More stories

  • in

    The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low

    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2012).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fitt, W., Brown, B., Warner, M. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65. https://doi.org/10.1007/s003380100146 (2001).Article 

    Google Scholar 
    Fujise, L., Yamashita, H., Suzuki, G. & Koike, K. Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: comparison under non-stress conditions and thermal stress conditions. Galaxea, JCRS 15, 29–36. https://doi.org/10.3755/galaxea.15.29 (2013).Article 

    Google Scholar 
    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS USA https://doi.org/10.1073/pnas.2022653118 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wooldridge, S. A. Breakdown of the coral-algae symbiosis. Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10, 1647–1658 (2013).ADS 
    Article 

    Google Scholar 
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Peña-García, D., Ladwig, N., Turki, A. J. & Mudarris, M. S. Input and dispersion of nutrients from the Jeddah Metropolitan Area, Red Sea. Mar. Pollut. Bull. 80, 41–51. https://doi.org/10.1016/j.marpolbul.2014.01.052 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrier-Pagés, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113. https://doi.org/10.1007/s003380000078 (2000).Article 

    Google Scholar 
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187. https://doi.org/10.1016/j.marpolbul.2017.02.044 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, K. et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 33, 1486–1501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH 4+ and NO 3− supply. Proc. R. Soc. B. 282, 20150610 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).ADS 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, e54 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PloS one 8, e54399 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. Biol. Sci. 282, 20152257 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930. https://doi.org/10.1038/s41396-018-0046-8 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Barros, F. et al. Unravelling the different causes of nitrate and ammonium effects on coral bleaching. Sci. Rep. 10, 11975 (2020).ADS 
    Article 

    Google Scholar 
    Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone. A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs. Beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    van de Water, J. A. J. M., Allemand, D. & Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts—recent advances and perspectives. Microbiome 6, 64 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Syms, C. & Jones, G. P. Dysturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81, 2714–2729 (2000).Article 

    Google Scholar 
    Syms, C. & Jones, G. P. Soft corals exert no direct effects on coral reef fish assemblages. Oecologia 127, 560–571. https://doi.org/10.1007/s004420000617 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fishes 102, 479–497 (2019).Article 

    Google Scholar 
    Janes, M. P. Distribution and diversity of the soft coral family Xeniidae (Coelenterata: Octocorallia) in Lembeh Strait, Indonesia. Galaxea, JCRS 15, 195–200 (2013).Article 

    Google Scholar 
    Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields. Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).Article 

    Google Scholar 
    Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. PNAS USA 110, 8978–8983 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ 15 N and δ 13 C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).Article 

    Google Scholar 
    Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T. & Ogawa, H. Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol. Oceanogr. 52, 1139–1146 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).CAS 
    Article 

    Google Scholar 
    Dagenais-Bellefeuille, S. & Morse, D. Putting the N in dinoflagellates. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00369 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wooldridge, S. A. A new conceptual model for the warm-water breakdown of the coral—algae endosymbiosis. Mar. Freshwater Res. 60, 483 (2009).CAS 
    Article 

    Google Scholar 
    Moed, J. R. & Hallegraeff, G. M. Some problems in the estimation of chlorophyll-a and phaeopigments from pre- and post-acidification spectrophotometrie measurements. Int. Revue Ges. Hydrobiol. Hydrogr. 63, 787–800 (1978).CAS 
    Article 

    Google Scholar 
    Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, A221-230A (1958).
    Google Scholar 
    Pupier, C. A., Bednarz, V. N. & Ferrier-Pagès, C. Studies with soft corals—recommendations on sample processing and normalization metrics. Front. Mar. Sci. 5, 2620 (2018).Article 

    Google Scholar 
    Pupier, C. A. et al. Dissolved nitrogen acquisition in the symbioses of soft and hard corals with Symbiodiniaceae: A key to understanding their different nutritional strategies?. Front. Microbiol. 12, 657759 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).CAS 
    PubMed 

    Google Scholar 
    Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).PubMed 

    Google Scholar 
    Ezzat, L., Towle, E., Irisson, J.-O., Langdon, C. & Ferrier-Pagès, C. The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limnol. Oceanogr. 61, 89–102 (2016).ADS 
    Article 

    Google Scholar 
    Dobson, K. L. et al. Moderate nutrient concentrations are not detrimental to corals under future ocean conditions. Mar. Biol. https://doi.org/10.1007/s00227-021-03901-3 (2021).Article 

    Google Scholar 
    Strychar, K. B., Coates, M., Sammarco, P. W., Piva, T. J. & Scott, P. T. Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp.. J. Exp. Mar. Biol. Ecol. 320, 159–177. https://doi.org/10.1016/j.jembe.2004.12.039 (2005).Article 

    Google Scholar 
    Sammarco, P. W. & Strychar, K. B. Responses to high seawater temperatures in zooxanthellate octocorals. PloS one 8, e54989 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Change Biol. 24, e474–e484. https://doi.org/10.1111/gcb.13895 (2018).Article 

    Google Scholar 
    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Change Biol. 19, 3640–3647 (2013).ADS 
    Article 

    Google Scholar 
    Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. 66, 1718–1729 (2021).ADS 
    Article 

    Google Scholar 
    Sawall, Y. et al. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci. Rep. 5, 8940 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carpenter, E. J., Harvey, H., Fry, B. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I: Oceanogr. Res. Pap. 44, 27–38 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).ADS 
    Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ 5, e3802 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).ADS 
    Article 

    Google Scholar 
    Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubinsky, Z. V. Y. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B.: Biol. Sci. 239, 231–246 (1990).ADS 

    Google Scholar 
    Fabricius, K. E. Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching?. Limnol. Oceanogr. 51, 30–37 (2006).ADS 
    Article 

    Google Scholar 
    Nordemar, I., Nyström, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).CAS 
    Article 

    Google Scholar 
    Lewis, J. B. Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). J. Zool. 196, 371–384 (1982).Article 

    Google Scholar 
    Studivan, M. S., Hatch, W. I. & Mitchelmore, C. L. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant. SpringerPlus 4, 80 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parrin, A. P. et al. Symbiodinium migration mitigates bleaching in three octocoral species. J. Exp. Mar. Biol. Ecol. 474, 73–80 (2016).Article 

    Google Scholar 
    Parrin, A. P. et al. Within-colony migration of symbionts during bleaching of octocorals. Biol. Bull. 223, 245–256 (2012).PubMed 
    Article 

    Google Scholar 
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome. Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51, 253–265 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).Article 
    PubMed 

    Google Scholar 
    Gruber, R. et al. Marine monitoring program: Annual report for inshore water quality monitoring 2018–19. Report for the Great Barrier Reef Marine Park Authority. GBRMPA, Townsville (2020).Dinesen, Z. D. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1, 229–236. https://doi.org/10.1007/BF00304420 (1983).ADS 
    Article 

    Google Scholar 
    Benayahu, Y. et al. Octocorals of the Indo-Pacific. In Mesophotic Coral Ecosystems Vol. 12 (eds Loya, Y. et al.) 709–728 (Springer International Publishing, Cham, 2019).Chapter 

    Google Scholar 
    Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: Influence of natural and anthropogenic factors. Aquat. Conserv. 18, 1109–1126 (2008).Article 

    Google Scholar 
    D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs. New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article 

    Google Scholar 
    Wooldridge, S. A. & Done, T. J. Improved water quality can ameliorate effects of climate change on corals. Ecol. Appl. 19, 1492–1499 (2009).PubMed 
    Article 

    Google Scholar 
    Nugues, M. M. & Roberts, C. M. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs. Mar. Pollut. Bull. 46, 314–323 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton analysis – haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, edited by B. Karlson, C. Cusack & E. Bresnan (IOC UNESCO, Paris, France, 2010), pp. 25–30.Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).CAS 
    Article 

    Google Scholar 
    D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).ADS 
    Article 

    Google Scholar 
    Feys, J. Nonparametric tests for the interaction in two-way factorial designs using R. R J. 8, 367 (2016).Article 

    Google Scholar 
    Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Soft. 50, 1–23 (2012).Article 

    Google Scholar 
    Schlöder, C. & D’Croz, L. Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. J. Exp. Mar. Biol. Ecol. 313, 255–268 (2004).Article 

    Google Scholar 
    Faxneld, S., Jörgensen, T. L. & Tedengren, M. Effects of elevated water temperature, reduced salinity and nutrient enrichment on the metabolism of the coral Turbinaria mesenterina. Estuar. Coast. Shelf Sci. 88, 482–487 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Chumun, P. K. et al. High nitrate levels exacerbate thermal photo-physiological stress of zooxanthellae in the reef-building coral Pocillopora damicornis. Eco-Eng. 25, 1–9 (2013).
    Google Scholar 
    Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. Stud. Mar. Sci. 2, 27–31 (2015).
    Google Scholar  More

  • in

    Silvopastoral systems and remnant forests enhance carbon storage in livestock-dominated landscapes in Mexico

    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Phelps, L. N. & Kaplan, J. O. Land use for animal production in global change studies: Defining and characterizing a framework. Glob. Change Biol. 23, 4457–4471 (2017).ADS 
    Article 

    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knorr, W., Prentice, I. C., House, J. & Holland, E. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. 114, 9575–9580 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 1–11 (2020).Article 

    Google Scholar 
    Zomer, R. J. et al. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 6, 1–12 (2016).Article 

    Google Scholar 
    De Stefano, A. & Jacobson, M. G. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor. Syst. 92, 285–299 (2018).
    Google Scholar 
    Bossio, D. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).Article 

    Google Scholar 
    England, J. R., O’Grady, A. P., Fleming, A., Marais, Z. & Mendham, D. Trees on farms to support natural capital: An evidence-based review for grazed dairy systems. Sci. Total Environ. 704, 135345 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, Z., Chen, H. Y., Bork, E. W., Carlyle, C. N. & Chang, S. X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 29, 1817–1828 (2020).Article 

    Google Scholar 
    FAOSTAT. Data/Inputs/land use. In: Food Agriculture Organization. http://www.fao.org/faostat/en/#data/RL. (2020). Accessed 12 Sept 2020.Shukla, P. R. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (Intergovernmental Panel on Climate Change, 2019).Galdino, S. et al. Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 27, 773–784 (2016).Article 

    Google Scholar 
    Stanimirova, R. et al. Sensitivity of global pasturelands to climate variation. Earth’s Future 7, 1353–1366 (2019).ADS 
    Article 

    Google Scholar 
    Tolimir, M. et al. The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Mendoza-Ponce, A., Corona-Núñez, R., Kraxner, F., Leduc, S. & Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Change. 53, 12–23 (2018).Article 

    Google Scholar 
    Castillo-Santiago, M., Hellier, A., Tipper, R. & De Jong, B. Carbon emissions from land-use change: An analysis of causal factors in Chiapas, Mexico. Mitig. Adapt. Strat. Glob. Change 12, 1213–1235 (2007).Article 

    Google Scholar 
    Kolb, M. & Galicia, L. Scenarios and story lines: drivers of land use change in southern Mexico. Environ. Dev. Sustain. 20, 681–702 (2018).Article 

    Google Scholar 
    Aryal, D. R. et al. Biomass accumulation in forests with high pressure of fuelwood extraction in Chiapas, Mexico. Revista Árvore 42, e420307 (2018).Article 

    Google Scholar 
    Aryal, D. R. et al. Soil organic carbon depletion from forests to grasslands conversion in Mexico: A review. Agriculture 8, 181 (2018).CAS 
    Article 

    Google Scholar 
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chapman, M. et al. Large climate mitigation potential from adding trees to agricultural lands. Glob. Change Biol. 26, 4357–4365 (2020).ADS 
    Article 

    Google Scholar 
    Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).Article 

    Google Scholar 
    Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S. & Khan, M. L. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci. Rep. 10, 1–15 (2020).Article 

    Google Scholar 
    Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. 111, 3709–3714 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Resende, L. O. et al. Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agroforestry Syst. 94, 893–903 (2020).Article 

    Google Scholar 
    Sans, G. H. C., Verón, S. R. & Paruelo, J. M. Forest strips increase connectivity and modify forests’ functioning in a deforestation hotspot. J. Environ. Manage. 290, 112606 (2021).Article 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lawson, G., Dupraz, C. & Watté, J. Can silvoarable systems maintain yield, resilience, and diversity in the face of changing environments? in Agroecosystem Diversity 145–168 (Elsevier, 2019).Ramakrishnan, S. et al. Silvopastoral system for resilience of key soil health indicators in semi-arid environment. Arch. Agron. Soil Sci. 67, 1834–1847 (2021).CAS 
    Article 

    Google Scholar 
    Gerber, P. J. et al. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities (Food and Agriculture Organization of the United Nations (FAO), 2013).
    Google Scholar 
    Haberl, H. Method précis: Human appropriation of net primary production (HANPP). In Social Ecology. Society-Nature Relations across Time and Space (eds Haberl, H. et al.) 332–334 (Springer Nature, 2016).
    Google Scholar 
    Smith, P. et al. Global change pressures on soils from land use and management. Glob. Change Biol. 22, 1008–1028 (2016).ADS 
    Article 

    Google Scholar 
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change. 6, 452–461 (2016).ADS 
    Article 

    Google Scholar 
    Lorenz, K. & Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Develop. 34, 443–454 (2014).CAS 
    Article 

    Google Scholar 
    Michalk, D. L. et al. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 30, 561–573 (2019).Article 

    Google Scholar 
    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).ADS 
    Article 

    Google Scholar 
    Pinheiro, F. M., Nair, P. R., Nair, V. D., Tonucci, R. G. & Venturin, R. P. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. J. Environ. Manage. 299, 113676 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jose, S., Walter, D. & Kumar, B. M. Ecological considerations in sustainable silvopasture design and management. Agrofor. Syst. 93, 317–331 (2019).Article 

    Google Scholar 
    Oldfield, E. E. et al. Crediting agricultural soil carbon sequestration. Science 375, 1222–1225 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Udawatta, R. P., Walter, D. & Jose, S. Carbon sequestration by forests and agroforests: A reality check for the United States. Carbon Footprints 1, 8 (2022).Article 

    Google Scholar 
    Adame-Castro, D. E. et al. Diurnal and seasonal variations on soil CO2 fluxes in tropical silvopastoral systems. Soil Use Manag. 36, 671–681 (2020).Article 

    Google Scholar 
    Contosta, A. R., Asbjornsen, H., Orefice, J., Perry, A. & Smith, R. G. Climate consequences of temperate forest conversion to open pasture or silvopasture. Agric. Ecosyst. Environ. 333, 107972 (2022).CAS 
    Article 

    Google Scholar 
    Vargas-Zeppetello, L. R. et al. Consistent cooling benefits of silvopasture in the tropics. Nat. Commun. 13, 1–9 (2022).
    Google Scholar 
    Casanova-Lugo, F. et al. Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangel. Ecol. Manage. 80, 31–38 (2022).Article 

    Google Scholar 
    Valenzuela Que, F. G. et al. Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use Manag. 38, 1237–1249 (2022).Article 

    Google Scholar 
    Nair, P. R. Classification of agroforestry systems. Agrofor. Syst. 3, 97–128 (1985).Article 

    Google Scholar 
    Somarriba, E., Kass, D. & Ibrahim, M. Definition and classification of agroforestry systems. Agroforestry Prototypes for Belize. Agroforestry Project. CATIE (Tropical Agricultural Research and Higher Education Center), Costa rica 3 (1998).Schroth, G. et al. Agroforestry and Biodiversity Conservation in Tropical Landscapes (Island Press, 2004).
    Google Scholar 
    Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. 16, 1986–1999 (2006).PubMed 
    Article 

    Google Scholar 
    Cardinael, R., Mao, Z., Chenu, C. & Hinsinger, P. Belowground functioning of agroforestry systems: Recent advances and perspectives. Plant Soil. 1–13 (2020).Ibrahim, M. & Beer, J. Agroforestry Prototypes for Belize Vol. 28 (CATIE, 1998).
    Google Scholar 
    Ibrahim, M., Villanueva, C., Casasola, F. & Rojas, J. Sistemas silvopastoriles como una herramienta para el mejoramiento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Pastos y Forrajes 29, 383–419 (2006).
    Google Scholar 
    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 333, 1289–1291 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Zanten, H. H. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).ADS 
    Article 

    Google Scholar 
    Torres, C. M. M. E. et al. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Sci. Rep. 7, 1–7 (2017).Article 

    Google Scholar 
    Haile, S. G., Nair, V. D. & Nair, P. R. Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob. Change Biol. 16, 427–438 (2010).ADS 
    Article 

    Google Scholar 
    Chatterjee, N., Nair, P. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67 (2018).Article 

    Google Scholar 
    Aynekulu, E. et al. Carbon storage potential of silvopastoral systems of Colombia. Land 9, 309 (2020).Article 

    Google Scholar 
    Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above-and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 
    Article 

    Google Scholar 
    Dahlsjö, C. A. et al. The local impact of macrofauna and land-use intensity on soil nutrient concentration and exchangeability in lowland tropical Peru. Biotropica 52, 242–251 (2020).Article 

    Google Scholar 
    Vizcaíno-Bravo, Q., Williams-Linera, G. & Asbjornsen, H. Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic Appl. Ecol. 44, 24–34 (2020).Article 

    Google Scholar 
    Villanueva-López, G., Martínez-Zurimendi, P., Ramírez-Avilés, L., Aryal, D. R. & Casanova-Lugo, F. Live fences reduce the diurnal and seasonal fluctuations of soil CO 2 emissions in livestock systems. Agron. Sustain. Dev. 36, 23 (2016).Article 

    Google Scholar 
    López-Santiago, J. G. et al. Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Syst. 93, 199–211 (2019).Article 

    Google Scholar 
    Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R. & Morales-Ruiz, D. E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Syst. 93, 213–227 (2019).Article 

    Google Scholar 
    Beckert, M. R., Smith, P., Lilly, A. & Chapman, S. J. Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agrofor. Syst. 90, 371–383 (2016).Article 

    Google Scholar 
    Cárdenas, A., Moliner, A., Hontoria, C. & Ibrahim, M. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor. Syst. 93, 229–239 (2019).Article 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Amézquita, M. C., Ibrahim, M., Llanderal, T., Buurman, P. & Amézquita, E. Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J. Sustain. For. 21, 31–49 (2004).Article 

    Google Scholar 
    Rosenstock, T. S. et al. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agric. Ecosyst. Environ. 284, 106569 (2019).Article 

    Google Scholar 
    Junior, M. A. L., Fracetto, F. J. C., da Silva Ferreira, J., Silva, M. B. & Fracetto, G. G. M. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. CATENA 189, 104508 (2020).Article 

    Google Scholar 
    Villanueva-Partida, C. et al. Influence of the density of scattered trees in pastures on the structure and species composition of tree and grass cover in southern Tabasco, Mexico. Agric. Ecosyst. Environ. 232, 1–8 (2016).Article 

    Google Scholar 
    Morantes-Toloza, J. L. & Renjifo, L. M. Live fences in tropical production systems: A global review of uses and perceptions. Rev. Biol. Trop. 66, 739–753 (2018).Article 

    Google Scholar 
    MoralesRuiz, D. E. et al. Carbon contents and fine root production in tropical silvopastoral systems. Land Degrad. Develop. 32, 738–756 (2021).Article 

    Google Scholar 
    Hoosbeek, M. R., Remme, R. P. & Rusch, G. M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 92, 263–273 (2018).
    Google Scholar 
    Aryal, D. R. et al. Fine wood decomposition rates decline with the sge of tropical successional forests in Southern Mexico: Implications to ecosystem carbon storage. Ecosystems 25, 661–677 (2022).CAS 
    Article 

    Google Scholar 
    Dignac, M.-F. et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Develop. 37, 1–27 (2017).CAS 
    Article 

    Google Scholar 
    Sánchez-Silva, S. et al. Fine root biomass stocks but not the production and turnover rates vary with the age of tropical successional forests in Southern Mexico. Rhizosphere 21, 100474 (2022).Article 

    Google Scholar 
    Montejo-Martínez, D. et al. Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals. Agrofor. Syst. 94, 843–855 (2020).Article 

    Google Scholar 
    Sánchez-Silva, S., De Jong, B. H., Aryal, D. R., Huerta-Lwanga, E. & Mendoza-Vega, J. Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. J. Trop. Ecol. 34, 364–377 (2018).Article 

    Google Scholar 
    Waters, C. M., Orgill, S. E., Melville, G. J., Toole, I. D. & Smith, W. J. Management of grazing intensity in the semi-arid rangelands of Southern Australia: Effects on soil and biodiversity. Land Degrad. Dev. 28, 1363–1375 (2017).Article 

    Google Scholar 
    Baldassini, P. & Paruelo, J. M. Deforestation and current management practices reduce soil organic carbon in the semi-arid Chaco, Argentina. Agric. Syst. 178, 102749 (2020).Article 

    Google Scholar 
    Abdalla, M. et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 253, 62–81 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).ADS 
    Article 

    Google Scholar 
    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Lim, S.-S. et al. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol. Manage. 417, 103–109 (2018).ADS 
    Article 

    Google Scholar 
    Nair, P. Carbon sequestration studies in agroforestry systems: A reality-check. Agrofor. Syst. 86, 243–253 (2012).Article 

    Google Scholar 
    Montagnini, F., Ibrahim, M. & Murgueitio, E. Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des tropiques 316, 3–16 (2013).Article 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Sarto, M. V. et al. Soil microbial community and activity in a tropical integrated crop-livestock system. Appl. Soil. Ecol. 145, 103350 (2020).Article 

    Google Scholar 
    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Bautista, F., Palacio-Aponte, G., Quintana, P. & Zinck, J. A. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135, 308–321 (2011).ADS 
    Article 

    Google Scholar 
    Kaiser, M. et al. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long‐term arable and forest land use. J. Geophys. Res. Biogeosci. 117, (2012).Castillo, M. S., Tiezzi, F. & Franzluebbers, A. J. Tree species effects on understory forage productivity and microclimate in a silvopasture of the Southeastern USA. Agric. Ecosyst. Environ. 295, 106917 (2020).Article 

    Google Scholar 
    Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7 (2019).
    Google Scholar 
    Grass, I. et al. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat. 1, 262–272 (2019).
    Google Scholar 
    Orefice, J., Smith, R. G., Carroll, J., Asbjornsen, H. & Howard, T. Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agrofor. Syst. 93, 51–65 (2019).Article 

    Google Scholar 
    Aryal, D. R. et al. Potencial de almacenamiento de carbono en áreas forestales en un sistema ganadero. Revista mexicana de ciencias forestales 9, 150–180 (2018).Article 

    Google Scholar 
    Gobierno de la Republica. Intended Nationally Determined Contribution, Mexico. (Instituto Nacional de Ecología y Cambio Climático, Mexico City, 2015).Bonilla-Moheno, M. & Aide, T. M. Beyond deforestation: Land cover transitions in Mexico. Agric. Syst. 178, 102734 (2020).Article 

    Google Scholar 
    INEGI. Mapa de uso de suelo y vegetación de México: Series I–VII. Instituto Nacional de Estadística y Geografía (INEGI), Aguascalientes, Mexico. https://www.inegi.org.mx/temas/usosuelo/#Map (2018). Accessed 17 Aug 2022.Gosling, E., Reith, E., Knoke, T. & Paul, C. A goal programming approach to evaluate agroforestry systems in Eastern Panama. J. Environ. Manage. 261, 110248 (2020).PubMed 
    Article 

    Google Scholar 
    Bergier, I. et al. Could bovine livestock intensification in Pantanal be neutral regarding enteric methane emissions?. Sci. Total Environ. 655, 463–472 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barkin, D. E. uso de la tierra agrícola en Mexico. Problemas del Desarrollo 12, 59–85 (1981).
    Google Scholar 
    Valdivieso-Pérez, I. A., García-Barrios, L. E., Álvarez-Solís, D. & Nahed-Toral, J. From cornfields to grasslands: Change in the quality of soil. Terra Latinoamericana. 30, 363–374 (2012).
    Google Scholar 
    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    CONAFOR. Acciones Tempranas REDD+ Mexico. https://www.gob.mx/conafor/documentos/acciones-tempranas-redd (2017). Accessed 04 Oct 2020.CATIE. Bidiversidad y paisajes ganaderos agrosilvopastoriles sostenibles. https://www.biopasos.com (2020). Accessed 04 Oct 2020.Freire-Santos, P. Z. F., Crouzeilles, R. & Sansevero, J. B. B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manage. 433, 140–145 (2019).Article 

    Google Scholar 
    Zanne, A. et al. Data from: Towards a worldwide wood economics spectrum. (2009). 10.5061/dryad.234.Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).ADS 
    Article 

    Google Scholar 
    Bojórquez, A. et al. Improving the accuracy of aboveground biomass estimations in secondary tropical dry forests. For. Ecol. Manage. 474, 118384 (2020).Article 

    Google Scholar 
    Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shannon, C.E., Weaver. A Mathematical Theory of Communication Vol. 27 (University of Illinois Press, 1964).Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34 (1948).
    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    Van Wagner, C. Practical Aspects of the Line Intersect Method Vol. 12 (Canadian Forestry Service, 1982).
    Google Scholar 
    Heanes, D. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 15, 1191–1213 (1984).CAS 
    Article 

    Google Scholar  More

  • in

    Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands

    Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).CAS 
    Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhuang, Q., Lu, Y. & Chen, M. An inventory of global N2O emissions from the soils of natural terrestrial ecosystems. Atm. Environ. 47, 66–75 (2012).CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. J. Geophys. Res. 113, D17313 (2008).Article 

    Google Scholar 
    D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009).Article 

    Google Scholar 
    Teh, Y. A., Murphy, W. A., Berrio, J.-C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).CAS 
    Article 

    Google Scholar 
    Finn, D. R. et al. Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza-Marañón Basin, Peruvian Amazonia. Front. Microbiol. 11, 746 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buessecker, S. et al. Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms. Biogeosciences 16, 4601–4612 (2019).CAS 
    Article 

    Google Scholar 
    Heil, J., Liu, S., Vereecken, H. & Brüggemann, N. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biol. Biochem. 84, 107–115 (2015).CAS 
    Article 

    Google Scholar 
    Samarkin, V. A. et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3, 341–344 (2010).CAS 
    Article 

    Google Scholar 
    Otte, J. M. et al. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 9, 10691 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, L. C., Peters, B., Pacheco, J. S. L., Casciotti, K. L. & Fendorf, S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 49, 3444–3452 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolman, W. B. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024 (2010).CAS 
    Article 

    Google Scholar 
    Holtan-Hartwig, L., Dörsch, P. & Bakken, L. R. Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biol. Biochem. 34, 1797–1806 (2002).CAS 
    Article 

    Google Scholar 
    Gorelsky, S. I., Ghosh, S. & Solomon, E. I. Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J. Am. Chem. Soc. https://doi.org/10.1021/ja055856o (2005).Tsai, M.-L. et al. [Cu2O]2+ active site formation in Cu–ZSM-5: geometric and electronic structure requirements for N2O activation. J. Am. Chem. Soc. https://doi.org/10.1021/ja4113808 (2014).Sanford, R. A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl Acad. Sci. USA 109, 19709–19714 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Change 4, 801–805 (2014).CAS 
    Article 

    Google Scholar 
    Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26, 43–55 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lycus, P. et al. A bet-hedging strategy for denitrifying bacteria curtails their release of N2O. Proc. Natl Acad. Sci. USA 115, 11820–11825 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, L. C., Stevens, R. J. & Laughlin, R. J. Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biol. Biochem. 27, 839–844 (1995).CAS 
    Article 

    Google Scholar 
    Burns, L. C., Stevens, R. J. & Laughlin, R. J. Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biol. Biochem. 28, 609–616 (1996).CAS 
    Article 

    Google Scholar 
    Wullstein, L. H. & Gilmour, C. M. Non-enzymatic formation of nitrogen gas. Nature 210, 1150–1151 (1966).CAS 
    Article 

    Google Scholar 
    Liu, S., Schloter, M., Hu, R., Vereecken, H. & Brüggemann, N. Hydroxylamine contributes more to abiotic N2O production in soils than nitrite. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00047 (2019).Thorn, K. A. & Mikita, M. A. Nitrite fixation by humic substances: nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification. Soil Sci. Soc. Am. J. 64, 568–582 (2000).CAS 
    Article 

    Google Scholar 
    Thorn, K. A., Younger, S. J. & Cox, L. G. Order of functionality loss during photodegradation of aquatic humic substances. J. Environ. Qual. 39, 1416–1428 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).Article 

    Google Scholar 
    Lovley, D. R. & Blunt-Harris, E. L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65, 4252–4254 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kappler, A., Benz, M., Schink, B. & Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 47, 85–92 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Cleemput, O., Patrick, W. H. & McIlhenny, R. C. Nitrite decomposition in flooded soil under different pH and redox potential conditions. Soil Sci. Soc. Am. J. 40, 55–60 (1976).Article 

    Google Scholar 
    Van Cleemput, O. & Baert, L. Nitrite: a key compound in N loss processes under acid conditions? Plant Soil 76, 233–241 (1984).Article 

    Google Scholar 
    Porter, L. K. Gaseous products produced by anaerobic reaction of sodium nitrite with oxime compounds and oximes synthesized from organic matter. Soil Sci. Soc. Am. J. 33, 696–702 (1969).CAS 
    Article 

    Google Scholar 
    Liu, B., Mørkved, P. T., Frostegård, Å. & Bakken, L. R. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 72, 407–417 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Domeignoz-Horta, L. et al. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00971 (2015).Domeignoz-Horta, L. A. et al. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Glob. Change Biol. 24, 360–370 (2018).Article 

    Google Scholar 
    Onley, J. R., Ahsan, S., Sanford, R. A. & Löffler, F. E. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl. Environ. Microbiol. 84, 4 (2018).Article 

    Google Scholar 
    Sanford, R. A., Cole, J. R. & Tiedje, J. M. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893–900 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohr, K. I., Zindler, T., Wink, J., Wilharm, E. & Stadler, M. Myxobacteria in high moor and fen: an astonishing diversity in a neglected extreme habitat. MicrobiologyOpen 6, e00464 (2017).PubMed Central 
    Article 

    Google Scholar 
    Hori, T., Müller, A., Igarashi, Y., Conrad, R. & Friedrich, M. W. Identification of iron-reducing microorganisms in anoxic rice paddy soil by ¹³C-acetate probing. ISME J. 4, 267–278 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kawaichi, S. et al. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum ‘Chloroflexi’ isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int. J. Sys. Evol. Microbiol. 63, 2992–3002 (2013).CAS 
    Article 

    Google Scholar 
    Podosokorskaya, O. A. et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ. Microbiol. 15, 1759–1771 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon, S. et al. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I nosz from those harboring clade II NosZ. Appl. Environ. Microbiol. 82, 3793–3800 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maher, B. A. & Taylor, R. M. Formation of ultrafine-grained magnetite in soils. Nature 336, 368–370 (1988).CAS 
    Article 

    Google Scholar 
    Sanchez, P. A. Properties and Management of Soils in the Tropics (Wiley, 1976).White, A. F. et al. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim. Cosmochim. Acta 62, 209–226 (1998).CAS 
    Article 

    Google Scholar 
    Hall, S. J., Liptzin, D., Buss, H. L., DeAngelis, K. & Silver, W. L. Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130, 177–190 (2016).CAS 
    Article 

    Google Scholar 
    Buchwald, C., Grabb, K., Hansel, C. M. & Wankel, S. D. Constraining the role of iron in environmental nitrogen transformations: dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016).CAS 
    Article 

    Google Scholar 
    Grabb, K. C., Buchwald, C., Hansel, C. M. & Wankel, S. D. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochim. Cosmochim. Acta 196, 388–402 (2017).CAS 
    Article 

    Google Scholar 
    Drewer, J. et al. Linking nitrous oxide and nitric oxide fluxes to microbial communities in tropical forest soils and oil palm plantations in Malaysia in laboratory incubations. Front. For. Glob. Change 3, 4 (2020).Article 

    Google Scholar 
    Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature – a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).Article 

    Google Scholar 
    Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. USA 115, 12407–12412 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stumm, W. & Lee, G. F. Oxygenation of ferrous iron. Ind. Eng. Chem. 53, 143–146 (1961).CAS 
    Article 

    Google Scholar 
    Theis, T. L. & Singer, P. C. Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ. Sci. Technol. 8, 569–573 (1974).CAS 
    Article 

    Google Scholar 
    Wan, X. et al. Complexation and reduction of iron by phenolic substances: implications for transport of dissolved Fe from peatlands to aquatic ecosystems and global iron cycling. Chem. Geol. 498, 128–138 (2018).CAS 
    Article 

    Google Scholar 
    Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prananto, J. A., Minasny, B., Comeau, L.-P., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).Article 

    Google Scholar 
    Stirling, E., Fitzpatrick, R. W. & Mosley, L. Drought effects on wet soils in inland wetlands and peatlands. Earth Sci. Rev. 210, 103387 (2020).CAS 
    Article 

    Google Scholar 
    Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Babbin, A. R., Bianchi, D., Jayakumar, A. & Ward, B. B. Rapid nitrous oxide cycling in the suboxic ocean. Science 348, 1127–1129 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamilton, S. K. & Ostrom, N. E. Measurement of the stable isotope ratio of dissolved N2 in 15N tracer experiments. Limnol. Oceanogr. Methods 5, 233–240 (2007).CAS 
    Article 

    Google Scholar 
    Ostrom, N. E., Gandhi, H., Trubl, G. & Murray, A. E. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. Geobiology 14, 575–587 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stumm, W. & Morgan, J. J. Aquatic Chemistry 3rd edn (John Wiley & Sons, 1996).Homyak, P. M., Kamiyama, M., Sickman, J. O. & Schimel, J. P. Acidity and organic matter promote abiotic nitric oxide production in drying soils. Glob. Change Biol. 23, 1735–1747 (2017).Article 

    Google Scholar 
    Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181–5189 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7, 417–426 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, B. et al. A new primer set for clade I nosZ that recovers genes from a broader range of taxa. Biol. Fertil. Soils 57, 523–531 (2021).CAS 
    Article 

    Google Scholar 
    Herbold, C. W. et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 6, 8966 (2015).Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/early/2016/10/15/081257 (2016).Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using Framebot, a new informatics tool. mBio 4, e00592-13 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fish, J. A. et al. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huson, D. H. et al. MEGAN Community Edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huson, D. H. et al. MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct 13, 6 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12, 385 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Saving the Amazon: how science is helping Indigenous people protect their homelands

    One thing that the team at Los Amigos did not do is peer deeper into the reserve to try to determine where the Mashco Piro are camped out. Gutiérrez says the decision on whether to establish some kind of monitoring system for isolated communities rests with governments and Indigenous groups, but few doubt that it is possible.
    Some researchers worry about the implications of this kind of work. Greg Asner, an ecologist at Arizona State University in Tempe, regularly captured evidence of encampments of isolated groups more than a decade ago, when his team was surveying the Peruvian Amazon in a plane equipped with a powerful laser-based system that provides 3D images of the forest. He flagged the images to his sources at Peru’s environment ministry, but never saw the groups themselves as a legitimate research topic. Even today, he doesn’t see the value in actively tracking them.
    “It’s creepy, like describing the home range of jaguars, but human rights are different than jaguar rights,” says Asner. “If we know they are in there, why do we need to know exactly where they are sleeping at night?”
    Despite the ethical worries about monitoring, some Indigenous leaders are open to the idea. Knowing where isolated groups are could help surrounding Indigenous communities to prevent unintended and dangerous contact, but “it is the Indigenous organizations that should implement and execute any system of control and surveillance of the Indigenous peoples in isolation,” says Julio Cusurichi, president of FENAMAD, which has worked with the Peruvian government to prevent contact and conflict since the Mashco Piro began to emerge.
    FENAMAD was also instrumental in pushing for the creation of the Madre de Dios reserve in 2002. Twenty years later, however, the reserve’s borders have yet to be finalized, and the Indigenous organization is still pushing to expand the eastern boundary to cover areas where the Mashco Piro are known to roam. The problem is that these same areas are currently occupied by logging concessions, which would be costly for the government to cancel.

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    Julio Cusurichi, president of the Native Federation of the Madre de Dios River and Tributaries (FENAMAD).

    For Cusurichi, the killing of the logger in August is yet another reminder of the precarious situation along the border of the reserve and the risks to both outsiders and the Mashco Piro. Too often, he contends, the government is more concerned with protecting economic interests than the rights of isolated peoples.
    Tauli-Corpuz, the former UN rapporteur, has little doubt that scientists mean well, but she worries about any efforts to document the precise location of isolated groups. “If this information falls into the wrong hands, these people will be disturbed in ways they could never imagine,” she says.
    Officials from the culture ministry acknowledged these dangers in discussions with Nature, and said they were looking at potential regulations to control the flow of information and restrict who can peer into the reserves.
    Although Forsyth says the ministry is full of people who want to do the right thing, he is wary of assuming that government officials always mean well. In Brazil, critics have accused President Bolsonaro, a right-wing populist, of sidelining scientists at FUNAI and attempting to appoint a former Christian missionary to head the division that handles isolated peoples. In the Madre de Dios region, the former governor, Luis Hidalgo Okimura, disappeared in February just before he was to be jailed in connection with an investigation into an illegal logging ring.
    “In some cases, the government may not be trustworthy,” Forsyth warns. He places more faith in Indigenous organizations and their advocates. “Giving them access to whatever information they would like or can’t generate themselves ought to be the priority.” More

  • in

    Asteroid smash and poaching decline

    As the Italian probe LICIACube whizzed past asteroids Didymos (bottom) and Dimorphos (top), it captured a debris plume spraying out from the DART spacecraft as it smashed into Dimorphos.Credit: ASI/NASA

    Astronomers see fireworks as spacecraft ploughs into asteroidTelescopes in space and across Earth captured the spectacular aftermath of NASA’s Double Asteroid Redirection Test (DART) spacecraft crashing into the asteroid Dimorphos on 26 September.The goal was to knock the harmless space rock into a slightly different orbit to test whether humanity could do such a thing if a dangerous asteroid were ever detected heading for Earth. The smash-up was “the first human experiment to deflect a celestial body”, says Thomas Zurbuchen, NASA’s associate administrator for science, and “an enormous success”.A ringside view came from LICIACube, a tiny Italian spacecraft that flew along with DART and photographed the impact, which took place 11 million kilometres from Earth. LICIACube’s first images, released by the Italian Space Agency on 27 September, show a large fireworks-like plume of rocks and other debris coming off Dimorphos (pictured, top) after DART had ploughed into it.It will take days to weeks before mission scientists can confirm whether the test worked, and did in fact cut the time it takes Dimorphos to orbit its partner asteroid, Didymos (pictured, bottom), by 10–15 minutes.

    The shell of the endangered hawksbill sea turtle (pictured) is prized for trinkets and jewellery.Credit: Reinhard Dirscherl/SPL

    Sea turtles swim more freely as poaching declinesPoaching is less of a threat to the survival of sea turtles than it once was, an analysis suggests (J. F. Senko et al. Glob. Change Biol. https://doi.org/gqrzzn; 2022). Illegal sea-turtle catch has dropped sharply since 2000, and most current exploitation occurs in areas with relatively healthy turtle populations.The analysis is the first worldwide estimate of the number of adult sea turtles that are moved on the black market. The authors surveyed sea-turtle specialists and sifted through documents to derive an estimate that around 1.1 million sea turtles were illegally harvested between 1990 and 2020. Nearly 90% of them were funnelled into China and Japan. Of the species that could be identified, the critically endangered hawksbill turtle (Eretmochelys imbricata; pictured), prized for its beautiful shell, was among the most frequently exploited.But the team also found that the illegal catch from 2010 to 2020 was nearly 30% lower than in the previous decade. “The silver lining is that, despite the seemingly large illegal take, exploitation is not having a negative impact on sea-turtle populations on a global scale,” says co-author Jesse Senko, a marine-conservation scientist at Arizona State University in Tempe. More

  • in

    Author Correction: Causal networks of phytoplankton diversity and biomass are modulated by environmental context

    National Center for Theoretical Sciences, Taipei, 10617, TaiwanChun-Wei Chang & Chih-hao HsiehResearch Center for Environmental Changes, Academia Sinica, Taipei, 11529, TaiwanChun-Wei Chang, Fuh-Kwo Shiah & Chih-hao HsiehFaculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiInstitute of Oceanography, National Taiwan University, Taipei, 10617, TaiwanTakeshi Miki, Fuh-Kwo Shiah & Chih-hao HsiehCenter for Biodiversity Science, Ryukoku University, Otsu, Shiga, 520-2194, JapanTakeshi MikiHealth Science Center Libraries, University of Florida, Gainesville, FL, 32611, USAHao YeUniv. Lille, CNRS, Univ, Littoral Côte D’Opale, IRD, UMR 8187, LOG— Laboratoire D’Océanologie et de Géosciences, Station Marine de Wimereux, F- 59000, Lille, FranceSami SouissiLeibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, 12587, Berlin, GermanyRita AdrianFreie Universität Berlin, Department of Biology, Chemistry and Pharmacy, 14195, Berlin, GermanyRita AdrianNational Research Institute for Agriculture, Food and Environment (INRAE), CARRTEL, Université Savoie Mont Blanc, 74200, Thonon les Bains, FranceOrlane AnnevilleCentre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, 51014, Tartu, EstoniaHelen Agasild & Peeter NõgesDepartment of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, Hikone, 522-8533, Shiga, JapanSyuhei Ban & Xin LiuKinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, P.O. Box 447, 14950, Migdal, IsraelYaron Be’eri-Shlevin, Gideon Gal & Tamar ZoharyBiodiversity Research Center, Academia Sinica, Taipei, 11529, TaiwanYin-Ru Chiang & Jiunn-Tzong WuUK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire, LA1 4AP, UKHeidrun Feuchtmayr & Stephen J. ThackerayLake Biwa Environmental Research Institute, Otsu, 520-0022, JapanSatoshi Ichise & Michio KumagaiFaculty of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8502, Kanagawa, JapanMaiko KagamiDepartment of Environmental Science, Faculty of Science, Toho University, Funabashi, Chiba, 274-8510, JapanMaiko KagamiResearch Center for Lake Biwa & Environmental Innovation, Ritsumeikan University, Kusatsu, 525-0058, Shiga, JapanMichio KumagaiBiodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanShin-Ichiro S. MatsuzakiCNR Water Research Institute (IRSA), L.go Tonolli 50, 28922, Verbania, Pallanza, ItalyMarina M. Manca, Roberta Piscia & Michela RogoraPlymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UKClaire E. WiddicombeInstitute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, 10617, TaiwanChih-hao Hsieh More

  • in

    The impact of restoration methods for Solidago-invaded land on soil invertebrates

    Bauer, T., Bäte, D. A., Kempfer, F. & Schirmel, J. Differing impacts of two major plant invaders on urban plant-dwelling spiders (Araneae) during flowering season. Biol. Invasions 23(5), 1473–1485. https://doi.org/10.1007/s10530-020-02452-w (2021).Article 

    Google Scholar 
    Ustinova, E. N., Schepetov, D. M., Lysenkov, S. N. & Tiunov, A. V. Soil arthropod communities are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and metabarcoding analyses. Soil Biol. Biochem. 159, 108288. https://doi.org/10.1016/j.soilbio.2021.108288 (2021).CAS 
    Article 

    Google Scholar 
    Tanner, R. A. et al. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom. PLoS ONE 8(6), e67271. https://doi.org/10.1371/journal.pone.0067271 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, Q. et al. The diversity of soil mesofauna decline after bamboo invasion in subtropical China. Sci. Total Environ. 789, 147982. https://doi.org/10.1016/j.scitotenv.2021.147982 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Szymura, M. & Szymura, T. H. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Species Biol. 30(4), 245–256. https://doi.org/10.1111/1442-1984.12059 (2015).Article 

    Google Scholar 
    Bobuľská, L., Demková, L., Čerevková, A. & Renčo, M. Invasive goldenrod (Solidago gigantea) influences soil microbial activities in forest and grassland ecosystems in central Europe. Diversity 11(8), 134. https://doi.org/10.3390/d11080134 (2019).CAS 
    Article 

    Google Scholar 
    Sterzyńska, M., Shrubovych, J. & Nicia, P. Impact of plant invasion (Solidago gigantea L.) on soil mesofauna in a riparian wet meadows. Pedobiologia 64, 1–7. https://doi.org/10.1016/j.pedobi.2017.07.004 (2017).Article 

    Google Scholar 
    Zubek, S. et al. Solidago canadensis invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degrad. Dev. 31(3), 1–12. https://doi.org/10.1002/ldr.3452 (2019).Article 

    Google Scholar 
    Čerevková, A., Miklisová, D., Bobul’ská, L. & Renčo, M. Impact of the invasive plant Solidago gigantea on soil nematodes in a semi-natural grassland and a temperate broadleaved mixed forest. J. Helminthol. 94, 1–14. https://doi.org/10.1017/S0022149X19000324 (2020).Article 

    Google Scholar 
    de Groot, M., Kleijn, D. & Jogan, N. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol. Conserv. 136(4), 612–617. https://doi.org/10.1016/j.biocon.2007.01.005 (2007).Article 

    Google Scholar 
    Baranová, B., Manko, P. & Jászay, T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods (Solidago canadensis, S. gigantea) with special reference to Carabidae. J. Insect. Conserv. 18(4), 623–635. https://doi.org/10.1007/s10841-014-9666-0 (2014).Article 

    Google Scholar 
    Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 (2013).Article 

    Google Scholar 
    Kajzer-Bonk, J., Szpiłyk, D. & Woyciechowski, M. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). J. Insect Conserv. 20(1), 99–105. https://doi.org/10.1007/s10841-016-9843-4 (2016).Article 

    Google Scholar 
    Trigos-Peral, G. et al. Ant communities and Solidago plant invasion: Environmental properties and food sources. Entomol. Sci. 21(3), 270–278. https://doi.org/10.1111/ens.12304 (2018).Article 

    Google Scholar 
    Fenesi, A. et al. Solidago canadensis impacts on native plant and pollinator communities in different-aged old fields. Basic Appl. Ecol. 16(4), 335–346. https://doi.org/10.1016/j.baae.2015.03.003 (2015).Article 

    Google Scholar 
    Sheley, R. L., Mangold, J. M. & Anderson, J. L. Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol. Monogr. 76(3), 365–379. https://doi.org/10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2 (2006).Article 

    Google Scholar 
    Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 20(1), 13–27. https://doi.org/10.1007/s10530-017-1529-7 (2018).Article 

    Google Scholar 
    Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B. & Brancalion, P. H. S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 57(9), 1806–1817. https://doi.org/10.1111/1365-2664.13656 (2020).Article 

    Google Scholar 
    Zaller, J. G. et al. Effects of glyphosate-based herbicides and their active ingredients on earthworms, water infiltration and glyphosate leaching are influenced by soil properties. Environ. Sci. Eur. 33(1), 1–16. https://doi.org/10.1186/s12302-021-00492-0 (2021).CAS 
    Article 

    Google Scholar 
    Szymura, M., Świerszcz, S. & Szymura, T. H. Restoration of ecologically valuable grassland on sites degraded by invasive Solidago: Lessons from a six year experiment. Land Degrad. Dev. https://doi.org/10.1002/ldr.4278 (2022).Article 

    Google Scholar 
    Świerszcz, S., Szymura, M., Wolski, K. & Szymura, T. H. Comparison of methods for restoring meadows invaded by Solidago species. Pol. J. Environ. Stud. 26(3), 1251–1258. https://doi.org/10.15244/pjoes/67338 (2017).Article 

    Google Scholar 
    Nagy, D. U. et al. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 60(3), 232–240. https://doi.org/10.1111/wre.12417 (2020).Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. https://doi.org/10.1038/nature13855 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, Oxford, 2010).
    Google Scholar 
    Gruss, I. et al. Microarthropods and vegetation as biological indicators of soil quality studied in poor sandy sites at former military facilities. Land Degrad. Dev. 33(2), 358–367. https://doi.org/10.1002/ldr.4157 (2022).Article 

    Google Scholar 
    Sabais, A. C. W., Scheu, S. & Eisenhauer, N. Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecol. 37(3), 195–202. https://doi.org/10.1016/j.actao.2011.02.002 (2011).ADS 
    Article 

    Google Scholar 
    Kardol, P. & Wardle, D. A. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25(11), 670–679. https://doi.org/10.1016/j.tree.2010.09.001 (2010).Article 
    PubMed 

    Google Scholar 
    Eviner, V. T. & Hawkes, C. V. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor. Ecol. 16(4), 713–729. https://doi.org/10.1111/j.1526-100X.2008.00482.x (2008).Article 

    Google Scholar 
    Zhao, J., Chen, J., Wu, H., Li, L. & Pan, F. Effects of mowing frequency on soil nematode diversity and community structure in a chinese meadow steppe. Sustainability 13, 5555. https://doi.org/10.3390/su13105555 (2021).Article 

    Google Scholar 
    Hyvönen, T. et al. Aboveground and belowground biodiversity responses to seed mixtures and mowing in a long-term set-aside experiment. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2021.107656 (2021).Article 

    Google Scholar 
    Gilmullina, A., Rumpel, C., Blagodatskaya, E. & Chabbi, A. Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103701 (2020).Article 

    Google Scholar 
    Kladivko, E. J. Tillage systems and soil ecology. Soil Tillage Res. 61(1–2), 61–76. https://doi.org/10.1016/S0167-1987(01)00179-9 (2001).Article 

    Google Scholar 
    Bispo, A. et al. Indicators for monitoring soil biodiversity. Integr. Environ. Assess. Manag. 5(4), 717–719 (2009).CAS 
    Article 

    Google Scholar 
    Santorufo, L., van Gestel, C. A. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boyce R. L. Life Under Your Feet: Measuring soil invertebrate diversity. Teaching Issues and Experiments in Ecology, Ecological Society of America, 3: Experiment #1. https://tiee.esa.org/vol/v3/experiments/soil/downloads.html (2005).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–656 (1948).MathSciNet 
    Article 

    Google Scholar 
    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 (1966).ADS 
    Article 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Jones, H. P. Impact of ecological restoration on ecosystem services. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 199–208 (Academic Press, New York, 2013).Chapter 

    Google Scholar 
    Menta, C. Soil fauna diversity – function, soil degradation, biological indices, soil restoration. In Biodiversity Conservation and Utilization in a Diverse World (ed. Lameed, G. A.) (IntechOpen, London, 2012).
    Google Scholar 
    Hoffland, E., Kuyper, T. W., Comans, R. N. & Creamer, R. E. Eco-functionality of organic matter in soils. Plant Soil 455(1), 1–22. https://doi.org/10.1007/s11104-020-04651-9 (2020).CAS 
    Article 

    Google Scholar 
    Huera-Lucero, T., Labrador-Moreno, J., Blanco-Salas, J. & Ruiz-Téllez, T. A framework to incorporate biological soil quality indicators into assessing the sustainability of territories in the Ecuadorian Amazon. Sustainability 12(7), 3007. https://doi.org/10.3390/su12073007 (2020).Article 

    Google Scholar 
    van Eekeren, N. et al. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 323, 107682. https://doi.org/10.1016/j.agee.2021.107682 (2022).Article 

    Google Scholar 
    Humbert, J. Y., Ghazoul, J., Sauter, G. J. & Walter, T. Impact of different meadow mowing techniques on field invertebrates. J. Appl. Entomol. 134(7), 592–599. https://doi.org/10.1111/j.1439-0418.2009.01503.x (2010).Article 

    Google Scholar 
    Steidle, J. L. M., Kimmich, T., Csader, M. & Betz, O. Negative impact of roadside mowing on arthropod fauna and its reduction with ‘arthropod-friendly’ mowing technique. J. Appl. Entomol. https://doi.org/10.1111/jen.12976 (2022).Article 

    Google Scholar 
    Briones, M. J. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).Article 

    Google Scholar 
    Shao, C., Chen, J., Li, L. & Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid Environ. 82, 1–10. https://doi.org/10.1016/j.jaridenv.2012.02.019 (2012).ADS 
    Article 

    Google Scholar 
    de Almeida, T., Forey, E. & Chauvat, M. Alien invasive plant effect on soil fauna is habitat dependent. Diversity 14(2), 61. https://doi.org/10.3390/d14020061 (2022).CAS 
    Article 

    Google Scholar 
    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107. https://doi.org/10.1016/j.soilbio.2012.02.025 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen, H. Collembolan communities in shrublands along climatic gradients in Europe and the effects of experimental warming and drought on population density, biomass and diversity. Soil Org. 83(3), 463–488 (2011).
    Google Scholar 
    Eisenhauer, N. et al. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol. Biochem. 41(12), 2430–2443. https://doi.org/10.1016/j.soilbio.2009.09.001 (2009).CAS 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055 (2011).CAS 
    Article 

    Google Scholar 
    Gao, D., Wang, X., Fu, S. & Zhao, J. Legume plants enhance the resistance of soil to ecosystem disturbance. Front. Plant Sci. 8, 1295. https://doi.org/10.3389/fpls.2017.01295 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, G., Roy, J., Veresoglou, S. D. & Rillig, M. C. Soil biodiversity enhances the persistence of legumes under climate change. New Phytol. 229(5), 2945–2956. https://doi.org/10.1111/nph.17065 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, J., Zeng, Z., He, X., Chen, H. & Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008 (2015).CAS 
    Article 

    Google Scholar 
    Zhao, J., Wang, X., Wang, X. & Fu, S. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385(1), 273–286. https://doi.org/10.1007/s11104-014-2234-2 (2014).CAS 
    Article 

    Google Scholar 
    Bonkowski, M., Villenave, C. & Griffiths, B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321, 213–233. https://doi.org/10.1007/s11104-009-0013-2 (2009).CAS 
    Article 

    Google Scholar 
    Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Hartley Lawton, J. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16(5), 819–83. https://doi.org/10.1046/j.1440-1703.2001.00443.x (2001).Article 

    Google Scholar 
    Gastine, A., Scherer-Lorenzen, M. & Leadley, P. W. No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Appl. Ecol. 24, 101–111. https://doi.org/10.1016/S0929-1393(02)00137-3 (2003).Article 

    Google Scholar 
    Scherber, C. et al. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia 147(3), 489–500. https://doi.org/10.1007/s00442-005-0281-3 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Viketoft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K. & Bengtsson, J. Plant species effects on soil nematode communities in experimental grasslands. Appl. Soil Ecol. 30(2), 90–103. https://doi.org/10.1016/j.apsoil.2005.02.007 (2005).Article 

    Google Scholar 
    Viketoft, M. et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology 90(1), 90–99. https://doi.org/10.1890/08-0382.1 (2009).Article 
    PubMed 

    Google Scholar  More

  • in

    Intraspecies characterization of bacteria via evolutionary modeling of protein domains

    Protein domains show a Gompertzian growthThe protein domain RSA distributions of 3368 bacterial genomes were obtained as detailed in the “Materials and methods” section. Briefly, for each bacterial genome we retrieved all the identifiable protein domains. Then, we computed the RSA by counting the number of protein domains belonging to each protein domain family.Three evolutionary hypotheses were tested by fitting the empirical RSAs with the Log-Series [Eq. (7)], the Negative Binomial (Eq. (6)) and the Poisson Log-Normal (Eq. (4)) distribution (Fig. 1a). According to the Akaike Information Criterion (AIC)30, in (99.97%) of bacteria the selected model was the Poisson Log-Normal (Fig. 1b). This model performed better than both the Log-Series and the Negative Binomial and described the data well, with an average (R^2) of 0.97 (minimum (R^2)=0.86). The selection of the Poisson Log-Normal model instead of the Negative Binomial or the Log-Series, implies that the protein domains evolution process is characterized by a Gompertzian density regulation function ((g(x)=gamma ln (x+epsilon ))) rather than a linear one ((g(x)=eta x)). This suggests an asymmetric process in which the proliferation rate for low abundant protein domains is faster than for the high abundant ones.Figure 1Fit of protein domains RSA. (a) Example of protein domains Preston plot fitted with three different distributions: the Poisson Log-Normal, the Negative Binomial and the Log-Series. Results refer to the bacterial genome (text {GCA}_000717515). The Negative Binomial and the Log-Series fit overlap. This implies that the dispersion parameter (alpha) of the Negative Binomial distribution (see Eq. (6)) is close to zero. The mean and the median of the dispersion parameter obtained for the 3368 bacterial genomes are ({2.67times 10^{-4}}) and ({2.62times 10^{-7}}), in agreement with the observed overlap. (b) Distribution of the difference between the AIC obtained with the Poisson Log-Normal model (PL) and the Log-Series (LS) or the Negative Binomial (NB) model, considering all the 3368 bacterial genomes.Full size imageProtein domains deactivation is faster than duplicationThe examination of the Poisson Log-Normal scale ((mu)) and location ((sigma ^2)) parameters (see Eq. (4) and Supplementary Material) estimated by the fitting procedure for each bacterial genome, allows us to reveal further features of the evolutionary process of protein domains.First of all, Fig. 2 shows that (mu) has negative values in all bacterial genomes. Recalling that (mu =r/gamma), where r is the growth rate and (gamma) is the multiplicative constant of the Gompertzian function, which must be positive, this implies that the growth rate of protein domains, r, is also negative. Notice that the growth rate can be expressed as the difference between the birth and the death rate, (r=b-d). Hence, a negative r means that the death rate is greater than the birth rate ((d > b)). In the evolutionary model of protein domains, the birth rate b has the meaning of duplication rate, while the death rate d is the rate at which protein domains are deactivated. A negative r hence implies that protein domain deactivation, which is related to the accumulation of events which disrupt the coding sequence of protein domains, happens at a faster rate than the duplication of the whole protein domain sequence within the genome.Figure 2Distribution of species according to the model parameters. Scatter plot of Poisson Log-Normal parameters (mu) versus (sigma ^2) obtained fitting the protein domains RSAs. Only species represented by at least 10 different strains were included in the plot, for a total of 1173 bacterial genomes which belong to 48 different species. Different colors represent different species as indicated in the legend.Full size imageFurthermore, the plot of (mu) as a function of (sigma ^2) (Fig. 2) highlights the negative linear relationship between (mu) and (sigma ^2). Such relationship can also be deduced mathematically.Starting from the expressions (mu =r/gamma) and (sigma ^2=sigma _e^2 / 2gamma), and after simple algebraic manipulation, we can in fact obtain that (mu = 2rsigma ^2 / sigma _e^2), which explains the negative linear relationship between the two parameters.Besides the negative relationship, the plot of (mu) versus (sigma ^2) also highlights the presence of clusters of bacterial genomes with similar ecological features, which are pictured in the plot as roughly parallel stripes (Fig. 2). When we depict bacterial strains belonging to the same species using the same color, it emerges that the stripes are related to the bacterial taxonomy. This result motivates us to introduce a new approach to bacterial phylogeny based on the ecological modeling of protein domains and the consequent estimation of the parameters (mu) and (sigma ^2).Protein domain RSA and evolutionary distanceWe propose to calculate the pairwise evolutionary distances between bacteria based on three parameters: the Poisson Log-Normal scale and location parameters discussed above ((mu) and (sigma)), and the density of protein domains in the bacterial genome. Such density describes to which extend the whole bacterial genome is populated with protein domains and it hence constitutes an additional feature of the protein domain ecological dynamics. As detailed in the Materials and Methods, the distance between bacteria is specifically computed as the 3D euclidean distance in the scaled space of (mu), (sigma), and protein domain density. In the following, we refer to such distance as ‘RSA distance’.To evaluate the bacterial interrelationships derived from the RSA distances, we compared our results with both the bacterial taxonomic classification and the 16S rRNA gene-based phylogeny. Specifically, starting from the RSA distance matrix we computed a hierarchical clustering of bacteria and we compared the resulting clusters with those obtained from the 16S rRNA gene-based distance matrix. Both clustering results were then compared with the bacterial taxonomic classification.Notice that the usage of both 16S rRNA phylogeny and bacterial taxonomic classification allows us to exploit the complementary information that these two approaches provide, despite their intrinsic connection. Namely, modern microbial taxonomy is mostly based on 16S rRNA gene6 and, on the other hand, the cutoffs commonly used in 16S rRNA phylogeny originated from phenotype-based taxonomy31. However, while taxonomy allows us to assign human interpretable names to bacteria, to associate such names with phenotypic properties, and to classify bacteria into a predefined hierarchy, 16S rRNA phylogeny provides a quantitative measurement of the evolutionary distance between bacteria that can be compared with the RSA distance without setting any pre-defined threshold. Moreover, the usage of 16S rRNA phylogeny allows us to investigate the bacterial relationships at the intraspecies level, for which the taxonomic classification is not available.As detailed in the Materials and Methods, 16S rRNA distances were calculated based on the bacterial 16S rRNA gene reference sequences, following the standard procedure32. Taxonomic classification, instead, was retrieved from NCBI and included the following levels: phylum, class, order, family, genus and species. In order to obtain a comparable number of clusters from all three methods, we considered separately each taxonomic level and we cut the 16S rRNA and the RSA -based hierarchical trees so as to get a number of clusters equivalent to the number of taxa available at the selected taxonomic level.At each taxonomic level, the Normalized Mutual Information (NMI) was used as a measurement of agreement between different clustering solutions33. Notice that, while the theoretical range of the NMI score is the interval (left[ 0,1right]), NMI is biased towards clustering solutions with more clusters and fewer data points34. Consequently, the baseline of NMI score in practise is not zero and relatively high NMI scores can be an artifact caused by the low ratio between number of bacteria and number of taxonomic groups. To make the comparison fair, we used simulations to calculate the baseline NMI for each taxonomic level (box plots of Fig. 3).As expected by their intrinsic relationship, taxonomy and 16S rRNA phylogeny show high agreement (red dots in Fig. 3). RSA-based clusters, instead, show a certain deviation from both taxonomy (blue dots in Fig. 3) and phylogeny (green dots in Fig. 3). For both comparisons, however, the NMI scores are still evidently higher than the baseline, signifying that the RSA model captures phylogenetic signals to a certain degree. Comparing the obtained NMI scores with the baseline, we notice that the agreement between RSA-based clusters and both taxonomy and phylogeny increases at lower taxonomic levels, reaching the maximum at species level. Taking as ground truth the taxonomic classification, the total purity of the RSA-based clusters at species level is 0.65, signifying that 65% of bacteria are correctly classified.Figure 3Comparison between the three clustering results at different taxonomic levels. NMI scores (y-axis) are calculated as a measurement of agreement between clusters based on: RSA method and taxonomy (blue), 16S rRNA gene and taxonomy (red), RSA method and 16S rRNA gene (green). Different taxonomic levels are considered for the comparison: phylum, class, order, family, genus and species (x-axis). The box plots represent the baselines of NMI score and are based on simulations.Full size imageTo assess the robustness and stability of the RSA-based phylogeny, with regard to the choice of protein domains, we randomly selected subsamples of protein domains in different proportions (from (10%) to 90% of all protein domains). The reconstructed phylogenetic trees were then compared with the phylogenetic tree obtained using all protein domains (see Materials and Methods for details), and the correlation between the trees was calculated (see Supplementary Fig. S6). As expected, with larger proportions of protein domains taken into account, the correlation between subsample-based phylogeny and base phylogeny increases. For larger subsampling proportions, the compared phylogenetic trees are in good agreement: for a subsample with 90% of protein domains, the mean cophenetic correlation is equal to 0.74, and the mean common-nodes-correlation is equal to 0.68. We notice that the common-nodes-correlation is more stable compared to the cophenetic correlation, as expected since cophenetic correlation is affected by the height of the phylogenetic trees. The results suggest that the overall structure of the phylogenies is stable even for smaller subsampling proportions, while subsampling height of the branches correlates with the full-data height only at larger subsampling proportions.To evaluate the intraspecies composition obtained from the RSA-based clustering, we selected the subset of species for which at least 10 different strains were present in our data (48 species). Among them, we selected the species where hierarchical clustering showed a clear separation of clusters (including outliers) and for which published literature characterizing at least some of the strains was available (6 out of 48 species). For these 6 species, we again assessed the robustness and stability of RSA phylogenies, as detailed in the “Materials and methods” section. Our results suggest (see Supplementary Fig. S7) that the subsample-based phylogenies are in good agreement with the full-data phylogenies, especially for larger subsampling proportions. We notice the correlations is larger than in the case of phylogenetic trees for randomly selected 100 bacteria (Supplementary Fig. S6), especially for certain species (i.e., Xanthomonas citri). This could be attributed to the smaller size of the phylogenetic tree. However, the species with similar phylogenetic tree size still show differences in correlation (i.e., Xanthomonas citri and Francisella tularensis), suggesting that the RSA-based distance matrix between the strains of Xanthomonas citri carries stronger phylogenetic signal. Comparing 6 observed species with the randomly sampled subsets of 100 bacteria, we can analogously conclude that the RSA-captured phylogenetic signal is stronger within the species. In the following, we discuss the results obtained for the 6 selected bacterial species in more details.Figure 4(Previous page.) Hierarchical clustering of bacteria at the intraspecies level, comparing solutions obtained by RSA and 16S rRNA method. Each subplot shows a tanglegram with RSA-based dendrogram on the left and 16S rRNA-based dendrogram on the right. Lines connect the same bacteria from two dendrograms. The color/type of the line represents the feature of the bacterium it connects. (a) 22 strains of Xanthomonas citri belong to two different pathovars: A (orange) and (hbox {A}^{mathrm{W}}) (purple). (b) 10 strains of Chlamydia pneumoniae are isolated from different tissues: conjuctival (yellow), respiratory (magenta) and vascular (violet). 9 strains represented with solid line are human (Homo sapiens) pathogens while the one strain represented by dashed line is koala (Phascolarctos cinereus) pathogen. (c) 14 strains of Vibrio cholerae are colored based on their karyotype. 11 strains have two circular chromosomes Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb) (magenta). 2 strains have one (sim)4 Mb long circular chromosome (yellow). One strain has three chromosomes Chr1 ((sim)3 Mb), Chr2 ((sim)1 Mb) and Chr3 ((sim)1 Mb) (violet).Full size imageRSA-based method distinguishes subspecies infecting different hostsXanthomonas citri subsp. citri (XCC) and Chlamydia pneumoniae (Cpn) are two species whose subspecies can infect different hosts. Here we show that the RSA-based method correctly discriminates such subspecies even when their divergence is not detected comparing the 16S rRNA gene sequences.Xanthomonas citri subsp. citri (XCC) is a causal agent of citrus canker type A, a bacterial disease affecting different plants from the genus Citrus. While citrus canker A infects most citrus species, two of its variants, A* and (hbox {A}^{mathrm{W}}), have a much more limited host range with XCC pathotype (hbox {A}^{mathrm{W}}) infecting only Key lime (C. aurantifolia) and alemow (C. macrophylla)2. Our data set includes 17 strains of XCC pathotype A and 5 strains of XCC pathotype (hbox {A}^{mathrm{W}})2. RSA-based clustering of the 22 XCC strains identifies two separated clusters (Fig. 4a, left) which coincide with the two XCC pathotypes. Concurrently, clustering based on 16S rRNA gene fails to identify the two pathotypes of XCC (Fig. 4a, right). This suggests that even though pathotypes A and (hbox {A}^{mathrm{W}}) have different hosts, their diversification is not reflected in the variability of the 16S rRNA gene. On the other hand, modeling the protein domain RSA of the two pathotypes succesfully captures the different functions of their proteomes.Another important aspect of the citrus canker is the geographical spread of the disease. The 22 strains of XCC included in our data set have diverse geographical origin. While all (hbox {A}^{mathrm{W}}) strains were sampled from USA, strains of pathotype A originate from USA, Brazil and China. RSA clustering of 17 A-type strains colored by their sampling location shows a geographical pattern (Supplementary Fig. S2) similar to the one obtained by Patané et al.2 using a maximum likelihood tree based on 1785 concatenated unicopy genes, with the only exception of strain jx-6 ((text {GCA}_001028285)) coming from China.For what concerns Chlamydia pneumoniae (Cpn), this is an obligate intercellular parasite which is widespread in human population and causes acute respiratory disease. Besides humans, different animal species can be infected with Chlamydia pneumoniae. Our data set includes 9 strains which infect humans (Homo sapiens) and 1 strain isolated from koala (Phascolarctos cinereus). RSA-based clustering clearly separates such isolate from the group of highly similar human isolates (Fig. 4b, left). This result is confirmed by 16S rRNA-based clustering (Fig. 4b, right) and is in agreeement with previous results in which the comparison of four human-derived isolates and the koala strain LPCoLN ((text {GCA}_000024145)) through whole-genome sequencing showed a much higher variation between human and koala-derived strains than within the human-derived strains35.Another peculiarity of Chlamydia pneumoniae is tissue tropism. The human-derived strains of Chlamydia pneumoniae can in fact be divided into conjuctival, raspiratory and vascular based on their tissue of origin. Cpn tissue tropism was the focus of the study conducted by Weinmaier et al., where whole-genome sequences of multiple Cpn strains isolated from different human anatomical sites were compared and animal isolates were used as outgroup3. Weinmaier et al. found a good agreement between the anatomical origin of strains and the maximum likelihood phylogenetic tree based on all SNPs. However, they could not obtain a clear separation between anatomical subgroups of Cpn. Our results show that the RSA-based method partially succeeds in separating subspecies related to different tissues (Fig. 4b, left). The RSA-based dendrogram, in fact, shows a cluster of four respiratory bacteria. However, it does not separate the other subspecies by infection site, suggesting that tissue tropism is not entirely captured by our method.RSA-based method discriminates subspecies with different genome compositionIn some cases, subspecies of the same species are characterized by global differences in the genome composition. This is, for example, the case of Vibrio cholerae and Buchnera aphidicola. Here, we show that the RSA-based model is able to capture such differences and to discriminate subspecies with known different genomic peculiarities.Vibrio cholerae is the causative agent of cholera disease. Its genome is normally composed of two chromosomes: Chr1 ((sim 3) Mb) and Chr2 ((sim 1) Mb). However, some strains show a different karyotype. The two strains (1154text {-}74) ((text {GCA}_000969235)) and (10432text {-}62) ((text {GCA}_000969265)), for instance, underwent the process of chromosomal fusion and possess only one (sim 4) Mb long circular chromosome, which shows a high degree of synteny with the two chromosomes of the more common strains36. The strain (text {TSY}216) ((text {GCA}001045415)), on the other hand, besides having the original two chromosomes, also contains an additional (sim 1) Mb long replicon, which does not share any conserved region with Chr1 and Chr237. For these reasons, we expect the single- and two-chromosome strains to be phylogenetically closer to each other than to the three-chromosome strain, which contains the extra replicon. The 16S rRNA gene-based clustering, however, does not identify any clear separation between the three types of strains (Fig. 4c, right). As a matter of fact, all the 16S rRNA gene copies of all the Vibrio cholerae strains included in our data set are located on (sim 3) Mb long chromosome, which shows high synteny across all strains. It is therefore not surprising that the comparison of the 16S rRNA genes does not capture the global genomic differences that exist between the considered strains. On the other hand, the results obtained with the RSA-based clustering show a clear distinction of the strains with different genomic structure (Fig. 4c, left). The reason for the success of the RSA-based method lies in the theoretical definition of RSA-based distance. In fact, the RSA-based distance depends on the Poisson Log-Normal location parameter (sigma ^2), which increases with the genome length (Supplementary Fig. S1): by definition, (sigma ^2 = sigma _e^2 / 2gamma), and, while the environmental noise (sigma _e^2) can be reasonably considered independent of the genome length, the density regulation (gamma) is expected to be stronger for smaller genomes, which repesent a scarcer environment with less resources.Buchnera aphidicola is a bacterial species in mutualistic endosymbiotic relationship with different aphids (members of superfamily Aphidoidea). As many endosymbionts, Buchnera aphidicola underwent the process of genome reduction as an adaptation to the host-associated lifestyle and has a genome with length ( More