More stories

  • in

    Coral community data Heron Island Great Barrier Reef 1962–2016

    Study site and field data collectionPermanent 1 m2 photoquadrats were established on Heron Reef in 1962/63, using 9 mm diameter mild steel (rebar) pegs, which were replaced over time. From the 1990’s, replacement pegs were stainless steel for greater longevity. Four sites were established, the protected (south) crest, inner flat, exposed (north) crest and exposed pools. Co-ordinates for each site are presented in Table 1, the layout shown in Fig. 2, and sites have been well described previously5,6. At each census, a 1 m2 frame divided into a 5 × 5 grid using string was placed over the pegs, and the quadrat photographed from directly above at low tide. From 1963 until 2003, a 35 mm camera and colour slide film were used. The camera was attached to a tripod affixed to the 1 m2 frame, and captured around 2/3 of the quadrat. The frame (and camera) were then rotated 180 degrees to capture the remainder of the quadrat. After 2003, a hand-held digital camera was used, with the entire quadrat being captured in a single image. Concurrent with each census, mud maps of each quadrat were hand drawn in the field, and all colonies identified in situ by someone with expertise in coral taxonomy.Table 1 Coordinates of the study sites on Heron Island Reef (WGS84).Full size tableFig. 2Quadrat layouts for each of the four sites respectively, noting that the north crest and north ridge have been treated as a single north crest site in previous publications. Underlining indicates original 1962/63 quadrats. Other quadrats were added in or after 2008, as indicated in the text. Contiguous quadrats are pictured bordering each other. Spacing between separate quadrats or groups of quadrats is not shown to scale. Note that up until 2005, NRNW was known as NR. The acronyms in each quadrat represent its name.Full size imageAt the protected (south) crest, a set of six contiguous quadrats were established in 1963 in a 2 × 3 arrangement parallel to the waterline, and about 420 m southeast of the island. This site is exposed at low tide, and was photographed once all water had drained off it. Images of quadrats A, C & E (the shoreward row) from 1963 to 2012 have been fully processed, and the data have been through QA/QC. Data after 2012 exist as images only. These quadrats form the basis of previous analyses1,4,5,6 for this site. Photographs are available for quadrats B, D & F, but apart from 2003–2010, have not been processed. In 2010, an additional two quadrats were established either side of the original six, leading to a 2 × 5 arrangement. Again, only imagery is available for these additional quadrats.At the inner flat, two pairs of contiguous quadrats were established in 1962, 44 m apart, about 70 m south of the island. This site is covered by ~10 cm of water at low tide, so could only be photographed on a still day. Imagery for this site is only available to 2012, after which the marker stakes appear to have been removed in a cleanup of the area. Images for one quadrat in each pair have been processed, but have not been subject to full QA/QC.At the exposed (north) crest main site, a set of four contiguous quadrats was established about 1100 m northeast of the island in 1963. An additional single quadrat (north ridge) was established 326 m to the east. Images from 1963 to 2012 have been fully processed, and the data have been through QA/QC. Data after 2012 exist as images only. In 2005, the single north ridge quadrat was expanded to 4 m2, and in 2008, both subsites were expanded to six quadrats in a 2 × 3 arrangement. These additional quadrats have been digitised up to 2012, but have not been through full QA/QC.The exposed pools are two individual quadrats about 5 m apart about 30 m north of the eastern (north ridge) exposed crest site. These are on the edge of a natural pool, and range from ~5–50 cm deep at low tide, and so could only be photographed on a calm day. Imagery for this site is only available until 2005, after which the marker stakes could not be relocated. Images from 1963 to 1998 have been processed, but have not been through full QA/QC.Retrieval of coral composition data from the photoquadratsProcessing of the images involved scanning the colour slides to produce digital images, and then orthorectifying each image to a 1 m2 basemap in ArcGIS (ESRI Ltd). The corners of the frame, and the holes for the string grid, were used as control points for the orthorectification. For images that originated as colour slides, each half of the quadrat was individually orthorectified to the same basemap, producing a single image of the entire quadrat (see Fig. 3). While contiguous quadrats were orthorectified individually, they were done so against a basemap containing all quadrats in the group, meaning that the resulting images can be easily merged to create a single image of the group. The outlines of all visible coral colonies ( >~1 cm2), and other benthic organisms such as algae and clams, were then digitised in ArcGIS to create a single shapefile for each quadrat for each year. Each colony was represented as an individual feature within the shapefile, and was assigned a unique colony number and species based on the mud maps drawn in the field. Colony numbers were consistent across years, allowing individual colonies to be tracked over time. If a colony underwent fission, the original colony number was retained for each, with the addition of a unique identifier after a decimal point. For example, if colony 35 split in two, the resultant colonies were identified as 35.1 and 35.2. If 35.2 later split again, the resultant colonies were identified as 35.2.1 and 35.2.2. If the colony overlapped the edge of the quadrat, only the area within the quadrat was digitised, and a flag was applied to indicate that only part of the colony was included (edgestatus = 1 in the data). Upon completion of digitisation, ArcGIS was used to calculate the area and perimeter of all colonies. While multiple census were conducted in 1963, 1971 and 1983, only a single census in each year has been processed. There are currently no plans to undertake further digitisation or QA/QC of this data set.Fig. 3Example orthorectified and stitched (prior to 2001) images from the NCNE quadrat, showing the effects of a cyclone that removed all colonies in 1972, and slow recovery over subsequent decades.Full size image More

  • in

    Marine subsidies produce cactus forests on desert islands

    Bartz, K. K. & Naiman, R. J. Effects of Salmon-Borne nutrients on riparian soils and vegetation in Southwest Alaska. Ecosystems 8, 529–545 (2005).Article 

    Google Scholar 
    Erskine, P. D. et al. Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117, 187–193 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hocking, M. D. & Reimchen, T. E. Salmon species, density and watershed size predict magnitude of marine enrichment in riparian food webs. Oikos 118(9), 1307–1318 (2009).Article 

    Google Scholar 
    Hocking, M. D. & Reynolds, J. D. Impacts of salmon on riparian plant diversity. Science 331, 1609–1612 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hocking, M. D., & Reimchen, T. E. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. BMC Ecol. 2, 4. https://doi.org/10.1186/1472-6785-2-4 (2002).Bilby, R. E., Fransen, B. R. & Bisson, P. A. Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: Evidence from stable isotopes. Can. J. Fish Aquat. Sci. 53, 164–173 (1996).Article 

    Google Scholar 
    Talley, D. M. et al. Research challenges at the land–sea interface. Estuar. Coast. Shelf Sci. 58, 699–702 (2003).ADS 
    Article 

    Google Scholar 
    Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69(2), 340–349 (1988).Article 

    Google Scholar 
    Rowe, J. A., Litton, C. M., Lepczyk, C. A. & Popp, B. N. Impacts of endangered seabirds on nutrient cycling in montane forest ecosystems of Hawai’i. Pac. Sci. 71(4), 495–509 (2017).Article 

    Google Scholar 
    Sanchez-Pinero, F. & Polis, G. A. Bottom-up dynamics of allochthonous input: Direct and indirect effects of seabirds on islands. Ecology 81(11), 3117–3132 (2000).Article 

    Google Scholar 
    Wait, D. A., Aubrey, D. P. & Anderson, W. B. Seabird guano influences on desert islands: Soil chemistry and herbaceous species richness and productivity. J. Arid Environ. 60, 681–695 (2005).ADS 
    Article 

    Google Scholar 
    Stapp, P., Polis, G. A. & Pinero, F. S. Stable isotopes reveal strong marine and El Nino effects on island food webs. Nature 401, 467–469 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, W. B., Wait, D. A. & Stapp, P. Resources from another place and time: Responses to pulses in a spatially subsidized system. Ecology 89(3), 660–670 (2008).PubMed 
    Article 

    Google Scholar 
    Ellis, J. C. Marine birds on land: A review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol. 181(2), 227–241 (2005).Article 

    Google Scholar 
    Fukami, T. et al. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).PubMed 
    Article 

    Google Scholar 
    Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: Variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).Article 

    Google Scholar 
    McCauley, D. J., et al., From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409. https://doi.org/10.1038/srep00409 (2012).Young, H. S., McCauley, D. J., Dunbar, R. B. & Dirzo, R. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl. Acad. Sci. U.S.A. 107(5), 2072–2077 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindeboom, H. J. The nitrogen pathway in a Penguin rookery. Ecology 65(1), 269–277 (1984).CAS 
    Article 

    Google Scholar 
    Mizutani, H., Kabaya, Y. & Wada, E. Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochem. J. 19(6), 323–327 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, W. B. & Polis, G. A. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).ADS 
    PubMed 
    Article 

    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).Article 

    Google Scholar 
    Goss, N. S. New and rare birds found breeding on the San Pedro Martir Isle. University of California Press 5, 240–244 (1888).
    Google Scholar 
    Velarde, E., et al., Nesting seabirds of the Gulf of California’s Offshore islands: Diversity, ecology and conservation. in Biodiversity, Ecosystems, and Conservation in Northern Mexico, Carton, J.-L. E., Ceballos, G., Felger, R. S. Eds. (Oxford University Press, 2005) pp. 452–470.Wilder, B. T., Felger, R. S. & Ezcurra, E. Controls of plant diversity and composition on a desert archipelago. PeerJ 7, e7286. https://doi.org/10.7717/peerj.7286 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J., Fariña, J. & Witman, J. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).PubMed 
    Article 

    Google Scholar 
    Wilder, B. T., Felger, R. S. & Morales, H. R. Succulent plant diversity of the Sonoran Islands, Gulf of California Mexico. Haseltonia 2008(14), 127–160 (2008).Article 

    Google Scholar 
    Lucassen, F. et al. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile—Marine sources and diagenetic effects. PLoS ONE 12(6), e0179440. https://doi.org/10.1371/journal.pone.0179440 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16(3), 153–162 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Szpak, P., Longstaffe, F. J., Millaire, J.-F. & White, C. D. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studies with maize (Zea mays). PLoS ONE 7(3), e33741. https://doi.org/10.1371/journal.pone.0033741 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezcurra, E., et al. Natural History and Evolution of the World’s Deserts. Global Deserts Outlook. United Nations Environment Programme (UNEP), 1–26 (2006).Yetman, D. The Great Cacti: Ethnobotany and biogeography (University of Arizona Press, 2007).
    Google Scholar 
    Álvarez-Borrego, S. Physical oceanography. in A New Island Biogeography of the Sea of Cortés, Case, T. J., Cody, M. L., Ezcurra, E. Eds. (Oxford University Press, 2002), pp. 41–59.Douglas, R., Gonzalez-Yajimovich, O., Ledesma-Vazquez, J. & Staines-Urias, F. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quatern. Sci. Rev. 26, 115–129 (2007).ADS 
    Article 

    Google Scholar 
    Urbán, J. Marine mammals of the Gulf of California: An overview of diversity and conservation status. in The Gulf of California: Biodiversity and conservation, R. C. Brusca, Ed. (The University of Arizona Press and the Arizona-Sonora Desert Museum, 2010), pp. 188–209.Hastings, P. A., Findley, L. T., & Van der Heiden, A. M. Fishes of the Gulf of California. in: Brusca, R. C., (eds) The Gulf of California: Biodiversity and conservation 96–118, The University of Arizona Press and the Arizona-Sonora Desert Museum (2010).
    Google Scholar 
    Polis, G. A., Hurd, S. D., Jackson, C. T. & Sanchez Piñero, F. El Niño effects on the dynamics and control of an Island ecosystem in the Gulf of California. Ecology 78, 1884–1897 (1997).
    Google Scholar 
    Wilder, B. T. & Felger, R. S. Dwarf giants, guano, and isolation: The flora and vegetation of San Pedro Mártir Island, Gulf of California, Mexico. Proc. San Diego Soc. Nat. Hist. 42, 1–24 (2010).
    Google Scholar 
    Medel-Narvaez, A., Leon Luz, J. L., Freaner-Martinez, F. & Molina-Freaner, F. Patterns of abundance and population structure of Pachycereus pringlei (Cactaceae), a columnar cactus of the Sonoran Desert. Plant Ecol. 187, 1–14 (2006).Article 

    Google Scholar 
    Felger, R.S., Wilder, B.T. in collaboration with Romero-Morales, H. Plant Life of a Desert Archipelago: Flora of the Sonoran Islands in the Gulf of California. Tucson, University of Arizona Press (2012).Wilkinson, C. E., Hocking, M. D. & Reimchen, T. E. Uptake of salmon-derived nitrogen by mosses and liverworts in Coastal British Columbia. Oikos 108, 85–98 (2005).CAS 
    Article 

    Google Scholar 
    Barrett, K., Wait, D. A. & Anderson, W. B. Small island biogeography in the Gulf of California: Lizards, the subsidized island biogeography hypothesis, and the small island effect. J. Biogeogr. 30, 1575–1581 (2003).Article 

    Google Scholar 
    Young, H. S., McCauley, D. J. & Dirzo, R. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98, 207–214 (2011).PubMed 
    Article 

    Google Scholar 
    Nobel, P. S. Environmental Biology of Agaves and Cacti. Cambridge University Press (2003).Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18(6), 1918–1927 (2012).ADS 
    Article 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotope composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48(4), 625–639 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1), 1031. https://doi.org/10.1029/2002GB001903 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kahmen, A., Wanek, W. & Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861–870 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen, T. Unknown Island: Seri Indians, Europeans, and San Esteban Island in the Gulf of California (University of New Mexico Press, 2000).
    Google Scholar 
    Evans, R. D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6(3), 121–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolby, G., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguia-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution surrounding the Gulf of California. J. Southw. 57, 391–455 (2015).Article 

    Google Scholar 
    Case, T. J., Cody, M. L., & Ezcurra, E. A New Island Biogeography of the Sea of Cortés (Oxford University Press, 2002).Book 

    Google Scholar 
    Tershy, B. R. & Breese, D. The birds of San Pedro Mártir Island, Gulf of California Mexico. West. Birds 28, 96–107 (1997).
    Google Scholar 
    Tershy, B. R., Breese, D. & Croll, D. A. Human perturbations and conservation strategies for San Pedro Mártir Island, Islas de Golfo de California Reserve México. Environ. Conserv. 24, 261–270 (1997).Article 

    Google Scholar 
    Wilder, B. T. Historical biogeography of the Midriff Islands in the Gulf of California, Mexico. Dissertation. Riverside: UC, Riverside (2014).Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kiljunen, M. et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213–1222 (2006).CAS 
    Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    R Core Team, R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2022). More

  • in

    Straw mulching for enhanced water use efficiency and economic returns from soybean fields in the Loess Plateau China

    Tsunekawa, A., Liu, G., Yamanaka, N. & Du, S. Restoration and Development of the Degraded Loess Plateau China 3–21 (Springer Press, 2017).
    Google Scholar 
    Kimura, R., Kamichika, M., Takayama, N., Matsuoka, N. & Zhang, X. C. Heat balance and soil moisture in the Loess Plateau, China. J. Agric Meteorol. 60(2), 103–113 (2004).
    Google Scholar 
    Deng, X. P., Lun, S., Zhang, H. P. & Turner, N. C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manage. 80(1), 23–40 (2006).
    Google Scholar 
    Liu, C. A. et al. Maize yield and water balance is affected by nitrogen application in a film-mulching ridge-furrow system in a semiarid region of China. Eur. J. Agron. 52, 103–111 (2014).CAS 

    Google Scholar 
    Bu, L. D. et al. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manage. 123, 71–78 (2013).
    Google Scholar 
    Hou, F. Y. et al. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L.) Lam.) in Northern China. Acta Physiol. Plant. 37, 164 (2015).
    Google Scholar 
    Jensen, K., Kimball, E. R. & Ricketson, C. L. Effect of perforated plastic row covers on residues of the herbicide DCPA in soil and broccoli. Environ Contam. Toxicol. B 35(6), 716–722 (1985).CAS 

    Google Scholar 
    Li, F. M., Guo, A. H. & Wei, H. Effects of clear plastic film mulch on yield of spring wheat. Field Crop. Res. 63(1), 79–86 (1999).
    Google Scholar 
    Liu, J. L. et al. Response of nitrogen use efficiency and soil nitrate dynamics to soil mulching in dryland maize (Zea mays L.) fields. Nutr. Cycl. Agroecosyst. 101(2), 271–283 (2015).CAS 

    Google Scholar 
    Li, R. et al. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rained area of the Loess Plateau, China. Agric. Water Manage. 116, 101–109 (2013).
    Google Scholar 
    Anzalone, A., Cirujeda, A., Aibar, J., Pardo, G. & Zaragoza, C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 24(3), 369–377 (2010).
    Google Scholar 
    Summers, C. G. & Stapleton, J. J. Use of UV reflective mulch to delay the colonization and reduce the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Prot. 21(10), 921–928 (2002).
    Google Scholar 
    Chen, Y. S. et al. Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China. Environ. Earth Sci. 70(1), 239–247 (2013).CAS 

    Google Scholar 
    Wang, S. Y. et al. Occurrence of macroplastic debris in the long-term plastic film-mulched agricultural soil: A case study of Northwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2022.154881 (2003).Article 
    PubMed 

    Google Scholar 
    Hu, X. Y., Wen, B. & Shan, X. Q. Survey of phthalate pollution in arable soils in China. J. Environ Monit. 5(4), 649–653 (2003).CAS 
    PubMed 

    Google Scholar 
    Zhou, X. Y. et al. Effects of residual mulch film on the growth and fruit quality of tomato (Lycopersicon esculentum Mill.). Water Air Soil. Pollut. 228(2), 1–18 (2017).ADS 

    Google Scholar 
    Hu, Q. et al. Effects of residual plastic-film mulch on field corn growth and productivity. Sci. Total Environ. 729, 1–10 (2020).
    Google Scholar 
    Wang, J. Z. et al. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl Agroecosyst. 102(3), 371–381 (2015).
    Google Scholar 
    Huang, Y. L., Chen, L. D., Fu, B. J., Huang, Z. L. & Gong, J. The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects. Agric. Water Manage. 72(3), 209–222 (2005).
    Google Scholar 
    Su, Z. Y. et al. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric. Water Manage. 87(3), 307–314 (2007).
    Google Scholar 
    Ibrahim, A., Abaidoo, R. C., Fatondji, D. & Opoku, A. Integrated use of fertilizer micro-dosing and Acacia tumida mulching increases millet yield and water use efficiency in Sahelian semi-arid environment. Nutr. Cycl Agroecosys. 103(3), 375–388 (2015).CAS 

    Google Scholar 
    Zhang, D. K. et al. Suitable furrow mulching material for maize and sorghum production with ridge-furrow rainwater harvesting in semiarid regions of China. Agric. Water Manage. 228, 105928 (2020).
    Google Scholar 
    Myint, T. et al. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agric. Water Manage. 241, 106340 (2020).
    Google Scholar 
    Bai, Y. L. et al. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. J. Integr. Agric. 14(012), 2467–2476 (2015).CAS 

    Google Scholar 
    Liu, Z. J., Meng, Y., Cai, M. & Zhou, J. B. Coupled effects of mulching and nitrogen fertilization on crop yield, residual soil nitrate, and water use efficiency of summer maize in the Chinese Loess Plateau. Environ Sci. Pollut R. 24(33), 25849–25860 (2017).CAS 

    Google Scholar 
    Thomas, F. D., Michael, B., Jürgen, H., Maria, R. F. & Helmut, S. Effects of straw mulch on soil nitrate dynamics, weeds, and yield and soil erosion in organically grown potatoes. Field Crop. Res. 94(2–3), 238–249 (2005).
    Google Scholar 
    Tu, C., Ristaino, J. B. & Hu, S. J. Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biol. Biochem. 38(2), 247–255 (2006).CAS 

    Google Scholar 
    Rao, Z. X. et al. Effect of rice straw mulching on migration and transportation of Cd, Cu, Zn, and Ni in surface runoff under simulated rainfall. J. Soils Sediment. 16(8), 2021–2029 (2016).CAS 

    Google Scholar 
    Ma, J., Xu, H., Yagi, K. & Cai, Z. C. Methane emission from paddy soils as affected by wheat straw returning mode. Plant Soil. 313, 167–174 (2008).CAS 

    Google Scholar 
    Xue, L. L. et al. Influence of straw mulch on yield, chlorophyll contents, lipid peroxidation and antioxidant enzymes activities of soybean under drought stress. J. Food Agric. Environ. 9(2), 699–704 (2011).
    Google Scholar 
    Wu, Y., Huang, F. Y., Jia, Z. K., Ren, X. R. & Cai, T. Response of soil water, temperature, and maize (Zea mays L.) production to different plastic film mulching patterns in semi-arid areas of Northwest China. Soil Tillage Res. 166, 113–121 (2017).
    Google Scholar 
    Blake, G. R. & Hartge, K. H. Bulk density. In Methods of Soil Analysis Part 1: Physical and Mineralogical Methods (ed. Klute, A.) 363–375 (American Society of Agronomy, Soil Science Society of America, 1986).
    Google Scholar 
    Li, F. M., Song, Q. H., Jjemba, P. & Shi, Y. Dynamics of soil microbial biomass and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biol. Biochem. 36(11), 1893–1902 (2004).CAS 

    Google Scholar 
    Zhang, P. et al. Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China. Front. Plant Sci. 8, 512 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Custodio, R. P. et al. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crop. Res. 154, 74–81 (2013).
    Google Scholar 
    He, G. et al. Wheat yield affected by soil temperature and water under mulching in dryland. Agron. J. 109(6), 2998–3006 (2017).CAS 

    Google Scholar 
    Zhang, S. L. et al. Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Tillage Res. 102(1), 78–86 (2008).
    Google Scholar 
    Li, R., Hou, X. Q., Jia, Z. K. & Han, Q. F. Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil Tillage Res. 196, 104476 (2020).
    Google Scholar 
    Wang, S. H. et al. Change in the bio-uptake of soil phthalates with increasing mulching years: Underlying mechanism and response to temperature rise. J. Clean Prod. 287(2021), 125049 (2020).
    Google Scholar 
    Li, W. W., Xiong, L., Wang, C. J., Liao, Y. C. & Wu, W. Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi-humid areas. Agric. Water Manage. 218, 211–221 (2019).
    Google Scholar 
    Kader, M. A., Nakamura, K., Senge, M., Mojid, M. A. & Kawashima, S. Effects of colored plastic mulch on soil hydrothermal characteristics, growth and water productivity of rain-fed soybean. Irrig. Drain. 69(3), 483–494 (2020).
    Google Scholar 
    Luo, C. L. et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gouranga, K. & Ashwani, K. Effects of irrigation and straw mulch on water use and tuber yield of potato in Eastern India. Agric. Water Manage. 94(1), 109–116 (2007).
    Google Scholar 
    Lu, X. J., Li, Z. Z., Sun, Z. G. & Bu, Q. G. Straw mulching reduces maize yield, water, and nitrogen use in Northeastern China. Agron. J. 107(1), 406–414 (2015).
    Google Scholar 
    Zhou, L. F., Zhao, W. Z., He, J. Q., Flerchinger, G. N. & Feng, H. Simulating soil surface temperature under plastic film mulching during seedling emergence of spring maize with the RZ–SHAW and DNDC models. Soil Tillage Res. 197, 104517 (2020).
    Google Scholar 
    Chang, L. et al. Straw strip mulching affects soil moisture and temperature for potato yield in semiarid regions. Agron. J. 112(2), 1126–1139 (2020).CAS 

    Google Scholar 
    Zhang, P. et al. Effects of straw mulch on soil water and winter wheat production in dryland farming. Sci. Rep. 5(1), 209–222 (2015).
    Google Scholar 
    Ren, X. L., Zhang, P., Chen, X. L., Guo, J. J. & Jia, Z. K. Effect of different mulches under rainfall concentration system on corn production in the semi-arid areas of the Loess Plateau. Sci. Rep. 6(1), 47–50 (2016).
    Google Scholar 
    Akhtar, K. et al. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 132, 105092 (2019).CAS 
    PubMed 

    Google Scholar 
    Eden, G. R. S. M. The impact of organic amendments, mulching and tillage on plant nutrition, Pythium root rot, root-knot nematode and other pests and diseases of capsicum in a subtropical environment, and implications for the development of more sustainable vegetable farming. Australas. Plant Path. 37(2), 123–131 (2008).
    Google Scholar 
    Kader, M. A., Senge, M., Mojid, M. A., Takeo, O. & Kengo, I. Effects of plastic-hole mulching on effective rainfall and readily available soil moisture under soybean (Glycine max) cultivation. Paddy Water Environ. 15(3), 659–668 (2017).
    Google Scholar 
    Zhang, Z. et al. Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate. Agric. Water Manage. 212, 203–210 (2019).
    Google Scholar 
    Kader, M. A., Nakamura, K., Senge, M., Mojid, M. A. & Kawashima, S. Numerical simulation of water- and heat-flow regimes of mulched soil in rain-fed soybean field in central Japan. Soil Tillage Res. 191, 142–155 (2019).
    Google Scholar 
    Ryu, J. H. et al. Effects of straw mulching on soil physicochemical properties in Saemangeum reclaimed land. Korean J. Soil Sci. Fert. 49(1), 12–16 (2016).CAS 

    Google Scholar 
    Yin, W. et al. Growth trajectories of wheat–maize intercropping with straw and plastic management in arid conditions. Agron. J. 112(4), 2777–2790 (2020).
    Google Scholar 
    Wang, J. et al. Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China. Agric. Water Manage. 25, 106935 (2021).
    Google Scholar 
    Cao, B. et al. Future landscape of renewable fuel resources: Current and future conservation and utilization of main biofuel crops in China. Sci. Total Environ. 806, 150946 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Khawar, J. et al. Economic assessment of different mulches in conventional and water-saving rice production systems. Environ. Sci. Pollut. Res. 23, 9156–9163 (2016).
    Google Scholar  More

  • in

    Early-season plant-to-plant spatial uniformity can affect soybean yields

    Sites description and field operationsA total of six field studies were conducted in two different regions over two seasons. Four studies (two dryland and two irrigated) were in Kansas, United States (dryland: 39°4′30″ N, − 96°44′43″ W, irrigated: 39°4′25″N, − 96°43′12″ W) during the 2019 and 2020 growing seasons (hereafter referred to as USDry19, USIrr19, USDry20, and USIrr20 studies). The remaining two studies (dryland) were in Entre Rios, Argentina (31°50′49″ S; 60°32′16″ W) during the 2018/2019 and 2019/2020 growing seasons (hereafter referred to as Arg19 and Arg20 studies). The soils were Fluventic Hapludolls [silt loam, 40% sand, 13% clay, 47% silt, organic matter (OM) 1.7%, 7.7 pH, 31.1 ppm P (Bray−1)] at the US dryland studies, and Pachic Argiudolls [silty clay loam, 10.1% sand, 30.6% clay and 59.3% silt, OM 3.2%, 6.8 pH, 34.7 ppm P (Bray−1)] at the US irrigated studies. At the Argentinian studies soil was a Vertic Argiudoll in 2019 [silty clay loam to clay loam, 3.9% sand, 27.6% clay, 67.9% silt, OM 2.65%, 7.2 pH, 12.5 ppm P (Bray−1)] and an Acuic Argiudoll in 2020 [silt loam to silty-clay-loam, 5.6% sand, 28.6% clay, 65.8% silt, OM 3.33%].The US dryland and irrigated studies were sown on June 4, 2019, and May 20, 2020. In 2019, the dryland study was replanted on June 29 due to poor emergence after the first sowing. The studies in Argentina were sown on December 5 in 2018 and November 20 in 2019. At all six studies, plots were kept free of weeds, pests, and diseases through recommended chemical control.The genotypes used in the US were P40A47X (MG 4.0) and P39A58X (MG 3.9) (Corteva Agriscience, Johnston, IA, USA) in 2019 and 2020, respectively. Both varieties are tolerant to glyphosate and dicamba herbicides (RR2X) and have low lodging probability. For the northeast region of Kansas, recommended sowing dates range from May 15 to June 15 along with MG 421. In addition, recommended seeding rates are between 270 and 355 thousand seeds ha−1 for low-yielding environments and 190 to 285 thousand seeds ha−1 for medium- and high-yielding environments13. In Argentina, the genotype AW5815IPRO (MG 5.8, Bayer, Leverkusen, Germany) was used both in 2020 and 2021, it is tolerant to glyphosate and sulfonylureas, and has low lodging probability. Recommended sowing dates for Entre Rios considering soybeans as a single crop range from October 20 to December 10, and MG usually range from 4 to 6; lastly, seeding rate recommendations are between 200 and 250 thousand seeds ha−1 in the region22.Study designThe studies carried out in the US were arranged as a split plot design with three replicates in both 2019 and 2020. In 2019, the main plot treatment factor was planter type with two levels [John Deere (Moline, Illinois, US) Max Emerge planter (ME, 12 rows), and John Deere Exact Emerge Planter (EE, 16 rows)], and the split-plot treatment factor was seeding rate with two levels (160 and 321 thousand seeds ha−1). In 2020 the main plot treatment factor was also planter type with two levels (ME and EE), and the split-plot treatment factor was seeding rate with four levels (160, 215, 270 and 321 thousand seeds ha−1). Planting speed was 7 km h−1 in both studies and years, plots were 24 and 32 rows wide when planted with ME and EE, respectively, with 0.76 m row spacing. Plot length was 80 m in the dryland studies and 160 m in the irrigated studies. The studies in Argentina were arranged as a single replicate of each seeding rate (100, 230, 360 and 550 thousand seeds ha−1) in both years. Planting speed was 5.5 km h−1 in both years, and plots were 10 rows wide with 0.52 m row spacing and 350 m in length.All treatment factors in US studies were evaluated with the overall goal of producing substantial variation in the variable of interest, plant-to-plant spatial uniformity, rather than to make an inference of their effect on yield. The Argentinian studies were only used for selection of stand uniformity variables due to the single replicate. Plant spatial uniformity variables were first fitted using the data from US studies (details below), and then the best explanatory metrics were selected to re-fit the relationships combining both data sets from US and Argentina. Finally, sowing dates, maturity groups, and seeding rates evaluated in this study at both locations (Arg and US) were aligned with those recommended for each region.Data collection and spacing uniformity variablesTwo segments of 2 m in length were established early in the season inside each plot. At the V5 (US studies) and R1 (Arg studies) soybean development stage23, the cumulative distance of the plants within each segment was measured and then used to calculate multiple derived variables. Plant spacing (cm) was calculated as the average distance between neighboring plants. In addition, the distance from a plant to each neighboring plant was classified as shorter or longer than the plant spacing (named nearest and farthest neighbor distance, respectively). Achieved versus Target Evenness Index (ATEI, dimensionless) was calculated as the ratio between the observed plant spacing and the theoretical plant spacing (TPS, cm), where TPS is the expected plant spacing derived from a specific seeding rate and row width (Eq. 1).$$ATEI = frac{Spacing;(cm) }{{TPS;(cm)}}$$
    (1)
    The ATEI index was designed to account for the proximity of the observed plant spacing to the TPS. Values closer to 1 indicate that the plant spacing is close to the TPS and values that are below or above 1 indicate that the plant spacing is lower or higher than the TPS, respectively; thereby departing from an ideal plant spacing. Hence, ATEI values greater than 1 depict both (i) non-uniform plant-to-plant spacing distribution and (ii) plant densities below the target (seeding rate). To further understand the meaning of ATEI, the relative density (rd) was calculated as the ratio between plant density (based on the number of plants in the 2 m segment) and seeding rate.To account for the unevenness of distance from a plant to both neighboring plants within the row, we used the Evenness Index (EI, dimensionless), calculated as the ratio between the distance to the nearest neighbor (cm) and the plant spacing (cm) of a given plant (Eq. 2). The Evenness Index values range from 0 to 1, a value closer to 1 indicates that a plant is equidistantly spaced to both of its neighboring plants within the row, if zero then those plants are occupying the same position (as doubles). It is important to note that EI does not provide information on the spacing (in distance, cm) or how close the spacing is compared to the TPS, but only describes the unevenness distance of a plant to its neighboring plants within a row.$$Evenness ;Index; (EI) = frac{nearest; neighbor ;(cm)}{{Spacing; (cm)}}$$
    (2)
    In addition, the distance from a plant to its preceding neighboring plant, and the TPS were used to classify the position of each plant into one of eight classes (Fig. 1). Plants were classified in classes ranging from “double” (preceding plant distance  Double-skip) as a function of seeding rate, planter type and their interaction (fixed effects), and block nested in site-year (random effect) (Tables 1 and 2). Independent models for each of the 4 US studies were built assessing the effects of planter type, seeding rate, and their interaction (fixed effects), and seeding rate nested in planter type, and in block (random effects) on the same variables previously mentioned (Supplementary Table 1). The models were run using the lmer function from lme4 package in R (R Core Team, 2021). In addition, the US and Arg studies were combined to evaluate the effect of site-year on yield, plant density, and all stand uniformity variables (Supplementary Fig. 1) using the lm function from package stats. Means separation were performed using Fisher’s LSD (Least Significance Difference) test (alpha = 0.05) with emmeans function from package emmeans.Table 1 Effect of planter type, seeding rate, and their interaction on variables from plant position classification for all US studies. References: percentage of perfectly spaced plants (Perfect), percentage of plants misplaced by 66% (Mis 66), percentage of plants misplaced by 33% (Mis 33), percentage of double plants (Double), percentage of short skips plants (Short-skip), percentage of long skip plants (Long-skip), percentage of double skips plants (Double-skip), and percentage of greater than double skip plants ( > Double-skip).Full size tableTable 2 Effect of planter type, seeding rate, and their interaction on yield and stand uniformity variables for all US studies. References: Spacing between plants standard deviation (Spacing sd), achieved versus targeted evenness index mean and standard deviation (ATEI and ATEI sd, respectively), and evenness index mean and standard deviation (EI and EI sd, respectively).Full size tableCommunity-scale data from the four US studies were combined and fitted to bivariate linear regression models with yield as the response variable and each of the stand spatial uniformity variables as the explanatory variable. Significant models (alpha = 0.05) were further evaluated by calculating the coefficient of determination (R2) and root mean squared error (RMSE) (Fig. 2). Models with the lower RMSE and higher R2 were selected as those that best captured the effect of non-uniform stands on soybean yield. After variables were selected, both US and Arg data sets were combined and the linear regressions between the selected variables and yield were re-fitted to assess the consistency of the relationships when an independent data set was included. Community-scale yield from US and Arg studies was modelled as a function of the selected stand uniformity variable, country (US and Arg), and their interaction (fixed effects) (Fig. 3). The spatial uniformity metric showing the most consistent relationship for both US and Arg studies (i.e., non-significant interaction between stand uniformity metric and country), was selected to continue the analysis. The bivariate linear regression models were run with function lm.Figure 2Relationship between stand uniformity variables and soybean yield for US studies. ATEI mean and sd achieved versus targeted evenness index mean and standard deviation, EI mean and sd evenness index mean and standard deviation, Perfect percentage of perfectly spaced plants, R2 coefficient of determination, RMSE root mean square error. All stand uniformity variables presented a significant slope at alpha = 0.05.Full size imageFigure 3Relationship of spacing standard deviation (Spacing sd, cm) and achieved versus targeted evenness index standard deviation (ATEI sd) to soybean yield. Different colors and line types denote different countries (Argentina, Arg—full line, red points; United States, US—dashed line, blue points). R2 coefficient of determination, RMSE root mean square error.Full size imageDifferent environmental conditions and seeding rate levels may modify the effect of plant spatial uniformity on yield. To explore this, each of the studies from Arg and US were separated into low- (USDry19 and ArgDry20, mean of 2.7 Mg ha−1), medium- (USIrr19, USDry20 and ArgDry19, mean of 3.0 Mg ha−1), and high- (USIrr20, mean of 4.3 Mg ha−1) yield environments based on the effect of site-year on yield (Supplementary Fig. 1). Additionally, the tested seeding rates were separated in low ( 300 thousand seeds ha−1) levels based on the current optimal seeding rate for medium yielding environments (235 thousand seeds ha−1, 4 Mg ha−1)13 and the extreme values proposed by Suhre et al.11 (148 and 445 thousand seeds ha−1). This classification was used to model yield as a function of (i) the selected stand uniformity metric, yield environment, and their interaction, and (ii) the selected stand uniformity metric, seeding rate levels, and their interaction. These models were tested to obtain a robust conclusion on the overall effect of yield environment and seeding rate levels, and their interactions (all treated as fixed effects) with plant-to-plant spatial uniformity relative to the response variable, soybean yield. The Akaike information criteria (AIC) was used to compare the full (with interactions) relative to the reduced models (single effects).Ethics declarationsExperimental research and field studies on plants including the collection of plant material, complied with relevant institutional, national, and international guidelines and legislation. More

  • in

    Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14(10), 1062–1072 (2011).PubMed 
    Article 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10(4), 299–314 (2007).PubMed 
    Article 

    Google Scholar 
    Kluser, S. & Peduzzi, P. Global pollinator decline: A literature review. Preprint at http://archive-ouverte.unige.ch/unige 32258 (2007).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Rhodes, C. J. Pollinator decline—an ecological calamity in the making?. Sci. Prog. 101(2), 121–160 (2018).PubMed 
    Article 

    Google Scholar 
    Huang, H. & D’Odorico, P. Critical transitions in plant-pollinator systems induced by positive inbreeding-reward-pollinator feedbacks. Iscience 23(2), 100819 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39(4), 923–941 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emmel, T. C. & Tucker, J. C. In Mosquito Control Pesticides: Ecological Impacts and Management Alternatives (eds Emmel, T. C. & Tucker, J. C.) 105 (Scientific Publishers, 1991).Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 57(10), 2019–2030 (2020).CAS 
    Article 

    Google Scholar 
    Berryman, A. A. What causes population cycles of forest Lepidoptera?. Trends Ecol. Evol. 11(1), 28–32 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elkinton, J. & Boettner, G. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata North America. Biol. Control 57(2), 277–288 (2012).
    Google Scholar 
    Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).Article 

    Google Scholar 
    Oberhauser, K. et al. Lacewings wasps and fliesoh my insect enemies take a bite out of monarchs. In Monarchs in a Changing World: Biology and Conservation of an iconic insect (eds Oberhauser, K. S. et al.) 71–82 (Cornell University Press, 2015).Chapter 

    Google Scholar 
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47(1), 361–393 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hermann, S. L., Blackledge, C., Haan, N. L., Myers, A. T. & Landis, D. A. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Sci. Rep. 9(1), 1–9 (2019).CAS 
    Article 

    Google Scholar 
    McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S. & Baum, K. A. Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: Distribution patterns and implications for conservation. J. Insect Conserv. 20(2), 223–237 (2016).Article 

    Google Scholar 
    Geest, E. A., Wolfenbarger, L. L. & McCarty, J. P. Recruitment, survival and parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and conservation areas. J. Insect Conserv. 23(2), 211–224 (2019).Article 

    Google Scholar 
    Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25(4), 528–541 (2018).PubMed 
    Article 

    Google Scholar 
    Crone, E. E., Pelton, E. M., Brown, L. M., Thomas, C. C. & Schultz, C. B. Why are monarch butterflies declining in the west? Understanding the importance of multiple correlated drivers. Ecol. Appl. 29(7), e01975 (2019).PubMed 
    Article 

    Google Scholar 
    Brower, L. P. et al. Effect of the 2010–2011 drought on the lipid content of monarchs migrating through Texas to overwintering sites in Mexico. In The Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds Oberhauser, K. S. et al.) 117–129 (Cornell University Press, 2015).
    Google Scholar 
    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4(9), 170760 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00223 (2019).
    Article 

    Google Scholar 
    Olaya-Arenas, P., Hauri, K., Scharf, M. E. & Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 10(1), 1–12 (2020).Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108(2), 662–667 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epstein, L. Fifty years since silent spring. Annu. Rev. Phytopathol. 52, 377–402 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rayor, L. S. Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In The Monarch Butterfly Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 39–46 (Cornell University Press, 2004).
    Google Scholar 
    Baker, A. M. & Potter, D. A. Invasive paper wasp turns urban pollinator gardens into ecological traps for monarch butterfly larvae. Sci. Rep. 10(1), 1–7 (2020).Article 

    Google Scholar 
    Castellanos, I. & Barbosa, P. Dropping from host plants in response to predators by a polyphagous caterpillar. J. Lepid. Soc. 65(4), 270–272 (2011).
    Google Scholar 
    Kessler, S. C. et al. Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550), 74–76 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liao, L.-H., Wu, W.-Y. & Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 7(1), 1–8 (2017).Article 

    Google Scholar 
    Musser, R. O. et al. Caterpillar saliva beats plant defences. Nature 416(6881), 599–600 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt, J. & Smith, J. Host examination walk and oviposition site selection of Trichogramma minutum: Studies on spherical hosts. J. Insect Behav. 2(2), 143–171 (1989).Article 

    Google Scholar 
    Ramos, R. S. et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770–778 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chareonviriyaphap, T. et al. Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J. Am. Mosq. Control Assoc. 13(2), 171–183 (1997).CAS 
    PubMed 

    Google Scholar 
    Nansen, C., Baissac, O., Nansen, M., Powis, K. & Baker, G. Behavioral avoidance-will physiological insecticide resistance level of insect strains affect their oviposition and movement responses?. PLoS ONE 11(3), e0149994 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martini, X., Kincy, N. & Nansen, C. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68(11), 1471–1477 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bull, D. & Coleman, R. Effects of pesticides on Trichogramma spp. Southwest. Entomol. Suppl. 8, 156–168 (1985).CAS 

    Google Scholar 
    Thubru, D., Firake, D. & Behere, G. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi J. Biol. Sci. 25(4), 680–688 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Selwood, K. & Zimmer, H. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Pitek, A. P., Thompson, G. J. & Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22 (2020).Article 

    Google Scholar 
    Chittka, L., Williams, N., Rasmussen, H. & Thomson, J. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. B 266(1414), 45–50 (1999).PubMed Central 
    Article 

    Google Scholar 
    Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallet, J. Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2(2), 198–215 (1986).
    Google Scholar 
    Chang, Y.-M. et al. Roosting site usage, gregarious roosting and behavioral interactions during roost-assembly of two Lycaenidae butterflies. Zool. Stud. 59, e10 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Vulinec, K. Collective security aggregation by insects as a defence. In Insect Defences. Adaptive Mechanisms of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 251–288 (State University of New York, 1990).
    Google Scholar 
    Salcedo, C. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3), 907–911 (2010).PubMed 
    Article 

    Google Scholar 
    Giordano, B. V., McGregor, B. L., Runkel, A. E. IV. & Burkett-Cadena, N. D. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. J. Am. Mosq. Control Assoc. 36(3), 181–188 (2020).PubMed 
    Article 

    Google Scholar 
    Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 75(1), 9–13 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hewitt, A. Spray drift: Impact of requirements to protect the environment. Crop Prot. 19(8–10), 623–627 (2000).Article 

    Google Scholar 
    Nail, K. R., Stenoien, C. & Oberhauser, K. S. Immature monarch survival: Effects of site characteristics, density and time. Ann. Entomol. Soc. 108(5), 680–690 (2015).Article 

    Google Scholar 
    Payne, C. C. & Mertens, P. P. Cytoplasmic polyhedrosis viruses. In The Reoviridae (ed. Joklik, K.) 425–504 (Springer, 1983).Chapter 

    Google Scholar 
    Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26(5), 547–555 (2001).Article 

    Google Scholar 
    Salvato, M. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida keys. J. Lepid. Soc. 55(1), 8–14 (2001).
    Google Scholar 
    Frey, D. F. & Leong, K. L. Can microhabitat selection or differences in ‘catchability’ explain male-biased sex ratios in overwintering populations of monarch butterflies?. Anim. Behav. 45(5), 1025 (1993).Article 

    Google Scholar 
    Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: An overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4(1), 19–32 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Fitness costs associated with a GABA receptor mutation conferring dieldrin resistance in Aedes albopictus

    Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y (2004) Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution 58:579–586CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahmad NA, Endersby-Harshman NM, Mohd Mazni NR, Mohd Zabari NZA, Amran SNS, Ridhuan Ghazali MK et al. (2020) Characterization of sodium channel mutations in the Dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia. Insects 11:529PubMed Central 
    Article 

    Google Scholar 
    Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK et al. (2013) Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS ONE 8:e63849CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andreasen MH, ffrench-Constant RH (2002) In situ hybridization to the Rdl locus on polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 16:452–455CAS 
    PubMed 
    Article 

    Google Scholar 
    Assogba BS, Djogbénou LS, Milesi P, Berthomieu A, Perez J, Ayala D et al. (2015) An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci Rep. 5:14529CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS et al. (2016) The ace-1 locus is amplified in all resistant Anopheles gambiae mosquitoes: fitness consequences of homogeneous and heterogeneous duplications. PloS Biol 14:e2000618PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M et al. (2019) Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 286:20182273CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auteri M, La Russa F, Blanda V, Torina A (2018) Insecticide resistance associated with kdr mutations in Aedes albopictus: an update on worldwide evidences. Biomed Res Int 2018:e3098575Article 

    Google Scholar 
    Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 79:41–47Berticat C, Duron O, Heyse D, Raymond M (2004) Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet Res 83:189–196CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhatia SC, Deobhankar RB (1963) Reversion of dieldrin-resistance in the field population of A. culicifacies in Maharashtra State (erstwhile Bombay State), India. Indian J Malariol 17:339–351CAS 
    PubMed 

    Google Scholar 
    Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourguet D, Guillemaud T, Chevillon C, Raymond M (2004) Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution 58:128–135PubMed 
    Article 

    Google Scholar 
    Brooke BD, Hunt RH, Coetzee M (2000) Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol 14:190–194CAS 
    PubMed 
    Article 

    Google Scholar 
    Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharm 68:942–951CAS 
    Article 

    Google Scholar 
    Chen H, Li K, Wang X, Yang X, Lin Y, Cai F et al. (2016) First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty 5:31PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davari B, Vatandoost H, Oshaghi MA, Ladonni H, Enayati AA, Shaeghi M et al. (2007) Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol 89:97–103CAS 
    Article 

    Google Scholar 
    Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, Fontenille D (2008) Aedes albopictus, vector of Chikungunya and Dengue viruses in Reunion Island: biology and control. Parasite 15:3–13CAS 
    PubMed 
    Article 

    Google Scholar 
    Deng J, Guo Y, Su X, Liu S, Yang W, Wu Y et al. (2021) Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis 15:e0009391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou L, Weill M, Hougard J-M, Raymond M, Akogbéto M, Chandre F (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44:805–810PubMed 

    Google Scholar 
    Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ et al. (2005) Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 14:179–183CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M et al. (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G (2000) Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol 45:449–466CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. SAGE, Thousand Oaks California, https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    Google Scholar 
    Freeman JC, Smith LB, Silva JJ, Fan Y, Sun H, Scott JG (2021) Fitness studies of insecticide resistant strains: lessons learned and future directions. Pest Manag Sci 77:3847–3856CAS 
    PubMed 
    Article 

    Google Scholar 
    Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227CAS 
    PubMed 
    Article 

    Google Scholar 
    Grau-Bové X, Tomlinson S, O’Reilly AO, Harding NJ, Miles A, Kwiatkowski D et al. (2020) Evolution of the insecticide target Rdl in African Anopheles is driven by interspecific and interkaryotypic introgression. Mol Biol Evol 37:2900–2917PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbé P et al. (2015) Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 9:e0003771PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamon J, Garret-Jones C (1962) Insecticide-resistance in major vectors of malaria, and its operational importance. Bull World Health Organ, Geneva
    Google Scholar 
    Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK et al. (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci USA 103:8757–8762CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665CAS 
    PubMed 
    Article 

    Google Scholar 
    Hosie AM, Baylis HA, Buckingham SD, Sattelle DB (1995) Actions of the insecticide fipronil, on dieldrin-sensitive and -resistant GABA receptors of Drosophila melanogaster. Br J Pharm 115:909–912CAS 
    Article 

    Google Scholar 
    Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H et al. (2016) The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the Dengue vector Aedes albopictus. Sci Rep. 6:24707CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O et al. (2011) First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis 64:217–221CAS 
    PubMed 
    Article 

    Google Scholar 
    Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68:1431–1437CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolaczinski J, Curtis C (2001) Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera: Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Manag Sci 57:41–45CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM et al. (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labbé P, David J-P, Alout H, Milesi P, Djogbénou L, Pasteur N et al. (2017) 14 – Evolution of resistance to insecticide in disease vectors. In: Tibayrenc M (ed) Genetics and Evolution of Infectious Diseases, Second Edition. Elsevier, London, p 313–339Chapter 

    Google Scholar 
    Latreille AC, Milesi P, Magalon H, Mavingui P, Atyame CM (2019) High genetic diversity but no geographical structure of Aedes albopictus populations in Réunion Island. Parasit Vectors 12:597PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Alout H, Zafihita S, Dehecq JS, Weill M, Tortosa P et al. (2022) Spatio-temporal dynamics of a dieldrin resistance gene in Aedes albopictus and Culex quinquefasciatus populations from Reunion Island. J Insect Sci 22:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Soupapoule K, Wilkinson DA, Goff GL, Damiens D, Gouagna LC (2018) Laboratory evaluation of the effects of sterilizing doses of γ-rays from Caesium-137 source on the daily flight activity and flight performance of Aedes albopictus males. PLoS ONE 13:e0202236PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G et al. (2018) Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors 11:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Low VL, Vinnie-Siow WY, Lim YAL, Tan TK, Leong CS, Chen CD et al. (2015) First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia. Trop Biomed 32:554–556CAS 
    PubMed 

    Google Scholar 
    McKenzie BA, Wilson AE, Zohdy S (2019) Aedes albopictus is a competent vector of Zika virus: a meta-analysis. PLoS ONE 14:e0216794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milesi P, Pocquet N, Labbé P (2013) BioRssay: A R script for bioassay analyses. http://www.isem.univ-montp2.fr/recherche/equipes/genomique-de-ladaptation/personnel/labbepierrick/Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I et al. (2017) Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11:e0005625PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ozoe Y, Kita T, Ozoe F, Nakao T, Sato K, Hirase K (2013) Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic Biochem Physiol 107:285–292CAS 
    PubMed 
    Article 

    Google Scholar 
    Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M et al. (2009) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis 10:259–266Article 

    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Platt N, Kwiatkowska RM, Irving H, Diabaté A, Dabire R, Wondji CS (2015) Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. Heredity 115:243–252CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
    Google Scholar 
    Ranson H, Burhani J, Lumjuan N, Black WCI (2010) Insecticide resistance in Dengue vectors. TropIKA.net [online] 1. http://journal.tropika.net/scielo.php?script=sci_arttext&pid=S2078-86062010000100003&lng=en&nrm=iso. Accessed 03 March 2022Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113:287–296PubMed 
    Article 

    Google Scholar 
    Renault P, Solet J-L, Sissoko D, Balleydier E, Larrieu S, Filleul L et al. (2007) A major epidemic of Chikungunya virus infection on Réunion Island, France, 2005–2006. Am J Trop Med Hy 77:727–731Article 

    Google Scholar 
    Rowland M (1991a) Behaviour and fitness of γHCH/dieldrin resistant and susceptible female Anopheles gambiae and An. stephensi mosquitoes in the absence of insecticide. Med Vet Entomol 5:193–206CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowland M (1991b) Activity and mating competitiveness of γHCH/dieldrin resistant and susceptible male and virgin female Anopheles gambiae and An. stephensi mosquitoes, with assessment of an insecticide-rotation strategy. Med Vet Entomol 5:207–222CAS 
    PubMed 
    Article 

    Google Scholar 
    Russell VL (2021) Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.5.1. https://CRAN.R-project.org/package=emmeansSu X, Guo Y, Deng J, Xu J, Zhou G, Zhou T et al. (2019) Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: alarm to the Dengue epidemic. PLoS Negl Trop Dis 13:e0007665CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, Rutee A et al. (2010) Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Réunion Island. Insect Biochem Mol Biol 40:317–324CAS 
    PubMed 
    Article 

    Google Scholar 
    Taskin BG, Dogaroglu T, Kilic S, Dogac E, Taskin V (2016) Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pestic Biochem Physiol 129:14–27CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor‐Wells J, Brooke BD, Bermudez I, Jones AK (2015) The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J Neurochem 135:705–713PubMed 
    Article 

    Google Scholar 
    Therneau T (2015) A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survivalThompson M, Shotkoski F, ffrench-Constant R (1993) Cloning and sequencing of the cylodienne insecticide resistance from the yellow fewer Aedes aegypti. FEBS Lett 325:187–190CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major Dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131CAS 
    Article 

    Google Scholar 
    Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC (2011) Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol 41:484–491CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu J, Bonizzoni M, Zhong D, Zhou G, Cai S, Li Y et al. (2016) Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus. PLoS Negl Trop Dis 10:e0004696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang C, Huang Z, Li M, Feng X, Qiu X (2017) RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China. Malar J 16:482PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X et al. (2019) Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 12:180PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Biological invasions as a selective filter driving behavioral divergence

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, (2017).IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019). https://doi.org/10.5281/zenodo.3831673.Elton, C. S. The Ecology of Invasions by Animals and Plants. (University of Chicago Press, 1958).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology. (Wiley-Blackwell, 2013).O’Dowd, D. J., Green, P. T. & Lake, P. S. Invasional “meltdown” on an oceanic island. Ecol. Lett. 6, 812–817 (2003).
    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. 113, 11261–11265 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, (2017).Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture, Ecosyst. Environ. 84, 1–20 (2001).
    Google Scholar 
    Hoffmann, B. D. & Broadhurst, L. M. The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18 (2016).
    Google Scholar 
    Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evolution 16, 199–204 (2001).
    Google Scholar 
    Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl Acad. Sci. 102, 7198–7202 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lovell, R. S. L., Blackburn, T. M., Dyer, E. E. & Pigot, A. L. Environmental resistance predicts the spread of alien species. Nat. Ecol. Evolution 5, 322–329 (2021).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evolution 26, 333–339 (2011).
    Google Scholar 
    Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol. Evolution 27, 57–64 (2012).
    Google Scholar 
    Chapple, D. G. & Wong, B. B. M. The role of behavioural variation across different stages of the introduction process. in Biological Invasions and Animal Behaviour (eds. Weis, Judith, S. & Sol, Daniel.) 7–25 (Cambridge University Press, 2016).Holway, D. & Suarez, A. Animal behavior: an essential component of invasion biology. Trends Ecol. Evolution 14, 328–330 (1999).CAS 

    Google Scholar 
    Felden, A. et al. Behavioural variation and plasticity along an invasive ant introduction pathway. J. Anim. Ecol. 87, 1653–1666 (2018).PubMed 

    Google Scholar 
    D’Amore, D. M., Popescu, V. D. & Morris, M. R. The influence of the invasive process on behaviours in an intentionally introduced hybrid, Xiphophorus helleri-maculatus. Anim. Behav. 156, 79–85 (2019).
    Google Scholar 
    Perkins, T. A., Boettiger, C. & Phillips, B. L. After the games are over: life‐history trade‐offs drive dispersal attenuation following range expansion. Ecol. Evolution 6, 6425–6434 (2016).
    Google Scholar 
    Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s Paradox revisited: the evolution of dispersal kernels during range expansion. Am. Naturalist 172, S34–S48 (2008).
    Google Scholar 
    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl Acad. Sci. 108, 5708–5711 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. Proc. Natl Acad. Sci. 110, 13452–13456 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heger, T. & Jeschke, J. M. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123, 741–750 (2014).
    Google Scholar 
    Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).
    Google Scholar 
    Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol. Evolution 24, 136–144 (2009).
    Google Scholar 
    Wilson, S. & Swan, G. A complete guide to reptiles of Australia. (New Holland Publishers, 2021).Chapple, D. G., Miller, K. A., Kraus, F. & Thompson, M. B. Divergent introduction histories among invasive populations of the delicate skink (Lampropholis delicata): has the importance of genetic admixture in the success of biological invasions been overemphasized? Diversity Distrib. 19, 134–146 (2013).
    Google Scholar 
    Chapple, D., Knegtmans, J., Kikillus, H. & van Winkel, D. Biosecurity of exotic reptiles and amphibians in New Zealand: building upon Tony Whitaker’s legacy. J. R. Soc. N.Z. 46, 66–84 (2016).
    Google Scholar 
    Chapple, D. G., Whitaker, A. H., Chapple, S. N. J., Miller, K. A. & Thompson, M. B. Biosecurity interceptions of an invasive lizard: Origin of stowaways and human-assisted spread within New Zealand. Evolut. Appl. 6, 324–339 (2013).
    Google Scholar 
    Tingley, R., Thompson, M. B., Hartley, S. & Chapple, D. G. Patterns of niche filling and expansion across the invaded ranges of an Australian lizard. Ecography 39, 270–280 (2016).
    Google Scholar 
    Chapple, D. G. et al. Biology of the invasive delicate skink (Lampropholis delicata) on Lord Howe Island. Aust. J. Zool. 62, 498–506 (2014).
    Google Scholar 
    Moule, H. et al. A matter of time: temporal variation in the introduction history and population genetic structuring of an invasive lizard. Curr. Zool. 61, 456–464 (2015).CAS 

    Google Scholar 
    Chapple, D. G., Simmonds, S. M. & Wong, B. B. M. Know when to run, know when to hide: can behavioral differences explain the divergent invasion success of two sympatric lizards? Ecol. Evolution 1, 278–289 (2011).
    Google Scholar 
    Cromie, G. L. & Chapple, D. G. Impact of tail loss on the behaviour and locomotor performance of two sympatric Lampropholis skink species. PLoS ONE 7, e34732 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brand, J. A. et al. Rapid shifts in behavioural traits during a recent fish invasion. Behav. Ecol. Sociobiol. 75, 134 (2021).
    Google Scholar 
    Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).
    Google Scholar 
    Pintor, L. M., Sih, A. & Bauer, M. L. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117, 1629–1636 (2008).
    Google Scholar 
    Mueller, J. C. et al. Selection on a behaviour-related gene during the first stages of the biological invasion pathway. Mol. Ecol. 26, 6110–6121 (2017).MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).
    Google Scholar 
    Niemelä, P. T., Niehoff, P. P., Gasparini, C., Dingemanse, N. J. & Tuni, C. Crickets become behaviourally more stable when raised under higher temperatures. Behav. Ecol. Sociobiol. 73, 81 (2019).
    Google Scholar 
    Polverino, G. et al. Psychoactive pollution suppresses individual differences in fish behaviour. Proc. R. Soc. B: Biol. Sci. 288, 20202294 (2021).
    Google Scholar 
    Royauté, R., Garrison, C., Dalos, J., Berdal, M. A. & Dochtermann, N. A. Current energy state interacts with the developmental environment to influence behavioural plasticity. Anim. Behav. 148, 39–51 (2019).
    Google Scholar 
    Michelangeli, M., Chapple, D. G., Goulet, C. T., Bertram, M. G. & Wong, B. B. M. Behavioral syndromes vary among geographically distinct populations in a reptile. Behav. Ecol. 30, 393–401 (2019).
    Google Scholar 
    Nicolaus, M., Tinbergen, J. M., Ubels, R., Both, C. & Dingemanse, N. J. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19, 478–486 (2016).PubMed 

    Google Scholar 
    Lapiedra, O., Schoener, T. W., Leal, M., Losos, J. B. & Kolbe, J. J. Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360, 1017–1020 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gruber, J., Brown, G., Whiting, M. J. & Shine, R. Geographic divergence in dispersal-related behaviour in cane toads from range-front versus range-core populations in Australia. Behav. Ecol. Sociobiol. 71, 38 (2017).
    Google Scholar 
    Gruber, J., Brown, G., Whiting, M. J. & Shine, R. Is the behavioural divergence between range-core and range-edge populations of cane toads (Rhinella marina) due to evolutionary change or developmental plasticity? R. Soc. Open Sci. 4, 170789 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgan, D., Waas, J. R. & Innes, J. Do territorial and non-breeding Australian Magpies Gymnorhina tibicen influence the local movements of rural birds in New Zealand? Ibis 148, 330–342 (2006).
    Google Scholar 
    O’leary, R. A. & Jones, D. N. Foraging by suburban Australian magpies during dry conditions. Corella 26, 53–54 (2002).
    Google Scholar 
    Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L. & Russello, M. A. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethol. Ecol. Evolution 22, 393–404 (2010).
    Google Scholar 
    Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).
    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evolution 4, 788–793 (2020).
    Google Scholar 
    Cole, E. F. & Quinn, J. L. Personality and problem-solving performance explain competitive ability in the wild. Proc. R. Soc. B: Biol. Sci. 279, 1168–1175 (2012).
    Google Scholar 
    Webster, M. M., Ward, A. J. W. & Hart, P. J. B. Individual boldness affects interspecific interactions in sticklebacks. Behav. Ecol. Sociobiol. 63, 511–520 (2009).
    Google Scholar 
    McGhee, K. E., Pintor, L. M. & Bell, A. M. Reciprocal behavioral plasticity and behavioral types during predator-prey interactions. Am. Naturalist 182, 704–717 (2013).
    Google Scholar 
    Ioannou, C. C., Payne, M. & Krause, J. Ecological consequences of the bold–shy continuum: the effect of predator boldness on prey risk. Oecologia 157, 177–182 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Moran, N. P., Wong, B. B. M. & Thompson, R. M. Weaving animal temperament into food webs: implications for biodiversity. Oikos 126, 917–930 (2017).
    Google Scholar 
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moule, H., Michelangeli, M., Thompson, M. B. & Chapple, D. G. The influence of urbanization on the behaviour of an Australian lizard and the presence of an activity–exploratory behavioural syndrome. J. Zool. 298, 103–111 (2016).
    Google Scholar 
    Michelangeli, M., Wong, B. B. M. & Chapple, D. G. It’s a trap: sampling bias due to animal personality is not always inevitable. Behav. Ecol. 27, 62–67 (2016).
    Google Scholar 
    Michelangeli, M., Melki-Wegner, B., Laskowski, K., Wong, B. B. M. & Chapple, D. G. Impacts of caudal autotomy on personality. Anim. Behav. 162, 67–78 (2020).
    Google Scholar 
    Shine, R. Locomotor speeds of gravid lizards: Placing “costs of reproduction” within an ecological context. Funct. Ecol. 17, 526–533 (2003).
    Google Scholar 
    Naimo, A. C., Jones, C., Chapple, D. G. & Wong, B. B. M. Has an invasive lizard lost its antipredator behaviours following 40 generations of isolation from snake predators? Behav. Ecol. Sociobiol. 75, 131 (2021).
    Google Scholar 
    Brand, J. A. et al. Population differences in the effect of context on personality in an invasive lizard. Behav. Ecol. 32, 1363–1371 (2021).
    Google Scholar 
    Goulet, C. T., Thompson, M. B., Michelangeli, M., Wong, B. B. M. & Chapple, D. G. Thermal physiology: a new dimension of the pace‐of‐life syndrome. J. Anim. Ecol. 86, 1269–1280 (2017).PubMed 

    Google Scholar 
    Michelangeli, M., Goulet, C. T., Kang, H. S., Wong, B. B. M. & Chapple, D. G. Integrating thermal physiology within a syndrome: locomotion, personality and habitat selection in an ectotherm. Funct. Ecol. 32, 970–981 (2018).
    Google Scholar 
    Bell, A. M. Randomized or fixed order for studies of behavioral syndromes? Behav. Ecol. 24, 16–20 (2013).PubMed 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evolution 7, 1325–1330 (2016).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. (2019).Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Munson, A. A., Michelangeli, M. & Sih, A. Stable social groups foster conformity and among-group differences. Anim. Behav. 174, 197–206 (2021).
    Google Scholar 
    Royauté, R. & Dochtermann, N. A. Comparing ecological and evolutionary variability within datasets. Behav. Ecol. Sociobiol. 75, 127 (2021).
    Google Scholar 
    Dalos, J., Royauté, R., Hedrick, A. V. & Dochtermann, N. A. Phylogenetic conservation of behavioural variation and behavioural syndromes. J. Evolut. Biol. 35, 311–321 (2022).
    Google Scholar 
    Miller, K. A., Duran, A., Melville, J., Thompson, M. B. & Chapple, D. G. Sex-specific shifts in morphology and colour pattern polymorphism during range expansion of an invasive lizard. J. Biogeogr. 44, 2778–2788 (2017).
    Google Scholar 
    Michelangeli, M., Chapple, D. G. & Wong, B. B. M. Are behavioural syndromes sex specific? Personality in a widespread lizard species. Behav. Ecol. Sociobiol. 70, 1911–1919 (2016).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).PubMed 

    Google Scholar 
    Chapple, D. G. et al. Data from Chapple et al. “Biological invasions as a selective filter driving behavioral divergence”. Monash University. Dataset. https://doi.org/10.26180/18851036.v2 (2022). More

  • in

    Independent origin of large labyrinth size in turtles

    Steinhausen, W. Über die Beobachtungen der Cupula in den Bogengangsampullen des Labyrinthes des Lebendes Hechts. Pflug. Arch. 232, 500–512 (1933).Article 

    Google Scholar 
    Wever, E. G. The reptile ear. (Princeton University Press, 1978).Wilson, V. J. & Melvill Jones, G. Mammalian vestibular physiology. (Plenum Press, 1979).Spoor, F. & Zonneveld, F. Comparative review of the human bony labyrinth. Yearb. Phys. Anthropol. 41, 211–251 (1998).Article 

    Google Scholar 
    Rabbitt, R. D., Damiano, E. R. & Grant, J. W. Biomechanics of the semicircular canals and otolith organs. In: Highstein, F. M., Ray, R. R., Popper, A. N. (eds) Springer Handbook Of Auditory Research, vol. 19, The Vestibular System, pp. 153–201 (Springer, New York, 2004).Georgi, J. A. & Sipla, J. S. Comparative and functional anatomy of balance in aquatic reptiles and birds. In: Thewissen, J. G. M., Nummela, S. (eds) Sensory Evolution On The Threshold, Adaptations In Secondarily Aquatic Vertebrates.pp. 233–256 (University of California Press, 2008).David, R. et al. Motion from the past. A new method to infer vestibular capacities of extinct species. C. R. Palevol. 9, 397–410 (2010).Article 

    Google Scholar 
    Oman, C. M., Marcus, E. N. & Curthoys, I. S. The influence of the semicircular canal morphology on endolymph flow dynamics. Acta Otolaryngol. 103, 1–13 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Georgi, J. A., Sipla, L. S. & Forster, C. A. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis. PLoS One 8, e58517 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417, 163–166 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Spoor, F. et al. The primate semicircular canal system and locomotion. Proc. Nat. Acad. Sci. USA 104, 10808–10812 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, P. G. & Jeffery, N. Geometry of the semicircular canals and extraocular muscles in rodents, lagomorphs, felids and modern humans. J. Anat. 213, 83–596 (2008).
    Google Scholar 
    Cox, P. G. & Jeffery, N. Semicircular canals and agility: the influence of size and shape measures. J. Anat. 216, 37–47 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silcox, M. T. et al. Semicircular canal system in early primates. J. Hum. Evol. 56, 315–327 (2009).PubMed 
    Article 

    Google Scholar 
    Lebrun, R. et al. Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J. Anat. 216, 368–380 (2010).PubMed 
    Article 

    Google Scholar 
    Billet, G. et al. High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc. R. Soc. Lond. B. 279, 3932–3939 (2012).
    Google Scholar 
    Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malinzak, M. D., Kaya, R. F. & Hullar, T. E. Locomotor head movements and semicircular canal morphology in primates. Proc. Natl Acad. Sci. USA 109, 914–919 (2012).Article 

    Google Scholar 
    Alloing-Séguier, L. et al. The bony labyrinth in diprotodontian marsupial mammals: diversity in extant and extinct forms and relationships with size and phylogeny. J. Mamm. Evol. 20, 191–198 (2013).Article 

    Google Scholar 
    Berlin, J. C., Kirk, E. C. & Rowe, T. B. Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS One 8, e79585 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davies, K. T. J., Bates, P. J. J., Maryanto, I., Cotton, J. A. & Rossiter, S. J. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS One 8, e61998 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grohé, C. et al. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J. Anat. 228, 366–383 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pfaff, C., Martin, T. & Ruf, I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc. R. Soc. B 282, 20150744 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melville Jones, G. & Spells, K. E. A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc. R. Soc. Lond. B Biol. Sci. 157, 403–419 (1963).ADS 
    Article 

    Google Scholar 
    Kemp, A. D. & Kirk, E. C. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).Article 

    Google Scholar 
    Ekdale, E. G. Form and function of the mammalian ear. J. Anat. 228, 324–337 (2016).PubMed 
    Article 

    Google Scholar 
    Goyens, J. High ellipticity reduces semicircular canal sensitivity in squamates compared to mammals. Sci. Rep. 9, 16428 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Witmer, L. M., Chatterjee, S., Franzosa, J. & Rowe, T. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425, 950–953 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lautenschlager, S., Rayfield, E. J., Altangerel, P., Zanno, L. E. & Witmer, L. M. The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE 7, e52289 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cuthbertson, R. S., Maddin, H. C., Holmes, R. B. & Anderson, J. S. The braincase and endosseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behavior. Anat. Rec. 298, 1597–1611 (2015).Article 

    Google Scholar 
    Schade, M., Rauhut, O. W. M. & Evers, S. W. Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory. Sci. Rep. 10, 9259 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benson, R. B. J., Starmer-Jones, E., Close, R. A. & Walsh, S. A. Comparative analysis of vestibular ecomorphology in birds. J. Anat. 231, 990–1018 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dudgeon, T. W., Maddin, H. C., Evans, D. C. & Mallon, J. C. The internal cranial anatomy of Champsosaurus (Choristodera: Champsosauridae): implications for neurosensory function. Sci. Rep. 10, 7122 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bronzati, M. et al. Deep evolutionary diversification of semicircular canals in archosaurs. Curr. Biol. 31, 2520–2529 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, M., Hoffman, E. A., Norell, M. A. & Bhullar, B.-A. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372, 601–609 (2021).ADS 
    Article 

    Google Scholar 
    Ernst, C. H. & Barbour, R. W. Turtles Of The World. (Smithsonian Institution Press, Washington, D.C., 1989).Evers, S. W. & Benson, R. B. J. A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group. Palaeontology 62, 93–134 (2019).Article 

    Google Scholar 
    Joyce, W. G. A review of the fossil record of basal Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 58, 65–113 (2017).Article 

    Google Scholar 
    Lautenschlager, S., Ferreira, G. S. & Werneburg, I. Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions. Front. Ecol. Evol. 6, 1–7 (2018).Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 123, 1–15 (1985).Article 

    Google Scholar 
    Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods 7, 13–26 (1978).MATH 
    Article 

    Google Scholar 
    Foth, C. et al. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. J. Anat. 235, 1078–1097 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neenan, J. M. et al. Evolution of the sauropterygian labyrinth with increasingly pelagic lifestyles. Curr. Biol. 27, 3852–3858 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Loza, C. M., Latimer, A. E., Sánchez-Villagra, M. R. & Carlini, A. A. Sensory anatomy of the most aquatic of carnivorans: the Antarctic Ross seal, and convergences with other mammals. Biol. Lett. 13, 20170489 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Werneburg, I. & Maier, W. Diverging development of akinetic skulls in cryptodire and pleurodire turtles: an ontogenetic and phylogenetic study. Vertebr. Zool. 69, 113–143 (2019).
    Google Scholar 
    Ferreira, G. S. & Werneburg, I. Evolution, diversity, and development of the craniocervical system in turtles with special reference to jaw musculature. In: Ziermann, J., Diaz, R. R. Jr, Diogo, R. (eds) Heads, Jaws and Muscles: Evolution, Development, Anatomical Diversity And Function (Springer, Cham, 2019).David, R. J. A. et al. Comment on “The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization”, Science (in press).Schwab, J. A. et al. Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water. Proc. Nat. Acad. Sci. USA 117, 10422–10428 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, L. M. & Ornitz, D. M. Sculpturing the skull through neurosensory epithelial-mesenchymal signaling. Dev. Dyn. 248, 88–97 (2019).PubMed 
    Article 

    Google Scholar 
    Kandel, B. M. & Hullar, T. E. The relationship of head movements to semicircular canal size in cetaceans. J. Exp. Biol. 213, 1175–1181 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moll, D. Food and feeding behavior of the turtle, Dermatemys mawei, in Belize. J. Herpetol. 23, 445–447 (1989).Article 

    Google Scholar 
    Evers, S. W. et al. Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle. Zool. J. Linn. Soci. 187, 800–828 (2019).
    Google Scholar 
    Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One 8, e66624 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joyce, W. G. Phylogenetic relationships of Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 48, 3–102 (2007).Article 

    Google Scholar 
    Sterli, J. & De La Fuente, M. S. Anatomy of Condorchelys antiqua Sterli, 2008, and the origin of the modern jaw closure mechanism in turtles. J. Vertebr. Paleontol. 30, 351–366 (2010).Article 

    Google Scholar 
    Ferreira, G. S. et al. Feeding biomechanics suggests progressive correlation of skull architecture and neck evolution in turtles. Sci. Rep. 10, 5505 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aerts, P., Van Damme, J. & Herrel, A. Intrinsic mechanics and control of fast cranio-cervical movements in aquatic feeding turtles. Am. Zool. 41, 1299–1310 (2001).
    Google Scholar 
    Herrel, A., Van Damme, J. & Aerts, P. Cervical anatomy and function in turtles. In Biology Of Turtles. In: Wyneken, J., Godfrey, M. H., Bels, V. (eds) pp. 163–185 (CRC Press, Boca Raton, 2008).Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS One 8, e66043 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guthrie, D. M. “Role of vision in fish behaviour”. In: T. J. Pitcher (eds) The Behaviour Of Teleost Fishes. pp. 75–113 (Springer, Boston, 1986).Sterli, J. & Joyce, W. G. The cranial anatomy of the Early Jurassic turtle Kayentachelys aprix. Acta Paleontol. Pol. 52, 675–694 (2007).
    Google Scholar 
    Werneburg, I. The tendinous framework in the temporal skull region of turtles and considerations about its morphological implications in amniotes: a review. Zool. Sci. 30, 141–153 (2013).Article 

    Google Scholar 
    Werneburg, I. Neck motion in turtles and its relation to the shape of the temporal skull region. C. R. Palevol. 14, 527–548 (2015).Article 

    Google Scholar 
    TTWG, Turtle Taxonomy Working Group, Rhodin, A. G. J. et al. Turtles of the world, 8th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. Chelonian Res. Monogr. 7, 1–292 (2017).
    Google Scholar 
    Gower, J. C. Generalized Procrustes analysis. Psychometrika 40, 33–50 (1975).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2019).Rholf, E. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).Article 

    Google Scholar 
    Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS One 9, e94335 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendall, D. G. The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977).Article 

    Google Scholar 
    Bookstein, F. L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1, 97–118 (1997).Article 

    Google Scholar 
    Gunz, P., Mitteroecker, P. & Bookstein, F. L. “Semilandmarks in three dimensions. In: Slice, D. E. (ed) Modern Morphometrics in Physical Anthropology, pp. 73–98 (Kluwer Academic, 2005).Webster, M. & Sheets, H. A practical introduction to land- mark-based geometric morphometrics. In: Alroy, J., Hunt, G. (eds) Quantitative Methods in Paleobiology. Paleontological Society Papers 16, pp. 163–188 (Paleontological Society, 2010).Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).
    Google Scholar 
    Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1, 181–242 (1986).MATH 

    Google Scholar 
    Pereira, A. G., Sterli, J., Moreira, F. R. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).PubMed 
    Article 

    Google Scholar 
    Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).Article 

    Google Scholar 
    Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).Article 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography, and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 171773 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bapst, D. W. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733 (2013).Article 

    Google Scholar 
    Laurin, M. The evolution of body size, Cope’s Rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).PubMed 
    Article 

    Google Scholar 
    Pace, C. M., Blob, R. W. & Westneat, M. W. Comparative kinematics of the forelimb during swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles. J. Exp. Biol. 204, 3261–3271 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claude, J., Paradis, E., Tong, H. & Auffray, J.-C. A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biol. J. Linn. Soc. 79, 485–501 (2003).Article 

    Google Scholar 
    Angielczyk, K. D., Feldman, C. R. & Miller, G. R. Adaptive evolution of plastron shape in emydine turtles. Evolution 65, 377–394 (2011).PubMed 
    Article 

    Google Scholar 
    Angielczyk, K. D., Burroughs, R. W. & Feldman, C. R. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the World’s turtles. J. Exp. Zool. Mol. Dev. Evol. 324, 270–294 (2015).Article 

    Google Scholar 
    Pritchard, P. C. H. Oiscivory in turtles, and evolution of the long-necked Chelidae. Symp. Zool. Soc. Lond. 52, 87–110 (1984).
    Google Scholar 
    Joyce, W. G. et al. A new pelomedusoid turtle, Sahonachelys mailakavava, from the Late Cretaceous of Madagascar provides evidence for convergent evolution of specialized suction feeding among pleurodires. R. Soc. Open Sci. 8, 210098 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adams, D. C. A method for assessing phylogenetic least squares models for shape and other high‐dimensional multivariate data. Evolution 68, 2675–2688 (2014).PubMed 
    Article 

    Google Scholar 
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67, 14–31 (2018).PubMed 
    Article 

    Google Scholar 
    Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowi-Merri, T. M., Benson, R. B. J., Claramunt, S. & Evans, D. C. The relationship between sternum variation and mode of locomotion in birds. BMC Biol. 19, 1–23 (2021).Article 

    Google Scholar 
    Adams, D. C. & Collyer, M. L. Phylogenetic ANOVA: group-clade aggregation, biological challanges, and a refined permutation procedure. Evolution 72, 1204–1215 (2018).PubMed 
    Article 

    Google Scholar 
    Friedman, S. T., Martinez, C. M., Price, S. A. & Wainwright, P. C. The influence of size on body shape diversification across Indo-Pacific shore fishes. Evolution 73, 1873–1884 (2019).PubMed 
    Article 

    Google Scholar 
    Foth, C., Rabi, M. & Joyce, W. G. Skull variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. Acta Zool. 98, 310–325 (2017).Article 

    Google Scholar 
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ritz, C. & Spiess, A.-N. qpcR: an R package for sigmoidal model selection in quantitative real-rime polymerase chain reaction analysis. Bioinformatics 24, 1549–1551 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Akaike, H. Information Theory As An extension Of The Maximum Likelihood Principle. In: Petrov, B. N., Csaki, F. (eds) Second International Symposium on Information Theory, pp. 267–281 (Akademiai Kiado, New York, 1973).Burnham, K. P., Anderson, D. Model selection and multi-model inference: a practical information-theoretic approach. (Springer, New York, 2002).Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D., R. Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–141, URL: https://CRAN.R-project.org/package=nlme. (2019).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Racicot, R. A. & Colbert, M. W. Morphology and variation in porpoise (Cetacea: Phocoenidae) cranial endocasts. Anat. Rec. 296, 979–992 (2013).Article 

    Google Scholar 
    Evers, S. W. Code and Data to “Independent origin of large labyrinth size in turtles”. Zenodo https://doi.org/10.5281/zenodo.7024572 (2022).Article 

    Google Scholar  More