More stories

  • in

    Fitness costs associated with a GABA receptor mutation conferring dieldrin resistance in Aedes albopictus

    Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y (2004) Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution 58:579–586CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahmad NA, Endersby-Harshman NM, Mohd Mazni NR, Mohd Zabari NZA, Amran SNS, Ridhuan Ghazali MK et al. (2020) Characterization of sodium channel mutations in the Dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia. Insects 11:529PubMed Central 
    Article 

    Google Scholar 
    Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK et al. (2013) Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS ONE 8:e63849CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andreasen MH, ffrench-Constant RH (2002) In situ hybridization to the Rdl locus on polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 16:452–455CAS 
    PubMed 
    Article 

    Google Scholar 
    Assogba BS, Djogbénou LS, Milesi P, Berthomieu A, Perez J, Ayala D et al. (2015) An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci Rep. 5:14529CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS et al. (2016) The ace-1 locus is amplified in all resistant Anopheles gambiae mosquitoes: fitness consequences of homogeneous and heterogeneous duplications. PloS Biol 14:e2000618PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M et al. (2019) Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 286:20182273CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auteri M, La Russa F, Blanda V, Torina A (2018) Insecticide resistance associated with kdr mutations in Aedes albopictus: an update on worldwide evidences. Biomed Res Int 2018:e3098575Article 

    Google Scholar 
    Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 79:41–47Berticat C, Duron O, Heyse D, Raymond M (2004) Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet Res 83:189–196CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhatia SC, Deobhankar RB (1963) Reversion of dieldrin-resistance in the field population of A. culicifacies in Maharashtra State (erstwhile Bombay State), India. Indian J Malariol 17:339–351CAS 
    PubMed 

    Google Scholar 
    Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourguet D, Guillemaud T, Chevillon C, Raymond M (2004) Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution 58:128–135PubMed 
    Article 

    Google Scholar 
    Brooke BD, Hunt RH, Coetzee M (2000) Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol 14:190–194CAS 
    PubMed 
    Article 

    Google Scholar 
    Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharm 68:942–951CAS 
    Article 

    Google Scholar 
    Chen H, Li K, Wang X, Yang X, Lin Y, Cai F et al. (2016) First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty 5:31PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davari B, Vatandoost H, Oshaghi MA, Ladonni H, Enayati AA, Shaeghi M et al. (2007) Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol 89:97–103CAS 
    Article 

    Google Scholar 
    Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, Fontenille D (2008) Aedes albopictus, vector of Chikungunya and Dengue viruses in Reunion Island: biology and control. Parasite 15:3–13CAS 
    PubMed 
    Article 

    Google Scholar 
    Deng J, Guo Y, Su X, Liu S, Yang W, Wu Y et al. (2021) Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis 15:e0009391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou L, Weill M, Hougard J-M, Raymond M, Akogbéto M, Chandre F (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44:805–810PubMed 

    Google Scholar 
    Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ et al. (2005) Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 14:179–183CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M et al. (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G (2000) Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol 45:449–466CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. SAGE, Thousand Oaks California, https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    Google Scholar 
    Freeman JC, Smith LB, Silva JJ, Fan Y, Sun H, Scott JG (2021) Fitness studies of insecticide resistant strains: lessons learned and future directions. Pest Manag Sci 77:3847–3856CAS 
    PubMed 
    Article 

    Google Scholar 
    Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227CAS 
    PubMed 
    Article 

    Google Scholar 
    Grau-Bové X, Tomlinson S, O’Reilly AO, Harding NJ, Miles A, Kwiatkowski D et al. (2020) Evolution of the insecticide target Rdl in African Anopheles is driven by interspecific and interkaryotypic introgression. Mol Biol Evol 37:2900–2917PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbé P et al. (2015) Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 9:e0003771PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamon J, Garret-Jones C (1962) Insecticide-resistance in major vectors of malaria, and its operational importance. Bull World Health Organ, Geneva
    Google Scholar 
    Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK et al. (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci USA 103:8757–8762CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665CAS 
    PubMed 
    Article 

    Google Scholar 
    Hosie AM, Baylis HA, Buckingham SD, Sattelle DB (1995) Actions of the insecticide fipronil, on dieldrin-sensitive and -resistant GABA receptors of Drosophila melanogaster. Br J Pharm 115:909–912CAS 
    Article 

    Google Scholar 
    Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H et al. (2016) The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the Dengue vector Aedes albopictus. Sci Rep. 6:24707CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O et al. (2011) First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis 64:217–221CAS 
    PubMed 
    Article 

    Google Scholar 
    Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68:1431–1437CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolaczinski J, Curtis C (2001) Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera: Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Manag Sci 57:41–45CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM et al. (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labbé P, David J-P, Alout H, Milesi P, Djogbénou L, Pasteur N et al. (2017) 14 – Evolution of resistance to insecticide in disease vectors. In: Tibayrenc M (ed) Genetics and Evolution of Infectious Diseases, Second Edition. Elsevier, London, p 313–339Chapter 

    Google Scholar 
    Latreille AC, Milesi P, Magalon H, Mavingui P, Atyame CM (2019) High genetic diversity but no geographical structure of Aedes albopictus populations in Réunion Island. Parasit Vectors 12:597PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Alout H, Zafihita S, Dehecq JS, Weill M, Tortosa P et al. (2022) Spatio-temporal dynamics of a dieldrin resistance gene in Aedes albopictus and Culex quinquefasciatus populations from Reunion Island. J Insect Sci 22:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Soupapoule K, Wilkinson DA, Goff GL, Damiens D, Gouagna LC (2018) Laboratory evaluation of the effects of sterilizing doses of γ-rays from Caesium-137 source on the daily flight activity and flight performance of Aedes albopictus males. PLoS ONE 13:e0202236PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G et al. (2018) Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors 11:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Low VL, Vinnie-Siow WY, Lim YAL, Tan TK, Leong CS, Chen CD et al. (2015) First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia. Trop Biomed 32:554–556CAS 
    PubMed 

    Google Scholar 
    McKenzie BA, Wilson AE, Zohdy S (2019) Aedes albopictus is a competent vector of Zika virus: a meta-analysis. PLoS ONE 14:e0216794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milesi P, Pocquet N, Labbé P (2013) BioRssay: A R script for bioassay analyses. http://www.isem.univ-montp2.fr/recherche/equipes/genomique-de-ladaptation/personnel/labbepierrick/Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I et al. (2017) Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11:e0005625PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ozoe Y, Kita T, Ozoe F, Nakao T, Sato K, Hirase K (2013) Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic Biochem Physiol 107:285–292CAS 
    PubMed 
    Article 

    Google Scholar 
    Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M et al. (2009) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis 10:259–266Article 

    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Platt N, Kwiatkowska RM, Irving H, Diabaté A, Dabire R, Wondji CS (2015) Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. Heredity 115:243–252CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
    Google Scholar 
    Ranson H, Burhani J, Lumjuan N, Black WCI (2010) Insecticide resistance in Dengue vectors. TropIKA.net [online] 1. http://journal.tropika.net/scielo.php?script=sci_arttext&pid=S2078-86062010000100003&lng=en&nrm=iso. Accessed 03 March 2022Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113:287–296PubMed 
    Article 

    Google Scholar 
    Renault P, Solet J-L, Sissoko D, Balleydier E, Larrieu S, Filleul L et al. (2007) A major epidemic of Chikungunya virus infection on Réunion Island, France, 2005–2006. Am J Trop Med Hy 77:727–731Article 

    Google Scholar 
    Rowland M (1991a) Behaviour and fitness of γHCH/dieldrin resistant and susceptible female Anopheles gambiae and An. stephensi mosquitoes in the absence of insecticide. Med Vet Entomol 5:193–206CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowland M (1991b) Activity and mating competitiveness of γHCH/dieldrin resistant and susceptible male and virgin female Anopheles gambiae and An. stephensi mosquitoes, with assessment of an insecticide-rotation strategy. Med Vet Entomol 5:207–222CAS 
    PubMed 
    Article 

    Google Scholar 
    Russell VL (2021) Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.5.1. https://CRAN.R-project.org/package=emmeansSu X, Guo Y, Deng J, Xu J, Zhou G, Zhou T et al. (2019) Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: alarm to the Dengue epidemic. PLoS Negl Trop Dis 13:e0007665CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, Rutee A et al. (2010) Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Réunion Island. Insect Biochem Mol Biol 40:317–324CAS 
    PubMed 
    Article 

    Google Scholar 
    Taskin BG, Dogaroglu T, Kilic S, Dogac E, Taskin V (2016) Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pestic Biochem Physiol 129:14–27CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor‐Wells J, Brooke BD, Bermudez I, Jones AK (2015) The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J Neurochem 135:705–713PubMed 
    Article 

    Google Scholar 
    Therneau T (2015) A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survivalThompson M, Shotkoski F, ffrench-Constant R (1993) Cloning and sequencing of the cylodienne insecticide resistance from the yellow fewer Aedes aegypti. FEBS Lett 325:187–190CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major Dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131CAS 
    Article 

    Google Scholar 
    Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC (2011) Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol 41:484–491CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu J, Bonizzoni M, Zhong D, Zhou G, Cai S, Li Y et al. (2016) Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus. PLoS Negl Trop Dis 10:e0004696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang C, Huang Z, Li M, Feng X, Qiu X (2017) RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China. Malar J 16:482PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X et al. (2019) Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 12:180PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    High-resolution phylogenetic and population genetic analysis of microbial communities with RoC-ITS

    Srivastava AK, Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol. 1990;44:105–29.PubMed 

    Google Scholar 
    Brewer TE, Albertsen M, Edwards A, Kirkegaard RH, Rocha EPC, Fierer N. Unlinked rRNA genes are widespread among bacteria and archaea. ISME J. 2020;14:597–608.PubMed 

    Google Scholar 
    Apirion D, Miczak A. RNA processing in prokaryotic cells. Bioessays. 1993;15:113–20.PubMed 

    Google Scholar 
    Espejo RT, Plaza N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front Microbiol. 2018;9:1232.PubMed 
    PubMed Central 

    Google Scholar 
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:16160.PubMed 
    PubMed Central 

    Google Scholar 
    Lim K, Furuta Y, Kobayashi I. Large variations in bacterial ribosomal RNA Genes. Mol Biol Evol. 2012;29:2937–48.PubMed 
    PubMed Central 

    Google Scholar 
    Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis. 1998;19:554–68.PubMed 

    Google Scholar 
    Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci. 1977;74:5088 LP–5090.
    Google Scholar 
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 1985;82:6955 LP–6959.
    Google Scholar 
    Park YH, Hori H, Suzuki K, Osawa S, Komagata K. Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J Bacteriol. 1987;169:1801–6.PubMed 
    PubMed Central 

    Google Scholar 
    Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. 5S Ribosomal RNA Database. Nucleic Acids Res. 2002;30:176–8.PubMed 
    PubMed Central 

    Google Scholar 
    Pace NR. The small things can matter. PLoS Biol. 2018;16:e3000009.PubMed 
    PubMed Central 

    Google Scholar 
    Gürtler V. The role of recombination and mutation in 16S–23S rDNA spacer rearrangements. Gene. 1999;238:241–52.PubMed 

    Google Scholar 
    Snyder AK, Adkins KZ, Rio RVM. Use of the internal transcribed spacer (ITS) regions to examine symbiont divergence and as a diagnostic tool for sodalis-related bacteria. Insects. 2011;2:515–31.PubMed 
    PubMed Central 

    Google Scholar 
    Man SM, Kaakoush NO, Octavia S, Mitchell H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Appl Environ Microbiol. 2010;76:3071–81.PubMed 
    PubMed Central 

    Google Scholar 
    Liguori AP, Warrington SD, Ginther JL, Pearson T, Bowers J, Glass MB, et al. Diversity of 16S-23S rDNA Internal Transcribed Spacer (ITS) reveals phylogenetic relationships in Burkholderia pseudomallei and its near-neighbors. PLoS One. 2011;6:e29323.PubMed 
    PubMed Central 

    Google Scholar 
    Boyer SL, Flechtner VR, Johansen JR. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001;18:1057–69.PubMed 

    Google Scholar 
    Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol. 1999;65:4630–6.PubMed 
    PubMed Central 

    Google Scholar 
    Brown BL, Watson M, Minot SS, Rivera MC, Franklin RB. MinIONTM nanopore sequencing of environmental metagenomes: a synthetic approach. Gigascience. 2017;6:1–10.PubMed 
    PubMed Central 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off Galicia (NW Spain). Microb Ecol. 2018;76:866–84.PubMed 

    Google Scholar 
    Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.PubMed 
    PubMed Central 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA. 2006;103:12115–20.PubMed 
    PubMed Central 

    Google Scholar 
    Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, Desantis TZ, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol. 2010;16:4135–44.PubMed 
    PubMed Central 

    Google Scholar 
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.PubMed 
    PubMed Central 

    Google Scholar 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.PubMed 
    PubMed Central 

    Google Scholar 
    Kapustina Ž, Medžiūnė J, Alzbutas G, Rokaitis I, Matjošaitis K, Mackevičius G, et al. High-resolution microbiome analysis enabled by linking of 16S rRNA gene sequences with adjacent genomic contexts. Microb Genom. 2021;7:1–16.
    Google Scholar 
    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428:37–43.PubMed 

    Google Scholar 
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.PubMed 

    Google Scholar 
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.PubMed 
    PubMed Central 

    Google Scholar 
    Karst SM, Ziels RM, Kirkegaard RH, Sørensen EA, McDonald D, Zhu Q, et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat Methods. 2021;18:165–9.PubMed 

    Google Scholar 
    Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol Ecol Resour. 2020;20:429–43.PubMed 

    Google Scholar 
    Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot. 2017;68:5419–29.PubMed 

    Google Scholar 
    Jain M, Olsen HE, Paten B, Akeson M. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239.PubMed 
    PubMed Central 

    Google Scholar 
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.PubMed 

    Google Scholar 
    Graf J, Ledala N, Caimano MJ, Jackson E, Gratalo D, Fasulo D, et al. High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. mBio. 2021;12:e03656–20.PubMed 
    PubMed Central 

    Google Scholar 
    Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L, Bunikis I, et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ Microbiol. 2019;21:2485–98.PubMed 
    PubMed Central 

    Google Scholar 
    Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, et al. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. Microbiome. 2021;9:24.PubMed 
    PubMed Central 

    Google Scholar 
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84.PubMed 
    PubMed Central 

    Google Scholar 
    Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.PubMed 
    PubMed Central 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T, et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiol. 2021;21:35.PubMed 
    PubMed Central 

    Google Scholar 
    Calus ST, Ijaz UZ, Pinto AJ. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience. 2018;7:1–16.
    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:e103–e103.PubMed 
    PubMed Central 

    Google Scholar 
    Benítez-Páez A, Portune KJ, Sanz Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer. Gigascience. 2016;5:4.PubMed 
    PubMed Central 

    Google Scholar 
    Kumar V, Vollbrecht T, Chernyshev M, Mohan S, Hanst B, Bavafa N, et al. Long-read amplicon denoising. Nucleic Acids Res. 2019;47:e104–e104.PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019;20:129.PubMed 
    PubMed Central 

    Google Scholar 
    Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic acid techniques in bacterial systematics. 1991. Wiley, New York, pp 115–75.Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One. 2013;8:e56018–e56018.PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol. 2006;72:2221–5.PubMed 
    PubMed Central 

    Google Scholar 
    Volden R, Palmer T, Byrne A, Cole C, Schmitz RJ, Green RE, et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci. 2018;115:9726 LP–9731.
    Google Scholar 
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.PubMed 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 

    Google Scholar 
    Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–11.PubMed 

    Google Scholar 
    Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Scalable long read self-correction and assembly polishing with multiple sequence alignment. Sci Rep. 2021;11:761.PubMed 
    PubMed Central 

    Google Scholar 
    Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–40.PubMed 
    PubMed Central 

    Google Scholar 
    dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 2019;19:74.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMed 

    Google Scholar 
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259.PubMed 
    PubMed Central 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112 LP–5120.
    Google Scholar 
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.PubMed 

    Google Scholar 
    de Oliveira Martins L, Page AJ, Mather AE, Charles IG. Taxonomic resolution of the ribosomal RNA operon in bacteria: implications for its use with long-read sequencing. NAR Genom Bioinform. 2019;2:lqz016–lqz016.PubMed 
    PubMed Central 

    Google Scholar 
    Olesen SW, Duvallet C, Alm EJ. dbOTU3: a new implementation of distribution-based OTU calling. PLoS One. 2017;12:e0176335–e0176335.PubMed 
    PubMed Central 

    Google Scholar 
    Fichot EB, Norman RS. Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome. 2013;1:10.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan

    Hagen, O. et al. gen3sis: a general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urban, M. C. et al. Evolutionary origins for ecological patterns in space. Proc. Natl Acad. Sci. USA 117, 17482–17490 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    de Aguiar, M. A. M., Baranger, M., Baptestini, E. M., Kaufman, L. & Bar-Yam, Y. Global patterns of speciation and diversity. Nature 460, 384 (2009).PubMed 
    Article 

    Google Scholar 
    O’Dwyer, J. P. & Green, J. L. Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol. Lett. 13, 87–95 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. What drives community dynamics? Proc. R. Soc. B 276, 2923–2929 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).PubMed 
    Article 

    Google Scholar 
    Chisholm, R. A. & O’Dwyer, J. P. Species ages in neutral biodiversity models. Theor. Popul. Biol. 93, 85–94 (2014).PubMed 
    Article 

    Google Scholar 
    Nee, S. The neutral theory of biodiversity: do the numbers add up? Funct. Ecol. 19, 173–176 (2005).Article 

    Google Scholar 
    Ricklefs, R. E. A comment on Hubbell’s zero-sum ecological drift model. Oikos 100, 185–192 (2003).Article 

    Google Scholar 
    Etienne, R. S., Apol, M. E. F., Olff, H. & Weissing, F. J. Modes of speciation and the neutral theory of biodiversity. Oikos 116, 241–258 (2007).Article 

    Google Scholar 
    Davies, T. J., Allen, A. P., Borda-de Água, L., Regetz, J. & Melián, C. J. Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution 65, 1841–1850 (2011).PubMed 
    Article 

    Google Scholar 
    Higgs, P. G. & Derrida, B. Stochastic models for species formation in evolving populations. J. Phys. A 24, L985 (1991).Article 

    Google Scholar 
    Gavrilets, S., Li, H. & Vose, M. D. Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. B 265, 1483–1489 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).Gavrilets, S., Acton, R. & Gravner, J. Dynamics of speciation and diversification in a metapopulation. Evolution 54, 1493–1501 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, C. L. N. et al. Signatures of microevolutionary processes in phylogenetic patterns. Syst. Biol. 68, 131–144 (2018).
    Google Scholar 
    Li, J., Huang, J.-P., Sukumaran, J. & Knowles, L. L. Microevolutionary processes impact macroevolutionary patterns. BMC Evol. Biol. 18, 123 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melián, C. J., Alonso, D., Allesina, S., Condit, R. S. & Etienne, R. S. Does sex speed up evolutionary rate and increase biodiversity? PLoS Comput. Biol. 8, e1002414 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).PubMed 
    Article 

    Google Scholar 
    de Alencar, L. R. V. & Quental, T. B. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol. Evol. 11, 5828–5843 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hurlbert, A. H. & Stegen, J. C. When should species richness be energy limited, and how would we know? Ecol. Lett. 17, 401–413 (2014).PubMed 
    Article 

    Google Scholar 
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).PubMed 
    Article 

    Google Scholar 
    Rosindell, J., Harmon, L. J. & Etienne, R. S. Unifying ecology and macroevolution with individual-based theory. Ecol. Lett. 18, 472–482 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosindell, J. & Harmon, L. J. A unified model of species immigration, extinction and abundance on islands. J. Biogeogr. 40, 1107–1118 (2013).Article 

    Google Scholar 
    Etienne, R. S. & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204–213 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabosky, D. L. & Matute, D. R. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl Acad. Sci. USA 110, 15354–15359 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Princepe, D. & De Aguiar, M. A. M. Modeling mito-nuclear compatibility and its role in species identification. Syst. Biol. 70, 133–144 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Yaacov, D., Blumberg, A. & Mishmar, D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim. Biophys. Acta 1819, 1107–1111 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunnucks, P., Morales, H. E., Lamb, A. M., Pavlova, A. & Greening, C. Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front. Genet. 8, 25 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hill, G. E. The mitonuclear compatibility species concept. Auk 134, 393–409 (2017).Article 

    Google Scholar 
    Lima, T. G., Burton, R. S. & Willett, C. S. Genomic scans reveal multiple mito-nuclear incompatibilities in population crosses of the copepod Tigriopus californicus. Evolution 73, 609–620 (2019).Barreto, F. S. & Burton, R. S. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proc. R. Soc. B https://doi.org/10.1098/rspb.2013.1521 (2013).Hill, G. E. Mitonuclear compensatory coevolution. Trends Genet. 36, 403–414 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gershoni, M., Templeton, A. R. & Mishmar, D. Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31, 642–650 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol. Evol. 6, 5831–5842 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobler, M., Barts, N. & Greenway, R. Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. Integr. Comp. Biol. 59, 900–911 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol. Ecol. 21, 4942–4957 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: effect on gene flow and speciation. Front. Genet. 10, 62 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lane, N. Biodiversity: on the origin of bar codes. Nature 462, 272–274 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. E Mitonuclear Ecology (Oxford Univ. Press, 2019).Wolff, J. N., Ladoukakis, E. D., Enríquez, J. A. & Dowling, D. K. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos. Trans. R. Soc. B 369, 20130443 (2014).Article 

    Google Scholar 
    Koch, R. E. et al. Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol. Evol. 36, 321–332 (2021).PubMed 
    Article 

    Google Scholar 
    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).PubMed 
    Article 

    Google Scholar 
    Weir, J. T. Environmental harshness, latitude and incipient speciation. Mol. Ecol. 23, 251–253 (2014).PubMed 
    Article 

    Google Scholar 
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).PubMed 
    Article 

    Google Scholar 
    Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).PubMed 
    Article 

    Google Scholar 
    Zhang, F. & Broughton, R. E. Mitochondrial–nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes? Genome Biol. Evol. 5, 1781–1791 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piccinini, G. et al. Mitonuclear coevolution, but not nuclear compensation, drives evolution of OXPHOS complexes in bivalves. Mol. Biol. Evol. 38, 2597–2614 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barreto, F. S. et al. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat. Ecol. Evol. 2, 1250–1257 (2018).PubMed 
    Article 

    Google Scholar 
    Kennedy, J. D. et al. Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds. J. Biogeogr. 41, 1746–1757 (2014).Article 

    Google Scholar 
    Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).PubMed 
    Article 

    Google Scholar 
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 

    Google Scholar 
    Evans, K. L. & Gaston, K. J. Can the evolutionary-rates hypothesis explain species–energy relationships? Funct. Ecol. 19, 899–915 (2005).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).PubMed 
    Article 

    Google Scholar 
    Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 2171–2185 (2016).PubMed 
    Article 

    Google Scholar 
    Dowling, D. K., Abiega, K. C. & Arnqvist, G. Temperature-specific outcomes of cytoplasmic–nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61, 194–201 (2007).PubMed 
    Article 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freeman, B. G., Weeks, T., Schluter, D. & Tobias, J. A. The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecol. Lett. 25, 635–646 (2022).PubMed 
    Article 

    Google Scholar 
    Vellend, M. Species diversity and genetic diversity: parallel processes and correlated patterns. Am. Nat. 166, 199–215 (2005).PubMed 
    Article 

    Google Scholar 
    Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735 (2017).Article 

    Google Scholar 
    Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. S. & Costa-Pereira, R. Latitudinal gradients in intraspecific ecological diversity. Biol. Lett. 9, 20130778 (2013).Derrida, B. & Peliti, L. Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382 (1991).Article 

    Google Scholar 
    de Aguiar, M. A. M. Speciation in the Derrida–Higgs model with finite genomes and spatial populations. J. Phys. A 50, 85602 (2017).Article 

    Google Scholar 
    Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).PubMed 
    Article 

    Google Scholar 
    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. S., Bjørgesæter, A. & Ugland, K. I. On plotting species abundance distributions. J. Anim. Ecol. 75, 752–756 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Warming reduces global agricultural production by decreasing cropping frequency and yields

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).CAS 
    Article 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).Article 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Hodge, I., Hauck, J. & Bonn, A. The alignment of agricultural and nature conservation policies in the European Union. Conserv. Biol. 29, 996–1005 (2015).Article 

    Google Scholar 
    Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon Soy Moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).Article 

    Google Scholar 
    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).CAS 
    Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Security 4, 46–50 (2015).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2020).Article 

    Google Scholar 
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).CAS 
    Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).CAS 
    Article 

    Google Scholar 
    Afifi, T., Liwenga, E. & Kwezi, L. Rainfall-induced crop failure, food insecurity and out-migration in Same-Kilimanjaro, Tanzania. Clim. Dev. 6, 53–60 (2014).Article 

    Google Scholar 
    Stigter, K. in Applied Agrometeorology (ed. Stigter, K.) 531–534 (Springer, 2010).Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).Article 

    Google Scholar 
    Kawasaki, K. Two harvests are better than one: double cropping as a strategy for climate change adaptation. Am. J. Agr. Econ. 101, 172–192 (2019).Article 

    Google Scholar 
    Ceglar, A., Zampieri, M., Toreti, A. & Dentener, F. Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change. Earths Future 7, 1088–1101 (2019).Article 

    Google Scholar 
    Cohn, A. S., VanWey, L. K., Spera, S. A. & Mustard, J. F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6, 601–604 (2016).Article 

    Google Scholar 
    Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5, 034012 (2010).Article 

    Google Scholar 
    Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).Article 

    Google Scholar 
    Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).Article 

    Google Scholar 
    Pugh, T. A. M. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).CAS 
    Article 

    Google Scholar 
    Scherer, L. A., Verburg, P. H. & Schulp, C. J. E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Change 48, 43–55 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change 64, 102131 (2020).Article 

    Google Scholar 
    Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R. & Bommarco, R. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Glob. Chang. Biol. 27, 71–83 (2021).CAS 
    Article 

    Google Scholar 
    Ding, M. et al. Variation in cropping intensity in Northern China from 1982 to 2012 based on GIMMS-NDVI data. Sustainability 8, 1123 (2016).Article 

    Google Scholar 
    Yu, Q., Xiang, M., Sun, Z. & Wu, W. The complexity of measuring cropland use intensity: an empirical study. Agr. Syst. 192, 103180 (2021).Article 

    Google Scholar 
    Moore, F. C. & Lobell, D. B. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).Article 

    Google Scholar 
    Agnolucci, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).Article 

    Google Scholar 
    Zhu, P. & Burney, J. Temperature‐driven harvest decisions amplify US winter wheat loss under climate warming. Glob. Change Biol. 27, 550–562 (2021).CAS 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, 4343 (2018).Article 

    Google Scholar 
    Duku, C., Zwart, S. J. & Hein, L. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE 13, 0192642 (2018).Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Yang, X. et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 208, 76–84 (2015).Article 

    Google Scholar 
    Burney, J., Woltering, L. & Burke, M. Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proc. Natl Acad. Sci. USA 107, 1848–1853 (2010).CAS 
    Article 

    Google Scholar 
    You, L. et al. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36, 770–782 (2011).Article 

    Google Scholar 
    Zheng, B., Chenu, K., Fernanda Dreccer, M. & Chapman, S. C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 18, 2899–2914 (2012).Article 

    Google Scholar 
    Flach, R., Fader, M., Folberth, C., Skalský, R. & Jantke, K. The effects of cropping intensity and cropland expansion of Brazilian soybean production on green water flows. Environ. Res. Commun. 2, 071001 (2020).Article 

    Google Scholar 
    Wood, S. A., Jina, A. S., Jain, M., Kristjanson, P. & DeFries, R. S. Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob. Environ. Change 25, 163–172 (2014).Article 

    Google Scholar 
    Paola, A. D. et al. The expansion of wheat thermal suitability of Russia in response to climate change. Land Use Policy 78, 70–77 (2018).Article 

    Google Scholar 
    Brunelle, T. & Makowski, D. Assessing whether the best land is cultivated first: a quantile analysis. PLoS ONE 15, e0242222 (2020).CAS 
    Article 

    Google Scholar 
    Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).CAS 
    Article 

    Google Scholar 
    Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).Article 

    Google Scholar 
    Petkeviciene, B. The effects of climate factors on sugar beet early sowing timing. Agron. Res. 7, 436–443 (2009).
    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).CAS 
    Article 

    Google Scholar 
    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (Cambridge Univ. Press, 2013).Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Article 

    Google Scholar 
    Asadieh, B. & Krakauer, N. Y. Global trends in extreme precipitation: climate models versus observations. Hydrol. Earth Syst. Sci. 19, 877–891 (2015).Article 

    Google Scholar 
    Zhang, Y., You, L., Lee, D. & Block, P. Integrating climate prediction and regionalization into an agro-economic model to guide agricultural planning. Clim. Change 158, 435–451 (2020).Article 

    Google Scholar 
    Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty‐first century. Earths Future 7, 123–135 (2019).Article 

    Google Scholar 
    Zhu, W., Jia, S., Devineni, N., Lv, A. & Lall, U. Evaluating China’s water security for food production: the role of rainfall and irrigation. Geophys. Res. Lett. 46, 11155–11166 (2019).Article 

    Google Scholar 
    FAOSTAT (Food and Agriculture Organization of the United Nations, 1997).Egli, L., Schröter, M., Scherber, C., Tscharntke, T. & Seppelt, R. Crop asynchrony stabilizes food production. Nature 588, E7–E12 (2020).CAS 
    Article 

    Google Scholar 
    Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1979 to Present (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 1 August 2020); https://doi.org/10.24381/cds.adbb2d47 (2018).Feng, P. et al. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Clim. Change 147, 555–569 (2018).Article 

    Google Scholar 
    Teluguntla, P. et al. in Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (ed. Thenkabail, P. S.) 849 (CRC Press, 2015).Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Change Biol. 19, 937–947 (2013).Article 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25, GB2006 (2011).New, M., New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article 

    Google Scholar 
    Willmott, C. J. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1996) (Center for Climatic Research, 2000); http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.htmlVan Beveren, I. Total factor productivity estimation: a practical review. J. Econ. Surv. 26, 98–128 (2012).Article 

    Google Scholar 
    Xu, J. et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2, 264–273 (2021).Article 

    Google Scholar 
    Friedl, M. & Gray, J. MCD12Q2 MODIS/Terra+ Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V006 (NASA EOSDIS, 2019).Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018).Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS 
    Article 

    Google Scholar 
    Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).Article 

    Google Scholar 
    Peng Zhu. Climate effects on caloric yield and cropping frequency. Zenodo https://doi.org/10.5281/zenodo.7038556 (2022). More

  • in

    Author Correction: Widespread extinction debts and colonization credits in United States breeding bird communities

    In the version of this article initially published, there were errors in equations and notations in the Methods “Model development” subsection which arose during manuscript preparation; the errors affect presentation of the study but not the analysis, results, or code provided with the article. Clarifications to text and equations follow.In Equation (1), “N” replaces “Normal”; in Equations (2), (3), (7) and in text directly below Equations (3), (5) and (7), “ys,i,z” now replaces “Δxs,t1, t2.” In the two paragraphs below Equation (2), “t2 = 2016” and “t1 = 2001” now replace “2016” and “2001” in five instances. Further, Equations (5)–(7) have been revised as follows:$$begin{array}{ll}fleft( {x_{s,t}} right) = {{{mathrm{exp}}}} & left( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} beta _{1,i} x_{s,i,t} + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i}^{K = 5} beta _{2,i,k}x_{s,i,t}x_{k,s,t}}right. \ & quad quad left. {+ mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = 1, k neq i}^{K = 5} beta _{3,i,k}x_{s,i,t}x_{k,s,t}} right)end{array} {rm{Revised}} {rm{Eq}}. (5)$$$$begin{array}{ll}fleft( {x_{s,t}} right) \ = expleft( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{j = 1}^{J = 2} beta _{0,i,j,}x_{i,s,t}^j + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i + 1}^{K = 6} beta _{1,i,k}x_{i,s,t}x_{k,s,t}} right) {mathrm{Original}} {rm{Eq}}. (5)end{array}$$$$y_{s,i,z} = left{ {begin{array}{*{20}{l}} {y_{s,i,1} = left| {Delta x_{s,i}} right|,} hfill & {y_{s,i,2} = 0,} hfill & {{{{mathrm{if}}}},Delta x_{s,i} < 0} hfill \ {y_{s,i,1} = 0,} hfill & {y_{s,i,2} = Delta x_{s,i}} hfill & {{{{mathrm{otherwise}}}}} hfill end{array}} right. {rm{Revised}} {rm{Eq}}. (6)$$$$x_{i,s,} = left{ {begin{array}{*{20}{l}} {x_{1,i,s} = left| {Delta x_{i,s}} right|,} hfill & {x_{2,i,s} = 0,} hfill & {if,Delta x_{i,s} < 0} hfill \ {x_{1,i,s} = 0,} hfill & {x_{2,i,s} = Delta x_{i,s},} hfill & {otherwise} hfill end{array}} right. {rm{Original}} {rm{Eq}}. (6)$$$$omega left( {y_{s,i,z};gamma } right) = {{{mathrm{exp}}}}left( {mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{z = 1}^{Z = 2} - gamma _{i,z} y_{s,i,z}} right) {rm{Revised}} {rm{Eq}}. (7)$$$$omega left( {Delta x_{s,t_1,t_2};gamma } right) = expleft( {mathop {sum }limits_{i = 1}^{I = 5} - gamma _{i,z}Delta x_{z,s,i}} right) {rm{Original}} {rm{Eq}}. (7)$$All changes have been made in the HTML and PDF versions of the article. More

  • in

    Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age

    Brett, C. E. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13, 241–262 (1998).Article 

    Google Scholar 
    Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Rillo, M. C., Woolley, S. & Hillebrand, H. Drivers of global pre‐industrial patterns of species turnover in planktonic foraminifera. Ecography 2022, e05892 (2021).Article 

    Google Scholar 
    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L. et al. Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis. Earth Syst. Sci. Data 12, 1053–1081 (2020).Article 

    Google Scholar 
    Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
    Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).PubMed 
    Article 

    Google Scholar 
    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Morey, A. E., Mix, A. C. & Pisias, N. G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quat. Sci. Rev. 24, 925–950 (2005).Article 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).Article 

    Google Scholar 
    Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20, 127–155 (1995).Article 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).Kucera, M. et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).Article 

    Google Scholar 
    Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).PubMed 
    Article 

    Google Scholar 
    Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2017105118 (2021).Fauth, J. E. et al. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147, 282–286 (1996).Article 

    Google Scholar 
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).CAS 
    Article 

    Google Scholar 
    Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).Liow, L. H., Van Valen, L. & Stenseth, N. C. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 
    Article 

    Google Scholar 
    Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim. Past 5, 33–51 (2009).Article 

    Google Scholar 
    Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).Article 

    Google Scholar 
    Ofstad, S. et al. Development, productivity, and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea. J. Geophys. Res. Biogeosci. 125, e2019JG005387 (2020).CAS 
    Article 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Glob. Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    Butzin, M., Köhler, P. & Lohmann, G. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophys. Res. Lett. 44, 8473–8480 (2017).CAS 
    Article 

    Google Scholar 
    Langner, M. & Mulitza, S. Technical Note: PaleoDataView—A software toolbox for the collection, homogenization and visualization of marine proxy data. Clim 15, 2067–2072 (2019).
    Google Scholar 
    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).Article 

    Google Scholar 
    Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horn, H. S. Measurement of ‘overlap’ in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological diversity: frontiers in measurement and assessment (eds Anne E. Magurran & Brian J. McGill) 66–84 (Oxford University Press, 2011).Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    Juggins, S. rioja: Analysis of quaternary science data. R package version 0.9-26 https://cran.r-project.org/package=rioja (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.4-13 https://CRAN.R-project.org/package=raster (2021).Garnier, S. viridis: Default color maps from ‘matplotlib’. R package version 0.6.1 https://CRAN.R-project.org/package=viridis (2021.)Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 81 (NOAA, 2019). More

  • in

    Early Mars habitability and global cooling by H2-based methanogens

    Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).ADS 
    Article 

    Google Scholar 
    Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).ADS 
    Article 

    Google Scholar 
    Fairén, A. G. et al. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).ADS 
    Article 

    Google Scholar 
    Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010).ADS 
    Article 

    Google Scholar 
    Rivera-Valentín, E. G., Chevrier, V. F., Soto, A. & Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4, 756–761 (2020).ADS 
    Article 

    Google Scholar 
    Stevens, A. H., Patel, M. R. & Lewis, S. R. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars. Icarus 250, 587–594 (2015).ADS 
    Article 

    Google Scholar 
    Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).ADS 
    Article 

    Google Scholar 
    Liu, J. et al. Anoxic chemical weathering under a reducing greenhouse on early Mars. Nat. Astron. 5, 503–509 (2021).ADS 
    Article 

    Google Scholar 
    Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).Article 

    Google Scholar 
    Martin, W. F. & Sousa, F. L. Early microbial evolution: the age of anaerobes. Cold Spring Harbor Perspect. Biol 8, a018127 (2016).Article 

    Google Scholar 
    Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).ADS 
    Article 

    Google Scholar 
    Affholder, A. et al. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).ADS 
    Article 

    Google Scholar 
    Turbet, M., Boulet, C. & Karman, T. Measurements and semi-empirical calculations of CO2 + CH4 and CO2 + H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. Icarus 346, 113762 (2020).Article 

    Google Scholar 
    Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Nat. Acad. Sci. USA 101, 4631–4636 (2004).ADS 
    Article 

    Google Scholar 
    Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).ADS 
    Article 

    Google Scholar 
    Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).ADS 
    Article 

    Google Scholar 
    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).Article 

    Google Scholar 
    Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).ADS 
    Article 

    Google Scholar 
    Yung, Y. L. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 1221–1242 (2018).ADS 
    Article 

    Google Scholar 
    Knutsen, E. W. et al. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357, 114266 (2021).Article 

    Google Scholar 
    Cockell, C. S. Trajectories of martian habitability. Astrobiology 14, 182–203 (2014).ADS 
    Article 

    Google Scholar 
    Westall, F. et al. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology 15, 998–1029 (2015).ADS 
    Article 

    Google Scholar 
    Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev. 209, 103296 (2020).Article 

    Google Scholar 
    Fastook, J. L. & Head, J. W. Glaciation in the late noachian icy highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).ADS 
    Article 

    Google Scholar 
    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).ADS 
    Article 

    Google Scholar 
    Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, Scale 1000,000 (US Geological Survey, 2014); https://doi.org/10.3133/sim3292Sun, V. Z. & Stack, K. M. Geologic Map of Jezero Crater and the Nili Planum Region, Mars: U.S. Geological Survey Scientific Investigations Map 3464, Scale 1000 (US Geological Survey, 2020); https://doi.org/10.3133/sim3464Ward, P. The Medea Hypothesis (Princeton Univ. Press, 2009).Chopra, A. & Lineweaver, C. H. The Case for a Gaian bottleneck: the biology of habitability. Astrobiology 16, 7–22 (2016).ADS 
    Article 

    Google Scholar 
    Arney, G. et al. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. Astrobiology 16, 873–899 (2016).Batalha, N. et al. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).ADS 
    Article 

    Google Scholar 
    Stüeken, E. E. et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).ADS 
    Article 

    Google Scholar 
    Cockell, C. S. et al. Minimum units of habitability and their abundance in the universe. Astrobiology 21, 481–489 (2021).ADS 
    Article 

    Google Scholar 
    Adams, D. et al. Nitrogen fixation at early Mars. Astrobiology 21, 968–980 (2021).ADS 
    Article 

    Google Scholar 
    Fergason, R. L., Hare, T. M. and Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex (US Geological Survey, 2018); http://bit.ly/HRSC_MOLA_Blend_v0Sauterey, B. MarsEcosys v.1.0. Zenodo https://doi.org/10.5281/zenodo.6963348 (2022). More

  • in

    Resolving malaria’s dry-season dilemma

    Seasonal fluctuations in animal population dynamics are among the most fundamental attributes of life on Earth. A long recognized but poorly understood example is the dramatic seasonal fluctuation in the abundance of malaria vectors in the semi-arid savannah and Sahel regions of Africa. In these regions, the vector mosquitoes largely disappear during a prolonged 3- to 8-month dry season, when lack of rain causes the aquatic larval habitats to disappear. As a result, malaria transmission plummets. When the rains return, the mosquito vectors rapidly reappear, leading to a resurgence of malaria transmission. How the vector populations are able to persist through the prolonged dry season and rapidly rebound with the onset of rains is referred to as the ‘dry-season malaria paradox’, and has remained an enduring mystery of malariology for nearly 100 years. Writing in Nature Ecology & Evolution, Faiman et al.1 help to resolve this mystery by using an innovative isotopic labelling strategy: they demonstrate that at least approximately 20% of the local population of the malaria vector Anopheles coluzzi in the West African Sahel survive the dry season locally by undergoing summer dormancy, known as aestivation. More