More stories

  • in

    Isotopic evidence that aestivation allows malaria mosquitoes to persist through the dry season in the Sahel

    Adamou, A. et al. The contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in the Sahel. Malar. J. 10, 151 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Huestis, D. L. et al. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J. Exp. Biol. 215, 2013–2021 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Huestis, D. L. et al. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J. Exp. Biol. 214, 2345–2353 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, T. et al. Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am. J. Trop. Med. Hyg. 83, 601–606 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Yaro, A. S. et al. Dry season reproductive depression of Anopheles gambiae in the Sahel. J. Insect Physiol. 58, 1050–1059 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omer, S. M. & Cloudsley-Thompson, J. L. Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bull. World Health Organ. 42, 319 (1970).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omer, S. M. & Cloudsley-Thompson, J. L. Dry season biology of Anopheles gambiae Giles in the Sudan. Nature 217, 879–880 (1968).
    Google Scholar 
    Holstein, M. H. Biology of Anopheles gambiae (1954). World Health Organization.Andrade, C. M. et al. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat. Med. 26, 1929–1940 (2020).CAS 
    PubMed 

    Google Scholar 
    Coulibaly, D. et al. Spatio-temporal dynamics of asymptomatic malaria: bridging the gap between annual malaria resurgences in a Sahelian environment. Am. J. Trop. Med. Hyg. 27, 1761–1769 (2017).
    Google Scholar 
    Gillies, M. & Wilkes, T. A study of the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in north-eastern Tanzania. Bull. Entomol. Res. 56, 237–262 (1965).CAS 
    PubMed 

    Google Scholar 
    Gillies, M. T. & De Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region) (Johannesburg: South African Institute for Medical Research, 1968).Dao, A. et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 516, 387–390 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomson, J. G. Malaria in Nyasaland. Proc. R. Soc. Med. 28, 391–404 (1934).
    Google Scholar 
    Huestis, D. L. et al. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 574, 404–408 (2019).CAS 
    PubMed 

    Google Scholar 
    Lambert, B., North, A., Burt, A. & Godfray, H. C. J. The use of driving endonuclease genes to suppress mosquito vectors of malaria in temporally variable environments. Malar. J. 17, 154 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Verhulst, N. O., Loonen, J. A. C. M. & Takken, W. Advances in methods for colour marking of mosquitoes. Parasit. Vectors 6, 200 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hagler, J. R. & Jackson, C. G. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46, 511–543 (2001).CAS 
    PubMed 

    Google Scholar 
    Hamer, G. L. et al. Dispersal of adult culex mosquitoes in an urban West Nile virus hotspot: a mark–capture study incorporating stable isotope enrichment of natural larval habitats. PLoS Negl. Trop. Dis. 8, e2768 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Hamer, G. L. et al. Evaluation of a stable isotope method to mark naturally-breeding larval mosquitoes for adult dispersal studies. J. Med. Entomol. 49, 61–70 (2012).CAS 
    PubMed 

    Google Scholar 
    Opiyo, M. A. et al. Using stable isotopes of carbon and nitrogen to mark wild populations of Anopheles and Aedes mosquitoes in south-eastern Tanzania. PLoS ONE 11, e0159067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hood-Nowotny, R., Mayr, L. & Knols, B. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context. Malar. J. 5, 6 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Hood-Nowotny, R. & Knols, B. G. J. Stable isotope methods in biological and ecological studies of arthropods. Entomol. Exp. Appl. 124, 3–16 (2007).CAS 

    Google Scholar 
    Hood-Nowotny, R. et al. Intrinsic and synthetic stable isotope marking of tsetse flies. J. Insect Sci. 11, 79 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).CAS 

    Google Scholar 
    Copia, L., Wassenaar, L. I., Terzer-Wassmuth, S., Belachew, D. L. & Araguas-Araguas, L. J. Comparative evaluation of 2H- versus 3H-based enrichment factor determination on the uncertainty and accuracy of low-level tritium analyses of environmental waters. Appl. Radiat. Isot. 176, 109850 (2021).CAS 
    PubMed 

    Google Scholar 
    Begon, M., Harper, J. & Townsend, C. Ecology: Individuals, Populations and Communities (Blackwell Science, 1996).Faiman, R. et al. Marking mosquitoes in their natural larval sites using 2H-enriched water: a promising approach for tracking over extended temporal and spatial scales. Methods Ecol. Evol. 10, 1274–1285 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Florkin, M. Chemical Zoology: Arthropoda Part B (Academic Press, 2014).Hackman, R. H. & Goldberg, M. Studies on chitin VI. The nature of alpha-and beta-chitins. Aust. J. Biol. Sci. 18, 935–946 (1965).CAS 
    PubMed 

    Google Scholar 
    Faiman, R. et al. Quantifying flight aptitude variation in wild Anopheles gambiae in order to identify long-distance migrants. Malar. J. 19, 263 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Huestis, D. L. & Lehmann, T. Ecophysiology of Anopheles gambiae s.l.: persistence in the Sahel. Infect. Genet. Evol. 28, 648–661 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, T. et al. Seasonal variation in spatial distributions of Anopheles gambiae in a Sahelian village: evidence for aestivation. J. Med. Entomol. 51, 27–38 (2014).PubMed 

    Google Scholar 
    Costantini, C. et al. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med. Vet. Entomol. 10, 203–219 (1996).CAS 
    PubMed 

    Google Scholar 
    Toure, Y. T. et al. Mark–release–recapture experiments with Anopheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure. Med. Vet. Entomol. 12, 74–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Faiman, R. et al. A novel fluorescence and DNA combination for versatile, long-term marking of mosquitoes. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13592 (2021).Brattström, O., Bensch, S., Wassenaar, L. I., Hobson, K. A. & Åkesson, S. Understanding the migration ecology of European red admirals Vanessa atalanta using stable hydrogen isotopes. Ecography 33, 720–729 (2010).
    Google Scholar 
    Hobson, K. A., Jinguji, H., Ichikawa, Y., Kusack, J. W. & Anderson, R. C. Long-distance migration of the globe skimmer dragonfly to Japan revealed using stable hydrogen (δ 2H) isotopes. Environ. Entomol. 50, 247–255 (2020).
    Google Scholar 
    Schilling, E. G. et al. Phenological and isotopic evidence for migration as a life history strategy in Aeshna canadensis (family: Aeshnidae) dragonflies. Ecol. Entomol. 46, 209–219 (2021).
    Google Scholar 
    Girard, P., Hillaire-Marcel, C. & Oga, M. S. Determining the recharge mode of Sahelian aquifers using water isotopes. J. Hydrol. 197, 189–202 (1997).CAS 

    Google Scholar 
    Gutiérrez-Expósito, C., Ramírez, F., Afán, I., Forero, M. & Hobson, K. A. Toward a deuterium feather isoscape for sub-Saharan Africa: progress, challenges and the path ahead. PLoS ONE https://doi.org/10.1371/journal.pone.0135938 (2015).Lutz, A., Thomas, J. M. & Panorska, A. Environmental controls on stable isotope precipitation values over Mali and Niger, West Africa. Environ. Earth Sci. 62, 1749–1759 (2011).CAS 

    Google Scholar 
    Risi, C. et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation. J. Geophys. Res. Atmos. 115, 1–23 (2010).
    Google Scholar 
    Tremoy, G. et al. A 1-year long δ18O record of water vapor in Niamey (Niger) reveals insightful atmospheric processes at different timescales. Geophys. Res. Lett. 39, 1–5 (2012).
    Google Scholar 
    Terzer‐Wassmuth, S., Wassenaar, L. I., Welker, J. M., Araguás-Araguás, L. J. Improved high‐resolution global and regionalized isoscapes of δ18O, δ2H and d‐excess in precipitation. Hydrol. Process. 35 (2021).Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere 3, art44 (2012).
    Google Scholar 
    Diuk-Wasser, M. A. et al. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. Am. J. Trop. Med. Hyg. 76, 869–874 (2007).PubMed 

    Google Scholar 
    Sogoba, N. et al. Malaria transmission dynamics in Niono, Mali: the effect of the irrigation systems. Acta Trop. 101, 232–240 (2007).PubMed 

    Google Scholar 
    Florio, J. et al. Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel. Sci. Rep. 10, 20523 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkins, E. E., Howell, P. I. & Benedict, M. Q. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar. J. 5, 125 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).CAS 
    PubMed 

    Google Scholar 
    Chesson, L. A., Podlesak, D. W., Cerling, T. E. & Ehleringer, J. R. Evaluating uncertainty in the calculation of non-exchangeable hydrogen fractions within organic materials. Rapid Commun. Mass Spectrom. 23, 1275–1280 (2009).CAS 
    PubMed 

    Google Scholar 
    Schimmelmann, A. Determination of the concentration and stable isotopic composition of nonexchangeable hydrogen in organic matter. Anal. Chem. 63, 2456–2459 (1991).CAS 

    Google Scholar 
    Speakman, J. Doubly Labelled Water: Theory and Practice (Chapman & Hall, 1997).Base SAS 9.4 Procedures Guide (SAS Institute, 2015).Cade, B. S. & N, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003).
    Google Scholar 
    SAS/STAT® 15.1 User’s Guide (SAS Institute, 2018).Mcclintock, B. T. et al. Uncovering ecological state dynamics with hidden Markov models. Ecol. Lett. 23, 1878–1903 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Issam, M., Naulet, N., Martin, M. L. & Martin, G. J. A site-specific and multielement approach to the determination of liquid–vapor isotope fractionation parameters: the case of alcohols. J. Phys. Chem. 94, 8303–8309 (1990).
    Google Scholar 
    Linderstrøm-Lang, C. U. & Vaslow, F. Isotope effect on the vapor pressures of water–ethanol and deuterium oxide–ethanol-d mixtures. J. Phys. Chem. 72, 2645–2650 (1968).
    Google Scholar 
    Ventura, M. & Jeppesen, E. Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction. Hydrobiologia 632, 297–308 (2009).CAS 

    Google Scholar  More

  • in

    Unique thermal sensitivity imposes a cold-water energetic barrier for vertical migrators

    Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).
    Google Scholar 
    Fernandez-Alamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: a review. Prog. Oceanogr. 69, 318–359 (2006).
    Google Scholar 
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).CAS 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).
    Google Scholar 
    Kiko, R. & Hauss, H. On the estimation of zooplankton-mediated active fluxes in oxygen minimum zones regions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00741 (2019).Longhurst, A., Bedo, A., Harrison, W., Head, E. & Sameoto, D. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep Sea Res. Part I 37, 685–694 (1990).CAS 

    Google Scholar 
    Elder, L. E. & Seibel, B. A. The thermal stress response to diel vertical migration in the hyperiid amphipod, Phronima sedentaria. Comp. Biochem. Physiol. A 187, 20–26 (2015).CAS 

    Google Scholar 
    Tremblay, N., Gomez-Gutierrez, J., Zenteno-Savin, T., Robinson, C. J. & Sanchez-Velascoa, L. Role of oxidative stress in seasonal and daily vertical migration of three krill species in the Gulf of California. Limnol. Oceanogr. 55, 2570–2584 (2010).CAS 

    Google Scholar 
    Lopes, A. R. et al. Oxidative stress in deep scattering layers: heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones. Deep Sea Res. Part I 82, 10–16 (2013).CAS 

    Google Scholar 
    Seibel, B. A., Schneider, J., Kaartvedt, S., Wishner, K. F. & Daly, K. L. Hypoxia tolerance and metabolic suppression in oxygen minimum zone euphausiids: implications for ocean deoxygenation and biogeochemical cycles. Integr. Comp. Biol. https://doi.org/10.1093/icb/icw091 (2016).Seibel, B. A. et al. Metabolic suppression during protracted exposure to hypoxia in the jumbo squid, Dosidicus gigas, living in an oxygen minimum zone. J. Exp. Biol. 217, 2710–2716 (2014).
    Google Scholar 
    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: very small oxygen differences matter. Sci. Adv. 4, eaau5180 (2018).CAS 

    Google Scholar 
    Koslow, J. A., Goericke, R., Lara-Lopez, A. & Watson, W. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current. Mar. Ecol. Prog. Ser. 436, 207–218 (2011).
    Google Scholar 
    Oschlies, A. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 12, 2307 (2021).CAS 

    Google Scholar 
    Wishner, K. F., Seibel, B. A. & Outram, D. Ocean deoxygenation and copepods: coping with oxygen minimum zone variability. Biogeosciences 17, 2315–2339 (2020).
    Google Scholar 
    Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).CAS 

    Google Scholar 
    Köhn, E. E., Münnich, M., Vogt, M., Desmmet, F. & Gruber, N. Strong habitat compression by extreme shoaling events of hypoxic waters in the Eastern Pacific. J. Geophys. Res. Oceans 127, e2022JC018429 (2022).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).
    Google Scholar 
    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).
    Google Scholar 
    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
    Google Scholar 
    Lavaniegosa, B. E., Jiménez-Herrera, M. A. & Ambriz-Arreola, I. Unusually low euphausiid biomass during the warm years of 2014–2016 in the transition zone of the California Current. Deep Sea Res. Part II 1, 69–170 (2019).
    Google Scholar 
    Lilly, L. E. & Ohman, M. D. Euphausiid spatial displacements and habitat shifts in the southern California Current system in response to El Niño variability. Prog. Oceanogr. 193, 102544 (2021).
    Google Scholar 
    Zeidberg, L. D. & Robison, B. H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific. Proc. Natl Acad. Sci. USA 104, 12948–12950 (2007).CAS 

    Google Scholar 
    Szesciorka, A. R. et al. Timing is everything: drivers of interannual variability in blue whale migration. Sci. Rep. 10, 7710 (2020).CAS 

    Google Scholar 
    Hoving, H.-J. et al. Extreme plasticity in life‐history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Change Biol. 19, 2089–2103 (2013).
    Google Scholar 
    Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).CAS 

    Google Scholar 
    Deutsch, C., Ferrel, A., Seibel, B. A., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).CAS 

    Google Scholar 
    Seibel, B. A. & Deutsch, C. Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature. J. Exp. Biol. 223, jeb210492 (2020).
    Google Scholar 
    Deutsch, C., Penn, J. L. & Seibel, B. A. Diverse hypoxia and thermal tolerances shape biogeography of marine animals. Nature 585, 557–562 (2020).CAS 

    Google Scholar 
    Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evol. 10, 30–36 (1995).CAS 

    Google Scholar 
    Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. B. 362, 2061–2078 (2007).CAS 

    Google Scholar 
    Seibel, B. A. et al. Oxygen supply capacity breathes new life into the critical oxygen partial pressure (Pcrit). J. Exp. Biol. 224, jeb242210 (2021).
    Google Scholar 
    Childress, J. J. & Seibel, B. A. Life at stable low oxygen: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol. 201, 1223–1232 (1998).CAS 

    Google Scholar 
    Garcia, H. E., et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation (NOAA/NESDIS, 2019).Locarnini, R. A., et. al. World Ocean Atlas 2018, Volume 1: Temperature (NOAA/NESDIS, 2019).Maas, A. E., Frazar, S., Outram, D., Seibel, B. A. & Wishner, K. F. Fine-scale vertical distribution of macroplankton and micronekton in an eastern tropical North Pacific in association with an oxygen minimum zone. J. Plankton Res. 36, 1557–1575 (2014).
    Google Scholar 
    Rosa, R. & Seibel, B. A. Synergistic effect of climate-related variables suggests future physiological impairment in a top oceanic predator. Proc. Natl Acad. Sci. USA 52, 20776–20780 (2008).
    Google Scholar 
    Halsey, L. G., Killen, S. S., Clark, T. D. & Norin, T. Exploring key issues of aerobic scope interpretation in ectotherms: absolute versus factorial. Rev. Fish. Biol. Fish. 28, 405–415 (2018).
    Google Scholar 
    Peterson, C. C., Nagy, K. A. & Diamond, J. Sustained metabolic scope. Proc. Natl Acad. Sci. USA 87, 2324–2328 (1990).CAS 

    Google Scholar 
    Seibel, B. A., Luu, B. E., Tessier, S. N., Towanda, T. & Storey, K. B. Metabolic suppression in the pelagic crab, Pleuroncodes planipes, in oxygen minimum zones. Comp. Biochem. Physiol. A 224, 88–97 (2018).CAS 

    Google Scholar 
    Hadj-Moussa, H., Logan, S. M., Seibel, B. A. & Storey, K. B. Potential role for microRNA in regulating hypoxia-induced metabolic suppression in the jumbo squid? BBA Gene Regul. Mech. 1861, 586–593 (2018).CAS 

    Google Scholar 
    Torres, J. J. & Childress, J. J. Relationship of oxygen consumption to swimming speed in Euphausia pacifica. Mar. Biol. 74, 79–86 (1983).
    Google Scholar 
    Cohen, J. H. & Forward, R. B. Jr. Zooplankton diel vertical migration—a review of proximate control. Oceanogr. Mar. Biol. Annu. Rev. 47, 77–110 (2009).
    Google Scholar 
    Gilly, W. F. et al. Locomotion and behavior of Humboldt squid, Dosidicus gigas, in relation to natural hypoxia in the Gulf of California, Mexico. J. Exp. Biol. 215, 3175–3190 (2012).
    Google Scholar 
    Jaffe, J. S., Ohman, M. D. & De Robertis, A. Sonar estimates of daytime activity levels of Euphausia pacifica in Saanich inlet. Can. J. Fish. Aquat. Sci. 56, 2000–2010 (1999).
    Google Scholar 
    Klevjer, T. A. & Kaartvedt, S. Krill (Meganyctiphanes norvegica) swim faster at night. Limnol. Oceanogr. 56, 765–774 (2011).
    Google Scholar 
    Backus, R. H. et al. Ceratoscopelus maderensis: pecuiiar sound-scattering layer identified with this myctophid fish. Science 160, 991–993 (1968).CAS 

    Google Scholar 
    Barham, E. G. in Proceedings of an International Symposium on Biological Sound Scattering in the Ocean (ed. Farquhar, G. B.) 100–118 (Superintendent of Documents, 1971).Sanders, N. K. & Childress, J. J. A comparison of the respiratory function of the haemocyanins of vertically migrating and non-migrating pelagic, deep-sea Oplophorid shrimps. J. Exp. Biol. 152, 167–187 (1990).
    Google Scholar 
    Seibel, B. A. Critical depth in the jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II. Blood-oxygen binding. Deep Sea Res. Part II 95, 139–144 (2013).CAS 

    Google Scholar 
    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).
    Google Scholar 
    Laffoley, D. & Baxter, J. M. Ocean Deoxygenation: Everyone’s Problem—Causes, Impacts, Consequences and Solutions (IUCN, 2019).Birk, M. A. Respirometry: Tools for Conducting and Analyzing Respirometry Experiments. R version 1.4.0 http://cran.r-project.org/package=respirometry (2021).Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).
    Google Scholar  More

  • in

    Condition- and context-dependent variation of sexual dimorphism across lizard populations at different spatial scales

    Andersson, M. Sexual Selection. (Princeton University Press, 1994).Darwin, C. The Descent of Man and Selection in Relation to Sex. (1871).Bonduriansky, R. The evolution of condition-dependent sexual dimorphism. Am. Nat. 169, 9–19 (2007).PubMed 

    Google Scholar 
    Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution (NY). 59, 138 (2005).
    Google Scholar 
    Godin, J. G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: A viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).
    Google Scholar 
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 80(337), 860–864 (2012).ADS 

    Google Scholar 
    Cothran, R. D. & Jeyasingh, P. D. Condition dependence of a sexually selected trait in a crustacean species complex: Importance of the ecological context. Evolution (NY). 64, 2535–2546 (2010).
    Google Scholar 
    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: A comparison of body condition indices. Oikos 77, 61 (1996).
    Google Scholar 
    Galeotti, P., Sacchi, R., Pellitteri-Rosa, D. & Fasola, M. The yellow cheek-patches of the Hermann’s tortoise (Reptilia, Chelonia): Sexual dimorphism and relationship with body condition. Ital. J. Zool. 78, 464–470 (2011).
    Google Scholar 
    Sacchi, R. et al. Context-dependent expression of sexual dimorphism in island populations of the common wall lizard (Podarcis muralis). Biol. J. Linn. Soc. 114, 552–565 (2015).
    Google Scholar 
    Greenberg, R. & Olsen, B. Bill size and dimorphism in tidal-marsh sparrows: Island-like processes in a continental habitat. Ecology 91, 2428–2436 (2010).PubMed 

    Google Scholar 
    Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581 (2003).
    Google Scholar 
    Stillwell, R. C. & Fox, C. W. Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: Local adaptation versus phenotypic plasticity. Oikos 118, 703–712 (2009).
    Google Scholar 
    García-Roa, R., Garcia-Gonzalez, F., Noble, D. W. A. & Carazo, P. Temperature as a modulator of sexual selection. Biol. Rev. 95, 1607–1629 (2020).PubMed 

    Google Scholar 
    Ficetola, G. F. et al. Ecogeographical variation of body size in the newt Triturus carnifex : Comparing the hypotheses using an information-theoretic approach. Glob. Ecol. Biogeogr. 19, 485–495 (2010).
    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).PubMed 

    Google Scholar 
    Cox, R. M., Skelly, S. L. & John-Alder, H. B. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution (NY). 57, 1653–1669 (2003).
    Google Scholar 
    Kaliontzopoulou, A., Carretero, M. A. & Llorente, G. A. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis Lizards. J. Morphol. 268, 152–165 (2007).PubMed 

    Google Scholar 
    Olsson, M., Shine, R., Wapstra, E., Ujvari, B. & Madsen, T. Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution (NY). 56, 1538–1542 (2002).
    Google Scholar 
    Zuffi, M. A. L., Casu, V. & Marino, S. The Italian wall lizard, Podarcis siculus, along the Tuscanian coast of central Italy: Biometrical features and phenotypic patterns. Herpetol. J. 22, 207–212 (2012).
    Google Scholar 
    Corti, C., Biaggini, M. & Capula, M. Podarcis siculus (Rafinesque-Schmaltz, 1810). In: Corti, C., Capula, M., Luiselli, L., Razzetti, E., Sindaco, R. Fauna d’Italia: Reptilia (ed. Calderini) 407–417 (2011).Silva-Rocha, I. R., Salvi, D., Carretero, M. A. & Ficetola, G. F. Alien reptiles on Mediterranean Islands: A model for invasion biogeography. Divers. Distrib. 25, 995–1005 (2019).
    Google Scholar 
    Butler, M. A. & Losos, J. B. Multivariate sexual dimorphism, sexual selection, and adaptation in greater antillean Anolis lizards. Ecol. Monogr. 72, 541–559 (2002).
    Google Scholar 
    Kaliontzopoulou, A., Carretero, M. A. & Llorente, G. A. Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: Joining linear and geometric morphometrics. Biol. J. Linn. Soc. 93, 111–124 (2008).
    Google Scholar 
    Herrel, A., Damme, R. V., Vanhooydonck, B. & Vree, F. D. The implications of bite performance for diet in two species of lacertid lizards. Can. J. Zool. 79, 662–670 (2001).
    Google Scholar 
    Lomolino, M. V. Body size evolution in insular vertebrates: generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).
    Google Scholar 
    Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).
    Google Scholar 
    de Amorim, M. E. et al. Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proc. Natl. Acad. Sci. U. S. A. 114, 8812–8816 (2017).ADS 

    Google Scholar 
    Madsen, T. & Shine, R. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution (NY). 47, 321–325 (1993).
    Google Scholar 
    Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).PubMed 

    Google Scholar 
    Cox, R. M., Barrett, M. M. & John-Alder, H. B. Effects of food restriction on growth, energy allocation, and sexual size dimorphism in Yarrow’s Spiny Lizard Sceloporus jarrovii. Can. J. Zool. 86, 268–276 (2008).
    Google Scholar 
    Cox, R. M. & Calsbeek, R. Sex-specific selection and intraspecific variation in sexual size dimorphism. Evolution (NY). 64, 798–809 (2010).
    Google Scholar 
    Cox, R. M., Zilberman, V. & John-Alder, H. B. Environmental sensitivity of sexual size dimorphism: Laboratory common garden removes effects of sex and castration on lizard growth. Funct. Ecol. 20, 880–888 (2006).
    Google Scholar 
    Wiens, J. J. & Tuschhoff, E. Songs versus colours versus horns: what explains the diversity of sexually selected traits?. Biol. Rev. 95, 847–864 (2020).PubMed 

    Google Scholar 
    Sivan, J. et al. Relative tail length correlates with body condition in male but not in female crowned leafnose snakes (Lytorhynchus diadema). Sci. Rep. 10, 4130 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, K. L., Greenwood, J. J. D. & Gaston, K. J. Dissecting the species-energy relationship. Proc. R. Soc. B Biol. Sci. 272, 2155–2163 (2005).
    Google Scholar 
    Weier, J. & Herring, D. Measuring vegetation (NDVI & EVI). NASA. https://earthobservatory.nasa.gov/Features/MeasuringVegetation/. (2000).Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: Roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569 (2019).
    Google Scholar 
    Thorpe, R. S. & Baez, M. Geographic variation within an island: univariate and multivariate contouring of scalation, size, and shape of the lizard Gallotia galloti. Evolution (NY). 41, 256–268 (1987).
    Google Scholar 
    Lazić, M. M., Carretero, M. A., Crnobrnja-Isailović, J. & Kaliontzopoulou, A. Effects of environmental disturbance on phenotypic variation: An integrated assessment of canalization, developmental stability, modularity, and allometry in lizard head shape. Am. Nat. 185, 44–58 (2015).PubMed 

    Google Scholar 
    Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The theory of island biogeography. (Princeton University Press, 1967).Alzate, A., Etienne, R. S. & Bonte, D. Experimental island biogeography demonstrates the importance of island size and dispersal for the adaptation to novel habitats. Glob. Ecol. Biogeogr. 28, 238–247 (2019).
    Google Scholar 
    Wieser, W. Effects of temperature on ectothermic organisms (Springer, 1973).
    Google Scholar 
    Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A. & Rossi, P. L. The Aeolian Islands Volcanoes. (Geological Society, 2013).Meiri, S. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734 (2008).
    Google Scholar 
    Rohlf, F. J. TpsUtil version 1.87. (2021).Rohlf, F. J. TpsDig2 version 2.31. (2018).Sheets, H. D. CoordGen8. Integrated Morphometrics Package Suite (IMP) 8. (2014).Sheets, H. D. PCAGen8. Integrated Morphometrics Package Suite (IMP) 8. (2014).Lovich, J. E. & Gibbons, J. W. Review of techniques for quantifying sexual size dimorphism. Growth, Dev. Aging 56, 269–281 (1992).Bittinger, K. usedist: Distance Matrix Utilities. (2020).Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass-size residuals: Validating body condition indices. Ecology 86, 155–163 (2005).
    Google Scholar 
    Corti, C., Capula, M., Luiselli, L., Razzetti, E. & Sindaco, R. Fauna d’Italia, vol. XLV, Reptilia. (Calderini, 2011).Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M. & Trigo, I. F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 12, 1–21 (2020).
    Google Scholar 
    Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).PubMed 

    Google Scholar 
    Angilletta, M. J., Hill, T. & Robson, M. A. Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard Sceloporus undulatus. J. Therm. Biol. 27, 199–204 (2002).
    Google Scholar 
    Aybar, C., Wu, Q., Bautista, L., Yali, R. & Barja, A. rgee: An R package for interacting with Google Earth Engine. J. Open Source Softw. 5, 2272 (2020).ADS 

    Google Scholar 
    Bonardi, A. et al. ReptIslands: Mediterranean islands and the distribution of their reptile fauna. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13490 (2022).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach, Second Edition. (Springer, 2002).Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).
    Google Scholar 
    Lukacs, P. M. et al. Concerns regarding a call for pluralism of information theory and hypothesis testing. J. Appl. Ecol. 44, 456–460 (2007).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).QGIS Development Team. QGIS Geographic Information System, version 3.20.1. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. (2022). More

  • in

    High-resolution phylogenetic and population genetic analysis of microbial communities with RoC-ITS

    Srivastava AK, Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol. 1990;44:105–29.PubMed 

    Google Scholar 
    Brewer TE, Albertsen M, Edwards A, Kirkegaard RH, Rocha EPC, Fierer N. Unlinked rRNA genes are widespread among bacteria and archaea. ISME J. 2020;14:597–608.PubMed 

    Google Scholar 
    Apirion D, Miczak A. RNA processing in prokaryotic cells. Bioessays. 1993;15:113–20.PubMed 

    Google Scholar 
    Espejo RT, Plaza N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front Microbiol. 2018;9:1232.PubMed 
    PubMed Central 

    Google Scholar 
    Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:16160.PubMed 
    PubMed Central 

    Google Scholar 
    Lim K, Furuta Y, Kobayashi I. Large variations in bacterial ribosomal RNA Genes. Mol Biol Evol. 2012;29:2937–48.PubMed 
    PubMed Central 

    Google Scholar 
    Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis. 1998;19:554–68.PubMed 

    Google Scholar 
    Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci. 1977;74:5088 LP–5090.
    Google Scholar 
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 1985;82:6955 LP–6959.
    Google Scholar 
    Park YH, Hori H, Suzuki K, Osawa S, Komagata K. Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences. J Bacteriol. 1987;169:1801–6.PubMed 
    PubMed Central 

    Google Scholar 
    Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. 5S Ribosomal RNA Database. Nucleic Acids Res. 2002;30:176–8.PubMed 
    PubMed Central 

    Google Scholar 
    Pace NR. The small things can matter. PLoS Biol. 2018;16:e3000009.PubMed 
    PubMed Central 

    Google Scholar 
    Gürtler V. The role of recombination and mutation in 16S–23S rDNA spacer rearrangements. Gene. 1999;238:241–52.PubMed 

    Google Scholar 
    Snyder AK, Adkins KZ, Rio RVM. Use of the internal transcribed spacer (ITS) regions to examine symbiont divergence and as a diagnostic tool for sodalis-related bacteria. Insects. 2011;2:515–31.PubMed 
    PubMed Central 

    Google Scholar 
    Man SM, Kaakoush NO, Octavia S, Mitchell H. The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Appl Environ Microbiol. 2010;76:3071–81.PubMed 
    PubMed Central 

    Google Scholar 
    Liguori AP, Warrington SD, Ginther JL, Pearson T, Bowers J, Glass MB, et al. Diversity of 16S-23S rDNA Internal Transcribed Spacer (ITS) reveals phylogenetic relationships in Burkholderia pseudomallei and its near-neighbors. PLoS One. 2011;6:e29323.PubMed 
    PubMed Central 

    Google Scholar 
    Boyer SL, Flechtner VR, Johansen JR. Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol. 2001;18:1057–69.PubMed 

    Google Scholar 
    Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol. 1999;65:4630–6.PubMed 
    PubMed Central 

    Google Scholar 
    Brown BL, Watson M, Minot SS, Rivera MC, Franklin RB. MinIONTM nanopore sequencing of environmental metagenomes: a synthetic approach. Gigascience. 2017;6:1–10.PubMed 
    PubMed Central 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off Galicia (NW Spain). Microb Ecol. 2018;76:866–84.PubMed 

    Google Scholar 
    Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.PubMed 
    PubMed Central 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA. 2006;103:12115–20.PubMed 
    PubMed Central 

    Google Scholar 
    Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, Desantis TZ, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol. 2010;16:4135–44.PubMed 
    PubMed Central 

    Google Scholar 
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.PubMed 
    PubMed Central 

    Google Scholar 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.PubMed 
    PubMed Central 

    Google Scholar 
    Kapustina Ž, Medžiūnė J, Alzbutas G, Rokaitis I, Matjošaitis K, Mackevičius G, et al. High-resolution microbiome analysis enabled by linking of 16S rRNA gene sequences with adjacent genomic contexts. Microb Genom. 2021;7:1–16.
    Google Scholar 
    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428:37–43.PubMed 

    Google Scholar 
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.PubMed 

    Google Scholar 
    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.PubMed 
    PubMed Central 

    Google Scholar 
    Karst SM, Ziels RM, Kirkegaard RH, Sørensen EA, McDonald D, Zhu Q, et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat Methods. 2021;18:165–9.PubMed 

    Google Scholar 
    Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol Ecol Resour. 2020;20:429–43.PubMed 

    Google Scholar 
    Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot. 2017;68:5419–29.PubMed 

    Google Scholar 
    Jain M, Olsen HE, Paten B, Akeson M. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239.PubMed 
    PubMed Central 

    Google Scholar 
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.PubMed 

    Google Scholar 
    Graf J, Ledala N, Caimano MJ, Jackson E, Gratalo D, Fasulo D, et al. High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. mBio. 2021;12:e03656–20.PubMed 
    PubMed Central 

    Google Scholar 
    Martijn J, Lind AE, Schön ME, Spiertz I, Juzokaite L, Bunikis I, et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon. Environ Microbiol. 2019;21:2485–98.PubMed 
    PubMed Central 

    Google Scholar 
    Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, et al. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. Microbiome. 2021;9:24.PubMed 
    PubMed Central 

    Google Scholar 
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84.PubMed 
    PubMed Central 

    Google Scholar 
    Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.PubMed 
    PubMed Central 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T, et al. Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. BMC Microbiol. 2021;21:35.PubMed 
    PubMed Central 

    Google Scholar 
    Calus ST, Ijaz UZ, Pinto AJ. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. Gigascience. 2018;7:1–16.
    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:e103–e103.PubMed 
    PubMed Central 

    Google Scholar 
    Benítez-Páez A, Portune KJ, Sanz Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer. Gigascience. 2016;5:4.PubMed 
    PubMed Central 

    Google Scholar 
    Kumar V, Vollbrecht T, Chernyshev M, Mohan S, Hanst B, Bavafa N, et al. Long-read amplicon denoising. Nucleic Acids Res. 2019;47:e104–e104.PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019;20:129.PubMed 
    PubMed Central 

    Google Scholar 
    Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic acid techniques in bacterial systematics. 1991. Wiley, New York, pp 115–75.Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One. 2013;8:e56018–e56018.PubMed 
    PubMed Central 

    Google Scholar 
    Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol. 2006;72:2221–5.PubMed 
    PubMed Central 

    Google Scholar 
    Volden R, Palmer T, Byrne A, Cole C, Schmitz RJ, Green RE, et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci. 2018;115:9726 LP–9731.
    Google Scholar 
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.PubMed 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 

    Google Scholar 
    Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009;23:205–11.PubMed 

    Google Scholar 
    Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Scalable long read self-correction and assembly polishing with multiple sequence alignment. Sci Rep. 2021;11:761.PubMed 
    PubMed Central 

    Google Scholar 
    Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–40.PubMed 
    PubMed Central 

    Google Scholar 
    dos Santos HRM, Argolo CS, Argôlo-Filho RC, Loguercio LL. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 2019;19:74.PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMed 

    Google Scholar 
    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259.PubMed 
    PubMed Central 

    Google Scholar 
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112 LP–5120.
    Google Scholar 
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.PubMed 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.PubMed 

    Google Scholar 
    de Oliveira Martins L, Page AJ, Mather AE, Charles IG. Taxonomic resolution of the ribosomal RNA operon in bacteria: implications for its use with long-read sequencing. NAR Genom Bioinform. 2019;2:lqz016–lqz016.PubMed 
    PubMed Central 

    Google Scholar 
    Olesen SW, Duvallet C, Alm EJ. dbOTU3: a new implementation of distribution-based OTU calling. PLoS One. 2017;12:e0176335–e0176335.PubMed 
    PubMed Central 

    Google Scholar 
    Fichot EB, Norman RS. Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome. 2013;1:10.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Inter-annual variability patterns of reef cryptobiota in the central Red Sea across a shelf gradient

    Knowlton, N. et al. in Life in the World’s Oceans 65–78 (Wiley-Blackwell, 2010).Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505. https://doi.org/10.1016/j.cub.2014.12.022 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873. https://doi.org/10.1111/brv.12423 (2018).Article 
    PubMed 

    Google Scholar 
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carvalho, S. et al. Beyond the visual: Using metabarcoding to characterize the hidden reef cryptobiome. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2697 (2019).Article 

    Google Scholar 
    Kramer, M. J., Bellwood, O., Fulton, C. J. & Bellwood, D. R. Refining the invertivore: Diversity and specialisation in fish predation on coral reef crustaceans. Mar. Biol. 162, 1779–1786. https://doi.org/10.1007/s00227-015-2710-0 (2015).CAS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192. https://doi.org/10.1126/science.aav3384 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kramer, M. J., Bellwood, D. R. & Bellwood, O. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31, 1007–1015. https://doi.org/10.1007/s00338-012-0924-x (2012).ADS 
    Article 

    Google Scholar 
    Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814–815. https://doi.org/10.1126/science.344.6186.814 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Berumen, M. L. et al. The status of coral reef ecology research in the Red Sea. Coral Reefs 32, 737–748. https://doi.org/10.1007/s00338-013-1055-8 (2013).ADS 
    Article 

    Google Scholar 
    Paknia, O., Sh, H. R. & Koch, A. Lack of well-maintained natural history collections and taxonomists in megadiverse developing countries hampers global biodiversity exploration. Org. Divers. Evol. 15, 619–629. https://doi.org/10.1007/s13127-015-0202-1 (2015).Article 

    Google Scholar 
    Knowlton, N. & Leray, M. Censusing marine life in the twentyfirst Century. Genome 58, 238–238 (2015).
    Google Scholar 
    Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613–623. https://doi.org/10.1111/j.2041-210X.2012.00198.x (2012).Article 

    Google Scholar 
    Ransome, E. et al. The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLoS ONE https://doi.org/10.1371/journal.pone.0175066 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coker, D. J., DiBattista, J. D., Sinclair-Taylor, T. H. & Berumen, M. L. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs 37, 193–199. https://doi.org/10.1007/s00338-017-1647-9 (2018).ADS 
    Article 

    Google Scholar 
    Pearman, J. K. et al. Cross-shelf investigation of coral reef cryptic benthic organisms reveals diversity patterns of the hidden majority. Sci. Rep. 8, 8090. https://doi.org/10.1038/s41598-018-26332-5 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearman, J. K. et al. Disentangling the complex microbial community of coral reefs using standardized Autonomous Reef Monitoring Structures (ARMS). Mol. Ecol. 28, 3496–3507. https://doi.org/10.1111/mec.15167 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selkoe, K. A. et al. The DNA of coral reef biodiversity: Predicting and protecting genetic diversity of reef assemblages. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2016.0354 (2016).Article 

    Google Scholar 
    DiBattista, J. D. et al. Digging for DNA at depth: Rapid universal metabarcoding surveys (RUMS) as a tool to detect coral reef biodiversity across a depth gradient. PeerJ https://doi.org/10.7717/peerj.6379 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DiBattista, J. D. et al. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36, 1245–1252. https://doi.org/10.1007/s00338-017-1618-1 (2017).ADS 
    Article 

    Google Scholar 
    Nester, G. M. et al. Development and evaluation of fish eDNA metabarcoding assays facilitate the detection of cryptic seahorse taxa (family: Syngnathidae). Environ. DNA 2, 614–626 (2020).Article 

    Google Scholar 
    West, K. M. et al. eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol. Ecol. 29, 1069–1086. https://doi.org/10.1111/mec.15382 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. https://doi.org/10.1038/s41598-020-64858-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790. https://doi.org/10.1126/science.1132294 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113. https://doi.org/10.1016/j.marpol.2017.05.014 (2017).Article 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biol. Cons. 183, 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 (2015).Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Monroe, A. A. et al. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS ONE https://doi.org/10.1371/journal.pone.0195814 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roth, F. et al. Coral reef degradation affects the potential for reef recovery after disturbance. Mar. Environ. Res. 142, 48–58. https://doi.org/10.1016/j.marenvres.2018.09.022 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Foster, T. & Gilmour, J. P. Seeing red: Coral larvae are attracted to healthy-looking reefs. Mar. Ecol. Prog. Ser. 559, 65–71. https://doi.org/10.3354/meps11902 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ https://doi.org/10.7717/peerj.8737 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pancrazi, I., Ahmed, H., Cerrano, C. & Montefalcone, M. Synergic effect of global thermal anomalies and local dredging activities on coral reefs of the Maldives. Marine Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111585 (2020).Article 

    Google Scholar 
    Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Change Biol. 26, 2785–2797. https://doi.org/10.1111/gcb.15059 (2020).ADS 
    Article 

    Google Scholar 
    González-Barrios, F. J., Cabral-Tena, R. A. & Alvarez-Filip, L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Glob. Change Biol. 27, 640–651. https://doi.org/10.1111/gcb.15431 (2020).ADS 
    Article 

    Google Scholar 
    Rice, M. M., Ezzat, L. & Burkepile, D. E. Corallivory in the anthropocene: Interactive effects of anthropogenic stressors and corallivory on coral reefs. Front. Marine Sci. https://doi.org/10.3389/fmars.2018.00525 (2019).Article 

    Google Scholar 
    Lin, Y.-J. et al. Long-term ecological changes in fishes and macro-invertebrates in the world’s warmest coral reefs. Sci. Total Environ. 750, 142254. https://doi.org/10.1016/j.scitotenv.2020.142254 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115. https://doi.org/10.1111/ele.12073 (2013).Article 
    PubMed 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67. https://doi.org/10.1038/nature11148 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Handley, L. L. How will the “molecular revolution’ contribute to biological recording?. Biol. J. Lin. Soc. 115, 750–766. https://doi.org/10.1111/bij.12516 (2015).Article 

    Google Scholar 
    Ducklow, H. W., Doney, S. C. & Steinberg, D. K. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Ann. Rev. Mar. Sci. 1, 279–302. https://doi.org/10.1146/annurev.marine.010908.163801 (2009).Article 
    PubMed 

    Google Scholar 
    Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281. https://doi.org/10.1093/biosci/biw185 (2017).Article 

    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599. https://doi.org/10.1111/1365-2435.12345 (2015).Article 

    Google Scholar 
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x (2004).Article 

    Google Scholar 
    Vellend, M. The Theory of Ecological Communities (MPB-57). (Princeton University Press, 2016).Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. U.S.A. 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Boero, F., Kraberg, A. C., Krause, G. & Wiltshire, K. H. Time is an affliction: Why ecology cannot be as predictive as physics and why it needs time series. J. Sea Res. 101, 12–18. https://doi.org/10.1016/j.seares.2014.07.008 (2015).ADS 
    Article 

    Google Scholar 
    Pearman, J. K., Anlauf, H., Irigoien, X. & Carvalho, S. Please mind the gap – Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Environ. Res. 118, 20–30. https://doi.org/10.1016/j.marenvres.2016.04.011 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    David, R. et al. Lessons from photo analyses of autonomous reef monitoring structures as tools to detect (bio-)geographical, spatial, and environmental effects. Mar. Pollut. Bull. 141, 420–429. https://doi.org/10.1016/j.marpolbul.2019.02.066 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pennesi, C. & Danovaro, R. Assessing marine environmental status through microphytobenthos assemblages colonizing the autonomous reef monitoring structures (ARMS) and their potential in coastal marine restoration. Mar. Pollut. Bull. 125, 56–65. https://doi.org/10.1016/j.marpolbul.2017.08.001 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chang, J. J. M., Ip, Y. C. A., Bauman, A. G. & Huang, D. MinION-in-ARMS: Nanopore sequencing to expedite barcoding of specimen-rich macrofaunal samples from Autonomous Reef Monitoring Structures. Front. Marine Sci. https://doi.org/10.3389/fmars.2020.00448 (2020).Article 

    Google Scholar 
    Hazeri, G. et al. Latitudinal species diversity and density of cryptic crustacean (Brachyura and Anomura) in micro-habitat Autonomous Reef Monitoring Structures across Kepulauan Seribu, Indonesia. Biodivers. J. Biol. Divers. 20 (2019).Al-Rshaidat, M. M. D. et al. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea. Genome 59, 724–737. https://doi.org/10.1139/gen-2015-0208 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pearman, J. K. et al. Pan-regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding Autonomous Reef Monitoring Structures. Mol. Ecol. https://doi.org/10.1111/mec.15692 (2020).Article 
    PubMed 

    Google Scholar 
    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. U.S.A. 112, 2076–2081. https://doi.org/10.1073/pnas.1424997112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Obst, M. et al. A marine biodiversity observation network for genetic monitoring of hard-bottom communities (ARMS-MBON). Front. Marine Sci. https://doi.org/10.3389/fmars.2020.572680 (2020).Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43. https://doi.org/10.1038/s41558-018-0351-2 (2019).ADS 
    Article 

    Google Scholar 
    Hughes, T. P., Kerry, J. T. & Simpson, T. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99, 501–501. https://doi.org/10.1002/ecy.2092 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Furby, K. A., Bouwmeester, J. & Berumen, M. L. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32, 505–513. https://doi.org/10.1007/s00338-012-0998-5 (2013).ADS 
    Article 

    Google Scholar 
    Froehlich, C. Y. M., Klanten, O. S., Hing, M. L., Dowton, M. & Wong, M. Y. L. Uneven declines between corals and cryptobenthic fish symbionts from multiple disturbances. Sci. Rep. https://doi.org/10.1038/s41598-021-95778-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R. et al. Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170, 567–573. https://doi.org/10.1007/s00442-012-2306-z (2012).ADS 
    Article 
    PubMed 

    Google Scholar 
    Archana, A. & Baker, D. M. Multifunctionality of an urbanized coastal marine ecosystem. Front. Marine Sci. https://doi.org/10.3389/fmars.2020.557145 (2020).Article 

    Google Scholar 
    Servis, J. A., Reid, B. N., Timmers, M. A., Stergioula, V. & Naro-Maciel, E. Characterizing coral reef biodiversity: Genetic species delimitation in brachyuran crabs of Palmyra Atoll Central Pacific. Mitochondrial DNA Part A 31, 178–189. https://doi.org/10.1080/24701394.2020.1769087 (2020).CAS 
    Article 

    Google Scholar 
    Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Change Biol. 24, 773–785. https://doi.org/10.1111/gcb.13962 (2018).ADS 
    Article 

    Google Scholar 
    Perry, C. T. & Morgan, K. M. Post-bleaching coral community change on southern Maldivian reefs: Is there potential for rapid recovery?. Coral Reefs 36, 1189–1194. https://doi.org/10.1007/s00338-017-1610-9 (2017).ADS 
    Article 

    Google Scholar 
    DeCarlo, T. M. The past century of coral bleaching in the Saudi Arabian central Red Sea. PeerJ https://doi.org/10.7717/peerj.10200 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cortés, J. et al. in Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment (eds Peter W. Glynn, Derek P. Manzello, & Ian C. Enochs) 203–250 (Springer Netherlands, 2017).Enochs, I. C. & Manzello, D. P. Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31, 653–661. https://doi.org/10.1007/s00338-012-0886-z (2012).ADS 
    Article 

    Google Scholar 
    Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. 118, e2103275118. https://doi.org/10.1073/pnas.2103275118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khalil, M. T., Bouwmeester, J. & Berumen, M. L. Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea. PeerJ https://doi.org/10.7717/peerj.3410 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roik, A. et al. Year-long monitoring of physico-chemical and biological variables provide a comparative baseline of coral reef functioning in the central Red Sea. PLoS ONE https://doi.org/10.1371/journal.pone.0163939 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Largier, J. L. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13, S71–S89 (2003).Article 

    Google Scholar 
    Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Patterns of relative species abundance in rainforests and coral reefs. Nature 450, 45–49. https://doi.org/10.1038/nature06197 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alsaffar, Z., Cúrdia, J., Borja, A., Irigoien, X. & Carvalho, S. Consistent variability in beta-diversity patterns contrasts with changes in alpha-diversity along an onshore to offshore environmental gradient: The case of Red Sea soft-bottom macrobenthos. Mar. Biodivers. 49, 247–262. https://doi.org/10.1007/s12526-017-0791-3 (2017).Article 

    Google Scholar 
    Alsaffar, Z. et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. https://doi.org/10.1038/s41598-020-70318-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284. https://doi.org/10.1126/science.aaq1614 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Soininen, J., Lennon, J. J. & Hillebrand, H. A multivariate analysis of beta diversity across organisms and environments. Ecology 88, 2830–2838. https://doi.org/10.1890/06-1730.1 (2007).Article 
    PubMed 

    Google Scholar 
    Chust, G. et al. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Sci. Rep. https://doi.org/10.1038/srep28730 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gianuca, A. T., Declerck, S. A. J., Lemmens, P. & De Meester, L. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of beta-diversity. Ecology 98, 525–533. https://doi.org/10.1002/ecy.1666 (2017).Article 
    PubMed 

    Google Scholar 
    Enochs, I. C., Toth, L. T., Brandtneris, V. W., Afflerbach, J. C. & Manzello, D. P. Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar. Ecol. Prog. Ser. 438, 105-U127. https://doi.org/10.3354/meps09259 (2011).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90. https://doi.org/10.1038/nature22901 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. & Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. https://doi.org/10.1038/s41598-018-25731-y (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubbell, S. P. in Monographs in Population Biology. The unified neutral theory of biodiversity and biogeography Vol. 32 Monographs in Population Biology i-xiv, 1–375 (2001).Dornelas, M., Connolly, S. R. & Hughes, T. P. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440, 80–82. https://doi.org/10.1038/nature04534 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334. https://doi.org/10.1111/geb.12207 (2014).Article 

    Google Scholar 
    Hollander, M. & Wolfe, D. A. Nonparametric statistical methods. Ergonomics 18, 701–702 (1975).
    Google Scholar 
    Kohler, K. E. & Gill, S. M. Coral point count with excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269. https://doi.org/10.1016/j.cageo.2005.11.009 (2006).ADS 
    Article 

    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hao, X., Jiang, R. & Chen, T. Clustering 16S rRNA for OTU prediction: A method of unsupervised Bayesian clustering. Bioinformatics 27, 611–618. https://doi.org/10.1093/bioinformatics/btq725 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: Multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS ONE https://doi.org/10.1371/journal.pone.0022594 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Data Descriptor: Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data https://doi.org/10.1038/sdata.2017.27 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/aem.00062-07 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Generate High-Resolution Venn and Euler Plots v. 1.6.20 (2018).Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. Stat. Soc. 174, 245–245. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x (2011).Article 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    Hervé, M. Testing and plotting procedures for biostatistics v. 0.9-79. Retrieved from https://cran.r-project.org/web/packages/RVAideMemoire/index.html (2021).De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1 (2009).Article 
    PubMed 

    Google Scholar 
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:dbratm]2.0.co;2 (1999).Article 

    Google Scholar 
    Roberts, D. Ordination and multivariate analysis for ecology v. 2.0-1. Retrieved from http://ecology.msu.montana.edu/labdsv/R (2019).Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G. & Wagner, H. Adespatial: Multivariate multiscale spatial analysis v. 0.3-13. Retrieved from https://cran.r-project.org/package=adespatial (2021). More

  • in

    Spatial structure of city population growth

    Overview of U.S. domestic migration flowsThe most recent ACS county-to-county flow dataset26 reports that about 45.6 million people migrated to the U.S. per year during the period 2015–2019, which corresponds to 14.2% of the U.S. population27. Approximately 43.5 million annual moves corresponded to domestic migration (moves within the U.S.28), while 2.1 million accounted for inflows of individuals from other countries (viz. international immigration).With respect to domestic migration, 25.7 million people per year migrated within the same county, thus showing that the highest share of domestic flows (59%) is intra-county. Annually, about 10.4 people moved between different counties within the same state, thus intra-state flows account for 24% of the domestic migration (Supplementary Fig. 1), mainly driven by the search for more affordable housing, better jobs, and for family reasons such as change in marital status29. Long distance moves, captured by inter-state flows, represent the remaining 17% of domestic flows, which comprises about 7.5 million moves per year. Here, we will refer to these domestic migration flows as inflows or outflows, and netflows (inflows-outflows).The United States Office of Management and Budget (OMB) classifies counties as metropolitan, micropolitan, or neither30. A metropolitan statistical area contains a core urban area of at least 50,000 population. A metro area represents a functional delineation of an urban area with a network of strong socioeconomic ties, and provision of infrastructure services31,32,33. A micropolitan statistical area contains an urban core of at lest 10,000 but less than 50,000 inhabitants. There are over 380 metropolitan statistical areas in the U.S., each composed of one or more counties, accounting for about 86% of the total U.S. population and comprising approximately 28% of the land area of the country. For this reason, our analysis focuses on the growth dynamics of MSA counties. Supplementary Fig. 2 shows the 3141 counties (administrative subdivisions of the states) in the U.S., comprising about 321 million inhabitants in the starting year of the ACS 5-Year survey period (2015–2019) of our analysis26.Population growth has two components, namely natural growth and migration. Natural growth accounts for births minus deaths, and migration comprises domestic and international migration. With recent trends showing that births and natural increase have declined in the U.S. and in recent years contribute less to overall city population growth34,35, migration patterns become more relevant to the study of city population growth. Because the ACS flow files contain international inflows only, the relative importance of migrations on population growth is here addressed by x = ∣Inflows−Outflows∣/∣Births−Deaths∣ (Supplementary Figs. 3, 4), which is the ratio between domestic netflows and natural growth. The statistical distribution of this quantity computed for all U.S. counties is well fitted by a lognormal distribution, and shows that x≥1 for 76.5% of counties. For most counties, domestic migration dominates population growth, and understanding the spatial structure of domestic netflows (and their distribution within a city) is crucial to the comprehension of the mechanisms behind the heterogeneity of city population growth.At this spatial granularity, we observe a strong heterogeneity among the U.S. counties (Supplementary Fig. 2) for the period 2015 − 2019, along with examples of specific MSAs. In particular, the relative dispersion of counties relative growth due to netflows is higher than one for about 85% of the metro areas, indicating a large heterogeneity within the same city and pointing towards the spatial structure of domestic migration. The observed difference in the netflows stresses the relevance of our approach: counties belonging to the same city may have specific growth rates due to population flow patterns, thus indicating preferential flow destinations and pinpointing the direction in which the city has expanded.Heterogeneity of inter- and intra-city flowsInter-city flows represent the major component of the total flows (~55%), while intra-city flows represent ~25%. Flows between metro and micro areas, and between metro and non-statistical areas are the smallest components, with ~13% and ~7%, respectively. Given that about 80% of the domestic migration are composed of intra- and inter-city flows, we will focus our attention on describing the structure of intra- and inter-city flows, but in the Supplementary Information we offer a brief analysis of flows between metro and micro areas, and between metro and non-statistical areas.Inter-city flows are not uniform across the U.S. cities. The most intense annual netflows ( >2000 people per year), accounting for approximately 17% of the entire inter-city U.S. netflows, are mainly from New York and Chicago to California and Florida (Fig. 2), and from Los Angeles to neighboring cities. Notably, netflows among the Midwestern cities are mostly negative and below the threshold we set. These flows are mainly responsible for increasing or decreasing the population of a given city. Intra-city flow patterns, illustrated with the 7 most populous U.S. cities with more than 5 counties, are also non-uniform.Fig. 2: Heterogeneity of inter- and intra-city netflows.The map (A) suggests that the domestic redistribution of people between different U.S. metro areas are non-uniform: the black arrows, indicating the direction of the most intense inter-city netflows (higher than 2000 people per year), reveal migration trends from northern and eastern cities to western and southern regions. Cities (composed of one or more counties) are colored according to the relative growth (viz. population growth adjusted by population) of the whole MSA during the 2015–2019 period, and the black intensity and the thickness of the arrows are proportional to the netflows. Alaska and Hawaii are not shown. Panels (B–H), which are close-up of New York (B), Chicago (C), Dallas (D), Houston (E), Washington D.C. (F), Philadelphia (G), Atlanta (H), suggest that the most intense intra-city netflows are oriented radially outwards: people are moving from core to external counties. Here, counties are colored according to their relative growth in the 2015–2019 period and the width of the arrows is proportional to the netflows between origin and destination counties.Full size imageOur analysis reveals that city centers (defined as the core county with the highest population density) are more likely to have negative netflows, indicating that people are leaving the central regions of cities. The arrows in Fig. 2 indicate the direction of the most intense netflows, supporting this finding and highlighting that there is a trend of people moving from internal to external regions, contributing to population growth and spatial expansion of U.S. cities. In fact, we found no correlation between relative population growth (viz. population growth by county size) and distance from the core county (Supplementary Fig. 5A) for the 46 cities with more than 5 counties, with relative growth about 0.03 ± 0.05. On the other hand, we found that relative natural growth (Supplementary Fig. 5B) is negatively correlated with the distance to core county, thus natural growth is less relevant as a component of growth in the outer regions of cities. Consequently, our results show that not only the contribution of each component of growth changes with distance to core county, but also that the internal redistribution of people is an important mechanism of growth, mainly in the external counties.We also examined variability in inter- and intra-city flows within the 50 states (Supplementary Fig. 6). Total flows within a state increase, as expected, with the state population. Two special cases are, however, of interest: (1) two states (Vermont and Rhode Island) with small populations have only one MSA, in which case within-state inter-city flows are zero; and (2) nearly 40%, or 149, of MSAs have only one county, in which case intra-city flows could not be estimated. For all other cases, we observe on average an equal split between inter- and intra-city flows, but with considerable variability among the states, with a mean about 0.5 and standard deviation about 0.2. A generalization of the intra- and inter-city migratory patterns for all 46 cities with more than 5 counties shows that the percentage of migrants from intra- and inter-city flows are of the same order of magnitude (Fig. 3).Fig. 3: Roles of intra- and inter-city flows in driving the heterogeneous population growth of cities.We define the core county as the one with the highest population density, and we plot the percentage of inflows due to intra- (A) and inter-city flows (B) of each county within a city as a function of its distance to the core county. The percentage of outflows due to intra- and inter-city flows are shown in (C) and (D), respectively. The positive correlation of the relative growth with distance due to intra-city flows in (E), along with the lack of correlation due to inter-city flows in (F), indicates that intra-city flows are mainly responsible for increasing the population in the external regions of cities. The sizes of red circles and blue squares are proportional to the city population. The range of distances is split into equally spaced bins. The number of counties n within each bin, from left to right, is 46, 1, 4, 7, 7, 17, 21, 31, 36, 38, 34, 31, 31, 30, 20, 20, 21, 14, 17, 9, 9, 6, 4, 2, 5, 5, 2, 1. The black dots and the error bars indicate the mean and the 90% interval, respectively, of the counties within the corresponding bin. We also show the Pearson correlation coefficient R and the p-value associated with the two-sided test of the null hypothesis of non-correlation.Full size imageApart from the core county, flows from the same city correspond to about 50% of the inflow of people in the counties, presenting a slightly positive correlation with their distance from the city center (Fig. 3A). The low percentage for the core county indicates that it is not the major destination of flows from the same city. The percentage of inflows from other cities is higher in the core county and decays as we move towards the suburbs (Fig. 3B). The moderate negative correlation of this percentage with the distance reveals that inflows from other cities are more likely to concentrate in the core regions of a city.The percentage of outflows directed from the core county to other counties within the same city has a slightly negative correlation with the distance of the origin county to the city center, so it is more likely to find intra-city flows with outflows from internal regions (Fig. 3C). The core county is an exception again, suggesting that it is less likely that someone leaving the core county will move to another county within the same city. The slightly negative correlation of the percentage of outflows directed to other cities suggests that there is a trend of people leaving the core county and the central regions to move to other cities (Fig. 3D). The high percentage of inflows (Fig. 3B) and outflows (Fig. 3D) in the central region due to inter-city flows implies that the central regions of cities are more dynamic and diverse and that people tend to move to counties with similar levels of urbanization. The same pattern is observed for flows between metro and micro areas, and for metro and non-statistical areas, allowing us to conclude that people moving from rural areas are more likely to move to the external regions of a city (Supplementary Fig. 7).The positive correlation of the relative growth with the distance due to intra-city flows (Fig. 3E) shows that the resulting intra-city redistribution of people, given by the difference between inflows and outflows, is such that there is a trend from core county to the external counties (viz. suburbs). When compared to the relative growth due to inter-city flows (Fig. 3F), which do not show any trend and that have negative values for the most distant counties, it becomes clear that intra-city flows play a major role in the population increase observed in outer regions of cities. Interestingly, large circle and square dots in Fig. 3E and F suggest that the loss of people due to inter-city netflows is more intense than the gain of people due to intra-city netflows in some external counties of the largest metro areas, thus explaining the population decline in some outer regions of New York and Chicago (as shown in Fig. 2B and C).The population growth due to intra-city flows is also depicted in Fig. 4. The concentration of flows below the diagonal captures the heterogeneity and the preferential destination of intra-city netflows. We observe that people are more likely to move to lower population density counties when moving from one place to another within the same city, as exemplified by 7 cities in panel A. Panel B summarizes this analysis for the 46 cities with more than 5 counties by showing the fraction ({{{{{{{mathcal{F}}}}}}}}) of intra-city netflows to lower density counties. We note that more than 93% of the cities have ({{{{{{{mathcal{F}}}}}}}} > 0.5) and that there is a positive correlation of ({{{{{{{mathcal{F}}}}}}}}) with the city population, and C shows the rank of cities according to the fraction of intra-city netflows to lower density counties.Fig. 4: People are moving to counties with lower population density.A The population density of the origin (ρo) and destination (ρd) counties of intra-city netflows for New York, Chicago, Dallas, Houston, Washington D.C., Philadelphia, Atlanta, reveal that the majority of the flows occur from high to low-density counties. The size of the symbols are proportional to the intensity of the netflow, and the black line corresponds to y = x. B The fraction of netflows to lower density counties ({{{{{{{mathcal{F}}}}}}}}) has a positive correlation with city population when we consider the 46 MSAs with more than 5 counties, suggesting that intra-city netflows to lower density counties are more frequent as the city size increases. We also show the Pearson correlation coefficient R and the p-value associated with the two-sided test of the null hypothesis of non-correlation. C The ranking of the cities according to ({{{{{{{mathcal{F}}}}}}}}).Full size imagePopulation density does not seem to play a major role in driving flows between counties of different cities. The fraction of inter-city netflows to lower density counties is about 57% when we consider all the 384 MSAs. The heterogeneity in the inter-city netflow pattern can be assessed by analyzing ({{{{{{{mathcal{F}}}}}}}}) versus the population of the destination city (Fig. 5A, B) and ({{{{{{{mathcal{F}}}}}}}}) versus the population of the origin city (Fig. 5C, D). The negative correlation of ({{{{{{{mathcal{F}}}}}}}}) with the population of the destination city in panel A indicates that inflows are more likely to come from lower density counties as the destination city size increases. The positive correlation of ({{{{{{{mathcal{F}}}}}}}}) with the population of the origin city in panel C reveals that outflows tend to be directed to lower density counties as the origin city size increases. The trends observed in panels A and C reveal that inter-city flows are more likely between counties with different population densities rather than between counties with similar population densities. Panels B and D show the rank order of cities according to a function of the destination city size and the origin city size, respectively.Fig. 5: Inter-city flow patterns depend on the population size of the origin and destination cities.Each point corresponds to a particular city. A Fraction ({{{{{{{mathcal{F}}}}}}}}) of netflows going to lower density counties versus the population of the destination city. Inflows to counties of large cities (with population greater than 106, dashed line) usually comes from counties with lower population densities. B Rank of cities according to the share of inflows from lower density counties. C Fraction ({{{{{{{mathcal{F}}}}}}}}) versus the population of the origin city. Outflows from counties of large cities usually go to cities with lower density counties. D The rank of cities according to the share of inter-city netflows to lower density counties is presented. The dots are colored according to the city population density (darker red means higher density). We also show the Pearson correlation coefficient R and the p-value associated with the two-sided test of the null hypothesis of non-correlation.Full size imageWe would expect that there might be preferential locations within a given city to which people move due to various factors such as lower costs of housing and employment opportunities. However, it seems that house prices have little to no effect on intra-city netflows (Supplementary Fig. 8). While the fraction of intra-city netflows to counties with less expensive houses is about 0.8 for cities like New York, Chicago and Washington, this fraction is about 0.2 for cities like Dallas, Houston and Philadelphia. The lack of a clear national pattern highlights the specificity of each city and the heterogeneity of the regional housing market in the U.S.36,37. On the other hand, the fraction of intra-city netflows to counties with lower unemployment rates is higher than 0.5 for about 2/3 of the cities (Supplementary Fig. 9), thus showing that people are more likely to move to counties with lower unemployment rates.Statistical structure of inter-city flowsIntra-city flows capture the internal redistribution of population, without altering the total city population. In this context, we focus on inter-city flows to investigate whether or not extreme flows play an important role in shaping the growth of counties as observed at the city level5. For cities, Verbavatz and Barthelemy5 introduce a stochastic equation to describe population growth, composed of two terms. The first term accounts for out-of-system growth, which includes natural growth and international migration, and the second term accounts for the growth due to domestic netflows. They find that total netflows adjusted by population size can be well approximated by a Lévy distribution, and this heavy-tailed distribution indicates that rare and extreme inter-city flows (viz. migratory shocks) dominate city population growth.Here, we find that, for counties, the distribution of total netflows adjusted by population size, which is represented by ζi and captures the intensity of inter-city migratory flows (see the section “Methods” for details), can be approximated by a Gaussian distribution (Fig. 6). The lack of a heavy tail in the empirical distribution of ζi suggests the absence of extreme flows at the county level, thus indicating that the growth of counties can be described by smoother migratory process than cities. Given that cities do experience migratory shocks5, our findings indicate that cities redistribute inflows among its different counties, leading to a spill-over effect that dampens flow shocks at the county level.Fig. 6: Extreme shocks are dissipated at the county level.The distribution of ζi, which is the sum of the netflows of a county i adjusted by its population, suggests that migratory events are exponentially bounded at the county level since ζi is well described by a Gaussian distribution. The distribution of ζi is computed here for all the counties with at least 50.000 inhabitants. We also show the result of the two-sided KS test under the null hypothesis that ζi follows a Gaussian distribution.Full size imageHeterogeneity of international inflowsThe highest share of international inflows is concentrated in large cities. About 40% of the international inflows are destined to the top 10 (~2.6%) largest metro areas of the U.S. New York is the first with 8.5% of international inflows, followed by Los Angeles and Miami with 5.4% and 5.0%, respectively. Indeed, international inflows Yk scale superlinearly with the population Sk of the metro area k (Fig. 7A), thus larger cities have more immigrants per capita than smaller cities.Fig. 7: International inflow scales superlinearly with city size.Panel (A) shows the number of international immigrants as a function of the city size S for the 384 U.S. metro areas. The performance of the model Y = Y0Sθ, in which θ = 1.19 (95% CI [1.13, 1.24]) and Y0 = 4.10−4 is a normalization constant, is assessed by the coefficient of determination R2. Note that the spread of empirical data around the model narrows as the size of the city increases. Panel (B) shows the rank of the metro areas and the residues, which captures the deviation from the null model thus highligthing cities receiving more/less than expected international inflows. Names of the cities are followed by two-letter state abbreviations.Full size imageInterestingly, this gain with scale is also observed in socioeconomic city metrics as crime, GDP, innovation and wealth creation due to the manifestation of nonlinear agglomeration phenomena38,39,40. Using Y = Y0Sθ as a null model, we can compute deviations from the average behavior by means of residuals given by (log ({Y}_{k}/{Y}_{0}{S}_{k}^{theta }))38. The rank of the residues (Fig. 7B) shows that college towns are among the top metro areas receiving more international inflows than expected, while large cities as Los Angeles, New York, Atlanta, and Chicago are among the metro areas receiving less international inflows than expected.The spatial distribution of international inflows within cities is shown in Supplementary Fig. 10. The highest share of inflows is concentrated at core counties, and the percentage of inflows decreases dramatically with the distance from the core county. This result suggests that inflow of international migrants is an important component of population growth, particularly at the core regions of large cities.Robustness of our findingsPatterns of population redistribution change from time to time in the U.S., and are affected by several factors. For instance, in the 1960s non-metropolitan counties lost about 3 million people due to outflows to metropolitan counties, while the reverse trend was observed in the 1970s when non-metropolitan counties experienced net inflows of about 2.6 million people41. Wardwell and Brown in41 indicate that three factors might be among the main reasons of such change, namely economic decentralization, preference for rural living, and modernization of rural life. The temporal influence of factors as socioeconomic conditions, transportation infrastructure, natural amenities, and land use and development on population growth in rural and suburban areas is explored in42. Changes in rural migration patterns are also studied in43, where age-specific rural migration patterns from 1950 to 1995 are analyzed. In44, the authors explore redistribution trends across U.S. counties from 1980 to 1995 split into three five year periods (1980–1985, 1985–1990, 1990–1995), and45 analyzes changes in age-specific nationwide migration patterns from 1950 to 2010.The spatial structure of migration patterns may indeed change from time to time; our results correspond to the current intra- and inter-city redistribution trends, based on the most recent ACS migration flow files. We present a thorough empirical and statistical analysis of domestic migration flows among U.S. cities ans counties. Our study also introduces a framework that can be used for analyzing and comparing internal redistribution of people across different time periods. Indeed, we extended our analysis for two other time periods, 2005–2009 and 2010–2014. With respect to the spatial distribution of intra- and inter-city flows, similar trends are observed in both periods (Supplementary Figs. 12, 13), namely inter-city flows are responsible for the highest share of inflows to core counties, and intra-city flows are responsible for the highest share of inflows to external counties. We also explored the role of population density in driving netflows between counties within the same metro area in 2005–2009 and 2010–2014. The results (Supplementary Figs. 14 and 15) indicate that 95.7% of cities were dominated by intra-city moves to lower density counties in 2005–2009, and this percentage dropped to 76.1% in 2010–2014. Our findings indicate that the trends we report here are taking place since 2005 but with different intensities.The robustness of our findings is checked with additional migration data from the Internal Revenue Service (IRS), which reports the year-to-year address changes on individual tax returns filled with the IRS46. The results obtained with the analysis of IRS datasets from periods 2015–2016, 2016–2017, 2017–2018, 2018–2019 (Supplementary Figs. 16, 17, 18, 19), reveal similar trends to those we found using ACS data. Particularly, we observe that, for all periods considered, the correlation between intra-city netflow/S and distance to core county is stronger than we found with ACS data, thus highlighting the role of intra-city flows in driving population to external regions of cities. The main difference between both datasets is in the percentage of intra- and inter-city inflows and outflows: while ACS data indicates that both flows have approximately the same contribution to the total flows, the IRS data indicates that, besides the core county, intra-city flows are responsible for about 80% of inflows and outflows of metro areas. More

  • in

    Temporal variation in the prokaryotic community of a nearshore marine environment

    Bunse, C. & Pinhassi, J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25, 494–505. https://doi.org/10.1016/j.tim.2016.12.013 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M., Höfer, J., Sala, M. M. & Gasol, J. M. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front. Microbiol. 11, 1590. https://doi.org/10.3389/fmicb.2020.01590 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611. https://doi.org/10.1126/science.1218344 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139. https://doi.org/10.1111/j.1462-2920.2009.02017.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sintes, E., Witte, H., Stodderegger, K., Steiner, P. & Herndl, G. J. Temporal dynamics in the free-living bacterial community composition in the coastal North Sea. FEMS Microbiol. Ecol. 83, 413–424. https://doi.org/10.1111/1574-6941.12003 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindh, M. V. et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ. Microbiol. 17, 2459–2476. https://doi.org/10.1111/1462-2920.12720 (2015).Article 
    PubMed 

    Google Scholar 
    El-Swais, H., Dunn, K. A., Bielawski, J. P., Li, W. K. W. & Walsh, D. A. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ. Microbiol. 17, 3642–3661. https://doi.org/10.1111/1462-2920.12629 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ward, C. S. et al. Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J. 11, 1412–1422. https://doi.org/10.1038/ismej.2017.4 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife 5, e11888. https://doi.org/10.7554/eLife.11888 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tinta, T. et al. Bacterial community shift is induced by dynamic environmental parameters in a changing coastal ecosystem (northern Adriatic, northeastern Mediterranean Sea) – a 2-year time-series study. Environ. Microbiol. 17, 3581–3596. https://doi.org/10.1111/1462-2920.12519 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salter, I. et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 9, 347–360. https://doi.org/10.1038/ismej.2014.129 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308. https://doi.org/10.1038/ismej.2011.107 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso-Sáez, L. et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: Assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol. Ecol. 60, 98–112. https://doi.org/10.1111/j.1574-6941.2006.00276.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso-Sáez, L., Díaz-Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780. https://doi.org/10.1111/1462-2920.12801 (2015).Article 
    PubMed 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 1–7. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).CAS 
    Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146. https://doi.org/10.1038/nrmicro3417 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Najdek, M. et al. Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow. Biogeosciences 17, 3299–3315. https://doi.org/10.5194/bg-17-3299-2020 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Najdek, M. et al. Effects of the invasion of Caulerpa cylindracea in a Cymodocea nodosa meadow in the Northern Adriatic Sea. Front. Mar. Sci. 7, 602055. https://doi.org/10.3389/fmars.2020.602055 (2020).Article 

    Google Scholar 
    Ladau, J. et al. Global marine bacterial diversity peaks at high latitudes in winter. ISME J. 7, 1669–1677. https://doi.org/10.1038/ismej.2013.37 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    García, F. C., Alonso-Sáez, L., Morén, X. A. G. & López-Urrutia, Á. Seasonality in molecular and cytometric diversity of marine bacterioplankton: The re-shuffling of bacterial taxa by vertical mixing. Environ. Microbiol. 17, 4133–4142. https://doi.org/10.1111/1462-2920.12984 (2015).Article 
    PubMed 

    Google Scholar 
    Reinthaler, T., Winter, C. & Herndl, G. J. Relationship between bacterioplankton richness, respiration, and production in the southern North Sea. Appl. Environ. Microbiol. 71, 2260–2266. https://doi.org/10.1128/AEM.71.5.2260-2266.2005 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mozetič, P. et al. Recent trends towards oligotrophication of the Northern Adriatic: Evidence from chlorophyll a time series. Estuaries Coast 33, 362–375. https://doi.org/10.1007/s12237-009-9191-7 (2010).CAS 
    Article 

    Google Scholar 
    Manna, V., De Vittor, C., Giani, M., Del Negro, P. & Celussi, M. Long-term patterns and drivers of microbial organic matter utilization in the northernmost basin of the Mediterranean Sea. Mar. Environ. Res. 164, 105245. https://doi.org/10.1016/j.marenvres.2020.105245 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ivančić, I. et al. Long-term changes in heterotrophic prokaryotes abundance and growth characteristics in the northern Adriatic Sea. J. Mar. Syst. 82, 206–216. https://doi.org/10.1016/j.jmarsys.2010.05.008 (2010).Article 

    Google Scholar 
    Bowman, J. P. The family Cryomorphaceae. In The Prokaryotes: Other Major Lineages of Bacteria and the Archaea (eds Rosenberg, E. et al.) (Springer, New York, 2014). https://doi.org/10.1007/978-3-642-38954-2_135.Chapter 

    Google Scholar 
    Ngugi, D. K. & Stingl, U. High-quality draft single-cell genome sequence of the NS5 marine group from the coastal Red Sea. Genome Announc. 6, e00565-18. https://doi.org/10.1128/genomeA.00565-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korlević, M., Pop Ristova, P., Garić, R., Amann, R. & Orlić, S. Bacterial diversity in the South Adriatic Sea during a strong, deep winter convection year. Appl. Environ. Microbiol. 81, 1715–1726; https://doi.org/10.1128/AEM.03410-14 (2015).Korlević, M. et al. Bacterial diversity across a highly stratified ecosystem: A salt-wedge Mediterranean estuary. Syst. Appl. Microbiol. 39, 398–408. https://doi.org/10.1016/j.syapm.2016.06.006 (2016).Article 
    PubMed 

    Google Scholar 
    Hoarfrost, A. et al. Global ecotypes in the ubiquitous marine clade SAR86. ISME J. 14, 178–188. https://doi.org/10.1038/s41396-019-0516-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Šilović, T., Balagué, V., Orlić, S. & Pedrós-Alió, C. Picoplankton seasonal variation and community structure in the northeast Adriatic coastal zone. FEMS Microbiol. Ecol. 82, 678–691. https://doi.org/10.1111/j.1574-6941.2012.01438.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042. https://doi.org/10.1038/nature01943 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Spring, S. & Riedel, T. Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability. BMC Microbiol. 13, 117. https://doi.org/10.1186/1471-2180-13-117 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand. Genomic Sci. 9, 632–645. https://doi.org/10.4056/sigs.4998989 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, C. A. et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 3, 283–295. https://doi.org/10.1038/ismej.2008.117 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vergin, K. L. et al. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series study site by phylogenetic placement of pyrosequences. ISME J. 7, 1322–1332. https://doi.org/10.1038/ismej.2013.32 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, J.-G. et al. Distinct temporal dynamics of planktonic archaeal and bacterial assemblages in the bays of the Yellow Sea. PLoS One 14, e0221408. https://doi.org/10.1371/journal.pone.0221408 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bayer, B. et al. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int. J. Syst. Evol. Microbiol. 69, 1892–1902. https://doi.org/10.1099/ijsem.0.003360 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis vol. 167 (Fisheries Research Board of Canada, 1972).Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. https://doi.org/10.1093/icesjms/30.1.3 (1965).CAS 
    Article 

    Google Scholar 
    Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948. https://doi.org/10.4319/lo.1980.25.5.0943 (1980).ADS 
    Article 

    Google Scholar 
    Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56. https://doi.org/10.1128/aem.63.1.50-56.1997 (1997).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korlević, M., Markovski, M., Zhao, Z., Herndl, G. J. & Najdek, M. Selective DNA and protein isolation from marine macrophyte surfaces. Front. Microbiol. 12, 665999. https://doi.org/10.3389/fmicb.2021.665999 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137. https://doi.org/10.3354/ame01753 (2015).Article 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Korlević, M., Markovski, M., Zhao, Z., Herndl, G. J. & Najdek, M. Seasonal dynamics of epiphytic microbial communities on marine macrophyte surfaces. Front. Microbiol. 12, 671342. https://doi.org/10.3389/fmicb.2021.671342 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120. https://doi.org/10.1128/AEM.01043-13 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648. https://doi.org/10.1093/nar/gkt1209 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schloss, P. D., Jenior, M. L., Koumpouras, C. C., Westcott, S. L. & Highlander, S. K. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4, e1869. https://doi.org/10.7717/peerj.1869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).Oksanen, J. et al. vegan: Community ecology package (2020).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686; https://doi.org/10.21105/joss.01686 (2019)McKinnon Edwards, S. lemon: Freshing up your ’ggplot2’ plots (2020).Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ’ggplot2’ (2020).Neuwirth, E. RColorBrewer: ColorBrewer palettes (2014).Zhu, H. kableExtra: Construct complex table with ’kable’ and pipe syntax (2021).Allaire, J. et al. rmarkdown: Dynamic documents for R (2021).Xie, Y., Allaire, J. J. & Grolemund, G. R Markdown: The Definitive Guide (Chapman and Hall/CRC, New York, 2018).Book 

    Google Scholar 
    Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook (Chapman and Hall/CRC, New York, 2020).Book 

    Google Scholar 
    Xie, Y. knitr: A general-purpose package for dynamic report generation in R (2021).Xie, Y. & knitr, A comprehensive tool for reproducible research in R. In Implementing Reproducible Computational Research (eds Stodden, V. et al.) (Chapman and Hall/CRC, New York, 2014).Xie, Y. Dynamic Documents with R and knitr (Chapman and Hall/CRC, New York, 2015).
    Google Scholar 
    Xie, Y. tinytex: Helper functions to install and maintain TeX Live, and compile LaTeX documents (2021).Xie, Y. TinyTeX: A lightweight, cross-platform, and easy-to-maintain LaTeX distribution based on TeX Live. TUGboat 40, 30–32 (2019).CAS 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).Article 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2018). https://doi.org/10.1007/978-3-319-71404-2.Book 
    MATH 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).MATH 

    Google Scholar  More

  • in

    Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

    Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:7–13Article 

    Google Scholar 
    Akashi HD, Cádiz Díaz A, Shigenobu S, Makino T, Kawata M (2016) Differentially expressed genes associated with adaptation to different thermal environments in three sympatric Cuban Anolis lizards. Mol Ecol 25:2273–2285CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen JA (1877) The influence of Physical conditions in the genesis of species. Radic Rev 1:108–140
    Google Scholar 
    Barghi N, Hermisson J, Schlötterer C (2020) Polygenic adaptation: A unifying framework to understand positive selection. Nat Rev Genet 21:769–781CAS 
    PubMed 
    Article 

    Google Scholar 
    Blem CR (1990) Avian energy storage. Curr Ornithol 7:59–113
    Google Scholar 
    Blix AS (2016) Adaptations to polar life in mammals and birds. J Exp Biol 219:1093–1105PubMed 
    Article 

    Google Scholar 
    Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: From polygenic to omnigenic. Cell 169:1177–1186CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cannon B, Nedergaard J (2010) Thyroid hormones: Igniting brown fat via the brain. Nat Med 16:965–967CAS 
    PubMed 
    Article 

    Google Scholar 
    Castruita JAS, Westbury MV, Lorenzen ED (2020) Analyses of key genes involved in Arctic adaptation in polar bears suggest selection on both standing variation and de novo mutations played an important role. BMC Genom 21:1–8
    Google Scholar 
    Cherel Y, Gilles J, Handrich Y, Le Maho Y (1994) Nutrient reserve dynamics and energetics during long-term fasting in the king penguin (Aptenodytes patagonicus). J Zool 234:1–12Article 

    Google Scholar 
    Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cristofari R, Bertorelle G, Ancel A, Benazzo A, Le Maho Y, Ponganis PJ et al. (2016) Full circumpolar migration ensures evolutionary utility in the Emperor penguin. Nat Commun 7:1–9Article 

    Google Scholar 
    Cristofari R, Liu X, Bonadonna F, Cherel Y, Pistorius P, Le Maho Y et al. (2018) Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat Clim Change 8:245–251Article 

    Google Scholar 
    Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O et al. (2017) Climate change impacts on wildlife in a High Arctic archipelago-Svalbard, Norway. Glob Change Biol 23:490–502Article 

    Google Scholar 
    Díaz-Franulic I, Raddatz N, Castillo K, González-Nilo FD, Latorre R (2020) A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. PNAS 117:20298–20304PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duchamp C, Marmonier F, Denjean F, Lachuer J, Eldershaw TPD, Rouanet JL et al. (1999) Regulatory, cellular and molecular aspects of avian muscle non-shivering thermogenesis. Ornis Fennica 76:151–165
    Google Scholar 
    Elliott KH, Welcker J, Gaston AJ, Hatch SA, Palace V, Hare JF et al. (2013) Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds. Biol Open 2:580–586CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost PGH, Siegfried WR, Greenwood PJ (1975) Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. J Zool 175:231–241Article 

    Google Scholar 
    Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F et al. (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavryushkina A, Heath TA, Ksepka DT, Stadler T, Welch D, Drummond AJ (2017) Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst Biol 66:57–73PubMed 

    Google Scholar 
    Geering K, Kraehenbuhl JP, Rossier BC (1987) Maturation of the catalytic alpha unit of Na, K-ATPase during intracellular transport. J Cell Biol 105:2613–2619CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Grémillet D et al. (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann N. Y Acad Sci 1249:166–190PubMed 
    Article 

    Google Scholar 
    Goldsmith R, Sladen WJ (1961) Temperature regulation of some Antarctic penguins. J Physiol 157:251–262CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Groscolas R (1990) Metabolic adaptations to fasting in emperor and king penguins. In Penguin Biology (LS Davis & JT Darby ed.), 269-296 San Diego: Academic PressGroscolas R, Robin JP (2001) Long-term fasting and re-feeding in penguins. Comp Biochem Physiol Part A Mol Integr Physiol 128:645–655CAS 

    Google Scholar 
    Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546CAS 
    PubMed 
    Article 

    Google Scholar 
    Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19:859–867CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao Y, Xiong Y, Cheng Y, Song G, Jia C, Qu Y et al. (2019) Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. PNAS 116:11851–11856CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunt BG, Ometto L, Wurm Y, Shoemaker D, Soojin VY, Keller L et al. (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. PNAS 108:15936–15941CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iannello S, Milazzo P, Belfiore F (2007) Animal and human tissue Na,K-ATPase in normal and insulin-resistant states: regulation, behaviour and interpretative hypothesis on NEFA effects. Obes Rev 8:231–251CAS 
    PubMed 
    Article 

    Google Scholar 
    Ishii S, Amano I, Koibuchi N (2021) The role of thyroid hormone in the regulation of cerebellar development. Endocrinol Metab 36:703–716CAS 
    Article 

    Google Scholar 
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C et al. (2014) Whole genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: Physiological roles beyond heat generation. Cell Metab 22:546–559CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kooyman GL, Gentry RL, Bergman WP, Hammel HT (1976) Heat loss in penguins during immersion and compression. Comp Bioch Physiol Part A 54:75–80CAS 
    Article 

    Google Scholar 
    Kumar V, Kutschera VE, Nilsson MA (2015) Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes. BMC Genom 16:1–13Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT et al. (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496PubMed 
    Article 

    Google Scholar 
    Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B et al. (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271:1764–1769CAS 
    PubMed 
    Article 

    Google Scholar 
    Li FG, Li H (2019) A time-dependent genome-wide SNP-SNP interaction analysis of chicken body weight. BMC Genom 20:1–9Article 

    Google Scholar 
    Li C, Zhang Y, Li J, Kong L, Hu H, Pan H et al. (2014) Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience 3:2047–2217XArticle 

    Google Scholar 
    Lin Z, Chen L, Chen X, Zhong Y, Yang Y, Xia W et al. (2019) Biological adaptations in the Arctic cervid, the reindeer (Rangifer tarandus). Science 364:eaav6312CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z et al. (2014) Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:785–794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu S, Westbury MV, Dussex N, Mitchell KJ, Sinding MH, Heintzman PD et al. (2021) Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell 184:4874–4885CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660CAS 
    PubMed 
    Article 

    Google Scholar 
    Löytynoja A (2013) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170Article 

    Google Scholar 
    Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI, Perry GH et al. (2015) Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep 12:217–228CAS 
    PubMed 
    Article 

    Google Scholar 
    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N et al. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:636–641Article 

    Google Scholar 
    Matos-Cruz V, Schneider ER, Mastrotto M, Merriman DK, Bagriantsev SN, Gracheva EO (2017) Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep 21:3329–3337CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monera OD, Sereda TJ, Zhou NE, Kay CM, Hodges RS (1995) Relationship of sidechain hydrophobicity and α-helical propensity on the stability of the single-stranded amphipathic α-helix. J Pept Sci 1:319–329CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers BR, Sigal YM, Julius D (2009) Evolution of Thermal Response Properties in a Cold-Activated TRP Channel. PloS one 4:e5741PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ng CS, Chen CK, Fan WL, Wu P, Wu SM, Chen JJ et al. (2015) Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genom 16:1–16CAS 
    Article 

    Google Scholar 
    Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARg agonists induce a white-to-brown fat conversion through stabilisation of PRDM16 protein. Cell Metab 15:395–404CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. PNAS 103:17973–17978CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z et al. (2019) High-coverage genomes to elucidate the evolution of penguins. GigaScience 8:1–17Article 

    Google Scholar 
    Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543CAS 
    PubMed 
    Article 

    Google Scholar 
    Poirier H, Niot I, Monnot MC, Braissant O, Meunier-Durmort C, Costet P et al. (2001) Differential involvement of peroxi-some-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355:481–488CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pond SK, Frost S, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinform 21:676–679CAS 
    Article 

    Google Scholar 
    R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Ramasamy S, Ometto L, Crava CM, Revadi S, Kaur R, Horner DS et al. (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos B, González-Acuña D, Loyola DE, Johnson WE, Parker PG, Massaro M et al. (2018) Landscape genomics: natural selection drives the evolution of mitogenome in penguins. BMC Genom 19:1–17Article 

    Google Scholar 
    Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H et al. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res 47:191–198Article 

    Google Scholar 
    Rey B, Roussel D, Romestaing C, Belouze M, Rouanet JL, Desplanches D et al. (2010) Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC Physiol 10:1–12Article 

    Google Scholar 
    Roussel D, Le Coadic M, Rouanet JL, Duchamp C (2020) Skeletal muscle metabolism in sea-acclimatised king penguins I Thermogenic mechanisms. J Exp Biol 223:pjeb233668Article 

    Google Scholar 
    Rowland LA, Bal NC, Periasamy M (2015) The role of skeletal‐muscle‐based thermogenic mechanisms in vertebrate endothermy. Biol Rev 90:1279–1297PubMed 
    Article 

    Google Scholar 
    Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM et al. (2021) Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biol 19:1–13Article 

    Google Scholar 
    Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26Article 

    Google Scholar 
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nuc Acids Res 33:382–388Article 

    Google Scholar 
    Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J et al. (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Investig 121:96–105CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith MD, Wertheim JO, Weaver S (2015) Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742CAS 
    PubMed 
    Article 

    Google Scholar 
    Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al. (2016) The genecards suite: From gene data mining to disease genome sequence analysis. Curr Protoc Bioinform 54:1–30Article 

    Google Scholar 
    Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637CAS 
    PubMed 
    Article 

    Google Scholar 
    Storey JD, Bass AJ, Dabney A, Robinson D (2017) qvalue: Q-value estimation for false discovery rate control R package version 2150Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarises and visualises long lists of gene ontology terms. PloS one 6:e21800CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B et al. (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol 558:123–135CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE et al. (2012) Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr Physiol 2:2151–2202PubMed 
    Article 

    Google Scholar 
    Teulier L, Rouanet JL, Letexier D, Romestaing C (2010) Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency. J Exp Biol 213:2476–2482CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas DB, Fordyce RE (2008) The heterothermic loophole exploited by penguins. Aust J Zool 55:317–321Article 

    Google Scholar 
    Tigano A, Reiertsen TK, Walters JR, Friesen VL (2018) A complex copy number variant underlies differences in both colour plumage and cold adaptation in a dimorphic seabird. BioRxiv 507384. https://doi.org/10.1101/507384Toyomizu M, Ueda M, Sato S, Seki Y, Sato K, Akiba Y (2002) Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett 529:313–318CAS 
    PubMed 
    Article 

    Google Scholar 
    Trucchi E, Gratton P, Whittington JD, Cristofari R, Le Maho Y, Stenseth NC et al. (2014) King penguin demography since the last glaciation inferred from genome-wide data. Proc R Soc B 281:20140528PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trucchi E, Cristofari R, Le Bohec C (2019) Reply to: The role of ocean dynamics in king penguin range estimation. Nat Clim Change 9:122–122Article 

    Google Scholar 
    Vermillion KL, Anderson KJ, Hampton M, Andrews MT (2015) Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genom 47:58–74CAS 
    Article 

    Google Scholar 
    Vézina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T (2015) Hormonal correlates and thermoregulatory consequences of moulting on metabolic rate in a northerly wintering shorebird. Physiol Biochem Zool 82:129–142Article 

    Google Scholar 
    Vianna JA, Fernandes FA, Frugone MJ, Figueiró HV, Pertierra LR, Noll D et al. (2020) Genome-wide analyses reveal drivers of penguin diversification. PNAS 117:22303–22310CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang Q, Tan X, Jiao S (2014) Analyzing cold tolerance mechanism in transgenic Zebrafish (Danio rerio). PloS one 9:e102492PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: Detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32:820–832CAS 
    PubMed 
    Article 

    Google Scholar 
    Wollenberg Valero KC, Pathak R, Prajapati I, Bankston S, Thompson A, Usher J et al. (2014) A candidate multimodal functional genetic network for thermal adaptation. PeerJ 2:e578PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang Z (2007) PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang J, Bromage TG, Zhao Q, Xu BH, Gao WL, Tian HF et al. (2011) Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress. PloS one 6:e19833CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang S, Lu X, Wang Y, Xu L, Chen X, Yang F et al. (2020) A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. PNAS 117:8633–8638CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237–241CAS 
    PubMed 
    Article 

    Google Scholar 
    Yudin NS, Larkin DM, Ignatieva EV (2017) A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet 18:33–43Article 

    Google Scholar 
    Zelcer N, Sharpe LJ, Loregger A, Kristiana I, Cook EC, Phan L et al. (2014) The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol 34:1262–1270PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C et al. (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More