, Y. C. & Pottsmith, H. C. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168, 89–114 (2000).ADS 

    Google Scholar 
    Basedow, S. L., Tande, K. S. & Zhou, M. Biovolume spectrum theories applied: Spatial patterns of trophic levels within a mesozooplankton community at the polar front. J. Plankton Res. 32, 1105–1119 (2010).PubMed 

    Google Scholar 
    Trudnowska, E., Basedow, S. L. & Blachowiak-Samolyk, K. Mid-summer mesozooplankton biomass, its size distribution, and estimated production within a glacial Arctic fjord (Hornsund, Svalbard). J. Mar. Syst. 137, 55–66 (2014).
    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 

    Google Scholar 
    Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80 (2013).ADS 

    Google Scholar 
    Woźniak, S. B., Darecki, M., Zabłocka, M., Burska, D. & Dera, J. New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 58, 161–175 (2016).
    Google Scholar 
    Marker, A. The measurement of photosynthetic pigments in freshwaters and standardization of methods : Conclusions and recommendations. Arch. Hydrobiol. Beih 14, 91–106 (1980).CAS 

    Google Scholar 
    Stramska, M. Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic. J. Geophys. Res. 108, 3143 (2003).ADS 

    Google Scholar 
    Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, 462–473 (2010).
    Google Scholar 
    Gabrielsen, T. M. et al. Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol. 35, 1621–1628 (2012).
    Google Scholar 
    Trudnowska, E. et al. In a comfort zone and beyond—Ecological plasticity of key marine mediators. Ecol. Evol. 10, 14067–14081 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean version 4.0. Sci Data 7, 1–14 (2020).
    Google Scholar 
    van Rossum, G. & Drake, F. L. Python 3 Reference Manual. Preprint (2009).Caswell, T. A. et al. matplotlib/matplotlib: REL: v3.1.1. https://doi.org/10.5281/ZENODO.3264781 (2019).Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
    Google Scholar 
    Mckinney, W. Data Structures for Statistical Computing in Python. (2010).Reback, J. et al. pandas-dev/pandas: Pandas 1.0.5. https://doi.org/10.5281/ZENODO.3898987 (2020).Pond, S. & Pickard, G. L. Introductory dynamical oceanography. 2nd Ed. (1983).Mojica, K. D. A. et al. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean. Limnol. Oceanogr. 60, 1498–1521 (2015).ADS 

    Google Scholar 
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. http://www.primer-e.com (2008).Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 Plymouth Routines in Multivariate Ecological Research. www.primer-e.com (2015).Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).Terpilowski, M. scikit-posthocs: Pairwise multiple comparison tests in Python. J. Open Source Softw. 4, 1169 (2019).ADS 

    Google Scholar 
    Alcaraz, M. et al. The role of arctic zooplankton in biogeochemical cycles: Respiration and excretion of ammonia and phosphate during summer. Polar Biol. 33, 1719–1731 (2010).
    Google Scholar 
    Soviadan, Y. D. et al. Patterns of mesozooplankton community composition and vertical fluxes in the global ocean. Prog. Oceanogr. 200, 102717 (2022).
    Google Scholar 
    Falk-Petersen, S. et al. Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res. 2 Top. Stud. Oceanogr. 55, 2275–2284 (2008).
    Google Scholar 
    Lane, P. V. Z., Llinás, L., Smith, S. L. & Pilz, D. Zooplankton distribution in the western Arctic during summer 2002: Hydrographic habitats and implications for food chain dynamics. J. Mar. Syst. 70, 97–133 (2008).
    Google Scholar 
    Kulk, G., Poll, W. H. & Buma, A. G. J. Photophysiology of nitrate limited phytoplankton communities in Kongsfjorden, Spitsbergen. Limnol. Oceanogr. 63, 2606–2617 (2018).ADS 
    CAS 

    Google Scholar 
    Moskalik, M. et al. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia 60, 446–463 (2018).
    Google Scholar 
    Svendsen, H. et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133–166 (2002).
    Google Scholar 
    Chiswell, S. M., Calil, P. H. R. & Boyd, P. W. Spring blooms and annual cycles of phytoplankton: A unified perspective. J. Plankton Res. 37, 500–508 (2015).
    Google Scholar 
    Kaartvedt, S., Melle, W., Knutsen, T. & Skjoldal, H. Vertical distribution of fish and krill beneath water of varying optical properties. Mar. Ecol. Prog. Ser. 136, 51–58 (1996).ADS 

    Google Scholar 
    Schmid, M. S., Maps, F. & Fortier, L. Lipid load triggers migration to diapause in Arctic Calanus copepods—Insights from underwater imaging. J. Plankton Res. 40, 311–325 (2018).CAS 

    Google Scholar 
    Campbell, R. G. et al. Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep Sea Res. 2 Top. Stud. Oceanogr. 56, 1274–1289 (2009).
    Google Scholar 
    Hirche, H. J. Diapause in the marine copepod, calanus finmarchicus—A review. Ophelia 44, 129–143 (1996).
    Google Scholar 
    Pedersen, S. A. & Smidt, E. L. B. Zooplankton Investigations Off West Greenland, 1956–1984. (ICES, 1995).Reiner Vonnahme, T. et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier. Cryosphere 15, 2083–2107 (2021).ADS 

    Google Scholar 
    Majaneva, S. et al. Aggregations of predators and prey affect predation impact of the Arctic ctenophore Mertensia ovum. Mar. Ecol. Prog. Ser. 476, 87–100 (2013).ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep Sea Res. 2 Top Stud Oceanogr 57, 127–135 (2010).
    Google Scholar 
    Condon, R. H. et al. Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62, 160–169 (2012).
    Google Scholar 
    Balazy, K., Trudnowska, E. & Błachowiak-Samołyk, K. Dynamics of Calanus copepodite structure during little Auks’ breeding seasons in two different Svalbard locations. Water (Basel) 11, 1405 (2019).CAS 

    Google Scholar 
    Karnovsky, N. J. & Hunt, G. L. Estimation of carbon flux to dovekies (Alle alle) in the North Water. Deep Sea Res. 2 Top. Stud. Oceanogr. 49, 5117–5130 (2002).CAS 

    Google Scholar 
    Renaud, P. E. et al. Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida?. Polar Biol. 35, 401–412. https://doi.org/10.1007/s00300-011-1085-z (2012).Article 

    Google Scholar 
    Szeligowska, M. et al. Spatial patterns of particles and plankton in the warming Arctic Fjord (Isfjorden, West Spitsbergen) in seven consecutive mid-summers (2013–2019). Front. Mar. Sci. 7, 584 (2020).
    Google Scholar  More

  • in

    Spatial scaling of pollen-plant diversity relationship in landscapes with contrasting diversity patterns

    We found a significant positive relationship between pollen- and plant richness regardless of differences in plant diversity, landscape structure and environmental conditions between the two study regions. This finding represents a major step stone towards more accurate paleoecological reconstructions of plant diversity in temperate Central Europe, as previous studies on this topic have mostly been conducted in boreal and boreal-nemoral zones8,11, in high mountain habitats10 or in southern Europe9,12.Methodological differences e.g., in diversity indices, data transformations or sample sizes used make comparison between studies difficult. Nevertheless, the strongest relationships seem to be found when habitats with contrasting patterns of plant diversity are compared, such as forests and alpine vegetation7 or forests, peatlands and grasslands11. Also in our study, we found the strongest correlations when complete datasets combining forested and open habitats were analysed together for both study regions. As it is well known that plant richness is generally lower in forests than in open landscapes across temperate and boreal regions28, this finding may seem rather trivial. However, it is important for paleoecological reconstruction because Holocene changes in diversity in temperate regions were largely driven by changes in the relative abundance of major habitat types (such as forests, grasslands, wetlands and man-made habitats), and not just by changes in species richness within these habitats5,6.Regarding individual habitats, the pollen-plant diversity relationship is often rather strong and significant in grasslands and other open habitats8,11; for example the WCM open-habitat subset in this study. Open habitats are generally richer in species, thus providing a longer gradient of species richness compensating for the taxonomical imprecision of the pollen analysis. In forested sites with less species, we found mostly non-significant relationships. Moreover, two other factors may play a role.First, high pollen productivity of trees biases the diversity relationship according to the studies from northern Europe16. However, a study from an elevational transect in southern Norway showed that the strongest bias in representation occurs only in the boreal forest biome, which is dominated by high pollen producers10. Our dominant vegetation component, Picea and Quercus, have intermediate to high pollen productivity (2–2.5), whereas true high pollen producers such as Alnus and Betula ( > 3) are less abundant in our study area (Supplementary Fig. S2). Adjustment of pollen counts by PPEs led to stronger relationship between pollen and floristic richness only in the WCM open-habitat subset (Supplementary Fig. S4).Second, interception of pollen by the tree canopies29 and subsequent washout to the forest floor affects the diversity relationship of forest sites more than pollen productivity. This noise described also as a vegetation filtering30 can be illustrated in our dataset by pollen of long-distance transport from Ambrosia artemisiifolia-type, which has the closest source populations ca. 50 km south-eastwards from WCM region31; or pollen of Artemisia, growing in open habitats. Both pollen taxa are more abundant in the forest than in open sites (Supplementary Fig. S3).Regarding the application of these results for the interpretation of fossil record, we suggest to consider only marked changes of pollen richness in the past and to avoid overinterpretation of small differences, as the non-significant relationships obtained in both forest datasets suggest some limitations of the method.We showed that the pollen-plant diversity relationship may be at least partly disentangled by knowing the exact spatial position of plant species in broader surroundings of the pollen sampling sites. Changes in the relationship with changing spatial scale are largely driven by the numbers of species newly appearing as the radius of surveyed area increases, especially as new habitats are added (Fig. 5, Supplementary Fig. S5). Remarkably, in the BMH region it increases with distance, whereas the opposite trend was observed in the WCM region. This discrepancy may be explained by non-uniform richness patterns in different habitats and by different landscape structure (i.e. spatial arrangement of different habitats) in the two study regions.At open-habitat sites in the WCM area, most species generally appeared within the first 40 m. This observation is consistent with the knowledge of extremely high fine-scale plant diversity in the local steppic meadows, where a substantial portion of the species pool occurs on a scale of tens of square meters32. Moreover, the grain size of the habitat mosaic in the WCM region is finer than in the BMH region. Therefore, the closest pollen-plant diversity relationship across habitats in the WCM region is achieved over shorter distances. Although habitats such as built-up areas and roads occurring at distances greater than 40 m may be species-rich and compositionally different from the grasslands and forests, it appears that high fine-scale plant diversity (in our case in WCM open-habitat subset) limits the influence of the surrounding landscape on pollen richness and reduces the source area of pollen richness. Several studies of the relevant source area of pollen report analogous results33,34,35. A weakening relationship between pollen diversity and plant diversity with distance has also been observed in the Mediterranean region9, although their interpretations are limited by field survey methodology.The appearance of open habitats within forests led to the increase of species numbers and the local maxima of adjusted R2 in both regions. While in the BMH forest the appearance of forest roads at about 70 m was crucial, meadows and orchards at about 250 m played a similar role in the WCM forest subset. In the WCM open-habitat subset diversity patterns in the first tens of metres were crucial, while in the BMH open-habitat subset increased correlation of floristic and pollen richness appeared only at 400 and 550 m; at this distance many species appeared due to the frequent transition of meadow complexes to shrubby habitats and built-up areas. Also other studies from semi-open landscapes found a high correlation between pollen richness and landscape openness17,26,27.Estimating the source area of pollen variance as a regression of pollen and floristic variance implies that the resulting distance of 100–250 m represents all datasets. Although they differ in species richness, openness and habitats, the relationship between variances is fairly linear. The exception is the WCM open-habitat subset suggesting that the spatial scale at which the pollen variance corresponds to the floristic variance cannot be generalized.The strong effect of high pollen richness in the WCM open-habitat subset is also visible in the comparison of pollen and floristic variance. At 150 m, the WCM open-habitat subset had much lower floristic variance than the other subsets. Floristic variance in this subset corresponding to the pollen variance and the pattern of the other datasets lay at 6 m (Fig. 6b). Again, this may be caused by the high fine-scale diversity of the meadows, which include most pollen types present in the surrounding landscape. Only a few new species appeared in broader surroundings and at 150 m, WCM open habitats are more similar than other analysed habitats. The fact that extremely high alpha diversity is compensated by low beta diversity has already been reported from the open habitats of the White Carpathians36. The linearity and the significance of the variance relationship within the rest of the datasets indicate robustness and possible applicability to a variety of fossil records.The mechanism of establishing the source area of pollen variance was similar to that mentioned for the source area of pollen richness. The appearance of new habitats with new species (Fig. 5) like open habitat for forest sites (WCM forest subset) or built-up areas for open sites (BMH open-habitat subset), caused small to negligible increases of floristic variance. Moreover, the high yet insignificant relationship of the variances at the distance between 250 and 600 m (Fig. 6a) corresponds to the distance of the second range of fit between floristic and pollen richness (Fig. 4a).Beta diversity, understood as directional turnover (temporal or spatial), is becoming more frequently used in pollen analysis22,24 than beta diversity as a non-directional variation. According to Nieto-Lugilde et al.25 pollen-based turnover correlates with forest-inventory-based turnover. We extend this finding from woody taxa to all species and from directional turnover to non-directional variance. Moreover, forest sites with high contributions to pollen beta diversity also show an increased contribution to floristic beta diversity (Fig. 4b).The reference data on plant diversity report 1477 species in 15 mapping squares covered by our survey for the BMH region and 2045 species in 14 squares for the WCM region37. It means that we recorded 54.1 and 53.7%, respectively, of the known regional species pool in the two regions. We consider this as a rather good result and the close agreement in representativeness between the two regions speaks for consistency in data quality between the datasets. We advise that future studies covering wider areas and various biomes should preferentially use high-quality floristic data collected in targeted field surveys rather than database data or data from simplified field surveys. Only then we will be able to understand the pollen-plant diversity relationships more realistically and in a spatially explicit manner.In order to interpret fossil pollen richness in the light of our present results, we need to consider landscape openness, which can be roughly inferred from the ratio of arboreal and non-arboreal pollen. Variation of pollen richness during the forest phases of the records should be interpreted more carefully, especially in cases of low variation. In all other cases, the pollen richness is significantly linked to the plant richness within a distance of ten to several hundreds of meters, depending on the distance of the expected species-rich patches. More

  • in

    Extreme escalation of heat failure rates in ectotherms with global warming

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, 1987).Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    PubMed 

    Google Scholar 
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Hofmann, G. E. & Todgham, A. E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).CAS 
    PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).
    Google Scholar 
    Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).
    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Google Scholar 
    Schmidt-Nielsen, K. Animal physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).
    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).CAS 
    PubMed 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Hollingsworth, M. J. Temperature and length of life in Drosophila. Exp. Gerontol. 4, 49–55 (1969).CAS 
    PubMed 

    Google Scholar 
    Fry, F. E. J., Hart, J. S. & Walker, K. F. Lethal Temperature Relations for a Sample of Young Speckled Trout, Salvelinus fontinalis 9–35 (Univ. Toronto, 1946).MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. B 374, 20180548 (2019).
    Google Scholar 
    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed 

    Google Scholar 
    Ørsted, M., Jørgensen, L. B. & Overgaard, J. Finding the right thermal limit: a framework to reconcile ecological, physiological, and methodological aspects of CTmax in ectotherms. J. Exp. Biol. 225, jeb244514 (2022).Brown, J. H., Gillooly, J. F., Alle, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
    Google Scholar 
    Bowler, K. Heat death in poikilotherms: is there a common cause? J. Therm. Biol. 76, 77–79 (2018).PubMed 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).Overgaard, J., Kearney, M. R. & Hoffmann, A. A. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20, 1738–1750 (2014).
    Google Scholar 
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 
    PubMed 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol 54, 86–97 (2015).PubMed 

    Google Scholar 
    Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126, 362–386 (1985).
    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 

    Google Scholar 
    Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).
    Google Scholar 
    Roeder, K. A., Bujan, J., de Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 12, e03645 (2021).
    Google Scholar 
    Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).
    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).PubMed 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals the scale of prediction. Science 320, 1296–1297 (2008).CAS 
    PubMed 

    Google Scholar 
    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).
    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).PubMed 

    Google Scholar 
    Kingsolver, J. G., Higgins, J. K. & Augustine, K. E. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. J. Exp. Biol. 218, 2218–2225 (2015).PubMed 

    Google Scholar 
    Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).PubMed 

    Google Scholar 
    Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).CAS 
    PubMed 

    Google Scholar 
    Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS 
    PubMed 

    Google Scholar 
    Tollefson, J. How hot will Earth get by 2100? Nature 580, 443–445 (2020).CAS 
    PubMed 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Google Scholar 
    Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Data from: Extreme escalation of heat failure rates in ectotherms with global warming. Zenodo https://doi.org/10.5281/zenodo.6979789 (2022).Grove, T. J., McFadden, L. A., Chase, P. B. & Moerland, T. S. Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus. J. Muscle Res. Cell Motil. 26, 191–197 (2005).CAS 
    PubMed 

    Google Scholar 
    Doudoroff, P. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88, 194–206 (1945).
    Google Scholar 
    Sirikharin, R., Söderhäll, I. & Söderhäll, K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol. 80, 546–549 (2018).CAS 
    PubMed 

    Google Scholar 
    Becker, C. D. & Genoway, R. G. Resistance of crayfish to acute thermal shock: preliminary studies. in Proc. Thermal Ecology NTIS Conf. 730505 (eds Gibbons, J. W. & Sharitz, R. R.) 146–150 (NTIS, 1974).Widdows, J. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar. Biol. 20, 269–276 (1973).
    Google Scholar 
    Wallis, R. L. Thermal tolerance of Mytilus edulis of eastern Australia. Mar. Biol. 30, 183–191 (1975).
    Google Scholar 
    Gray, J. The mechanism of ciliary movement. III. The effect of temperature. Proc. R. Soc. B 95, 6–15 (1923).CAS 

    Google Scholar 
    Shertzer, R. H., Hart, R. G. & Pavlick, F. M. Thermal acclimation in selected tissues of the leopard frog Rana pipiens. Comp. Biochem. Physiol. A 51, 327–334 (1975).CAS 
    PubMed 

    Google Scholar 
    Orr, P. R. Heat death. II. Differential response of entire animal (Rana pipiens) and several organ systems. Physiol. Zool. 28, 294–302 (1955).
    Google Scholar 
    Lighton, J. R. B. & Duncan, F. D. Energy cost of locomotion: validation of laboratory data by in situ respirometry. Ecology 83, 3517–3522 (2002).
    Google Scholar 
    Heatwole, H. & Harrington, S. Heat tolerances of some ants and beetles from the pre-Saharan steppe of Tunisia. J. Arid Environ. 16, 69–77 (1989).
    Google Scholar  More

  • in

    Ancient DNA reveals how Viking-era fishers helped to make herring scarce

    .readcube-buybox { display: none !important;}
    A roaring trans-European herring trade that began in the Viking Age might have depleted stocks1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-03431-y

    References

    Subjects

    Latest on: More

  • in

    Predation impact on threatened spur-thighed tortoises by golden eagles when main prey is scarce

    Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman and Hall, 1992).
    Google Scholar 
    Sæther, B. E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 
    Koons, D. N., Pavard, S., Baudisch, A. & Metcalf, J. E. C. Is life-history buffering or lability adaptive in stochastic environments?. Oikos 118, 972–980 (2009).
    Google Scholar 
    Boyce, M. S., Haridas, C. V. & Lee, C. T. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).PubMed 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Buffering of life histories against environmental stochasticity: Accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness. Am. Nat. 163, 579–590 (2004).PubMed 

    Google Scholar 
    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66(10), 807–812 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. WIREs Water 4, e1208 (2017).
    Google Scholar 
    Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305(5692), 1955–1958 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Courchamp, F., Langlais, M. & Sugihara, G. Rabbits killing birds: Modelling the hyperpredation process. J. Anim. Ecol. 69, 154–164 (2000).
    Google Scholar 
    Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. 4, 307–318 (2001).
    Google Scholar 
    Kristan, W. B. & Boarman, W. I. Spatial patterns of risk of common raven predation on desert tortoises. Ecology 84, 2432–2443 (2003).
    Google Scholar 
    Whelan, C. J., Brown, J. S. & Maina, G. Search biases, frequency-dependent predation and species co-existence. Evol. Ecol. Res. 5, 329–343 (2003).
    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. An emerging infectious disease triggering large-scale hyperpredation. PLoS ONE 3, e2307 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M., Almaraz, P. & Sánchez-Zapata, J. A. Inferring ecological mechanisms from hunting bag data in wildlife management: A reply to blanco-aguiar et al. 2012. Eur. J. Wildl. Res. 59, 599–608 (2013).
    Google Scholar 
    Bate, A. M. & Hilker, F. M. Rabbits protecting birds: Hypopredation and limitations of hyperpredation. J. Theor. Biol. 297, 103–115 (2012).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Turner, F. B., Medica, P. A. & Lyons, C. L. Reproduction and survival of the desert tortoise (Scaptochelys agassizii) in Ivanpah Valley California. Copeia 1984(4), 811–820 (1984).
    Google Scholar 
    Graciá, E. et al. Assessment of the key evolutionary traits that prevent extinctions in human altered habitats using a spatially explicit individual-based model. Ecol. Model. 415, 108823 (2020).
    Google Scholar 
    Segura, A., Jiménez, J. & Acevedo, P. Predation of young tortoises by rabbits: The effect of habitat structure on tortoise detectability and abundance. Sci. Rep. 10, 1–9 (2020).
    Google Scholar 
    Watson, J. The golden eagle (Bloomsbury Publishing, 2010).
    Google Scholar 
    Fischer, W., Zenker, D. & Baumgart, W. Ein beitrag zum bestand und zur ernährung des steinadlers Aquila chrysaetos af der balkanhalbinsel. Beiträge zur Vogelskunde 21, 275–287 (1975).
    Google Scholar 
    Delibes, M., Calderón, J. & Hiraldo, F. Selección de presa y alimentación en españa del águila real (Aquila chrysaetos). Ardeola 21, 285–303 (1975).
    Google Scholar 
    Handrinos, G. The Golden Eagle in Greece. Actes 1er Coll. Intern. Aigle Royal en Europe, Arvieux, 1986: 18–22 (1987).Bautista, J., Gil-Sánchez, J. M. & Moleón, M. Dieta del águila real en el sur de españa. Quercus 364, 17–23 (2016).
    Google Scholar 
    Bautista, J., Castillo, S., Paz, J. L., Llamas, J. & Ellis, D. H. Golden eagles (Aquila chrysaetos) as potential predators of barbary macaques (Macaca sylvanus) in northern Morocco: Evidences of predation. Go-South Bull. 15, 172–179 (2018).
    Google Scholar 
    Kouzmanov, G., Stoyanov, R. & Todorov, V. Sur la biologie et la Protection de l`Aigle royal Aquila chrysaetos en Bulgarie. In Eagle studies (eds Meyburg, B. & Chancellor, R.) 505–516 (World Working Group on Birds of Prey, 1996).
    Google Scholar 
    Capper, S. The predation of Testudo spp. By Golden Eagles Aquila chrysaetos in Dadia Forest Reserve, NE Greece. University of Reading (1998).Karyakin, I. V., Kovalenko, A. V., Levin, A. S. & Pazhenkov, A. S. Eagles of the Aral-Caspian region Kazakhstan. Raptors Conserv. 22, 92–152 (2011).
    Google Scholar 
    Papageorgiou, N., Vlachos, C., Bakaloudis, D. E., Kazaklis, A., Birtsas, P. Study on the biology and management of raptors in Dadia forest–Evros. Thessaloniki, GR (1995).Sidiropoulos, L. et al. Pronounced seasonal diet diversity expansion of golden eagles (Aquila chrysaetos) in Northern Greece during the non-breeding season: The role of tortoises. Diversity 14(2), 135 (2022).
    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020–3 (2020).Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines: Testudinidae). Biol. J. Linn. Soc. 121, 641–654 (2017).
    Google Scholar 
    Graciá, E. et al. Genetic patterns of a range expansion: The spur-thighed tortoise Testudo graeca graeca in southeastern Spain. Amphib. Reptil. 32, 49–61 (2011).
    Google Scholar 
    Graciá, E. et al. The uncertainty of late pleistocene range expansions in the western Mediterranean: A case study of the colonization of south-eastern Spain by the spur-thighed tortoise, Testudo graeca.. J. Biogeogr 40, 323–334 (2013).
    Google Scholar 
    Anadón, J. D., Giménez, A., Perez, I., Martinez, M. & Esteve-Selma, M. A. Habitat selection by the spur-thighed tortoise Testudo graeca in a multisuccessional landscape: implications for habitat management. Biodivers. Conserv. 15, 2287–2299 (2006).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. Low tortoise abundances in pine forest plantations in forest-shrubland transition areas. PLoS ONE 12, e0173485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Caro, R. C. et al. The limits of demographic buffering in coping with environmental variation. Oikos 130(8), 1346–1358 (2021).
    Google Scholar 
    Rodríguez-Caro, R. C., Lima, M., Anadón, J. D., Graciá, E. & Giménez, A. Density dependence, climate and fires determine population fluctuations of the spur-thighed tortoise, Testudo graeca. J. Zool. 300, 265–273 (2016).
    Google Scholar 
    Rodríguez-Caro, R. C. et al. A low cost approach to estimate demographic rates using inverse modeling. Biol. Conserv. 237, 358–365 (2019).
    Google Scholar 
    Jiménez-Franco, M. V. et al. Sperm storage reduces the strength of the mate-finding allee effect. Ecol. Evol. 10(4), 1938–1948 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Graciá, E. et al. From troubles to solutions: Conservation of mediterranean tortoises under global change. Basic Appl. Herpetol. 34, 5–16 (2020).
    Google Scholar 
    Pérez, I. et al. Exurban sprawl increases the extinction probability of a threatened tortoise due to pet collections. Ecol. Model. 245, 19–30 (2012).
    Google Scholar 
    Del Moral, J. C. El águila real en España. Población reproductora en 2008 y método de censo. SEO/BirdLife. Madrid. pp. 30–50 (2009).Virgós, E., Cabezas-Díaz, S. & Lozano, J. Is the wild rabbit (Oryctolagus cuniculus) a threatened species in Spain? Sociological constraints in the conservation of species. Biodivers. Conserv. 16, 3489–3504 (2007).
    Google Scholar 
    Fernández, C. Effect of the viral haemorrhagic pneumonia of the wild rabbit on the diet and breeding success of the golden eagle Aquila chrysaetos (L.). Rev. Ecol. Terre et Vie 48, 323–329 (1993).
    Google Scholar 
    Villafuerte, R., Luco, D. F., Gortázar, C. & Blanco, J. C. Effect on red fox litter size and diet after rabbit haemorrhagic disease in northeastern Spain. J. Zool. 240, 764–767 (1996).
    Google Scholar 
    Martínez, J. A. & Zuberogoitia, I. The response of eagle owl (Bubo bubo) to an outbreak of the rabbit haemorrhagic disease. J. Ornithol. 142, 204–211 (2001).
    Google Scholar 
    Moleón, M. et al. Large-scale spatiotemporal shifts in the diet of a predator mediated by an emerging infectious disease of its main prey. J. Biogeogr. 36, 1502–1515 (2009).
    Google Scholar 
    Adamakopoulos, T., Gatzoyannis, S., Poirazidis, K. Study on the assessment, the enhancement of the legal infrastructure and the management of the protected area in the forest of Dadia. Specific Environmental Study, WWF-Greece, Athens (1995).Delibes, M., Hiraldo, F. The rabbit as prey in the Iberian Mediterranean ecosystem. In Proceedings of the World Lagomorph Conference. Guelph: University of Guelph. 1979: 614–622 (1979).Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Google Scholar 
    Moleón, M. et al. Predator–prey relationships in a mediterranean vertebrate system: Bonelli’s eagles, rabbits and partridges. Oecologia 168, 679–689 (2012).ADS 
    PubMed 

    Google Scholar 
    Fedriani, J. M., Ferreras, P. & Delibes, M. Dietary response of the Eurasian badger, Meles meles, to a decline of its main prey in the Doñana national park. J. Zool. 245, 214–218 (1998).
    Google Scholar 
    Ferrer, M. & Negro, J. J. The near extinction of two large European predators: Super specialists pay a price. Conserv. Biol. 18, 344–349 (2004).
    Google Scholar 
    Lozano, J., Moleón, M. & Virgós, E. Biogeographical patterns in the diet of the wildcat, Felis silvestris Schreber, in Eurasia: Factors affecting the trophic diversity. J. Biogeogr. 33, 1076–1085 (2006).
    Google Scholar 
    Burgos, T. et al. Prey density determines the faecal-marking behaviour of a solitary predator, the Iberian lynx (Lynx pardinus). Ethol. Ecol. Evol. 31, 219–230 (2019).
    Google Scholar 
    Ontiveros, D. & Pleguezuelos, J. M. Influence of prey densities in the distribution and breeding success of Bonelli’s eagle (Hieraaetus fasciatus): Management implications. Biol. Conserv. 93, 19–25 (2000).
    Google Scholar 
    Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory 1st edn. (Monographs in Behavior and Ecology. Princeton University Press, 1986).
    Google Scholar 
    Heath, J. A. et al. Golden Eagle dietary shifts following wildfire and shrub loss have negative consequences for nestling survivorship. Ornithol. Appl. 123(4), duabo34 (2021).
    Google Scholar 
    Anadón, J. D., Wiegand, T. & Giménez, A. Individual-based movement models reveal sex-biased effects of landscape fragmentation on animal movement. Ecosphere 3, 1–32 (2012).
    Google Scholar 
    Sanz-Aguilar, A., Anadón, J. D., Giménez, A., Ballestar, R. & Oro, D. Coexisting with fire: The case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol. Conserv. 144, 1040–1049 (2011).
    Google Scholar 
    Arroyo, B. Águila real – Aquila chrysaetos. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ (2017).Arroyo, B., Ferreiro, E., Garza, V. El águila real (Aquila chrysaetos) en España. Censo, distribución, reproducción y conservación. Serie Técnica, ICONA. Madrid (1990).Bautista, J., Gil-Sánchez, J. M., González Miras, E., Gómez, G. J. & Sánchez Balsera, J. L. Increase in the population of golden eagle in andalusian baetic system mountain ranges (southern of Spain): evidences of competition with the Bonelli’s eagle. Quercus 332, 16–22 (2013).
    Google Scholar 
    Rodríguez-Caro, R. C., Graciá, E., Anadón, J. D. & Giménez, A. Maintained effects of fire on individual growth and survival rates in a spur-thighed tortoise population. Eur. J. Wildl. Res. 59, 911–913 (2013).
    Google Scholar 
    Beissinger, S. R. & McCullough, D. R. Population viability analysis (University of Chicago Press, 2002).
    Google Scholar 
    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed 

    Google Scholar 
    Real, J. Biases in diet study methods in the Bonelli’s eagle. J. Wildl. Manag. 60(3), 632–638 (1996).
    Google Scholar 
    Moleón, M. et al. Laying the foundations for a human-predator conflict solution: Assessing the impact of Bonelli’s eagle on rabbits and partridges. PLoS ONE 6, e22851 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esteve-Selma, M. A., et al. Effects of climate change on the potential distribution of Testudo graeca in southeastern Iberian Peninsula. In Graciá E, Rodríguez-Caro RC and Giménez A. Conservation of Mediterranean tortoises under global change. Madrid. Asociación Herpetológica Española. ISBN: 978-84-921999-6-9.Anadón, J. D., Giménez, A., Ballestar, R. & Pérez, I. Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conserv. Biol. 23, 617–625 (2009).PubMed 

    Google Scholar 
    Abad, V. Variaciones del Índice corporal en una población de tortuga mora (Testudo graeca) del Sureste Ibérico. MSc thesis, Universidad Miguel Hernández de Elche, Spain (2007).Linden, H., Wikman, M. Goshawk predation on tetraonids: Availability of prey and diet of the predator in the breeding season. J. Anim. Ecol., 953–968 (1983).Fevold, H. R. & Craighead, J. J. Food requirements of the golden eagle. Auk 75, 312–317 (1958).
    Google Scholar 
    Collopy, M. W. Food consumption and growth energetics of nestling golden eagles. Wilson Bull. 445–458 (1986).Blanco, J. C., Villafuerte, R. Factores ecológicos que influyen sobre las poblaciones de conejos. Efectos de la enfermedad hemorrágico vírica. TRAGSA, Madrid Spain (1993). More

  • in

    Weather impacts on interactions between nesting birds, nest-dwelling ectoparasites and ants

    Study areaWe conducted the study in the best-preserved stands of the Białowieża Forest, strictly protected within the Białowieża National Park (hereafter BNP; coordinates of Białowieża village: 52°42′N, 23°52′E). The extensive Białowieża Forest (c. 1500 km2) straddles the Polish-Belarusian border, where the climate is subcontinental with annual mean temperatures during May–July of 13–18 °C, and mean annual precipitation of 426–940 mm66,67.The forest provides a unique opportunity to observe animals under conditions that likely prevailed across European lowlands before widespread deforestation and forest exploitation by humans66,68,69. The stands have retained a primeval character distinguished by a multi-layered structure, frequent fallen and standing dead trees, and a high species richness66,70. The stands are composed of about a dozen tree species of various ages, up to several hundred years old. The interspecific interactions and natural processes have been little affected by direct human activity.We conducted observations mostly within the three permanent study plots (MS, N, W), totalling c. 130 ha, and in other nearby fragments of primeval oak-lime-hornbeam Tilio-Carpinetum or mixed deciduous-coniferous Pino-Quercetum stands. However, a small number of observations from adjacent managed deciduous forest stands were also included. For details of the study area see71,72,73.Study speciesOur study system focused on ground-nesting Wood Warblers Phylloscopus sibilatrix, blowflies Protocalliphora azurea, and Myrmica or Lasius ants, which occurred in the birds’ nests.The Wood Warbler is a small (c. 10 g) insectivorous songbird that winters in equatorial Africa and breeds in temperate European forests, typically rearing one or two broods each year74. Wood Warblers build dome-shaped nests for each breeding attempt, composed of woven grass, leaves and moss, and lined with animal hair73. The nests are situated on the ground among moderately sparse vegetation, often under a tussock of vegetation or near a fallen tree-branch or log (see examples in Supplementary Fig. S2)53,75. The breeding season of Wood Warblers begins in late April–early May and ends in July–August, when nestlings from replacement clutches (after initial loss) or second broods leave the nest. The typical clutch size in BNP is 5–7 eggs, and the nestling stage lasts 12–13 days74,76.Wood Warbler nests are inhabited by various arthropods, including Myrmica ruginodis or M. rubra ants, and less often Lasius platythorax, L. niger or L. brunneus. The ants foraged and/or raised their own broods within the Wood Warbler nests52. The Myrmica and Lasius ant species are common in Europe77,78. Their colonies contain from tens to thousands of workers, and can be found on the forest floor, e.g. in soil, within or under fallen dead wood, in patches of moss, or among fallen tree-leaves53,77,78. All of the ant species found in the Wood Warbler nests are predators of other arthropods77,79,80.Blowflies, Protocalliphora spp., are obligatory blood-sucking (hematophagous) ectoparasites that reproduce within bird nests. The occurrence, abundance, and impact of blowflies on Wood Warbler offspring is largely unknown, similar to many other European songbirds that build dome-shaped nests. Adult blowflies emerge in late spring and summer to lay eggs on the birds’ nesting material or directly onto the skin of typically newly hatched nestlings14,26. The blowfly larvae hatch within two–three days, and develop in the structure of warm bird nests for another 6–15 days, during which they emerge intermittently to feed on host blood, before finally pupating within the nests14,25,26,27.Data collectionNest monitoring and measurements of nestlingsWe searched for Wood Warbler nests daily from late April until mid-July in 2018–2020, by following birds mainly during nest-building. Nests were assigned to a deciduous or mixed deciduous-coniferous habitat type, depending on the tree stand where they were found. We inspected nests systematically, according to the protocol described in Wesołowski and Maziarz76. The number of observer visits was kept to a minimum to reduce disruptions for birds or potential risks of nest predation.We aimed to establish the dates of hatching (day 0 ± 1 day), nestlings vacating the nest (fledging; ± 1 day) or nest failure (± 1–2 days). When nestlings hatched asynchronously, the hatching date corresponded to the earliest record of nestling hatching. The dates of fledging or nest failure were the mid-dates between the last visit when the nestlings were present in the nest, and the following visit, when the nest was found empty. Nest failure was primarily due to predation, which is the main cause of the Wood Warbler nest losses in BNP76,81 and elsewhere in Europe82,83.To assess fitness consequences for birds of variable weather conditions, blowfly abundance and/or ant presence, we measured nestling growth and determined brood reduction (i.e. the mortality of chicks in the nest) from hatching until fledging. To define brood reduction, we assessed the number of hatchlings (nestlings up to 4 days old) and the number of fledglings leaving the nests. To ensure accurate counting and avoid premature fledging of nestlings, we established the number of fledglings on the day of measurement, when all nestlings were temporarily extracted from the nest.We measured nestling growth on a single occasion when they were 6–9 days old (median 8 days), almost fully developed but too young to leave the nest. The measurements lasted for less than 10–15 min at each nest to minimise any potential risk of attracting predators. For each nestling we measured (using a ruler) the emerged length of the longest (3rd) primary feather vane (± 0.5 mm) on the left wing84,85, and body mass to the nearest 0.1 g using an electronic balance. The length of the feather vane is closely linked to feather growth86 and is one of the characteristics of nestling growth85,87. We treated the length of the primary feather vane and body mass as indices of nestling growth rate under varying conditions of weather, blood-sucking ectoparasites, or ant presence.Extraction of arthropods from bird nestsTo assess the number of blowflies and to establish the presence of ants, we checked the contents of 129 nests (including 11 nests from the managed forest stands) at which Wood Warbler nestlings had been measured. The sample included 86 successful breeding attempts (where a minimum of one nestling successfully left the nest), 27 failed (predated) nests (remnants of nestlings were found, but the nest structure remained intact), and 16 nests with an unknown fate (nestlings were large, so were capable of leaving the nest, but no family were located or other signs indicating fledging).Due to ethical reasons, we were unable to collect the Wood Warbler nests and extract the ectoparasites and ants from them while they were in use by the birds. Removing the nests and replacing them with dummy nests would cause unacceptable nest desertion by adults. Therefore, we assessed the occurrence and number of blowflies or ant presence after Wood Warbler nestlings fledged or the breeding attempts failed naturally. We retrospectively explored the changes in blowfly infestation14, including the effect of ant presence53 in the same nests.We collected nests from the field as soon as a breeding attempt ended, within approximately five days (median 1 day) following fledging or nest failure (nest structure remained intact). The delay of nest collection would not bias the ectoparasite infestation, as blowfly larvae pupate within bird nests and stay there after the hosts abandon their nests; puparia can be still found in nests collected in autumn or winter14. As the likelihood of finding ant broods (larvae or pupae associated with workers) was rather stable with the delay of nest collection53, the method seemed reliable also for assessing the presence of ant broods (35 of all 71 Wood Warbler nests containing ants). Only the number of nests with lone foraging ant workers could be underestimated, potentially inflating the uncertainty of tested relationships. However, as ants usually re-use rich food resources88, foraging Myrmica or Lasius ant workers might regularly exploit warbler nests, increasing the chances of finding the insects in the collected nests.Wood Warbler nests were collected in one piece, with each placed into a separate sealed and labelled plastic bag. We carefully inspected the leaf litter around the nests, and the soil surface under them, to make sure that all blowfly larvae or pupae were collected. We transported the collected nests to a laboratory, where we stored them in a fridge for up to 5–6 days before the arthropod extraction.To establish the number of blowflies and the presence of ants, in 2018, we carefully pulled apart the nesting material and searched for the arthropods amongst it 52. We gathered all blowfly pupae or larvae and a sample of ant specimens into separate tubes, labelled and filled with 70–80% alcohol, for later species identification. For nests collected in 2019–2020, we extracted the arthropods with a Berlese-Tullgren funnel. During the extraction, which usually lasted for 72 h, each nest was covered with fine metal mesh and placed c. 15 cm under the heat of a 40 W electric lamp. The arthropods were caught in 100 ml plastic bottles containing 30 ml of 70–80% ethanol, installed under each funnel. After the arthropod extraction, we carefully inspected the nesting material in the same way as in 2018, to collect any blowflies that remained within the nests. The quality of information collected on the number of ectoparasites and ant presence should be comparable each year.Weather dataWe obtained the mean daily temperatures and rainfall sums from a meteorological station, operated by the Meteorology and Water Management National Research Institute in the Białowieża village, 1–7 km from the study areas.Data analysesWeather conditions affecting blowfly ectoparasitesTo explore the impact of weather on blowfly ectoparasites, for each Wood Warbler nest we calculated average temperatures from daily means, and total sums of rainfall from daily sums, for the two time-windows in which we assumed the impact of weather would be of greatest importance:

    i.

    the early nestling stage, when Wood Warbler nestlings were 1–4 days old. During this stage, female blowflies require a minimum temperature of c. 16 °C to become active and oviposit in bird nests27. Thus, cool and wet weather in the early nestling stage should reduce the activity of ovipositing blowflies, leading to less frequent ectoparasite infestation of Wood Warbler nests.

    ii.

    The late nestling stage, when the warbler nestlings were aged between over four days old and until fledging or nest failure. During this stage, blowfly larvae grow and develop in bird nests after hatching a few days after oviposition14,25,26,27. As the temperature of bird nests strongly depends on ambient temperatures21, mortality of blowfly larvae should increase in cool weather, resulting in fewer ectoparasites in nests collected shortly after the fledging of birds29.

    Weather conditions affecting Wood Warbler nestling growthTo explore the impact of weather on nestling growth, for each nest we calculated the average temperatures and total sums of rainfall for the period when nestlings were over four days old and until their measurement, usually on day 8 from hatching (see above). During this stage, nestlings are no longer brooded by a parent74, so must balance their energetic expenditure between growth (feather length and body mass) or thermoregulation89. Thus, we expected that the gain in body mass and the growth of flight feathers would be reduced in nestlings during cool and wet weather, when maintaining a stable body temperature would be costly90.Statistical analysesAll statistical tests were two-tailed and performed in R version 4.1.091.The changes in blowfly infestation of the Wood Warbler nestsTo test the changes in blowfly infestation of warbler nests, we used zero-augmented negative binomial models (package pscl in R;92,93), which deal with the problem of overdispersion and excess of zeros92. In this study, hurdle and zero-inflated models fitted with the same covariates had an almost identical Akaike Information Criterion (AIC). Therefore, we presented only the results of hurdle models, which are easier to interpret than zero-inflated models. Hurdle models consisted of two parts: a left-truncated count with a negative binomial distribution representing the number of blowflies in infested nests, and a zero hurdle binomial estimating the probability of blowfly presence. We used models with a negative binomial distribution, which had a much lower AIC than with a Poisson distribution on a count part.We designed the most complex (global) model that contained a response variable of the number of blowflies in each of the 129 Wood Warbler nests. The covariates were: mean ambient temperature, total sum of rainfall, presence (or absence) of ants in the same nests, habitat type (deciduous vs mixed deciduous-coniferous forest), study year (2018–2020), the number of nestlings hatched (brood size), and nest phenology (the relative hatching date of Wood Warbler nestlings, as days from the median hatching date in a season: 23 May in 2018, 25 May in 2019 and 29 May in 2020). The initial global model also contained the two-way interaction terms that we suspected to be important: between temperature and rainfall, temperature and presence of ants, and rainfall and presence of ants.To explore all potentially meaningful subsets of models, we used the same covariates on both parts (count and binomial) of the global model. We performed automated model selection with the MuMIn package94, starting from the most complex (global) model and using all possible simpler models (i.e. all subsets)95. To attain the minimum sample size of c. 20 data points for each parameter96, we limited the maximum number of parameters to six in each part (count or binomial) of the candidate models.As some of the interaction terms appeared insignificant in the initial model selection, to minimise the risk of over-parametrisation, we included only the significant interaction term on a count part of the final global model. As described above, we performed model selection again. We tested linear relationships, as the quadratic effects of weather variables (presuming temperature or rainfall optima) appeared insignificant.To test whether blowfly infestation changed with weather in the early or late nestling stages, we twice repeated the procedure described above. The first global model included the mean ambient temperature and the total sum of rainfall for the early nestling stage, and the second global model contained weather variables for the late nestling stage. The remaining covariates were the same.A practice of including the same sets of covariates on count and binomial parts has been previously questioned97. However, our approach allowed us to comply with these objections97, as we presented only the most parsimonious models (with ΔAICc  More

  • in

    Contrasting response of fungal versus bacterial residue accumulation within soil aggregates to long-term fertilization

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    PubMed 

    Google Scholar 
    Torn, M. S., Vitousek, P. M. & Trumbore, S. E. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8, 352–372 (2005).
    Google Scholar 
    Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ding, X., Liang, C., Zhang, B., Yuan, Y. & Han, X. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil. Soil Biol. Biochem. 84, 137–146 (2015).
    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).PubMed 

    Google Scholar 
    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).
    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Global Change Biol. 19, 988–995 (2013).ADS 

    Google Scholar 
    Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).ADS 

    Google Scholar 
    Six, J., Frey, S. D., Thiet, R. K. & Batten, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).ADS 

    Google Scholar 
    Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: Are current estimates too low?. Environ. Sci. Technol. 41, 8070–8076 (2007).ADS 
    PubMed 

    Google Scholar 
    Liang, C., Fujinuma, R. & Balser, T. C. Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biol. Biochem. 40, 2063–2065 (2008).
    Google Scholar 
    Shao, P., Liang, C., Lynch, L., Xie, H. & Bao, X. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biol. Biochem. 131, 182–190 (2019).
    Google Scholar 
    Ma, S. et al. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma 361, 114034 (2020).ADS 

    Google Scholar 
    Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 29, 111–129 (1999).
    Google Scholar 
    Kong, A. Y. Y. et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 43, 20–30 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Müller, K., Marhan, S., Kandeler, E. & Poll, C. Carbon flow from litter through soil microorganisms: From incorporation rates to mean residence times in bacteria and fungi. Soil Biol. Biochem. 115, 187–196 (2017).
    Google Scholar 
    Amelung, W. Syntax of Referencing in Assessment Methods for Soil Carbon (Lewis Publishers, 2001).
    Google Scholar 
    Joergensen, R. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).
    Google Scholar 
    Joergensen, R. G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fert. Soils 54, 559–568 (2018).
    Google Scholar 
    Wang, X. et al. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 142, 107723 (2020).
    Google Scholar 
    Wang, J., Chapman, S. J. & Yao, H. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications. Appl. Soil Ecol. 101, 11–19 (2016).ADS 

    Google Scholar 
    Cui, S. et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web. Plant Soil 429, 335–348 (2018).
    Google Scholar 
    Liu, X., Zhang, X. & Herbert, S. Feeding China’s growing needs for grain. Nature 465, 420 (2010).ADS 
    PubMed 

    Google Scholar 
    Edmeades, D. C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosys. 66, 165–180 (2003).
    Google Scholar 
    Chaparro, J., Sheflin, A., Manter, D. & Vivanco, J. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48, 489–499 (2012).
    Google Scholar 
    Jin, X. et al. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 313, 154–162 (2018).ADS 

    Google Scholar 
    Chen, X., Li, Z., Liu, M., Jiang, C. & Che, Y. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. J. Soil Sediment. 15, 292–301 (2014).
    Google Scholar 
    Wang, Y. et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 111, 65–72 (2017).
    Google Scholar 
    Joergensen, R. G., Mäder, P. & Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fert. Soils 46, 303–307 (2010).
    Google Scholar 
    Sun, H. et al. Soil microbial community and microbial residues respond positively to minimum tillage under organic farming in Southern Germany. Appl. Soil Ecol. 108, 16–24 (2016).
    Google Scholar 
    Heijboer, A. et al. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; A 15N tracer-based approach. Appl. Soil Ecol. 107, 251–260 (2016).
    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).
    Google Scholar 
    Wall, D. et al. Soil Ecology and Ecosystem Services (Oxford University Press, 2012).
    Google Scholar 
    Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).
    Google Scholar 
    Blaud, A. et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Appl. Soil Ecol. 53, 1–9 (2012).
    Google Scholar 
    Tisdall, J. M. & Oades, J. M. Organic matter and water stable aggregates in soils. Eur. J. Soil Sci. 33, 141–163 (1982).
    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 

    Google Scholar 
    Li, N. et al. Separation of soil microbial community structure by aggregate size to a large extent under agricultural practices during early pedogenesis of a Mollisol. Appl. Soil Ecol. 88, 9–20 (2015).
    Google Scholar 
    Bidisha, M., Joerg, R. & Yakov, K. Effects of aggregation processes on distribution of aggregate size fractions and organic C content of a long-term fertilized soil. Eur. J. Soil Biol. 46, 365–370 (2010).
    Google Scholar 
    Xiang, X. et al. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil Till. Res. 196, 104491 (2020).
    Google Scholar 
    Jin, X. et al. Long-term plastic film mulching and fertilization treatments changed the annual distribution of residual maize straw C in soil aggregates under field conditions: Characterization by 13C tracing. J. Soils Sediment. 18, 169–178 (2018).
    Google Scholar 
    Kemper, W. & Rosenau, R. Syntax of referencing. In Methods of Soil Analysis (ed. Klute, A.) (ASA and SSSA, 1986).
    Google Scholar 
    Bossio, D. A. & Scow, K. M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl. Environ. Microbiol. 61, 4043–4050 (1995).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denef, K. et al. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4, 769–779 (2007).ADS 

    Google Scholar 
    Tavi, N. M. et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biol. Biochem. 58, 207–215 (2013).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).
    Google Scholar 
    Pan, F., Li, Y., Chapman, S. J., Khan, S. & Yao, H. Microbial utilization of rice straw and its derived biochar in a paddy soil. Sci. Total Environ. 559, 15–23 (2016).ADS 
    PubMed 

    Google Scholar 
    Olsson, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbial Ecol. 29, 303–310 (1999).
    Google Scholar 
    Zhang, X. & Amelung, W. Gas Chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201–1206 (1996).
    Google Scholar 
    Zhang, X. et al. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Appl. Soil Ecol. 11, 271–275 (1999).
    Google Scholar 
    van Groenigen, K.-J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).
    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kastner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol. 25, 3578–3590 (2019).ADS 

    Google Scholar 
    Engelking, B., Flessa, H. & Joergensen, R. G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 39, 2111–2118 (2007).
    Google Scholar 
    Chander, K. & Joergensen, R. G. Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biol. Biochem. 33, 1811–1816 (2001).
    Google Scholar 
    Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil – part 2: turnover and microbial utilization. Plant Soil. 416, 243–257 (2017).
    Google Scholar 
    Appuhn, A. & Joergensen, R. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 38, 1040–1051 (2006).
    Google Scholar 
    Huang, Y., Liang, C., Duan, X., Chen, H. & Li, D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 353, 340–346 (2019).ADS 

    Google Scholar 
    Liang, C. et al. Microorganisms and their residues under restored perennial grassland communities of varying diversity. Soil Biol. Biochem. 103, 192–200 (2016).
    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veresoglou, S. D., Chen, B. & Rillig, M. C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol. Biochem. 46, 53–62 (2012).
    Google Scholar 
    Treseder, K. K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).PubMed 

    Google Scholar 
    Xu, Y. et al. Microbial assimilation dynamics differs but total mineralization from added root and shoot residues is similar in agricultural Alfsols. Soil Biol. Biochem. 148, 107901 (2020).
    Google Scholar 
    Chenu, C. & Stotzky, G. Syntax of referencing in Interactions between soil particles and microorganisms (eds. Huang, P., Bollag, J. & Senesi, N.) 3–39 (Wiley-VCH, 2002).Chantigny, M., Angers, D., Prévost, D., Vézina, L.-P. & Chalifour, F. Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci. Soc. Am. J. 61, 262–267 (1997).ADS 

    Google Scholar 
    Liang, C., Duncan, D., Balser, T., Tiedje, J. & Jackson, R. Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA. Soil Biol. Biochem. 57, 939–942 (2013).
    Google Scholar 
    Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glaobal Change Biol. 28, 2779–2789 (2022).
    Google Scholar 
    An, T. et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 80, 53–61 (2015).
    Google Scholar 
    Lauer, F., Kösters, R., du Preez, C. C. & Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 43, 787–794 (2011).
    Google Scholar  More