More stories

  • in

    Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services

    DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10, 303–311 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054 (2014).PubMed 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
    Google Scholar 
    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. Condor 88, 318–323 (1986).
    Google Scholar 
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88 (2017).ADS 

    Google Scholar 
    Kane, A. & Kendall, C. J. Understanding how mammalian scavengers use information from avian scavengers: Cue from above. J. Anim. Ecol. 86, 837–846 (2017).PubMed 

    Google Scholar 
    Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology. https://doi.org/10.1002/ecy.3519 (2021).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    Bassi, E., Battocchio, D., Marcon, A., Stahlberg, S. & Apollonio, M. Scavenging on ungulate carcasses in a mountain forest area in Northern Italy. Mamm. Study 43, 1–11 (2018).
    Google Scholar 
    Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428 (2021).
    Google Scholar 
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. 89, 2156–2167 (2020).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography (Cop.) 43, 1143–1155 (2020).
    Google Scholar 
    Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009).
    Google Scholar 
    Sebastián-González, E. et al. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97, 95–105 (2016).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: Comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026 (2012).
    Google Scholar 
    Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).
    Google Scholar 
    Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography (Cop.) 41, 1173–1183 (2018).
    Google Scholar 
    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).
    Google Scholar 
    Putman, A. R. J. Patterns of carbon dioxide evolution from decaying carrion: Decomposition of small mammal carrion in temperate systems, Part 1. Oikos 31, 47–57 (1978).CAS 

    Google Scholar 
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Pedro, P. O. et al.) 23–44 (Springer, 2019).
    Google Scholar 
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).
    Google Scholar 
    Animal Care and Use Committee. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J. Mamm. 79, 1416–1431 (1998).
    Google Scholar 
    Committee of Reviewing Taxon Names and Specimen Collections. Guidelines for the Procedure of Obtaining Mammal Specimens as Approved by the Mammal Society of Japan (Revised in 2009) (Mammal Society of Japan, 2009).
    Google Scholar 
    Yoshino, M. Microclimate: New Edition (Chijin Shokan, 1986).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).Sokal, R. R. & Rohlf, F. J. Biometry 4th edn. (WH Freeman and Company, 2012).MATH 

    Google Scholar 
    Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1934).MATH 

    Google Scholar 
    Therneau, T. A Package for Survival Analysis in S. Version 2.38 (2015).Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. & Rhodes, O. E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar  More

  • in

    Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan)

    McCallum, M. L. Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers. Conserv. 24, 2497–2519 (2015).
    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. 105, 11466–11473. https://doi.org/10.1073/pnas.0801921105 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European ash (Fraxinus excelsior) dieback—A conservation biology challenge. Biol. Cons. 158, 37–49 (2013).
    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population declines. Divers. Distrib. 9, 141–150 (2003).
    Google Scholar 
    Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0332 (2016).Article 

    Google Scholar 
    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).CAS 
    PubMed 

    Google Scholar 
    Lips, K. R., Reeve, J. D. & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. Conserv. Biol. 17, 1078–1088 (2003).
    Google Scholar 
    Zipkin, E. F., DiRenzo, G. V., Ray, J. M., Rossman, S. & Lips, K. R. Tropical snake diversity collapses after widespread amphibian loss. Science 367, 814–816. https://doi.org/10.1126/science.aay5733 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630–631. https://doi.org/10.1126/science.1258268 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yap, T. A., Koo, M. S., Ambrose, R. F., Wake, D. B. & Vredenburg, V. T. Averting a North American biodiversity crisis. Science 349, 481–482 (2015).CAS 
    PubMed 

    Google Scholar 
    Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R. & Speare, R. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10, 2100–2105 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Talley, B. L., Muletz, C. R., Vredenburg, V. T., Fleischer, R. C. & Lips, K. R. A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol. Cons. 182, 254–261 (2015).
    Google Scholar 
    Rodriguez, D., Becker, C., Pupin, N., Haddad, C. & Zamudio, K. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014).CAS 
    PubMed 

    Google Scholar 
    Goka, K. et al. Amphibian chytridiomycosis in Japan: Distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 18, 4757–4774 (2009).CAS 
    PubMed 

    Google Scholar 
    Bataille, A. et al. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol. Ecol. 23, 4196–4209. https://doi.org/10.1111/mec.12385 (2013).CAS 
    Article 

    Google Scholar 
    O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627. https://doi.org/10.1126/science.aar1965 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swei, A. et al. Is chytridiomycosis an emerging infectious disease in Asia?. PLoS ONE 6, e23179 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bai, C. M., Garner, T. W. J. & Li, Y. M. First evidence of Batrachochytrium dendrobatidis in China: Discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth 7, 127–134. https://doi.org/10.1007/s10393-010-0307-0 (2010).Article 
    PubMed 

    Google Scholar 
    Yang, H. et al. First detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in free-ranging populations of amphibians on mainland Asia: Survey in South Korea. Dis. Aquat. Org. 86, 9–13 (2009).
    Google Scholar 
    Fong, J. J. et al. Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS ONE 10, e0115656 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kusrini, M., Skerratt, L., Garland, S., Berger, L. & Endarwin, W. Chytridiomycosis in frogs of Mount Gede Pangrango, Indonesia. Diseases Aquat. Organ. 82, 187–194 (2008).CAS 

    Google Scholar 
    Laking, A. E., Ngo, H. N., Pasmans, F., Martel, A. & Nguyen, T. T. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Sci. Rep. 7, 44443. https://doi.org/10.1038/srep44443 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, W. et al. A survey for Batrachochytrium salamandrivorans in Chinese amphibians. Curr. Zool. 60, 729–735 (2014).
    Google Scholar 
    Beukema, W. et al. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palaearctic. Divers. Distrib. 24, 1788–1801. https://doi.org/10.1111/ddi.12795 (2018).Article 

    Google Scholar 
    Auliya, M. et al. The global amphibian trade flows through Europe: The need for enforcing and improving legislation. Biodivers. Conserv. https://doi.org/10.1007/s10531-016-1193-8 (2016).Article 

    Google Scholar 
    Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).
    Google Scholar 
    Schmeller, D. S. et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems. Sci. Total Environ. 622–623, 756–763. https://doi.org/10.1016/j.scitotenv.2017.12.006 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bernardo-Cravo, A., Schmeller, D. S., Chatzinotas, A., Vredenburg, V. T. & Loyau, A. Environmental factors and host microbiomes shape host-pathogen dynamics. Trends Parasitol. 36, 29–36 (2020).
    Google Scholar 
    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824. https://doi.org/10.1038/ismej.2009.27 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harris, R. N., James, T. Y., Lauer, A., Simon, M. A. & Patel, A. Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3, 53–56. https://doi.org/10.1007/s10393-10005-10009-10391 (2006).Article 

    Google Scholar 
    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).PubMed 

    Google Scholar 
    Ellison, S., Knapp, R. A., Sparagon, W., Swei, A. & Vredenburg, V. T. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol. Ecol. 28, 127–140 (2019).PubMed 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA 111, E5049-5058. https://doi.org/10.1073/pnas.1412752111 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250 (2014).PubMed 

    Google Scholar 
    Kueneman, J. G. Ecology of the Amphibian Skin-Associated Microbiome and Its Role in Pathogen Defense (University of Colorado at Boulder, 2015).
    Google Scholar 
    Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evolut. 3, 381–389. https://doi.org/10.1038/s41559-019-0798-1 (2019).Article 

    Google Scholar 
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786. https://doi.org/10.1007/s10531-016-1272-x (2017).Article 

    Google Scholar 
    Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J 8, 2207–2217. https://doi.org/10.1038/ismej.2014.77 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R. & Lauber, C. L. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6, 588–596. https://doi.org/10.1038/ismej.2011.129 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bates, K. A. et al. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat. Commun. 9, 693. https://doi.org/10.1038/s41467-018-02967-w (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellison, S. et al. The influence of habitat and phylogeny on the skin microbiome of amphibians in Guatemala and Mexico. Microb. Ecol. 78, 257–267 (2019).PubMed 

    Google Scholar 
    Fisher, M. C., Pasmans, F. & Martel, A. Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-052621-124212 (2021).Article 
    PubMed 

    Google Scholar 
    Haver, M. et al. The role of abiotic variables in an emerging global amphibian fungal disease in mountains. Sci. Total Environ. 815, 152735 (2021).PubMed 

    Google Scholar 
    Turner, A., Wassens, S., Heard, G. & Peters, A. Temperature as a driver of the pathogenicity and virulence of amphibian chytrid fungus Batrachochytrium dendrobatidis: A systematic review. J. Wildl. Dis. 57, 477–494 (2021).PubMed 

    Google Scholar 
    Woodhams, D., Alford, R., Briggs, C., Johnson, M. & Rollins-Smith, L. Life history trade-offs influence disease in changing climates: Strategies of an amphibian pathogen. Ecology 89, 1627–1639 (2008).PubMed 

    Google Scholar 
    Sonn, J. M., Berman, S. & Richards-Zawacki, C. L. The influence of temperature on chytridiomycosis in vivo. EcoHealth 14, 762–770. https://doi.org/10.1007/s10393-017-1269-2 (2017).Article 
    PubMed 

    Google Scholar 
    Schmidt, B., Küpfer, E., Geiger, C., Wolf, S. & Schär, S. Elevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans. Amphibia-Reptilia 32, 276–280 (2011).
    Google Scholar 
    Bielby, J., Cooper, N., Cunningham, A. A., Garner, T. W. J. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008).
    Google Scholar 
    Gray, M. J., Miller, D. L. & Hoverman, J. T. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Org. 87, 243–266 (2009).
    Google Scholar 
    Murray, K., Skerratt, L., Speare, R. & McCallum, H. Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conserv. Biol. 23, 1242–1252 (2009).PubMed 

    Google Scholar 
    Schmeller, D. S. et al. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr. Biol. 24, 176–180. https://doi.org/10.1016/j.cub.2013.11.032 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Metzger, M. J. et al. Environmental stratifications as the basis for national, European and global ecological monitoring. Ecol. Ind. 33, 26–35. https://doi.org/10.1016/j.ecolind.2012.11.009 (2013).Article 

    Google Scholar 
    Metzger, M. J. et al. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638. https://doi.org/10.1111/geb.12022 (2013).Article 

    Google Scholar 
    Clare, F., Daniel, O., Garner, T. & Fisher, M. Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. EcoHealth 13, 360–367. https://doi.org/10.1007/s10393-016-1114-z (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. 108, 9502–9507 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vredenburg, V. T. et al. Pathogen invasion history elucidates contemporary host pathogen dynamics. PLoS ONE 14, e0219981. https://doi.org/10.1371/journal.pone.0219981 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, A. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).CAS 

    Google Scholar 
    Blooi, M. et al. Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and B. salamandrivorans in amphibian samples. J. Clin. Microbiol. 51, 4173–4177 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T. & Hyatt, A. D. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.03870-12 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191. https://doi.org/10.1038/sdata.2017.191 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer Drought Severity Index. J. Clim. 17, 2335–2351 (2004).
    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher, M. C. et al. RACE: Risk assessment of chytridiomycosis to European Amphibian Biodiversity. Froglog 101, 45–47 (2012).
    Google Scholar  More

  • in

    Spatial distribution characteristics and evaluation of soil pollution in coal mine areas in Loess Plateau of northern Shaanxi

    Analysis of contents of heavy metals in wasteland soilThe test results show (Table 5) that the contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu in the surface soil within Shigetai Coal Mine vary from 0.043 to 0.255, 0.44 to 2.23, 2.66 to 18.40, 11.80 to 42.80, 40.50 to 118.60, 18.90 to 70.10, 4.31 to 28.10, 4.96 to 46.25 mg/kg, respectively; the average contents of Hg, Cd, As, Pb, Cr, Zn, Ni and Cu are 0.128, 1.03, 4.73, 23.08, 76.22, 46.94, 16.11 and 12.10 mg/kg, respectively. The average contents of Hg, Cd, Pb and Cr in soil within the research area are 2.03, 1.36, 1.11 and 1.23 times of the soil background values in Shaanxi Province, respectively. The average contents of As, Zn and Cu are lower than the soil background value in Shaanxi Province, but the maximum contents of these three elements are 1.65, 1.01 and 2.16 times of the soil background values in Shaanxi Province, respectively. It is reported that the average concentration of lead in agricultural soil affected by coal mines is relatively high (433 mg kg−1)38. Lead is usually related to minerals in coal and occurs mainly in the form of sulfide such as PbS and PbSe39. In addition, aluminosilicate and carbonate also contain lead40. Chromium is a non-volatile element, which is related to aluminosilicate minerals41. In the mining process, chromium may be accumulated in coal, gangue or other tailings, and then enter the soil or water body through rain leaching42.Table 5 Statistics of contents of heavy metals in wasteland soil (n = 79).Full size tableThe coefficient of variation (CV) of Hg and Cd contents in soil within the research area is 0.050 and 0.37, respectively, with moderate variation, indicating that the content of these two heavy metals is less affected by the external factors; the coefficient of variation (CV) of As, Pb, Cr, Zn, Ni and Cu contents is 2.81, 7.46, 18.00, 13.51, 5.44 and 5.64, respectively, with strong variation (CV  > 0.50)43, indicating that the content of these eight heavy metals may be affected by some local pollution sources. The skewness coefficient (SK) ranges from − 3 to 3, and the larger its absolute value, the greater its skewness. When SK  > 0, it is positive skewness; when SK  More

  • in

    Phylogeography and colonization pattern of subendemic round-leaved oxeye daisy from the Dinarides to the Carpathians

    Pax, F. Grundzüge der Pflanzenverbreitung in den Karpathen. 1–342 (W. Engelmann, 1898). https://doi.org/10.5962/bhl.title.20419.Popov [Попов], M. G. [М. Г.]. Ocherk rastitel’nosti i flory Karpat [Очерк растительности и флоры Карпат]. vol. 5 (XIII) (Izdatel’stvo Moskovskogo Obshchestva Ispytateley Prirody [Издательство Московского Общества Испытателей Природы], 1949).Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559 (2016).Article 

    Google Scholar 
    Breman, E. et al. Conserving the endemic flora of the Carpathian Region: An international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst. Evol. 306, 59 (2020).Article 

    Google Scholar 
    Bálint, M. et al. The Carpathians as a Major Diversity Hotspot in Europe. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds. Zachos, F. E. & Habel, J. C.) 189–205 (Springer, 2011). https://doi.org/10.1007/978-3-642-20992-5_11.Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurdu, B. et al. Patterns of plant endemism in the Romanian Carpathians (South-Eastern Carpathians). Contrib. Bot. 47, 25–38 (2012).
    Google Scholar 
    Pawłowski, B. Remarques sur l’endemisme dans la flore des Alpes et des Carpates. Plant Ecol. 21, 181–243 (1970).Article 

    Google Scholar 
    Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 373–389 (2011).Hendrych, R. Primula vulgaris in der Slowakei und in den umliegenden Gebieten. Preslia Praha 68, 135–156 (1996).
    Google Scholar 
    Hendrych, R. & Hendrychová, H. Preliminary report on the Dacian migroelement in the flora of Slovakia. Preslia Praha 51, 313–332 (1979).
    Google Scholar 
    Sramkó, G. „Dunántúli” közép-dunai flóraválasztós fajok a Matricum flórájában. KITAIBELIA 9, 31–56 (2004).
    Google Scholar 
    Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene 28, 583–594 (2018).Kliment, J., Turis, P. & Janišová, M. Taxa of vascular plants endemic to the Carpathian Mts. Preslia -Praha- 88, 19–76 (2016).
    Google Scholar 
    Konowalik, K. Reconstructing reticulate relationships in the polyploid complex of Leucanthemum Mill. (Compositae, Anthemideae). (Fakultät für Biologie und Vorklinische Medizin, Universität Regensburg, 2014).Konowalik, K., Wagner, F., Tomasello, S., Vogt, R. & Oberprieler, C. Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol. Phylogenet. Evol. 92, 308–328 (2015).Wagner, F. et al. ‘At the crossroads towards polyploidy’: Genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 223, 2039–2053 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, F., Härtl, S., Vogt, R. & Oberprieler, C. “Fix Me Another Marguerite!”: Species delimitation in a group of intensively hybridizing lineages of ox-eye daisies (Leucanthemum Mill., Compositae-Anthemideae). Mol. Ecol. 26, 4260–4283 (2017).Piękoś-Mirkowa, H., Mirek, Z. & Miechowka, A. Endemic vascular plants in the Polish Tatra Mts. – distribution and ecology. Pol. Bot. Stud. 12, (1996).Zelený, V. Taxonomisch-chorologische Studie über die Art Leucanthemum rotundifolium (W. K.) DC. Folia Geobot. 5, 369–400 (1970).Piękoś, H. Nowy mieszaniec między Leucanthemum rotundifolium (W. et K.) DC. a L. vulgare Lam. var. alpicolum Gremli – Hybrida nova inter Leucanthemum rotundifolium (W. et K.) DC. et L. vulgare Lam. var. alpicolum Gremli. Fragm. Florist. Geobot. 16, 319–326 (1970).Rogalski, M., do Nascimento Vieira, L., Fraga, H. P. & Guerra, M. P. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, (2015).Greiner, R., Vogt, R. & Oberprieler, C. Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. Ann. Bot. 111, 1109–1123 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberprieler, C., Konowalik, K., Fackelmann, A. & Vogt, R. Polyploid speciation across a suture zone: phylogeography and species delimitation in S French Leucanthemum Mill. representatives (Compositae–Anthemideae). Plant Syst. Evol. 304, 1141–1155 (2018).Oberprieler, C., Greiner, R., Konowalik, K. & Vogt, R. The reticulate evolutionary history of the polyploid NW Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) as inferred from nrDNA ETS sequence diversity and eco-climatological niche-modelling. Mol. Phylogenet. Evol. 70, 478–491 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alexander, P. J., Rajanikanth, G., Bacon, C. D. & Bailey, C. D. Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol. Ecol. Notes 7, 5–9 (2007).CAS 
    Article 

    Google Scholar 
    Sang, T., Crawford, D. & Stuessy, T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheunert, A., Dorfner, M., Lingl, T. & Oberprieler, C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE 15, e0226234 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timme, R. E., Kuehl, J. V., Boore, J. L. & Jansen, R. K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41, 95–98 (1999).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformatics 4, 65–69 (2005).PubMed 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).CAS 
    Article 

    Google Scholar 
    Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 

    Google Scholar 
    Jukes, T. H. & Cantor, C. R. Evolution of Protein Molecules. in Mammalian Protein Metabolism 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K., Tao, Q. & Kumar, S. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35, 1770–1782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. 109, 19333–19338 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tao, Q., Tamura, K., Mello, B. & Kumar, S. Reliable confidence intervals for reltime estimates of evolutionary divergence times. Mol. Biol. Evol. 37, 280–290 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).Mello, B., Tao, Q., Barba-Montoya, J. & Kumar, S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol. Ecol. Resour. 21, 122–136 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, wei-M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. in Proceedings of the 16th International Parallel and Distributed Processing Symposium 311 (IEEE Computer Society, 2002).Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Y., Blair, C. & He, X. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ali, S. S., Yu, Y., Pfosser, M. & Wetschnig, W. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Ann. Bot. 109, 95–107 (2012).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).Konowalik, K. & Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 11, 1482 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamner, B., Frasco, M. & LeDell, E. Metrics: Evaluation metrics for machine learning (2018).Ripley, B. & Venables, W. nnet: Feed-forward neural networks and multinomial log-linear models. (2020).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2020).Therneau, T., Atkinson, B., port, B. R. (producer of the initial R. & maintainer 1999–2017). rpart: Recursive Partitioning and Regression Trees. (2019).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. (2017).Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Jasiewicz, A. Rośliny naczyniowe Bieszczadów Zachodnich [The Vascular Plants of the Western Bieszczady Mts. (East Carpathians)]. Monogr. Bot. 20, 1–340 (1965).Kornaś, J. Charakterystyka geobotaniczna Gorców [Caractéristique géobotanique des Gorces (Karpathes Occidentales Polonaises)]. Monogr. Bot. 3, 3–230 (1955).Article 

    Google Scholar 
    de Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C. & Diniz-Filho, J. A. F. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37, 637–647 (2014).Article 

    Google Scholar 
    Sobral-Souza, T., Lima-Ribeiro, M. S. & Solferini, V. N. Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol. Ecol. 29, 643–655 (2015).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. 7266827510 bytes (2018) 10.5061/DRYAD.KD1D4.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Wing, M. K. C. from J. et al. caret: Classification and regression training. (2019).Smith, A. B. & Santos, M. J. Testing the ability of species distribution models to infer variable importance. Ecography 43, 1801–1813 (2020).Article 

    Google Scholar 
    Evans, J. S., Murphy, M. A. & Ram, K. spatialEco: Spatial analysis and modelling utilities. (2021).Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).Article 

    Google Scholar 
    Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Model. 448, 109502 (2021).Article 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. (2021).R Core Team. R: A language and environment for statistical computing. (2019).QGIS Development Team. QGIS geographic information system. (2019).Frajman, B. & Oxelman, B. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 43, 140–155 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ronikier, M., Cieślak, E. & Korbecka, G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol. Ecol. 17, 1763–1775 (2008).Ehrich, D. et al. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol. Ecol. 16, 2542–2559 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Šrámková, G. et al. Phylogeography and taxonomic reassessment of Arabidopsis halleri—a montane species from Central Europe. Plant Syst. Evol. 305, 885–898 (2019).Article 

    Google Scholar 
    Birks & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).Jarčuška, B., Kaňuch, P., Naďo, L. & Krištín, A. Quantitative biogeography of Orthoptera does not support classical qualitative regionalization of the Carpathian Mountains. Biol. J. Linn. Soc. 128, 887–900 (2019).Article 

    Google Scholar 
    Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 71–76 (2014).Article 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 (2005).
    Google Scholar  More

  • in

    Fractal features of soil grain-size distribution in a typical Tamarix cones in the Taklimakan Desert, China

    Filgueira, R. R., Fournier, L. L., Cerisola, C. I., Gelati, P. & Garcia, M. G. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma 134, 327–334 (2006).ADS 
    Article 

    Google Scholar 
    Deng, J. F., Li, J. H., Deng, G., Zhu, H. Y. & Zhang, R. H. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China. Sci. Rep. 7, 6742 (2018).ADS 
    Article 

    Google Scholar 
    Gao, Y. J. et al. “Fertile islands” beneath three desert vegetation on soil phosphorus fractions, enzymatic activities, and microbial biomass in the desert-oasis transition zone. CATENA 212, 106090 (2022).CAS 
    Article 

    Google Scholar 
    Zeraatpisheh, M., Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M. R. & Xu, M. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Regioanl. 27, e00440 (2021).Article 

    Google Scholar 
    Zha, C., Shao, M., Jia, X. & Zhang, C. Particle size distribution of soils (0–500 cm) in the Loess Plateau, China. Geoderma 7, 251–258 (2016).Article 

    Google Scholar 
    Callesen, I., Keck, H. & Andersen, T. J. Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000-method uncertainty including the effect of hydrogen peroxide pretreatment. J. Soils Sediments 18, 2500–2510 (2018).CAS 
    Article 

    Google Scholar 
    He, Y. J. & Lv, D. Y. Fractal expression of soil particle-size distribution at the basin scale. Open Geosci. 14, 70–78 (2022).Article 

    Google Scholar 
    Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Mosaddeghi, M. R. & Schulin, R. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. CATENA 111, 72–79 (2013).Article 

    Google Scholar 
    Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Yousefian, J. A. & Gharipour, A. Feature selection using parallel genetic algorithm for the prediction of geometric mean diameter of soil aggregates by machine learning methods. Arid Land Res. Manag. 28, 383–394 (2014).Article 

    Google Scholar 
    Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).CAS 
    Article 

    Google Scholar 
    Jia, W. R. et al. Grain size distribution at four developmental stages of crescent dunes in the hinterland of the Taklimakan Desert, China. J. Arid Land 8, 722–733 (2016).Article 

    Google Scholar 
    Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: A review. Geoderma 314, 122–137 (2018).ADS 
    Article 

    Google Scholar 
    Ghanbarian, B. & Daigle, H. Fractal dimension of soil fragment mass-size distribution: A critical analysis. Geoderma 245–246, 98–103 (2015).ADS 
    Article 

    Google Scholar 
    Deng, Y., Cai, C., Xia, D., Ding, S. & Chen, J. Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China. PLoS ONE 12, e0173555 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhai, J. Y. et al. Change in soil particle size distribution and erodibility with latitude and vegetation restoration chronosequence on the Loess Plateau, China. Int. J Environ. Res. Public Health 17, 822 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, Z. Y., Niu, F. J., Lin, Z. J. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).Article 

    Google Scholar 
    Chen, T. L. et al. Multifractal characteristics and spatial variability of soil particle-size distribution in different land use patterns in a small catchment of the Three Gorges Reservoir Region, China. J. Mt. Sci. 18, 111–125 (2021).Article 

    Google Scholar 
    Gui, D. W. et al. Characterizing variations in soil particle size distribution in oasis farmlands-a case study of the Cele Oasis. Math. Comput. Model. 51, 1306–1311 (2010).Article 

    Google Scholar 
    Millán, H., Gonzalez-Posada, M., Aguilar, M., Domınguez, J. & Céspedes, L. On the fractal scaling of soil data. Particle-size distributions. Geoderma 117, 117–128 (2003).ADS 
    Article 

    Google Scholar 
    Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Till. Res. 184, 45–51 (2018).Article 

    Google Scholar 
    Muhtar, Q., Hiroki, T. & Mijit, H. Formation and internal structure of Tamarix cones in the Taklimakan Desert. J. Arid Environ. 50, 81–97 (2002).Article 

    Google Scholar 
    Zhao, Y. J. & Xia, X. C. Research on the Relationship Between Tamarix Cone and Environmental Change in Lop Nur Region of Xinjiang 38–142 (Sci. Press, 2011) (in Chinese).
    Google Scholar 
    Yin, C. H., Shi, Q. M., Liang, F. & Tian, C. Y. Distribution pattern of soil salinity in Tamarix Nebkhas in Tarim Basin. Bull Soil Water Conserv. 33, 287–293 (2013) (in Chinese).
    Google Scholar 
    Zheng, T., Li, J. G., Li, W. H. & Wan, J. H. Soil heterogeneity and its effects on plant community in oasis desert transition zone in the lower peaches of Tarim River. J. Desert Res. 30, 128–134 (2010) (in Chinese).
    Google Scholar 
    Liu, J. H., Wang, X. Q., Ma, Y. & Tan, F. Z. Spatial variation of soil salinity on Tamarix ramosissima nebkhas and interdune in oasis-desert ecotone. J. Desert Res. 36, 181–189 (2016) (in Chinese).CAS 

    Google Scholar 
    Dong, Z. W. et al. Stoichiometric features of C, N, and P in soil and litter of Tamarix cones and their relationship with environmental factors in the Taklimakan Desert, China. J. Soils Sediments 20, 690–704 (2020).CAS 
    Article 

    Google Scholar 
    Dong, Z. W., Li, S. Y., Mao, D. L. & Lei, J. Q. Distribution pattern of soil grain size in Tamarix sand dune in the southwest of Gurbantunggut Desert. J. Soil Water Conserv. 35, 64-72/79 (2021) (in Chinese).
    Google Scholar 
    Dong, Z. W., Zhao, Y., Lei, J. Q. & Xi, Y. Q. Distribution pattern and influencing factors of soil salinity at Tamarix cones in the Taklimakan Desert. Chin. J. Plant Eco. 42, 873–884 (2018) (in Chinese).Article 

    Google Scholar 
    Xu, L. S. et al. Oasis microclimate effect on the dust deposition in Cele Oasis at southern Tarim Basin, China. Arab J. Geosci. 9, 294 (2016).Article 

    Google Scholar 
    Liu, J. H., Wang, X. Q., Ma, Y. & Tan, F. Z. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone. J. Beijing For. Univ. 37, 89–99 (2015) (in Chinese).CAS 

    Google Scholar 
    Mao, D. L. et al. Fractal characteristics of grain size of sand and dust in aeolian sand movement in Cele oasis-desert ecotone in Xinjiang, China. Acta Pedol. Sinica 55, 88–99 (2018) (in Chinese).
    Google Scholar 
    Li, J. R. & Ravib, S. Interactions among hydrological-aeolian processes and vegetation determine grain-size distribution of sediments in a semi-arid coppice dune (nebkha) system. J. Arid Environ. 154, 24–33 (2018).ADS 
    Article 

    Google Scholar 
    Ayoubi, S., Karchegani, P. M., Mosaddeghi, M. R. & Honarjoo, N. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil Till. Res. 121, 18–26 (2012).Article 

    Google Scholar 
    Wang, X. M., Dong, Z. B., Zhang, J. W. & Chen, G. T. Geomorphology of sand dunes in the Northeast Taklimakan Desert. Geomorphology 42, 183–195 (2002).ADS 
    Article 

    Google Scholar 
    Liu, W. G. et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition. Geology 48, 782–786 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, X. H. et al. Characteristics of soil particle size distribution and its effect on dust emission in Taklimakan Desert. Trans. CSAE 36, 167–174 (2020) (in Chinese).
    Google Scholar 
    Bao, S. D. Soil agricultural chemistry analysis 152–200 (China Agr. Press, 2000) (in Chinese).
    Google Scholar 
    Folk, R. L. & Ward, W. C. Brazos Riverbar: A study in the significance of grain size parameters. J. Sediment Petrol. 27, 3–26 (1957).ADS 
    Article 

    Google Scholar 
    Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn. (PrenticeHall Press, 2017).
    Google Scholar 
    Churchman, G. J. Game changer in soil science. Functional role of clay minerals in soil. J. Plant Nutr. Soil Sci. 181, 99–103 (2018).CAS 
    Article 

    Google Scholar 
    Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).ADS 
    Article 

    Google Scholar 
    Lin, Y. C., Mu, G. J., Xu, L. S. & Zhao, X. The origin of bimodal grain-size distribution for aeolian deposits. Aeolian Res. 20, 80–88 (2016).ADS 
    Article 

    Google Scholar 
    Sha, G. L., Wei, T. X., Chen, Y. X., Fu, Y. C. & Ren, K. Characteristics of soil particle size distribution of typical plantcommunities on the hilly areas of Loess Plateau. Arid Land Geogr. https://doi.org/10.12118/j.issn.1000-6060.2021.487 (2022) (in Chinese).Article 

    Google Scholar 
    Yang, J. D., Li, G. J., Dai, Y., Rao, W. B. & Ji, J. F. Isotopic evidences for provenances of loess of the Chinese Loess Plateau. Earth Sci. Front. 16, 195–206 (2009) (in Chinese).
    Google Scholar 
    Wu, L. & Zhang, Y. M. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J. Arid Land 10, 701–711 (2018).Article 

    Google Scholar 
    Li, X. B. et al. Relationship between soil particle size distribution and soil nutrient distribution characteristics in typical communities of desert grassland. Actabot. Boreal-Occident Sin. 37, 1635–1644 (2017) (in Chinese).
    Google Scholar 
    Gao, G. L. et al. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts. PLoS ONE 9, e88559 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao, Y., Feng, Q. & Yang, H. Soil salinity distribution and its relationship with soil particle size in the lower reaches of Heihe River, Northwestern China. Environ. Earth Sci. 75, 1–18 (2016).ADS 
    Article 

    Google Scholar 
    Zhang, X. Y. et al. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 30, 2272 (2003).ADS 
    Article 

    Google Scholar  More

  • in

    Soil meso- and micro-fauna community in response to bamboo-fungus agroforestry management

    Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
    Google Scholar 
    Zhao, J., Wang, B., Li, Q., Yang, H. & Xu, K. Analysis of soil degradation causes in Phyllostachys edulis forests with different mulching years. Forests 9(3), 149 (2018).Article 

    Google Scholar 
    Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).Article 

    Google Scholar 
    Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).CAS 
    Article 

    Google Scholar 
    Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).Article 

    Google Scholar 
    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).Article 

    Google Scholar 
    Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S. & Rachmawati, R. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. J. Degrade. Min. Land Manage. 6(3), 1727–1736 (2019).Article 

    Google Scholar 
    Coleman, B. R., Martin, A. R., Thevathasan, N. V., Gordon, A. M. & Isaac, M. E. Leaf trait variation and decomposition in short-rotation woody biomass crops under agroforestry management. Agric. Ecosyst. Environ. 298, 106971 (2020).CAS 
    Article 

    Google Scholar 
    Cai, C. J., Fan, S. H., Liu, G. L., Wang, S. M. & Feng, Y. Research and development advance of compound management of bamboo forests. World Bamboo Rattan 16(5), 47–52 (2018) (in Chinese).
    Google Scholar 
    Song, Z. et al. Characteristics of Se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol. Trace Elem. Res. 113(1), 81–89 (2009).Article 

    Google Scholar 
    Wang, Q. et al. Effects of drying on the structural characteristics and antioxidant activities of polysaccharides from Stropharia rugosoannulata. J. Food Sci. Technol. 58, 3622–3631 (2021).CAS 
    Article 

    Google Scholar 
    Yan, P., Jiang, J. & Cui, W. Characterization of protoplasts prepared from the edible fungus, Stropharia rugoso-annulata. World J. Microbiol. Biotechnol. 20(2), 173–177 (2004).CAS 
    Article 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilition. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).CAS 
    Article 

    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).Article 

    Google Scholar 
    Tan, B. et al. Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl. Soil Ecol. 155, 103673 (2020).Article 

    Google Scholar 
    John, K., Zaitsev, A. S. & Wolters, V. Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia 84, 150703 (2021).Article 

    Google Scholar 
    Qin, Z. et al. Changes in the soil meso- and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol. Res. 34(2), 265–276 (2019).Article 

    Google Scholar 
    Chauvat, M., Titsch, D., Zaytesev, A. S. & Wolters, V. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For. Ecol. Manag. 262(3), 317–324 (2011).Article 

    Google Scholar 
    Yan, S. et al. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 47(2), 158–165 (2012).CAS 
    Article 

    Google Scholar 
    Reeve, J. R. et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J. 4, 1099–1107 (2010).Article 

    Google Scholar 
    Lavelle, P., Bignell, D. & Lepage, M. Soil function in a changing world: The role of invertebrate engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).Article 

    Google Scholar 
    Zhang, L., Wang, G. & Cao, F. The effect of ginkgo agroforestry patterns on soil fauna diversity. J. Nanjing For. Univ. 39(2), 27–32 (2015) (in Chinese).
    Google Scholar 
    Liu, P. et al. Impact of straw returning on cropland soil mesofauna community in the western part of black soil area. Chin. J. Ecol. 37(1), 139–146 (2018) (in Chinese).
    Google Scholar 
    Liu, M. Study on the model of interplanting edible fungi under bamboo (Phyllostachys edulis) forest and comprehensive benefit comparative. Master’s Thesis, Chinese Academy of Forestry (2021) (in Chinese).Wang, B., Shen, Q., Zhu, W., Shen, X. & Li, Q. Effects of interplanting Dictyophora echinovolvata on physicochemical properties, phospholipid fatty acids characters and enzyme activities in soil of Phyllostachy heterocycla cv. pubescens. For. Environ. Sci. 32(4), 28–32 (2016) (in Chinese).Article 

    Google Scholar 
    Ying, G. H. et al. Effect of cultivation of Dictyophora echinovolvata on shoot yield and soil under Phyllostachy heterocycla cv. pubescens stand. J. Zhejiang For. Sci. Technol. 34(6), 65–67 (2014) (in Chinese).
    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).CAS 
    Article 

    Google Scholar 
    Fujii, K., Hayakawa, C., Inagaki, Y. & Kosaki, T. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446(1), 425–439 (2020).CAS 
    Article 

    Google Scholar 
    Fujii, K. & Toma, T. Comparison of soil acidification rates under different land uses in Indonesia. Plant Soil 465(1–2), 1–17 (2021).CAS 
    Article 

    Google Scholar 
    Poss, R., Smith, C. J., Dunin, F. X. & Angus, J. F. Rate of soil acidification under wheat in a semi-arid environment. Plant Soil 177, 85–100 (1995).CAS 
    Article 

    Google Scholar 
    Yin, X. et al. Distribution and diversity partterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Appl. Soil Ecol. 123, 375–383 (2018).Article 

    Google Scholar 
    Luo, M. L. et al. Effects of different rice straw returning quantities on soil fauna community structure. J. Zhejiang A&F Univ. 37(1), 85–92 (2020) (in Chinese).
    Google Scholar 
    Peng, C. Y. et al. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantation in the upper reaches of Yangtze River. J. Zhejiang Univ. 45(5), 585–595 (2019) (in Chinese).
    Google Scholar 
    Carmen, M. U., Edmond, R. Z. & Michelle, M. W. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem. 64, 103–113 (2013).Article 

    Google Scholar 
    Kamau, S., Karanja, N. K., Ayuke, F. O. & Lehmann, J. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol. Fertil. Soils 55(7), 661–673 (2019).CAS 
    Article 

    Google Scholar 
    Fu, X., Shao, M., Wei, X. & Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155(1–2), 31–35 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Guan, F., Tang, X., Fan, S., Zhao, J. & Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. Catena 133, 455–460 (2015).CAS 
    Article 

    Google Scholar 
    Liu, Y. et al. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10561 (2019).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Complex effects of chytrid parasites on the growth of the cyanobacterium Planktothrix rubescens across interacting temperature and light gradients

    Díez B, Ininbergs K. Ecological importance of cyanobacteria. In Cyanobacteria (pp. 41–63). John Wiley & Sons, Ltd. (2013) https://doi.org/10.1002/9781118402238.ch3Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, et al. Occurrence of cyanobacterial harmful algal blooms workgroup report. Adv Experimental Med Biol. 2008;619:45–103. https://doi.org/10.1007/978-0-387-75865-7_3CAS 
    Article 

    Google Scholar 
    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83. https://doi.org/10.1038/s41579-018-0040-1CAS 
    Article 
    PubMed 

    Google Scholar 
    Plaas HE, Paerl HW. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. In Environmental Science and Technology (Vol. 55, Issue 1, pp. 44–64). American Chem Soc. 2021. https://doi.org/10.1021/acs.est.0c06653Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae. 2016;54:69–86. https://doi.org/10.1016/j.hal.2016.01.004CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus planktothrix. Appl Environ Microbiol. 2013;79:2642–7. https://doi.org/10.1128/AEM.03499-12CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Legnani E, Copetti D, Oggioni A, Tartari G, Palumbo MT, Morabito G. Planktothrix rubescens’ seasonal dynamics and vertical distribution. J Limnol. 2005;64:61–73.Article 

    Google Scholar 
    Walsby A, Ng G, Dunn C, Davis PA. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytologist. 2004;162:133–45. https://doi.org/10.1111/j.1469-8137.2004.01020.xArticle 

    Google Scholar 
    Bruning K. Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res. 1991a;13:707–19. https://doi.org/10.1093/plankt/13.4.707Article 

    Google Scholar 
    Rohrlack T, Haande S, Molversmyr Å, Kyle M. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis. 2015;1–17. https://doi.org/10.1371/journal.pone.0145559Tao Y, Wolinska J, Hölker F, Agha R. Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology. 2020;147:1206–15. https://doi.org/10.1017/S0031182020000931CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis PA, Walsby A. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. New Phytologist. 2002;156:225–39. https://doi.org/10.1046/j.1469-8137.2002.00495.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens 1. J Phycol. 2007;43:1191–9. https://doi.org/10.1111/j.1529-8817.2007.00414.xCAS 
    Article 

    Google Scholar 
    Reynolds CS Growth and replication of phytoplankton. In The Ecology of Phytoplankton (pp. 145–77). Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511542145.005Litchman E, Klausmeier CA . Trait-based community ecology of phytoplankton. Ann Rev Ecol, Evol, Syst. 2008;39:615–39.Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol Oceanography. 2016;61:1232–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Litchman E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecol Biogeog. 2016;25:75–86. https://doi.org/10.1111/geb.12387Article 

    Google Scholar 
    Bright DI, Walsby A. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytologist. 2000;146:301–16. https://doi.org/10.1046/j.1469-8137.2000.00640.xArticle 
    PubMed 

    Google Scholar 
    Jann-Para G, Schwob I, Feuillade M. Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. Toxicon. 2004;43:279–85.CAS 
    Article 

    Google Scholar 
    Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, et al. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae. 2005;4:651–72.Article 

    Google Scholar 
    Lenard T. Metalimnetic bloom of Planktothrix rubescens in relation to environmental conditions. Oceanological Hydrobiological Studies. 2009;38:45–53.
    Google Scholar 
    Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T. Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol Oceanogr. 2011;56:97–109.Article 

    Google Scholar 
    Walsby A. Stratification by cyanobacteria in lakes: A dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist. 2005;168:365–76. https://doi.org/10.1111/j.1469-8137.2005.01508.xArticle 
    PubMed 

    Google Scholar 
    Conroy JD, Kane DD, Quinlan EL, Edwards WJ, Culver DA. Abiotic and biotic controls of phytoplankton biomass dynamics in a freshwater tributary, estuary, and large lake ecosystem: Sandusky bay (lake erie) chemostat. Inland Waters. 2017;7:473–92. https://doi.org/10.1080/20442041.2017.1395142CAS 
    Article 

    Google Scholar 
    Sommer U, Maciej Gliwics Z, Lampert W, Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie. 1986;106:433–71.
    Google Scholar 
    Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Ann Rev Ecol, Evol, Syst. 2012;43:429–48. https://doi.org/10.1146/annurev-ecolsys-110411-160251Article 

    Google Scholar 
    Hatcher MJ, Dunn AM Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press (2011).Marcogliese DJ. Parasites: Small Players with Crucial Roles in the Ecological Theater. EcoHealth. 2004;1:151–64. https://doi.org/10.1007/s10393-004-0028-3Article 

    Google Scholar 
    Sime-Ngando T, Lafferty KD, Biron DG. Roles and Mechanisms of Parasitism in Aquatic Microbial Communities. 2007. https://doi.org/10.3389/978-2-88919-588-6Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology. 2017;19:3802–22. https://doi.org/10.1111/1462-2920.13827Article 
    PubMed 

    Google Scholar 
    Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74. https://doi.org/10.1016/j.hal.2004.12.015Article 

    Google Scholar 
    Gerphagnon M, Macarthur DJ, Gachon C, Van Ogtrop F, Latour D, et al. The biological factors affecting the dynamics of cyanobacterial blooms. 2009.Gleason FH, Jephcott TG, Küpper FC, Gerphagnon M, Sime-Ngando T, Karpov SA, et al. Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol Rev. 2015;29:20–33. https://doi.org/10.1016/j.fbr.2015.03.002Article 

    Google Scholar 
    Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol. 2011;56:754–66. https://doi.org/10.1111/j.1365-2427.2010.02565.xArticle 

    Google Scholar 
    Kagami M, De Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29. https://doi.org/10.1007/s10750-006-0438-zArticle 

    Google Scholar 
    Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS. 2005;103:3165–70.Article 

    Google Scholar 
    McKenzie VJ, Peterson AC. Pathogen pollution and the emergence of a deadly amphibian pathogen. Molecular Ecol. 2012;21:5151–4. https://doi.org/10.1111/mec.12013Article 

    Google Scholar 
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4:125–34. https://doi.org/10.1007/s10393-007-0093-5Article 

    Google Scholar 
    Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol. 2004;40:437–53.Article 

    Google Scholar 
    Bosch J, Martínez-Solano I, García-París. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conserv. 2001;97:331–7. https://doi.org/10.1016/S0006-3207(00)00132-4Article 

    Google Scholar 
    Bruning K, Lingeman R, Ringelberg J. Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr. 1992;37:252–60. https://doi.org/10.4319/lo.1992.37.2.0252Article 

    Google Scholar 
    Paterson RA. Infestation of Chytridiaceous Fungi on Phytoplankton in Relation to Certain Environmental Factors. Ecology. 1960;41:416–24. https://doi.org/10.2307/1933316Article 

    Google Scholar 
    Ṣen B. Fungal parasitism of planktonic algae in Shearwater. IV: Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin. 1998.van Donk E, Ringelberg J. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I. Netherlands Freshwater Biol. 1983;13:241–51. https://doi.org/10.1111/j.1365-2427.1983.tb00674.xArticle 

    Google Scholar 
    Agha R, Saebelfeld M, Manthey C, Rohrlack T, Wolinska J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Scientific Rep. 2016;6. https://doi.org/10.1038/srep35039Frenken T, Wierenga J, van Donk E, Declerck SAJ, de Senerpont Domis LN, Rohrlack T, et al. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol Oceanogr. 2018;63:2384–93. https://doi.org/10.1002/lno.10945Article 

    Google Scholar 
    Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Biological Sci/ Royal Soc. 2007;274:1561–6. https://doi.org/10.1098/rspb.2007.0425Article 

    Google Scholar 
    Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW. Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS One. 2013;8:e71737. https://doi.org/10.1371/journal.pone.0071737CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. J Plankton Res. 2021a;43:658–72.Article 

    Google Scholar 
    Fallowfield HJ, Daft MJ. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction with Lysobacter CP-1. Br Phycol J. 1988;1617:317–26. https://doi.org/10.1080/00071618800650351Article 

    Google Scholar 
    Mueller B, den Haan J, Visser PM, Vermeij MJA, van Duyl FC. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Rep. 2016;6:1–9. https://doi.org/10.1038/srep23248CAS 
    Article 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. II. Effects of light on survival and epidemic development of the parasite. J Plankton Res. 1991c;13:119–29. https://doi.org/10.1093/plankt/13.1.119Article 

    Google Scholar 
    Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ Microbiol. 2013;15:837–47. https://doi.org/10.1111/j.1462-2920.2012.02874.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Almocera AES, Hsu SB, Sy PW. Extinction and uniform persistence in a microbial food web with mycoloop: Limiting behavior of a population model with parasitic fungi. Mathematical Biosci Eng. 2019;16:516–37.Article 

    Google Scholar 
    Frenken T, Miki T, Kagami M, Van de Waal DB, Van Donk E, Rohrlack T, et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology. 2020;101. https://doi.org/10.1002/ecy.2900Gerla DJ, Gsell AS, Kooi BW, Ibelings BW, Van Donk E, Mooij WM. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts. FMeier, M. H. et al. (2015) Neuropsychological Decline in Schizophrenia from the Premorbid to Post-Onset Period: Evidence from a Population-Representative Longitudinal Study. American J Psychiatry. 2013;58:538–51. https://doi.org/10.1111/fwb.12010Article 

    Google Scholar 
    Miki T, Takimoto G, Kagami M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshwater Biol. 2011;56:1173–83. https://doi.org/10.1111/j.1365-2427.2010.02562.xArticle 

    Google Scholar 
    Guillard RRL, Lorenzen CJ. Yellow-green algae with chlorophyllid C. In Phycology. 1972;8:10–14.CAS 

    Google Scholar 
    McKindles KM, Jorge AN, McKay RM, Davis TW, Bullerjahn GS. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl Environ Microbiol. 2021b;87:e02308–20.CAS 
    Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and Environment for Statistical Computing.RStudio Team. (2021). RStudio: Integrated Development Environment for R (1.4.1106).Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the {tidyverse}. J Open Source Software. 2019;4:1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar 
    Champely, S (2018). PairedData (1.1.1).Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in {R}: Package deSolve. J Statistical Software. 2010;33:1–25. https://doi.org/10.18637/jss.v033.i09Article 

    Google Scholar 
    Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biol. 2016;22:299–309. https://doi.org/10.1111/gcb.13095Article 

    Google Scholar 
    Scholz B, Vyverman W, Küpper FC, Ólafsson HG, Karsten U. Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: A laboratory case study. Botanica Marina. 2017;60:419–31. https://doi.org/10.1515/bot-2016-0105CAS 
    Article 

    Google Scholar 
    Sønstebø JH, Rohrlack T. Possible implications of Chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol. 2011;77:1344–51. https://doi.org/10.1128/AEM.02153-10CAS 
    Article 
    PubMed 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J Plankton Res. 1991b;13:103–17. https://doi.org/10.1093/plankt/13.1.103Article 

    Google Scholar 
    Muehlstein LK, Amon JP, Leffler DL. Chemotaxis in the Marine Fungus Rhizophydium littoreum. Appl Environ Microbiol. 1988;54:1668–72. https://doi.org/10.1128/aem.54.7.1668-1672.1988CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esch GW, Fernández JC. Introduction. In A Functional Biology of Parasitism (pp. 1–25). Springer Netherlands (1993). https://doi.org/10.1007/978-94-011-2352-5_1Gerphagnon M, Colombet J, Latour D, Sime-Ngando T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Scientific Rep. 2017;7:6056. https://doi.org/10.1038/s41598-017-06273-1CAS 
    Article 

    Google Scholar 
    Maier MA, Peterson TD. Prevalence of chytrid parasitism among diatom populations in the lower Columbia River (2009–2013). Freshwater Biol. 2017;62:414–28. https://doi.org/10.1111/fwb.12876CAS 
    Article 

    Google Scholar 
    Sime-Ngando T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol. 2012;3:361. https://doi.org/10.3389/fmicb.2012.00361Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami M, Urabe J. Mortality of the planktonic desmid, Staurastrum dorsidentiferum, due to interplay of fungal parasitism and low light conditions. SIL Proceed. 2002;28:1001–5. https://doi.org/10.1080/03680770.2001.11901868Article 

    Google Scholar  More

  • in

    Holistic tool for ecosystem services and disservices assessment in the urban forests of the Real Bosco di Capodimonte, Naples

    Berghauser Pont, M. Y., Perg, P. G., Haupt, P. A. & Heyman, A. A systematic review of the scientifically demonstrated effects of densification. IOP Conf. Ser. Earth Environ. Sci. 588, 052031 (2020).
    Google Scholar 
    Cimburova, Z. & Berghauser Pont, M. Location matters: A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecosyst. Serv. 50, 101296 (2021).
    Google Scholar 
    De Valck, J. et al. Valuing urban ecosystem services in sustainable brownfield redevelopment. Ecosyst. Serv. 35, 139–149 (2019).
    Google Scholar 
    Zuzolo, D. et al. Divide et disperda: Thirty years of fragmentation and impacts on the eco-mosaic in the case study of the metropolitan city of Naples. Land 10, 485 (2021).
    Google Scholar 
    Nelson, E. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations , edited by Pushpam Kumar, London, Earthscan Publications, United Nations Environment Programme, 2010, xxxix + 410 pp., US$76.95 (hardback), ISBN 978-1-84971-212-5. J. Nat. Resour. Policy Res. 5, 68–70 (2013).
    Google Scholar 
    Duraiappah, A. K. et al. Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Synthesis. World Resources Institute vol. 5 http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf (2005).Cariñanos, P., Casares-Porcel, M. & Quesada-Rubio, J. M. Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc. Urban Plan. 123, 134–144 (2014).
    Google Scholar 
    Haase, D. et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 43, 413–433 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Mexia, T. et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 160, 469–478 (2018).CAS 
    PubMed 

    Google Scholar 
    Brzoska, P., Grunewald, K. & Bastian, O. A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts. Ecosyst. Serv. 49, 101268 (2021).
    Google Scholar 
    Zulian, G. et al. Practical application of spatial ecosystem service models to aid decision support. Ecosyst. Serv. 29, 465–480 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. et al. Ecology: Economic reasons for conserving wild nature. Science (80-). 297, 950–953 (2002).ADS 
    CAS 

    Google Scholar 
    Koulov, B., Ivanova, E., Borisova, B., Assenov, A. & Ravnachka, A. GIS-based valuation of ecosystem services in mountain regions: A case study of the Karlovo municipality in Bulgaria. One Ecosyst. 2, e14062 (2017).
    Google Scholar 
    Robertson, G. P. & Swinton, S. M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 3, 38–46 (2005).
    Google Scholar 
    Sandhu, H. S., Wratten, S. D., Cullen, R. & Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol. Econ. 64, 835–848 (2008).
    Google Scholar 
    Berglihn, E. C. & Gómez-Baggethun, E. Ecosystem services from urban forests: The case of Oslomarka, Norway. Ecosyst. Serv. 51, 101358 (2021).
    Google Scholar 
    Nowak, D. J. Understanding i-Tree. (2020). https://doi.org/10.2737/NRS-GTR-200.Selvakumaran, S., Plank, S., Geiß, C., Rossi, C. & Middleton, C. Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. Int. J. Appl. Earth Obs. Geoinf. 73, 463–470 (2018).ADS 

    Google Scholar 
    Gómez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).
    Google Scholar 
    Gren, Å. & Andersson, E. Being efficient and green by rethinking the urban-rural divide—Combining urban expansion and food production by integrating an ecosystem service perspective into urban planning. Sustain. Cities Soc. 40, 75–82 (2018).
    Google Scholar 
    Grêt-Regamey, A., Celio, E., Klein, T. M. & Wissen Hayek, U. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 109, 107–116 (2013).
    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).PubMed 

    Google Scholar 
    Bradford, J. B. & D’Amato, A. W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 10, 210–216 (2012).
    Google Scholar 
    Cueva, J. et al. Synergies and trade-offs in ecosystem services from urban and peri-urban forests and their implication to sustainable city design and planning. Sustain. Cities Soc. 82, 103903 (2022).
    Google Scholar 
    Allocca, V., Coda, S., Calcaterra, D. & De Vita, P. Groundwater rebound and flooding in the Naples’ periurban area (Italy). J. Flood Risk Manag. 15, e12775 (2022).
    Google Scholar 
    Padulano, R. et al. Using the present to estimate the future: A simplified approach for the quantification of climate change effects on urban flooding by scenario analysis. Hydrol. Process. 35, e14436 (2021).
    Google Scholar 
    D’Amato, G. et al. Allergenic pollen and pollen allergy in Europe. Allergy 62, 976–990 (2007).PubMed 

    Google Scholar 
    Prigioniero, A., Zuzolo, D., Sciarrillo, R. & Guarino, C. Assessing pollinosis risk in the Vesuvius National Park: A novel approach for Index of Urban Green Zones Allergenicity. Environ. Res. 197, 111063 (2021).CAS 
    PubMed 

    Google Scholar 
    AgCult 2020 Classifica visitatori 2019: Capodimonte rientra nella classifica dei primi 30 musei d’Italia.La Valva, V., Guarino, C., De Natale, A., Cuozzo, V., Menale, B. La flora del Parco di Capodimonte di Napoli. in 33–34: 143–177. (Delpinoa, 1992).Stevens, P. F. Angiosperm Phylogeny Website. 2001. http://www.mobot.org/MOBOT/research/APweb/. (2017).James Barth, B., Ian FitzGibbon, S. & Stuart Wilson, R. New urban developments that retain more remnant trees have greater bird diversity. Landsc. Urban Plan. 136, 122–129 (2015).
    Google Scholar 
    Heckmann, K. E., Manley, P. N. & Schlesinger, M. D. Ecological integrity of remnant montane forests along an urban gradient in the Sierra Nevada. For. Ecol. Manage. 255, 2453–2466 (2008).
    Google Scholar 
    Prigioniero, A. et al. Role of historic gardens in biodiversity-conservation strategy: the example of the Giardino Inglese of Reggia di Caserta (UNESCO) (Italy). Plant Biosyst. 155, 983–993 (2021).
    Google Scholar 
    Song, Q., Wang, B., Wang, J. & Niu, X. Endangered and endemic species increase forest conservation values of species diversity based on the Shannon-Wiener index. IForest 9, 469–474 (2016).
    Google Scholar 
    Hess, M. C. M., Mesléard, F. & Buisson, E. Priority effects: Emerging principles for invasive plant species management. Ecol. Eng. 127, 48–57 (2019).
    Google Scholar 
    Carli, E. et al. Using vegetation dynamics to face the challenge of the conservation status assessment in semi-natural habitats. Rend. Lincei. Sci. Fis. e Nat. 29, 363–374 (2018).
    Google Scholar 
    Canedoli, C. et al. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 44, 101135 (2020).
    Google Scholar 
    FAO. Global Forest Resources Assessment 2010. Main report. (2010).Lindén, L., Riikonen, A., Setälä, H. & Yli-Pelkonen, V. Quantifying carbon stocks in urban parks under cold climate conditions. Urban For. Urban Green. 49, 126633 (2020).
    Google Scholar 
    Nowak, D. J., Hirabayashi, S., Bodine, A. & Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 193, 119–129 (2014).CAS 
    PubMed 

    Google Scholar 
    Nowak, D. J., Crane, D. E. & Stevens, J. C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 4, 115–123 (2006).
    Google Scholar 
    Nowak, D. J. & Crane, D. E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 116, 381–389 (2002).CAS 
    PubMed 

    Google Scholar 
    Kocić, K., Spasić, T., Urošević, M. A. & Tomašević, M. Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. J. Cult. Herit. 15, 227–233 (2014).
    Google Scholar 
    Yang, J., McBride, J., Zhou, J. & Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 3, 65–78 (2005).
    Google Scholar 
    Zupancic, T., Westmacott, C., Bulthuis, M. The impact of green space on heat and air pollution in urban communities: A meta-narrative systematic review (2015).Cariñanos, P., Adinolfi, C., Díaz de la Guardia, C., De Linares, C. & Casares-Porcel, M. Characterization of Allergen Emission Sources in Urban Areas. J. Environ. Qual. 45, 244–252 (2016).PubMed 

    Google Scholar 
    D’Auria, A., De Toro, P., Fierro, N. & Montone, E. Integration between GIS and multi-criteria analysis for ecosystem services assessment: A methodological proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy). Sustain 10, 3329 (2018).
    Google Scholar 
    Prigioniero, A., Zuzolo, D., Niinemets, Ü. & Guarino, C. Nature-based solutions as tools for air phytoremediation: A review of the current knowledge and gaps. Environ. Pollut. 277, 116817 (2021).CAS 
    PubMed 

    Google Scholar 
    Szkop, Z. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban For. Urban Green. 55, 126859 (2020).
    Google Scholar 
    Tao, J. et al. Elevation-dependent effects of growing season length on carbon sequestration in Xizang Plateau grassland. Ecol. Indic. 110, 105880 (2020).CAS 

    Google Scholar 
    Chen, Y. et al. Grassland carbon sequestration ability in China: A new perspective from Terrestrial Aridity Zones. Rangel. Ecol. Manag. 69, 84–94 (2016).
    Google Scholar 
    Gopalakrishnan, V., Hirabayashi, S., Ziv, G. & Bakshi, B. R. Air quality and human health impacts of grasslands and shrublands in the United States. Atmos. Environ. 182, 193–199 (2018).ADS 
    CAS 

    Google Scholar 
    Pace, R. et al. Comparing i-Tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean Holm Oak Forest. Environ. Sci. Technol. 55, 6613–6622 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Losos, J. B., Walton, B. M. & Bennett, A. F. Trade-offs between sprinting and clinging ability in Kenyan Chameleons. Funct. Ecol. 7, 281 (1993).
    Google Scholar 
    Pretzsch, H., Moser-Reischl, A., Rahman, M. A., Pauleit, S. & Rötzer, T. Towards sustainable management of the stock and ecosystem services of urban trees. From theory to model and application. Trees – Struct. Funct. (2021). https://doi.org/10.1007/s00468-021-02100-3.Grunewald, K. et al. Lessons learned from implementing the ecosystem services concept in urban planning. Ecosyst. Serv. 49, 101273 (2021).
    Google Scholar 
    Baldacchini, C., Sgrigna, G., Clarke, W., Tallis, M. & Calfapietra, C. An ultra-spatially resolved method to quali-quantitative monitor particulate matter in urban environment. Environ. Sci. Pollut. Res. 26, 18719–18729 (2019).CAS 

    Google Scholar 
    De Luca, P., Guarino, C., Gullo, G., La Valva V., 1992. Il Parco di Capodimonte di Napoli: storia ed attualità. in 33–34: 143–177. (Delpinoa, 1992).Pignatti, S. Flora d’Italia vol.2. (2017).Braun-Blanquet, J. Plant Sociology (McGraw-Hill Book Company, 1932).
    Google Scholar 
    Catorci, A. et al. Reproductive traits variation in the herb layer of a submediterranean deciduous forest landscape. Plant Ecol. 214, 737–749 (2013).
    Google Scholar 
    Šumrada, T. et al. Are result-based schemes a superior approach to the conservation of High Nature Value grasslands? Evidence from Slovenia. Land Use Policy 111, 105749 (2021).
    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Board of Trustees of the Royal Botanic Gardens, Kew http://www.plantsoftheworldonline.org/ (2022).Bímová, K., Mandák, B. & Kašparová, I. How does Reynoutria invasion fit the various theories of invasibility?. J. Veg. Sci. 15, 495–504 (2004).
    Google Scholar 
    Wild, J., Neuhäuslová, Z. & Sofron, J. Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. For. Ecol. Manag. 187, 117–132 (2004).
    Google Scholar 
    Damato, G. & Lobefalo, G. Allergenic pollens in the southern Mediterranean area. J. Allergy Clin. Immunol. 83, 116–122 (1989).CAS 

    Google Scholar 
    Cariñanos, P. et al. Assessing allergenicity in urban parks: A nature-based solution to reduce the impact on public health. Environ. Res. 155, 219–227 (2017).PubMed 

    Google Scholar 
    Cariñanos, P. et al. Estimation of the allergenic potential of urban trees and urban parks: Towards the healthy design of urban green spaces of the future. Int. J. Environ. Res. Public Health 16, 1357 (2019).PubMed Central 

    Google Scholar  More