More stories

  • in

    Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs

    Birkeland, C. Coral Reefs in the Anthropocene (Springer, 2015).Book 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39(1), 146–159. https://doi.org/10.1093/icb/39.1.146 (1999).Article 

    Google Scholar 
    Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432. https://doi.org/10.1007/s00338-003-0330-5 (2003).Article 

    Google Scholar 
    Wilkinson, C. R. Global and local threats to coral reef functioning and existence: review and predictions. Mar. Freshw. Res. 50, 867–878. https://doi.org/10.1071/mf99121 (1999).Article 

    Google Scholar 
    Mies, M. et al. South atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 514. https://doi.org/10.3389/fmars.2020.00514 (2020).Article 

    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefsin a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116. https://doi.org/10.1590/S1679-875920160916064sp2 (2016).Article 

    Google Scholar 
    Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126. https://doi.org/10.1007/s11160-013-9319-5 (2014).Article 

    Google Scholar 
    Alvarez-Filip, L., Gill, J. A. & Dulvy, N. K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2, 118. https://doi.org/10.1890/ES11-00185.1 (2011).Article 

    Google Scholar 
    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?. Glob. Change Biol. 12, 2220–2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x (2006).ADS 
    Article 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493. https://doi.org/10.1038/s43017-020-0068-4 (2020).ADS 
    Article 

    Google Scholar 
    Bleuel, J., Pennino, M. G. & Longo, G. O. Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci. Rep. 11, 12833. https://doi.org/10.1038/s41598-021-92202-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fontoura, L. et al. The macroecology of reef fish agonistic behaviour. Ecography 43, 1278–1290. https://doi.org/10.1111/ecog.05079 (2020).Article 

    Google Scholar 
    Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Change Biol. 26, 6805–6812. https://doi.org/10.1111/gcb.15346 (2020).ADS 
    Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: Ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46, 251–296. https://doi.org/10.1201/9781420065756.ch6 (2008).Article 

    Google Scholar 
    Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x (2007).Article 
    PubMed 

    Google Scholar 
    Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. R. Soc. B 288, 20210274. https://doi.org/10.1098/rspb.2021.0274 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClenachan, L. Extinction risk in reef fishes 199–207 (Cambridge University Press, 2015).
    Google Scholar 
    Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620. https://doi.org/10.2307/1312990 (1996).Article 

    Google Scholar 
    Pereira, P. H. C. et al. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol. Res. 61, 375–384. https://doi.org/10.1007/s10228-014-0409-8 (2014).Article 

    Google Scholar 
    Coni, E. O. C. et al. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ. Biol. Fish. 96, 45–55. https://doi.org/10.1007/s10641-012-0021-6 (2013).Article 

    Google Scholar 
    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348. https://doi.org/10.1111/j.1461-0248.2011.01592.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, 7650. https://doi.org/10.1126/sciadv.aay7650 (2020).ADS 
    Article 

    Google Scholar 
    Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148. https://doi.org/10.1016/j.marenvres.2019.03.013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452. https://doi.org/10.1371/journal.pone.0198452 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and Coral Reefs of Brazil 9–52 (Elsevier Publisher, 2003).
    Google Scholar 
    Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965. https://doi.org/10.1111/ddi.12729 (2018).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x (2008).Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169(5), 61. https://doi.org/10.1007/s00227-022-04045-8 (2022).Article 

    Google Scholar 
    Leal, I. C. S., Araújo, M. E. D., Cunha, S. R. D. & Pereira, P. H. C. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar. Environ. Res. 108, 45–54. https://doi.org/10.1016/j.marenvres.2015.04.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. A. Applied hierarchical modeling in ecology: Analysis of distribution abundance and species richness in R and BUGS. In Prelude and Static Models Vol. 1 (eds Kéry, M. & Royle, J. A.) (Academic Press, 2016).MATH 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.640619 (2021).Article 

    Google Scholar 
    McLean, M. et al. Trait similarity in reef fish faunas across the world’s oceans. PNAS 118(12), e2012318118. https://doi.org/10.1073/pnas.2012318118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454. https://doi.org/10.1002/fee.2088 (2019).Article 

    Google Scholar 
    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf S. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).ADS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762. https://doi.org/10.1073/pnas.1317625111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, J. C. Marine Zoogeography (McGraw-Hill, 1974).
    Google Scholar 
    Garcia, G. S., Dias, M. S. & Longo, G. O. Trade-off between number and length of remote videos for rapid assessments of reef fish assemblages. J. Fish Biol. 99(3), 896–904. https://doi.org/10.1111/jfb.14776 (2021).Article 
    PubMed 

    Google Scholar 
    Quimbayo, J. P. et al. Life-history traits, geographical range, and conservation aspects ofreef fishes from the Atlantic and Eastern Pacific. Ecology 102, e03298. https://doi.org/10.1002/ecy.3298 (2021).Article 
    PubMed 

    Google Scholar 
    Katsanevakis, S. et al. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat. Biol. 16, 31–52. https://doi.org/10.3354/ab00426 (2012).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301. https://doi.org/10.1890/07-1206.1 (2008).Article 
    PubMed 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740. https://doi.org/10.1111/geb.12299 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021)Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. R package version 1.5.2. https://CRAN.R-project.org/package=jagsUI (2021)Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fish. 61, 353–369 (2001).Article 

    Google Scholar 
    Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. 21, 700–717. https://doi.org/10.1111/faf.12455 (2020).Article 

    Google Scholar 
    Ferreira, L. C. L. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168, 54. https://doi.org/10.1007/s00227-021-03863-6 (2021).CAS 
    Article 

    Google Scholar 
    Lonzetti, B. C., Vieira, E. A. & Longo, G. O. Ocean warming can help zoanthids outcompete branching hydrocorals. Coral Reefs 41, 175–189. https://doi.org/10.1007/s00338-021-02212-9 (2022).Article 

    Google Scholar 
    Grillo, A. C., Candido, C. F., Giglio, V. J. & Longo, G. O. Unusual high coral cover in a Southwestern Atlantic subtropical reef. Mar. Biodivers. 51, 77. https://doi.org/10.1007/s12526-021-01221-9 (2021).Article 

    Google Scholar 
    Matheus, Z. et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE 14(1), e0210664. https://doi.org/10.1371/journal.pone.0210664 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirelles, P. M. et al. Baseline assessment of mesophotic reefs of the vitória-trindade seamount chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10(6), e0130084. https://doi.org/10.1371/journal.pone.0130084 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x (2004).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol.-Prog. Ser. 367, 249–260. https://doi.org/10.3354/meps07580 (2008).ADS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a Tropical Western Atlantic reef ecosystem. Ecosystems 25, 843–857. https://doi.org/10.1007/s10021-021-00691-z (2022).Article 

    Google Scholar 
    Fogliarini, C. O., Longo, G. O., Francini-Filho, R. B., McClenachan, L. & Bender, M. G. Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. PECON 20(3), 231–239. https://doi.org/10.1007/10.1016/j.pecon.2022.05.003 (2022).Article 

    Google Scholar 
    Gasparini, J. L., Floeter, S. R., Ferreira, C. E. L. & Sazima, I. Marine ornamental trade in Brazil. Biodivers. Conserv. 14, 2883–2899. https://doi.org/10.1007/s10531-004-0222-1 (2005).Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Brazil 163–198 (Springer, 2019).
    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901. https://doi.org/10.1111/brv.12259 (2017).Article 
    PubMed 

    Google Scholar 
    Nunes, L. T. et al. Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago. Coral Reefs 38, 955–960. https://doi.org/10.1007/s00338-019-01822-8 (2019).ADS 
    Article 

    Google Scholar 
    Liedke, A. et al. Abundance, diet, foraging and nutritional condition of the banded butterflyfish (Chaetodon striatus) along the western Atlantic. Mar. Biol. 163, 6. https://doi.org/10.1007/s00227-015-2788-4 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Vapour pressure deficit determines critical thresholds for global coffee production under climate change

    Vega, F. E., Rosenquist, E. & Collins, W. Global project needed to tackle coffee crisis. Nature 425, 343 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P. & Grab, S. W. Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric. For. Meteorol. 207, 1–10 (2015).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7, e47981 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Mieulet, D., Moat, J., Sarmu, D. & Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moat, J., Gole, T. W. & Davis, A. P. Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biol. 25, 390–403 (2019).ADS 
    Article 

    Google Scholar 
    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).PubMed 
    Article 

    Google Scholar 
    Kath, J. et al. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biol. 26, 3677–3688 (2020).ADS 
    Article 

    Google Scholar 
    Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).PubMed 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds. Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Burke, M. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Change 8, 723–729 (2018).ADS 
    Article 

    Google Scholar 
    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schneider, S. H. Abrupt non-linear climate change, irreversibility and surprise. Global Environ. Change 14, 245–258 (2004).Article 

    Google Scholar 
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).ADS 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature. 575, 592–595 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rigden, A., Mueller, N., Holbrook, N., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinclair, T. R. et al. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 260, 109–118 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biol. 27, 1704–1720 (2021).ADS 
    Article 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article 

    Google Scholar 
    Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 1–7 (2017).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M. et al. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 10, 407–412 (2011).
    Google Scholar 
    Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011).ADS 
    Article 

    Google Scholar 
    IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    Sinclair, T. R., Hammer, G. L. & Van Oosterom, E. J. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32, 945–952 (2005).PubMed 
    Article 

    Google Scholar 
    Martins, M. Q. et al. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Front. Plant Sci. 7, 947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodrigues, W. P. et al. Long‐term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra‐optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biol. 22, 415–431 (2016).ADS 
    Article 

    Google Scholar 
    Ghini, R. et al. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Change 132, 307–320 (2015).ADS 
    Article 

    Google Scholar 
    Rakocevic, M. et al. The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regul. 91, 305–316 (2020).CAS 
    Article 

    Google Scholar 
    Hammer, G. L. et al. Designing crops for adaptation to the drought and high‐temperature risks anticipated in future climates. Crop Sci. 60, 605–621 (2020).Article 

    Google Scholar 
    Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).PubMed 
    Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. Hot coffee: the identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 5, 740137 (2021).Article 

    Google Scholar 
    Sarmiento-Soler, A. et al. Disentangling effects of altitude and shade cover on coffee fruit dynamics and vegetative growth in smallholder coffee systems. Agric. Ecosyst. Environ. 326, 107786 (2022).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Barton, K. MuMIn: multi-model inference. R-Forge http://r-forge.r-project.org/projects/mumin/ (2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. M. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earths Future 6, 410–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ovalle-Rivera, O. et al. Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agrofor. Syst. 94, 2033–2051 (2020).Article 

    Google Scholar 
    Varma, S. & Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7, 1–8 (2006).Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Son, H. & Fong, Y. Fast grid search and bootstrap-based inference for continuous two-phase polynomial regression models. Environmetrics 32, e2664 (2021).MathSciNet 
    Article 

    Google Scholar 
    Wintgens, J. N. et al. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers (Wiley, 2004). More

  • in

    Substantial differences in soil viral community composition within and among four Northern California habitats

    To compare soil viral community composition within and across terrestrial habitats on a regional scale, viromes were generated from 34 near-surface (top 15 cm) soil samples, with a total of 30 viromes included in downstream ecological analyses (see Supplementary Methods). The analyzed viromes were collected from four distinct habitats (wetlands, grasslands, chaparral shrublands, and woodlands, each with 7, 14, 4, and 5 viromes, respectively) across five field sites (Fig. S1 for sampling scheme, Table S1 for soil properties). Following quality filtering, the 30 viromes generated an average of 72,950,833 reads and 416 contigs ≥10 Kbp per virome (Table S2). Wetland viromes yielded more contigs ≥10 Kbp than viromes from other habitats, both in total and on average per virome (Table S2). We used VIBRANT to identify 3490 viral contigs in our assemblies, which were clustered into 3,432 viral operational taxonomic units (vOTUs), defined as ≥10 Kbp viral contigs sharing ≥ 95% average nucleotide identity over 85% contig length [17]. Constrained analysis of principal coordinates (CAP analysis) revealed strong clustering by habitat rather than by site, implying that, where environmental parameters are substantially different, environmental conditions are stronger drivers of viral community composition than geographic distance (Fig. S2).Multiple lines of evidence suggest that wetter soils harbored greater viral diversity than drier soils. We recovered the most vOTUs from wetlands, both in total (56% of all vOTUs were from wetlands) and per virome (on average, 307 vOTUs were recovered per wetland virome, compared to 116 from all habitats) (Fig. 1A). Unsurprisingly, wetlands had significantly greater moisture content than other habitats (Fig. 1B; ANOVA followed by Tukey multiple comparisons of means, p 100 Km distances here. Taken together, we propose that soil viral communities often display high heterogeneity within and among habitats, presumably due to a combination of host adaptations and microdiversity, dispersal limitation, and fluctuating environmental conditions over space and time. More

  • in

    Factors determining the dorsal coloration pattern of aposematic salamanders

    Dobzhansky, T. Geographical variation in lady-beetles. Am. Nat. 67, 97–126 (1933).Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962–8968 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wallace, A. R. The colors of animals and plants. Am. Nat. 11, 641–662. https://doi.org/10.1086/271979 (1877).Article 

    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).Article 

    Google Scholar 
    Branham, M. A. & Wenzel, J. W. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1–22. https://doi.org/10.1016/s0748-3007(02)00131-7 (2003).Article 
    PubMed 

    Google Scholar 
    Maan, M. E. & Cummings, M. E. Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62, 2334–2345. https://doi.org/10.1111/j.1558-5646.2008.00454.x (2008).Article 
    PubMed 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Ruxton, G. D., Sherratt, T. N. & Michael, P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).Book 

    Google Scholar 
    Mappes, J., Marples, N. & Endler, J. A. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598–603 (2005).Article 

    Google Scholar 
    Joron, M. & Mallet, J. L. Diversity in mimicry: paradox or paradigm?. Trends Ecol. Evol. 13, 461–466 (1998).CAS 
    Article 

    Google Scholar 
    Summers, R. W. et al. An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J. Appl. Ecol. 41, 513–525 (2004).Article 

    Google Scholar 
    Nokelainen, O., Hegna, R. H., Reudler, J. H., Lindstedt, C. & Mappes, J. Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proc. R. Soc. B Biol. Sci. 279, 257–265 (2012).Article 

    Google Scholar 
    Ronka, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663. https://doi.org/10.1111/ele.13597 (2020).Article 
    PubMed 

    Google Scholar 
    Abram, P. K. et al. An insect with selective control of egg coloration. Curr. Biol. 25, 2007–2011. https://doi.org/10.1016/j.cub.2015.06.010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Briolat, E. S. et al. Diversity in warning coloration: selective paradox or the norm?. Biol. Rev. 94, 388–414. https://doi.org/10.1111/brv.12460 (2019).Article 
    PubMed 

    Google Scholar 
    Frost-Mason, S. K. & Mason, K. A. What insights into vertebrate pigmentation has the axolotl model system provided?. Int. J. Dev. Biol. 40, 685–693 (1996).CAS 
    PubMed 

    Google Scholar 
    Stückler, S., Cloer, S., Hödl, W. & Preininger, D. Carotenoid intake during early life mediates ontogenetic colour shifts and dynamic colour change during adulthood. Anim. Behav. 187, 121–135. https://doi.org/10.1016/j.anbehav.2022.03.007 (2022).Article 

    Google Scholar 
    Benito, M. M., Gonzalez-Solis, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549. https://doi.org/10.1007/s00360-010-0537-z (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stuckert, A. M. M. et al. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol. Biol. 19, 15. https://doi.org/10.1186/s12862-019-1410-7 (2019).Article 

    Google Scholar 
    Ohsaki, N. A common mechanism explaining the evolution of female-limited and both-sex Batesian mimicry in butterflies. J. Anim. Ecol. 74, 728–734 (2005).Article 

    Google Scholar 
    Grill, C. P. & Moore, A. J. Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114, 274–282 (1998).ADS 
    Article 

    Google Scholar 
    Friman, V. P., Lindstedt, C., Hiltunen, T., Laakso, J. & Mappes, J. Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4, e6761 (2009).ADS 
    Article 

    Google Scholar 
    Rojas, B. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol. Rev. 92, 1059–1080. https://doi.org/10.1111/brv.12269 (2017).Article 
    PubMed 

    Google Scholar 
    Hegna, R. H., Saporito, R. A. & Donnelly, M. A. Not all colors are equal: predation and color polytypism in the aposematic poison frog Oophaga pumilio. Evol. Ecol. 27, 831–845 (2013).Article 

    Google Scholar 
    Pizzigalli, C. et al. Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linnean Soc. 130, 345–358 (2020).Article 

    Google Scholar 
    Nielsen, M. E. & Mappes, J. Out in the open: behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).Article 

    Google Scholar 
    Lindstedt, C., Suisto, K., Burdfield-Steel, E., Winters, A. E. & Mappes, J. Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis. Behav. Ecol. 31, 844–850. https://doi.org/10.1093/beheco/araa033 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freeborn, L. R. The Genetic, Cellular, and Evolutionary Basis of Skin Coloration in the Highly Polymorphic Poison Frog, Oophaga pumilio (University of Pittsburgh, 2021).
    Google Scholar 
    Garcia, T. S., Straus, R. & Sih, A. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum. Can. J. Zool. 81, 710–715. https://doi.org/10.1139/z03-036 (2003).Article 

    Google Scholar 
    Caspers, B. A. et al. Developmental costs of yellow colouration in fire salamanders and experiments to test the efficiency of yellow as a warning colouration. Amphibia-Reptilia 41, 373–385. https://doi.org/10.1163/15685381-bja10006 (2020).Article 

    Google Scholar 
    Wells, K. D. The Ecology and Behaviour of Amphibians (The University of Chicago Press, 2007).Book 

    Google Scholar 
    Balogova, M., Kyselova, M. & Uhrin, M. Changes in dorsal spot pattern in adult Salamandra salamandra (LINNAEUS, 1758). Herpetozoa 28, 167–171 (2016).
    Google Scholar 
    Brejcha, J. et al. Variability of colour pattern and genetic diversity of Salamandra salamandra (Caudata: Salamandridae) in the Czech Republic. J. Vertebr. Biol. https://doi.org/10.25225/jvb.21016 (2021).Article 

    Google Scholar 
    Romeo, G., Giovine, G., Ficetola, G. F. & Manenti, R. Development of the fire salamander larvae at the altitudinal limit in Lombardy (north-western Italy): effect of two cohorts occurrence on intraspecific aggression. North-West J. Zool. 11, 234–240 (2015).
    Google Scholar 
    Manenti, R. & Ficetola, G. F. Salamanders breeding in subterranean habitats: local adaptations or behavioural plasticity?. J. Zool. 289, 182–188. https://doi.org/10.1111/j.1469-7998.2012.00976.x (2013).Article 

    Google Scholar 
    Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).
    Google Scholar 
    Weitere, M., Tautz, D., Neumann, D. & Steinfartz, S. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Mol. Ecol. 13, 1665–1677. https://doi.org/10.1111/j.1365-294X.2004.02155.x (2004).Article 
    PubMed 

    Google Scholar 
    Manenti, R., Denoel, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382. https://doi.org/10.1016/j.anbehav.2013.05.028 (2013).Article 

    Google Scholar 
    Fernandez-Conradi, P., Mocellin, L., Desfossez, E. & Rasmann, S. Seasonal changes in arthropod diversity patterns along an Alpine elevation gradient. Ecol. Entomol. 45(5), 1035–1043 (2020).Article 

    Google Scholar 
    Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Manenti, R., De Bernardi, F. & Padoa-Schioppa, E. Can patterns of spatial autocorrelation reveal population processes? An analysis with the fire salamander. Ecography 35, 693–703. https://doi.org/10.1111/j.1600-0587.2011.06483.x (2012).Article 

    Google Scholar 
    Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. Tetra-EU 1.0: a species-level trophic meta-web of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).Article 

    Google Scholar 
    Caldonazzi, M., Nistri, A. & Tripepi, S. in Amphibia Vol. XLII (eds B. Lanza et al.) 221–227 (2007).Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).Article 

    Google Scholar 
    Bernini, F. et al. Atlante degli Anfibi e dei Rettili della Lombardia (Provincia di Cremona, 2004).Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569. https://doi.org/10.1111/jbi.13680 (2019).Article 

    Google Scholar 
    Limongi, L., Ficetola, G. F., Romeo, G. & Manenti, R. Environmental factors determining growth of salamander larvae: a field study. Curr. Zool. 61, 421–427. https://doi.org/10.1093/czoolo/61.3.421 (2015).Article 

    Google Scholar 
    Czeczuga, B. Some carotenoids in Chironomus annularius Meig. larvae (Diptera: Chironomidae). Hydrobiologia 36, 353–360. https://doi.org/10.1007/BF00039794 (1970).CAS 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    visreg: Visualization of regression models. R package version 2.2-0. http://CRAN.R-project.org/package=visreg (2015).Preißler, K. et al. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J. Zool. 308, 293–300. https://doi.org/10.1111/jzo.12676 (2019).Article 

    Google Scholar 
    Kikuchi, D. W., Herberstein, M. E., Barfield, M., Holt, R. D. & Mappes, J. Why aren’t warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol. Rev. 96, 2446–2460 (2021).Article 

    Google Scholar 
    Abd El-Wakeil, K. F. Trophic structure of macro- and meso-invertebrates in Japanese coniferous forest: carbon and nitrogen stable isotopes analyses. Biochem. Systematics Ecol. 37, 317–324. https://doi.org/10.1016/j.bse.2009.05.008 (2009).CAS 
    Article 

    Google Scholar 
    Frelich, L. E. et al. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. Philos. Trans. R. Soc. B Biol. Sci. 367, 2955–2961. https://doi.org/10.1098/rstb.2012.0235 (2012).Article 

    Google Scholar 
    Umbers, K. D. L., Silla, A. J., Bailey, J. A., Shaw, A. K. & Byrne, P. G. Dietary carotenoids change the colour of Southern corroboree frogs. Biol. J. Linnean Soc. 119, 436–444. https://doi.org/10.1111/bij.12818 (2016).Article 

    Google Scholar 
    Balogova, M. & Uhrin, M. Sex-biased dorsal spotted patterns in the fire salamander (Salamandra salamandra). Salamandra 51, 12–18 (2015).
    Google Scholar 
    Arenas, L. M. & Stevens, M. Diversity in warning coloration is easily recognized by avian predators. J. Evol. Biol. 30, 1288–1302. https://doi.org/10.1111/jeb.13074 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilby, B. L., Burfeind, D. D. & Tibbetts, I. R. Better red than dead? Potential aposematism in a harpacticoid copepod, Metis holothuriae. Mar. Environ. Res. 74, 73–76. https://doi.org/10.1016/j.marenvres.2011.12.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Przeczek, K., Mueller, C. & Vamosi, S. M. The evolution of aposematism is accompanied by increased diversification. Integr. Zool. 3, 149–156. https://doi.org/10.1111/j.1749-4877.2008.00091.x (2008).Article 
    PubMed 

    Google Scholar 
    Moore, M. P. & Martin, R. A. On the evolution of carry-over effects. J Anim. Ecol. 88, 1832–1844. https://doi.org/10.1111/1365-2656.13081 (2019).Article 
    PubMed 

    Google Scholar 
    Raffaëlli, J. Les Urodeles du monde (Penclen Edition, 2007).Velo-Anton, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108, 410–418. https://doi.org/10.1038/Hdy.2011.91 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodriguez, A. et al. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol. Phylogenet. Evol. 115, 16–26. https://doi.org/10.1016/j.ympev.2017.07.009 (2017).Article 
    PubMed 

    Google Scholar 
    Speed, M. P. & Ruxton, G. D. Aposematism: what should our starting point be?. Proc. Biol. Sci. 272, 431–438. https://doi.org/10.1098/rspb.2004.2968 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarvin, R. D., Powell, E. A., Santos, J. C., Ron, S. R. & Cannatella, D. C. The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol. Phylogenet. Evol. 109, 283–295. https://doi.org/10.1016/j.ympev.2016.12.035 (2017).Article 
    PubMed 

    Google Scholar 
    Jusczcyk, W. & Zakrzewski, M. External morphology of larval stages of the spotted salamander Salamandra salamandra (L.). Acta Biol. Crac. 23, 127–135. https://doi.org/10.1111/jzo.12676 (1981).Article 

    Google Scholar  More

  • in

    The future of Viscum album L. in Europe will be shaped by temperature and host availability

    Walas, Ł, Ganatsas, P., Iszkuło, G., Thomas, P. A. & Dering, M. Spatial genetic structure and diversity of natural populations of Aesculus hippocastanum L. in Greece. PLoS ONE 14, e0226225 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, Y. G. et al. Past, present and future suitable areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): Integrating fossil records, niche modeling, and phylogeography for conservation. Eur. J. For. Res. 140, 1323–1339 (2021).Article 

    Google Scholar 
    Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163 (2018).ADS 
    Article 

    Google Scholar 
    Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Ann. For. Sci. 78, 1–18 (2021).Article 

    Google Scholar 
    Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).Article 

    Google Scholar 
    Watling, J. I. et al. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol. Modell. 309, 48–59 (2015).ADS 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. [Internet] Maxent software for modeling species niches and distributions. url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 13 July 2022.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Conserv. 166, 221–230 (2013).Article 

    Google Scholar 
    Rigling, A., Eilmann, B., Koechli, R. & Dobbertin, M. Mistletoe-induced crown degradation in Scots pine in a xeric environment. Tree Physiol. 30, 845–852 (2010).PubMed 
    Article 

    Google Scholar 
    Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Mistletoe effects on Scots pine decline following drought events: Insights from within-tree spatial patterns, growth and carbohydrates. Tree Physiol. 32, 585–598 (2012).PubMed 
    Article 

    Google Scholar 
    Kollas, C., Gutsch, M., Hommel, R., Lasch-Born, P. & Suckow, F. Mistletoe-induced growth reductions at the forest stand scale. Tree Physiol. 38, 735–744 (2018).PubMed 
    Article 

    Google Scholar 
    Schulze, E. D. & Ehleringer, J. R. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162, 268–275 (1984).PubMed 
    Article 

    Google Scholar 
    Escher, P. et al. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album L: Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana). Plant Physiol. Biochem. 46, 64–70 (2008).PubMed 
    Article 

    Google Scholar 
    Zweifel, R., Bangerter, S., Rigling, A. & Sterck, F. J. Pine and mistletoes: How to live with a leak in the water flow and storage system?. J. Exp. Bot. 63, 2565–2578 (2012).PubMed 
    Article 

    Google Scholar 
    Mutlu, S., Osma, E., Ilhan, V., Turkoglu, H. I. & Atici, O. Mistletoe (Viscum album) reduces the growth of the Scots pine by accumulating essential nutrient elements in its structure as a trap. Trees 30, 815–824 (2016).Article 

    Google Scholar 
    Tsopelas, P., Angelopoulos, A., Economou, A. & Soulioti, N. Mistletoe (Viscum album) in the fir forest of Mount Parnis Greece. For. Ecol. Manag. 202, 59–65 (2004).Article 

    Google Scholar 
    Dobbertin, M. & Rigling, A. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For. Pathol. 36, 309–322 (2006).Article 

    Google Scholar 
    Lech, P., Żółciak, A. & Hildebrand, R. Occurrence of European mistletoe (Viscum album L.) on forest trees in Poland and its dynamics of spread in the period 2008–2018. Forests 11, 83 (2020).Article 

    Google Scholar 
    Iszkuło, G. et al. Jemioła jako zagrożenie dla zdrowotności drzewostanów iglastych. Sylwan 164, 226–236 (2020) ([In Polish]).
    Google Scholar 
    Mellado, A., Morillas, L., Gallardo, A. & Zamora, R. Temporal dynamic of parasite-mediated linkages between the forest canopy and soil processes and the microbial community. New Phytol. 211, 1382–1392 (2016).PubMed 
    Article 

    Google Scholar 
    Mellado, A. & Zamora, R. Generalist birds govern the seed dispersal of a parasitic plant with strong recruitment constraints. Oecologia 176, 139–147 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hódar, J. A., Lázaro-González, A. & Zamora, R. Beneath the mistletoe: parasitized trees host a more diverse herbaceous vegetation and are more visited by rabbits. Ann. For. Sci. 75, 1–8 (2018).Article 

    Google Scholar 
    Zuber, D. Biological flora of Central Europe: Viscum album L. Flora Morphol. Distrib Funct. Ecol. Plants 199, 181–203 (2004).Article 

    Google Scholar 
    Urech, K. & Baumgartner, S. Chemical constituents of Viscum album L.: Implications for the pharmaceutical preparation of mistletoe. In: Mistletoe: From mythology to evidence-based medicine. (eds. Zänker, K.S. & Kaveri, S. V.), 11–23. (S. Karger AG, Basel, Switzerland, 2015).Singh, B. N. et al. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 6, 23837–23857 (2016).ADS 
    Article 

    Google Scholar 
    Jeffree, C. E. & Jeffree, E. P. Redistribution of the potential geographical ranges of mistletoe and colorado beetle in Europe in response to the temperature component of climate change. Funct. Ecol. 10, 562–577 (1996).Article 

    Google Scholar 
    Troels-Smith, J. Ivy, mistletoe and elm climate indicators-fodder plants. A contribution to the interpretation of the pollen zone border VII-VIII. Dan. Geol. Undersøg. IV Række 4, 1–32 (1960).
    Google Scholar 
    Dobbertin, M. et al. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming?. Int. J. Biometeorol. 50, 40–47 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Zamora, R. & Mellado, A. Identifying the abiotic and biotic drivers behind the elevational distribution shift of a parasitic plant. Plant Biol. 21, 307–317 (2019).PubMed 
    Article 

    Google Scholar 
    Barney, C. W., Hawksworth, F. G. & Geils, B. W. Hosts of Viscum album. Eur. J. Plant Pathol. 28, 187–208 (1998).
    Google Scholar 
    Böhling, N. et al. Notes on the Cretan mistletoe, Viscum album subsp. creticum subsp. nova (Loranthaceae/Viscaceae). Isr. J. Plant Sci. 50, 77–84 (2002).
    Google Scholar 
    Plants of the World Online [Internet] url: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:921668-1. Accessed 13 July 2022.Zuber, D. & Widmer, A. Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol. Ecol. 18, 1946–1962 (2009).PubMed 
    Article 

    Google Scholar 
    Schaller, G., Urech, K., Grazi, G. & Giannattasio, M. Viscotoxin composition of the three European subspecies of Viscum album. Planta Med 64, 677–678 (1998).PubMed 
    Article 

    Google Scholar 
    Kahle-Zuber, D. Biology and evolution of the European mistletoe (Viscum album). Doctoral Thesis. ETH Zurich. (2008).Zuber, D. & Widmer, A. Genetic evidence for host specificity in the hemi-parasitic Viscum album L. (Viscaceae). Mol. Ecol. 9, 1069–1073 (2000).PubMed 
    Article 

    Google Scholar 
    Mejnartowicz, L. Relationship and genetic diversity of mistletoe [Viscum album L.] subspecies. Acta Soc. Bot. Pol. Pol. 75, 39–49 (2006).Article 

    Google Scholar 
    Xie, W., Adolf, J. & Melzig, M. F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 12, e0187776 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valle, A. C. V., de Carvalho, A. C. & Andrade, R. V. Viscum album-literature review. Int. J. Sci. Res 10, 63–71 (2021).
    Google Scholar 
    Schröder, L. et al. The gene space of European mistletoe (Viscum album). Plant J. 109, 278–294 (2022).PubMed 
    Article 

    Google Scholar 
    Sangüesa-Barreda, G. et al. Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. J. Ecol. 106, 2218–2229 (2018).Article 

    Google Scholar 
    GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.zw6f5q. Accessed 27 July 2021.GBIF.org [Internet] GBIF Occurrence Download Doi: https://doi.org/10.15468/dl.6wmc9d. Accessed 6 August 2021.FloraWeb [Internet] url: https://www.floraweb.de. Accessed 10 December 2021.Pladias – Database of the Czech Flora and Vegetation. [Internet] url: www.pladias.cz. Accessed 14 July 2022.Zając, A., Zając, M., Tertil, R. & Harman, I. Atlas rozmieszczenia roślin naczyniowych w Polsce. 593 (Instytut Botaniki Uniwersytetu Jagiellońskiego, Kraków, 2001) [In Polish].Idžojtić, M., Kogelnik, M., Franjić, J. & Škvorc, Ž. Hosts and distribution of Viscum album L. ssp. album in Croatia and Slovenia. Plant Biosyst. 140, 50–55 (2006).Article 

    Google Scholar 
    Varga, I. et al. Changes in the Distribution of European Mistletoe (Viscum album) in Hungary During the Last Hundred Years. Folia Geobot 49, 559–577 (2014).Article 

    Google Scholar 
    Wild, J. et al. Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia 91, 1–24 (2019).Article 

    Google Scholar 
    Krasylenko, Y. et al. The European mistletoe (Viscum album L.): Distribution, host range, biotic interactions, and management worldwide with special emphasis on Ukraine. Botany 98, 499–516 (2020).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger D. N., et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository (2018).Gutjahr, O. et al. Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).ADS 
    Article 

    Google Scholar 
    Hijmans, R. J., & van Etten, J. raster: Geographic analysis and modeling with raster data. R package version 2.0-12. (2012).R Core Team. The Comprehensive R Archive Network. [Internet] url: https://cran.r-project.org/ Accessed 14 July 2022.Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L. & Schueler, S. Provisioning forest and conservation science with European tree species distribution models under climate change (Version v1). Zenodo https://doi.org/10.5281/zenodo.3686918 (2020).Wang, Z., Chang, Y. I., Ying, Z., Zhu, L. & Yang, Y. A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve. Bioinformatics 23, 2788–2794 (2007).PubMed 
    Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information Sys-tem. Open Source Geospatial Foundation Project. [Internet]. url: https://www.qgis.org/en/site/. Accessed 14 July 2022.Fischer, J. T. Water relations of mistletoes and their hosts. In: The biology of mistletoes. (eds. Calder, M., & Bernhard, T.), 163–184 (Academic Press, Sydney, 1983).Skre, O. The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures. Norweg. J. Bot. 26, 295–318 (1979).
    Google Scholar 
    Wangerin, B. Loranthaceae. In: Lebensgeschichte der Blütenpflanzen Mitteleuropas (eds. Kirchner, O. V., Loew, E., & Schroeter, C.) 2, 953–1146 (E. Ulmer, Stuttgart, 1937).Rybalka, I. A. Relationship between density of the white mistletoe (Viscum album L.) and some landscape and environmental characteristics of urban areas in the case of Kharkiv. Ekologicheskiy Vestnik 1, 87–97 (2017).
    Google Scholar 
    Patykowski, J. & Kołodziejek, J. Comparative analysis of antioxidant activity in leaves of different hosts infected by mistletoe (Viscum album L. subsp. album). Arch. Biol. Sci. 65, 851–861 (2013).Article 

    Google Scholar 
    Skrypnik, L., Maslennikov, P., Feduraev, P., Pungin, A. & Belov, N. Ecological and landscape factors affecting the spread of European mistletoe (Viscum album L.) in urban areas (A Case Study of the Kaliningrad City, Russia). Plants 9, 394 (2020).PubMed Central 
    Article 

    Google Scholar 
    Kunick, W. Veränderungen von Flora und Vegetation einer Grosstadt dargestellt am Beispiel von Berlin (West). PhD Thesis, Technische Universität (1974). [In German].Kołodziejek, J., Patykowski, J. & Kołodziejek, R. Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz Poland. Biol. 68, 55–64 (2013).
    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Luther, P., Becker, H. & Leroi, R. Die Mistel: Botanik, Lektine, medizinische Anwendung. Springer (1987).Gazol, A. et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 42, 1150–1162 (2015).Article 

    Google Scholar 
    Tikkanen, O. P. et al. Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe. For. Ecol. Manag. 482, 118806 (2021).Article 

    Google Scholar 
    Pilichowski, S. et al. Wpływ Viscum album ssp. austriacum (Wiesb.) Vollm. na przyrost radialny Pinus sylvestris L. Sylwan 162, 452–459 (2018) ([In Polish]).
    Google Scholar 
    Szmidla, H., Tkaczyk, M., Plewa, R., Tarwacki, G. & Sierota, Z. Impact of common mistletoe (Viscum album L.) on scots pine forests—A call for action. Forests 10, 847 (2019).Article 

    Google Scholar 
    Wójcik, R. & Kędziora, W. Abundance of Viscum in central Poland: Results from a large-scale mistletoe inventory. Environ. Sci. Proc. 3, 98 (2020).
    Google Scholar 
    Sangüesa-Barreda, G., Linares, J. C. & Camarero, J. J. Drought and mistletoe reduce growth and water-use efficiency of Scots pine. For. Ecol. Manag. 296, 64–73 (2013).Article 

    Google Scholar 
    Mathiasen, R. L., Nickrent, D. L., Shaw, D. C. & Watson, D. M. Mistletoes: Pathology, systematics, ecology, and management. Plant Dis. 92, 988–1006 (2008).PubMed 
    Article 

    Google Scholar 
    Catal, Y. & Carus, S. Effect of pine mistletoe on radial growth of crimean pine (Pinus nigra) in Turkey. J. Environ. Biol. 32, 263 (2011).PubMed 

    Google Scholar 
    Skre, O. High temperature demands for growth and development in Norway Spruce [Picea abies (L.) Karst.] in Scandinavia. Meld Nor Landbrukshøgsk 51, 1–29 (1971).
    Google Scholar 
    Utaaker, K. A temperature-growth index—the respiration equivalent—used in climatic studies on the meso-scale in Norway. Agric. Meteorol. 5, 351–359 (1968).Article 

    Google Scholar 
    Iversen, J. Viscum, Hedera and Ilex as climate indicators: A contribution to the study of the post-glacial temperature climate. Geol. fören. Stockh. förh. 66, 463–483 (1944).Article 

    Google Scholar 
    Briggs, J. Mistletoe, Viscum album (Santalaceae), in Britain and Ireland; a discussion and review of current status and trends. Brit. Ir. Bot. 3, 419–454 (2021).
    Google Scholar  More

  • in

    Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. https://doi.org/10.1038/nature09678 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, 5. https://doi.org/10.1126/sciadv.1400253 (2015).Article 

    Google Scholar 
    Purvis, A. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Nature https://doi.org/10.5281/zenodo.5517457.svg (2019).Balvernara, P. et al. IPBES global assessment on biodiversity and ecosystem services chapter 2.2 status and trends. Drivers. Change https://doi.org/10.5281/zenodo.5517423 (2019).Carrol, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 35, 155–167. https://doi.org/10.1111/cobi.13531 (2020).Article 

    Google Scholar 
    Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geog. 65, 152–165. https://doi.org/10.1111/cag.12635 (2020).Article 

    Google Scholar 
    Convention on Biological Diversity. Aichi Target 11, Convention on Biological Diversity. https://www.cbd.int/aichi-targets/target/11. Accessed 14 May 2021.United Nations. Climate Change Pathways. https://unfccc.int/climate-action/marrakech-partnership/reporting-and-tracking/climate_action_pathways. Accessed 12 Sept 2022.Government of Canada. Canada’s nature legacy: Protecting our nature conservation/nature-legacy.html (2021).Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: A science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562. https://doi.org/10.1139/facets-2017-0102 (2017).Article 

    Google Scholar 
    De Barros, A. E. et al. Identification of areas in Brazil that optimize areas that optimize conservation of forest carbon, Jaguars and Biodiversity. Conserv. Biol. 28, 580–593. https://doi.org/10.1111/cobi.12202 (2013).Article 
    PubMed 

    Google Scholar 
    Jantz, P., Scott, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Change 4, 138–142. https://doi.org/10.1038/nclimate2105 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Beaudrot, L. et al. Limited carbon and biodiversity co-benefits for tropical mammals and birds. Ecol. Appl. 26, 10998–11111. https://doi.org/10.1890/15-0935 (2016).Article 

    Google Scholar 
    Morelli, T. L. et al. Climate-change refugia: Biodiversity in a slow lane. Front. Ecol. Environ. 18, 228–234. https://doi.org/10.1002/fee.2189 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stralberg, et al. Macrorefugia for North American trees ad songbirds: Climatic limiting factors and multi-scale topographic influences. Glob. Ecol. Biogeogr. 27, 690–703. https://doi.org/10.1111/geb.12731 (2018).Article 

    Google Scholar 
    Caroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang Biol. 27, 3395–3414. https://doi.org/10.1111/gcb.15645 (2020).Article 

    Google Scholar 
    Bradshaw, C. J., Warkentin, I. G. & Sodhi, N. S. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24, 541–548. https://doi.org/10.1016/j.tree.2009.03.019 (2009).Article 
    PubMed 

    Google Scholar 
    Harris, L. I. et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 20, 222–230 (2022).Article 

    Google Scholar 
    Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Canada’s conserved areas. environmental-indicators/conserved-areas.html (2020).Office of the Auditor General of Canada. Lessen learnt from 30 years of climate change challenges and opportunities. https://www.oag-bvg.gc.ca/internet/English/att__e_43948.html#hd3l (2020).Shea, T. et al. Canada’s Conservation Vision: A report of the National Advisory Panel. Government of Canada, 43 pp (2018).Environment and Climate Change Canada. Pan-Canadian Approach to transforming species at risk conservation in Canada. species-at-risk-conservation.html (2018).Bergerund, A. T. Caribou, wolves and man. Trends Ecol. Evol. 3, 68–72. https://doi.org/10.1016/0169-5347(88)90019-5 (1988).Article 

    Google Scholar 
    Vernier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).Article 

    Google Scholar 
    Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Slegers, S. M. The state of conservation in North America’s Borel Forest: Issues and opportunities. Front. For. Glob. Change 3, 90. https://doi.org/10.3389/ffgc.2020.00090/full (2020).Article 

    Google Scholar 
    COSEWIC. COSEWIC assessment and update status report on the woodland caribou Rangifer tarandus caribou in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 98 pp. (2002).COSEWIC. COSEWIC assessment and status report on the caribou Rangifer tarandus, Newfoundland population, Atlantic-Gaspésie population and Boreal population, in Canada. Committee on the Status of Endangered Wildlifein Canada. Ottawa. xxiii + 128 pp. (2014).Environment and Climate Change Canada. Amended Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal Population, in Canada. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. xiii + 143pp. (2020).Environment and Climate Change Canada. Report on the Progress of Recovery Strategy Implementation for the Woodland Caribou (Rangifer tarandus caribou), Boreal population in Canada for the Period 2012–2017. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa. ix + 94 (2017).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Conserv. 206, 102–111. https://doi.org/10.1016/j.biocon.2016 (2017).Article 

    Google Scholar 
    Fortin, D., McLoughlin, P. D. & Hebblewhite, M. When the protection of a threatened species depends on the economy of a foreign nation. PLoS ONE 15, e0229555. https://doi.org/10.1371/journal.pone.0229555 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drever, R. C. et al. Conservation through co-occurrence: Woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252. https://doi.org/10.1016/j.biocon.2019.01.026 (2019).Article 

    Google Scholar 
    Government of Canada. Pan-Canadian Framework on clean growth and climate change climatechange/pan-canadian-framework.html.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet Chang 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004 (2015).ADS 
    Article 

    Google Scholar 
    Jennings, M. D. Gap analysis: Concept, methods, recent results. Land Ecol. 5, 15–20 (2010).
    Google Scholar 
    Environment and Climate Change Canada. Canadian Protected and Conserved Areas database. national-wildlife-areas/protected-conserved-areas-database (2019).DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution function and modelling. Forestry 85, 161–184. https://doi.org/10.1093/forestry/cps003 (2012).Article 

    Google Scholar 
    Price, et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365. https://doi.org/10.1139/er-2013-0042 (2013).Article 

    Google Scholar 
    Southee, F. M., Edwards, B. A., Chetkiewicz, C. B. & O’Connor, C. M. Freshwater conservation planning in the far north of Ontario, Canada: Identifying priority watersheds for conservation of fish biodiversity in an intact boreal landscape. Facets 6, 90–117. https://doi.org/10.1139/facets-2020-0015 (2021).Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Labadie, G. P. D., McLoughlin, M. H. & Fortin, D. Insect-mediated apparent competition between mammals in a boreal food web. Proc. Natl. Acad. Sci. U S A. 118, e2022892118. https://doi.org/10.1073/pnas.2022892118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, V. & Hargreaves, A. L. Spatial distribution and conservation hotspots of mammals in Canada. Facets 5, 692–703. https://doi.org/10.1139/facets-2020-0018 (2020).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. PNAS 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2016).ADS 
    Article 

    Google Scholar 
    Anielski, M. & Wilson, S. Counting Canada’s natural capital: Assessing the real value of Canada’s boreal ecosystems. Ottawa, On: Canadian Boreal Initiative and Pembina Institute counting-canadas-natural-capital (2009).Kumaraswamy, S. & Udyakumar, M. Biodiversity banking: A strategic conservation mechanism. Biodiver. Conserv. 20, 1155–1165. https://doi.org/10.1007/s10531-011-0020-5 (2011).Article 

    Google Scholar 
    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).Article 

    Google Scholar 
    Godden, L. & Cowell, S. Conservation planning and Indigenous governance in Australia’s Indigenous Protected Areas. Restor. Ecol. 24, 692–697. https://doi.org/10.1111/rec.12394 (2016).Article 

    Google Scholar 
    Greg Brown, B. & Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecol. Ser. 13, 119–133. https://doi.org/10.1016/j.ecoser.2014.10.007 (2021).Article 

    Google Scholar 
    Martin, A. E., Neave, E., Kirby, P., Drever, C. R. & Johnson, C. A. Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap. Sci. Rep. 12, 11895. https://doi.org/10.1038/s41598-022-15274-8 (2022).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    COSEWIC. Canadian Wildlife Species at Risk. Committee on the Status of Endangered Wildlife in Canada (2018).Alberta Environment and Parks and Alberta Conservation Association. Status of the Arctic Grayling (Thymallus arcticus) in Alberta: Update 2015. Alberta Environment and Parks. Alberta Wildlife Status Report No. 57 (Update 2015). Edmonton, AB. 96 pp. (2015).Environment and Climate Change Canada (ECCC). 2016. Range map extents, species at risk, Canada. Government of Canada. Open Government Dataset. https://open.canada.ca/data/en/dataset/d00f8e8c-40c4-435a-b790-980339ce3121.Magurran, A. E. Measuring Biological Diversity 256 (Blackwell Publishing, 2004).
    Google Scholar 
    Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C. G. & Hargreaves, A. L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732 (2020).Article 

    Google Scholar 
    Gaston, K. J. Rarity 201 (Chapman & Hall, 1994).Book 

    Google Scholar 
    Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo. https://doi.org/10.5281/zenodo.2579337 (2019).Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853. https://doi.org/10.1038/nclimate2392 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, I., Hill, J. K., Ohlemüller, R. D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).Article 

    Google Scholar 
    Iverson, L. R., Schwartz, M. W. & Prasad, A. M. How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr. 13, 209–219 (2004).Article 

    Google Scholar 
    McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).Article 

    Google Scholar 
    Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301. https://doi.org/10.1111/gcb.13622 (2017).ADS 
    Article 

    Google Scholar 
    Ping, C. L. et al. Carbon stores and biogeochemical properties of soils under black spruce forest, Alaska. Soil Sci. Soc. Am. J. 74, 969–978. https://doi.org/10.2136/sssaj2009.0152 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinform. 29, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin A. Jaccard: Test Similarity Between Binary Data using Jaccard/Tanimoto Coefficients. R package version 0.1.0. https://CRAN.R-project.org/package=jaccard (2018). More

  • in

    Global hotspots for soil nature conservation

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wall, D. H. et al. (eds) Soil Ecology and Ecosystem Services (Oxford University Press, 2012).Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—a global review. Geoderma 262, 101–111 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Pereira, P., Bogunovic, I., Muñoz-Rojas, M. & Brevik, E. C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 5, 7–13 (2018).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Chang. 10, 550–554 (2020).ADS 
    Article 

    Google Scholar 
    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Global vulnerability of soil ecosystems to erosion. Landsc. Ecol. 35, 823–842 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).PubMed 
    Article 

    Google Scholar 
    Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).PubMed 
    Article 

    Google Scholar 
    Díaz, S. et al. (eds). Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019); https://zenodo.org/record/3553579#.YyhIsXbMK70Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 325, 320–325 (2018).ADS 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 

    Google Scholar 
    Xu, X., Thornton, P. E. & Post, W. M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: global soil microbial biomass C, N and P. Glob. Ecol. Biogeogr. 22, 737–749 (2013).Article 

    Google Scholar 
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed 
    Article 

    Google Scholar 
    Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    El Moujahid, L. et al. Effect of plant diversity on the diversity of soil organic compounds. PLoS One 12, e0170494 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).Article 

    Google Scholar 
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Egoh, B., Reyers, B., Rouget, M., Bode, M. & Richardson, D. M. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 142, 553–562 (2009).Article 

    Google Scholar 
    Jürgens, N. et al. The BIOTA Biodiversity Observatories in Africa—a standardized framework for large-scale environmental monitoring. Environ. Monit. Assess. 184, 655–678 (2012).PubMed 
    Article 

    Google Scholar 
    Wyborn, C. & Evans, M. C. Conservation needs to break free from global priority mapping. Nat. Ecol. Evol. 5, 1322–1324 (2021).PubMed 
    Article 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).PubMed 
    Article 

    Google Scholar 
    Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N., Schulz, W., Scheu, S. & Jousset, A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct. Ecol. 27, 282–288 (2013).Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haines-Young, R. H. & Potschin, M. B. in Ecosystems Ecology: A New Synthesis (eds Raffaelli, D. G. & Frid, C. L. J.) Ch. 6 (2012).Smith, L. C. et al. Large‐scale drivers of relationships between soil microbial properties and organic carbon across Europe. Glob. Ecol. Biogeogr. 30, 2070–2083 (2021).Article 

    Google Scholar 
    Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, 2000146 (2021).CAS 
    Article 

    Google Scholar 
    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Chang. 3, 1055–1061 (2013).ADS 
    Article 

    Google Scholar 
    Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).Article 

    Google Scholar 
    Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Chang. Biol. 23, 5331–5343 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).Article 

    Google Scholar 
    Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Science 376, 1094–1101 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA. 116, 6891–6896 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4, e6372 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 20141988 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at bioRxiv https://doi.org/10.1101/081257 (2016).Tedersoo, L. et al. Towards understanding diversity, endemicity and global change vulnerability of soil fungi. Preprint at bioRxiv https://doi.org/10.1101/2022.03.17.484796 (2022).Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, H. R. P., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29, 655–657 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiong, W. et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ. Int. 151, 106438 (2021).PubMed 
    Article 

    Google Scholar 
    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 46 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    Horton, D. J., Kershner, M. W. & Blackwood, C. B. Suitability of PCR primers for characterizing invertebrate communities from soil and leaf litter targeting metazoan 18S ribosomal or cytochrome oxidase I (COI) genes. Eur. J. Soil Biol. 80, 43–48 (2017).CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 
    Article 

    Google Scholar 
    Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis (CRC Press, 2007).Sparks, D. L. et al. (eds) Methods of Soil Analysis, Part 3: Chemical Methods (Wiley, 2020).Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA. 116, 6187–6192 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durán, J., Delgado-Baquerizo, M., Rodríguez, A., Covelo, F. & Gallardo, A. Ionic exchange membranes (IEMs): a good indicator of soil inorganic N production. Soil Biol. Biochem. 57, 964–968 (2013).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Sharma, N. XGBoost. The Extreme Gradient Boosting for Mining Applications (GRIN Verlag, 2018).Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).Wilson. ParBayesianOptimization: Parallel Bayesian Optimization of Hyperparameters. R version 1 https://CRAN.R-project.org/package=ParBayesianOptimization (2021).Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning (Springer, 2001).Jackson, D. A. & Chen, Y. Robust principal component analysis and outlier detection with ecological data. Environmetrics 15, 129–139 (2004).Article 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 
    Article 

    Google Scholar 
    Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (Routledge, 1984).Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27, 286–306 (2010).Article 

    Google Scholar 
    Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (2010).Article 

    Google Scholar 
    Prasannakumar, V., Vijith, H., Charutha, R. & Geetha, N. Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia Soc. Behav. Sci. 21, 317–325 (2011).Article 

    Google Scholar 
    Lin, G. Comparing spatial clustering tests based on rare to common spatial events. Comput. Environ. Urban Syst. 28, 691–699 (2004).Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rousseeuw, P. J. & van Zomeren, B. C. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85, 633–639 (1990).Article 

    Google Scholar 
    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).ADS 
    Article 

    Google Scholar 
    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).ADS 
    Article 

    Google Scholar 
    Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. 11, 4537–4562 (2018).Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).ADS 
    Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article 

    Google Scholar 
    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).ADS 
    Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 9, 323–329 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Global soil map pinpoints key sites for conservation

    Johnson, N. et al. (eds) Global Soil Biodiversity Atlas (EU, 2016).
    Google Scholar 
    FAO et al. State of Knowledge of Soil Biodiversity — Status, Challenges and Potentialities (FAO, 2020).
    Google Scholar 
    Cameron, E. K. et al. Nature Ecol. Evol. 2, 1042–1043 (2018).PubMed 
    Article 

    Google Scholar 
    van den Hoogen, J. et al. Nature 572, 194–198 (2019).PubMed 
    Article 

    Google Scholar 
    Phillips, H. R. P. et al. Science 366, 480–485 (2019).PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Nature https://doi.org/10.1038/s41586-022-05292-x (2022).Article 

    Google Scholar 
    Moore, J. C. & de Ruiter, P. C. Energetic Food Webs: An Analysis of Real and Model Ecosystems (Oxford Univ. Press, 2012).
    Google Scholar 
    Wolters V. et al. Bioscience 50, 1089–1098 (2000).Article 

    Google Scholar 
    Schimel, J. P. & Schaeffer, S. M. Front. Microbiol. 3, 348 (2012).PubMed 
    Article 

    Google Scholar 
    IPCC. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Impacts, Adaptation, and Vulnerability: Summary for Policymakers (eds Shukla, P. R. et al.) 50 (Cambridge Univ. Press, 2022).
    Google Scholar 
    Chenu, C. et al. Soil Till. Res. 188, 41–52 (2019).Article 

    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. Nature Microbiol. 2, 17105 (2017).PubMed 
    Article 

    Google Scholar 
    Hannula, S. E. & Morriën, E. Geoderma 413, 115767 (2022).Article 

    Google Scholar  More