More stories

  • in

    Multi-species occupancy modeling suggests interspecific interaction among the three ungulate species

    Study areaThe present study was conducted in Uttarkashi district, Uttarakhand, located between 38° 28′ to 31°28′ N latitude and 77°49′ to 79°25′ E longitude with an area of about 8016 km2, covering primarily hilly terrain with an altitudinal range of 715–6717 m (Fig. 3). The terrain is mountainous, consisting of undulating hill ranges and narrow valleys with temperate climatic conditions. The district lies in the upper catchment of two major rivers of India, viz., the Ganges (Bhagirathi towards upstream) and the Yamuna. The major vegetation types of the study area are Himalayan moist temperate forest, sub-alpine forest and alpine scrub59. The Uttarkashi district forests are managed under three Forest Divisions viz., (i) Uttarkashi Forest Division (ii) Upper Yamuna Badkot Forest Division and (iii) Tons Forest Division) with two Protected Areas (PAs) (i) Gangotri National Park and (ii) Govind Pashu Vihar National Park. The forested habitats of the study landscape are home to top conservation priority species, including Asiatic Black bear (Ursus thibetanus), Musk deer (Moschus spp.), Common leopard (Panthera pardus), Himalayan brown bear (Ursus arctos isabellinus) and Western Tragopan (Tragopan melanocephalus), Himalayan monal (Lophophorus impejanus). The study was conducted after a study permit issued by the Chief Wildlife Warden, Forest Department, Uttarakhand government, vide letter no. 848/5-6 dated 31/08/2019, we have not handled the species for doing research. Instead, remote camera traps have been used for collecting the data with the permission of the Chief Wildlife Warden, Government of Uttarakhand. Further, informed consent was taken before interviewing the local communities. The data was collected according to the institutional guidelines and approved by the Research Advisory and Monitoring Committee of the Zoological Survey of India.Figure 3Map of the study area Uttarkashi, Uttarakhand. ArcGIS 10.6 (ESRI, Redlands, CA) was used to create the map. (Map created using ArcGIS 10.6; http://www.esri.com).Full size imageSampling protocolThe basic sampling protocol and assumptions for multi-species occupancy modelling are identical to the single-species case7. Briefly, a set of 62 intensive sites, were randomly selected, and each site i was surveyed j times. During each survey, detection/non-detection of S focal species was recorded. Additionally, direct or indirect evidences of species presence from the different areas were also recorded.Data collectionThe complete study area was divided into 10 × 10 km grids, consisting of n = 60 grids. Based on the reconnaissance survey, out of these 60 grids, we selected 25 girds that were accessible to conduct the survey and have the species presence. Further, these grids were divided into 2 × 2 km grids to maximize our effort so that all logistically accessible grids could be covered, and we conducted intensive sampling in N = 62 grids after excluding the grids with human settlements. T The field surveys were conducted during 2018–2019, and a team of researchers systematically visited selected grids to collect data on the detection/non-detection of these ungulates. A total of 62 camera traps were deployed in selected grids, and 650 km were traversed, accounting for N = 54 trails in these sampled grids. These camera traps were visited once in every fifteen days for replacing the batteries as well as documenting the presence of the species through the sign surveys. The ultra-compact SPYPOINT FORCE-11D trail camera (SPYPOINT, GG Telecom, Canada, QC) and Browning trail camera (Defender 850, 20 MP, Prometheus Group, LLC Birmingham, Alabama, https://browningtrailcameras.com) camera traps were used to detect the presence/absence of ungulate species. The cameras were mounted 40–60 cm above ground on natural trails without lures.Data explorationWhile deploying camera traps, we also noted habitat variables through on-site observation such as distance to the village and human disturbance. We tested site covariates for collinearity and discarded one of a pair if the Pearson’s correlation was greater than 0.760. Hence, we assumed each of the site covariates could influence the occupancy and detectability of these ungulates.CovariatesWe hypothesized that habitat variables may influence these ungulates’ occupancy and detection probability. A total of 21 variables were extracted either from the field or using the ArcGIS v. 10.6 software (ESRI, Redlands, CA), and only 14 were retained after collinearity testing60 (Table 3). These covariates were classified into the following categories (Topographic variables, Habitat variables and anthropogenic variables). The topographic variables (elevation, slope and aspect) were generated using 30× resolution SRTM (Shuttle Radar Topography Mission) image downloaded from EarthExplorer (https://earthexplorer.usgs.gov/). The habitat/ land cover classification was carried out using Landsat 8 satellite imagery (Spatial resolution = 30 m) downloaded from Global Land Cover Facility by following the methodology suggested by61 using the ArcGIS v. 10.6 software (ESRI, Redlands, CA). The study area was classified into nine Land use/land cover (LULC) classes viz., West Himalayan Sub-alpine birch/fir Forest (FT 188), West Himalayan upper oak/fir forest (FT 162), West Himalayan Dry juniper forest (FT 180), Ban oak forest (FT 152), Moist Deodar Forest (FT 155), Western mixed coniferous forest (FT 156), Moist temperate Deciduous Forest (FT 157) which were used for further analysis considering their importance to species ecology and behavior60. The values for all the covariates were extracted at 30 m resolution, and a single value per site was obtained by averaging all the pixel values within each sampling site (camera trap locations).Table 3 Habitat variables used for multi species occupancy analysis of three ungulate species in Uttarkashi, Uttarakhand.Full size tableOccupancy modelling frameworkWe used multi-species occupancy modelling62 of barking deer, goral and sambar to estimate the probability of the species (s) occurred within the area (i) sampled during our survey period (j), for accounting the imperfect detection of the species8. Distinguishing the true presence/absence of a species from detection/non-detection (i.e., species present and captured or species present but not captured) requires spatially or temporally replicated data. We used camera stations to record the presence/absence of species along with sign survey in all the studied grids. The camera traps were placed along the trail/transects in the studied grids hence each grid needs to be visited once in every fifteen days to check the camera traps as well as to document the presence of the studied species. Therefore, we treated 15 trap nights as one sampling occasion at a particular camera station resulting in ~ 7 sampling occasions per camera station.Our aim was to record the presence/ absence of the species at a particular gird hence we incorporated sign survey data if the species was not detected in camera station but recorded through sign survey. We pooled the presence/absence data in a single sheet of each species following6 and fitted occupancy and detectability models using programme Mark63,64. We model the species (s) presence (ysij = 1) and absence (ysij = 0) at site i during survey j, and the sampling protocol was identical to single species case65, where the Bernoulli random variable was conditional on the presence of species s (Zs = 1) following6$${text{y}}_{sij} sim {text{ Bernoulli}}left( {{text{p}}_{sij} {text{z}}_{si} } right),$$
    where Psij represents the probability of detecting species S during replicate survey j at site i and Zsi = presence or absence of species s at site i.Furthermore, we model the latent occupancy state of species s at site i as a multivariate Bernoulli random variable:$${text{Z}}_{i} sim {text{MVB}}left( {uppsi _{i} } right)$$
    where Zi = {Z1i, Z2i….., ZSi} is an S-dimensional vector of 1’s and 0’s denoting the latent occupancy state of all S species and (ψi) is a 2S-dimensional vector denoting the probability of all possible sequences of 1’s and 0’s Zi can attain such that ∑ ψi = 1 with corresponding probability mass function (PMF) adopted from6,64.$$fleft( {{text{Z}}_{i} } right) = {text{ exp}}left( {left( {{text{Z}}_{i} {text{log}}(uppsi_{{text{i}}} {1}/uppsi_{{text{i}}} 0} right) , + {text{ log}}left( {uppsi_{{text{i}}} 0} right)} right).$$The quantity f = log (ψi1/ψi0), is the log odds species S occupies a site often referred to as a ‘natural parameter’.Since we are modeling three ungulate species (S = 3), 2S = 23 the possible encounter histories included in the dataset were eight, if neither of the two species were detected the value of ‘00’ was assigned; similarly ‘01’ indicates detection of species 1; ‘02’ indicates detection of species 2; ‘03’ indicates detection of both the species; ‘04’ indicates detection of species 3; ‘05’ indicates detection of species 1 and species 3; ‘06’ indicates detection of species 2 and species 3 and ‘07’ indicates detection of all the three species. We modelled constant occupancy and detection probability for each of the three species. Hence, we specified 6 f and p parameters, an intercept (β) for each of one-way f parameter and detection parameter p following64.$$f_{{1}}=upbeta_{{{1},}} ;;{text{p}}=upbeta_{{4}}$$$$f_{{2}} = upbeta_{{{2},}} ;{text{p }} = , upbeta 5$$$$f_{{3}} = , upbeta_{{{3},}}; {text{p }} = , upbeta_{{6}}$$We fit a set of models including the detection probability as a constant, p(.), and variable function to occupancy ψ(covariate) for site-specific covariates and models include occupancy as constant ψ(.) and variable function of the detection p(covariates) for the respective site covariates.As we have assumed the independence among all three species, the model shows marginal occupancy probabilities of species 1, species 2 and species 3 varies as a function of environmental variables. We incorporated site-level characteristics affecting species-specific occurrence (f1: occupancy of species 1, f2: occupancy of species 2, & f3: occupancy of species 3) and detection probabilities using a generalized linear modelling approach42. This requires 9 parameters: an intercept (β1, β3, β5) and slope (β2, β4, β6) coefficient for each 1-way f parameter f1, f2, f3 and an intercept parameter for each detection parameter (β7, β8, β9). Below mentioned is the model for 1-way f parameters.$$f_{{1}} = , upbeta_{{{1 } + }} upbeta_{{2}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{7}}$$$$f_{{2}} = , upbeta_{{{3 } + }} upbeta_{{4}} left( {{text{Covariate}}} right),;;{text{ p}} = , upbeta_{{8}}$$$$f_{{3}} = , upbeta_{{5}} + , upbeta_{{6}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{9}} .$$All covariates were standardized before model fitting. We fitted the most complex model to each species and considered all possible combinations of covariates using the logit link function. Our rationale for including these variables in the occupancy and detectability component of the model was that we expected these variables to influence the occupancy and detectability of the study species.Since multi-species occupancy simultaneously model environmental variables, & interspecific interactions. Further it also allows to understand the influence of environmental variables on one species occupancy, in the presence or absence of other sympatric species64. Hence, we also modeled two species occur together as a function of covariates. We examined how the variables of each camera site influenced the pair-wise interaction of the three ungulate species. This model assumes that the conditional probability of one species varies in the presence or absence of other species. We assumed f123: co-occurrence of species 1, species 2 & species 3 = 0, hence we did not include higher-order interactions in any of our models, we assumed the conditional probability of 3 species occurred together was purely a function of species-specific (f1, f2, f3) and pair-wise interaction (f12: co-occurrence of species1 & species 2, f13: co-occurrence of species 1 & species 3, f23: co-occurrence of species 2 & species 3) parameters. We modeled pair-wise interaction of species varies as a function of environmental variables keeping detection probability constant. Hence, we specified 15 f and p parameters, an intercept and slope coefficient for each of the one-way (f1, f2, f3) and the two-way f parameters (f12, f13, and f23); as well as an intercept parameter for each of the detection models. The model equation below implies for 2-way f parameters:$$f_{{{12}}} = , upbeta_{{{7 } + }} upbeta_{{8}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{{13}}}$$$$f_{{{13}}} = , upbeta_{{{9 } + }} upbeta_{{{1}0}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{{14}}}$$$$f_{{{23}}} = , upbeta_{{{11 } + }} upbeta_{{{12}}} left( {{text{Covariate}}} right),;;{text{ p }} = , upbeta_{{{15}}} .$$We also fitted models including co-occurrence and detection probability of a species varies as a function of environmental variables. Hence, we specified 18 f and p parameters, an intercept and slope coefficient for each of one-way (f1, f2, f3) and two-way f parameters (f12, f13, f23); and an intercept as well as the slope parameters for each of the detection models. The model equation below implies for 2-way f parameters:$$f_{{{12}}} = , upbeta_{{{7 } + }} upbeta_{{8}} left( {{text{Covariate}}} right),{text{ p }} = , upbeta_{{{13 } + }} upbeta_{{{14}}} left( {{text{covariate}}} right)$$$$f_{{{13}}} = , upbeta_{{{9 } + }} upbeta_{{{1}0}} left( {{text{Covariate}}} right),{text{ p }} = , upbeta_{{{15}}} + , upbeta_{{{16}}} left( {{text{covariate}}} right)$$$$f_{{{23}}} = , upbeta_{{{11 } + }} upbeta_{{{12}}} left( {{text{Covariate}}} right),{text{ p }} = , upbeta_{{{17}}} + , upbeta_{{{18}}} left( {{text{covariate}}} right)$$A total of 38 models were run to test the influence of environmental variables on occupancy and detection probability of species-specific (f1, f2, f3) and pair-wise interaction of the three ungulate species. The best-supported model was identified by selecting the model with the lowest AICc value and highest model weights66, where higher model weights indicate a better fit of the model to the data. Second-Order Information Criterion (AICc)67 values were used to rank the occupancy models, and all the models whose ΔAICc  More

  • in

    Mapping tropical forest functional variation at satellite remote sensing resolutions depends on key traits

    We hypothesized that functionally distinct forest types can be mapped at moderate spatial resolutions, using a combination of canopy foliar traits and canopy structure information. Our analysis of LiDAR and imaging spectroscopy data at spatial resolutions ranging from 4 to 200 m (16 m2–40,000 m2), with an emphasis on the 30 m (900 m2) spaceborne hyperspectral spatial resolution, reveals that few remotely sensed canopy properties are needed to successfully identify ecologically distinct forest types at two diverse tropical forest sites in Malaysian Borneo. In testing our second hypothesis that mapped forest types exhibit distinct ecosystem function, we found that forest types identified using remotely sensed leaf P, LMA, Max H, and canopy cover at 20 m height (Cover20) closely align with forest types defined from field-based floristic surveys29,30,31,32,33 and inventory plot-based measurements of growth and mortality rates (Fig. 4b). Our approach, however, enables mapping of their entire spatial extent (Fig. 1) and reveals important structural and functional variation within areas characterized as a single forest type in previous studies (Fig. 3). Current and forthcoming satellite hyperspectral platforms, including PRISMA (30 m), CHIME (20–30 m), and SBG (30 m), have or will have comparable spectral resolution, higher temporal revisits, and much greater geographic coverage. The ability to conduct this type of analysis using remote sensing measurements at 30 m resolution suggests that our method can be applied to these emerging spaceborne imaging spectroscopy data to reveal important differences in structure and function across the world’s tropical forests.Nested functional forest types revealedTo test our first hypothesis, rather than making an a priori decision about the number of k-means clusters (k), we explored the capacity of remotely sensed data to reveal ecologically relevant variation in forest types. Baldeck and Asner took a similar unsupervised approach to estimating beta diversity in South Africa34. Because the choice of k directly influences analysis outcomes, careful selection of k is required. Different approaches for identifying the number of clusters, using the Gapk and Wk elbow metrics35, yielded varying optimal numbers of clusters for the Sepilok and Danum landscapes (Fig. 1, Supplementary Figs. 4 and 5). However, at both sites, a comparison of results based on different values of k revealed ecologically meaningful structural and functional differences and graduated transitions between forest types (Fig. 2, Supplementary Figs. 7 and 8), indicating that the exploration of traits that aggregate or separate forest types as k changes is a valuable exercise. Overlap between the remotely sensed forest type boundaries and inventory plots within distinct forest types indicate that the series of clustered forests align closely with forest types defined based on in situ data on species composition and ecosystem structure. In part, this type of analysis requires careful selection of the number of clusters. Additionally, however, we gained valuable insights via the exploration of varying numbers of clusters as it relates to biologically meaningful categorization of forest types. Extending this method to other parts of the tropics will require similar decision-making, which will either require user input, or the development of robust automated algorithms for selecting k.Forest types capture differences in ecosystem dynamicsWe further evaluated the canopy traits and structural attributes that were most critical for mapping distinct forest types, hypothesizing that mapped forest types exhibit distinct ecosystem function. Forest types revealed by the cluster analyses were distributed along the leaf economic spectrum, where the leaf economic spectrum characterizes a tradeoff in plant growth strategies36. LMA, which can covary strongly with leaf N and P, is a key indicator of plant growth strategies along the spectrum37. At the slow-return end of the leaf economics spectrum, plants in nutrient-poor conditions with low leaf nutrient concentrations invest in leaf structure and defense, expressed as high LMA, strategizing longer-lived, tougher leaves with slower decomposition rates. This strategy comes at the cost of slower growth. At the quick-return end of the spectrum, plants in nutrient-rich environments with higher leaf nutrient concentrations invest less in structure and defense, enabling faster growth and more rapid leaf turnover, i.e., shorter leaf lifespans. This quick-return growth strategy supports higher photosynthetic rates and more rapid carbon gain36.In this study, the principal components and clustering results yielded forest types that are indicative of community level differences associated with leaf economic spectrum differences. The nutrient rich sites (Danum1 and Danum2, Supplementary Fig. 8) show high canopy N and P and low LMA compared to the nutrient poor and acidic sites (Sandstone and Kerangas), which contributes to lower leaf photosynthetic capacity (Vcmax) and growth (Fig. 4b). Foliar N:P also increased with site fertility, confirming that tropical forests are primarily limited by phosphorus, and not nitrogen38,39, with large implications for carbon sequestration in these forests. Orthogonal differences in canopy structure and architecture between Danum forest types and Sepilok Sandstone and Alluvial forests could be indicative of ecosystem scale differences in the sensitivity of these forests to endogenous disturbance processes40.The significant differences in aboveground carbon stocks and growth and mortality rates between forest types further suggests strong differences in ecosystem dynamics. In general, growth rates varied inversely to aboveground carbon, and higher aboveground carbon corresponded to lower mortality rates. As an example, the Sepilok sandstone forests, which are largely comprised of slow-growing dipterocarp species29,33, had the highest median aboveground carbon (236 Mg C ha−1), with higher canopy P and N, and lower LMA. The taller canopy and low canopy leaf nutrient concentrations are consistent with the low growth and mortality rates found in the sandstone forest, indicating a slow-growth strategy yielding larger trees and higher aboveground carbon stocks. In contrast, alluvial forests exhibit high turnover with mortality and growth rates higher relative to Sandstone forests corresponding to lower aboveground carbon on average. Kerangas forests exhibited low aboveground carbon despite an intermediate plot-level growth rate, and mortality rates that were significantly lower than the Danum or alluvial forest types. Kerangas forests, which were characterized by the highest LMA, lowest foliar P and N (Fig. 2a), and the lowest plot-level aboveground carbon density (186 Mg C ha−1; Fig. 4a), are known to have higher stem densities, lower canopy heights, and long-lived leaves5,32,41, suggesting well-developed strategies for nutrient retention42. Interestingly, despite significantly different aboveground carbon and demography, the kerangas and sandstone forests did not differ in LAI or canopy architecture (P:H); although maximum height, Cover20, and Hpeak LAI were significantly higher in the sandstone forest, highlighting the need to account for differences beyond LAI when scaling processes from leaves to ecosystems.In addition, when three forest types were distinguished at Sepilok, the alluvial inventory plot had significantly higher aboveground carbon than the remote sensing-derived alluvial forest extent (Fig. 4a, p  More

  • in

    Citizen science plant observations encode global trait patterns

    Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).Article 

    Google Scholar 
    Berzaghi, F. et al. Towards a new generation of trait-flexible vegetation models. Trends Ecol. Evol. 35, 191–205 (2020).Article 
    PubMed 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 
    PubMed 

    Google Scholar 
    Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed Central 

    Google Scholar 
    Moreno Martínez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 23, 167–234 (2013).Article 

    Google Scholar 
    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).Article 
    PubMed 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boonman, C. C. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).Vallicrosa, H. et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Glob. Ecol. Biogeogr. 31, 861–871 (2022).Article 

    Google Scholar 
    Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Schiller, C. et al. Deep learning and citizen science enable automated plant trait predictions from photographs. Sci. Rep. 11, 16395 (2021).Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112–122 (2021).Article 

    Google Scholar 
    Homolova, L. et al. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).Article 

    Google Scholar 
    Van Cleemput, E. et al. The functional characterization of grass-and-shrubland ecosystems using hyperspectral remote sensing: trends, accuracy and moderating variables. Remote Sens. Environ. 209, 747–763 (2018).Article 

    Google Scholar 
    Kattenborn, T., Fassnacht, F. E. & Schmidtlein, S. Differentiating plant functional types using reflectance: which traits make the difference? Remote Sens. Ecol. Conserv. 5, 5–19 (2019).Article 

    Google Scholar 
    Hauser, L. T. et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation. Remote Sens. Environ. 265, 112684 (2021).Article 

    Google Scholar 
    Wäldchen, J. & Mäder, P. Plant species identification using computer vision techniques: a systematic literature review. Arch. Comput. Methods Eng. 25, 507–543 (2018).Article 
    PubMed 

    Google Scholar 
    Jones, H. G. What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 12, plaa052 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).Article 

    Google Scholar 
    WÜest, R. O. et al. Macroecology in the age of big data—where to go from here? J. Biogeogr. 47, 1–12 (2020).Article 

    Google Scholar 
    Mäder, P. et al. The Flora Incognita app—interactive plant species identification. Methods Ecol. Evol. 12, 1335–1342 (2021).Article 

    Google Scholar 
    Di Cecco, G. J. et al. Observing the observers: how participants contribute data to iNaturalist and implications for biodiversity science. BioScience 71, 1179–1188 (2021).Article 

    Google Scholar 
    Mahecha, M. D. et al. Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44, 1131–1142 (2021).Article 

    Google Scholar 
    Botella, C. et al. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. Methods Ecol. Evol. 12, 933–945 (2021).Article 

    Google Scholar 
    iNaturalist Research-Grade Observations (GBIF, accessed 5 January 2022); https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2020).
    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Ann. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Kosmala, M. et al. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler, D.E. et al. Temporal trends in the spatial bias of species occurrence records. Ecography 2022, e06219 (2022). https://doi.org/10.1111/ecog.06219GBIF Occurrence Download (GBIF, 4 January 2022); https://doi.org/10.15468/dl.34tjreBruelheide, H. et al. sPlot—a new tool for global vegetation analyses. journal of vegetation science. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    Sabatini, F. et al. sPlotOpen—an environmentally balanced, open access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).Article 

    Google Scholar 
    Whittaker, R.H. et al. Communities and Ecosystems (Macmillan/Collier Macmillan, 1970).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Joswig, J., Wirth, C. & Schuman, M. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 6, 36–50 (2022).Article 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).Article 
    PubMed 

    Google Scholar 
    Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, H. & Pebesma, E. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Methods Ecol. Evol. 12, 1620–1633 (2021).Article 

    Google Scholar 
    Schrodt, F. et al. Bhpmf—a hierarchical Bayesian approach to gap filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).Article 

    Google Scholar 
    Kuppler, J. et al. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob. Ecol. Biogeogr. 29, 992–1007 (2020).Article 

    Google Scholar 
    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).Article 
    PubMed 

    Google Scholar 
    Taubert, F. et al. Confronting an individual-based simulation model with empirical community patterns of grasslands. PLoS ONE 15, e0236546 (2020).Roger, E. & Klistorner, S. (2016) Bioblitzes help science communicators engage local communities in environmental research. J. Sci. Commun. https://doi.org/10.22323/2.15030206 (2016).Legendre, P. & Legendre, L. Numerical Ecology 3rd edn (Elsevier, 2012).Warton, D. I. et al. Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3, 257–259 (2012).Article 

    Google Scholar 
    Wolf, S. et al. iNaturalist_traits: iNaturalist trait maps version 1 (January 5, 2022) Zenodo https://doi.org/10.5281/zenodo.6671891 (2022). More

  • in

    Assessing Müllerian mimicry in North American bumble bees using human perception

    Bates, H. W. XXXII. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Trans. Linn. Soc. Lond 23, 495–566 (1862).Article 

    Google Scholar 
    Müller, F. Ituna and thyridia: A remarkable case of mimicry in butterflies. Trans. Entomol. Soc. Lond. 1879, 20–29 (1879).
    Google Scholar 
    Baxter, S. W. et al. Convergent evolution in the genetic basis of Müllerian mimicry in Heliconius butterflies. Genetics 180, 1567–1577 (2008).Article 
    CAS 

    Google Scholar 
    Sheppard, P. M., Turner, J. R. G., Brown, K., Benson, W. & Singer, M. Genetics and the evolution of Muellerian mimicry in Heliconius butterflies. Philos. Trans R. Soc. Lond. B, Biol. Sci. 308, 433–610 (1985).Article 
    ADS 

    Google Scholar 
    Mallet, J. & Gilbert, L. E. Jr. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biol. J. Lin. Soc. 55, 159–180 (1995).
    Google Scholar 
    Brower, A. V. Parallel race formation and the evolution of mimicry in Heliconius butterflies: A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50, 195–221 (1996).Article 
    CAS 

    Google Scholar 
    Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Müllerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, J. S., Williams, K. A., Forister, M. L., Von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272 (2012).Article 
    ADS 

    Google Scholar 
    Wilson, J. S., Pan, A. D., Limb, E. S. & Williams, K. A. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the ‘odd man out’. PLoS ONE 13, e0189482. https://doi.org/10.1371/journal.pone.0189482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plowright, R. & Owen, R. E. The evolutionary significance of bumble bee color patterns: A mimetic interpretation. Evolution 34, 622–637 (1980).Article 
    CAS 

    Google Scholar 
    Williams, P. The distribution of bumblebee colour patterns worldwide: Possible significance for thermoregulation, crypsis, and warning mimicry. Biol. J. Lin. Soc. 92, 97–118 (2007).Article 

    Google Scholar 
    Hines, H. M. & Williams, P. H. Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool. J. Linn. Soc. 166, 805–826 (2012).Article 

    Google Scholar 
    Koch, J. B., Rodriguez, J., Pitts, J. P. & Strange, J. P. Phylogeny and population genetic analyses reveals cryptic speciation in the Bombus fervidus species complex (Hymenoptera: Apidae). PLoS ONE 13, e0207080 (2018).Article 

    Google Scholar 
    Ezray, B. D., Wham, D. C., Hill, C. E. & Hines, H. M. Unsupervised machine learning reveals mimicry complexes in bumblebees occur along a perceptual continuum. Proc. R. Soc. B 286, 20191501 (2019).Article 

    Google Scholar 
    Bateson, W. The alleged “Aggressive Mimicry” of volucellæ. Nature 46, 585 (1892).Article 
    ADS 

    Google Scholar 
    Poulton, E. B. The volucellœ as alleged examples of variation “almost unique among animals”. Nature 47, 126 (1892).Article 
    ADS 

    Google Scholar 
    Cockerell, T. D. New social bees. Psyche A J. Entomol. 24, 120–128 (1917).Article 

    Google Scholar 
    Koch, J., Strange, J. & Williams, P. In: Bumble bees of the western United States (US Forest Service, San Francisco California, 2012).
    Google Scholar 
    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. In: Bumble bees of North America: An identification guide Vol. 87 (Princeton University Press, Princeton, 2014).
    Google Scholar 
    Ruxton, G. D., Franks, D. W., Balogh, A. C. & Leimar, O. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evol Int. J. Org. Evol. 62, 2913–2921 (2008).Article 

    Google Scholar 
    Rowe, C., Lindström, L. & Lyytinen, A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 407–413 (2004).Article 

    Google Scholar 
    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chittka, L. & Osorio, D. Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol. 5, e339 (2007).Article 

    Google Scholar 
    Dittrigh, W., Gilbert, F., Green, P., McGregor, P. & Grewcock, D. Imperfect mimicry: A pigeon’s perspective. Proc. R. Soc. Lond. Ser. B Biol. Sci. 251, 195–200 (1993).Article 
    ADS 

    Google Scholar 
    Sherratt, T. N., Whissell, E., Webster, R. & Kikuchi, D. W. Hierarchical overshadowing of stimuli and its role in mimicry evolution. Anim. Behav. 108, 73–79 (2015).Article 

    Google Scholar 
    Beatty, C. D., Bain, R. S. & Sherratt, T. N. The evolution of aggregation in profitable and unprofitable prey. Anim. Behav. 70, 199–208 (2005).Article 

    Google Scholar 
    Kazemi, B., Gamberale-Stille, G., Tullberg, B. S. & Leimar, O. Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965–969 (2014).Article 
    CAS 

    Google Scholar 
    Kikuchi, D. W., Dornhaus, A., Gopeechund, V. & Sherratt, T. N. Signal categorization by foraging animals depends on ecological diversity. Elife. 8, e43965 (2019).Article 

    Google Scholar 
    Rapti, Z., Duennes, M. A. & Cameron, S. A. Defining the colour pattern phenotype in bumble bees (Bombus): A new model for evo devo. Biol. J. Lin. Soc. 113, 384–404 (2014).Article 

    Google Scholar 
    Wilson, J. S., Sidwell, J. S., Forister, M. L., Williams, K. A. & Pitts, J. P. Thistledown velvet ants in the desert mimicry ring and the evolution of white coloration: Müllerian mimicry, camouflage and thermal ecology. Biol. Lett. 16, 20200242 (2020).Article 

    Google Scholar 
    Ascher, J. & Pickering, J. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila) (2019).iNaturalist. Available from https://www.inaturalist.org. Accessed [2022].Bombus Latreille, 1802 in GBIF Secretariat (2021). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-12-03. More

  • in

    Asian elephants mostly roam outside protected areas — and it’s a problem

    Asian elephants spend most of their time outside protected areas because they prefer the food they find there, an international team of scientists reports. But this behaviour is putting the animals and people in harm’s way, say researchers.The finding has important implications for the long-term survival of the animals because protected areas are a cornerstone of global conservation strategies to protect threatened species, say researchers.If protected areas do not contain animals’ preferred habitats, they will wander out, says Ahimsa Campos-Arceiz, who studies Asian elephants (Elephas maximus) at the Chinese Academy of Sciences’ Xishuangbanna Tropical Botanical Garden in Menglun, China. “It’s a good intention, but doesn’t always work out that way.”Human–elephant conflict is the biggest threat for Asian elephants. Over the past few decades, animals in protected areas have increasingly wandered into villages. They often cause destruction, damaging crops and infrastructure and injuring and even killing people.Wandering elephantsTo understand how effective protected areas are for conserving Asian elephants, Campos-Arceiz and his colleagues set out to get a precise picture of Asian-elephant movements. They collared 102 individuals in Peninsular Malaysia and Borneo, recording 600,000 GPS locations over a decade. They found that most elephants spent most of their time in habitats outside the protected areas, at the forest edge and in areas of regrowth. The findings were published in the Journal of Applied Ecology1 on 18 October.The researchers suspect that the elephants venture out because they like to eat grasses, bamboo, palms and fast-growing trees, which are common in disturbed forests and relatively scarce under the canopy of old-growth forests.Philip Nyhus, a conservation biologist who specializes in human–wildlife conflict at Colby College in Waterville, Maine, says Asian elephants live deep in dense forest and so are much more difficult to study than African elephants, which roam open savannahs. “The sample size is impressive,” he says.The finding is not unexpected given past anecdotal observations of elephant behaviour, says Nyhus. But now the data show that this is a common strategy for the survival of these animals, and not just something seen in a subset of the population. The research provides strong evidence for how to set up suitable protected areas that reduce the risk of elephants wandering out, he says.‘There will be conflict’The results do not diminish the importance of protected areas, which provide long-term safety for the animals, says Campos-Arceiz, who did the field work while at the University of Nottingham Malaysia in Selangor. “But they are clearly not enough.”The study suggests that “there will be conflict between humans and elephants”, says Guo Xianming, director of the Research Institute of Xishuangbanna National Nature Reserve in Jinghong.Asian elephants wander into villages owing to a combination of reasons: an increase in elephant populations, forests in many reserves have grown denser and have become unsuitable for the animals, and increasing habitat loss and degradation outside.Last year, two herds of elephants made global headlines as they wandered out of the Xishuangbanna National Nature Reserve and travelled for hundreds of kilometers, wreaking havoc along the way. One herd spent five weeks at the botanical garden where Campos-Arceiz works. “It was intense,” he says.There is an urgent need to understand how people and elephants can better share the landscape, says Guo. And the first step is by better protecting people’s lives and livelihoods. “It’s the only way of peaceful co-existence.”
    The reporting of the story was supported by International Women’s Media Foundation’s Howard G. Buffett Fund for Women Journalists. More

  • in

    How monkeypox is spreading, and more — this week’s best science graphics

    Adolescents losing sleepEpidemiological studies in US school students aged 14–18 have shown that declines in mental health mirror reductions in the amount of sleep they are getting. Although it is hard to show a causal link between these changes, the authors of this Comment article argue that ensuring that young people get enough sleep is crucial for them to thrive. Various factors could be contributing to this drop-off in sleep, they say, including the use of digital media before bed, schoolwork pressures and extracurricular activities late in the evening or early in the morning.

    Sources: J. M. Twenge et al. Sleep Med. 39, 47–53 (2017)/US CDC YRBSS

    Monkeypox trajectoryAlmost six months after the monkeypox virus started to spread globally, vaccination efforts and behavioural changes seem to be containing the current strain — at least in the United States and Europe. The number of cases in these regions peaked in August and is now falling. But the situation could still play out in several ways, as this News story reports. At best, the outbreak might fizzle out over the next few months or years. At worst, the virus could become endemic outside Africa.

    Source: WHO

    The most valuable soilsThis map shows the regions of the world where the conservation of soil should be prioritized. Soils contain a wealth of biodiversity, such as bacteria, fungi, nematode worms and earthworms. These organisms have important roles in ecosystem processes, such as carbon and nutrient cycling, water storage and supporting plant growth. The authors of a paper in Nature set out to identify global hotspots for conservation by surveying soil biodiversity and ecosystem functions at 615 sites around the world. They found hotspots of biodiversity in temperate and Mediterranean regions and in alpine tundra, whereas hotspots of species uniqueness occurred in the tropics and drylands. More than 70% of the hotspots are not adequately covered by protected areas. More

  • in

    ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences 110, 19456–19459 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riedel, T., Polley, H. & Klatt, S. Germany. in National Forest Inventories (eds. Vidal, C., Alberdi, I. A., Hernández Mateo, L. & Redmond, J. J.) 405–421, https://doi.org/10.1007/978-3-319-44015-6 (Springer International Publishing, 2016).Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde. vol. Seite: (Julius Springer, 1928).Bernhardt-Römermann, M. et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Change Biol 21, 3726–3737 (2015).Article 
    ADS 

    Google Scholar 
    Ahrns, C. & Hofmann, G. Vegetationsdynamik und Florenwandel im ehemaligen mitteldeutschen Waldschutzgebiet ‘Hainich’ im Intervall 1963–1995. Hercynia N.F. 31, 33–64 (1998).
    Google Scholar 
    Dittmann, T., Heinken, T. & Schmidt, M. Die Wälder von Magdeburgerforth (Fläming, Sachsen-Anhalt) – eine Wiederholungsuntersuchung nach sechs Jahrzehnten, https://doi.org/10.14471/2018.38.009 (2018).Günther, K., Schmidt, M., Quitt, H. & Heinken, T. Veränderungen der Waldvegetation im Elbe-Havelwinkel von 1960 bis 2015. Tuexenia 41, 53–85 (2021).
    Google Scholar 
    Janiesch, P. Vegetationsökologische Untersuchungen in einem Erlenbruchwald im nördlichen Münsterland. 25 Jahre im Vergleich. Abhandlungen aus dem Westfälischen Museum für Naturkunde 71–80 (2003).Naaf, T. & Wulf, M. Habitat specialists and generalists drive homogenization and differentiation of temperate forest plant communities at the regional scale. Biological Conservation 143, 848–855 (2010).Article 

    Google Scholar 
    Reinecke, J., Klemm, G. & Heinken, T. Vegetation change and homogenization of species composition in temperate nutrient deficient Scots pine forests after 45 yr. J Veg Sci 25, 113–121 (2014).Article 

    Google Scholar 
    Mölder, A., Streit, M. & Schmidt, W. When beech strikes back: How strict nature conservation reduces herb-layer diversity and productivity in Central European deciduous forests. Forest Ecology and Management 319, 51–61 (2014).Article 

    Google Scholar 
    Fischer, C., Parth, A. & Schmidt, W. Vegetationsdynamik in Buchen-Naturwäldern. Ein Vergleich aus Süd-Niedersachsen. Hercynia N.F. 45–68 (2009).Schmidt, W. Die Naturschutzgebiete Hainholz und Staufenberg am Harzrand – Sukzessionsforschung in Buchenwäldern ohne Bewirtschaftung (Exkursion E). Tuexenia 22, 151–213 (2002).
    Google Scholar 
    Strubelt, I., Diekmann, M. & Zacharias, D. Changes in species composition and richness in an alluvial hardwood forest over 52 yrs. J Veg Sci 28, 401–412 (2017).Article 

    Google Scholar 
    Strubelt, I., Diekmann, M., Peppler-Lisbach, C., Gerken, A. & Zacharias, D. Vegetation changes in the Hasbruch forest nature reserve (NW Germany) depend on management and habitat type. Forest Ecology and Management 444, 78–88 (2019).Article 

    Google Scholar 
    Wilmanns, O. & Bogenrieder, A. Veränderungen der Buchenwälder des Kaiserstuhls im Laufe von vier Jahrzehnten und ihre Interpretation – pflanzensoziologische Tabellen als Dokumente. Abh. Landesmus. Naturk. Münster Westfalen 48, 55–79 (1986).
    Google Scholar 
    Huwer, A. & Wittig, R. Changes in the species composition of hedgerows in the Westphalian Basin over a thirty-five-year period. Tuexenia 32, 31–53 (2012).
    Google Scholar 
    Immoor, A., Zacharias, D., Müller, J. & Diekmann, M. A re-visitation study (1948–2015) of wet grassland vegetation in the Stedinger Land near Bremen, North-western Germany, https://doi.org/10.14471/2017.37.013 (2017).Rosenthal, G. Erhaltung und Regeneration von Feuchtwiesen. Vegetationsökologische Untersuchungen auf Dauerflächen. Diss. Bot. 182, 1–283 (1992).
    Google Scholar 
    Poptcheva, K., Schwartze, P., Vogel, A., Kleinebecker, T. & Hölzel, N. Changes in wet meadow vegetation after 20 years of different management in a field experiment (North-West Germany). Agriculture, Ecosystems & Environment 134, 108–114 (2009).Article 

    Google Scholar 
    Diekmann, M. et al. Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe. J Veg Sci 30, 187–202 (2019).Article 

    Google Scholar 
    Hundt, R. Ökologisch‐geobotanische Untersuchungen an den mitteldeutschen Wiesengesellschaften unter besonderer Berücksichtigung ihres Wasserhaushaltes und ihrer Veränderung durch die Intensivbewirtschaftung. (Wehry-Druck OHG, 2001).Kuhn, G., Heinz, S. & Mayer, F. Grünlandmonitoring Bayern. Ersterhebung der Vegetation 2002–2008. Schriftenreihe LfL Bayerische Landesanstalt für Landwirtschaft 3, 1–161 (2011).
    Google Scholar 
    Raehse, S. Veränderungen der hessischen Grünlandvegetation seit Beginn der 50er Jahre am Beispiel ausgewählter Tal- und Bergregionen Nord- und Mittelhessens. (University Press GmbH, 2001).Scheidel, U. & Bruelheide, H. Versuche zur Beweidung von Bergwiesen im Harz. Hercynia N.F 37, 87–101 (2004).
    Google Scholar 
    Sommer, S. & Hachmöller, B. Auswertung der Vegetationsaufnahmen von Dauerbeobachtungenflächen auf Bergwiesen im NSG Oelsen bei variierter Mahd im Vergleich zur Brache. Ber. Arbeitsgem. Sächs. Bot. N.F. 18, 99–135 (2001).
    Google Scholar 
    Wegener, U. Vegetationswandel des Berggrünlands nach Untersuchungen von 1954 bis 2016 – Wege zur Erhaltung der Bergwiesen. Mountain grasslands vegetation change after research from 1954 to 2016 – ways to preserve mountain meadows. Abhandlungen und Berichte aus dem Museum Heineanum 11, 35–101 (2018).
    Google Scholar 
    Wittig, B., Müller, J. & Mahnke-Ritoff, A. Talauen-Glatthaferwiesen im Verdener Wesertal (Niedersachsen). Tuexenia 39, 249–265 (2019).
    Google Scholar 
    Heinrich, W., Marstaller, R. & Voigt, W. Eine Langzeitstudie zur Sukzession in Halbtrockenrasen – Strukturwandlungen in einer Dauerbeobachtungsfläche im Naturschutzgebiet “Leutratal und Cospoth” bei Jena (Thüringen). Artenschutzreport Jena 30, 1–80 (2012).
    Google Scholar 
    Hüllbusch, E., Brand, L. M., Ende, P. & Dengler, J. Little vegetation change during two decades in a dry grassland complex in the Biosphere Reserve Schorfheide-Chorin (NE Germany). Tuexenia 36, 395–412 (2016).
    Google Scholar 
    Knapp, R. Dauerflächen-Untersuchungen über die Einwirkung von Haustieren und Wild während trockener und feuchter Zeiten in Mesobromion-Halbtrockenrasen in Hessen. Mitt. Florist.-Soziol. Arbeitsgem. N.F. 19/20, 269–274 (1977).
    Google Scholar 
    Matesanz, S., Brooker, R. W., Valladares, F. & Klotz, S. Temporal dynamics of marginal steppic vegetation over a 26-year period of substantial environmental change: Temporal dynamics of marginal steppic vegetation over a 26-year period. Journal of Vegetation Science 20, 299–310 (2009).Article 

    Google Scholar 
    Schwabe, A., Zehm, A., Nobis, M., Storm, C. & Süß, K. Auswirkungen von Schaf-Erstbeweidung auf die Vegetation primär basenreicher Sand-Ökosysteme. NNA Berichte 1/2004, 39–54 (2004).
    Google Scholar 
    Schwabe, A., Süss, K. & Storm, C. What are the long-term effects of livestock grazing in steppic sandy grassland with high conservation value? Results from a 12-year field study. Tuexenia 33, 189–212 (2013).
    Google Scholar 
    Peppler‐Lisbach, C., Stanik, N., Könitz, N. & Rosenthal, G. Long‐term vegetation changes in Nardus grasslands indicate eutrophication, recovery from acidification, and management change as the main drivers. Appl Veg Sci 23, 508–521 (2020).Article 

    Google Scholar 
    Peppler-Lisbach, C. & Könitz, N. Vegetationsveränderungen in Borstgrasrasen des Werra-Meißner-Gebietes (Hessen, Niedersachsen) nach 25 Jahren. Tuexenia 37, 201–228 (2017).
    Google Scholar 
    Wittig, B., Müller, J., Quast, R. & Miehlich, H. Arnica montana in Calluna-Heiden auf dem Schießplatz Unterlüß (Niedersachsen). Tuexenia 40, 131–146 (2020).
    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci USA 115, 1848–1853 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kudernatsch, T. et al. Vegetationsveränderungen alpiner Kalk-Magerrasen im Nationalpark Berchtesgaden während der letzten drei Jahrzehnte. Tuexenia 36, 205–221 (2016).
    Google Scholar 
    Poschlod, P. et al. Long‐term monitoring in rivers of south Germany since the 1970ies. Macrophytes as indicators for the assessment of water quality. in Long‐term ecological research. Between Theory and Application (eds. Müller, F., Baessler, C., Schubert, H. & Klotz, S.) 189–199 (Springer, 2006).Dierschke, H. Dynamik und Konstanz an naturnahen Flussufern. 27 Jahre Dauerflächenuntersuchungen am Oderufer (Harzvorland). Braunschweiger Geobotanische Arbeiten 9, 119–138 (2008).
    Google Scholar 
    Kreyling, J. et al. Rewetting does not return drained fen peatlands to their old selves. Nat Commun 12, 5693 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohn, U. & Schniotalle, S. Hochmoor-, Grünland- und Waldrenaturierung im Naturschutzgebiet ‘Rotes Moor’/Hohe Rhön 1981–2001. (Landwirtschaftsverlag, 2008).Koch, M. & Jurasinski, G. Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecology & Diversity 8, 49–60 (2015).Article 

    Google Scholar 
    Walther, K. Die Vegetation des Maujahn 1984. Wiederholung der vegetationskundlichen Untersuchung eines wendländischen Moores. Tuexenia 6, 145–193 (1986).
    Google Scholar 
    Berg, C. & Mahn, E.-G. Anthropogene Vegetationsveränderungen der Straßenrandvegetation in den letzten 30 Jahren – die Glatthaferwiesen des Raumes Halle/Saale. Tuexenia 10, 185–195 (1990).
    Google Scholar 
    Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s – a cross-regional analysis. Diversity Distribution 19, 1175–1187 (2013).Article 

    Google Scholar 
    Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Veränderungen in der Segetalflora in den letzten Jahrzehnten und mögliche Konsequenzen für Agrarvögel. Julius-Kühn-Archiv 442, 64–78 (2013).
    Google Scholar 
    Kutzelnigg, H. Veränderungen der Ackerwildkrautflora im Gebiet um Moers/Niederrhein seit 1950 und ihre Ursachen. Tuexenia 4, 81–102 (1984).
    Google Scholar 
    Milligan, G., Rose, R. J. & Marrs, R. H. Winners and losers in a long-term study of vegetation change at Moor House NNR: Effects of sheep-grazing and its removal on British upland vegetation. Ecological Indicators 68, 89–101 (2016).Article 

    Google Scholar 
    Wittig, B., Waldman, T. & Diekmann, M. Veränderungen der Grünlandvegetation im Holtumer Moor über vier Jahrzehnte. Hercynia N.F 40, 285–300 (2007).
    Google Scholar 
    Henning, K., Lorenz, A., von Oheimb, G., Härdtle, W. & Tischew, S. Year-round cattle and horse grazing supports the restoration of abandoned, dry sandy grassland and heathland communities by supressing Calamagrostis epigejos and enhancing species richness. Journal for Nature Conservation 40, 120–130 (2017).Article 

    Google Scholar 
    Blüml, V. Langfristige Veränderungen von Flora und Vegetation des Grünlandes in der Dümmerniederung (Niedersachsen) unter dem Einfluss von Naturschutzmaßnahmen. (Bremen, 2011).Von Oheimb, G. et al. Halboffene Weidelandschaft Höltigbaum. Perspektiven für den Erhalt und die naturverträgliche Nutzung von Offenlandlebensräumen. (Landwirschaftsverlag, 2006).Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecol Biogeogr 27, 760–786 (2018).Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vellend, M. The Biodiversity Conservation Paradox. Am. Sci. 105, 94 (2017).Article 

    Google Scholar 
    Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biological Conservation 219, 175–183 (2018).Article 

    Google Scholar 
    Perring, M. P. et al. Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution 242, 1787–1799 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Braun-Blanquet, J. Prinzipien einer Systematik der Pflanzengesellschaften auf floristischer Grundlage. Jahrb. St. Gallischen Naturwiss. Ges. 57, 305–351 (1921).
    Google Scholar 
    Becking, R. W. The Zürich-Montpellier school of phytosociology. Bot. Rev. 23, 411–488 (1957).Article 

    Google Scholar 
    Bruelheide, H. et al. sPlot – A new tool for global vegetation analyses. J Veg Sci 30, 161–186 (2019).Article 

    Google Scholar 
    O L Pescott, T A Humphrey & K J Walker. A short guide to using British and Irish plant occurrence data for research, https://doi.org/10.13140/RG.2.2.33746.86720 (2018).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Global Change Biology 27, 1097–1110 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci 19, 173–180 (2016).Article 

    Google Scholar 
    Van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article 

    Google Scholar 
    Tichý, L. et al. Optimal transformation of species cover for vegetation classification. Appl Veg Sci 23, 710–717 (2020).Article 

    Google Scholar 
    Podani, J. Braun-Blanquet’s legacy and data analysis in vegetation science. Journal of Vegetation Science 17, 113–117 (2006).Article 

    Google Scholar 
    Londo, G. Dezimalskala für die vegetationskundliche Aufnahme von Dauerquadraten. in Sukzessionsforschung (ed. Schmidt, W.). Ber. Int. Symp. Int. Vereinig. Vegetationsk. Rinteln vol. 1973, 613–617 (Cramer, 1975).Bruelheide, H. & Luginbühl, U. Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90, 1314–1325 (2009).Article 
    PubMed 

    Google Scholar 
    Hennekens, S. M. & Schaminée, J. H. J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sc. 12, 589–591 (2001).Article 

    Google Scholar 
    Gaston, K. J. & Curnutt, J. L. The dynamics of abundance-range size relationships. Oikos 81, 38 (1998).Article 

    Google Scholar 
    Gaston, K. J. et al. Abundance-occupancy relationships. J Appl Ecology 37, 39–59 (2000).Article 

    Google Scholar 
    Sporbert, M. et al. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J Biogeogr jbi.13926, https://doi.org/10.1111/jbi.13926 (2020).European Commission. Report on the Conservation Status of Habitat Types and Species as required under Article 17 of the Habitats Directive. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52009DC0358 (2009).Poschlod, P. Geschichte der Kulturlandschaft. (Ulmer, 2017).Mcgill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21, 178–185 (2006).Article 

    Google Scholar 
    Jandt, U. et al. More losses than gains during one century of plant biodiversity change in Germany. Nature https://doi.org/10.1038/s41586-022-05320-w (2022).Schaminée, J. H. J., Hennekens, S. M., Chytrý, M. & Rodwell, J. S. Vegetation-plot data and databases in Europe: an overview. Preslia 81, 173–185 (2009).
    Google Scholar 
    ESA. Land Cover CCI product user guide ver. 2. Tech. Rep. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2017).Kadmon, R., Farber, O. & Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications 14, 401–413 (2004).Article 

    Google Scholar 
    Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. 310 https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification/documentation/eunis-2004-report.pdf/download (2004).Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl Veg Sci 23, 648–675 (2020).Article 

    Google Scholar 
    Bruelheide, H., Tichý, L., Chytrý, M. & Jansen, F. Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Appl Veg Sci, https://doi.org/10.1111/avsc.12562 (2021).Jandt, U., Bruelheide, H. & ReSurveyGermany Consortium. ReSurvey Germany: vegetation-plot resurvey data from Germany. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig https://doi.org/10.25829/idiv.3514-0qsq70 (2022).Jansen, F. & Dengler, J. GermanSL – eine universelle taxonomische Referenzliste für Vegetationsdatenbanken. Tuexenia 28, 239–253 (2008).
    Google Scholar 
    Wisskirchen, R. & Haeupler, H. Standardliste der Farn-und Blütenpflanzen Deutschlands. (Ulmer, 1998).Jansen, F. & Dengler, J. Plant names in vegetation databases–a neglected source of bias. Journal of Vegetation Science 21, 1179–1186 (2010).Article 

    Google Scholar 
    Fischer, H. S. On the combination of species cover values from different vegetation layers. Applied Vegetation Science 18, 169–170 (2015).Article 

    Google Scholar 
    Schwabe, A. & Kratochwil, A. Pflanzensoziologische Dauerflächen-Untersuchungen im Bannwald ‘Flüh’ (Südschwarzwald) unter besonderer Berücksichtigung der Weidfeld-Sukzession. Standort.Wald 49, 5–49 (2015).
    Google Scholar 
    Poschlod, P., Schreiber, K.-F., Mitlacher, K., Römermann, C. & Bernhardt-Römermann, M. Entwicklung der Vegetation und ihre naturschutzfachliche Bewertung. in Landschaftspflege und Naturschutz im Extensivgrünland. 30 Jahre Offenhaltungsversuche Baden-Württemberg (eds. Schreiber, K.-F., Brauckmann, H.-J., Broll, G., Krebs, S. & Poschlod, P.) vol. 97 243–288 (2009).Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Determining the potential distribution of Oryctes monoceros and Oryctes rhinoceros by combining machine-learning with high-dimensional multidisciplinary environmental variables

    Manjeri, G., Muhamad, R. & Tan, S. G. Oryctes rhinoceros beetles, an oil palm pest in Malaysia. Annu. Res. Rev. Biol. 4, 3429–3439 (2014).Article 

    Google Scholar 
    Allou, K., Morin, J. P., Kouassi, P., Nklo, F. H. & Rochat, D. Oryctes monoceros trapping with synthetic pheromone and palm material in Ivory Coast. J. Chem. Ecol. 32, 1743–1754 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alibert, H. Study on the insect pests of oil palm in Dahomey. Rev. Botan. Appl. 18, 745–773 (1936).
    Google Scholar 
    Catley, A. The coconut rhinoceros beetle Oryctes rhinoceros (L) [Coleoptera: Scarabaeidae: Dynastinae]. PANS Pest Articles News Summar. 15, 18–30 (1969).Article 

    Google Scholar 
    Fauzana, H., Sutikno, A. & Salbiah, D. Population fluctuations Oryctes rhinoceros L. beetle in plant oil palm (Elaeis guineensis Jacq.) given mulching oil palm empty bunch. Cropsaver Int. J. Trop. Insect Sci. 1, 42–47 (2018).
    Google Scholar 
    Paudel, S., Mansfield, S., Villamizar, L. F., Jackson, T. A. & Marshall, S. D. Can biological control overcome the threat from newly invasive coconut rhinoceros beetle populations (Coleoptera: Scarabaeidae)? A review. Ann. Entomol. Soc. Am. 114, 247–256 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Molet, T. In CPHST Pest Datasheet for Oryctes rhinoceros. USDA-APHIS-PPQCPHST. Revised July 2014 (2013).Hinckley, A. D. Ecology of the coconut rhinoceros beetle, Oryctes rhinoceros (L.) (Coleoptera: Dynastidae). Biotropica 1973, 111–116 (1973).Article 

    Google Scholar 
    Sitepu, D., Kharie, S., Waroka, JS & Motulo, HFJ. Methods for the production and use of Marhizium anisopliae against Oryctes rhinoceros. In Integrated Coconut Pest Control Project—Annual report of Coconut Research Institute—Manado, North Sulawesi, Indonesia 104–111 (1988).Philippe, R. & Dery, S. K. Coconut research and development. CORD 20, 43–51 (2004).
    Google Scholar 
    Purrini, K. Baculovirus oryctes release into Oryctes monoceros population in Tanzania, with special reference to the interaction of virus isolates used in our laboratory infection experiments. J. Invertebr. Pathol. 53, 285–300 (1989).Article 

    Google Scholar 
    Ukeh, D. A., Usua, E. J. & Umoetok, S. B. A. Notes on the biology of Oryctes monoceros (OLIV.) A pest of palms in Nigeria. World J. Agric. Res. 2, 33–36 (2003).
    Google Scholar 
    Dry, F. W. Notes on the coconut beetle (Oryctes monoceros, Ol.) in Kenya Colony. Bull. Entomol. Res. 13, 103–107 (1922).Article 

    Google Scholar 
    Bedford, G. O. Biology, ecology, and control of palm rhinoceros beetles. Annu. Rev. Entomol. 25, 309–339 (1980).Article 

    Google Scholar 
    Khoo, K. C., Yusoff, M. N. M. & Lee, T. W. Pulp and paper of oil palm trunk. In Research Pamphlet No.107: Oil Palm Stem Utilisation, Kuala Lumpur, Malaysia, FRIM 51–65 (1991).Giblin-Davis, R. M. Borers of palms. In Insects on Palms (eds Moore, D. et al.) (CABI Publishing, Wallingford, 2001).
    Google Scholar 
    Drumoni, A. & Ponchel, Y. Première capture au Yémen d’ Oryctes (Rykanoryctes) monoceros (Olivier, 1789) et confirmation de la présence de cette espèce africaine dans la Péninsule Arabique (Coleoptera, Dynastidae). Entomol. Afr. 15, 25–29 (2010).
    Google Scholar 
    Lever, R. J. A. W. Pests of the Coconut Palm (Food and Agriculture Organization of the United Nations, Rome, 1969).Moore, A. Rhinoceros beetle pest found in Guam and Saipan. In Pest Alert, Suva, Fiji: Plant Protection Service, Secretariat of the Pacific Community (2007).Zhang, K., Yao, L., Meng, J. & Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. Sci. 634, 1326–1334 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ding, F., Fu, J., Jiang, D., Hao, M. & Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 178, 155–162 (2018).Article 
    PubMed 

    Google Scholar 
    Valencia-Rodríguez, D., Jiménez-Segura, L., Rogéliz, C. A. & Parra, J. L. Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16, e0247876 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Escobar, L. E., Qiao, H., Cabello, J. & Peterson, A. T. Ecological niche modeling re-examined: A case study with the Darwin’s fox. Ecol. Evol. 8, 4757–4770 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article 
    PubMed 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 31, 272–278 (2008).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    Arnold, J. D., Brewer, S. C. & Dennison, P. E. Modeling climate-fire connections within the Great basin and Upper Colorado River Basin. Fire Ecol. 10, 64–75 (2014).Article 

    Google Scholar 
    Phillips, J. S. & Elith, J. On estimating probability of presence from use-availability or presence-background data. Ecology 94, 1409–1419 (2013).Article 
    PubMed 

    Google Scholar 
    Santana, P. A. Jr., Kumar, L., Da Silva, R. S., Pereira, J. L. & Picanço, M. C. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest. Manag. Sci. 75, 2706–2715 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, et al. Predicting the current and future distributions of Brontispa longissima (Coleoptera: Chrysomelidae) under climate change in China. Glob. Ecol. Conserv. 25, e01444 (2021).Article 

    Google Scholar 
    Li, T. et al. Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant diversity of montane forests. Ecol. Evol. 10, 557–568 (2020).Article 
    PubMed 

    Google Scholar 
    Namgung, H., Kim, M. J., Baek, S., Lee, J. H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (Hemiptera: Fulgoridae) using MaxEnt model in South Korea. J. Asia Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Ji, W., Gao, G. & Wei, J. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects. 12, 347 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ji, W., Han, K., Lu, Y. & Wei, J. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. J. Crop. Prot. 137, 105268 (2020).Article 

    Google Scholar 
    Sharma, HC & Prabhakar, CS. Impact of climate change on pest management and food security. In Integrated Pest Management 23–36 (Academic Press, Cambridge, 2014).Skendžić, S., Zovko, M., Živković, I. P., Lešic, V. & Lemić, D. The impact of climate change on agricultural insect pests. Insects. 12, 440 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, N. L. & Masters, G. J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Change Biol. 13, 1605–1615 (2007).Article 
    ADS 

    Google Scholar 
    De Queiroz, D. L., Burckhardt, D. & Majer, J. Integrated pest management of eucalypt psyllids (Insecta, Hemiptera, Psylloidea). In Integrated pest management and pest control-current and future tactics. INTECH 2012, 385–412 (2012).
    Google Scholar 
    Hochberg, M. E. & Waage, J. K. A model for the biological control of Oryctes rhinoceros (Coleoptera: Scarabaeidae) by means of pathogens. J. Appl. Ecol. 28, 514–531 (1991).Article 

    Google Scholar 
    Liu, Y. et al. MaxEnt modelling for predicting the potential distribution of a near threatened rosewood species (Dalbergia cultrata Graham ex Benth). Ecol. Eng. 141, 105612 (2019).Article 

    Google Scholar 
    Wang, R. et al. Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios. Sci. Rep. 10, 1–9 (2020).CAS 

    Google Scholar 
    Wood, B. J. Studies on the effect of ground vegetation on infestations of Oryctes rhinoceros (L.) (Col., Dynastidae) in young oil palm replantings in Malaysia. Bull Entomol. Res. 59, 85–96 (1969).Article 

    Google Scholar 
    Mittal, I. C. Survey of scarabaeid (Coleoptera) fauna of Himachal Pradesh (India). J. Entomol. Res. 24, 259–269 (2000).
    Google Scholar 
    Zheng, C., Jiang, D., Ding, F., Fu, J. & Hao, M. Spatiotemporal patterns and risk factors for scrub typhus from 2007 to 2017 in southern China. Clin. Infect. Dis. 69, 1205–1211 (2019).Article 
    PubMed 

    Google Scholar 
    Chen, S., Ding, F., Hao, M. & Jiang, D. Mapping the potential global distribution of red imported fire ant (Solenopsis invicta Buren) based on a machine learning method. Sustainability. 12, 10182 (2020).Article 

    Google Scholar 
    Ding, F. et al. Infection and risk factors of human and avian influenza in pigs in south China. Prev. Vet. Med. 190, 105317 (2021).Article 
    PubMed 

    Google Scholar 
    Jiang, D. et al. Spatiotemporal patterns and spatial risk factors for Visceral leishmaniasis from 2007 to 2017 in Western and Central China: A modelling analysis. Sci. Total Environ Sci. 764, 144275 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Méndez-Rojas, D. M., Cultid-Medina, C. & Escobar, F. Influence of land use change on rove beetle diversity: A systematic review and global meta-analysis of a mega-diverse insect group. Ecol. Indic. 122, 107239 (2021).Article 

    Google Scholar 
    Oke, T. R. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).Article 
    ADS 

    Google Scholar 
    Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Eco. Model. 341, 5–13 (2016).Article 

    Google Scholar 
    Fand, B. B. et al. Invasion risk of the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions based on MaxEnt ecological niche modelling. Int. J. Trop. Insect Sci. 40, 1–11 (2020).Article 

    Google Scholar 
    Li, W. J. et al. Potential distribution prediction of natural Pseudotsuga sinensis forest in Guizhou based on Maxent model. J. For. Res. 48, 47–52 (2019).
    Google Scholar 
    McIntyre, S., Rangel, E. F., Ready, P. D. & Carvalho, B. M. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasit. Vectors 10, 1–15 (2017).Article 

    Google Scholar 
    Hao, M. et al. Global potential distribution of Oryctes rhinoceros, as predicted by boosted regression tree model. Glob. Ecol. Conserv. 37, e02175 (2022).Article 

    Google Scholar 
    Aidoo, O. F. et al. The impact of climate change on potential invasion risk of Oryctes monoceros worldwide. Front. Ecol. Evol. 10, 633 (2022).Article 

    Google Scholar 
    Aidoo, O. F. et al. Lethal yellowing disease: Insights from predicting potential distribution under different climate change scenarios. J. Plant Dis. Prot. 2021, 1–13 (2021).
    Google Scholar 
    Ruheili, A. M. A., Boluwade, A. & Subhi, A. M. A. Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-D) Phytoplasma Disease Using MaxEnt. Plants. 10, 460 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R. et al. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. PeerJ 7, e7323 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, S. T. & Jing, P. F. Prediction of potential distribution areas of Salvia bowleyana Dunn. in China based on MaxEnt and suitability analysis. J Anhui Agri. Sci. 8, 2311–2314 (2014).
    Google Scholar 
    Chahouki, M. A. Z. & Sahragard, H. P. Maxent modelling for distribution of plant species habitats of rangelands (Iran). Pol. J. Ecol. 64, 453–467 (2016).
    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Glob. Int. J. Hum. Soc. Sci. 18, 6–18 (2018).
    Google Scholar 
    Baloch, M. N., Fan, J., Haseeb, M. & Zhang, R. Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in central Asia. Insects. 11, 172 (2020).Article 
    PubMed Central 

    Google Scholar 
    Wang, N., Li, Z., Wu, J., Rajotte, E. G., Wan, F & Wang, Z. The potential geographical distribution of Bactrocera dorsalis (Diptera: Tephrididae) in China based on emergence rate model and ArcGIS. In International Conference on Computer and Computing Technologies in Agriculture 399–411. (Springer, Boston, 2008).Manrique, V., Cuda, J. P., Overholt, W. A. & Diaz, R. Temperature-dependent development and potential distribution of Episimus utilis (Lepidoptera: Tortricidae), a candidate biological control agent of Brazilian peppertree (Sapindales: Anacardiaceae) in Florida. Environ. Entomol. 37, 862–870 (2008).Article 
    PubMed 

    Google Scholar 
    Das, D. K., Singh, J. & Vennila, S. Emerging crop pest scenario under the impact of climate change–a brief review. AgroPhysics. 11, 13–20 (2011).CAS 

    Google Scholar 
    Porter, J. H., Parry, M. L. & Carter, T. R. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 57, 221–240 (1991).Article 
    ADS 

    Google Scholar 
    Trenberth, K. E. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law. 36, 463–481 (2018).Article 

    Google Scholar 
    Xu, D., Zhuo, Z., Li, X. & Wang, R. Distribution and invasion risk assessment of Oryctes rhinoceros (L.) in China under changing climate. J. Appl. Entomol. 146, 385–395 (2022).Article 

    Google Scholar 
    Sushil, K. & Mukhtar, A. Effect of temperature and humidity on biology of rhinoceros beetle, Oryctes rhinoceros Linn. on oil palm. J. Appl. Anim. Res. 18, 108–112 (2007).
    Google Scholar 
    Sabidin, N. N. E. The effect of climate change to the population of rhinoceros beetle (Oryctes rhinoceros) at selected oil palm plantation. In Bachelor of Science Thesis Dissertation. Universiti Teknologi MARA. https://ir.uitm.edu.my/id/eprint/22754. (2018).Yadav, R. & Chang, N. T. Effects of temperature on the development and population growth of the melon thrips, Thrips palmi, on eggplant, Solanum melongena. J. Insect Sci. 14, 78 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ju, R. T., Wang, F. & Li, B. Effects of temperature on the development and population growth of the sycamore lace bug, Corythucha ciliata. J. Insect Sci. 11, 1–12 (2011).Article 

    Google Scholar 
    Zheng, F. S., Du, Y. Z., Wang, Z. J. & Xu, J. J. Effect of temperature on the demography of Galerucella birmanica (Coleoptera: Chrysomelidae). Insect Sci. 15, 375–380 (2008).Article 

    Google Scholar 
    Azrag, A. G. et al. Modelling the effect of temperature on the biology and demographic parameters of the African coffee white stem borer, Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae). J. Therm. Biol. 89, 102534 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aidoo, O. F. et al. The African citrus triozid Trioza erytreae Del Guercio (Hemiptera: Triozidae): Temporal dynamics and susceptibility to entomopathogenic fungi in East Africa. Int. J. Trop. Insect Sci. 41, 563–573 (2021).Article 

    Google Scholar 
    Leonard, A. et al. Predicting the current and future distribution of the edible long-horned grasshopper Ruspolia differens (Serville) using temperature-dependent phenology models. J. Therm. Biol. 95, 102786 (2021).Article 
    PubMed 

    Google Scholar 
    Roy, B. A. et al. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12, 457–465 (2014).Article 

    Google Scholar 
    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6, 5973–5986 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cianci, D., Hartemink, N. & Ibáñez-Justicia, A. Modelling the potential spatial distribution of mosquito species using three different techniques. Int. J. Health Geogr. 14, 10 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zelazny, B. & Alfiler, A. Oryctes rhinoceros (Coleoptera: Scarabaeidae) larva abundance and mortality factors in the Philippines. Environ. Entomol. 15, 84–87 (1986).Article 

    Google Scholar 
    Wood, B.J. Studies on the effect of ground vegetation on infestations of Oryctes rhinoceros (L.)(Col., Dynastidae) in young oil palm replantings in Malaysia. Bull. Entomol. Res. 59, 85–96 (1969). More