More stories

  • in

    Characterization of Pseudoterranova ceticola (Nematoda: Anisakidae) larvae from meso/bathypelagic fishes off Macaronesia (NW Africa waters)

    Buchmann, K. & Mehrdana, F. Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol. 4, 13–22. https://doi.org/10.1016/j.fawpar.2016.07.003 (2016).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: An ecological and evolutionary road map. Adv. Parasitol. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Paoletti, M., Levsen, A. & Nascetti, G. Reviewing biodiversity and epidemiological aspects of anisakid nematodes from the North-east Atlantic Ocean. J. Helminthol. https://doi.org/10.1017/S0022149X1700027X (2017).Article 
    PubMed 

    Google Scholar 
    Moravec, F. & Justine, J.-L. Erection of Euterranova n. gen. and Neoterranova n. gen. (Nematoda, Anisakidae), with the description of E. dentiduplicata n. sp. and new records of two other anisakid nematodes from sharks off New Caledonia. Parasite 27, 58. https://doi.org/10.1051/parasite/2020053 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shamsi, S. & Suthar, J. Occurrence of Terranova larval types (nematoda: Anisakidae) in Australian marine fish with comments on their specific identities. Peer J. 4, e1722. https://doi.org/10.7717/peerj.1722 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Timi, J. T. et al. Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae). Vet. Parasitol. 199, 59–72 (2014).CAS 
    PubMed 

    Google Scholar 
    Deardorff, T. L. Redescription of Pulchrascaris chiloscyllii (Johnston and Mawson, 1951) (Nematoda: Anisakidae), with comments on species in Pulchrascaris and Terranova. Proc. Helminthol. Soc. Wash. 54, 28–39 (1987).
    Google Scholar 
    Cannon, L. R. G. Some larval ascaridoids from south-eastern queensland marine fishes. Int. J. Parasitol. 7, 233–243 (1977).CAS 
    PubMed 

    Google Scholar 
    Levsen, A. & Lunestad, B. T. Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Vet. Parasitol. 171, 247–253 (2010).PubMed 

    Google Scholar 
    Berland, B., (1989) Identification of fish larval nematodes from fish. In: Möller H, editor. Nematode problems in North Atlantic fish. Report from a workshop in Kiel, 3 4 16–22.Zhu, X., D’Amelio, S., Paggi, L. & Gasser, R. B. Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (nematoda: Ascaridoidea: Anisakidae). Parasitol. Res. 86, 677–683 (2000).CAS 
    PubMed 

    Google Scholar 
    Nadler, S. A. & Hudspeth, D. S. S. Phylogeny of the ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–214. https://doi.org/10.1645/12-120.1 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagy, L. G. et al. Re-mind the gap! Insertion – deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of fungi. PLoS ONE 7, 1–9 (2012).
    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cipriani, P. et al. Anisakid nematodes in Trichiurus lepturus and Saurida undosquamis (Teleostea) from the South-West Indian Ocean : Genetic evidence for the existence of sister species within Anisakis typica (s.l.), and food-safety considerations. Food Waterborne Parasitol. 28, e00177. https://doi.org/10.1016/j.fawpar.2022.e00177 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Safonova, A. E. First report on molecular identification of Anisakis simplex in Oncorhynchus nerka from the fish market, with taxonomical issues within Anisakidae. J. Nematol. 53(1), 10. https://doi.org/10.21307/jofnem-2021-023 (2021).Article 
    CAS 

    Google Scholar 
    Takano, T. & Sata, N. Multigene phylogenetic analysis reveals non-monophyly of Anisakis s.l. and Pseudoterranova (Nematoda: Anisakidae). Parasitol. Int. 91, 102631. https://doi.org/10.1016/j.parint.2022.102631 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Leiper, R. T. & Atkinson, E. L. Parasitic worms, with a note on a free-living nematode. British Museum (Natural History). Bristish Antarctic (“Terra Nova”) expedition, 1910. Natural History Report. Zool 2(3), 19–60 (1915).
    Google Scholar 
    Leiper, R. T. & Atkinson, E. L. Helminthes of the British Antarctic expedition 1910–1913. Proc. Zool. Soc. London, 222–226 (1914).Myers, B. J. Phocanema, a new genus for the anisakid nematode of seals. Can. J. Zool. 37, 459–465 (1959).
    Google Scholar 
    Mattiucci, S., Paoletti, M., Webb, S. C. & Nascetti, G. Pseudoterranova and Contracaecum. In Molecular detection of human parasitic pathogens (ed. Liu, D.) 645–656 (CRC Press, 2012).
    Google Scholar 
    Mozgovoĭ, A.A., (1953) Ascaridata of animals and man, and the diseases caused by them. In: Osnovy nematodologii. Vol. II. Izd. AN SSSR, Moskva (In Russian)Johnston, T.H., Mawson, P.M., (1939) Internal parasites of the pigmy sperm whale. Rec. South Aust Museum.6. http://www.biodiversitylibrary.org/item/126147.Gibson, D. I. The systematics of ascaridoid nematodes-a current assessment. In Stone A (eds Platt, H. & Khalil, L.) 321–338 (Academic Press, 1983).
    Google Scholar 
    Shamsi, S., Barton, D. P. & Zhu, X. Description and characterisation of Terranova pectinolabiata n. sp. (Nematoda: Anisakidae) in great hammerhead shark, Sphyrna mokarran (Rüppell, 1837), in Australia. Parasitol. Res. 118, 2159–2168. https://doi.org/10.1007/s00436-019-06360-4 (2019).Article 
    PubMed 

    Google Scholar 
    Shamsi, S., Barton, D. P. & Zhu, X. Description and genetic characterisation of Pulchrascaris australis n. sp. in the scalloped hammerhead shark, Sphyrna lewini (Griffin & Smith) in Australian waters. Parasitol. Res. https://doi.org/10.1007/s00436-020-06672-w (2020).Article 
    PubMed 

    Google Scholar 
    González-Solís, D. et al. Parasitic nematodes of marine fishes from Palmyra Atoll, East Indo-Pacific, including a new species of Spinitectus (Nematoda, Cystidicolidae). Zookeys. 2019, 1–26 (2019).
    Google Scholar 
    Jabbar, A. et al. Larval anisakid nematodes in teleost fishes from Lizard Island, northern great barrier reef Australia. Mar. Freshw. Res. 63, 1283. https://doi.org/10.1071/MF12211 (2012).Article 

    Google Scholar 
    ICES. (2012) Pseudoterranova larvae (“codworm”; Nematoda) in fish. Revised and updated by Matt Longshaw. ICES Identification Leaflets for diseases and parasites of fish and shellfish. Leaflet No. 7. 4 pp.Arai, H. P. & Smith, J. W. Guide to the parasites of fishes of Canada part V: Nematoda. Zootaxa 4185, 1. https://doi.org/10.11646/zootaxa.4185.1.1 (2016).Article 

    Google Scholar 
    Hurst, H. J. Identification and description of larval Anisakis simplex and Pseudoterranova decipiens (anisakidae: Nematoda) from New Zealand waters. New Zeal J. Mar. Freshw. Res. 18, 177–186 (1984).
    Google Scholar 
    Hernández-Orts, J. S. et al. Description, microhabitat selection and infection patterns of sealworm larvae (Pseudoterranova decipiens species complex, Nematoda: Ascaridoidea) in fishes from Patagonia Argentina. Parasite Vector. 6, 1–15 (2013).
    Google Scholar 
    Shiraki, T. Larval nematodes of family anisakidae (Nematoda) in the northern sea of Japan as a causative agent of eosinophilic phlegmone of granuloma in the human gastro-intestinal tract. Acta Med. Biol. 22, 57–98 (1974).
    Google Scholar 
    Berland, B. Nematodes from some Norwegian marine fishes. Sarsia 2, 1–50. https://doi.org/10.1080/00364827.1961.10410245 (1961).Article 

    Google Scholar 
    George-Nascimento, M. & Llanos, A. Micro-evolutionary implications of allozymic and morphometric variations in sealworms Pseudoterranova sp. (Ascaridoidea: Anisakidae) among sympatric hosts from the Southeastern Pacific Ocean. Int. J. Parasitol. 25, 1163–1171 (1995).CAS 
    PubMed 

    Google Scholar 
    Deardorff, T. L., Kliks, M. M., Rosenfeld, M. E., Rychlinski, R. A. & Desowitz, R. S. Larval, ascaridoid nematodes from fishes near the Hawaiian Islands, with commonents on pathogenicity experiments. Pacific Sci. 36, 187–201 (1982).
    Google Scholar 
    Deardorff, T. L., Kliks, M. M. & Desowitz, R. S. Histopathology induced by larval Terranova (Type HA) (nematoda: Anisakinae) in experimentally infected rats. J. Parasitol. 69, 191–195 (1983).CAS 
    PubMed 

    Google Scholar 
    Kuramochi, T. et al. Stomach nematodes of the family anisakidae collected from the cetaceans stranded on or incidentally caught off the coasts of the Kanto districts and adjoining areas. Mem. Nat. Museum. Nat. Sci. 37, 177–192 (2001).
    Google Scholar 
    Deardorff, T. L., Raybourne, R. B. & Desowitz, R. S. Description of a third-stage larva, Terranova type Hawaii A (nematoda: Anisakinae), from Hawaiian fishes. J. Parasitol. 70, 829–831 (1984).CAS 
    PubMed 

    Google Scholar 
    González-Solís, D., Vidal-Martínez, V. M., Antochiw-Alonso, D. M. & Ortega-Argueta, A. Anisakid nematodes from stranded pygmy sperm whales, Kogia breviceps (Kogiidae), in three localities of the Yucatan peninsula. Mexico. J. Parasitol. 92, 1120–1122 (2006).
    Google Scholar 
    Santos, C. P. & Lodi, L. Occurrence of Anisakis physeteris Baylis, 1923 and Pseudoterranova sp. (Nematoda) in pygmy sperm whale Kogia breviceps (De Blainvillei, 1838) (Physeteridae) in northeastern coast of Brazil. Mem. Inst. Oswaldo Cruz. 93, 187–188. https://doi.org/10.1590/s0074-02761998000200009 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bloodworth, B. E. & Odell, D. K. Kogia breviceps (cetacea: Kogiidae). Mam. Species. 819, 1–12. https://doi.org/10.1644/819.1 (2008).Article 

    Google Scholar 
    Deardorff, T. L. & Overstreet, R. M. Terranova ceticola n. sp. (Nematoda: Anisakidae) from the dwarf sperm whale; Kogia simus (Owen), in the Gulf of Mexico. Syst. Parasitol. 3, 25–28 (1981).
    Google Scholar 
    Abollo, E., Santiago, P., (2002) SEM study of Anisakis brevispiculata Dollfus, 1966 and Pseudoterranova ceticola (Deardoff and Overstreet, 1981) (Nematoda: Anisakidae), parasites of the pygmy sperm whale Kogia breviceps. Sci. Mar. 66 3 49 255Di Deco, M. A., Orecchia, P., Paggi, L. & Petrarca, V. Morphometric stepwise discriminant analysis of three genetically identified species within Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Ascaridida). Syst. Parasitol. 29, 81–88 (1994).
    Google Scholar 
    George-Nascimento, M. & Urrutia, X. Pseudoterranova cattani sp. nov. (Ascaridoidea: Anisakidae), a parasite of the South American sea lion Otaria byronia De Blainville from Chile. Rev. Chil. Hist. Nat. 73, 93–98. https://doi.org/10.4067/s0716-078×2000000100010 (2000).Article 

    Google Scholar 
    Mattiucci, S. et al. Allozyme and morphological identification of Anisakis, Contracaecum and Pseudoterranova from Japanese waters (Nematoda, Ascaridoidea). Syst Parasitol. 40, 81–92 (1998).
    Google Scholar 
    Paggi, L. et al. Pseudoterranova decipiens species A and B (Nematoda, Ascaridoidea): Nomenclatural designation, morphological diagnostic characters and genetic markers. Syst. Parasitol. 45, 185–197. https://doi.org/10.1023/A:1006296316222 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166 (2006).CAS 
    PubMed 

    Google Scholar 
    Colón-Llavina, M. M. et al. Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes. Parasitol Res. 105, 1239–1252 (2009).PubMed 

    Google Scholar 
    Cavallero, S., Nadler, S. A., Paggi, L., Barros, N. B. & D’Amelio, S. Molecular characterization and phylogeny of anisakid nematodes from cetaceans from southeastern Atlantic coasts of USA, Gulf of Mexico, and Caribbean Sea. Parasitol. Res. 108, 781–792 (2011).PubMed 

    Google Scholar 
    Kijewska, A., Dzido, J., Shukhgalter, O. & Rokicki, J. Anisakid parasites of fishes caught on the African shelf. J. Parasitol. 95, 639–645 (2009).PubMed 

    Google Scholar 
    Quiazon, K. M. A., Santos, M. D. & Yoshinaga, T. Anisakis species (nematoda: Anisakidae) of dwarf sperm whale kogia sima (Owen, 1866) stranded off the pacific coast of southern Philippine archipelago. Vet. Parasitol. https://doi.org/10.1016/J.VETPAR.2013.05.019 (2013).Article 
    PubMed 

    Google Scholar 
    Zhang, L., Du, X., An, R., Li, L. & Gasser, R. B. Identification and genetic characterization of Anisakis larvae from marine fishes in the South China Sea using an electrophoretic-guided approach. Electrophoresis 34, 888–894 (2013).CAS 
    PubMed 

    Google Scholar 
    Luo, H.-Y., Chen, H.-Y., Chen, H.-G. & Shih, H.-H. Scavenging hagfish as a transport host of anisakid nematodes. Vet. Parasitol. 218, 15–21. https://doi.org/10.1016/j.vetpar.2016.01.005 (2016).Article 
    PubMed 

    Google Scholar 
    Kuhn, T., Hailer, F., Palm, H. W. & Klimpel, S. Global assessment of molecularly identified Anisakis dujardin, 1845 (nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol. (Praha). 60, 123–134. https://doi.org/10.14411/fp.2013.013 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grainger, J. N. R. The Identity of the larval nematodes found in the body muscles of the cod (Gadus callarias L.). Parasitology 49, 121–131 (1959).CAS 
    PubMed 

    Google Scholar 
    Costa, G., Chada, T., Melo-Moreira, E., Cavallero, S. & D’Amelio, S. Endohelminth parasites of the leafscale gulper shark, Centrophorus squamosus (Bonnaterre, 1788) (Squaliformes: Centrophoridae) off Madeira archipelago. Acta Parasitol. 59, 316–322. https://doi.org/10.2478/s11686-014-0247-x (2014).Article 
    PubMed 

    Google Scholar 
    Hermida, M. et al. Infection levels and diversity of anisakid nematodes in blackspot seabream, Pagellus bogaraveo, from Portuguese waters. Parasitol. Res. 110, 1919–1928 (2012).PubMed 

    Google Scholar 
    Sequeira, V. et al. Macroparasites as biological tags for stock identification of the bluemouth, Helicolenus dactylopterus (Delaroche, 1809) in Portuguese waters. Fish Res. 106, 321–328. https://doi.org/10.1016/j.fishres.2010.08.014 (2010).Article 

    Google Scholar 
    Shamsi, S., Spröhnle-Barrera, C. & Shafaet, H. M. Occurrence of Anisakis spp. (Nematoda: Anisakidae) in a pygmy sperm whale Kogia breviceps (Cetacea: Kogiidae) in Australian waters. Dis. Aquat. Organ. 134, 65–74. https://doi.org/10.3354/dao03360 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mcalpine, D. F., Murison, L. D. & Hoberg, E. P. New records for the pygmy sperm whale, Kogia breviceps (physeteridae) from Atlantic Canada with notes on diet and parasites. Mar. Mammal. Sci. 13, 701–704. https://doi.org/10.1111/j.1748-7692.1997.tb00093.x (1997).Article 

    Google Scholar 
    Gunter, G. & Overstreet, R. Cetacean notes. I. Sei and rorqual whales on the Mississippi coast, a correction. II. A dwarf sperm whale in Mississippi sound and its helminth parasites. Gulf Res. Rep. 4, 479–481 (1974).
    Google Scholar 
    Mignucci-Giannoni, A. A., Hoberg, E. P., Siegel-Causey, D. & Williams, E. H. Metazoan parasites and other symbionts of cetaceans in the Caribbean. J. Parasitol. 84, 939–946 (1998).CAS 
    PubMed 

    Google Scholar 
    Vidal, O., Findley, L. T., Turk, P. J. & Boyer, R. E. Recent records of pygmy sperm whales in the Gulf of California. Mexico. Mar. Mammal. Sci. 3, 354–356. https://doi.org/10.1111/J.1748-7692.1987.TB00323.X (1987).Article 

    Google Scholar 
    Dollfus, R. P. Helminthofaune de Kogia breviceps (Blainxille, 1938) cetace odontocete. Recoltes du Dr R. Duguy. Ann. Sci. Natl. Charente-Maritime 4, 3–6 (1966).
    Google Scholar 
    MCAlpine, D.F., (2018) Pygmy and dwarf sperm whales. In: Encyclopedia of Marine Mammals. Elsevier p. 786–8.Fernández, R., Santos, M. B., Carrillo, M., Tejedor, M. & Pierce, G. J. Stomach contents of cetaceans stranded in the canary Islands 1996–2006. J. Mar. Biol. Assoc. United Kingdom. 89, 873–883 (2009).

    Google Scholar 
    Berrow, S., López Suárez, P., Jann, B., Ryan, C., Varela, J., Hazevoet, C.J., (2015) Recent and noteworthy records of Cetacea from the Cape Verde Islands. www.scvz.org. Accessed 1 Mar 2021.Mattiucci, S., Nascetti, G., (2008) Chapter 2 advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 66 47 148Measures, L.N., (2014) Anisakiosis and pseudoterranovosis. Reston, Virginia; https://doi.org/10.3133/cir1393McClelland, G. The trouble with sealworms (Pseudoterranova decipiens species complex, nematoda): A review. Parasitology 2002(124 Suppl), S183-203 (2009).
    Google Scholar 
    Alt, K. G., Cunze, S., Kochmann, J. & Klimpel, S. Parasites of three closely related Antarctic fish species (teleostei: Nototheniinae) from Elephant Island. Acta Parasitol. https://doi.org/10.1007/s11686-021-00455-8 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClelland, G. Phocanema decipiens (Nematoda: Anisakinae): Experimental infections in marine copepods. Can. J. Zool. 60, 502–509. https://doi.org/10.1139/z82-075 (1982).Article 

    Google Scholar 
    Marcogliese, D. J. Review of experimental and natural invertebrate hosts of sealworm (Pseudoterranova decipiens) and its distribution and abundance in macroinvertebrates in eastern Canada. NAMMCO Sci. Publ. 3, 27–37 (2001).
    Google Scholar 
    West, K. L. et al. Diet of pygmy sperm whales (Kogia breviceps) in the Hawaiian Archipelago. Mar. Mammal. Sci. 25, 931–943. https://doi.org/10.1111/j.1748-7692.2009.00295.x (2009).Article 

    Google Scholar 
    Kleinertz, S., Damriyasa, I. M., Hagen, W., Theisen, S. & Palm, H. W. An environmental assessment of the parasite fauna of the reef-associated grouper Epinephelus areolatus from Indonesian waters. J. Helminthol. 88, 50–63 (2014).CAS 
    PubMed 

    Google Scholar 
    Nadler, S. A. et al. Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern pacific marine mammals. J. Parasitol. 91, 1413–1429 (2005).CAS 
    PubMed 

    Google Scholar 
    Weitzel, T. et al. Human infections with Pseudoterranova cattani nematodes. Chile. Emerg. Infect. Dis. 21, 1874–1875 (2015).CAS 
    PubMed 

    Google Scholar 
    Arizono, N., Miura, T., Yamada, M., Tegoshi, T. & Onishi, K. Human infection with Pseudoterranova azarasi roundworm. Emerg. Infect. Dis. 17, 555–556. https://doi.org/10.3201/eid1703.101350 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleinertz, S. et al. Gastrointestinal parasites of free-living Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Northern Red Sea. Egypt. Parasitol Res. 113, 1405–1415. https://doi.org/10.1007/s00436-014-3781-4 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aco Alburqueque, R., Palomba, M., Santoro, M. & Mattiucci, S. Molecular identification of zoonotic parasites of the genus Anisakis (Nematoda: Anisakidae) from fish of the southeastern Pacific Ocean (off Peru coast). Pathogens. 9, 910. https://doi.org/10.3390/pathogens9110910 (2020).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Di Azevedo, M. I. N., Carvalho, V. L. & Iñiguez, A. M. Integrative taxonomy of anisakid nematodes in stranded cetaceans from Brazilian waters: An update on parasite’s hosts and geographical records. Parasitol. Res. 116, 3105–3116. https://doi.org/10.1007/s00436-017-5622-8 (2017).Article 
    PubMed 

    Google Scholar 
    Quiazon, K. M. A., Santos, M. D., Blatchley, D. D., Aguila, R. D. & Yoshinaga, T. Molecular and morphological identifications of Anisakis dujardin, 1845 (Nematoda: Anisakidae) from a rare deraniyagala’s beaked whale (Mesoplodon hotaula deraniyagala, 1963) and blainville’s beaked whale (Mesoplodon densirostris blainville, 1817) stranded. Philipp. J. Sci. 150, 823–835 (2021).
    Google Scholar 
    Bao, M. et al. Air-dried stockfish of Northeast Arctic cod do not carry viable anisakid nematodes. Food Cont. 116, 107322. https://doi.org/10.1016/j.foodcont.2020.107322 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. H. et al. Mitochondrial phylogenomics yields strongly supported hypotheses for ascaridomorph nematodes. Sci. Rep. https://doi.org/10.1038/srep39248 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hrabar, J. et al. Phylogeny and pathology of anisakids parasitizing stranded California sea lions (Zalophus californianus) in Southern California. Front Mar. Sci. https://doi.org/10.3389/fmars.2021.636626 (2021).Article 

    Google Scholar  More

  • in

    Urban ecosystem drives genetic diversity in feral honey bee

    United Nations, Department of Economic and Social Affairs & Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). (United Nations, 2019).Wei, Y. D. & Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 177, 259–265. https://doi.org/10.1016/j.landurbplan.2018.05.021 (2018).Article 

    Google Scholar 
    Ayers, A. C. & Rehan, S. M. Supporting bees in cities: How bees are influenced by local and landscape features. Insects 12 (2021).Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).Article 

    Google Scholar 
    Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208. https://doi.org/10.1525/bio.2010.60.3.6 (2010).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brown, M. J. & Paxton, R. J. The conservation of bees: A global perspective. Apidologie 40, 410–416 (2009).
    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 

    Google Scholar 
    Potts, S. G. et al. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (2016).Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).PubMed 

    Google Scholar 
    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).ADS 

    Google Scholar 
    Baldock, K. C. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evolut. 3, 363–373 (2019).
    Google Scholar 
    Banaszak-Cibicka, W., Twerd, L., Fliszkiewicz, M., Giejdasz, K. & Langowska, A. City parks vs. natural areas—Is it possible to preserve a natural level of bee richness and abundance in a city park?. Urban Ecosyst. 21, 599–613 (2018).
    Google Scholar 
    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed 

    Google Scholar 
    Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).
    Google Scholar 
    Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14, e0225852 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samuelson, A. E., Schürch, R. & Leadbeater, E. Dancing bees evaluate central urban forage resources as superior to agricultural land. J. Appl. Ecol. 59, 79–88 (2022).
    Google Scholar 
    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roffet-Salque, M. et al. Widespread exploitation of the honeybee by early Neolithic farmers. Nature 527, 226–230 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Crane, E. Recent research on the world history of beekeeping. Bee World 80, 174–186 (1999).
    Google Scholar 
    Dietemann, V., Pirk, C. W. W. & Crewe, R. Is there a need for conservation of honeybees in Africa?. Apidologie 40, 285–295 (2009).
    Google Scholar 
    Jaffe, R. et al. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24, 583–593 (2010).PubMed 

    Google Scholar 
    Browne, K. A. et al. Investigation of free-living honey bee colonies in Ireland. J. Apic. Res. 60, 229–240. https://doi.org/10.1080/00218839.2020.1837530 (2021).Article 

    Google Scholar 
    Kohl, P. L. & Rutschmann, B. The neglected bee trees: European beech forests as a home for feral honey bee colonies. PeerJ 6, e4602 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Oleksa, A., Gawroński, R. & Tofilski, A. Rural avenues as a refuge for feral honey bee population. J. Insect Conserv. 17, 465–472 (2013).
    Google Scholar 
    Rutschmann, B., Kohl, P. L., Machado, A. & Steffan-Dewenter, I. Semi-natural habitats promote winter survival of wild-living honeybees in an agricultural landscape. Biol. Cons. 266, 109450 (2022).
    Google Scholar 
    Thompson, C. E., Biesmeijer, J. C., Allnutt, T. R., Pietravalle, S. & Budge, G. E. Parasite pressures on feral honey bees (Apis mellifera sp). PLoS ONE 9, e105164 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bila Dubaić, J. et al. Unprecedented density and persistence of feral honey bees in urban environments of a large SE-European City (Belgrade, Serbia). Insects 12, 1127 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Alaux, C., Le Conte, Y. & Decourtye, A. Pitting wild bees against managed honey bees in their native range, a losing strategy for the conservation of honey bee biodiversity. Front. Ecol. Evol. 7, 60 (2019).
    Google Scholar 
    Requier, F. et al. The conservation of native honey bees is crucial. Trends Ecol. Evol. 34, 789–798 (2019).PubMed 

    Google Scholar 
    Mladenović, S. et al. Environment in Belgrade in 2018. (in Serbian: Kvalitet životne sredine u Beogradu u 2018. godini). (The City Administration, Secretariat for Environmental Protection, 2019).Statistical Office of the Republic of Serbia. https://data.stat.gov.rs/Home/Result/130202010207?languageCode=en-US.
    (“The Official Gazette of the Republic of Serbia”, Nos. 41/2009, 93/2012 and 14/2106 [In Serbian], 2009).Johnson, M. T. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).PubMed 

    Google Scholar 
    Jara, L. et al. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Sci. Nat. 102, 1–8 (2015).
    Google Scholar 
    Tanasković, M. et al. MtDNA analysis indicates human-induced temporal changes of serbian honey bees diversity. Insects 12, 767 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x (2011).Article 
    PubMed 

    Google Scholar 
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153. https://doi.org/10.1017/s0016672307008798 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jacobson, S. Locally adapted, varroa resistant honey bees: ideas from several key studies. Am. Bee J. (2010).McNeely, J. A., Miller, K. R., Reid, W. V., Mettermeier, R. A. & Werner, T. B. Conserving the world’s biological diversity. (UICN, Morges (Suiza) WRI, Washington DC (EUA) CI, Washington DC (EUA) WWF …, 1990).Hoban, S. M. et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet. Resour. 5, 593–598 (2013).
    Google Scholar 
    Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).PubMed 

    Google Scholar 
    Shafer, A. B. et al. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30, 78–87 (2015).PubMed 

    Google Scholar 
    Mattila, H. R. & Seeley, T. D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oddie, M. A. & Dahle, B. Insights from Norway: Using natural adaptation to breed Varroa-resistant honey bees. Bee World 98, 38–43 (2021).
    Google Scholar 
    Oddie, M. A., Dahle, B. & Neumann, P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection. PeerJ 5, e3956 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 

    Google Scholar 
    Tarpy, D. R. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R Soc. Lond. Series B Biol. Sci. 270, 99–103 (2003).
    Google Scholar 
    van Baalen, M. & Beekman, M. The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. Am. Nat. 167, 568–577 (2006).PubMed 

    Google Scholar 
    Eckholm, B. J., Anderson, K. E., Weiss, M. & DeGrandi-Hoffman, G. Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency. Behav. Ecol. Sociobiol. 65, 1037–1044 (2011).
    Google Scholar 
    Graham, S., Myerscough, M., Jones, J. & Oldroyd, B. Modelling the role of intracolonial genetic diversity on regulation of brood temperature in honey bee (Apis mellifera L.) colonies. Insectes Soc. 53, 226–232 (2006).
    Google Scholar 
    Jones, J. C., Myerscough, M. R., Graham, S. & Oldroyd, B. P. Honey bee nest thermoregulation: Diversity promotes stability. Science 305, 402–404 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tanasković, M. et al. Further evidence of population admixture in the Serbian honey bee population. Insects 13, 180 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Nedić, N. et al. Detecting population admixture in honey bees of Serbia. J. Apic. Res. 53, 303–313. https://doi.org/10.3896/IBRA.1.53.2.12 (2014).Article 

    Google Scholar 
    Nedić, N., Stanisavljević, L., Mladenović, M. & Stanisavljević, J. Molecular characterization of the honeybee Apis mellifera carnica in Serbia. Arch. Biol. Sci. 61, 587–598 (2009).
    Google Scholar 
    Kükrer, M., Kence, M. & Kence, A. Honey bee diversity is swayed by migratory beekeeping and trade despite conservation practices: Genetic evidence for the impact of anthropogenic factors on population structure. Front. Ecol. Evolut. 9 (2021).Bouga, M., Harizanis, P. C., Kilias, G. & Alahiotis, S. Genetic divergence and phylogenetic relationships of honey bee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR–RFLP analysis of three mtDNA segments. Apidologie 36, 335–344 (2005).CAS 

    Google Scholar 
    Dall’Olio, R., Marino, A., Lodesani, M. & Moritz, R. F. Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms. Apidologie 38, 207–217 (2007).CAS 

    Google Scholar 
    Neumann, P. & Blacquière, T. The Darwin cure for apiculture? Natural selection and managed honeybee health. Evol. Appl. 10, 226–230 (2017).PubMed 

    Google Scholar 
    Kulinčević, J., Rinderer, T., Mladjan, V. & Buco, S. Five years of bi-directional genetic selection for honey bees resistant and susceptible to Varroa jacobsoni. Apidologie 23, 443–452 (1992).
    Google Scholar 
    2011 Census of Population, Households and Dwellings in the Republic of Serbia: Comparative Overview of the Number of Population in 1948, 1953, 1961, 1971, 1981, 1991, 2002 and 2011. (Statistical Office of the Republic of Serbia, 2014).Techer, M. A. et al. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genet. 18, 1–21 (2017).
    Google Scholar 
    Garnery, L., Cornuet, J. M. & Solignac, M. Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol. Ecol. 1, 145–154 (1992).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resources. 10, 564–567 (2010).
    Google Scholar 
    Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes. 5, 187–189 (2005).CAS 

    Google Scholar 
    Stoneking, M., Hedgecock, D., Higuchi, R. G., Vigilant, L. & Erlich, H. A. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48, 370 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Crozier, R. & Crozier, Y. The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 133, 97–117 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1093/genetics/164.4.1567 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845 (1963).Article 
    MathSciNet 

    Google Scholar 
    Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215. https://doi.org/10.1093/genetics/160.3.1203 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, C. C., Weeks, D. E. & Chakravarti, A. Similarity of DNA fingerprints due to chance and relatedness. Hum. Hered. 43, 45–52. https://doi.org/10.1159/000154113 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch, M. Estimation of relatedness by DNA fingerprinting. Mol. Biol. Evol. 5, 584–599. https://doi.org/10.1093/oxfordjournals.molbev.a040518 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766. https://doi.org/10.1093/genetics/152.4.1753 (1999).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).
    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x (1989).Article 
    PubMed 

    Google Scholar 
    Milligan, B. G. Maximum-likelihood estimation of relatedness. Genetics 163, 1153–1167 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    del Felipe, P. et al. Genetic diversity and structure of the commercially important native fish pacu (Piaractus mesopotamicus) from cultured and wild fish populations: Relevance for broodstock management. Aquacult. Int. 29, 289–305. https://doi.org/10.1007/s10499-020-00626-w (2021).Article 

    Google Scholar  More

  • in

    Effects of water extracts of Flaveria bidentis on the seed germination and seedling growth of three plants

    Liu, Q. R. Flaveria Juss. (Compositae), a newly naturalized genus in China. Acta Phytotaxonomica Sin. 43(2), 178–180 (2005).Article 

    Google Scholar 
    Ma, J. W. et al. Genetic diversity of the newly invasive weed Flaveria bidentis reveals consequences of its rapid range expansion in northern China. Weed Res. 51(4), 363–372 (2011).Article 

    Google Scholar 
    Chen, D. Q., HuangFu, C. H., Wang, N. N. & Yang, D. L. Effect of extracts of flaveria bidentis in different growth habitats on lolium perenne germination and seedling growth. Chin. J. Ecol. Agric. 20(5), 585–591 (2012).Article 

    Google Scholar 
    Gao, X. M. et al. An alert regarding biological in vasion by a new exotic plant, Flaveria bidentis, and strategies for its control. Biodiv. Sci. 12(2), 274–279 (2004).Article 

    Google Scholar 
    Ren, Y. P., Jiang, S., Gu, S., Wang, Y. Z. & Zheng, S. X. Advances in Flaveria bidentis (L.) Kuntze, a new exotic plant. J. Trop. Subtrop. Bot. 16(4), 390–396 (2008).CAS 

    Google Scholar 
    Chen, X., Li, X. C., Song, X. L., Qiang, S. & Dai, W. M. Observation on botanical characters and seed propagation characteristics, and ITS molecular identification of invasive plant Flaveria bidentis. J. Plant Res. Environ. 28(3), 100–107 (2019).
    Google Scholar 
    Rice, E. L. Allelopathy (Academic Press, 1984).
    Google Scholar 
    Kong, C. H. Problems needed attention on plant allelopathy research. Chin. J. Appl. Ecol. 9(3), 332–336 (1998).ADS 

    Google Scholar 
    Li, J. X. et al. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Sci. Rep. 11(1), 4303 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).Article 

    Google Scholar 
    Callaway, R. M. & Ridenour, W. M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2(8), 436–443 (2004).Article 

    Google Scholar 
    Yang, Q. H., Ye, W. H., Liao, F. L. & Yin, X. J. Effects of allelochemicals on seed germination. Chin. J. Ecol. 24(12), 1459–1465 (2005).
    Google Scholar 
    Tang, J. Q. et al. A review on the effects of invasive plants on mycorrhizal fungi of native plants and their underlying mechanisms. Chin. J. Plant Ecol. 44(11), 1095–1112 (2020).Article 

    Google Scholar 
    Chen, J. H., Ma, H. Y., Chen, Y. & He, H. A study of chemicals released as volatiles or by rain leaching from Ipomoea cairica and their allelopathic effects. Acta Pratacult. Sin. 31(2), 88–100 (2022).
    Google Scholar 
    Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M. & Vivanco, J. M. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301, 1377–1380 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Hu, W. J., Liang, Q. J., He, Y. H. & Sun, J. F. Allelopathy of Solidago canadensis with different invasion degrees under nitrogen deposition. Guihaia 40(11), 1531–1539 (2020).
    Google Scholar 
    Lu, Z. G. et al. Study on the allelopathic effects of Flaveria bidentis on seed germination and seedling growth of two vegetables. Pratacult. Sci. 28(02), 251–254 (2011).
    Google Scholar 
    Huangfu, C. H., Zhang, T. R., Chen, D. Q., Wang, N. N. & Yang, D. L. Residual effects of invasive weed Yellowtop (Flaveria bidentis) on forage plants for ecological restoration. Allelopathy J. 27(1), 55–64 (2011).
    Google Scholar 
    Zhang, F. J., Guo, J. Y., Li, W. X. & Wan, F. H. Influence of coastal plain yellowtops (Flaveria bidentis) residues on growth of cotton seedlings and soil fertility. Arch. Agric. Soil Sci. 58(10), 1117–1128 (2012).Article 
    CAS 

    Google Scholar 
    Ji, Y. H., Han, Y. N., Wu, X. Y. & Li, M. Study on allelopathy in alien invasive Flaveria bidentis on cucumber. Northern Hortic. 2, 11–14 (2014).
    Google Scholar 
    Yang, X. et al. The extraction, isolation and identification of exudates from the roots of Flaveria bidentis. J. Integr. Agric. 13(1), 105–114 (2014).Article 
    CAS 

    Google Scholar 
    Yan, J. L., Su, Z. C., Tan, W. Z., Fu, W. D. & Zhang, G. L. On detection of allelopathic effect of four important crops by yellowtop weed (Flaveria bidentis). J. Southwest China Normal Univ. 39(1), 28–33 (2014).
    Google Scholar 
    Dar, B. A. et al. Allelopathic potential of argemone ochroleuca from different habitats on seed germination of native species and cultivated crops. Pak. J. Bot. 49(5), 1841–1848 (2017).CAS 

    Google Scholar 
    Ali, K. W., Shinwari, M. I. & Khan, S. Screening of 196 medicinal plant species leaf litter for allelopathic potential. Pak. J. Bot. 51(6), 2169–2177 (2019).Article 
    CAS 

    Google Scholar 
    Guo, Y. et al. Allelopathy of Eupatorium adenophorum extracts on seed germination and seedling growth of different strawberry varieties. Seed 40(6), 96–101 (2021).
    Google Scholar 
    Wang, C. et al. Effects of autotoxicity and allelopathy on seed germination and seedling growth in Medicago truncatula. Front. Plant Sci. 13, 908426 (2022).Article 

    Google Scholar 
    Zhao, X. M. et al. Allelopathic effects of leaf-stem litter water aqueous extracts of three plant species on tobacco seedlings. Acta Pratacult. Sin. 25(9), 37–45 (2016).ADS 

    Google Scholar 
    Shang, Y. et al. Preliminary study on mechanism of Flaveria bidentis and influence on the growth of nearby crops. J. Agric. Univ. Hebei 33(6), 91–94 (2010).CAS 

    Google Scholar 
    Mustafa, G., Ali, A., Ali, S., Barbanti, L. & Ahmad, M. Evaluation of dominant allelopathic weed through examining the allelopathic effects of four weeds on germination and seedling growth of six crops. Pak. J. Bot. 51(1), 269–278 (2019).Article 
    CAS 

    Google Scholar 
    Williamson, G. B. & Richardson, D. Bioassays for allelopathy: measuring treatment responses with independent controls. J. Chem. Ecol. 14(1), 181–187 (1988).Article 

    Google Scholar 
    Liu, Y. J., Meng, Z. J., Dang, X. H., Song, W. J. & Zhai, B. Allelopathic effects of Stellera chamaejasme on seed germination and seedling growth of alfalfa and two forage grasses. Acta Pratacult. Sin. 28(8), 130–138 (2019).
    Google Scholar  More

  • in

    Mangroves provide blue carbon ecological value at a low freshwater cost

    At least 11 coastal ecosystems have been considered based on a minimum of actionably defined criteria to be “blue carbon ecosystems”. These include mangrove wetlands, tidal marshes (salt, brackish, fresh), seagrasses, salt flats, freshwater (upper estuarine) tidal forests, macroalgae, phytoplankton, coral reef, marine fauna (fish), oyster reefs, and mud flats5; all but three of these would be considered wetlands, with salt flats and mud flats being examples of non-emergent (plant) blue carbon wetlands. Herein, we focus on mangroves.Adjusting intrinsic leaf-level photosynthetic water use efficiency (({WUE}_{int})) in response to environmental gradients (Introduction)We used data provided by B.F. Clough & R.G. Sims20, which presented leaf-scale net photosynthesis (({P}_{n}) [sic]; μmol CO2 m−2 s−1), stomatal conductance (({g}_{w}): mol m−2 s−1), leaf-intercellular CO2 concentrations (({c}_{i}): μl l−1), and intrinsic photosynthetic water use efficiency (({WUE}_{int}): (frac{{P}_{n}}{{g}_{w}})) for 19 mangrove species occupying 9 different sites in Papua New Guinea and northern Australia. These field data were collected using an infrared gas analyzer (model Li-6000, Li-Cor Biosciences, Inc., Lincoln, NE, USA) attached to leaves at saturation light levels (reported as  > 800 μmol PPFD m−2 s−1). Soil salinity at the time of data collection ranged from 10 to 49 psu, and median long-term atmospheric temperature and relative humidity among sites ranged from 19.9 to 27.4 °C and 35.1 to 92.2%, respectively (Fig. S1)20. These data were among the first to offer insight from field study into the plasticity of mangroves across a range of natural salinity and aridity gradients to adjust leaf-level ({WUE}_{int}) as needed for local environmental condition. While it is not new for trees to adjust their ({WUE}_{int}) when they develop in arid, semi-arid, or even some humid and tropical environments60, what is distinctive is that mangroves may be further driven to water savings by salinity gradients as a condition of development.
    ({{varvec{W}}{varvec{U}}{varvec{E}}}_{{varvec{i}}{varvec{n}}{varvec{t}}}) and individual tree water use of mangrove wetlands versus terrestrial ecosystemsFor Fig. 1a, we compare leaf-level ({WUE}_{int}) data collected from 17 published papers (using maximum and minimum values), providing 67 independent measurements of ({WUE}_{int}) for mangroves (Table S3). While we mention in the main text that as many as 214 independent measurements of water use efficiency are available, not all of these present raw ({P}_{n}) or ({g}_{w}) data, with some reporting leaf transpiration (({T}_{r})) which do not enable reporting of intrinsic water use efficiencies. Also, we strategically included studies from reproducible experimental designs and readily available papers. Mangrove species included in this review represented a global distribution of greenhouse and field observations, and encompassed species in the following mangrove genera: Rhizophora, Avicennia, Laguncularia, Bruguiera, Aegialitis, Aegiceras, Ceriops, Sonneratia, Kandelia, Excoecaria, Heritiera, Xylocarpus, and Conocarpus.We then accessed an existing database (n = 11,328 observations) that reported raw ({P}_{n}) and ({g}_{w}) data from 210 upland deciduous and evergreen shrubs and trees of savannah, boreal, temperate, and tropical habitats60. From these data, we evaluated a range of upland tree and shrub species that occurred and developed naturally in environments along a global gradient of vapor pressure deficit (i.e., atmospheric moisture and temperature), including arid, semi-arid, dry semi-humid, and humid locations.For Fig. 1b, we started with a review by Wullschleger et al.61 that provides maximum individual tree water use data (L H2O day−1) from 52 published studies representing 67 species of upland trees from around the world. Of those studies, dbh values (8 to 134 cm) were provided alongside 47 individual tree water use values. Maximum individual tree water use and dbh (4.1 to 45.3 cm) were available from the original source for 8 mangrove studies representing 7 species from French Guiana, Mayotte Island (Indian Ocean), China, Florida (USA), and Louisiana (USA) (Table S4). These represent the extent of published sap flow data that provided both individual tree water use and dbh from mangroves (numerically); e.g., we could not extract specific individual tree water use versus dbh from a Moreton Bay (Australia) study site62, south Florida study site63, or from five additional study sites in China51,52. However, regressions for two of the Chinese study sites provided over two years51 indicated that mangrove trees from a suite of species ranging in dbh from 8 to 24 cm used approximately 0.76 and 9.31 L H2O day−1, or 0.53 L H2O day−1 cm−1 of dbh. These apparent rates were even lower than what was reported as average for mangroves in Fig. 1b of 1.4 L H2O day−1 cm−1. The mangrove species included in this analysis were Avicennia germinans (L.) L., Laguncularia racemosa (L.) C.F. Gaertn., Rhizophora mangle L., Ceriops tagal (Perr.) C.B. Rob., Rhizophora mucronata Lam., Sonneratia apetala Buch.-Ham, and Sonneratia caseolaris (L.) Engl.. Additional comparative mangrove species reported by B. Leng & K.-F. Cao51 included Bruguiera sexangula (Lour.) Poir., Bruguiera sexangula var. rhynchopetala W.C. Ko, Excoecaria agallocha L., Rhizophora apiculata Blume, Sonneratia alba Sm., and Xylocarpus granatum J. Koenig.Estimation of canopy transpiration (({{varvec{E}}}_{{varvec{c}}})) from net primary productivity dataEstimates of carbon uptake from CO2 can provide insight into the water use requirement for that uptake of carbon64. We used leaf-level instantaneous water use efficiency (({WUE}_{ins}): (frac{{P}_{N}}{{T}_{r}})), which relates to net CO2 uptake from leaves of the dominant mangrove forest canopy relative to the specific amount of water used, and developed a predictive relationship (predicted) for determining mangrove net primary productivity (NPP) values from ({E}_{c}) using ({WUE}_{ins}). For A. germinans, L. racemosa, and R. mangle forest components, we used light-saturated, leaf-level ({WUE}_{ins}) values of 3.82 ± 0.3, 4.57 ± 0.3, and 5.15 ± 0.4 mmol CO2 (mol H2O)−1 [± 1 SE], respectively, from mangrove saplings and small trees of south Florida65. ({WUE}_{ins}) values were stratified by species relative to basal area distributions on each south Florida study plot, converted from molar fractions of H20 (from ({E}_{c}) determination) and CO2 to molecular weights, and multiplied by ({WUE}_{ins}) with applicable unit conversions to attain kg CO2 m−2 year−1. This value was multiplied by 0.273 to yield kg C m−2 year−1.This predictive relationship was validated in two independent ways. First, for one of the calibration sites (lower Shark River, Everglades National Park, Florida, USA), we modeled ({E}_{c}) from sap flow data50, determined NPP from ({WUE}_{ins}) calculations relative to the amount of water the stand used, and had independent measurements of net ecosystem exchange (NEE) of CO2 between the mangrove ecosystem and atmosphere from an eddy flux tower66. For this site, NPP estimation and NEE were closely aligned once soil CO2 effluxes were accounted; respiratory CO2 effluxes from soil and pneumatophores were determined to be 1.2 kg C m−2 year−1 from previous study67. Using our NPP estimations from ({WUE}_{ins}) calculations and subtracting soil and pneumatophore CO2 effluxes of 1.2 kg C m−2 for 2004 and 0.8 kg C m−2 for 2005 (partial year), NPP becomes 0.96 kg C m−2 for 2004 and 0.85 kg C m−2 for January to August of 2005 (see Observed 1, Florida on Fig. S2). Our approach underestimated NPP from ({E}_{c}) relative to measurements from eddy covariance by 0.21 kg C m-2 for 2004 (within 17.5% of predicted) and was nearly identical for 2005 (within 0.02 kg C m−2, or 2% of predicted).Second, we wanted to determine whether ({E}_{c})-to-NPP predictions developed on a few sites in south Florida, USA, represented other global sites, so we included an analysis from several mangrove sites in Guangdong Province, China, to represent an entirely different location. Similar to south Florida analyses, we combined data for NPP from co-located sites of ({E}_{c}) determination using sap flow techniques. NPP of the mangrove forests were measured using multiple procedures (including eddy flux) for improved accuracy68,69. The relationships of predicted NPP versus ({E}_{c}) and observed NPP versus ({E}_{c}) did not differ between Florida and China (t = 0.48, p = 0.643).Projecting mangrove ({{varvec{E}}}_{{varvec{c}}}) to other locationsWe reviewed data from 26 published records that report mangrove NPP, or enough data to estimate NPP, from 71 study sites located in the Florida-Caribbean Region (25 sites) and Asia–Pacific Region (46 sites) (Table S5). Table S1 reveals mangrove literature sources used, as well as how NPP was estimated from values provided in the original source; itemizes assumptions for determinations of aboveground NPP, wood production, litter production, and root production from various ratios70; and reveals unit conversions.We then convert NPP to ({E}_{c}) for all 71 sites using the predicted curve in Fig. S2 (Eq. 1, main text), and provide summary results by location in Table S1. Regional (ET) data were extracted from the MODIS Global Evapotranspiration Project (MOD16-A3), which are provided at a resolution of 1-km. The locations of mangrove NPP study sites were identified, assigned to a single 1-km2 grid in MOD16, and (ET) was extracted from that grid and used for ({E}_{c})-to-(ET) comparison. Average (ET) from single cells (1 km2) was combined with the average of up to 8 additional neighboring cells to provide comparative (ET) projections over up to 9 km2 for each location from 2000 to 2013 to compare sensitivity among suites of the specific MODIS16-A3 cells selected over land. When neighboring cells were completely over water, they were excluded since component mangrove forest ({E}_{c}) estimation was not possible from the cells. Estimates of (ET) by individual cells used to compare with mangrove ({E}_{c}) versus up to 9 cells differed by an average of only 43 mm H2O year−1 (± 16 mm H2O year−1, S.E.). Therefore, we use (ET) from individual, overlapping ({E}_{c}) cells in Table S1.The average ({E}_{c})-to-(ET) ratio from mangroves was subtracted from ({E}_{c})-to-(ET) ratio for specific ecoregions48, and this ratio difference was assumed to represent net water use strategy affecting differences by the dominant vegetation between ecosystem types. We were also mindful that salinity reductions can affect ({E}_{c}). We used scaled (0–1) mean and standard deviations from ({WUE}_{int}) data previously reported for mangroves (Fig. S1)20. Standard deviation was 32% of mean ({WUE}_{int}) related to salinity gradients, and if we re-scale this deviation to ({E}_{c}) data and add it to the mean ({E}_{c}) to assume low salinity, average ({E}_{c})-to-(ET) ratio becomes 57.4%. This is theoretical and assumes a relatively linear relationship between ({WUE}_{int}) and ({E}_{c}).Comparative water use scaling among ecoregionsTable 1 presents the projected reduction in water used through ({E}_{c}) if a mangrove ({E}_{c})-to-(ET) ratio was applied to tropical rainforest (290.52 mm H2O year−1), temperate deciduous forest (131.76 mm H2O year−1), tropical grassland (110.77 mm H2O year−1), temperate grassland (46.48 mm H2O year−1), temperate coniferous forest (54.96 mm H2O year−1), desert (22.99 mm H2O year−1), and Mediterranean shrubland (12.08 mm H2O year−1). To convert potential water use differences to kL H2O ha−1 year−1 (as presented in the abstract), the following calculation is used (using the example of tropical rainforest):$$frac{290.52 L {H}_{2}O {year}^{-1}}{1 {m}^{2}} times frac{mathrm{10,000 }{m}^{2}}{1 ha} times frac{1 kL {H}_{2}O}{mathrm{1000 }L {H}_{2}O} =mathrm{2905 } kL {H}_{2}O {ha}^{-1}{year}^{-1}$$
    (2)
    For comparisons made to mature ( > 12 years) oil palm (Elaeis guineensis Jacq.) plantations, ({E}_{c})-to-(ET) ratio was assumed to range from 5332 to 70%33, for a water use difference of 1170 and 3160 kL H2O ha−1 year−1, respectively, relative to annual global mangrove (ET) (of 1172 mm). We multiply these values by the 18,467 ha of land area that was converted from mangroves to oil palm31 to attain potential water use differences of 21.6 to 58.4 GL H2O year−1 from avoided conversion of mangrove to oil palm in this region.Global water use scalingIn order to determine how much global mangrove area is adjacent to each ecoregion, we conducted a cross-walk between terrestrial ecoregions71 and those used by Global Mangrove Watch in the 2010 classification of global mangrove area72. Terrestrial ecoregions used by Schlesinger & Jasechko48 were then able to be associated with specific mangrove areas (Table S6). In other words, given a specific ecoregion, we determined how much mangrove area would be occurring within that same ecoregional geography. Global mangrove area assignment to those ecoregions mapped within 0.1% of the total mangrove area of 13,760,000 ha reported in Bunting et al.72. To convert kL H2O ha−1 year−1 to GL H2O year−1 among ecoregions, the following calculation was used (continuing with the example of tropical rainforest, which has an area of adjacent mangroves of 112,331.9 km2):$$frac{mathrm{2905} kL {H}_{2}O {year}^{-1}}{1 ha} times frac{100 ha}{1 {km}^{2}} times frac{mathrm{112,331.90} {km}^{2 }mangroves}{1.0 times {10}^{6} kL {H}_{2}0} times frac{1 GL {H}_{2}O}{1} = mathrm{32,632.42} GL {H}_{2}O {year}^{-1}$$
    (3)
    Agent-based modelling of individual tree water use (Discussion)The BETTINA model simulates the growth of mangrove trees as a response to above- and below-ground resources, i.e. light and water41. In the model, an individual tree is described by four geometric measures, including stem radius, stem height, crown radius and root radius; attributing functional relevance in terms of resource uptake. Aiming to maximize resource uptake, new biomass is allocated to increase these measures in an optimal but not constant proportion. Water uptake of the tree is driven by the water potential gradient between the soil and the leaves. Thus, porewater salinity is part of what determines the water availability for plants.With the BETTINA model, we simulated the growth of nine individual mangrove trees under different salinity conditions, ranging between 0 and 80 psu, while all other environmental and tree-specific conditions were kept constant. Simulation time was 200 years so that trees could achieve very close to their maximum possible size, and the hydrological parameters were similar to that reported previously42. We can show that the ratio of the actual transpiration to the potential transpiration decreases with increasing salinity; plants use less water. Potential transpiration was the transpiration of a given tree without a simulated reduction in water availability due to porewater salinity. These parameter details are presented graphically for mangroves (Fig. S3), comparing porewater salinity along a gradient against the ratio of actual-to-potential individual tree transpiration.Further, BETTINA simulation results include morphological plasticity adjustments to allometry. To highlight this, we also displayed results assuming a constant allometry as for 40 psu. Naturally, for this arbitrary benchmark the solid and the dashed line coincide (Fig. 3a). Adaptation to higher salinities improves water uptake (primarily girth and root growth), thus the adapted trees (solid lines) have a higher water uptake than the average allometry (dashed lines) for salinities below 40 psu. Lower salinities promote increase of height and crown radius to improve light availability. That is why the adapted trees have a lower water uptake than an average tree would for salinities above 40 psu. Tree water use decreases with increasing salinity (Fig. 3b), as ({WUE}_{int}) coincidently increases (Fig. S1).Virtual water use explained (Discussion)Water is required to produce products or acquire services from natural ecosystems; e.g., forest products, fisheries biomass, nutrient processing (nitrification, denitrification), food production. If a net kilogram of a food is grown on a hectare of land where water is abundant and that kilogram of food requires 400 mm of water to be produced, the export of that food to an area of low water availability provides an ecosystem service in the amount of 1 kg of food, plus 400 mm of “virtual” water not actually needed at the destination but used at the source. This water is defined as the product’s “virtual water content”56. There is a rich body of literature exploring the concept of virtual water73,74, but we expand on this concept here as a comparison among 7 ecoregions48 and mangroves. Raw data used for calculations are presented in Table S2.Statistical analysisData for leaf-level ({WUE}_{int}) comparisons between terrestrial woody plants and mangroves, as well as individual tree water use by dbh for both terrestrial and mangrove trees, were not normally distributed. We used a Kruskal–Wallis ANOVA based on ranks, and the Dunn’s Method for difference tests. Individual tree water use by dbh for both terrestrial and mangrove trees were determined using linear regression, mostly applied to mean values. For a couple of mangrove studies, only median values were extractable from minimum and maximum values. Likewise, all other data relationships were best fit with linear models, including the calibration curves between ({E}_{c}) and NPP. All data were analyzed using SigmaPlot (v. 14.0, Systat, Inc., Palo Alto, California, USA). More

  • in

    Pigment signatures of algal communities and their implications for glacier surface darkening

    Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, C. J. et al. Glacier algae: A dark past and a darker future. Front. Microbiol. 10, 524 (2019).
    PubMed 
    PubMed Central 

    Google Scholar 
    Hodson, A. J., Mumford, P. N., Kohler, J. & Wynn, P. M. The High Arctic glacial ecosystem: New insights from nutrient budgets. Biogeochemistry 72, 233–256 (2005).CAS 

    Google Scholar 
    Stibal, M., Tranter, M., Telling, J. & Benning, L. G. Speciation, phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry 90, 1–13 (2008).CAS 

    Google Scholar 
    Telling, J. et al. Microbial nitrogen cycling on the Greenland ice sheet. Biogeosciences 9, 2431–2442 (2012).ADS 
    CAS 

    Google Scholar 
    Cook, J. M. et al. Glacier algae accelerate melt rates on the south-western Greenland ice sheet. Cryosphere 14, 309–330 (2020).ADS 

    Google Scholar 
    Yallop, M. L. et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stibal, M. et al. Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 44, 11463–11471 (2017).ADS 

    Google Scholar 
    Di Mauro, B. et al. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep. 10, 1–9 (2020).ADS 

    Google Scholar 
    Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 1–9 (2016).ADS 

    Google Scholar 
    Ganey, G. Q., Loso, M. G., Burgess, A. B. & Dial, R. J. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat. Geosci. 10, 754–759 (2017).ADS 
    CAS 

    Google Scholar 
    Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15(1), 133–148 (2021).ADS 

    Google Scholar 
    Huovinen, P., Ramírez, J. & Gómez, I. Remote sensing of albedo-reducing snow algae and impurities in the Maritime Antarctica. ISPRS J. Photogramm. Remote Sens. 146, 507–517 (2018).ADS 

    Google Scholar 
    Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).ADS 
    CAS 

    Google Scholar 
    Williamson, C. J. et al. Algal photophysiology drives darkening and melt of the Greenland ice sheet. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1918412117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevrollier, L.-A. et al. Light absorption and albedo reduction by pigmented microalgae on snow and ice. J. Glaciol. https://doi.org/10.1017/jog.2022.64 (2022).Article 

    Google Scholar 
    Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga ancylonema alaskana comb. et. stat. nov. and its ecophysiological relatedness to ancylonema nordenskioeldii (zygnematophyceae, streptophyta). Microorganisms 9(5), 1103 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Remias, D. et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79, 638–648 (2012).CAS 
    PubMed 

    Google Scholar 
    Williamson, C. J. et al. Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol. Ecol. 94, 1–10 (2018).
    Google Scholar 
    Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).CAS 

    Google Scholar 
    Leya, T., Rahn, A., Lütz, C. & Remias, D. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol. 67, 432–443 (2009).CAS 
    PubMed 

    Google Scholar 
    Müller, T., Bleiß, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).
    Google Scholar 
    Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).PubMed 

    Google Scholar 
    Bidigare, R. R. et al. Evidence for a photoprotective function for secondary carotenoids of snow algae taxonomy, life histories, ecology and geographical habitats and polar regions. J. Phycol. 434, 427–434 (1993).CAS 

    Google Scholar 
    Remias, D. & Lütz, C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: A HPLC approach. Arch. Hydrobiol. Suppl. Algol. Stud. 124, 85–94 (2007).CAS 

    Google Scholar 
    Dial, R. J., Ganey, G. Q. & Skiles, S. M. What color should glacier algae be ? An ecological role for red carbon in the cryosphere. FEMS Microbiol. Ecol. 94(3), 1–9. https://doi.org/10.1093/femsec/fiy007 (2018).Article 
    CAS 

    Google Scholar 
    Uusikivi, J., Vähätalo, A. V., Granskog, M. A. & Sommaruga, R. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnol. Oceanogr. 55, 703–713 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, H., Aubry, C., Zhang, Y. & Song, G. Chromophoric dissolved organic matter (CDOM) in first-year sea ice in the western Canadian Arctic. Mar. Chem. 165, 25–35 (2014).CAS 

    Google Scholar 
    Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).PubMed 

    Google Scholar 
    Piiparinen, J. et al. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea. Photochem. Photobiol. Sci. 14, 1025–1038 (2015).CAS 
    PubMed 

    Google Scholar 
    Cook, J. M. et al. Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 11, 2611–2632 (2017).ADS 

    Google Scholar 
    Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).CAS 
    PubMed 

    Google Scholar 
    Hoham, R. W. & Ling, H. U. Snow algae: Tile effects of chemical and physical factors on their life cycles and populations. In Journey to Diverse Microbial Worlds (ed. Seckback, J.) 131–145 (Springer, Netherlands, 2000).
    Google Scholar 
    Procházková, L., Leya, T., Krížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. Et spp. Nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95, 1–21 (2019).
    Google Scholar 
    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).
    Google Scholar 
    Montagnes, D. J. S., Berges, J. A., Harrison, P. J. & Taylor, F. J. R. Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39, 1044–1060 (1994).ADS 
    CAS 

    Google Scholar 
    Schreiber, U., Gademann, R., Ralph, P. J. & Larkum, A. W. D. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol. 38, 945–951 (1997).CAS 

    Google Scholar 
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).ADS 
    CAS 

    Google Scholar 
    Silsbe, G. M. & Malkin, S. Y. Package ‘phytotools’: Phytoplankton Production Tools. (2015).Aigner, S., Remias, D., Karsten, U. & Holzinger, A. Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J. Phycol. 49, 648–660 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holzinger, A. et al. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: Vegetative cells perform better than pre-akinetes. Protoplasma 255, 1239–1252 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bidigare, R. R., Ondrusek, M. E., Morrow, J. H. & Kiefer, D. A. In-vivo absorption properties of algal pigments. Ocean Opt. X 1302, 290 (1990).ADS 

    Google Scholar 
    Clementson, L. A. & Wojtasiewicz, B. Dataset on the absorption characteristics of extracted phytoplankton pigments. Data Br. 24, 103875 (2019).
    Google Scholar 
    Bidigare, R. R., Ondrusek, M. E., Morrow, J. H. & Kiefer, D. A. In vivo absorption properties of algal pigments. Ocean Opt. X 1302, 290–302 (1990).ADS 

    Google Scholar 
    Bricaud, A. & Stramski, D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling areaand the Sargasso Sea. Limnol. Oceanogr. 35, 562–582 (1990).ADS 
    CAS 

    Google Scholar 
    Duval, B., Shetty, K. & Thomas, W. H. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J. Appl. Phycol. 11, 559–566 (2000).
    Google Scholar 
    Onuma, Y. et al. Observations and modelling of algal growth on a snowpack in north-western Greenland. Cryosphere 12, 2147–2158 (2018).ADS 

    Google Scholar 
    Christner, B. C. et al. Microbial processes in the weathering crust aquifer of a temperate glacier. Cryosphere 12, 3653–3669 (2018).ADS 

    Google Scholar 
    Cook, J. M., Hodson, A. J. & Irvine-Fynn, T. D. L. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 30, 433–446 (2016).ADS 

    Google Scholar 
    Tedstone, A. J. et al. Algal growth and weathering crust state drive variability in western Greenland ice sheet ice albedo. Cryosphere 14, 521–538 (2020).ADS 

    Google Scholar 
    Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl. Acad. Sci. U. S. A. 112, 1001–1006 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Irvine-Fynn, T. D. L. et al. Storage and export of microbial biomass across the western Greenland ice sheet. Nat. Commun. 12, 1–11 (2021).
    Google Scholar 
    Cameron, K. A. et al. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. 19, 524–534 (2017).PubMed 

    Google Scholar 
    Stibal, M. et al. Environmental controls on microbial abundance and activity on the Greenland ice sheet: A multivariate analysis approach. Microb. Ecol. 63, 74–84 (2012).PubMed 

    Google Scholar 
    Mernild, S. H., Liston, G. E., Hasholt, B. & Knudsen, N. T. Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J. Hydrometeorol. 7, 808–824 (2006).ADS 

    Google Scholar 
    Stibal, M., Elster, J., Šabacká, M. & Kaštovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).CAS 
    PubMed 

    Google Scholar 
    Remias, D., Holzinger, A., Aigner, S. & Lu, C. Ecophysiology and ultrastructure of Ancylonema nordenskioldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). 899–908 (2012). doi:https://doi.org/10.1007/s00300-011-1135-6Remias, D., Holzinger, A. & Lütz, C. Physiology, ultrastructure and habitat of the ice Alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from Glaciers in the European Alps. Phycologia 48, 302–312 (2009).
    Google Scholar 
    Nakashima, T. et al. Spatial and temporal variations in pigment and species compositions of snow algae on Mt. Tateyama in Toyama prefecture, Japan.. Front. Plant Sci. 12, 1–16 (2021).
    Google Scholar 
    Remias, D., Albert, A. & Lütz, C. Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae). Photosynthetica 48, 269–277 (2010).CAS 

    Google Scholar 
    Procházková, L., Remias, D., Holzinger, A., Řezanka, T. & Nedbalová, L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol. 44, 105–117 (2021).PubMed 

    Google Scholar 
    Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Biol. 50, 333–359 (1999).CAS 

    Google Scholar 
    Sakshaug, E. & Holm-hansen, O. Photoadaptation in Antarctic phytopfankton: Variations in growth rate, chemical composition and P versus I curves. J. Plankton Res. 8, 459–473 (1986).
    Google Scholar 
    Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M., Beardall, J. & Marshall, D. J. Cell size, photosynthesis and the package effect: An artificial selection approach. New Phytol. 219, 449–461 (2018).CAS 
    PubMed 

    Google Scholar 
    Wagner, B., Ochs, D. & Bieler, K. Derivatives as antimicrobial agents. Engineering 8, 240–244 (2011).
    Google Scholar 
    Perini, L. et al. Darkening of the Greenland ice sheet: Fungal abundance and diversity are associated with algal bloom. Front. Microbiol. 10, 557 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Perini, L. et al. Interactions of fungi and algae from the Greenland ice sheet. Microb. Ecol. https://doi.org/10.1007/s00248-022-02033-5 (2022).Article 
    PubMed 

    Google Scholar 
    Taskjelle, T. et al. Spectral albedo and transmittance of thin young Arctic sea ice. J. Geophys. Res. Ocean. 121, 540–553 (2015).ADS 

    Google Scholar 
    Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565 (2017).CAS 
    PubMed 

    Google Scholar 
    Smith, H., Dieser, M., McKnight, D., SanClements, M. & Foreman, C. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiol. Ecol. 94(7), fiy090 (2018).CAS 

    Google Scholar 
    Kirk, J. T. O. A theoretical analysis of the contributino of algal cells to the attenuation of light within natural waters. New Phytol. 77, 341–358 (1976).
    Google Scholar 
    Morel, A. & Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. Part A. Oceanogr. Res. Pap. 28, 1375–1393 (1981).ADS 

    Google Scholar 
    Stuart, V., Sathyendranath, S., Platt, T., Maass, H. & Irwin, B. D. Pigments and species composition of natural phytoplankton populations: Effect on the absorption spectra. J. Plankton Res. 20, 187–217 (1998).CAS 

    Google Scholar 
    Kirk, J. Light and Photosynthesis in Aquatic Environment (University Press, 1983).
    Google Scholar 
    Nelson, N. B., Prezelin, B. B. & Bidigare, R. R. Phytoplankton light absorption and the package effect in California coastal waters. Mar. Ecol. Prog. Ser. 94, 217–227 (1993).ADS 

    Google Scholar 
    Holzinger, A., Allen, M. C. & Deheyn, D. D. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. J. Photochem. Photobiol. B Biol. https://doi.org/10.1016/j.jphotobiol.2016.07.001 (2016).Article 

    Google Scholar 
    Anesio, A. M. et al. Monitoring glacial algae and impurities on the Greenland Ice Sheet. Aarhus Univ. DCE – Danish Cent. Environ. Energy, Sci. Rep. No. 489 26 (2022).QGIS.org, %Y. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. More

  • in

    Long-term monitoring dataset of fish assemblages in rocky tidepools on the southern coast of Taiwan

    Gibson, R. N. & Yoshiyama, R. M. in Intertidal fishes; life in two worlds (eds. Horn, M. H., Martin, K. L. M. & Chotkowski, M. A.) Intertidal fish communities (Academic Press, 1999).Cox, T. E., Baumgartner, E., Philippoff, J. & Boyle, K. S. Spatial and vertical patterns in the tidepool fish assemblage on the island of O’ahu. Environ. Biol. Fishes 90, 329–342 (2011).Article 

    Google Scholar 
    Bezerra, L. A. V., Padial, A. A., Mariano, F. B., Garcez, D. S. & Sánchez-Botero, J. I. Fish diversity in tidepools: assembling effects of environmental heterogeneity. Environ. Biol. Fishes 100, 551–563 (2017).Article 

    Google Scholar 
    Metaxas, A. & Scheibling, R. E. Community structure and organization of tidepools. Mar. Ecol. Prog. Ser. 98, 187–198 (1993).Article 
    ADS 

    Google Scholar 
    Castellanos-Galindo, G. A., Giraldo, A. & Rubio, E. A. Community structure of an assemblage of tidepool fishes on a tropical eastern Pacific rocky shore, Colombia. J. Fish. Biol. 67, 392–408 (2005).Article 

    Google Scholar 
    Castellanos-Galindo, G. A. & Giraldo, A. Food resource use in a tropical eastern Pacific tidepool fish assemblage. Mar. Biol. 153, 1023–1035 (2008).Article 

    Google Scholar 
    Moring, J. R. Seasonal absence of fishes in tidepools of a boreal environment (Maine, USA). Hydrobiologia 194, 163–168 (1990).Article 

    Google Scholar 
    Davis, J. L. D. Spatial and seasonal patterns of habitat partitioning in a guild of southern California tidepool fishes. Mar. Ecol. Prog. Ser. 196, 253–268 (2000).Article 
    ADS 

    Google Scholar 
    Arakaki, S., Tsuchiya, M. & Tokeshi, M. Testing latitudinal patterns of tidepool fish assemblages: local substrate characteristics affect regional-scale trends. Hydrobiologia 733, 45–62 (2014).Article 

    Google Scholar 
    Arakaki, S. & Tokeshi, M. Assessment of decadal changes in the tidepool fish assemblage of Danjo Islands in the northern East China Sea. Mar. Biodivers. 52, 25 (2022).Article 

    Google Scholar 
    Bonaca, M. O. & Lipej, L. Factors affecting habitat occupancy of fish assemblage in the Gulf of Trieste (Northern Adriatic Sea). Mar. Ecol. 6, 42–53 (2005).Article 
    ADS 

    Google Scholar 
    Ribeiro, J., Carvalho, G. M., Gonçalves, J. M. S. & Erzini, K. Fish assemblages of shallow intertidal habitats of the Ria Formosa lagoon (South Portugal): influence of habitat and season. Mar Ecol Prog Ser 446, 259–273 (2012).Article 
    ADS 

    Google Scholar 
    Compaire, J. C. et al. Micro- and macroscale factors affecting fish assemblage structure in the rocky intertidal zone. Mar Ecol Prog Ser 610, 175–189 (2019).Article 
    ADS 

    Google Scholar 
    Griffiths, S. P. Spatial and temporal dynamics of temperate Australian rockpool ichthyofaunas. Mar. Freshwater Res. 54, 163–176 (2003).Article 
    ADS 

    Google Scholar 
    Henriques, S., Pais, M. P., Costa, M. J. & Cabral, H. N. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects. J. Sea Res. 79, 50–59 (2013).Article 
    ADS 

    Google Scholar 
    Mendonça, V. et al. What’s in a tide pool? Just as much food web network complexity as in large open ecosystems. PLoS ONE 13, e0200066 (2018).Article 

    Google Scholar 
    Mahon, R. & Mahon, S. D. Structure and resilience of a tidepool fish assemblage at Barbados. Environ. Biol. Fishes 41, 171–190 (1994).Article 

    Google Scholar 
    Willis, T. J. & Roberts, C. D. Recolonisation and recruitment of fishes to intertidal rockpools at Wellington, New Zealand. Environ. Biol. Fish. 47, 329–343 (1996).Article 

    Google Scholar 
    Ho, L.-T., Wang, S.-C., Shao, K.-T., Chen, I.-S. & Chen, H. A long-term monitoring dataset of fish assemblages in rocky tidepools on the northern coast of Taiwan. Sci. Data 7, 84 (2020).Article 

    Google Scholar 
    Chen, H. et al. Long-term monitoring dataset of fish assemblages impinged at nuclear power plants in northern Taiwan. Sci. Data 2, 150071 (2015).Article 
    CAS 

    Google Scholar 
    Liao, Y. C., Chen, L. S., Shao, K. T. & Tu, Y. Y. Temporal changes in fish assemblage from the impingement data at the second nuclear power plant, northern Taiwan. J. Mar. Sci. Technol. 12, 411–417 (2004).Article 

    Google Scholar 
    Chen, H., Chen, C.-Y. & Shao, K.-T. Recovery and variation of the coastal fish community following a cold intrusion event in the Penghu Islands, Taiwan. Plos One 15, e0238550 (2020).Article 
    CAS 

    Google Scholar 
    Heard, J. et al. Coastal development threatens Datan area supporting greatest fish diversity at Taoyuan Algal Reef, northwestern Taiwan. Aquat. Conserv.: Mar. Freshw. Ecosyst. 31, 590–604 (2021).Article 

    Google Scholar 
    Chen, H., Shao, K. T. & Kishino, H. Phylogenetic skew: an index of community diversity. Mol. Ecol. 24, 759–770 (2015).Article 

    Google Scholar 
    Chen, H., Shao, K.-T. & Kishino, H. Bayesian hierarchical ANOVA model of stochastic seasonality for Diodon holocanthus in northern Taiwan. J. Mar. Sci. Technol. 24, 303–310 (2016).
    Google Scholar 
    Chen, H., Chen, C.-Y. & Shao, K.-T. Time series dataset of fish assemblages near thermal discharges at nuclear power plants in northern Taiwan. Sci. Data 5, 180055 (2018).Article 

    Google Scholar 
    Chen, H., Chen, C.-Y., Shao, K.-T. & Gong, G.-C. Spatial and temporal variations in species diversity of fish assemblages near a sewage treatment plant in northern Taiwan. Fish. Sci. 85, 581–590 (2019).Article 
    CAS 

    Google Scholar 
    Shao, K.-T., Chen, J.-P. & Wang, S.-C. in Proceedings of the 5th Indo-Pacific Fish Conference (eds. Seret, B. & Sire, J.-Y.) Biogeography and database of marine fishes in Taiwan waters (French Society of Ichthyology, 1999).Shao, K.-T. et al. A checklist of the fishes of southern Taiwan, northern South China Sea. Raffles Bull. Zool. Suppl. 19, 233–271 (2008).
    Google Scholar 
    Shen, S.-C. Chief Editor. Fishes of Taiwan. (Department of Zoology, National Taiwan University, 1993).Ho, L-T., Wang, S-C., Shao, K-T., Chen, I-S. & Chen, H. Long-term monitoring dataset of fish assemblages in rocky tidepools on the southern coast of Taiwan, figshare, https://doi.org/10.6084/m9.figshare.20747467.v1 (2022). More

  • in

    Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome

    Bacterial strains and mediaA collection of 185 genome-sequenced bacterial isolates, described previously14, was utilized to assemble the synthetic community used in this work. These isolates were obtained from surface-sterilized Brassicaceae roots, primarily Arabidopsis thaliana, grown in two soils from North Carolina, USA35. This isolate collection includes strains V. paradoxus CL14, Arthrobacter CL28, Acinetobacter CL69 and Acinetobacter CL71, which are also used in this work in individual strain contexts. V. paradoxus CL14 ΔHS33, which has a clean deletion of genes with gene ID 2643613677 through 2643613653 was constructed previously14 and used here. Additional strains were obtained from the American Type Culture Collection (ATCC): E. soli LF7 (ATCC BAA-2102), R. pomeroyi (ATCC 700808) and B. japonicum (ATCC 10324). P. phytofirmans PsJN (DSMZ 17436) was obtained from the DSMZ-German Collection of Microorganisms and Cell Cultures. P. putida strain 1290 was generously provided by Johan Leveau (University of California Davis). Pseudomonas strain Root 562 was generously provided by Paul Schulze-Lefert (Max-Planck-Gesellschaft). All bacteria, with exceptions noted below, were routinely grown on LB agar plates (10 g l−1 tryptone, 5 g l−1 yeast extract, 10 g l−1 NaCl, 1.5% (w/v) agar) and in 2xYT liquid medium (16 g l−1 tryptone, 10 g l−1 yeast extract, 5 g l−1 NaCl) at 28 °C. The 175-member (185-member minus 10 Variovorax strains) synthetic community (SC185-10V) was grown on KB medium as was done previously to culture this synthetic community14. B. japonicum (ATCC 10324) was routinely grown on liquid and solidified YM medium (1 g l−1 yeast extract, 10 g l−1 mannitol, 0.5 g l−1 dipotassium phosphate, 0.2 g l−1 magnesium sulfate, 0.1 g l−1 NaCl, 1 g l−1 CaCO4, pH 6.8, solidified with 1.5% agar as necessary) at 28 °C. R. pomeroyi (ATCC 700808) was routinely grown on liquid and solidified LB medium supplemented with 2% sea salt (Millipore Sigma S9883) and solidified with 1.5% (w/v) agar as necessary. M9 base medium was formulated using 1x M9 minimal salts medium (Sigma M6030) supplemented with 2 mM MgSO4, 0.1 mM CaCl2 and 10 µM FeSO4. A carbon source or sources were added to this M9 base medium to support bacterial growth. Unique strains constructed in this study are available upon request.Bacterial 16S rRNA sequencingBacterial colonization of Arabidopsis roots was assessed using a method similar to the previous study14. Roots from 8–10 plants were collected into sterilized 2 ml tubes containing three 4 mm glass beads and root fresh weight in each tube was obtained. Five such samples were collected for each bacterial treatment. The roots were washed three times with sterile distilled water and stored at −80 °C until further processing. The roots were then lyophilised for 48 h using a Labconco freeze-dry system and pulverized using an MPBio tissue homogenizer. DNA was extracted from the root samples and bacterial cell pellets saved from the bacteria for input into the experiment using the DNeasy PowerSoil HTP 96 kit (Qiagen) according to manufacturer instructions. The V3-V4 region of the bacterial 16S rRNA gene was amplified and sequenced as previously described14.16S amplicon sequence data processingThe 16S sequencing data from synthetic community experiments were processed as previously described14. Briefly, usable read output from MT-Toolbox36 (reads with 100% primer sequences that successfully merged with their pair) were filtered for quality with Sickle37 by not allowing any window with Q score under 20. The resulting sequences were globally aligned to a 16S rRNA gene sequence reference dataset from genome assemblies of the synthetic community members. For strains that do not have an intact 16S rRNA sequence in their assembly, Sanger sequencing was used to obtain the 16S rRNA gene sequence of the strains for inclusion in the reference dataset. The reference dataset also included sequences from Arabidopsis organellar sequences and known bacterial contaminants. Sequence alignment was performed with USEARCH v.7.109038 using the optional usearch_global at a 98% identity threshold. On average, 85% of read sequences matched an expected isolate. The 185 isolates of our 185-member synthetic community could not all be distinguished from one another on the basis of the V3-V4 sequence. They were thus classified into 97 unique sequences encompassing a set of identical (clustered at 100%) V3-V4 sequences coming from a single or multiple isolate strains. An isolate abundance table was created from the sequence mapping results.We estimated 16S rRNA absolute abundance using a plasmid spike-in method39. Synthetic DNA was spiked at known quantities into samples before DNA extraction and the ratio of added to recovered synthetic DNA served as a conversion factor by which the total number of 16S rRNA molecules in a given sample was estimated. We designed a plasmid which included 16S V3-V4 primer binding sequences flanking a randomly generated DNA sequence matching the most frequent length and Guanine + Cytosine (GC) content of amplicons generated using the same primer sequences from wild soil. These sequences were synthesized by Geneart (Invitrogen) and supplied cloned in plasmid pMA-T. The plasmid was transformed into E. coli and isolated using a miniprep spin kit (Qiagen). Specific volumes of this isolated plasmid were then added to individual samples before DNA extraction to spike-in approximately 20% of the predicted 16S copies occurring within the sample. We performed colony-forming units (c.f.u.) counting using similarly treated plant samples (that is, growth on SynCom-inoculated agar plates) to obtain an estimate of the 16S copy number per mg fresh weight of plant roots. We plated serial dilutions of plant root samples ground in MgCl2 on LB to perform c.f.u. counts. The c.f.u. count multiplied by a given sample’s fresh weight were used to calculate sample-specific predicted 16S copy numbers.Plant growth conditions and root growth inhibition assayA. thaliana ecotype Col-0 seeds were sterilized in 70% household bleach, 0.2% Tween-20 for 10 min with vigorous agitation and then rinsed 10 times with sterile distilled water. Seeds were stratified at 4 °C in sterile distilled water for 1–2 d. Plants were germinated for 7 d on 0.5x MS agar medium (2.22 g l−1 PhytoTech Labs M-404: Murashige & Skoog modified basal medium with Gamborg vitamins, 0.5 g l−1 MES hydrate, pH adjusted to 5.7, solidified with 1% (w/v) agar) supplemented with 0.5% (w/v) sucrose in vertical 12 ×12 cm square plates under long-day conditions (21 °C/18 °C, 16 h light/8 h dark, day/night cycle). Then 8 to 10 plants were aseptically transferred to 12 ×12 cm plates containing 0.5x MS agar medium without sucrose where the medium surface was spread with the bacterial inoculum. For assays with IAA addition, 100 nM IAA was added to the medium before pouring the plates. The plant root tip location was marked on plates after transfer to record the initial root tip position. The plates containing the plants and bacteria were incubated vertically under short-day conditions (22 °C/18 °C, 9 h light/15 h dark, day/night cycle) for an additional 11 d. Plates were imaged on a document scanner and primary root elongation was determined using imageJ to quantify the change in root tip position from the initial to the final position.Bacterial inoculation of plantsIndividual bacterial strains were grown on agar plates of the media types specified above at 28 °C. Before plant inoculation, a single colony was picked into the appropriate liquid medium and grown at 28 °C to late exponential or early stationary phase. To remove the medium from the bacteria before inoculation, strains were washed three times in sterile 10 mM MgCl2. The optical density at 600 nm (OD600) was measured for each washed strain and normalized to OD600 of 0.01 in 10 mM MgCl2. For plant experiments with mono-association of an individual strain, 100 µl of OD600 = 0.01 washed bacteria was spread on the 12 ×12 cm plate before plant transfer. For experiments in duo-association with Arthrobacter CL28, 100 µl of OD600 = 0.01 washed Arthrobacter CL28 was spread along with 100 µl of OD600 = 0.01 of the second strain.The 175-member synthetic community (SC185-10V) was prepared as described for the 185-member synthetic community used previously14 by leaving out the 10 isolates from the genus Variovorax. Briefly, 7 d before plant transfer, strains were inoculated individually into 600 µl KB medium in a 96-well plate and grown at 28 °C for 5 d. At 2 d before plant transfer, 20 ul from these 5-day-old cultures were transferred to 380 ul fresh KB medium in a new set of 96-well plates and both sets of plates were returned to the incubator for 2 d. This resulted in two cultures of each strain, one 7 d old and the other 2 d old, which were combined. The OD600 of the strains in each well was measured and the strains were combined while normalizing the OD600 of each strain in the pool. This pool was washed twice with 10 mM MgCl2 and diluted to OD600 = 0.2. For experiments with the SC185-10V SynCom, 100 µl of this OD600 = 0.2 washed pool was spread on 12 ×12 cm plates. For treatments where an additional strain was added to the SC185-10V SynCom, the individual strain was washed as described above, diluted to OD600 = 0.0034 in 10 mM MgCl2, and 100 µl of this dilution was spread on the plates with the SC185-10V SynCom. This addition of the individual strain corresponded to an OD600 three times that of a single strain in the SC185-10V SynCom (0.0034 = (0.2/175) × 3). For the addition of the 10 Variovorax strains to the SC185-10V SynCom experiment, the 10 Variovorax strains were grown individually in 2xYT medium from colonies grown on plates. The OD600 values of the 10 cultures were measured and the 10 strains were pooled while normalizing the OD600 of each strain to the same value. This mixture of the 10 Variovorax strains was then treated as the individual strains for washing and addition of 100 µl of OD600 = 0.0034 to the SC185-10V SynCom on plates.Construction of vectors with Variovorax CL14 iad gene insertsPortions of the V. paradoxus CL14 IAA degradation locus were subcloned into broad host range vector pBBR1MCS-232. Primers JMC579 through JMC604 (Supplementary Table 8) were used to amplify 3–5 kb segments of the locus by PCR using Q5 DNA polymerase (New England Biolabs). These primers were designed to amplify sections beginning and ending at gene start codons and with appropriate overlapping sequences for Gibson assembly either into the pBBR1MCS-2 backbone or to the adjacent section to make larger vector inserts, as appropriate. The pBBR1MCS-2 vector backbone was prepared for Gibson assembly by amplifying the vector by PCR using primers JMC577 and JMC578 (Supplementary Table 8) and subsequently treating with DpnI to remove circular vector template. PCR fragments were cleaned up as necessary using the QIAquick PCR purification kit (Qiagen). Appropriate fragments were mixed to construct the vectors by Gibson assembly using HiFi DNA Assembly Mastermix (New England Biolabs) according to manufacturer instructions. Gibson assembly products were transformed into NEB 10beta chemically competent E. coli (New England Biolabs) and selected on LB plates supplemented with 50 µg ml−1 kanamycin. Vectors were miniprepped using either the ZR plasmid miniprep classic kit or Zymo BAC DNA miniprep kit (Zymo Research) and confirmed via restriction mapping with PstI-HF (New England Biolabs) and Sanger sequencing (Genewiz).To construct vectors that are derivatives of pBBR1::70–66, the Q5 site-directed mutagenesis kit (New England Biolabs) was used for gene deletion. Briefly, vector pBBR1::70–66 was used as a PCR template and portions of this vector were amplified by PCR using primers JMC641 through JMC650 (Supplementary Table 8) and Q5 DNA polymerase (New England Biolabs). PCR products were cleaned up and circularized using KLD Mastermix (New England Biolabs). The product was transformed into NEB 10beta chemically competent E. coli (New England Biolabs) and selected on LB plates supplemented with 50 µg ml−1 kanamycin. Vectors were miniprepped and Sanger sequenced as described above to confirm the construction of the correct vectors.Conjugation of vectors to V. paradoxus CL14 ΔHS33Vectors were conjugated into V. paradoxus CL14 ΔHS33 using tri-parental mating. The helper E. coli strain carrying plasmid pRK201340 and donor NEB 10beta E. coli strains containing the pBBR1MCS-2-based vectors with Variovorax IAA degradation locus gene inserts were cultured in LB media containing 50 µg ml−1 kanamycin at 37 °C. V. paradoxus CL14 ΔHS33 was grown in 2xYT medium containing 100 µg ml−1 ampicillin at 28 °C. V. paradoxus CL14 wild type and derivative strains such as ΔHS33 are naturally resistant to ampicillin and this ampicillin selection allows for recovery of only Variovorax from the conjugation reaction. To prepare for conjugation, all bacteria were pelleted by centrifugation at 5,000 × g for 5 min and washed 3 times in 2xYT medium without antibiotics. For each conjugation reaction, equal volumes (100–300 µl) of each of the three washed bacteria: recipient V. paradoxus CL14 ΔHS33, donor NEB 10beta E. coli containing a pBBR1MCS-2-based vector, and helper E. coli pRK2013 were mixed. Control conjugation mixtures of each pair of strains and individual strains alone were performed in parallel to ensure successful selection of exconjugants only from mixtures of all three strains together. Conjugation mixtures were pelleted by centrifugation at 5,000 × g for 5 min, resuspended in 50 µl 2xYT media, transferred to LB media plates without antibiotics and allowed to dry in a laminar flow hood. These conjugation plates were incubated overnight at 28 °C. After 18–24 h, exconjugants were selected by streaking from the pooled conjugation mixtures on the LB plate without antibiotics to LB plates containing 50 µg ml−1 kanamycin and 100 µg ml−1 ampicillin. This selects for only V. paradoxus CL14 ΔHS33 (ampicillin resistant) containing the pBBR1MCS-2-based vector (kanamycin resistant). Individual colonies were picked into and subsequently cultured in 2xYT medium containing 50 µg ml−1 kanamycin and 100 µg ml−1 ampicillin at 28 °C.Construction of V. paradoxus CL14 gene deletionsUnmarked gene deletions in V. paradoxus CL14 were constructed as described previously14 using the suicide vector backbone pMo130 originally developed for gene knockouts in Burkholderia spp.41. Primers JMC203 and JMC204 (Supplementary Table 8) were used to amplify the pMO130 vector backbone by PCR. This product was subsequently treated with DpnI (New England Biolabs) to digest circular template DNA. Primers JMC605 through JMC612 and JMC671 through JMC677 (Supplementary Table 8) were used to amplify flanking regions for the gene deletion targets from V. paradoxus CL14 genomic DNA. All PCR was performed using Q5 DNA polymerase (New England Biolabs) and products were cleaned up, as appropriate, with the QIAquick PCR purification kit (Qiagen). These PCR products were assembled into suicide vectors using HiFi Gibson Assembly Mastermix (New England Biolabs), transformed into chemically competent NEB 5alpha E. coli (New England Biolabs), and selected on LB plates with 50 µg ml−1 kanamycin. Vectors were miniprepped using the ZR plasmid miniprep classic kit (Zymo Research) and confirmed by Sanger sequencing (Genewiz). Confirmed vectors were transformed into the chemically competent bi-parental mating strain E. coli WM3064. Transformants were selected at 37 °C on LB media supplemented with 50 µg ml−1 kanamycin and 0.3 mM diaminopimelic acid (DAP), and single colonies picked into LB medium also with 50 µg ml−1 kanamycin and 0.3 mM DAP.Bi-parental mating was performed by growing E. coli WM3064 containing the appropriate suicide vector as described above, and V. paradoxus CL14 was grown in 2xYT medium containing 100 µg ml−1 ampicillin at 28 °C. Both E. coli and Variovorax were washed separately three times using 2xYT medium, then mixed in a 1:1 ratio and pelleted. All centrifugation steps were performed at 5,000 × g for 5 min. The pelleted conjugation mixtures were resuspended in 1/10 the volume of 2xYT, plated on LB agar with 0.3 mM DAP and grown at 28 °C overnight. Exconjugants from these plates were streaked out and grown on LB agar with 100 µg ml−1 ampicillin, 50 µg ml−1 kanamycin, and no DAP at 28 °C. These strains were purified by streaking and growing on plates of the same medium once more. These strains with suicide vector integration were then grown once in liquid LB containing 100 µg ml−1 ampicillin and 1 mM isopropyl 1-thio-d-galactopyranoside (IPTG) at 28 °C and then streaked on plates containing media with 10 g l−1 tryptone, 5 g l−1 yeast extract, 100 g l−1 sucrose, 1.5% agar, 100 µg ml−1 ampicillin and 1 mM IPTG. Colonies from these plates were picked and grown in the same liquid media. These strains were then assessed for gene deletion by PCR using primers JMC657 through JMC660 and JMC697 through JMC699 (Supplementary Table 8). The Quick-DNA miniprep kit (Zymo Research) was used to isolate all genomic DNA for PCR screening. To purify the knockout strains, they were streaked and grown out three times on LB plates containing 100 µg ml−1 ampicillin before a final PCR confirmation. To check the purity of the final strains, PCR was performed with one primer outside the deletion region and one inside the deleted gene to ensure no product is produced for the knockout strain. The sequences for the primers used for this PCR reaction (JMC691, JMC717, JMC718, JMC693 and JMC694) can be found in Supplementary Table 8.Measurement of bacterial growth and IAA degradationIndividual strains were grown in 5 ml cultures in various media types supplemented with IAA at 28 °C and 250 r.p.m. To screen the V. paradoxus CL14 ΔHS33 pBBR1 vector complemented mutants, 2xYT medium supplemented with 0.1 mg ml−1 IAA was used. For comparison of other V. paradoxus CL14 mutants, M9 medium with 15 mM succinate and 0.1 mg ml−1 (0.57 mM) IAA was used. For comparison of IAA-degrading strains from diverse genera, M9 medium with 0.1% (w/v) casamino acids (Bacto) and 0.1 mg ml−1 IAA was used. For R. pomeroyi, 2% (w/v) sea salts were added to this M9 medium with casamino acids and IAA. The pBBR1 vector library in E. coli NEB 10beta was screened in LB medium supplemented with 0.04 mg ml−1 IAA and grown at 37 °C and 250 r.p.m. For all media types, IAA was solubilized in 100% ethanol at 20 mg ml−1 and diluted to 0.1 mg ml−1 in the media, resulting in 0.5% (v/v) ethanol in the media.To measure growth, a 200 µl sample was taken from the growing cultures and OD600 was determined on an Infinite M200 Pro plate reader (Tecan). Subsequently, cells were pelleted by centrifugation at 4,200 × g for 15 min and 50 µl of supernatant was transferred to a new 96-well plate and frozen at −80 °C until further analysis. IAA degradation was determined by thawing the plates containing 50 µl aliquots of culture supernatant and combining this with 100 µl of Salkowski reagent (10 mM ferric chloride and 35% perchloric acid)42. This was performed alongside mixing 50 µl of IAA standards with 100 µl of Salkowski reagent in the same 96-well plate format. Colour development was allowed to proceed for 1 h and absorbance was read at 530 nm on the Infinite M200 Pro plate reader (Tecan). The absorbances measured were converted to IAA concentration on the basis of the absorbances measured for the IAA standards.Liquid Chromatography Dual Mass Spectroscopy (LC–MS/MS) metabolomics on Variovorax IAA degradationV. paradoxus CL14 was grown in 5 ml cultures of M9 minimal medium supplemented with either 0.1 mg ml−1 IAA, 0.1 mg ml−1 13C6-IAA (with the 6 carbons of the benzene ring of the indole labelled, Cambridge Isotope Laboratories CLM-1896-PK), and/or 15 mM succinate. Cultures and parallel media controls were incubated at 28 °C with shaking at 250 r.p.m. Cultures and media controls were centrifuged (4,200 × g for 15 min at 4 °C) to pellet cells; supernatants were transferred to new tubes and both pellets (intracellular fraction) and supernatants (extracellular fraction) were stored frozen at −80 °C until extraction. All subsequent work was performed over dry ice or in chilled cold blocks. Frozen pellets from the intracellular fraction were thawed for 3 h at 4 °C, then 800 µl of cold LCMS-grade water was added to the pellets with repeated pipetting to break up the pellet until visually homogeneous. Samples were then quickly returned to −80 °C to freeze the suspension. Frozen pellet suspensions and extracellular solutions were lyophilised until dry. The cells from the dried pellet suspensions were lysed and homogenized with a bead mill (BioSpec Mini-Beadbeater-96) using one sterile 3.2 mm steel ball in each tube for 3 rounds of 5 s each with 10 s breaks in between to reduce heat production. Dried extracellular samples were concentrated by resuspension in 100 µl LCMS- grade methanol, vortexed 3 times for 10 s each, water bath sonicated for 20 min, incubated at 4 °C overnight, centrifuged (1,000 × g, 4 °C, 5 min), and the methanol supernatant was dried using a speed vacuum concentrator. On the day of LC–MS/MS analysis, homogenized dry material was suspended in LCMS-grade methanol with internal standard mix (100 µM U-13C/15N-labelled amino acids, SIGMA 767964). Intracellular samples were suspended at 11.1 µl mg−1 of original sample cell pellet wet weight; extracellular samples were suspended at 38.9 µl mg−1 of corresponding cell pellet wet weight from the culture. The solutions were vortexed 3 times for 10 s each, bath sonicated in ice water for 10 min, chilled at −20 °C for 10 min, then centrifuged (10,000 × g, 5 min, 10 °C) to pellet insoluble material. Supernatants containing the methanol extracts were filtered through 0.22 µm PVDF microcentrifuge filtration tubes (10,000 × g, 5 min, 10 °C); filtrates were transferred to glass vials and immediately capped. Filtrates were then analysed by LC–MS/MS using an Agilent 1290 UHPLC system connected to a Thermo Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer equipped with a heated electrospray ionization (HESI-II) source probe. Extracts were chromatographically separated on a ZORBAX RRHD Eclipse Plus C18, 95 Å, 2.1 × 50 mm, 1.8 µm column (Agilent) for non-polar metabolomics. Separation, ionization, fragmentation and data acquisition parameters are specified in Supplementary Table 7. Briefly, metabolites were separated by gradient elution followed by MS1 and data-dependent (top 2 most abundant MS1 ions not previously fragmented in last 7 s) MS2 collection; targeted data analysis was performed by comparison of sample peaks to a library of analytical standards analysed under the same conditions or by searching the raw data files for predicted m/z values based on structural information of compounds of interest. Three parameters were compared: matching m/z, retention time and fragmentation spectra using Metabolite Atlas (https://github.com/biorack/metatlas)43,44. Identification and standard reference comparison details are provided in Supplementary Table 6. Raw and processed data are available for download at the JGI Joint Genome Portal under ID 1340427. Statistical comparisons were performed using R version 3.6.2, using package agricolae 1.3–5 and stats 3.6.245; boxplots were generated with base R graphics using the boxplot function.Phylogenomic analysisTo guide the delineation of the IAA degradation operons across the bacterial tree of life, we constructed two Hidden Markov Model (HMM) profiles of the genes iacC and iacD by subsetting all homologous genes from the previously validated operons (Extended Data Fig. 4). In parallel, we downloaded the assembly files for all available complete genomes deposited in the NCBI RefSeq 202 repository46. For the 220,000 assembly files downloaded, we performed open reading frame (ORF) prediction using prodigal. We then used the two HMM profiles described above to query the predicted ORFs. Utilizing ad hoc scripts, we constructed a table of HMM hits along the genomes scanned and subset genomic loci where both iacC and iacD genes appeared adjacent to one another. The logic of using the iacC and iacD genes as anchor genes for our search is that the adjacent physical location of both iacC and iacD homologues is a conserved feature across all previously experimentally validated IAA-degrading operons (Extended Data Fig. 4). Next, for each region containing the adjacent iacC and iacD homologue genes, we extracted the gene neighbourhood adjacent to the anchor hit by extracting the amino acid sequence of ORFs +10 kb and −10kb with respect to the anchor hit. Using hmmscan from the Hmmer v3.1.b2 suite47, we performed HMM profiling in all ORFs extracted via our neighbourhood delineation against the COG database version 2003. Finally, we used the COG profiles across the neighbourhoods to create a matrix describing the prevalence of COGs across the regions (candidate regions) with the adjacent iacC and iacD homologue genes.For each genome containing at least one candidate region, we performed taxonomic classification using the GTDB database48. Due to the size of our estimated genomic matrix and to reduce potential biases due to over-representation of certain lineages within RefSeq, we performed principal coordinate analysis (PCoA) using a reduced matrix containing one representative candidate region per species. Species labelling was obtained from the GTDB taxonomic classification described above. PCoA was performed using the oh.pco function from the ohchibi package49, taking as input a binary version of the gene matrix described above. We classified candidate reads into the two types of IAA-degrading operon (iac-like and iad-like), utilizing a majority count-based approach using marker COGs conserved between the previously experimentally validated IAA-degrading operons (Extended Data Fig. 4). Specifically, for each potential operon, we determined the prevalence of COGs that a priori (Extended Data Fig. 4) showed differential prevalence across the two degrading operons (for example, iacA, iacB and iacI are markers of the iac operon, while iorB/iadB and iotA/iadA are exclusive markers of the iad-like operon). Hybrid gene clusters were defined as operons that exhibited the hallmark COGs of both operons.In parallel, we performed phylogenetic inference over all the genomes belonging to genera with at least one representative strain harbouring any of the two types of IAA-degrading operon. This phylogenetic tree was constructed using a super-matrix-based approach as previously described35. Finally, for each genus with at least one assembly harbouring a positive IAA-degrading operon, we estimated the prevalence of the trait across the genus by dividing the total number of isolates with detectable IAA degradation locus by the total number of isolates belonging to that genus in the dataset. In addition, to see the phylogenetic evenness of the distribution of the IAA degradation trait across each genus, we calculated the phylogenetic ratio by calculating the ratio between the average phylogenetic distance (computed via the cophenetic.phylo function from the ape R package50) of isolates with a detectable IAA degradation locus and the total average phylogenetic distance of all isolates within that genus. We constructed the MarR phylogeny using the MarR sequences from candidate regions with 100% markers of one of the two types of IAA-degrading operon. Amino acid sequences of the MarR homologues were aligned using MAFFT51 and phylogenetic inference was performed using FastTree 252.RNA-seq on Variovorax strainsV. paradoxus CL14 was grown in 5 ml cultures of M9 minimal medium supplemented with 15 mM succinate and 0.5% (v/v) ethanol alone or containing IAA. IAA was at a final concentration of 0.1 mg ml−1 in the medium to which it was added. Cultures were prepared at a starting OD600 of 0.02 and incubated at 28 °C, shaking at 250 r.p.m. Cells from all samples were collected for RNA-seq at 18 h to ensure IAA was still present in the cultures of strains that degraded IAA most rapidly. Cells were pelleted by centrifuging the culture at 4,200 × g for 15 min and removing the supernatant. Cell pellets were frozen at −80 °C before RNA extraction. To extract RNA, cells were lysed in TRIzol reagent (Invitrogen) according to manufacturer instructions for lysis and phase separation. After these steps, RNA was purified from the aqueous phase using the RNeasy mini kit (Qiagen) including the optional on-column DNase digestion with RNase-free DNase set (Qiagen). Total RNA was quantified using the Qubit 2.0 fluorometer (Invitrogen) and RNA-seq libraries were prepared using the Universal Prokaryotic RNA-Seq Prokaryotic AnyDeplete kit (Tecan) according to manufacturer instructions. The resulting libraries were pooled and sequenced on the Illumina HiSeq4000 to generate 50 bp single-end reads.RNA-seq data analysisThe V. paradoxus CL14 RNA-seq sequence data were analysed as described previously14. Briefly, the raw reads were mapped to the V. paradoxus CL14 genome (fasta file available at https://github.com/isaisg/variovoraxRGI/blob/master/rawdata/2643221508.fna) using bowtie253 with the ‘very sensitive’ flag. Hits to each individual coding sequence were counted and annotated using the function featureCounts from the R package Rsubread54, inputting the V. paradoxus CL14 gff file (available at https://github.com/isaisg/variovoraxRGI/blob/master/rawdata/2643221508.gff) and using the default parameters with the flag allowMultiOverlap = FALSE. Finally, DESeq255 was used to estimate Differentially Expressed Genes (DEGs) between treatments, with the corresponding fold-change estimates and False Discovery Rate (FDR) adjusted P values. For visualization purposes, we performed z-score standardization of each gene across samples and we visualized this standardized expression values utilizing a heat map constructed using ggplot256. These data can be found in Supplementary Table 9.MarR protein expression and purificationThe coding sequence for each gene can be found in Supplementary Table 10. MarR expression plasmids were synthesized as codon-optimized genes for E. coli expression by BioBasic in the pLIC-His N-term vector (pMCSG7) and transformed into E. coli BL21 (DE3) Gold cells for expression. Cells were grown in the presence of ampicillin in LB medium with shaking at 225 r.p.m. at 37 °C to an OD600 of 0.5, at which point the temperature was reduced to 18 °C. At an OD600 of 0.8, protein expression was induced by the addition of 0.1 mM IPTG and incubation continued overnight. Cells were collected by centrifugation at 4,500 × g for 20 min at 4 °C in a Sorvall (model RC-3B) swinging bucket centrifuge. Cell pellets were resuspended in buffer A (20 mM potassium phosphate, pH 7.4, 50 mM imidazole, 500 mM NaCl), DNase, lysozyme and a Roche Complete EDTA-free protease inhibitor tablet. Resuspended cells were sonicated and clarified via centrifugation at 17,000 × g for 60 min in a Sorvall (model RC-5B) swinging bucket centrifuge. The lysate was applied to a nickel-nitrilotriacetic acid HP column (GE Healthcare) on an Aktaxpress Fast Performance Liquid Chromatography (FPLC) system (Amersham Bioscience) and washed with buffer A. Protein was eluted with buffer B (20 mM potassium phosphate, pH 7.4, 500 mM imidazole, 500 mM NaCl). Fractions containing the protein of interest were combined and passed over a HiLoadTM 16/60 SuperdexTM 200 gel filtration column. Proteins were eluted in S200 buffer (20 mM HEPES, pH 7.4, 300 mM NaCl). Fractions were combined and concentrated for long-term storage at −80 °C.MarR mutant proteins were created by site-directed mutagenesis using primers from Integrated DNA Technologies. The mutant plasmids were sequenced to confirm the mutations. The mutants were produced and purified using E. coli BL21 (DE3) Gold as described above.Ligand binding studies by isothermal titration calorimetry (ITC)All ITC measurements were performed at 25 °C using an Auto-ITC200 microcalorimeter (MicroCal/GE Healthcare). The buffer employed was 20 mM HEPES, pH 7.4, 50 mM NaCl and 0.5% dimethly sulfoxide (DMSO) for protein/ligand binding and 20 mM HEPES, pH 7.4 and 300 mM NaCl for DNA/protein binding experiments. For ligand binding experiments, the calorimetry cell (volume 200 ml) was loaded with MarR wild-type, mutant or homologue protein at a concentration of 50 μM. The syringe was loaded with a ligand concentration of 0.5 or 2 mM. For DNA binding experiments, wild-type MarR_73 did not bind any of the DNA oligos examined; however, we hypothesized that this arose from the ability of this native receptor to remain bound to ligands retained from its recombinant expression in E. coli. Thus, we employed the MarR_73 S28A protein with reduced ligand binding capacity. Here, the calorimetry cell was loaded with duplex oligo at a concentration of 25 μM and the syringe was loaded with MarR S28A mutant protein, which was necessary to prevent ligand binding during expression and purification, at a concentration of 0.5 mM. A typical injection protocol included a single 0.2 μl first injection followed by 20 1.5 μl injections of the syringe sample into the calorimetry cell. The spacing between injections was kept at 180 s and the reference power at 8 μcal s−1. The data were analysed using Origin for ITC version 7.0 software supplied by the manufacturer and fit well to a one-site binding model. Two independent ITC measurements were performed for each condition. A non-integer N value (for example, 0.73 in Fig. 2a) indicates that some protein monomers may not be in an active conformation, and thus do not bind ligand. Additionally, small measurement errors in assessing the protein or ligand concentrations may also contribute to non-integer N values in ITC. To confirm that 300 mM NaCl did not negatively impact DNA binding, MarR_73 S28A was examined by ITC in 150 mM NaCl. In this condition, the KD for the 22 bp duplex was 0.428 ± 0.002 μM (N = 1.75 ± 0.014), while the KD for 24 bp duplex was 0.151 ± 0.025 μM (N = 2.51 ± 0.26).Protein crystallographyV. paradoxus MarR_73 was crystallized using the sitting drop vapour diffusion method at 20 °C in conditions outlined in Supplementary Table 4. Crystallization drops were set up using the Oryx4 protein crystallization robot (Douglas Instruments) and contained 0.15 μl protein and 0.15 μl well solution. For all V. paradoxus MarR_73 wild-type conditions, ligands were added at 10-fold molar excess before crystallization trials and crystals appeared within 2–5 d. V. paradoxus MarR_73 with the S28A and R46A mutations was crystallized in similar conditions as the wild-type protein. Similarly, P. putida MarR_iacR, B. japonicum MarR_Bj1, A. baumannii MarR_Ab and E. soli MarR_Es were crystallized using vapour diffusion methods in sitting drop trays at 20 °C and crystals appeared within 3–5 d. All crystallization conditions are outlined in Supplementary Table 4. Crystal specimens were cryoprotected with the well solution supplemented with glycerol to 20% (v/v) (Supplementary Table 4). X-ray diffraction data were collected at the Advanced Photon Source beamline 23-ID-D (Supplementary Table 3). Diffraction images were reduced using either XDS or Denzo and scaled with either Aimless or Scalepack57,58,59. The V. paradoxus MarR_73 structure in complex with IAA was determined by molecular replacement using the structure of 3CDH as a search model in Phaser60. All subsequent structures of V. paradoxus MarR_73 were determined using the V. paradoxus MarR_73 IAA complex structure (PDB: 7KFO) as a search model. The P. putida MarR_iacR and B. japonicum MarR_Bj1 structures were determined by molecular replacement using the structure of 3CJN as the search model. P. putida MarR_iacR (PDB: 7KUA) was subsequently used as the search model for molecular replacement to solve A. baumannii MarR_Ab and E. soli MarR_Es. A nickel ion was placed in the model of MarR_Ab. The following ions or molecules were examined and refined in this location in the MarR_Ab structure: water, Na, Mg, K, Ca, Mn, Fe, Co, Ni, Cu, Zn and Ba. Water, Na, Mg, K, Ca and Ba were deemed unacceptable in this site due to poor difference density. Of the remaining ions considered, there were no sources of Mn, Fe, Co, Cu or Zn in the protein expression media, protein purification buffers, protein storage buffer, crystallization condition or cryoprotectant solutions. Thus, we concluded that the ion present in this structure is Ni due to the use of a nickel-affinity column during the protein’s purification. It is unclear why this ion remained bound to MarR_Ab even after the subsequent size exclusion chromatography purification step, or why such an ion is only observed in this structure of the proteins examined. All structures were refined with either Phenix.refine or Refmac using iterative model building in Coot to the final parameters outlined in Supplementary Table 361,62. MarR_73 is a dimer with one protein monomer in the asymmetric unit and the dimer generated by crystallographic symmetry. PDB accession codes and associated crystallographic data are reported in Supplementary Table 3.Statistics and reproducibilityNo statistical method was used to predetermine sample size, but our sample sizes are similar to those reported in previous publications14,63,64. No data were excluded from the analyses. The experiments were randomized. The investigators were not blinded to allocation during experiments and outcome assessment. Where not stated, data distribution was assumed to be normal, but this was not formally tested.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Continuous exchange of nectar nutrients in an Oriental hornet colony

    Anderson, M. The evolution of eusociality. Annu. Rev. Ecol. Syst. 15, 165–189 (1984).Article 

    Google Scholar 
    Wilkinson, G. S. Reciprocal food sharing in the vampire bat. Nature 308, 181–184 (1984).Article 

    Google Scholar 
    Feistner, A. & Mcgrew, W. Food-sharing in primates: a critical review. Perspect. Primate Biol 3, (1989).Hoelzel, A. R. Killer whale predation on marine mammals at Punta Norte, Argentina; food sharing, provisioning and foraging strategy. Behav. Ecol. Sociobiol. 29, 197–204 (1991).Article 

    Google Scholar 
    Behmer, S. T. Animal behaviour: feeding the superorganism. Curr. Biol. 19, R366–R368 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Information flow during social feeding in ant societies. in Information Processing in Social Insects (eds. Detrain, C., Deneubourg, J. L. & Pasteels, J. M.) 69–81 (Birkhäuser, 1999). https://doi.org/10.1007/978-3-0348-8739-7_4.Hunt, J. H. Trophallaxis and the evolution of eusocial Hymenoptera. in The Biology of Social Insects (CRC Press, 1982).Sorensen, A. A., Busch, T. M. & Vinson, S. B. Trophallaxis by temporal subcastes in the fire ant, Solenopsis invicta, in response to honey. Physiol. Entomol. 10, 105–111 (1985).Article 

    Google Scholar 
    Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).Bodner, L. et al. Nutrient utilization during male maturation and protein digestion in the Oriental hornet. Biology 11, 241 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sorensen, A. A., Kamas, R. S. & Vinson, S. B. The influence of oral secretions from larvae on levels of proteinases in colony members of Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Insect Physiol. 29, 163–168 (1983).Article 
    CAS 

    Google Scholar 
    Erthal, M., Peres Silva, C. & Ian Samuels, R. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). J. Insect Physiol. 53, 1101–1111 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Went, F. W., Wheeler, J. & Wheeler, G. C. Feeding and digestion in some ants (Veromessor and Manica). BioScience 22, 82–88 (1972).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H. The evolution of social wasps. (Oxford University Press, USA, 2007).Abe, T., Yoshiya, T., Hiromitsu, M. & Kawasaki, Y. Y. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C: Comp. Pharmacol. 99, 79–84 (1991).Article 

    Google Scholar 
    Ishay, J. & Ikan, R. Gluconeogenesis in the Oriental hornet Vespa orientalis F. Ecology 49, 169–171 (1968).Article 

    Google Scholar 
    Brock, R. E., Cini, A. & Sumner, S. Ecosystem services provided by aculeate wasps. Biol. Rev. 96, 1645–1675 (2021).Article 
    PubMed 

    Google Scholar 
    Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem., Environ. Biol. Sci. 3, 444–448 (2015).
    Google Scholar 
    Käfer, H., Kovac, H. & Stabentheiner, A. Respiration patterns of resting wasps (Vespula sp.). J. Insect Physiol. 59, 475–486 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodner, L., Bouchebti, S. & Levin, E. Allocation and metabolism of naturally occurring dietary amino acids in the Oriental hornet. Insect Biochem. Mol. Biol. 139, 103675 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Levin, E., Lopez-Martinez, G., Fane, B. & Davidowitz, G. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Baker, I. & Baker, H. G. Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution 36, 1318–1322 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hunt, J. H., Jeanne, R. L., Baker, I. & Grogan, D. E. Nutrient dynamics of a swarm-founding social wasp species, Polybia occidentalis (Hymenoptera: Vespidae). Ethology 75, 291–305 (1987).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 50, 801–813 (1995).Article 

    Google Scholar 
    Buffin, A., Denis, D., Simaeys, G. V., Goldman, S. & Deneubourg, J.-L. Feeding and stocking up: radio-labelled food reveals exchange patterns in ants. PLOS ONE 4, e5919 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quque, M. et al. Hierarchical networks of food exchange in the black garden ant Lasius niger. Insect Sci. 28, 825–838 (2021).Article 
    PubMed 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. A duration constant for worker-to-larva trophallaxis in fire ants. Ins. Soc. 43, 149–166 (1996).Article 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect Behav. 12, 307–328 (1999).Article 

    Google Scholar 
    Wilson, E. O. & Eisner, T. Quantitative studies of liquid food transmission in ants. Ins. Soc. 4, 157–166 (1957).Article 

    Google Scholar 
    Markin, G. P. Food distribution within laboratory colonies of the argentine ant, Tridomyrmex humilis (Mayr). Ins. Soc. 17, 127–157 (1970).Article 

    Google Scholar 
    Howard, D. F. & Tschinkel, W. R. The flow of food in colonies of the fire ant, Solenopsis invicta: a multifactorial study. Physiol. Entomol. 6, 297–306 (1981).Article 

    Google Scholar 
    Suryanarayanan, S. & Jeanne, R. L. Antennal drumming, trophallaxis, and colony development in the social wasp Polistes fuscatus (Hymenoptera: Vespidae). Ethology 114, 1201–1209 (2008).Article 

    Google Scholar 
    Greenwald, E., Segre, E. & Feinerman, O. Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination. Sci. Rep. 5, 12496 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baltiansky, L., Sarafian-Tamam, E., Greenwald, E. & Feinerman, O. Dual-fluorescence imaging and automated trophallaxis detection for studying multi-nutrient regulation in superorganisms. Methods Ecol. Evol. 12, 1441–1457 (2021).Article 

    Google Scholar 
    Feldhaar, H. et al. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. N. 13, 3–13 (2010).
    Google Scholar 
    Bouchebti, S., Bodner, L., Bergman, M., Magory Cohen, T. & Levin, E. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Sci. Rep. 12, 7449 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Motro, M., Motro, U., Ishay, J. S. & Kugler, J. Some social and dietary prerequisites of oocyte development in Vespa orientalis L. workers. Ins. Soc. 26, 155–164 (1979).Article 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B: Biol. Sci. 284, 20162126 (2017).Article 

    Google Scholar 
    Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Helm, B. R. et al. The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees. Biol. Open 6, 872–880 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paoli, P. P. et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 46, 1449–1458 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): a review. Myrmecol. N. 29, 111–124 (2019).
    Google Scholar 
    Gottsberger, G., Schrauwen, J. & Linskens, H. F. Amino acids and sugars in nectar, and their putative evolutionary significance. Pl. Syst. Evol. 145, 55–77 (1984).Article 
    CAS 

    Google Scholar 
    Ozimek, L. et al. Nutritive value of protein extracted from honey bees. J. Food Sci. 50, 1327–1329 (1985).Article 
    CAS 

    Google Scholar 
    Nicolson, S. W. & Thornburg, R. W. Nectar chemistry. in Nectaries and Nectar (eds. Nicolson, S. W., Nepi, M. & Pacini, E.) 215–264 (Springer Netherlands, 2007). https://doi.org/10.1007/978-1-4020-5937-7_5.Contrera, F. A. L., Imperatriz-Fonseca, V. L. & Koedam, D. Trophallaxis and reproductive conflicts in social bees. Insect Soc. 57, 125–132 (2010).Article 

    Google Scholar 
    Carter, G. G. & Wilkinson, G. S. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc. R. Soc. B: Biol. Sci. 280, 20122573 (2013).Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    Werenkraut, V., Arbetman, M. P. & Fergnani, P. N. The Oriental hornet (Vespa orientalis L.): a threat to the Americas? Neotrop. Entomol. 51, 330–338 (2022).Article 
    PubMed 

    Google Scholar 
    Darchen, R. Biologie de Vespa orientalis. Les premiers stades de développement. Ins. Soc. 11, 141–157 (1964).Article 

    Google Scholar 
    Van Itterbeeck, J. et al. Rearing techniques for hornets with emphasis on Vespa velutina (Hymenoptera: Vespidae): A review. J. Asia-Pac. Entomol. 24, 103–117 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Bouchebti, S., Bodner,L. & Levin, E. Continuous exchange of nectar nutrients in an Oriental hornet colony- Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7135100 (2022). More