More stories

  • in

    Chemolithoautotroph distributions across the subsurface of a convergent margin

    Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA. 2015;112:E3997–4006.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vitale Brovarone A, Sverjensky DA, Piccoli F, Ressico F, Giovannelli D, Daniel I. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat Commun. 2020;11:1–1.Article 

    Google Scholar 
    Harris RN, Wang K. Thermal models of the middle America trench at the Nicoya Peninsula, Costa Rica. Geophys Res Lett. 2002;29:6–1.Article 

    Google Scholar 
    Plümper O, King HE, Geisler T, Liu Y, Pabst S, Savov IP, et al. Subduction zone forearc serpentinites as incubators for deep microbial life. Proc Natl Acad Sci USA. 2017;114:4324–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee H, Fischer TP, de Moor JM, Sharp ZD, Takahata N, Sano Y. Nitrogen recycling at the Costa Rican subduction zone: the role of incoming plate structure. Sci Rep. 2017;7:1–10.
    Google Scholar 
    Stern RJ. Subduction zones. Rev Geophys. 2002;40:3–38.Article 

    Google Scholar 
    Fullerton KM, Schrenk MO, Yücel M, Manini E, Basili M, Rogers TJ, et al. Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nat Geosci. 2021;14:301–6.CAS 
    Article 

    Google Scholar 
    Barry PH, de Moor JM, Giovannelli D, Schrenk M, Hummer DR, Lopez T, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature. 2019;568:487–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore EK, Jelen BI, Giovannelli D, Raanan H, Falkowski PG. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat Geosci. 2017;10:629–36.CAS 
    Article 

    Google Scholar 
    Barnes JD, Cullen J, Barker S, Agostini S, Penniston-Dorland S, Lassiter JC, et al. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere. 2019;15:642–58.Article 

    Google Scholar 
    Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys. 2004;42:1–31.Article 

    Google Scholar 
    Rüpke LH, Morgan JP, Hort M, Connolly JA. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett. 2004;223:17–34.Article 

    Google Scholar 
    Carr MJ, Feigenson MD, Bennett EA. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Miner Pet. 1990;105:369–80.CAS 
    Article 

    Google Scholar 
    Gazel E, Carr MJ, Hoernle K, Feigenson MD, Szymanski D, Hauff F, et al. Galapagos‐OIB signature in southern Central America: mantle refertilization by arc–hot spot interaction. Geochem Geophys Geosyst. 2009;10:1–32.Article 

    Google Scholar 
    Trembath-Reichert E, Butterfield DA, Huber JA. Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME J. 2019;13:2264–79. https://doi.org/10.1038/s41396-019-0431-y.Power JF, Carere CR, Lee CK, Wakerley GL, Evans DW, Button M, et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun. 2018;9:1–2.CAS 
    Article 

    Google Scholar 
    Acocella V, Spinks K, Cole J, Nicol A. Oblique back arc rifting of Taupo Volcanic zone. NZ Tecton. 2003;22:1–18.
    Google Scholar 
    Curtis AC, Wheat CG, Fryer P, Moyer CL. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic archaea. Geomicrobiol J. 2013;30:430–41.Article 

    Google Scholar 
    Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, et al. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol. 2013;4:1–21.Article 

    Google Scholar 
    Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The intersection of geology, geochemistry, and microbiology in continental hydrothermal systems. Astrobiology. 2019;19:1505–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB, YNP Metagenome Project Steering Committee and Working Group Members. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol. 2013;4:1–15.Article 

    Google Scholar 
    Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, et al. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PloS One. 2013;8:1–15.
    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TB, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol. 2017;19:459–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CM, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;3:328–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He C, Keren R, Whittaker M, Farag IF, Doudna J, Cate JH, et al. Genome-resoled metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 2021;6:354–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grettenberger CL, Hamilton TL. Metagenome-assembled genomes of novel taxa from an acid mine drainage environment. Appl Environ Microbiol. 2021;87:e0077221. https://doi.org/10.1101/2020.07.02.185728.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP–a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:1–3.Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37. https://doi.org/10.3389/fmicb.2020.00037.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally distributed bacterial phototroph. ISME J. 2018;12:1861–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.CAS 

    Google Scholar 
    Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol. 2010;8:447–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Youssef NH, Farag IF, Hahn CR, Jarett J, Becraft E, Eloe-Fadrosh E, et al. Genomic characterization of candidate division LCP-89 reveals an atypical cell wall structure, microcompartment production, and dual respiratory and fermentative capacities. Appl Environ Microbiol. 2019;85:1–19.Article 

    Google Scholar 
    Nigro LM, King GM. Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1, 5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments. FEMS Microbiol Ecol. 2007;60:113–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    Aminuddin M, Nicholas DJ. Electron transfer during sulphide and sulphite oxidation in Thiobacillus denitrificans. Microbiology. 1974;82:115–23.
    Google Scholar 
    Giovannelli D, Sievert SM, Hügler M, Markert S, Becher D, Schweder T, et al. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. eLife. 2017;6:1–31.Article 

    Google Scholar 
    Nakagawa S, Shataih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach AL. Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum. Int J Syst Evol Microbiol. 2005;55:2263–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Leclerque A, Kleespies RGA. Rickettsiella bacterium from the hard tick, Ixodes woodi: molecular taxonomy combining multilocus sequence typing (MLST) with significance testing. PLoS One. 2012;7:e38062. https://doi.org/10.1371/journal.pone.0038062.Quatrini R, Johnson DB. Acidithiobacillus ferrooxidans. Trends Microbiol. 2019;27:282–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia‐oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen CY, Chen PC, Weng FC, Shaw GT, Wang D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS One. 2017;12:e0181427. https://doi.org/10.1371/journal.pone.0181427.Garcia R, Müller R. The family Myxococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin: Springer; 2014. p. 191–212.Garcia R, Müller R. Simulacricoccus ruber gen. nov., sp. nov., a microaerotolerant, non-fruiting, myxospore-forming soil myxobacterium and emended description of the family Myxococcaceae. Int J Syst Evol Microbiol. 2018;68:3101–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Iino T. The family Ignavibacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: other major lineages of bacteria and the archaea. New York, NY: Springer Science + Business Media; 2014. p. 701–3.Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE. Enumeration and characterization of iron (III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium (VI). Appl Environ Microbiol. 2003;69:7467–79.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol. 2020;22:3188–204.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen YJ, Leung PM, Wood JL, Bay SK, Hugenholtz P, Kessler AJ, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, et al. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J. 2021;15:3159–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim M, Wilpiszeski RL, Wells M, Wymore AM, Gionfriddo CM, Brooks SC, et al. Metagenome-assembled genome sequences of novel prokaryotic species from the mercury-contaminated East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Microbiol Resour Announc. 2021;10:e00153–21. https://doi.org/10.1128/MRA.00153-21.Santos‐Júnior CD, Logares R, Henrique‐Silva F. Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Mol Ecol. 2022;31:206–19.PubMed 
    Article 

    Google Scholar 
    Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum I’ with natural and biotechnological relevance. Microbes Environ. 2009;24:205–16.PubMed 
    Article 

    Google Scholar 
    Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL, Schrenk MO, et al. Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. Front Microbiol. 2018;9:840. https://doi.org/10.3389/fmicb.2018.00840.Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26:101–12.PubMed 
    Article 

    Google Scholar 
    Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol. 2008;58:1398–403.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lau MC, Kieft TL, Kuloyo O, Linage-Alvarez B, Van Heerden E, Lindsay MR, et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc Natl Acad Sci USA. 2016;113:E7927–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Momper L, Jungbluth SP, Lee MD, Amend JP. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 2017;11:2319–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worzewski T, Jegen M, Kopp H, Brasse H, Taylor Castillo W. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci. 2011;4:108–11.CAS 
    Article 

    Google Scholar 
    Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E. Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology. 2004;32:201–4.CAS 
    Article 

    Google Scholar 
    Simpson DR. Aluminum phosphate variants of feldspar. Am Miner. 1977;62:351–5.CAS 

    Google Scholar 
    London DA, Cerny P, Loomis J, Pan JJ. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Can Miner. 1990;28:771–86.CAS 

    Google Scholar 
    Petrillo C, Castaldi S, Lanzilli M, Selci M, Cordone A, Giovannelli D, et al. Genomic and physiological characterization of Bacilli isolated from salt-pans with plant growth promoting features. Front Microbiol. 2021;12:715678. https://doi.org/10.3389/fmicb.2021.715678.Ghiorse WC, Wilson JT. Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol. 1988;33:107–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Barker WW, Welch SA, Chu S, Banfield JF. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner. 1998;83:1551–63.CAS 
    Article 

    Google Scholar 
    Bennett PC, Rogers JR, Choi WJ, Hiebert FK. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J. 2001;18:3–19.CAS 
    Article 

    Google Scholar 
    Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci. 2011;3:261–89.PubMed 
    Article 

    Google Scholar 
    Markert S, Arndt C, Felbeck H, Becher D, Sievert SM, Hügler M, et al. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science. 2007;315:247–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot. 2012;63:2325–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stevens TO, McKinley JP. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science. 1995;270:450–5.CAS 
    Article 

    Google Scholar 
    Barker WW, Welch SA, Banfield JF. Biogeochemical weathering of silicate minerals. Rev Miner Geochem. 1997;35:391–428.CAS 

    Google Scholar 
    Frank YA, Kadnikov VV, Lukina AP, Banks D, Beletsky AV, Mardanov AV, et al. Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface. Front Microbiol. 2016;7:2000. https://doi.org/10.3389/fmicb.2016.02000.Woycheese KM, Meyer-Dombard DA, Cardace D, Argayosa AM, Arcilla CA. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol. 2013;79:3906–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, et al. Desulfotomaculum and Methanobacterium spp. dominate a 4-to 5-kilometer-deep fault. Appl Environ Microbiol. 2005;71:8773–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwarzenbach EM, Gill BC, Gazel E, Madrigal P. Sulfur and carbon geochemistry of the Santa Elena peridotites: comparing oceanic and continental processes during peridotite alteration. Lithos. 2016;252:92–108.Article 

    Google Scholar 
    Sánchez‐Murillo R, Gazel E, Schwarzenbach EM, Crespo‐Medina M, Schrenk MO, Boll J, et al. Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem Geophys Geosyst. 2014;15:1783–800.Article 

    Google Scholar 
    Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO. Methane dynamics in a tropical serpentinizing environment: the Santa Elena Ophiolite, Costa Rica. Front Microbiol. 2017;8:916. https://doi.org/10.3389/fmicb.2017.00916.DeShon HR, Schwartz SY. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett. 2004;31. https://doi.org/10.1029/2004GL021179.Delmelle P, Stix J. Volcanic gases. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J, editors. Encyclopedia of volcanoes. New York, NY: Elsevier; 2000. p 803–15.Kharaka YK, Mariner RH. Geothermal systems. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J, editors. Encyclopedia of volcanoes. New York, NY: Elsevier; 2000. p. 817–34.Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot. 2008;59:1525–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    West-Roberts JA, Carnevali PB, Scholmerich MC, Al-Shayeb B, Thomas A, Sharrar AM, et al. The Chloroflexi supergroup is metabolically diverse and representatives have novel genes for non-photosynthesis based CO2 fixation. bioRxiv [Preprint]. 2021. Available from: https://doi.org/10.1101/2020.05.14.094862.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3:1–12.Article 

    Google Scholar 
    Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun. 2019;10:1–3.Article 

    Google Scholar  More

  • in

    Iran and India: work together to save cheetahs

    The Asiatic cheetah (Acinonyx jubatus venaticus) once roamed throughout the Middle East and central India. Today there remain only an estimated 20 free-ranging individuals in central Iran and 5 in captivity. International economic sanctions against Iran have had devastating effects on its cheetah conservation and management (see go.nature.com/3suohzb; in Farsi). To help overcome these effects, we suggest that Iran work with the Indian government, which is conducting a rewilding programme for cheetahs.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Trout fishers adapting to climate warming

    Cline and colleagues analysed spatiotemporal datasets covering 5000 km of popular trout rivers from 1983 to 2017, finding that fishing pressure was four times higher in cold-water sections of rivers than adjacent cool-water sections of rivers, with fisher spending in cold-water sections generating US$500,000 km−1 year−1 and cool-water sections generating US$60,000 km−1 year−1. Overall, 17% and 35% of the current cold-water habitats are projected to be warmer than 18 °C (the threshold for trout thermal extremes) by 2040 and 2080, respectively, with some river sections possibly experiencing habitat losses in excess of 80% by 2080. The combined effects of cold-water habitat loss and increased frequency and severity of drought on fishing pressure could result in 64% declines in fishing river sections by 2040 and 76% declines by 2080. The cumulative impacts of these environmental changes in fishing spending across these rivers could put a total of US$103 million year−1 and US$192 million year−1 at risk by 2040 and 2080, respectively. More

  • in

    Distribution of soil macrofauna across different habitats in the Eastern European Alps

    Wurst, S., Sonnemann, I. & Zaller, J. G. Soil Macro-Invertebrates: Their Impact on Plants and Associated Aboveground Communities in Temperate Regions. in Aboveground-Belowground Community Ecology. Ecological Studies 234 (eds. Ohgushi, T., Wurst, S. & Johnson, S. N.) 175–200 (Springer International Publishing, 2018).Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111, 5266–5270 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).Article 

    Google Scholar 
    Potapov, A., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37–59 (2019).Article 

    Google Scholar 
    Voroney, R. P. & Heck, R. J. The Soil Habitat. Soil Microbiology, Ecology and Biochemistry (Elsevier Inc., 2015).Wardle, D. A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870–886 (2006).Article 

    Google Scholar 
    De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 376 (2021).Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Geitner, C. et al. Soil and Land Use in the Alps—Challenges and Examples of Soil-Survey and Soil-Data Use to Support Sustainable Development. In Soil Mapping and Process Modelling for Sustainable Land Use Management 221–292 (Elsevier, 2017).FAO. Understanding Mountain Soils: A contribution from mountain areas to the International Year of Soils 2015. (2015).Praeg, N. et al. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 150, 107951 (2020).CAS 
    Article 

    Google Scholar 
    Somme, L. Adaptations of terrestrial arthropods to the alpine environment. Biol. Rev. 64, 367–407 (1989).Article 

    Google Scholar 
    Meyer, E. & Thaler, K. Animal Diversity at High Altitudes in the Austrian Central Alps. In Arctic and Alpine Biodiversity (eds. Chapin, F. S. & Körner, C.) (Springer Berlin Heidelberg, 1995).Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1–13 (2020).Article 

    Google Scholar 
    Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–30 (1963).
    Google Scholar 
    Tasser, E., Ruffini, F. V. & Tappeiner, U. An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. Landsc. Ecol. 24, 611–628 (2009).Article 

    Google Scholar 
    European Environment Agency, (EAA). European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (2018).IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106 (2015).Christian, E. & Zicsi, A. A synoptic key to the earthworms of Austria (Oligochaeta: Lumbricidae). Die Bodenkultur 50, 121–131 (1999).Czusdi, C. & Zicsi, A. Earthworms of Hungary (Annelida, Oligochaeta, Lumbricidae). (Hungarian Natural History Museum, 2003).Schaefer, M. Brohmer – Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt. (Quelle & Meyer Verlag, 2009).Klausnitzer, B. Exkursionsfauna von Deutschland. (Springer Berlin Heidelberg, 2011).Ellis, D. Taxonomic sufficiency in pollution assessment. Mar. Pollut. Bull. 16, 459 (1985).Article 

    Google Scholar 
    Caruso, T. & Migliorini, M. Micro-arthropod communities under human disturbance: is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses. Acta Oecol. 30, 46–53 (2006).ADS 
    Article 

    Google Scholar 
    Steinwandter, M., Schlick-Steiner, B. C., Seeber, G. U. H., Steiner, F. M. & Seeber, J. Effects of Alpine land-use changes: Soil macrofauna community revisited. Ecol. Evol. 7, 5389–5399 (2017).Article 

    Google Scholar 
    de Oliveira, S. S. et al. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic. 111, 105994 (2020).Article 

    Google Scholar 
    Lavelle, P. et al. Soil macroinvertebrate communities: A world‐wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).Article 

    Google Scholar 
    Pik, A. J., Oliver, I. & Beattie, A. J. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Austral. Ecol. 24, 555–562 (1999).Article 

    Google Scholar 
    Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 105, 323–333 (2005).Article 

    Google Scholar 
    Ruiz, N. et al. IBQS: A synthetic index of soil quality based on soil macro-invertebrate communities. Soil Biol. Biochem. 43, 2032–2045 (2011).
    Google Scholar 
    Seeber, J. et al. A 30-years collection of soil macro-invertebrate abundance data from the European Alps. PANGAEA https://doi.org/10.1594/PANGAEA.944405 (2022).de Jong, Y. et al. Fauna Europaea – All European animal species on the web. Biodivers. Data J. 2 (2014).Shannon, C. E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    Article 

    Google Scholar 
    Steinberger, K.-H. & Meyer, E. The Spider Fauna of the Nature Reserve Rheindelta (Vorarlberg, Western Austria) (Arachnida: Araneae). Ber. nat.-med. Verein Innsbruck 82, 195–215 (1995).
    Google Scholar 
    Kopeszki, H. & Meyer, E. Species Composition and Abundance of Collembola in Forest Soils in the Provinces of Bozen and Trient (Italy). Ber. nat.-med. Verein Innsbruck 83, 221–237 (1996).
    Google Scholar 
    Geitner, C., Mätzler, A., Bou-Vinals, A., Meyer, E. & Tusch, M. Soil characteristics and colonization by earthworms (Lumbricidae) on pastures and hay meadows in the Brixenbach Valley (Kitzbühel Alps, Tyrol). Die Bodenkultur 65, 39–51 (2014).
    Google Scholar 
    Meyer, E. & Steinberger, K.-H. Über die Bodenfauna in Wäldern Vorarlbergs (Österreich) Bestand und Auswirkungen von Gesteinsmehlapplikationen. Verhandlungen der Gesellschaft für Ökologie 23, 149–164 (1994).
    Google Scholar 
    Peham, T. & Meyer, E. Kommentierte Artenlisten ausgewählter Bodentiergruppen aus der Erhebung des SoilDiv-Projektes in Südtirol. Gredleriana 14, 227–262 (2014).
    Google Scholar 
    Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).Article 

    Google Scholar 
    Steinwandter, M. et al. Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/Caldaro (South Tyrol, Italy). Gredleriana 18, 17–26 (2018).
    Google Scholar 
    Steinwandter, M. et al. Raw data from: Does green manuring positively affect the soil macro-invertebrates in vineyards? A case study from Kaltern/ Caldaro (South Tyrol, Italy). PANGAEA https://doi.org/10.1594/PANGAEA.900632 (2019).Damisch, K., Steinwandter, M., Tappeiner, U. & Seeber, J. Soil Macroinvertebrate Distribution along a Subalpine Land Use Transect. Mt. Res. Dev. 40, R1–R10 (2020).Article 

    Google Scholar 
    Damisch, K., Steinwandter, M., Tappeiner, U. & Seeber, J. Abundance data from soil macro-invertebrates along a subalpine land-use transect. PANGAEA https://doi.org/10.1594/PANGAEA.918958 (2020).Schneider, E., Steinwandter, M. & Seeber, J. A comparison of Alpine soil macro-invertebrate communities from European larch and Swiss pine forests in the LTSER area “Val Mazia/Matschertal”, South Tyrol. Gredleriana 19, 217–228 (2019).
    Google Scholar 
    Schneider, E., Steinwandter, M. & Seeber, J. Raw data from: A comparison of Alpine soil macro-invertebrate communities from European larch and Swiss pine forests in the LTSER area “Val Mazia/Matschertal”, South Tyrol. PANGAEA https://doi.org/10.1594/PANGAEA.910666 (2020).Seeber, J. et al. Soil invertebrate abundance, diversity, and community composition across steep high elevation snowmelt gradients in the European Alps. Arct. Antarct. Alp. Res. 53, 288–299 (2021).Article 

    Google Scholar 
    Seeber, J. et al. Abundance data from soil macro- and mesofauna of alpine snowbeds in the European Alps (summer 2017). PANGAEA https://doi.org/10.1594/PANGAEA.935737 (2021).Guariento, E. et al. Management intensification of hay meadows and fruit orchards alters soil macro-invertebrate communities differently. Agronomy 10, 767 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Invasive plant species carry legacy of colonialism

    Similar non-native and invasive flora, such as the fever tree (pictured) are found in regions previously occupied by the same European empire.Credit: Alamy

    In 1860, a British expedition raided the highland forests of South America, looking for a hot commodity: Cinchona seeds. The bark of these ‘fever’ trees produces the anti-malarial compound quinine, and the British Empire sought a stable source of the drug for its soldiers and civil service in India. After cultivation in the United Kingdom, young Cinchona trees were planted across southern India and what is now Sri Lanka.The British quinine scheme failed — instead, a species introduced to Java, now part of Indonesia, by the Dutch Empire later dominated the global market — but Cinchona trees are still common in parts of India.Such botanical legacies of imperial rule are common, finds a study published on 17 October in Nature Ecology & Evolution1. Regions that were once occupied by the same European colonial power — such as India and Sri Lanka — tend to have similar species of non-native and invasive plants. The longer the regions were occupied, the more their populations of invasive species resemble each other, the research found.Alien floraThe link between European colonialism and invasive species is intuitive, and has been noted by other researchers, says Bernd Lenzner, a macro-ecologist at the University of Vienna who led the study. To test the association, his team turned to the Global Naturalized Alien Flora database, which maps the distribution of nearly 14,000 invasive plant species.
    The imperial roots of climate science
    Across more than 1,100 regions, including 404 islands, the researchers found that regions once occupied by the British Empire had more similarities in their invasive flora than did ‘artificial’ empires that the team assembled from random regions. This was also the case for regions once part of the Dutch Empire (former Spanish and Portuguese colonies had alien-plant compositions similar to those of the artificial empires).Climate and geography play an important part in explaining the overlap in the diversity of invasive species, modelling by Lenzner’s team found, but so does the length of time regions were occupied by an imperial power. Regions that were central to trade, such as southern India for the British Empire and Indonesia for the Dutch Empire, formed clusters with considerable overlap in invasive-plant composition.The analysis did not look at when individual plant species were introduced or why. But anecdotally, many of the plants that were commonly taken to former empires were once of economic value and their populations were probably established on purpose, says Lenzner.Global trade impactsThe study’s conclusions might be “super obvious”, but they have important implications for conservation, says Nussaïbah Raja, a palaeontologist at Friedrich-Alexander University of Erlangen–Nürnberg in Erlangen, Germany. “We should be taking this history into consideration when we think about management of species.” Appreciating the history of introduced plants — as well as their place in today’s ecosystems — could help conservationists to handle future changes in biodiversity, such as those driven by climate change, Raja adds.Global trade is beginning to overwrite the colonial legacy of introduced plants. For example, the analysis showed similarities between invasive plant populations in Fujian, China, and some parts of Australia. Although both places were once connected by the British Empire, more recent global trade might also be partly responsible for the overlap.“We are still seeing these imprints of the colonial-empire legacies from centuries ago,” Lenzner says. “So what we’re doing and the species we’re redistributing today will be visible far into the future.” More

  • in

    Enhanced dust emission following large wildfires due to vegetation disturbance

    Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).Article 

    Google Scholar 
    Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022).Article 

    Google Scholar 
    Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).Article 

    Google Scholar 
    Schlosser, J. S. et al. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017).Article 

    Google Scholar 
    Wagner, R., Schepanski, K. & Klose, M. The dust emission potential of agricultural-like fires—theoretical estimates from two conceptually different dust emission parameterizations. J. Geophys. Res. Atmos. 126, e2020JD034355 (2017).
    Google Scholar 
    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).Article 

    Google Scholar 
    Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid. Environ. 65, 253–275 (2006).Article 

    Google Scholar 
    Raupach, M. R. Drag and drag partition on rough surfaces. Boundary Layer Meteorol. 60, 375–395 (1992).Article 

    Google Scholar 
    Webb, N. P. et al. Vegetation canopy gap size and height: critical indicators for wind erosion monitoring and management. Rangel. Ecol. Manag. 76, 78–83 (2021).Article 

    Google Scholar 
    Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).Article 

    Google Scholar 
    Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, RG3001 (2011).Article 

    Google Scholar 
    Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux. Aeolian Res. 10, 25–36 (2013).Article 

    Google Scholar 
    Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes. Elementa 5, 2 (2017).
    Google Scholar 
    Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment transport in fire-affected agricultural landscapes: a field study. Aeolian Res. 39, 13–22 (2019).Article 

    Google Scholar 
    Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future 8, e2020EF001671 (2020).Article 

    Google Scholar 
    Nogrady, B. & Nicky, B. The climate link to Australia’s fires. Nature 577, 610–612 (2020).Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations. Atmos. Chem. Phys. 21, 8511–8530 (2021).Article 

    Google Scholar 
    Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012).Article 

    Google Scholar 
    Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophys. Res. Lett. 45, 6690–6701 (2018).Article 

    Google Scholar 
    Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: a meta-analysis. Glob. Ecol. Conserv. 24, e01380 (2020).Article 

    Google Scholar 
    Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458–463 (2022).Article 

    Google Scholar 
    Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).Ginoux, P. Atmospheric chemistry: warming or cooling dust? Nat. Geosci. 10, 246–247 (2017).Article 

    Google Scholar 
    DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl Acad. Sci. USA 107, 11217–11222 (2010).Article 

    Google Scholar 
    Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud–aerosol lidar and infrared Pathfinder satellite observations. Geophys. Res. Lett. 42, 1984–1991 (2015).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).Article 

    Google Scholar 
    Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).Article 

    Google Scholar 
    Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).Article 

    Google Scholar 
    Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1–17 (2021).Article 

    Google Scholar 
    Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat. Commun. 13, 1250 (2022).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys. 18, 12491–12510 (2018).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018).Article 

    Google Scholar 
    Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).Article 

    Google Scholar 
    NCAR Command Language v.6.6.2 (NCAR, 2019); https://doi.org/10.5065/D6WD3XH5Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).Article 

    Google Scholar 
    Diner, D. J. et al. Multi-angle imaging spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36, 1072–1087 (1998).Article 

    Google Scholar 
    Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020).Article 

    Google Scholar 
    Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty estimates for MODIS collection 6 ‘Deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872 (2013).Article 

    Google Scholar 
    Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res. Atmos. 118, 9296–9315 (2013).Article 

    Google Scholar 
    Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) Deep Blue level 2 data. J. Geophys. Res. 115, D05204 (2010).Article 

    Google Scholar 
    Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999).Article 

    Google Scholar 
    Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J. Geophys. Res. 110, 1–16 (2005).Article 

    Google Scholar 
    Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 113, 1511–1528 (2009).Article 

    Google Scholar 
    Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016).Article 

    Google Scholar 
    Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to climate change. Sci. Rep. 7, 5553 (2017).Article 

    Google Scholar 
    Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal prediction potential for springtime dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019).Article 

    Google Scholar 
    Garay, M. J. et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020).Article 

    Google Scholar 
    Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005).Article 

    Google Scholar 
    Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 13253–13264 (2013).Article 

    Google Scholar 
    Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. Atmos. 121, 289–305 (2016).Article 

    Google Scholar 
    Yu, Y. et al. Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon rainforest. Geophys. Res. Lett. 47, e2020GL088020 (2020).Article 

    Google Scholar 
    Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 12, 169–209 (2019).Article 

    Google Scholar 
    O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 (2003).
    Google Scholar 
    Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).Article 

    Google Scholar 
    Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B 61, 131–143 (2009).Article 

    Google Scholar 
    Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (Collection 6) (Univ. Arizona, 2015).Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. Atmos. 103, 31879–31891 (1998).Article 

    Google Scholar 
    Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).Article 

    Google Scholar 
    Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 6 (USGS, 2018).Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI Soil Moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).Article 

    Google Scholar 
    Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020).Article 

    Google Scholar 
    Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).Article 

    Google Scholar 
    Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021).Article 

    Google Scholar 
    Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack District, Orissa. Int. J. Geol. Earth Environ. Sci. 2, 2277–208170 (2012).
    Google Scholar 
    Yu, Y. & Ginoux, P. Dust emission following large wildfires. figshare. 2022. https://doi.org/10.6084/m9.figshare.20648055.v2 More

  • in

    Strength-mass scaling law governs mass distribution inside honey bee swarms

    Our experimental data reveals a scaling law between the mass of a layer along the vertical coordinate, M(z), and the weight that it supports, W(z), namely: (W(z) sim M(z)^a) with (a approx 1.5). To better understand the physical mechanism that yields this scaling law, we derive the force balance equation of a layer of the swarm and solve for W(z). We then equate the analytical expression for W(z) with the experimentally determined scaling law, (W(z) sim M(z)^a), to connect the swarm mass distribution to the exponent a and formulate the expressions for M(z) and W(z) in terms of a. We then consider a dimensional analysis of the strength of each layer of the swarm, S, or the maximum weight that it can support before the grip of the bees on one another breaks. As will be described in detail below, we find that (S sim M^{1.5}), which is close to the experimentally determined (a = 1.53). Deviation from this value increases the fraction of maximum strength exerted by different parts of the swarm.Force balance model of the weight distribution in the swarmWe assume that the swarm is at quasi-equilibrium (the shape does not change although individual bees may move), that all of the bees in each layer contribute equally to supporting the weight of the bees underneath that layer, that the layer thickness is very small, and that the swarm is radially symmetrical about the z-axis. We use a cylindrical coordinate system with a vertical coordinate z, as shown in Fig. 1e, and we consider layers of the swarm along the z-axis of thickness dz. Variables labeled with a tilde, as in (tilde{W}(z)), represent analytically derived expressions; variables without a tilde, as in W(z), represent values determined with power law fits to experimental data.We begin our analysis by applying the force balance principle to each layer of a swarm. As shown by the free body diagram in Fig. 1f, the force with which each layer of bees has to grasp the layer above it is equal to the weight of that layer and all of the layers underneath it: (tilde{F} = tilde{W}(z)). We express (tilde{W}(z)) using the force balance equation (a continuous version of the discrete definition in Eq. (5).):$$begin{aligned} tilde{W}(z) = g int _z^L tilde{M}(z) dz, end{aligned}$$
    (8)
    where the mass of bees per layer is (tilde{M}(z)), the swarm length is L, and g is the gravitational constant. Inspired by our experimental observation that the mass of the layers near the base is highest and the mass of the layers at the tip of the swarm is lowest in Fig. 3a, we model (tilde{M}(z)) as a monotonically decreasing function of z. To keep the units consistent, we normalize the z coordiante by the length of the swarm:$$begin{aligned} tilde{M}(z) = c left( 1-frac{z}{L}right) ^{tilde{b}}, end{aligned}$$
    (9)
    where the c factor in this expression ensures that the units of the mass per layer are mass/length, and (tilde{b}) is an unknown exponent. Choosing this function form allows us to easily integrate the expression for (tilde{W}(z)) when we substitute (tilde{M}(z)) into it, set this force balance derivation for (tilde{W}(z)) equal to the experimentally determined expression (W(z) = C M(z)^a), and compare the exponents a and (tilde{b}).To solve the expression for (tilde{W}(z)), we substitute the expression for (tilde{M}(z)), Eq. (9), into Eq. (8) and integrate. We then express (tilde{b}) in terms of the experimentally determined a by equating this expression for (tilde{W}(z)) to the scaling law we observe in our experiments, Eq. (7), (W(z) = C tilde{M}(z)^a). The exponent in the expression for (tilde{M(z)}), Eq. (9), is$$begin{aligned} tilde{b} = frac{1}{a-1}. end{aligned}$$
    (10)
    The weight supported by each layer is then:$$begin{aligned} tilde{W}(z) = cLg left( 1 – frac{1}{a}right) left( 1-frac{z}{L}right) ^{frac{a}{a-1}}. end{aligned}$$
    (11)
    Next, we test how well our force balance model predicts the data by comparing the predicted value of (tilde{b}) using the force balance to the value of b calculated using experimental fits. We first separate the expression for the layer mass, Eq. (9) into the product of the layer area, (tilde{A}(z)) and the layer density, (tilde{rho }(z)):$$begin{aligned} tilde{M}(z) sim tilde{A}(z) tilde{rho }(z). end{aligned}$$
    (12)
    To simplify our analysis, we model (tilde{A}(z)) and (tilde{rho }(z)) with a similar monotonically decreasing function to that in Eq. (9):$$begin{aligned} tilde{A}(z) = c_1 left( 1-frac{z}{L}right) ^{tilde{b}_1}, end{aligned}$$
    (13)
    and$$begin{aligned} tilde{rho }(z) =c_2 left( 1-frac{z}{L}right) ^{tilde{b}_2} end{aligned}$$
    (14)
    we can then separately measure the effect of the changes in area and density on the exponent in the mass per layer expression in Eq. (9), (tilde{b} = tilde{b}_1 + tilde{b}_2).We first calculate (tilde{b}) using the expression derived from the force balance, Eq. (10), and our experimental result for a, which yields (tilde{b} = 2 pm 0.47). Second, we calculate b by separately calculating power law fits to the data for A(z) in Fig. 2e according to Eq. (13) and (rho (z)) in Fig. 2d according to Eq. (14), which yields (b_1 = 1.38 pm 0.2) and (b_2 = 0.51 pm 0.09). Thus, (b = b_1 + b_2 = 1.89 pm 0.25). See Supplementary Fig. S5(a–c) for log-log plots of M(z), A(z) and (rho (z)), and Supplementary Fig. S5(d–f) for plots of the resulting b, (b_1), and (b_2).We calculate the deviation of (tilde{b}) from b, (frac{tilde{b} – b}{tilde{b}} = 0.03 pm 0.11), and plot the deviation of b from (tilde{b}) in Supplementary Fig. S5(g) as a comparison for the individual CT scans. The values of b and (tilde{b}) being on the same order of magnitude validates the model and allows us to compare (tilde{W}(z)) to a maximum strength of each layer, which we find with dimensional analysis in the following section.Strength of a swarm layer and individual beesThe strength of the layer, (tilde{S}(z)), or the maximum weight that it could support, can be greater than or equal to (tilde{W}(z)): (tilde{S}(z) ge tilde{W}(z)). If the weight of the bees underneath a layer were to exceed its strength (tilde{S}(z)), the layer would not be able to support the weight of those bees, and the swarm would break apart. We perform a dimensional analysis on the strength of each layer to find the relationship between the mass of a layer and its maximum strength, (tilde{S}(z) sim tilde{M}(z)^{alpha }). Force is proportional to mass, which is proprtional to volume, or a length cubed, so a layer’s strength scales with length cubed, (tilde{S}(z) propto L^3). The mass of each layer, with units of mass/length, is proportional to an area, or a length squared, so (tilde{M}(z)) scales with length squared, (tilde{M}(z) propto L^2). Thus, (alpha) must be 1.5 for (tilde{S}(z) sim tilde{M}(z)^{alpha }) to be dimensionally correct. This is similar to the relationship between weightifting capacity and body weight in Ref.16.Estimating (tilde{W}(z)/tilde{S}(z)) gives a measure of how much of its maximum strength each layer uses to hold up the rest of the swarm:$$begin{aligned} frac{tilde{W}(z)}{tilde{S}(z)} sim left( 1-frac{1}{a}right) left( 1-frac{z}{L}right) ^frac{2a-3}{2a-2} end{aligned}$$
    (15)
    The average number of bees that a bee in a swarm layer supports, (tilde{F}_{bee}(z)), is equal to the mass of bees supported by a layer divided by the sum of the mass of bees in a layer of bees that has the thickness of the length of a bee, (l approx 1.5), as a continuous version of the discrete equation in Eq. (6):$$begin{aligned} tilde{F}_{bee}(z) =frac{int _z^L tilde{M}(z) dz}{int _z^{z+l} tilde{M}(z) dz}. end{aligned}$$
    (16)
    After integrating, we get an expression for (tilde{F}_{bee} (z)):$$begin{aligned} tilde{F}_{bee}(z)= frac{left( 1-frac{z}{L}right) ^{frac{a}{a-1}}}{left( 1-frac{z}{L}right) ^{frac{a}{a-1}} – left( 1-frac{z + l}{L}right) ^{frac{a}{a-1}}}. end{aligned}$$
    (17)
    We use the expression for (frac{tilde{W}(z)}{tilde{S}(z)}), Eq. (15), and (tilde{F}_{bee}(z)), Eq. (17), in the next section to evaluate how the force distribution in the swarm would change for swarms with different values of a.Effect of a on the mass of each layer, the fraction of its maximum stregnth it uses, and the average force per beeWe now consider the effect of varying a on the mass and force distribution inside the swarm. To visualize the effect of a on the distribution of bees, we plot the mass per layer of a 1000-g, 12.5 cm long swarm, (tilde{M}(z)) vs. z/L, with (a = 1.5, 1.01, 1000), and (-0.2) in Fig. 3c and the corresponding average force per bee, (F_{bee}(z)) vs. z/L in Fig. 3d. These values of a are example values for the four possible cases of mass distribution in the swarm. We then evaluate how these values of a affect the fraction of maximum strength each layer uses to support the layers underneath it using Eq. (15).If (a approx alpha), as we found in our experiments, layers with higher mass near the attachment surface support the less massive layers under them, as in the solid black line in Fig. 3c. Correspondingly, Fig. 3d shows (tilde{F}_{bee}(z=0) approx 3) at the top of the swarm, and decreases towards the tip. The strength of each layer and the weight it supports are proportional to one another, (tilde{W}(z)/tilde{S}(z) sim 1/3), meaning that the fraction of maximum strength used by a layer is the same for all z. If (1< a < alpha), the swarm approaches one massive layer of bees, as in the dashed purple line in Fig. 3c. The dimensional analysis results in a very small fraction of the total strength used by this layer, (tilde{W}(z)/tilde{S}(z) rightarrow 0 (1-frac{z}{L})^{-infty }). The force supported by each bee in Fig. 3d shows (tilde{F}_{bee}(z) = 1) for the entire swarm, meaning that each bee only supports its own weight. This configuration would either require packing a large number of bees into one very dense or one very wide layer. A swarm with one very dense layer at the top would compress all of the bees; a swarm with one very wide layer would require a large surface area, which would put the swarm in danger from predators and changes in weather. Thus, despite a potentially lower fraction of strength used by the largest layer of bees, this configuration would put the swarm in danger by requiring a large surface area.For values of (a > alpha), as (a rightarrow infty), all the layers of the swarm have the same mass, as in the dash-dot red line in Fig. 3c. The force per bee in Fig. 3d shows (tilde{F}_{bee}(z=0) approx 8) at the top of the swarm, 2.5 times that of the (a = alpha) configuration. In this configuration, the top layers use a higher percentage of their available strength than the lower layers, (tilde{W}(z)/tilde{S}(z) rightarrow (1-frac{z}{L})). Thus, for large swarms, the bees that support the swarm would be under more strain, and the swarm would be more likely to break under external perturbation.Finally, (a < 0) ((0 le a le 1) results in negative values for (tilde{W}(z))) would suggest that the top layers of the swarm have a lower mass than the bottom layers, as in the dotted orange line in Fig. 3c. This is not a realistic range of values for a, but we include it here as a demonstration of a potential mass distribution with the largest layers being on the bottom of the swarm. This configuration would put even more strain on the layers of bees at the top of the swarm, as smaller layers near the attachment surface have a smaller maximum strength. As (a rightarrow 0) on the (a < 0) side, (tilde{W}(z)/tilde{S}(z) rightarrow infty (1-z/L)^{1.5}), and bees in the top layers use a much greater fraction of their strength than bees in the bottom layers. Accordingly, the mean force per bee in Fig. 3d exceeds the maximum bee grip strength of 35 bee weights, and the swarm could not support itself in this configuration.The swarm configuration with (a approx 1.5) uses the full strength of each layer and puts a lower strain on the bees than most other values of a, and avoids weight distributions that could expose a large number of bees to external danger. More

  • in

    Interconnected marine habitats form a single continental-scale reef system in South America

    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).Article 

    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Divers. Distrib. 25(2), 255–268 (2019).
    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefs in a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116 (2016).Article 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Oliveira, M. D. M. The coral reef province of Brazil. World Seas: An Environmental Evaluation Volume I: Europe, the Americas and West Africa vol. 1 (Elsevier Ltd., 2018).Collette, B. B. & Rützler, K. Reef fishes over sponge bottoms off the mouth of the Amazon River. in Proceedings of Third International Coral Reef Symposium (ed. Taylor, D. L.) vol. 1 305–310 (Rosenstiel School of Marine and Atmospheric Science, 1977).Cordeiro, R. T. S., Neves, B. M., Rosa-Filho, J. S. & Pérez, C. D. Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull. Mar. Sci. 91, 491–510 (2015).Article 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, e1501252 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front Mar Sci 5, 1–5 (2018).ADS 
    Article 

    Google Scholar 
    de Mahiques, M. M. et al. Insights on the evolution of the living Great Amazon Reef System, equatorial West Atlantic. Sci. Rep. 9, 1–8 (2019).Article 

    Google Scholar 
    Vale, N. F. et al. Distribution, morphology and composition of mesophotic ‘reefs’ on the Amazon Continental Margin. Mar. Geol. 447, 106779 (2022).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Tropical rhodolith beds are a major and belittled reef fish habitat. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 31, 22–47 (2008).
    Google Scholar 
    Vale, N. F. et al. Structure and composition of rhodoliths from the Amazon River mouth, Brazil. J. S. Am. Earth Sci. 84, 149–159 (2018).Article 

    Google Scholar 
    IMaRS/USF, IRD, UNEP/WCMC, The WorldFish Center & WRI. Global Coral Reefs composite dataset compiled from multiple sources for use in the Reefs at Risk Revisited project incorporating products from the Millennium Coral Reef Mapping Project. Preprint at (2011).Soares, M. O. et al. Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect. Ecol. Conserv. 19, 267–278 (2021).
    Google Scholar 
    Castro, C. B. & Pires, D. O. Brazilian coral reefs: What we already know and what is still missing. Bull. Mar. Sci. 69, 357–371 (2001).
    Google Scholar 
    Leão, Z., Kikuchi, R. & Testa, V. Corals and coral reefs of Brazil. in Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science Inc., 2003). https://doi.org/10.1016/B978-044451388-5/50003-5.Laborel-Deguen, F., Castro, C. B., Nunes, F. D. & Pires, D. O. Recifes brasileiros: o legado de Laborel. (Museu Nacional, 2019).Carneiro, P. et al. Marine hardbottom environments in the beaches of Ceará state, equatorial coast of Brazil. Arquivos de Ciências do Mar 54, 120–153 (2021).Carneiro, P. B. M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Testa, V., Bosence, D. W. J. & Universita, C. Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46, 279–301 (1999).ADS 
    Article 

    Google Scholar 
    Carneiro, P. & Morais, J. O. de. Carbonate sediment production in the equatorial continental shelf of South America: Quantifying Halimeda incrassata (Chlorophyta) contributions. J. S. Am. Earth Sci. 72, 1–6 (2016).Milliman, J. D. Role of Calcareous Algae in Atlantic Continental Margin Sedimentation. in Fossil algae: recent results and developments (ed. Flügel, E.) 232–247 (Springer, 1977). https://doi.org/10.1007/978-3-642-66516-5_26.Knoppers, B., Ekau, W. & Figueiredo, A. G. The coast and shelf of east and northeast Brazil and material transport. Geo-Mar. Lett. 19, 171–178 (1999).ADS 
    Article 

    Google Scholar 
    Vital, H. The north and northeast Brazilian tropical shelves. in Continental shelves of the world: their evolution during the lasta glacio-eustatic cycle (eds. Chiocci, F. L. & Chivas, A. R.) 35–46 (Geological Society, 2014).Soares, M. de O. et al. Brazilian marine animal forests: A new world to discover in the southwestern Atlantic. Mar. Anim. For. 1–38. https://doi.org/10.1007/978-3-319-17001-5_51-1 (2016).Soares, M. O. et al. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic Ocean. Coast. Manag. 210, 105692 (2021).
    Google Scholar 
    Santos, C. L. A., Vital, H., Amaro, V. E. & de Kikuchi, R. K. P. Mapping of the submerged reefs in the coast of the Rio Grande do Norte, near Brazil: Macau to Maracajau. Revista Brasileira de Geofisica 25, 27–36 (2007).Article 

    Google Scholar 
    Neto, I. C., Córdoba, V. C. & Vital, H. Morfologia, microfaciologia e diagênese de beachrocks costa-afora adjacentes à costa norte do Rio Grande do Norte, brasil. Geociências 32, 471–490 (2013).
    Google Scholar 
    Gomes, M. P. et al. The investigation of a mixed carbonate-siliciclastic shelf, NE Brazil: Side-scan sonar imagery, underwater photography, and surface-sediment data. Ital. J. Geosci. 134, 9–22 (2015).Article 

    Google Scholar 
    Soares, M. O., Rossi, S., Martins, F. A. S. & Carneiro, P. The forgotten reefs: Benthic assemblage coverage on a sandstone reef (Tropical South-western Atlantic). J. Mar. Biol. Assoc. U.K. 97(8), 1585–1592. https://doi.org/10.1017/S0025315416000965 (2017).Article 

    Google Scholar 
    Morais, J. O., Ximenes Neto, A. R., Pessoa, P. R. S. & Souza, L. P. Morphological and sedimentary patterns of a semi-arid shelf, Northeast Brazil. Geo-Ma. Lett. 40, 835–842. https://doi.org/10.1007/s00367-019-00587-x (2019).Cordeiro, R. T., Neves, B. M., Kitahara, M. v., Arantes, R. C. & Perez, C. D. First assessment on Southwestern Atlantic equatorial deep-sea coral communities. Deep-Sea Res. Part I Oceanogr. Res. Papers 163, 103344 (2020).Freitas, J. E. P. & Lotufo, T. M. C. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J. Mar. Biol. Assoc. U.K. 95, 623–633 (2015).Article 

    Google Scholar 
    Soares, M. O., Davis, M., Paiva, C. C. de & Carneiro, P. Mesophotic ecosystems: Coral and fish assemblages in a tropical marginal reef (northeastern Brazil). Mar. Biodivers. 1–6 (2016). https://doi.org/10.1007/s12526-016-0615-x.Carneiro, P. B. M., Sátiro, I., COE, C. M. & Mendonça, K. V. Valoração ambiental do Parque Estadual Marinho da Pedra da Risca do Meio, Ceará, Brasil. Arquivo de Ciências do Mar 50, 25–41 (2017).Gomes, M. P., Vital, H. & Droxler, A. W. Terraces, reefs, and valleys along the Brazil northeast outer shelf: Deglacial sea-level archives?. Geo-Mar. Lett. 40, 699–711. https://doi.org/10.1007/s00367-020-00666-4 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 
    Article 

    Google Scholar 
    Raitsos, D. E. et al. Sensing coral reef connectivity pathways from space. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    Silveira, I. C. A., Miranda, L. B. & Brown, W. S. On the origins of the North Brazil Current. J. Geophys. Res. 99, 22501–22512 (1994).ADS 
    Article 

    Google Scholar 
    Dias, F. J. da S., Castro, B. M. & Lacerda, L. D. Tidal and low-frequency currents off the Jaguaribe River estuary (4° S, 37° 4′ W), northeastern Brazil. Ocean Dynamics 68, 967–985 (2018).Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).Article 

    Google Scholar 
    Victor, B. C. Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90, 317–326 (1986).Article 

    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).Article 

    Google Scholar 
    Gomes, M. P. et al. Nature and condition of outer shelf habitats on the drowned Açu Reef, Northeast Brazil. in Seafloor Geomorphology as Benthic Habitat 571–585 (Elsevier, 2020). https://doi.org/10.1016/b978-0-12-814960-7.00034-8.Neto, I. C., Córdoba, V. C. & Vital, H. Petrografia de beachrock em zona costa afora adjacente ao litoral norte do Rio Grande do Norte Brasil. Quat. Environ. Geosci. 2, 12–18 (2010).
    Google Scholar 
    Gomes, M. P., Vital, H., Bezerra, F. H. R., de Castro, D. L. & Macedo, J. W. de P. The interplay between structural inheritance and morphology in the Equatorial Continental Shelf of Brazil. Mar. Geol. 355, 150–161 (2014).Rovira, D. P. T., Gomes, M. P. & Longo, G. O. Underwater valley at the continental shelf structures benthic and fish assemblages of biogenic reefs. Estuar. Coast. Shelf Sci. 224, 245–252 (2019).ADS 
    Article 

    Google Scholar 
    Tosetto, E. G., Bertrand, A., Neumann-Leitão, S. & Nogueira Júnior, M. The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic. Sci. Rep. 12, 537 (2022).ADS 
    Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169, 61 (2022).Article 

    Google Scholar 
    Moalic, Y. et al. Biogeography revisited with network theory: Retracing the history of hydrothermal vent communities. Syst. Biol. 61, 127 (2012).PubMed 
    Article 

    Google Scholar 
    López-Pérez, A. et al. The coral communities of the Islas Marias archipelago, Mexico: Structure and biogeographic relevance to the Eastern Pacific. Mar. Ecol. 37, 679–690 (2016).ADS 
    Article 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).Article 

    Google Scholar 
    Segal, B. & Castro, C. B. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank Brazil. Braz. J. Oceanogr. 59, 119–129 (2011).Article 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soares, M. O. et al. Marginal Reefs in the Anthropocene: They Are Not Noah’s Ark. in Perspectives on the Marine Animal Forests of the World (eds. Rossi, S. & Bramanti, L.) 87–128 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-57054-5_4.Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432 (2003).Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Coral frameworks revisited – reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E., Jordán-Garza, A. G., Maldonado, M. A. & Blanchon, P. Controls on coral-ground development along the Northern Mesoamerican Reef Tract. PLoS ONE 6, e28461 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lotufo, T. M. et al. Sessile epifauna of Ceará´s shelf – high dominance of sponges. in 7th International Sponge Symposium – Biodiversity, Innovation, Sustainability 123–123 (Museu Nacional – UFRJ, 2006).Fonseca, V. P., Pennino, M. G., de Nóbrega, M. F., Oliveira, J. E. L. & de Figueiredo Mendes, L. Identifying fish diversity hot-spots in data-poor situations. Mar. Environ. Res. 129, 365–373 (2017).Olavo, G., Costa, P. A. S., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshwat. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Carneiro, P. B. de M. et al. Structure, growth and CaCO3 production in a shallow rhodolith bed from a highly energetic siliciclastic-carbonate coast in the equatorial SW Atlantic Ocean. Mar. Environ. Res. 166, 105280 (2021).Costa, A. C. P., Garcia, T. M., Paiva, B. P., Ximenes Neto, A. R. & Soares, M. de O. Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar. Environ. Res. 161, 105064 (2020).Testa, V. & Bosence, D. W. J. Carbonate-siliciclastic sedimentation on a high-energy, ocean-facing, tropical ramp, NE Brazil. in Carbonate Ramps (eds. Wright, V. P. & Burchette, T. P.) 55–71 (The Geological Society, 1998).Ximenes Neto, A. R., de Morais, J. O. & Ciarlini, C. Modern and relict sedimentary systems of the semi-arid continental shelf in NE Brazil. J. S. Am. Earth Sci. 84, 56–68 (2018).CAS 
    Article 

    Google Scholar 
    Ximenes Neto, A. R., Morais, J. O. de, Paula, L. F. S. de & Pinheiro, L. de S. Transgressive deposits and morphological patterns in the equatorial Atlantic shallow shelf (Northeast Brazil). Region. Stud. Mar. Sci. 24, 212–224 (2018).Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).ADS 
    Article 

    Google Scholar 
    Cruz, R. et al. Large-scale oceanic circulation and larval recruitment of the spiny lobster Panulirus argus (Latreille, 1804). Crustaceana 88, 298–323 (2015).Article 

    Google Scholar 
    Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).Article 

    Google Scholar 
    Romero-Torres, M., Treml, E. A., Blanchon, P., Acosta, A. & Paz-García, D. A. The Eastern Tropical Pacific coral population connectivity and the role of the Eastern Pacific Barrier. Sci. Rep. 8, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Leal, C. v. et al. Integrative taxonomy of Amazon Reefs’ Arenosclera spp.: A new clade in the Haplosclerida (Demospongiae). Front. Mar. Sci. 4, 291 (2017).Peluso, L. et al. Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 1–17 (2020).Article 

    Google Scholar 
    Barroso, C. X., Lotufo, T. M. da C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965 (2018).Article 

    Google Scholar 
    Medeiros, A. P. M. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sammon, J. W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18, 401–409 (1969).Prim, R. C. Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957).ADS 
    Article 

    Google Scholar  More