Effects of Rhizophagus intraradices on soybean yield and the composition of microbial communities in the rhizosphere soil of continuous cropping soybean
Liu, X. Q. et al. Geographic differentiation and phylogeographic relationships among world soybean populations. Crop J. 8(2), 260–272 (2020).Article
Google Scholar
Coleman, K. et al. The potential for soybean to diversify the production of plant-based protein in the UK. Sci. Total Environ. 767(3), 144903 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang, W. W., Feng, Z. Z., Wang, X. K., Liu, X. B. & Hu, E. Z. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China. Sci. Total Environ. 599–600, 710–720 (2017).ADS
PubMed
Article
Google Scholar
Strom, N., Hu, W. M., Haarith, D. & Chen, S. Y. Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture. Appl. Soil Ecol. 147, 103388 (2019).Article
Google Scholar
Fernandez-Gnecco, G. et al. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. Fems Microbiol. Ecol. 97(3), 007 (2021).Article
Google Scholar
Bai, L., Cui, J. Q., Jie, W. G. & Cai, B. Y. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol. Res. 180, 49–56 (2015).PubMed
Article
Google Scholar
Liu, J. J., Yu, Z. H., Yao, Q. & Hu, X. J. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 119, 407–416 (2017).Article
Google Scholar
Zeng, H. L. et al. The influence of Bt maize cultivation on communities of arbuscular mycorrhizal fungi revealed by MiSeq sequencing. Front. Microbiol. 9, 3275 (2019).PubMed
PubMed Central
Article
Google Scholar
Barbosa, M. V. et al. Aggregation of a ferruginous nodular gleysol in a pasture area in Cuba under the influence of Arbuscular mycorrhizal fungi associated with hybrid Urochloa. Soil Till. Res. 208(1), 104905 (2021).Article
Google Scholar
Zhang, F. G., Liu, M. H., Li, Y., Che, Y. & Xiao, Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655, 1150–1158 (2019).ADS
CAS
PubMed
Article
Google Scholar
Kokkoris, V. et al. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr. Biol. 31(7), 1531–1538 (2021).CAS
PubMed
Article
Google Scholar
Prates, J. P. et al. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 14(1), e0209093 (2019).Article
Google Scholar
Silvana, V. B., Longo, S., Marro, N. & Urcelay, C. The global invader Ligustrum lucidum accumulates beneficial arbuscular mycorrhizal fungi in a novel range. Plant Ecol. 222, 397–408 (2021).Article
Google Scholar
Chang, Q. et al. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 2018(241), 607 (2018).Article
Google Scholar
Bi, Y. et al. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures. Sci. Total Environ. 652, 398–405 (2019).ADS
PubMed
Article
Google Scholar
Ma, X. N., Luo, W. Q., Li, J. & Wu, F. Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L.) grain on Zn-spiked soils. Appl. Soil Ecol. 135, 91–97 (2019).Article
Google Scholar
Srivastava, S., Johny, L. & Adholeya, A. Review of patents for agricultural use of arbuscular mycorrhizal fungi. Mycorrhiza 31(2), 127–136 (2021).PubMed
Article
Google Scholar
Kabdwal, B. C., Sharma, R. & Tewari, R. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt. J. Biol. Pest Control 29, 1 (2019).Article
Google Scholar
Jie, W. G., Bai, L., Yu, W. J. & Cai, B. Y. Analysis of interspecific relationships between Funneliformis mosseae and Fusarium oxysporum in the continuous cropping of soybean rhizosphere soil during the branching period. Biocontrol Sci. Technol. 25(9), 1036–1051 (2015).Article
Google Scholar
Jie, W. G., Lin, J. X., Guo, N., Cai, B. Y. & Yan, X. F. Community composition of rhizosphere fungi as affected by Funneliformis mosseae in soybean continuous cropping soil during seedling period. Chil. J. Agric. Res. 79(3), 356–365 (2019).Article
Google Scholar
Jie, W. G., Lin, J. X., Guo, N., Cai, B. Y. & Yan, X. F. Effects of Funneliformis mosseae on mycorrhizal colonization, plant growth and the composition of bacterial community in the rhizosphere of continuous cropping soybean at seedling stage. Int. J. Agric. Biol. 22(5), 1173–1180 (2019).CAS
Google Scholar
Jie, W. G., Yao, Y. X., Guo, N., Zhang, Y. Z. & Qiao, W. Effects of Rhizophagus intraradices on plant growth and the composition of microbial communities in the roots of continuous cropping soybean at maturity. Sustainability 13, 6623 (2021).CAS
Article
Google Scholar
Yang, Y. R. et al. Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza 30(2), 357–371 (2020).CAS
PubMed
Article
Google Scholar
Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicula-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55(1), 158–161 (1970).Article
Google Scholar
Geng, Y. F., Qiu, Q., Mao, J. H. & Jing, Y. B. Effects of arbuscular mycorrhizal fungi inoculation and different inoculation amount on seedlings of Mesua ferrea. J. Fujian For. Sci. Technol. 43(03), 67–71 (2016).
Google Scholar
Schütz, L., Saharan, K., Mäder, P., Boller, T. & Mathimaran, N. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Appl. Soil Ecol. 169(248), 104156 (2022).Article
Google Scholar
Fehr, W. R. & Caviness, C. E. Stages of Soybean Development. Special Report 80. Ames Cooperative Extension Service, Agriculture and Home Economic Experiment Station 1–11 (Iowa State University Press, 1977).
Google Scholar
Zhou, N., Liu, P., Wang, Z. Y. & Xu, G. D. The effects of rapeseed root exudates on the forms of aluminum in aluminum stressed rhizosphere soil. Crop Prot. 30(6), 631–636 (2011).CAS
Article
Google Scholar
Dorn-In, S., Bassitta, R., Schwaiger, K., Bauer, J. & Holzel, C. S. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA. J. Microbiol. Methods 113, 50–56 (2015).CAS
PubMed
Article
Google Scholar
Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9(2), e90234 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Edgar, R. C., Haas, B. J., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19), 2460–2461 (2010).CAS
PubMed
Article
Google Scholar
Chen, H. B. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35 (2011).Article
Google Scholar
Spagnoletti, F. N., Balestrasse, K., Lavado, R. S. & Giacometti, R. Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol. Environ. Safe 133(11), 47–56 (2016).CAS
Article
Google Scholar
Song, Y. Y., Chen, D. M., Lu, K., Sun, Z. X. & Zeng, R. S. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6, 786 (2015).PubMed
PubMed Central
Article
Google Scholar
Ramadan, A., Muroi, A. & Arimura, G. Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna separata. J. Plant Interact. 6(2–3), 155–158 (2011).CAS
Article
Google Scholar
Spagnoletti, F. N., Leiva, M., Chiocchio, V. & Lavado, R. S. Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. J. Plant Nutr. Soil Sci. 181, 855–860 (2018).CAS
Article
Google Scholar
Wehner, J., Antunes, P. M., Powell, J. R., Mazukatow, J. & Rillig, M. C. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia 53(3), 197–201 (2010).Article
Google Scholar
Al-Askar, A. A. & Rashad, Y. M. Arbuscular mycorrhizal fungi: A biocontrol agent against common. Plant Pathol. 9, 31–38 (2010).Article
Google Scholar
Marschner, P. M., Crowley, D. E. & Lieberei, R. L. Arbuscular mycorrhizal infection changes the bacterial 16s rDNA community composition in the rhizosphere of maize. Mycorrhiza 11(6), 297–302 (2001).CAS
PubMed
Article
Google Scholar
Turrini, A., Avio, L., Giovannetti, M. & Agnolucci, M. Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: The challenge of translational research. Front. Plant Sci. 9, 1407 (2018).PubMed
PubMed Central
Article
Google Scholar
Giovannetti, M., Avio, L. & Sbrana, C. Fungal spore germination and pre-symbiotic mycelial growth-physiological and genetic aspects. In Arbuscular Mycorrhizas Physiology and Function (eds Koltai, H. & Kapulnik, Y.) 3–32 (Springer, 2010).Chapter
Google Scholar
Linderman, R. G. Mycorrhizal interactions with the rhizosphere microflora-the mycorrhizosphere effect. Phytopathology 78(3), 366–371 (1988).
Google Scholar
Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 1, 541–556 (2009).Article
Google Scholar
Shoresh, M., Harman, G. E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48(1), 21–43 (2010).CAS
PubMed
Article
Google Scholar
Wang, E. et al. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22(23), 2242–2246 (2012).CAS
PubMed
Article
Google Scholar
Zamioudis, C. & Pieterse, C. M. J. Modulation of host immunity by beneficial microbes. Mol. Plant Microbe 25(2), 139–150 (2012).CAS
Article
Google Scholar
Haichar, F. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2(12), 1221–1230 (2008).CAS
PubMed
Article
Google Scholar
Linderman, R. G. Vesicular arbuscular mycorrhizae and soil microbial interactions, in Mycorrhizae in sustainable agriculture. ASA Spec. Publ. 54, 45–70 (1992).
Google Scholar
Harrier Lucy, A. & Watson, C. A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci. 60(2), 149–157 (2004).CAS
PubMed
Article
Google Scholar
Smith, G. S. The role of phosphorous nutrition in interactions of vesicular arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology 78(3), 371–374 (1988).CAS
Google Scholar
Schwob, I., Ducher, M. & Coudret, A. Effects of climatic factors on native arbuscular mycorrhizae and Meloidogyne exigua in a Brazilian rubber tree (Hevea brasilensis) plantation. Plant Pathol. 48(1), 19–25 (2010).Article
Google Scholar More