More stories

  • in

    The deglacial forest conundrum

    Birks, H. J. B. Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies. Open Ecol. J. 3, 68–110 (2011).Article 

    Google Scholar 
    Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).Article 

    Google Scholar 
    Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dyn. 37, 775–802 (2011).Article 

    Google Scholar 
    Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).Article 

    Google Scholar 
    Harrison, S. BIOME 6000 DB classified plotfile version 1. https://doi.org/10.17864/1947.99. (2017).Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).PubMed 
    Article 

    Google Scholar 
    Neilson, R. P. et al. Forecasting regional to global plant migration in response to climate change. BioScience 55 https://academic.oup.com/bioscience/article/55/9/749/285963 (2005).Normand, S. et al. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B: Biol. Sci. 278, 3644–3653 (2011).Article 

    Google Scholar 
    Seltzer, A. M. et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228–232 (2021).Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, N. & Adams, J. M. A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000-15,000 BP). Internet Archaeol. 11, https://doi.org/10.11141/ia.11.2 (2001).Birks, H. J. B. & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Article 

    Google Scholar 
    Roberts, D. R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B: Biol. Sci. 282, 20142903 (2015).Clark, J. S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204–224 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, S. & Overpeck, J. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Harrison, S. P. & Goñi, M. F. S. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quat. Sci. Rev. 29, 2957–2980 (2010).ADS 
    Article 

    Google Scholar 
    Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).Article 

    Google Scholar 
    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).PubMed 
    Article 

    Google Scholar 
    Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).Article 

    Google Scholar 
    Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).Article 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    Webb, T. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).Article 

    Google Scholar 
    Jackson, S. T. & Williams, J. W. Modern analogs in quaternary paleoecology: Here today, gone yesterday, gone tomorrow? Annu. Rev. Earth Planet. Sci. 32, 495–537 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( >30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).ADS 
    Article 

    Google Scholar 
    He, F. Simulating transient climate evolution of the last deglaciation with CCSM3 Dissertation at the University of Wisconsin – Madison (2011).Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. in Quaternary Science Reviews vol. 19 213–226 (Pergamon, 2000).He, C. et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Modeling Earth Syst. 5, 459–482 (2013).Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).Article 

    Google Scholar 
    Dallmeyer, A., Claussen, M. & Brovkin, V. Harmonising plant functional type distributions for evaluating Earth system models. Clim 15, 335–366 (2019).
    Google Scholar 
    Ni, J., Cao, X., Jeltsch, F. & Herzschuh, U. Biome distribution over the last 22,000 yr in China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 33–47 (2014).Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Sobol, M. K., Scott, L. & Finkelstein, S. A. Reconstructing past biomes states using machine learning and modern pollen assemblages: a case study from Southern Africa. Quat. Sci. Rev. 212, 1–17 (2019).ADS 
    Article 

    Google Scholar 
    Marinova, E. et al. Pollen‐derived biomes in the Eastern Mediterranean–Black Sea–Caspian‐Corridor. J. Biogeogr. 45, 484–499 (2018).Article 

    Google Scholar 
    Cao, X. et al. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. Clim. Past 15, 1503–1536 (2019).Article 

    Google Scholar 
    Geng, R. et al. Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for major taxa. Front. Ecol. Evol. 10, 508 (2022).Article 

    Google Scholar 
    Cao, X. et al. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth Syst. Sci. Data 12, 119–135 (2020).ADS 
    Article 

    Google Scholar 
    Sugita, S. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 229–241 (2007).ADS 
    Article 

    Google Scholar 
    Githumbi, E. et al. European pollen-based REVEALS land-cover reconstructions for the Holocene: Methodology, mapping and potentials. Earth Syst. Sci. Data 14, 1581–1619 (2022).ADS 
    Article 

    Google Scholar 
    Snell, R. S. et al. Using dynamic vegetation models to simulate plant range shifts. Ecography 37, 1184–1197 (2014).Article 

    Google Scholar 
    Bullock, J. M. et al. Modelling spread of British wind-dispersed plants under future wind speeds in a changing climate. J. Ecol. 100, 104–115 (2012).Article 

    Google Scholar 
    Svenning, J. C., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).Article 

    Google Scholar 
    Herzschuh, U. et al. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nat. Commun. 7, 1–11 (2016).Article 

    Google Scholar 
    Herzschuh, U. Legacy of the Last Glacial on the present‐day distribution of deciduous versus evergreen boreal forests. Glob. Ecol. Biogeogr. 29, 198–206 (2020).Article 

    Google Scholar 
    Väliranta, M. et al. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Schulte, L., Li, C., Livsovski, S. & Herzschuh, U. Forest-permafrost feedbacks and glacial refugia help explain the unequal distribution of larch across continents. J. Biogeogr. 9, 0305–0270 (2022).
    Google Scholar 
    Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).Article 

    Google Scholar 
    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).Article 

    Google Scholar 
    Pennington, W. Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Vegetatio 67, 105–118 (1986).Article 

    Google Scholar 
    MacDonald, G. M., Kremenetski, K. V. & Beilman, D. W. Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. B: Biol. Sci. 363, 2285–2299 (2008).CAS 
    Article 

    Google Scholar 
    Prentice, I. C., Bartlein, P. J. & Webb, T. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).Article 

    Google Scholar 
    Cao, X. Y., Herzschuh, U., Telford, R. J. & Ni, J. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction. Rev. Palaeobot. Palynol. 211, 87–96 (2014).Article 

    Google Scholar 
    Leroy, S. A. G., Arpe, K., Mikolajewicz, U. & Wu, J. Climate simulations and pollen data reveal the distribution and connectivity of temperate tree populations in eastern Asia during the Last Glacial Maximum. Clim 16, 2039–2054 (2020).
    Google Scholar 
    Kaufman, D. et al. A global database of Holocene paleotemperature records. Sci. Data 7, 115 (2020).Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science 372, 860–864 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reick, C. et al. JSBACH 3—The land component of the MPI Earth System Model: documentation of version 3.2. Hamburg: MPI für Meteorologie. Berichte zur Erdsystemforsch. (2021).Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, L07405 (2009).ADS 
    Article 

    Google Scholar 
    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).ADS 
    Article 

    Google Scholar 
    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).ADS 
    Article 

    Google Scholar 
    Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).ADS 
    Article 

    Google Scholar 
    Loana Meccia, V. & Mikolajewicz, U. Interactive ocean bathymetry and coastlines for simulating the last deglaciation with the Max Planck Institute Earth System Model (MPI-ESM-v1.2). Geosci. Model Dev. 11, 4677–4692 (2018).ADS 
    Article 

    Google Scholar 
    Riddick, T., Brovkin, V., Hagemann, S. & Mikolajewicz, U. Dynamic hydrological discharge modelling for coupled climate model simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0. Geosci. Model Dev. 11, 4291–4316 (2018).ADS 
    Article 

    Google Scholar 
    Kapsch, M., Mikolajewicz, U., Ziemen, F. & Schannwell, C. Ocean response in transient simulations of the last deglaciation dominated by underlying ice‐sheet reconstruction and method of meltwater distribution. Geophys. Res. Lett. 49, e2021GL096767 (2022).ADS 
    Article 

    Google Scholar 
    Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehfeld, K., Marwan, N., Heitzig, J. & Kurths, J. Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process. Geophys. 18, 389–404 (2011).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Cao, X. Y., Ni, J., Herzschuh, U., Wang, Y. B. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev. Palaeobot. Palynol. 194, 21–37 (2013).Article 

    Google Scholar 
    Bigelow, N. H. et al. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. Atmos. 108, 8170 (2003).Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Wessel, P. et al. Generic mapping tools: improved version released. EOS Trans. AGU 94, 409–410 (2013).ADS 
    Article 

    Google Scholar  More

  • in

    First direct evidence of adult European eels migrating to their breeding place in the Sargasso Sea

    Schmidt, J. Breeding places and migrations of the eel. Nature 111, 51–54 (1923).ADS 
    Article 

    Google Scholar 
    Tucker, D. W. A new solution to the Atlantic eel problem. Nature 183, 495–501 (1959).ADS 
    Article 

    Google Scholar 
    Voorhis, A. D. & Hersey, J. B. Oceanic thermal fronts in the Sargasso Sea. J. Geophys. Res. 69(18), 3809–3814 (1964).ADS 
    Article 

    Google Scholar 
    Kleckner, R. C. & McCleave, J. D. The northern limit of spawning by Atlantic eels (Anguilla spp.) in the Sargasso Sea in relation to thermal fronts and surface water masses. J. Mar. Res. 46, 647–667 (1988).Article 

    Google Scholar 
    Ullman, D. S., Cornillon, P. C. & Shan, Z. On the characteristics of subtropical fronts in the North Atlantic. J. Geophys. Res: Oceans 112, C01010 (2007).ADS 

    Google Scholar 
    Miller, M. J. et al. Spawning by the European eel across 2000 km of the Sargasso Sea. Biol. Lett. 15, 20180835 (2019).Article 

    Google Scholar 
    Westerberg, H. et al. Larval abundance across the European eel spawning area: An analysis of recent and historic data. Fish. 19, 890–902 (2018).
    Google Scholar 
    Halliwell, G. R. Jr., Olson, D. B. & Peng, G. Stability of the Sargasso Sea subtropical frontal zone. J. Phys. Oceanogr. 24(6), 1166–1183 (1994).ADS 
    Article 

    Google Scholar 
    van Ginneken, V. J. T. & Maes, G. E. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: A literature review. Rev. Fish Biol. Fish. 15, 367–398 (2005).Article 

    Google Scholar 
    Friedland, K. D., Miller, M. J. & Knights, B. Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES J. Mar. Sci. 64, 519–530 (2007).Article 

    Google Scholar 
    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).Article 

    Google Scholar 
    Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199 (2018).Article 

    Google Scholar 
    Righton, D. et al. Important questions to progress science and sustainable management of anguillid eels. Fish 22, 762–788 (2021).
    Google Scholar 
    Aoyama, J. Life history and evolution of migration in catadromous eels (genus Anguilla). Aquat. Bio Sci. Monogr. 2, 1–42 (2009).
    Google Scholar 
    Tsukamoto, K., Aoyama, J. & Miller, M. J. Migration, speciation, and the evolution of diadromy in anguillid eels. Can. J. Fish. Aquat. Sci. 59, 1989–1998 (2002).Article 

    Google Scholar 
    Tesch, F.-W. Telemetric observations on the spawning migration of the eel (Anguilla anguilla) west of the European continental shelf. Env. Biol. Fish. 3, 203–209 (1978).Article 

    Google Scholar 
    Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Westerberg, H. et al. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).ADS 
    Article 

    Google Scholar 
    Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).ADS 
    Article 

    Google Scholar 
    Verhelst, P. et al. Mapping silver eel migration routes in the North Sea. Sci Rep. 12, 318 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuroki, M. et al. Hatching time and larval growth of Atlantic eels in the Sargasso Sea. Mar. Biol. 164, 118. https://doi.org/10.1007/s00227-017-3150-9 (2017).Article 

    Google Scholar 
    Acton, L. et al. What is the Sargasso Sea? The problem of fixing space in a fluid ocean. Polit. Geogr. 68, 86–100 (2019).Article 

    Google Scholar 
    GEBCO Compilation Group. GEBCO 2020 Grid. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (2020).Miller, M. J. & Hanel, R. The Sargasso Sea Subtropical Gyre: The spawning and larval development area of both freshwater and marine eels. Sargasso Sea Alliance Science Report Series, 7, 20 pp (2011).Munk, P. et al. Oceanic fronts in the Sargasso Sea control the early life and drift of Atlantic eels. Proc. Biol. Sci. 277, 3593–3599 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Béguer-Pon, M., Castonguay, M., Shan, S., Benchetrit, J. & Dodson, J. J. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea. Nat. Commun. 6, 8705 (2015).ADS 
    Article 

    Google Scholar 
    Westin, L. The spawning migration of European silver eel (Anguilla anguilla L.) with particular reference to stocked eel in the Baltic. Fish. Res. 38(3), 257–270 (1998).
    Article 

    Google Scholar 
    Tesch, F.-W., Wendt, T. & Karlsson, L. Influence of geomagnetism on the activity and orientation of the eel, Anguilla anguilla (L.), as evident from laboratory experiments. Ecol. Freshw. Fish 1(1), 52–60 (1992).Article 

    Google Scholar 
    Tesch, F.-W. The Eel (Blackwell Science, Oxford, UK, 2003).Book 

    Google Scholar 
    Durif, C. M. F. et al. Magnetic compass orientation in the European eel. PLoS ONE 8(3), e59212 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Schabetsberger, R. et al. Hydrographic features of anguillid spawning areas: Potential signposts for migrating eels. Mar. Ecol. Prog. Ser. 554, 141–155 (2016).ADS 
    Article 

    Google Scholar 
    Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).CAS 
    Article 

    Google Scholar 
    Dekker, W. Status of the European eel stock and fisheries. In Eel Biology (eds Aida, K. et al.) 237–254 (Springer, New York, 2003).Chapter 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish (Oxf) 19, 903–930 (2018).Article 

    Google Scholar 
    ICES. Joint EIFAAC/ICES/GFCM Working Group on Eels (WGEEL). ICES Scientific Reports. 2(85) (2020).Pike, C., Crook, V. & Gollock, M. Anguilla anguilla. The IUCN Red List of Threatened Species 2020: e.T60344A152845178 (2020).Durif, C., Dufour, S. & Elie, P. The silvering process of Anguilla anguilla: A new classification from the yellow resident to the silver migrating stage. J. Fish. Biol. 66, 1025–1043 (2005).Article 

    Google Scholar 
    Pankhurst, N. W. Relation of visual changes to the onset of sexual maturation in the European eel Anguilla Anguilla (L.). J. Fish Biol. 21, 127–140 (1982).Article 

    Google Scholar 
    Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelem. 1, 3 (2013).Article 

    Google Scholar  More

  • in

    Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs

    Birkeland, C. Coral Reefs in the Anthropocene (Springer, 2015).Book 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39(1), 146–159. https://doi.org/10.1093/icb/39.1.146 (1999).Article 

    Google Scholar 
    Perry, C. T. & Larcombe, P. Marginal and non-reef-building coral environments. Coral Reefs 22, 427–432. https://doi.org/10.1007/s00338-003-0330-5 (2003).Article 

    Google Scholar 
    Wilkinson, C. R. Global and local threats to coral reef functioning and existence: review and predictions. Mar. Freshw. Res. 50, 867–878. https://doi.org/10.1071/mf99121 (1999).Article 

    Google Scholar 
    Mies, M. et al. South atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front. Mar. Sci. 7, 514. https://doi.org/10.3389/fmars.2020.00514 (2020).Article 

    Google Scholar 
    Leão, Z. M. A. N. et al. Brazilian coral reefsin a period of global change: A synthesis. Braz. J. Oceanogr. 64, 97–116. https://doi.org/10.1590/S1679-875920160916064sp2 (2016).Article 

    Google Scholar 
    Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126. https://doi.org/10.1007/s11160-013-9319-5 (2014).Article 

    Google Scholar 
    Alvarez-Filip, L., Gill, J. A. & Dulvy, N. K. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2, 118. https://doi.org/10.1890/ES11-00185.1 (2011).Article 

    Google Scholar 
    Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient?. Glob. Change Biol. 12, 2220–2234. https://doi.org/10.1111/j.1365-2486.2006.01252.x (2006).ADS 
    Article 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833. https://doi.org/10.1038/nature02691 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493. https://doi.org/10.1038/s43017-020-0068-4 (2020).ADS 
    Article 

    Google Scholar 
    Bleuel, J., Pennino, M. G. & Longo, G. O. Coral distribution and bleaching vulnerability areas in Southwestern Atlantic under ocean warming. Sci. Rep. 11, 12833. https://doi.org/10.1038/s41598-021-92202-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fontoura, L. et al. The macroecology of reef fish agonistic behaviour. Ecography 43, 1278–1290. https://doi.org/10.1111/ecog.05079 (2020).Article 

    Google Scholar 
    Inagaki, K. Y., Pennino, M. G., Floeter, S. R., Hay, M. E. & Longo, G. O. Trophic interactions will expand geographically but be less intense as oceans warm. Glob. Change Biol. 26, 6805–6812. https://doi.org/10.1111/gcb.15346 (2020).ADS 
    Article 

    Google Scholar 
    Longo, G. O., Hay, M. E., Ferreira, C. E. L. & Floeter, S. R. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob. Ecol. Biogeogr. 28, 107–117. https://doi.org/10.1111/geb.12806 (2019).Article 

    Google Scholar 
    Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: Ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46, 251–296. https://doi.org/10.1201/9781420065756.ch6 (2008).Article 

    Google Scholar 
    Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300. https://doi.org/10.1111/j.1523-1739.2007.00754.x (2007).Article 
    PubMed 

    Google Scholar 
    Strona, G. et al. Global tropical reef fish richness could decline by around half if corals are lost. Proc. R. Soc. B 288, 20210274. https://doi.org/10.1098/rspb.2021.0274 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClenachan, L. Extinction risk in reef fishes 199–207 (Cambridge University Press, 2015).
    Google Scholar 
    Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620. https://doi.org/10.2307/1312990 (1996).Article 

    Google Scholar 
    Pereira, P. H. C. et al. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol. Res. 61, 375–384. https://doi.org/10.1007/s10228-014-0409-8 (2014).Article 

    Google Scholar 
    Coni, E. O. C. et al. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ. Biol. Fish. 96, 45–55. https://doi.org/10.1007/s10641-012-0021-6 (2013).Article 

    Google Scholar 
    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348. https://doi.org/10.1111/j.1461-0248.2011.01592.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, 7650. https://doi.org/10.1126/sciadv.aay7650 (2020).ADS 
    Article 

    Google Scholar 
    Loiola, M. et al. Structure of marginal coral reef assemblages under different turbidity regime. Mar. Environ. Res. 147, 138–148. https://doi.org/10.1016/j.marenvres.2019.03.013 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aued, A. W. et al. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13, e0198452. https://doi.org/10.1371/journal.pone.0198452 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and Coral Reefs of Brazil 9–52 (Elsevier Publisher, 2003).
    Google Scholar 
    Pinheiro, H. T. et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers. Distrib. 24, 951–965. https://doi.org/10.1111/ddi.12729 (2018).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x (2008).Article 

    Google Scholar 
    Cord, I. et al. Brazilian marine biogeography: A multi-taxa approach for outlining sectorization. Mar. Biol. 169(5), 61. https://doi.org/10.1007/s00227-022-04045-8 (2022).Article 

    Google Scholar 
    Leal, I. C. S., Araújo, M. E. D., Cunha, S. R. D. & Pereira, P. H. C. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar. Environ. Res. 108, 45–54. https://doi.org/10.1016/j.marenvres.2015.04.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kéry, M. & Royle, J. A. Applied hierarchical modeling in ecology: Analysis of distribution abundance and species richness in R and BUGS. In Prelude and Static Models Vol. 1 (eds Kéry, M. & Royle, J. A.) (Academic Press, 2016).MATH 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.640619 (2021).Article 

    Google Scholar 
    McLean, M. et al. Trait similarity in reef fish faunas across the world’s oceans. PNAS 118(12), e2012318118. https://doi.org/10.1073/pnas.2012318118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454. https://doi.org/10.1002/fee.2088 (2019).Article 

    Google Scholar 
    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf S. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).ADS 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762. https://doi.org/10.1073/pnas.1317625111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, J. C. Marine Zoogeography (McGraw-Hill, 1974).
    Google Scholar 
    Garcia, G. S., Dias, M. S. & Longo, G. O. Trade-off between number and length of remote videos for rapid assessments of reef fish assemblages. J. Fish Biol. 99(3), 896–904. https://doi.org/10.1111/jfb.14776 (2021).Article 
    PubMed 

    Google Scholar 
    Quimbayo, J. P. et al. Life-history traits, geographical range, and conservation aspects ofreef fishes from the Atlantic and Eastern Pacific. Ecology 102, e03298. https://doi.org/10.1002/ecy.3298 (2021).Article 
    PubMed 

    Google Scholar 
    Katsanevakis, S. et al. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat. Biol. 16, 31–52. https://doi.org/10.3354/ab00426 (2012).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301. https://doi.org/10.1890/07-1206.1 (2008).Article 
    PubMed 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740. https://doi.org/10.1111/geb.12299 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021)Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses. R package version 1.5.2. https://CRAN.R-project.org/package=jagsUI (2021)Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environ. Biol. Fish. 61, 353–369 (2001).Article 

    Google Scholar 
    Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. 21, 700–717. https://doi.org/10.1111/faf.12455 (2020).Article 

    Google Scholar 
    Ferreira, L. C. L. et al. Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar. Biol. 168, 54. https://doi.org/10.1007/s00227-021-03863-6 (2021).CAS 
    Article 

    Google Scholar 
    Lonzetti, B. C., Vieira, E. A. & Longo, G. O. Ocean warming can help zoanthids outcompete branching hydrocorals. Coral Reefs 41, 175–189. https://doi.org/10.1007/s00338-021-02212-9 (2022).Article 

    Google Scholar 
    Grillo, A. C., Candido, C. F., Giglio, V. J. & Longo, G. O. Unusual high coral cover in a Southwestern Atlantic subtropical reef. Mar. Biodivers. 51, 77. https://doi.org/10.1007/s12526-021-01221-9 (2021).Article 

    Google Scholar 
    Matheus, Z. et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE 14(1), e0210664. https://doi.org/10.1371/journal.pone.0210664 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirelles, P. M. et al. Baseline assessment of mesophotic reefs of the vitória-trindade seamount chain based on water quality, microbial diversity, benthic cover and fish biomass data. PLoS ONE 10(6), e0130084. https://doi.org/10.1371/journal.pone.0130084 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106. https://doi.org/10.1111/j.1365-2699.2004.01044.x (2004).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol.-Prog. Ser. 367, 249–260. https://doi.org/10.3354/meps07580 (2008).ADS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a Tropical Western Atlantic reef ecosystem. Ecosystems 25, 843–857. https://doi.org/10.1007/s10021-021-00691-z (2022).Article 

    Google Scholar 
    Fogliarini, C. O., Longo, G. O., Francini-Filho, R. B., McClenachan, L. & Bender, M. G. Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. PECON 20(3), 231–239. https://doi.org/10.1007/10.1016/j.pecon.2022.05.003 (2022).Article 

    Google Scholar 
    Gasparini, J. L., Floeter, S. R., Ferreira, C. E. L. & Sazima, I. Marine ornamental trade in Brazil. Biodivers. Conserv. 14, 2883–2899. https://doi.org/10.1007/s10531-004-0222-1 (2005).Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Brazil 163–198 (Springer, 2019).
    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901. https://doi.org/10.1111/brv.12259 (2017).Article 
    PubMed 

    Google Scholar 
    Nunes, L. T. et al. Ecology of Prognathodes obliquus, a butterflyfish endemic to mesophotic ecosystems of St. Peter and St. Paul’s Archipelago. Coral Reefs 38, 955–960. https://doi.org/10.1007/s00338-019-01822-8 (2019).ADS 
    Article 

    Google Scholar 
    Liedke, A. et al. Abundance, diet, foraging and nutritional condition of the banded butterflyfish (Chaetodon striatus) along the western Atlantic. Mar. Biol. 163, 6. https://doi.org/10.1007/s00227-015-2788-4 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Vapour pressure deficit determines critical thresholds for global coffee production under climate change

    Vega, F. E., Rosenquist, E. & Collins, W. Global project needed to tackle coffee crisis. Nature 425, 343 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Craparo, A. C. W., Van Asten, P. J. A., Läderach, P., Jassogne, L. T. P. & Grab, S. W. Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric. For. Meteorol. 207, 1–10 (2015).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7, e47981 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, A. P., Mieulet, D., Moat, J., Sarmu, D. & Haggar, J. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moat, J., Gole, T. W. & Davis, A. P. Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Global Change Biol. 25, 390–403 (2019).ADS 
    Article 

    Google Scholar 
    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).PubMed 
    Article 

    Google Scholar 
    Kath, J. et al. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biol. 26, 3677–3688 (2020).ADS 
    Article 

    Google Scholar 
    Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).PubMed 
    Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds. Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Burke, M. et al. Higher temperatures increase suicide rates in the United States and Mexico. Nat. Clim. Change 8, 723–729 (2018).ADS 
    Article 

    Google Scholar 
    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schneider, S. H. Abrupt non-linear climate change, irreversibility and surprise. Global Environ. Change 14, 245–258 (2004).Article 

    Google Scholar 
    Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).ADS 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature. 575, 592–595 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).ADS 
    Article 

    Google Scholar 
    Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rigden, A., Mueller, N., Holbrook, N., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).Article 

    Google Scholar 
    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Sinclair, T. R. et al. Limited-transpiration response to high vapor pressure deficit in crop species. Plant Sci. 260, 109–118 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biol. 27, 1704–1720 (2021).ADS 
    Article 

    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).ADS 
    Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).Article 

    Google Scholar 
    Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 1–7 (2017).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M., Maycock, A. C., McKenna, C. M. & Smith, C. J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Change 10, 7–10 (2020).ADS 
    Article 

    Google Scholar 
    Forster, P. M. et al. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 10, 407–412 (2011).
    Google Scholar 
    Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011).ADS 
    Article 

    Google Scholar 
    IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    Sinclair, T. R., Hammer, G. L. & Van Oosterom, E. J. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant Biol. 32, 945–952 (2005).PubMed 
    Article 

    Google Scholar 
    Martins, M. Q. et al. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Front. Plant Sci. 7, 947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodrigues, W. P. et al. Long‐term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra‐optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biol. 22, 415–431 (2016).ADS 
    Article 

    Google Scholar 
    Ghini, R. et al. Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim. Change 132, 307–320 (2015).ADS 
    Article 

    Google Scholar 
    Rakocevic, M. et al. The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regul. 91, 305–316 (2020).CAS 
    Article 

    Google Scholar 
    Hammer, G. L. et al. Designing crops for adaptation to the drought and high‐temperature risks anticipated in future climates. Crop Sci. 60, 605–621 (2020).Article 

    Google Scholar 
    Gennari, P., Rosero-Moncayo, J. & Tubiello, F. N. The FAO contribution to monitoring SDGs for food and agriculture. Nat. Plants 5, 1196–1197 (2019).PubMed 
    Article 

    Google Scholar 
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 11, 306–312 (2021).ADS 
    Article 

    Google Scholar 
    Davis, A. P. et al. Hot coffee: the identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 5, 740137 (2021).Article 

    Google Scholar 
    Sarmiento-Soler, A. et al. Disentangling effects of altitude and shade cover on coffee fruit dynamics and vegetative growth in smallholder coffee systems. Agric. Ecosyst. Environ. 326, 107786 (2022).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Barton, K. MuMIn: multi-model inference. R-Forge http://r-forge.r-project.org/projects/mumin/ (2009).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Najafi, E., Devineni, N., Khanbilvardi, R. M. & Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earths Future 6, 410–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ovalle-Rivera, O. et al. Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agrofor. Syst. 94, 2033–2051 (2020).Article 

    Google Scholar 
    Varma, S. & Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7, 1–8 (2006).Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Son, H. & Fong, Y. Fast grid search and bootstrap-based inference for continuous two-phase polynomial regression models. Environmetrics 32, e2664 (2021).MathSciNet 
    Article 

    Google Scholar 
    Wintgens, J. N. et al. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers (Wiley, 2004). More

  • in

    Response of soil viral communities to land use changes

    Characteristics of LVD dataset and assembled vOTUsThe land use virome dataset LVD was derived from 2.6 billion paired clean reads of sequences across 50 viromes of 25 samples with five types of land uses (Supplementary Data 2). A total of 6,442,065 contigs ( >1500 bp) were yielded, of which 764,466 (11.8%) contigs were identified as putative viral genomes through VIBRANT. Subsequently, putative false positive viral genomes were removed (see Methods section), and 27,951 and 48,936 bona fide viral genomes were retained from the 25 intracellular VLPs (iVLPs) and 25 extracellular VLPs (eVLPs) viromes, respectively. These genomes were clustered into 25,941 and 45,152 vOTUs for iVLPs and eVLPs viromes, respectively, in which the iVLPs and eVLPs viromes shared 11,467 (19.2%) vOTUs. Subsequently, they were merged and dereplicated, resulting in 59,626 vOTUs (Supplementary Data 3) for the following analysis. A total of 8112 (13.6%) vOTUs genomes were classified as complete, in which the median length of all and circular vOTUs were 25,183 bp and 45,511 bp, respectively (Supplementary Fig. 4).To explore the taxonomic affiliation of vOTUs in family and genus-level, a gene-sharing network consist of 59,626 vOTUs genomes from this study and 3502 reference phage genomes (from NCBI Viral RefSeq version 201) revealed 6009 VCs comprising of 37,224 vOTUs, of which 34,417 vOTUs were from LVD, besides 2794 singletons (2653 from LVD dataset), 16,056 outliers (15,833 from LVD) and 8492 overlaps (8061 from LVD) were detected (Supplementary Data 4). Of these, only 157 VCs contained genomes from both the RefSeq and LVD dataset (1864 viral genomes) (Supplementary Data 4). Most of VCs (1837, 30.4%) included only two members.At the family level, most of vOTUs were classified into Siphoviridae (712 by vConTACT2 and 29,671 (50.9%) by Demovir, tailed dsDNA), Podoviridae (610 by vConTACT2 and 9923 (17.6 %) by Demovir, tailed dsDNA), Myoviridae (485 by vConTACT2 and 5445 (9.9%) by Demovir, tailed dsDNA), Tectiviridae (50 by vConTACT2 and 10 (0.10%) by Demovir, non-tailed dsDNA) (Fig. 1). Besides, the Eukaryotic viruses Herpesviridae (159 by Demovir, 0.26%, dsDNA), Phycodnaviridae (120 (0.20%) by Demovir, dsDNA); the Virophage Family Lavidaviridae (15 (0.03%) by Demovir) were detected as well, but a majority of vOTUs were unclassified in genus-level.Fig. 1: The taxonomic assignment of LVD.Pie charts showing the affiliation of 56,870 vOTUs at family level assigned by script Demovir (a). and the affiliation of 1864 vOTUs at family level assigned by package vConTACT2 (b). Source data are provided in the Source Data file.Full size imageViral community structures differ across land use typesBray–Curtis dissimilarity of viral communities (median 0.9951) showed strong heterogeneity of viral communities among different sites (Fig. 2a). While, the Bray–Curtis dissimilarity (median: 0.5109) between paired viral communities of iVLPs and eVLPs from each site have a significant lower heterogeneity than inter-sites (Wilcox.test, p  0.05; Fig. 2b). Therefore, the paired iVLPs and eVLPs viromes from each site were merged for subsequently viral community analysis.Fig. 2: The macrodiversity of soil viral communities.a Boxplot showing Bray–Curtis dissimilarity of viral communities of intra-sites (between the corresponding community of iVLPs and eVLPs, n = 25) and inter-sites (between different sample sites, n = 300). The minima, maxima, center, bounds of box and whiskers in boxplots from bottom to top represented percentile 0, 10, 25, 50, 75, 90, and 100, respectively, the difference between different zones was tested using the two-sided Wilcox.test, ****p  More

  • in

    Coral community data Heron Island Great Barrier Reef 1962–2016

    Study site and field data collectionPermanent 1 m2 photoquadrats were established on Heron Reef in 1962/63, using 9 mm diameter mild steel (rebar) pegs, which were replaced over time. From the 1990’s, replacement pegs were stainless steel for greater longevity. Four sites were established, the protected (south) crest, inner flat, exposed (north) crest and exposed pools. Co-ordinates for each site are presented in Table 1, the layout shown in Fig. 2, and sites have been well described previously5,6. At each census, a 1 m2 frame divided into a 5 × 5 grid using string was placed over the pegs, and the quadrat photographed from directly above at low tide. From 1963 until 2003, a 35 mm camera and colour slide film were used. The camera was attached to a tripod affixed to the 1 m2 frame, and captured around 2/3 of the quadrat. The frame (and camera) were then rotated 180 degrees to capture the remainder of the quadrat. After 2003, a hand-held digital camera was used, with the entire quadrat being captured in a single image. Concurrent with each census, mud maps of each quadrat were hand drawn in the field, and all colonies identified in situ by someone with expertise in coral taxonomy.Table 1 Coordinates of the study sites on Heron Island Reef (WGS84).Full size tableFig. 2Quadrat layouts for each of the four sites respectively, noting that the north crest and north ridge have been treated as a single north crest site in previous publications. Underlining indicates original 1962/63 quadrats. Other quadrats were added in or after 2008, as indicated in the text. Contiguous quadrats are pictured bordering each other. Spacing between separate quadrats or groups of quadrats is not shown to scale. Note that up until 2005, NRNW was known as NR. The acronyms in each quadrat represent its name.Full size imageAt the protected (south) crest, a set of six contiguous quadrats were established in 1963 in a 2 × 3 arrangement parallel to the waterline, and about 420 m southeast of the island. This site is exposed at low tide, and was photographed once all water had drained off it. Images of quadrats A, C & E (the shoreward row) from 1963 to 2012 have been fully processed, and the data have been through QA/QC. Data after 2012 exist as images only. These quadrats form the basis of previous analyses1,4,5,6 for this site. Photographs are available for quadrats B, D & F, but apart from 2003–2010, have not been processed. In 2010, an additional two quadrats were established either side of the original six, leading to a 2 × 5 arrangement. Again, only imagery is available for these additional quadrats.At the inner flat, two pairs of contiguous quadrats were established in 1962, 44 m apart, about 70 m south of the island. This site is covered by ~10 cm of water at low tide, so could only be photographed on a still day. Imagery for this site is only available to 2012, after which the marker stakes appear to have been removed in a cleanup of the area. Images for one quadrat in each pair have been processed, but have not been subject to full QA/QC.At the exposed (north) crest main site, a set of four contiguous quadrats was established about 1100 m northeast of the island in 1963. An additional single quadrat (north ridge) was established 326 m to the east. Images from 1963 to 2012 have been fully processed, and the data have been through QA/QC. Data after 2012 exist as images only. In 2005, the single north ridge quadrat was expanded to 4 m2, and in 2008, both subsites were expanded to six quadrats in a 2 × 3 arrangement. These additional quadrats have been digitised up to 2012, but have not been through full QA/QC.The exposed pools are two individual quadrats about 5 m apart about 30 m north of the eastern (north ridge) exposed crest site. These are on the edge of a natural pool, and range from ~5–50 cm deep at low tide, and so could only be photographed on a calm day. Imagery for this site is only available until 2005, after which the marker stakes could not be relocated. Images from 1963 to 1998 have been processed, but have not been through full QA/QC.Retrieval of coral composition data from the photoquadratsProcessing of the images involved scanning the colour slides to produce digital images, and then orthorectifying each image to a 1 m2 basemap in ArcGIS (ESRI Ltd). The corners of the frame, and the holes for the string grid, were used as control points for the orthorectification. For images that originated as colour slides, each half of the quadrat was individually orthorectified to the same basemap, producing a single image of the entire quadrat (see Fig. 3). While contiguous quadrats were orthorectified individually, they were done so against a basemap containing all quadrats in the group, meaning that the resulting images can be easily merged to create a single image of the group. The outlines of all visible coral colonies ( >~1 cm2), and other benthic organisms such as algae and clams, were then digitised in ArcGIS to create a single shapefile for each quadrat for each year. Each colony was represented as an individual feature within the shapefile, and was assigned a unique colony number and species based on the mud maps drawn in the field. Colony numbers were consistent across years, allowing individual colonies to be tracked over time. If a colony underwent fission, the original colony number was retained for each, with the addition of a unique identifier after a decimal point. For example, if colony 35 split in two, the resultant colonies were identified as 35.1 and 35.2. If 35.2 later split again, the resultant colonies were identified as 35.2.1 and 35.2.2. If the colony overlapped the edge of the quadrat, only the area within the quadrat was digitised, and a flag was applied to indicate that only part of the colony was included (edgestatus = 1 in the data). Upon completion of digitisation, ArcGIS was used to calculate the area and perimeter of all colonies. While multiple census were conducted in 1963, 1971 and 1983, only a single census in each year has been processed. There are currently no plans to undertake further digitisation or QA/QC of this data set.Fig. 3Example orthorectified and stitched (prior to 2001) images from the NCNE quadrat, showing the effects of a cyclone that removed all colonies in 1972, and slow recovery over subsequent decades.Full size image More

  • in

    Marine subsidies produce cactus forests on desert islands

    Bartz, K. K. & Naiman, R. J. Effects of Salmon-Borne nutrients on riparian soils and vegetation in Southwest Alaska. Ecosystems 8, 529–545 (2005).Article 

    Google Scholar 
    Erskine, P. D. et al. Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117, 187–193 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hocking, M. D. & Reimchen, T. E. Salmon species, density and watershed size predict magnitude of marine enrichment in riparian food webs. Oikos 118(9), 1307–1318 (2009).Article 

    Google Scholar 
    Hocking, M. D. & Reynolds, J. D. Impacts of salmon on riparian plant diversity. Science 331, 1609–1612 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hocking, M. D., & Reimchen, T. E. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. BMC Ecol. 2, 4. https://doi.org/10.1186/1472-6785-2-4 (2002).Bilby, R. E., Fransen, B. R. & Bisson, P. A. Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: Evidence from stable isotopes. Can. J. Fish Aquat. Sci. 53, 164–173 (1996).Article 

    Google Scholar 
    Talley, D. M. et al. Research challenges at the land–sea interface. Estuar. Coast. Shelf Sci. 58, 699–702 (2003).ADS 
    Article 

    Google Scholar 
    Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69(2), 340–349 (1988).Article 

    Google Scholar 
    Rowe, J. A., Litton, C. M., Lepczyk, C. A. & Popp, B. N. Impacts of endangered seabirds on nutrient cycling in montane forest ecosystems of Hawai’i. Pac. Sci. 71(4), 495–509 (2017).Article 

    Google Scholar 
    Sanchez-Pinero, F. & Polis, G. A. Bottom-up dynamics of allochthonous input: Direct and indirect effects of seabirds on islands. Ecology 81(11), 3117–3132 (2000).Article 

    Google Scholar 
    Wait, D. A., Aubrey, D. P. & Anderson, W. B. Seabird guano influences on desert islands: Soil chemistry and herbaceous species richness and productivity. J. Arid Environ. 60, 681–695 (2005).ADS 
    Article 

    Google Scholar 
    Stapp, P., Polis, G. A. & Pinero, F. S. Stable isotopes reveal strong marine and El Nino effects on island food webs. Nature 401, 467–469 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, W. B., Wait, D. A. & Stapp, P. Resources from another place and time: Responses to pulses in a spatially subsidized system. Ecology 89(3), 660–670 (2008).PubMed 
    Article 

    Google Scholar 
    Ellis, J. C. Marine birds on land: A review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol. 181(2), 227–241 (2005).Article 

    Google Scholar 
    Fukami, T. et al. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).PubMed 
    Article 

    Google Scholar 
    Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: Variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).Article 

    Google Scholar 
    McCauley, D. J., et al., From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409. https://doi.org/10.1038/srep00409 (2012).Young, H. S., McCauley, D. J., Dunbar, R. B. & Dirzo, R. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl. Acad. Sci. U.S.A. 107(5), 2072–2077 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindeboom, H. J. The nitrogen pathway in a Penguin rookery. Ecology 65(1), 269–277 (1984).CAS 
    Article 

    Google Scholar 
    Mizutani, H., Kabaya, Y. & Wada, E. Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochem. J. 19(6), 323–327 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, W. B. & Polis, G. A. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).ADS 
    PubMed 
    Article 

    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).Article 

    Google Scholar 
    Goss, N. S. New and rare birds found breeding on the San Pedro Martir Isle. University of California Press 5, 240–244 (1888).
    Google Scholar 
    Velarde, E., et al., Nesting seabirds of the Gulf of California’s Offshore islands: Diversity, ecology and conservation. in Biodiversity, Ecosystems, and Conservation in Northern Mexico, Carton, J.-L. E., Ceballos, G., Felger, R. S. Eds. (Oxford University Press, 2005) pp. 452–470.Wilder, B. T., Felger, R. S. & Ezcurra, E. Controls of plant diversity and composition on a desert archipelago. PeerJ 7, e7286. https://doi.org/10.7717/peerj.7286 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J., Fariña, J. & Witman, J. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).PubMed 
    Article 

    Google Scholar 
    Wilder, B. T., Felger, R. S. & Morales, H. R. Succulent plant diversity of the Sonoran Islands, Gulf of California Mexico. Haseltonia 2008(14), 127–160 (2008).Article 

    Google Scholar 
    Lucassen, F. et al. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile—Marine sources and diagenetic effects. PLoS ONE 12(6), e0179440. https://doi.org/10.1371/journal.pone.0179440 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16(3), 153–162 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Szpak, P., Longstaffe, F. J., Millaire, J.-F. & White, C. D. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studies with maize (Zea mays). PLoS ONE 7(3), e33741. https://doi.org/10.1371/journal.pone.0033741 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezcurra, E., et al. Natural History and Evolution of the World’s Deserts. Global Deserts Outlook. United Nations Environment Programme (UNEP), 1–26 (2006).Yetman, D. The Great Cacti: Ethnobotany and biogeography (University of Arizona Press, 2007).
    Google Scholar 
    Álvarez-Borrego, S. Physical oceanography. in A New Island Biogeography of the Sea of Cortés, Case, T. J., Cody, M. L., Ezcurra, E. Eds. (Oxford University Press, 2002), pp. 41–59.Douglas, R., Gonzalez-Yajimovich, O., Ledesma-Vazquez, J. & Staines-Urias, F. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quatern. Sci. Rev. 26, 115–129 (2007).ADS 
    Article 

    Google Scholar 
    Urbán, J. Marine mammals of the Gulf of California: An overview of diversity and conservation status. in The Gulf of California: Biodiversity and conservation, R. C. Brusca, Ed. (The University of Arizona Press and the Arizona-Sonora Desert Museum, 2010), pp. 188–209.Hastings, P. A., Findley, L. T., & Van der Heiden, A. M. Fishes of the Gulf of California. in: Brusca, R. C., (eds) The Gulf of California: Biodiversity and conservation 96–118, The University of Arizona Press and the Arizona-Sonora Desert Museum (2010).
    Google Scholar 
    Polis, G. A., Hurd, S. D., Jackson, C. T. & Sanchez Piñero, F. El Niño effects on the dynamics and control of an Island ecosystem in the Gulf of California. Ecology 78, 1884–1897 (1997).
    Google Scholar 
    Wilder, B. T. & Felger, R. S. Dwarf giants, guano, and isolation: The flora and vegetation of San Pedro Mártir Island, Gulf of California, Mexico. Proc. San Diego Soc. Nat. Hist. 42, 1–24 (2010).
    Google Scholar 
    Medel-Narvaez, A., Leon Luz, J. L., Freaner-Martinez, F. & Molina-Freaner, F. Patterns of abundance and population structure of Pachycereus pringlei (Cactaceae), a columnar cactus of the Sonoran Desert. Plant Ecol. 187, 1–14 (2006).Article 

    Google Scholar 
    Felger, R.S., Wilder, B.T. in collaboration with Romero-Morales, H. Plant Life of a Desert Archipelago: Flora of the Sonoran Islands in the Gulf of California. Tucson, University of Arizona Press (2012).Wilkinson, C. E., Hocking, M. D. & Reimchen, T. E. Uptake of salmon-derived nitrogen by mosses and liverworts in Coastal British Columbia. Oikos 108, 85–98 (2005).CAS 
    Article 

    Google Scholar 
    Barrett, K., Wait, D. A. & Anderson, W. B. Small island biogeography in the Gulf of California: Lizards, the subsidized island biogeography hypothesis, and the small island effect. J. Biogeogr. 30, 1575–1581 (2003).Article 

    Google Scholar 
    Young, H. S., McCauley, D. J. & Dirzo, R. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98, 207–214 (2011).PubMed 
    Article 

    Google Scholar 
    Nobel, P. S. Environmental Biology of Agaves and Cacti. Cambridge University Press (2003).Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18(6), 1918–1927 (2012).ADS 
    Article 

    Google Scholar 
    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotope composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48(4), 625–639 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1), 1031. https://doi.org/10.1029/2002GB001903 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kahmen, A., Wanek, W. & Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861–870 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen, T. Unknown Island: Seri Indians, Europeans, and San Esteban Island in the Gulf of California (University of New Mexico Press, 2000).
    Google Scholar 
    Evans, R. D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6(3), 121–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolby, G., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguia-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution surrounding the Gulf of California. J. Southw. 57, 391–455 (2015).Article 

    Google Scholar 
    Case, T. J., Cody, M. L., & Ezcurra, E. A New Island Biogeography of the Sea of Cortés (Oxford University Press, 2002).Book 

    Google Scholar 
    Tershy, B. R. & Breese, D. The birds of San Pedro Mártir Island, Gulf of California Mexico. West. Birds 28, 96–107 (1997).
    Google Scholar 
    Tershy, B. R., Breese, D. & Croll, D. A. Human perturbations and conservation strategies for San Pedro Mártir Island, Islas de Golfo de California Reserve México. Environ. Conserv. 24, 261–270 (1997).Article 

    Google Scholar 
    Wilder, B. T. Historical biogeography of the Midriff Islands in the Gulf of California, Mexico. Dissertation. Riverside: UC, Riverside (2014).Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kiljunen, M. et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213–1222 (2006).CAS 
    Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    R Core Team, R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2022). More