More stories

  • in

    Independent origin of large labyrinth size in turtles

    Steinhausen, W. Über die Beobachtungen der Cupula in den Bogengangsampullen des Labyrinthes des Lebendes Hechts. Pflug. Arch. 232, 500–512 (1933).Article 

    Google Scholar 
    Wever, E. G. The reptile ear. (Princeton University Press, 1978).Wilson, V. J. & Melvill Jones, G. Mammalian vestibular physiology. (Plenum Press, 1979).Spoor, F. & Zonneveld, F. Comparative review of the human bony labyrinth. Yearb. Phys. Anthropol. 41, 211–251 (1998).Article 

    Google Scholar 
    Rabbitt, R. D., Damiano, E. R. & Grant, J. W. Biomechanics of the semicircular canals and otolith organs. In: Highstein, F. M., Ray, R. R., Popper, A. N. (eds) Springer Handbook Of Auditory Research, vol. 19, The Vestibular System, pp. 153–201 (Springer, New York, 2004).Georgi, J. A. & Sipla, J. S. Comparative and functional anatomy of balance in aquatic reptiles and birds. In: Thewissen, J. G. M., Nummela, S. (eds) Sensory Evolution On The Threshold, Adaptations In Secondarily Aquatic Vertebrates.pp. 233–256 (University of California Press, 2008).David, R. et al. Motion from the past. A new method to infer vestibular capacities of extinct species. C. R. Palevol. 9, 397–410 (2010).Article 

    Google Scholar 
    Oman, C. M., Marcus, E. N. & Curthoys, I. S. The influence of the semicircular canal morphology on endolymph flow dynamics. Acta Otolaryngol. 103, 1–13 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Georgi, J. A., Sipla, L. S. & Forster, C. A. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis. PLoS One 8, e58517 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K. & Thewissen, J. G. M. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417, 163–166 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Spoor, F. et al. The primate semicircular canal system and locomotion. Proc. Nat. Acad. Sci. USA 104, 10808–10812 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, P. G. & Jeffery, N. Geometry of the semicircular canals and extraocular muscles in rodents, lagomorphs, felids and modern humans. J. Anat. 213, 83–596 (2008).
    Google Scholar 
    Cox, P. G. & Jeffery, N. Semicircular canals and agility: the influence of size and shape measures. J. Anat. 216, 37–47 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silcox, M. T. et al. Semicircular canal system in early primates. J. Hum. Evol. 56, 315–327 (2009).PubMed 
    Article 

    Google Scholar 
    Lebrun, R. et al. Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J. Anat. 216, 368–380 (2010).PubMed 
    Article 

    Google Scholar 
    Billet, G. et al. High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc. R. Soc. Lond. B. 279, 3932–3939 (2012).
    Google Scholar 
    Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malinzak, M. D., Kaya, R. F. & Hullar, T. E. Locomotor head movements and semicircular canal morphology in primates. Proc. Natl Acad. Sci. USA 109, 914–919 (2012).Article 

    Google Scholar 
    Alloing-Séguier, L. et al. The bony labyrinth in diprotodontian marsupial mammals: diversity in extant and extinct forms and relationships with size and phylogeny. J. Mamm. Evol. 20, 191–198 (2013).Article 

    Google Scholar 
    Berlin, J. C., Kirk, E. C. & Rowe, T. B. Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS One 8, e79585 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davies, K. T. J., Bates, P. J. J., Maryanto, I., Cotton, J. A. & Rossiter, S. J. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS One 8, e61998 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grohé, C. et al. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea. J. Anat. 228, 366–383 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pfaff, C., Martin, T. & Ruf, I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc. R. Soc. B 282, 20150744 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melville Jones, G. & Spells, K. E. A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc. R. Soc. Lond. B Biol. Sci. 157, 403–419 (1963).ADS 
    Article 

    Google Scholar 
    Kemp, A. D. & Kirk, E. C. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).Article 

    Google Scholar 
    Ekdale, E. G. Form and function of the mammalian ear. J. Anat. 228, 324–337 (2016).PubMed 
    Article 

    Google Scholar 
    Goyens, J. High ellipticity reduces semicircular canal sensitivity in squamates compared to mammals. Sci. Rep. 9, 16428 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Witmer, L. M., Chatterjee, S., Franzosa, J. & Rowe, T. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature 425, 950–953 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lautenschlager, S., Rayfield, E. J., Altangerel, P., Zanno, L. E. & Witmer, L. M. The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE 7, e52289 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cuthbertson, R. S., Maddin, H. C., Holmes, R. B. & Anderson, J. S. The braincase and endosseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behavior. Anat. Rec. 298, 1597–1611 (2015).Article 

    Google Scholar 
    Schade, M., Rauhut, O. W. M. & Evers, S. W. Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory. Sci. Rep. 10, 9259 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benson, R. B. J., Starmer-Jones, E., Close, R. A. & Walsh, S. A. Comparative analysis of vestibular ecomorphology in birds. J. Anat. 231, 990–1018 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dudgeon, T. W., Maddin, H. C., Evans, D. C. & Mallon, J. C. The internal cranial anatomy of Champsosaurus (Choristodera: Champsosauridae): implications for neurosensory function. Sci. Rep. 10, 7122 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bronzati, M. et al. Deep evolutionary diversification of semicircular canals in archosaurs. Curr. Biol. 31, 2520–2529 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, M., Hoffman, E. A., Norell, M. A. & Bhullar, B.-A. S. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 372, 601–609 (2021).ADS 
    Article 

    Google Scholar 
    Ernst, C. H. & Barbour, R. W. Turtles Of The World. (Smithsonian Institution Press, Washington, D.C., 1989).Evers, S. W. & Benson, R. B. J. A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group. Palaeontology 62, 93–134 (2019).Article 

    Google Scholar 
    Joyce, W. G. A review of the fossil record of basal Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 58, 65–113 (2017).Article 

    Google Scholar 
    Lautenschlager, S., Ferreira, G. S. & Werneburg, I. Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions. Front. Ecol. Evol. 6, 1–7 (2018).Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 123, 1–15 (1985).Article 

    Google Scholar 
    Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods 7, 13–26 (1978).MATH 
    Article 

    Google Scholar 
    Foth, C. et al. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. J. Anat. 235, 1078–1097 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neenan, J. M. et al. Evolution of the sauropterygian labyrinth with increasingly pelagic lifestyles. Curr. Biol. 27, 3852–3858 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Loza, C. M., Latimer, A. E., Sánchez-Villagra, M. R. & Carlini, A. A. Sensory anatomy of the most aquatic of carnivorans: the Antarctic Ross seal, and convergences with other mammals. Biol. Lett. 13, 20170489 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Werneburg, I. & Maier, W. Diverging development of akinetic skulls in cryptodire and pleurodire turtles: an ontogenetic and phylogenetic study. Vertebr. Zool. 69, 113–143 (2019).
    Google Scholar 
    Ferreira, G. S. & Werneburg, I. Evolution, diversity, and development of the craniocervical system in turtles with special reference to jaw musculature. In: Ziermann, J., Diaz, R. R. Jr, Diogo, R. (eds) Heads, Jaws and Muscles: Evolution, Development, Anatomical Diversity And Function (Springer, Cham, 2019).David, R. J. A. et al. Comment on “The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization”, Science (in press).Schwab, J. A. et al. Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water. Proc. Nat. Acad. Sci. USA 117, 10422–10428 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, L. M. & Ornitz, D. M. Sculpturing the skull through neurosensory epithelial-mesenchymal signaling. Dev. Dyn. 248, 88–97 (2019).PubMed 
    Article 

    Google Scholar 
    Kandel, B. M. & Hullar, T. E. The relationship of head movements to semicircular canal size in cetaceans. J. Exp. Biol. 213, 1175–1181 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moll, D. Food and feeding behavior of the turtle, Dermatemys mawei, in Belize. J. Herpetol. 23, 445–447 (1989).Article 

    Google Scholar 
    Evers, S. W. et al. Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle. Zool. J. Linn. Soci. 187, 800–828 (2019).
    Google Scholar 
    Ekdale, E. G. Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One 8, e66624 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joyce, W. G. Phylogenetic relationships of Mesozoic turtles. Bull. Peabody Mus. Nat. Hist. 48, 3–102 (2007).Article 

    Google Scholar 
    Sterli, J. & De La Fuente, M. S. Anatomy of Condorchelys antiqua Sterli, 2008, and the origin of the modern jaw closure mechanism in turtles. J. Vertebr. Paleontol. 30, 351–366 (2010).Article 

    Google Scholar 
    Ferreira, G. S. et al. Feeding biomechanics suggests progressive correlation of skull architecture and neck evolution in turtles. Sci. Rep. 10, 5505 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aerts, P., Van Damme, J. & Herrel, A. Intrinsic mechanics and control of fast cranio-cervical movements in aquatic feeding turtles. Am. Zool. 41, 1299–1310 (2001).
    Google Scholar 
    Herrel, A., Van Damme, J. & Aerts, P. Cervical anatomy and function in turtles. In Biology Of Turtles. In: Wyneken, J., Godfrey, M. H., Bels, V. (eds) pp. 163–185 (CRC Press, Boca Raton, 2008).Narazaki, T., Sato, K., Abernathy, K. J., Marshall, G. J. & Miyazaki, N. Loggerhead turtles (Caretta caretta) use vision to forage on gelatinous prey in mid-water. PLoS One 8, e66043 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guthrie, D. M. “Role of vision in fish behaviour”. In: T. J. Pitcher (eds) The Behaviour Of Teleost Fishes. pp. 75–113 (Springer, Boston, 1986).Sterli, J. & Joyce, W. G. The cranial anatomy of the Early Jurassic turtle Kayentachelys aprix. Acta Paleontol. Pol. 52, 675–694 (2007).
    Google Scholar 
    Werneburg, I. The tendinous framework in the temporal skull region of turtles and considerations about its morphological implications in amniotes: a review. Zool. Sci. 30, 141–153 (2013).Article 

    Google Scholar 
    Werneburg, I. Neck motion in turtles and its relation to the shape of the temporal skull region. C. R. Palevol. 14, 527–548 (2015).Article 

    Google Scholar 
    TTWG, Turtle Taxonomy Working Group, Rhodin, A. G. J. et al. Turtles of the world, 8th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. Chelonian Res. Monogr. 7, 1–292 (2017).
    Google Scholar 
    Gower, J. C. Generalized Procrustes analysis. Psychometrika 40, 33–50 (1975).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. https://cran.r-project.org/package=geomorph (2019).R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2019).Rholf, E. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).Article 

    Google Scholar 
    Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS One 9, e94335 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendall, D. G. The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977).Article 

    Google Scholar 
    Bookstein, F. L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1, 97–118 (1997).Article 

    Google Scholar 
    Gunz, P., Mitteroecker, P. & Bookstein, F. L. “Semilandmarks in three dimensions. In: Slice, D. E. (ed) Modern Morphometrics in Physical Anthropology, pp. 73–98 (Kluwer Academic, 2005).Webster, M. & Sheets, H. A practical introduction to land- mark-based geometric morphometrics. In: Alroy, J., Hunt, G. (eds) Quantitative Methods in Paleobiology. Paleontological Society Papers 16, pp. 163–188 (Paleontological Society, 2010).Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013).
    Google Scholar 
    Bookstein, F. L. Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1, 181–242 (1986).MATH 

    Google Scholar 
    Pereira, A. G., Sterli, J., Moreira, F. R. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).PubMed 
    Article 

    Google Scholar 
    Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).Article 

    Google Scholar 
    Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).Article 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography, and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 171773 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bapst, D. W. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733 (2013).Article 

    Google Scholar 
    Laurin, M. The evolution of body size, Cope’s Rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).PubMed 
    Article 

    Google Scholar 
    Pace, C. M., Blob, R. W. & Westneat, M. W. Comparative kinematics of the forelimb during swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles. J. Exp. Biol. 204, 3261–3271 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claude, J., Paradis, E., Tong, H. & Auffray, J.-C. A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biol. J. Linn. Soc. 79, 485–501 (2003).Article 

    Google Scholar 
    Angielczyk, K. D., Feldman, C. R. & Miller, G. R. Adaptive evolution of plastron shape in emydine turtles. Evolution 65, 377–394 (2011).PubMed 
    Article 

    Google Scholar 
    Angielczyk, K. D., Burroughs, R. W. & Feldman, C. R. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the World’s turtles. J. Exp. Zool. Mol. Dev. Evol. 324, 270–294 (2015).Article 

    Google Scholar 
    Pritchard, P. C. H. Oiscivory in turtles, and evolution of the long-necked Chelidae. Symp. Zool. Soc. Lond. 52, 87–110 (1984).
    Google Scholar 
    Joyce, W. G. et al. A new pelomedusoid turtle, Sahonachelys mailakavava, from the Late Cretaceous of Madagascar provides evidence for convergent evolution of specialized suction feeding among pleurodires. R. Soc. Open Sci. 8, 210098 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adams, D. C. A method for assessing phylogenetic least squares models for shape and other high‐dimensional multivariate data. Evolution 68, 2675–2688 (2014).PubMed 
    Article 

    Google Scholar 
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67, 14–31 (2018).PubMed 
    Article 

    Google Scholar 
    Collyer, M. L., Sekora, D. J. & Adams, D. C. A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowi-Merri, T. M., Benson, R. B. J., Claramunt, S. & Evans, D. C. The relationship between sternum variation and mode of locomotion in birds. BMC Biol. 19, 1–23 (2021).Article 

    Google Scholar 
    Adams, D. C. & Collyer, M. L. Phylogenetic ANOVA: group-clade aggregation, biological challanges, and a refined permutation procedure. Evolution 72, 1204–1215 (2018).PubMed 
    Article 

    Google Scholar 
    Friedman, S. T., Martinez, C. M., Price, S. A. & Wainwright, P. C. The influence of size on body shape diversification across Indo-Pacific shore fishes. Evolution 73, 1873–1884 (2019).PubMed 
    Article 

    Google Scholar 
    Foth, C., Rabi, M. & Joyce, W. G. Skull variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. Acta Zool. 98, 310–325 (2017).Article 

    Google Scholar 
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ritz, C. & Spiess, A.-N. qpcR: an R package for sigmoidal model selection in quantitative real-rime polymerase chain reaction analysis. Bioinformatics 24, 1549–1551 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Akaike, H. Information Theory As An extension Of The Maximum Likelihood Principle. In: Petrov, B. N., Csaki, F. (eds) Second International Symposium on Information Theory, pp. 267–281 (Akademiai Kiado, New York, 1973).Burnham, K. P., Anderson, D. Model selection and multi-model inference: a practical information-theoretic approach. (Springer, New York, 2002).Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D., R. Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–141, URL: https://CRAN.R-project.org/package=nlme. (2019).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Racicot, R. A. & Colbert, M. W. Morphology and variation in porpoise (Cetacea: Phocoenidae) cranial endocasts. Anat. Rec. 296, 979–992 (2013).Article 

    Google Scholar 
    Evers, S. W. Code and Data to “Independent origin of large labyrinth size in turtles”. Zenodo https://doi.org/10.5281/zenodo.7024572 (2022).Article 

    Google Scholar  More

  • in

    Towards an absolute light pollution indicator

    DefinitionWe present here a new statistical approach to measure and characterize light pollution. The objective is to define an indicator which is not limited to clear sky measurements and does not require a precise calibration of a photometer. The key attributes of the indicator are the following:

    It requires the automated acquisition of a large number of zenithal NSB measures when the Sun is below (-18^{circ }) and the Moon below (-5^{circ });

    The acquisitions must at least cover a period of 6 months in order to record a wide range of possible weather conditions from perfectly clear to totally overcast skies. The objective is to obtain a significant sample of every type of cloud conditions (e.g. cloud density and ceiling altitude) as well as a good characterization of the average clear sky ;

    It is based on the analysis of the zenithal NSB measure dispersion which is directly linked to the level of light pollution a site experiences.

    As presented above in Fig. 2, the NSB density histograms, which are assembled from a large number of NSB measures, display a higher density zone which denotes a characteristic clear sky level that we name nominal NSB in the scope of the indicator calculation. On both sides of the clear sky level (above and below), NSB measures are distributed in a way that reflect the zenithal night sky luminance in cloudy conditions: NSB measures above the clear sky level mean that the light pollution is amplified by clouds while those below the clear sky level indicate a darker environment where clouds mask light pollution from distant sources as well as natural light sources. The calculation of the indicator is based on the evaluation of the NSB measure dispersion on both sides of the nominal NSB (i.e. characteristic clear sky level). Since there can have strong variations of artificial light emitted into the environment at the beginning and end of the night (decrease then increase of human activity, extinction of public lighting, etc.), the range of NSB measures retained for calculating the indicator is restricted to a portion in the middle of the night, typically 2 h.Figure 8 shows a typical NSB density histogram for a site which is quite severely impacted by light pollution. It covers a 2 h time range between 23:00 UTC and 01:00 UTC and one can easily see that the zone above the nominal NSB is much higher and denser than the one below, i.e. cloud conditions create more often a brighter environment than a darker one and with a greater amplitude.Figure 8NSB density histogram where the nominal NSB that represents the most common clear sky conditions is identified. It delimits two areas, the NSB bright dispersion above the nominal NSB and the NSB dark dispersion below.Full size imageBased on the determination of the nominal NSB, a quantitative indicator, called NDR for NSB Dispersion Ratio, is calculated in the following way:$$begin{aligned} NDR = (N_b cdot MAD_b) / (N_d cdot MAD_d) end{aligned}$$where (N_b) is the number of measures above the nominal NSB (brighter sky), (N_d) is the number of measures below the nominal NSB (darker sky), (MAD_b) is the median absolute deviation of the measures in the bright dispersion zone (above the nominal NSB) and (MAD_d) is the median absolute deviation of the measures in the dark dispersion zone (below the nominal NSB). The median absolute deviation is a statistical tool used to measure the variability of a data set, which is exactly what we try to achieve with the two NSB extensions above and below the nominal NSB. It is formally defined as (MAD = median(|X_i – tilde{{mathbf {X}}}|)) where (X_i) in our case represents an NSB value and (tilde{{mathbf {X}}}) is (median(X_i)). The median absolute deviation is a better choice than the usual standard deviation to measure the spread of NSB measures since the data does not follow a normal distribution.In order to make the determination of the NSB Dispersion Ratio stronger from a statistical standpoint, we use a bootstrapping with replacement resampling method on the set of night portions used to compute the indicator. Assuming we have N night portions at our disposal, we randomly select a sample of N items in this set of night portions knowing that a given item can appear multiple times in the sample (hence the bootstrapping with replacement). The NDR value is then computed for the considered sample. This process is repeated 1000 times and the average NDR value if eventually computed. This average value represents the actual NDR indicator of the considered site.The NDR indicator takes into account both the number of NSB values on each side of the nominal NSB and the dispersion of these values. This is what makes it relevant as an indicator of light pollution which encompasses all kinds of meteorological conditions experienced at a particular site. On that aspect, it is therefore not an astronomical light pollution indicator since it is not focused on clear sky conditions. On the opposite, it requires to have a significant number of NSB measures in all sorts of cloudy conditions so that a valid NDR indicator can be derived.A key aspect of the NDR calculation methodology is to determine the level of the nominal NSB, i.e. the typical clear sky level, since it will be used to differentiate the NSB measures that go in each of the two sets to calculate the bright and dark dispersions. As we have seen earlier in the article, such a determination can be biased by natural light sources that raise or lower clear sky NSB at different times of the night. This can result into a “blurry” high density zone which makes the determination of the nominal NSB difficult or even impossible depending on the observation period. Based on the quantitative estimate of the different natural light sources presented above, the most important bias to address is the contribution of the Galactic plane. This contribution must be eliminated for all the NSB measures which are used to calculate the NDR indicator. In order to do that, Noxi, the Ninox processing software developed by DarkSkyLab, calculates for each NSB measure the corresponding Galactic plane and star fields contribution using the galactic coordinates of the zenith and integrating the combined flux of all stars in the field of view using the UCAC4 astrometry and photometry star catalogue. It is not possible to cancel the contribution of the airglow due to its unpredictable nature, but since it only appears in rare occasions, it is not seen as a problem and is ignored. Regarding the contribution of the zodiacal light, it is considered as minimal at the zenith and it is also ignored.As an example, Fig. 9 shows on the left an NSB density histogram where the Galactic plane bias has not been corrected in the data, and on the right the same data but with the Galactic plane bias corrected. It is easy to see that in the latter the nominal NSB is much easier to determine, providing a more accurate reference level to calculate the NDR indicator. Once the Galactic plane bias has been corrected, the nominal NSB is determined as the highest density zone of the NSB histogram. It must be noted that, as of today, all the NSB measures are corrected from the Galactic plane bias without regards to the presence of clouds or high levels of light pollution. This results into an additional source of inaccuracy that will be addressed in the future through the implementation of two heuristics within the Noxi software:

    1.

    A first heuristic will determine if a night portion is considered as having a clear sky or not so that the Galactic bias correction is applied only if the sky is clear. In order to do that, we have developed an indicator called the NSS (for Night Sky Stability). To determine the NSS for a full night of measures or just a night portion, we fit the NSB curve with a degree 10 polynomial and we then compute the difference between each NSB measure and it polynomial counterpart. As a result, we obtain a set of residuals. The variance of all the residuals defines the NSS for the considered NSB dataset. Below a given value, the sky is considered as clear knowing that the NSS indicator has been calibrated on several NSB data sets for which the corresponding weather conditions are known;

    2.

    A second heuristic will allow us to weight the Galactic bias correction to be applied to NSB measures according to their value. For non-polluted skies with high values of NSB, the full Galactic bias correction will be applied while below a certain NSB threshold (for instance 21 mag(_{mathrm{SQM}})/arcsec(^{2}) which corresponds roughly to the brightest parts of the Milky Way) no correction will be applied.

    Figure 9NSB density histograms of the same data set with no correction of the Galactic plane bias applied on the left and a full correction applied on the right.Full size imageThe NDR indicator is unitless since it is the ratio of two quantities with the same unit (mag(_{mathrm{SQM}})/arcsec(^{2})). For the data set presented in Fig. 9, the NDR value which is obtained is 25 (which is justified by the fact that the bright extension in the density histogram is much higher and denser than the dark extension). This denotes a quite high level of light pollution despite the fact that the nominal NSB is at a level of 21.6 mag(_{mathrm{SQM}})/arcsec(^{2}). This highlights the fact that there is not always a strict correlation between the typical clear sky NSB obtained for a given site and its NDR indicator, i.e. the presence of clouds decreases the NSB more than we could have expected just by knowing the clear sky NSB. On that respect, the NDR ratio brings more information that the clear sky NSB alone.In addition to provide an indicator which is representative of light pollution in all possible atmospheric conditions, the NDR provides a tool to compare locations in a more meaningful way than just using a set of standalone NSB evaluations. First it is not dependent of an inter-calibration between different systems and second its statistical nature makes it more robust when it comes to perform comparisons.NDR into practiceThe NDR indicator has been calculated for several different sites by DarkSkyLab during various projects in France that involved NSB measuring sessions in the field. To demonstrate some of the results that have been obtained, Fig. 10 provides the density histograms of 4 different sites which have quite different light pollution profiles.Figure 10NSB density histograms of 4 different sites used to compute the NDR indicator. The nominal NSB (which corresponds to the most common clear sky conditions) is noted with a white tick mark next to the vertical axis. Relative levels of the bright and dark dispersion terms (((N_b cdot MAD_b)) and ((N_d cdot MAD_d))) are noted respectively with an orange tick mark and a green tick mark. The computed values of the NDR indicator and nominal NSB are provided in the top-left corner of each figure.Full size imageTo build these diagrams, only the measures acquired during a few hours in the middle of the nights have been used to ensure the maximum stability of the NSB curves and avoid lighting extinctions that create large gaps in NSB profiles. The Galactic plane bias is corrected on all plots and the same NSB scale is used in order to perform comparisons between the 4 sites. One can notice that the number of measures and nights for the 4 sites are quite different. However, they are all sufficient to derive a meaningful value of the NDR indicator using the bootstrapping with replacement resampling method described above, but it is clear that the more NSB measures used, the more accurate the NDR indicator.Table 2 summarizes the NDR indicators as well as the nominal NSB for the 4 sites which are sorted in the order of decreasing NDR indicator values.Table 2 Summary of the nominal NSB and NDR indicators of the 4 different sites.Full size tableOne can see that the NDR indicator values are not strictly correlated to the nominal NSB values, e.g. despite the fact that the nominal NSB of site (a) is slightly better than the one of site (b), the NDR indicator value is much larger for site (a) than for site (b). This can be explained if we consider the specificities of each site:

    Cervières (a) is a small village in the Haut-Forez area, France, which is surrounded by large cities (Lyon, Saint-Etienne and Clermont-Ferrand at a distance between 50 to 80 km) and a closer mid-size city (Roanne at 30 km). At the top of that, the town of Noirétable and a large highway rest area are just 2 km away without any nocturnal extinction applied (as opposed to the village of Cervières itself for which public lighting is turned off from 23:00 to 05:00 local time). These conditions are favourable to the presence of a constant light pollution background which has a negative impact on the zenithal NSB measures in most cloudy conditions (distant large cities for high elevation clouds and Noirétable and the highway rest area for lower elevation clouds). Only rare cloud conditions actually protect the site from the effect of mid-distance light sources. In clear sky conditions, however, the fact that there is no close light sources provides reasonably good NSB levels;

    The Copernic Association Observatory (b) is located 6 km from the large town of Gap in the mountain area of Hautes-Alpes in the south of France. There is no significant short distant light sources but in many cloud conditions the contribution of Gap has a very negative impact on the zenithal luminance. However, due to the fact that the observatory is at a higher altitude on the hills surrounding the city of Gap, there are cloud conditions that make the site darker. In clear sky conditions, the proximity of Gap does not permit a quality better than that of a rural sky;

    The Astrièves Observatory (c) is located near the center of the small town of Gresse-en-Vercors in the Parc Naturel Régional du Vercors. There is a full nocturnal extinction of the village for a large part of the night resulting in a good sky quality in clear sky conditions. The large city of Grenoble is at a distance of 30 km in a valley at the north-east, and the two locations are separated by a few mountains which efficiently help masking the light pollution as soon as the cloud ceiling is below a certain altitude, resulting into a dark environment. On the opposite, high elevation clouds reflect the light from Grenoble and increase the zenithal luminance;

    Eourres (d) is a small and isolated village located 20 km west of Sisteron in the department of Hautes-Alpes, France, which is surrounded by mountains. There is no significant light sources closer than those of Sisteron and this results into a very good night sky quality with, most of the times, a very dark environment in cloudy conditions.

    Figure 11 provides a graphical representation of the NDR indicator values for the 4 sites. On the NDR scale, the value 1 indicates that the bright and dark dispersion terms (respectively ((N_b cdot MAD_b)) and ((N_d cdot MAD_d))) are equal, which means there is a balance between dark and bright conditions at the zenith on the considered site with reference to the most common clear sky level.Figure 11Summary of the NDR indicators obtained for the 4 sites. The diagram uses 1 as the pivotal value to delineate sites according to the two bright and dark dispersion terms ((N_b cdot MAD_b)) and ((N_d cdot MAD_d)).Full size imageThe NDR can theoretically vary between 0 (totally dark site) and several hundreds (extremely bright site) but in practice the best sites can reach NDR indicator values down to 0.3 in the best preserved locations and up to 200 for very large and polluted cities.Robustness of the NDR indicatorIt is important to evaluate how the NDR indicator is dependant on the number of measures used to compute it and to figure out what would be the minimum number of night sessions required to obtain a meaningful NDR indicator value at a given site. To achieve that, we have used the data from two of the four sites presented above (the two which have the largest number or recorded nights: Cervières with 424 nights and the Astrièves Observatory with 373 nights). The 1000-step bootstrapping procedure has been repeatedly executed on each data set with a regularly decreasing sample of nights: starting from the full number of nights, a decrement of 10 nights is applied at each step until only 20 nights are remaining. At every bootstrap step, each sample is composed of n nights randomly chosen among the N available ones knowing that any night can be selected several times.Figure 12 shows the NDR indicator values that have been obtained for each of the two sites as a function of the night sample considered. The 95% confidence interval is plotted against each NDR indicator value (it is preferred to the standard deviation since the NSB distribution in the data sets is not normal). In the right plot of Fig. 12, the last confidence interval for the 24 night sample is too wide to fit in the y-axis NDR range (the top value is 195).Figure 12Results of the NDR resampling on the two data sets of Cervières and Astrièves Observatory. The horizontal axis is the number of nights considered into the night sample and the vertical axis provides the NDR indicator obtained for each sampling set through a 1000-iteration bootstrapping with replacement calculation.Full size imageDiscussion on the required number of nightsWe can see in Fig. 12 that the NDR indicator and the confidence interval remain stable down to 200 nights. Below this threshold, the NDR starts to become unstable with growing confidence intervals. Based on this data, we can estimate that the minimum number of nights required to compute a robust NDR indicator is 200 (therefore between 7 and 8 months since there are periods around the full moons where there is no night portions recorded).However, depending on the measuring session objectives, the NDR indicator can be considered as accurate enough even when using a smaller number of nights. If the goal is simply to get a first estimate of the light pollution level at a given site, we can consider that 90 nights (a little more than 3 months of measures) are enough. On the opposite, if we want to perform a comparison between several sites for evaluating the impact of light pollution on a particular species, we might want to perform at least 200 nights of measurement to get a better accuracy for the NDR indicator. The experience from DarkSkyLab through many NSB measuring sessions is that 3 to 4 months of measures are required to get a meaningful density histogram, hence an accurate enough NDR indicator, so that a site can be sufficiently characterized from a light pollution perspective. Such a measuring period usually guarantees that the clear sky nominal NSB is well defined and that various cloud conditions have been observed. This estimate is sustained by the results obtained in Fig. 12.Value of the NDR indicator for ecological researchThe study of the impact of light pollution on biodiversity is currently in full expansion, amplifying a political and citizen demand for the reclamation of the night2,32,33.We identify three main contributions of the NDR indicator for ecological research. First, it overcomes the limits of an old problem of communication in terms of measurement units between disciplines and potentially limits the use of units without real meaning from a biodiversity point of view34,35. Secondly, the use of the NDR indicator limits the common biases linked to a characterization of the effects of anthropogenic light which is too limited in time and space35. Indeed, the life history traits of species are not only shaped by the intensity of light emitted into the nocturnal environment but also by its variation over time34,35,36. Currently, the characterization of light pollution is too often limited in time and space, which can lead to misinterpretation37. Thirdly, the NDR indicator provides ecological researchers with a unit of measurement that integrates a sufficiently long time step to study the impact of light pollution on the evolutionary processes at work in the life of species and particularly on population dynamics and animal behavior36,38,39.Limitations and future improvements of the NDR indicatorThe main limitation of the NDR indicator resides in the possible difficulty to identify a well defined value for the nominal NSB, i.e. the NSB value that represents the most common clear sky conditions of a given site. For the most part, this is due to the contribution of the Galactic plane to the zenithal sky brightness and, to a lower extent, to the contribution of other natural light sources (dense star fields, airglow and zodiacal light). The residual spread of NSB measures is due to changing atmospheric conditions at various time scales, but, for this particular contribution, we can expect a statistical compensation to eliminate a systematic associated bias.At the moment, the contribution of the Galactic plane and star fields is canceled into the NSB measures by calculating in the Noxi software the integrated flux of all the stars that belong to the field of view (using the UCAC4 star catalogue). However, this approach has proven some limitations, especially in the southern hemisphere where the Galactic center goes through the zenith and is particularly bright. A probable explanation for that lack of predictability is the fact that the Galactic plane contains diffuse sources such as nebulae which are not accounted for into the star catalogues and which actually cannot be ignored. To address this issue, DarkSkyLab has the project to create a brightness map of the Galactic plane with a square degree resolution or better so that the contribution of all sources can be correctly accounted for.In addition to better correcting the Galactic plane bias, an improvement must be made with regards to the NSB measures that need to be corrected. At the moment, all NSB measures are corrected from the Galactic plane bias without regards to the presence of clouds or high levels of light pollution. So a first heuristic must be implemented to only apply the bias correction to clear sky NSB measures. An other heuristic must also be developed to reduce the correction applied as a function of the NSB level.A third limitation of the NDR indicator is related to a possible lack of cloudy conditions at some sites (e.g. in the Atacama desert in Chile with more than 320 clear nights per year), the reason simply being that the NDR indicator requires the presence of clouds to differentiate the bright and dark extensions into the NSB density histograms. This means that the NDR indicator can hardly be used for such astronomy-oriented sites which experience rare cloudy conditions. More

  • in

    Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14(10), 1062–1072 (2011).PubMed 
    Article 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10(4), 299–314 (2007).PubMed 
    Article 

    Google Scholar 
    Kluser, S. & Peduzzi, P. Global pollinator decline: A literature review. Preprint at http://archive-ouverte.unige.ch/unige 32258 (2007).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    Rhodes, C. J. Pollinator decline—an ecological calamity in the making?. Sci. Prog. 101(2), 121–160 (2018).PubMed 
    Article 

    Google Scholar 
    Huang, H. & D’Odorico, P. Critical transitions in plant-pollinator systems induced by positive inbreeding-reward-pollinator feedbacks. Iscience 23(2), 100819 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39(4), 923–941 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emmel, T. C. & Tucker, J. C. In Mosquito Control Pesticides: Ecological Impacts and Management Alternatives (eds Emmel, T. C. & Tucker, J. C.) 105 (Scientific Publishers, 1991).Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).CAS 
    Article 

    Google Scholar 
    Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 57(10), 2019–2030 (2020).CAS 
    Article 

    Google Scholar 
    Berryman, A. A. What causes population cycles of forest Lepidoptera?. Trends Ecol. Evol. 11(1), 28–32 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elkinton, J. & Boettner, G. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata North America. Biol. Control 57(2), 277–288 (2012).
    Google Scholar 
    Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).Article 

    Google Scholar 
    Oberhauser, K. et al. Lacewings wasps and fliesoh my insect enemies take a bite out of monarchs. In Monarchs in a Changing World: Biology and Conservation of an iconic insect (eds Oberhauser, K. S. et al.) 71–82 (Cornell University Press, 2015).Chapter 

    Google Scholar 
    Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47(1), 361–393 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hermann, S. L., Blackledge, C., Haan, N. L., Myers, A. T. & Landis, D. A. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Sci. Rep. 9(1), 1–9 (2019).CAS 
    Article 

    Google Scholar 
    McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S. & Baum, K. A. Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: Distribution patterns and implications for conservation. J. Insect Conserv. 20(2), 223–237 (2016).Article 

    Google Scholar 
    Geest, E. A., Wolfenbarger, L. L. & McCarty, J. P. Recruitment, survival and parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and conservation areas. J. Insect Conserv. 23(2), 211–224 (2019).Article 

    Google Scholar 
    Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25(4), 528–541 (2018).PubMed 
    Article 

    Google Scholar 
    Crone, E. E., Pelton, E. M., Brown, L. M., Thomas, C. C. & Schultz, C. B. Why are monarch butterflies declining in the west? Understanding the importance of multiple correlated drivers. Ecol. Appl. 29(7), e01975 (2019).PubMed 
    Article 

    Google Scholar 
    Brower, L. P. et al. Effect of the 2010–2011 drought on the lipid content of monarchs migrating through Texas to overwintering sites in Mexico. In The Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds Oberhauser, K. S. et al.) 117–129 (Cornell University Press, 2015).
    Google Scholar 
    Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4(9), 170760 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00223 (2019).
    Article 

    Google Scholar 
    Olaya-Arenas, P., Hauri, K., Scharf, M. E. & Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 10(1), 1–12 (2020).Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108(2), 662–667 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epstein, L. Fifty years since silent spring. Annu. Rev. Phytopathol. 52, 377–402 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rayor, L. S. Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In The Monarch Butterfly Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 39–46 (Cornell University Press, 2004).
    Google Scholar 
    Baker, A. M. & Potter, D. A. Invasive paper wasp turns urban pollinator gardens into ecological traps for monarch butterfly larvae. Sci. Rep. 10(1), 1–7 (2020).Article 

    Google Scholar 
    Castellanos, I. & Barbosa, P. Dropping from host plants in response to predators by a polyphagous caterpillar. J. Lepid. Soc. 65(4), 270–272 (2011).
    Google Scholar 
    Kessler, S. C. et al. Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550), 74–76 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liao, L.-H., Wu, W.-Y. & Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 7(1), 1–8 (2017).Article 

    Google Scholar 
    Musser, R. O. et al. Caterpillar saliva beats plant defences. Nature 416(6881), 599–600 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt, J. & Smith, J. Host examination walk and oviposition site selection of Trichogramma minutum: Studies on spherical hosts. J. Insect Behav. 2(2), 143–171 (1989).Article 

    Google Scholar 
    Ramos, R. S. et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770–778 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chareonviriyaphap, T. et al. Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J. Am. Mosq. Control Assoc. 13(2), 171–183 (1997).CAS 
    PubMed 

    Google Scholar 
    Nansen, C., Baissac, O., Nansen, M., Powis, K. & Baker, G. Behavioral avoidance-will physiological insecticide resistance level of insect strains affect their oviposition and movement responses?. PLoS ONE 11(3), e0149994 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martini, X., Kincy, N. & Nansen, C. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68(11), 1471–1477 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bull, D. & Coleman, R. Effects of pesticides on Trichogramma spp. Southwest. Entomol. Suppl. 8, 156–168 (1985).CAS 

    Google Scholar 
    Thubru, D., Firake, D. & Behere, G. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi J. Biol. Sci. 25(4), 680–688 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Selwood, K. & Zimmer, H. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Pitek, A. P., Thompson, G. J. & Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22 (2020).Article 

    Google Scholar 
    Chittka, L., Williams, N., Rasmussen, H. & Thomson, J. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. B 266(1414), 45–50 (1999).PubMed Central 
    Article 

    Google Scholar 
    Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallet, J. Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2(2), 198–215 (1986).
    Google Scholar 
    Chang, Y.-M. et al. Roosting site usage, gregarious roosting and behavioral interactions during roost-assembly of two Lycaenidae butterflies. Zool. Stud. 59, e10 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Vulinec, K. Collective security aggregation by insects as a defence. In Insect Defences. Adaptive Mechanisms of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 251–288 (State University of New York, 1990).
    Google Scholar 
    Salcedo, C. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3), 907–911 (2010).PubMed 
    Article 

    Google Scholar 
    Giordano, B. V., McGregor, B. L., Runkel, A. E. IV. & Burkett-Cadena, N. D. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. J. Am. Mosq. Control Assoc. 36(3), 181–188 (2020).PubMed 
    Article 

    Google Scholar 
    Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 75(1), 9–13 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hewitt, A. Spray drift: Impact of requirements to protect the environment. Crop Prot. 19(8–10), 623–627 (2000).Article 

    Google Scholar 
    Nail, K. R., Stenoien, C. & Oberhauser, K. S. Immature monarch survival: Effects of site characteristics, density and time. Ann. Entomol. Soc. 108(5), 680–690 (2015).Article 

    Google Scholar 
    Payne, C. C. & Mertens, P. P. Cytoplasmic polyhedrosis viruses. In The Reoviridae (ed. Joklik, K.) 425–504 (Springer, 1983).Chapter 

    Google Scholar 
    Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26(5), 547–555 (2001).Article 

    Google Scholar 
    Salvato, M. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida keys. J. Lepid. Soc. 55(1), 8–14 (2001).
    Google Scholar 
    Frey, D. F. & Leong, K. L. Can microhabitat selection or differences in ‘catchability’ explain male-biased sex ratios in overwintering populations of monarch butterflies?. Anim. Behav. 45(5), 1025 (1993).Article 

    Google Scholar 
    Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: An overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4(1), 19–32 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Fitness costs associated with a GABA receptor mutation conferring dieldrin resistance in Aedes albopictus

    Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y (2004) Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution 58:579–586CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahmad NA, Endersby-Harshman NM, Mohd Mazni NR, Mohd Zabari NZA, Amran SNS, Ridhuan Ghazali MK et al. (2020) Characterization of sodium channel mutations in the Dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia. Insects 11:529PubMed Central 
    Article 

    Google Scholar 
    Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK et al. (2013) Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS ONE 8:e63849CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andreasen MH, ffrench-Constant RH (2002) In situ hybridization to the Rdl locus on polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 16:452–455CAS 
    PubMed 
    Article 

    Google Scholar 
    Assogba BS, Djogbénou LS, Milesi P, Berthomieu A, Perez J, Ayala D et al. (2015) An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito. Sci Rep. 5:14529CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS et al. (2016) The ace-1 locus is amplified in all resistant Anopheles gambiae mosquitoes: fitness consequences of homogeneous and heterogeneous duplications. PloS Biol 14:e2000618PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M et al. (2019) Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 286:20182273CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auteri M, La Russa F, Blanda V, Torina A (2018) Insecticide resistance associated with kdr mutations in Aedes albopictus: an update on worldwide evidences. Biomed Res Int 2018:e3098575Article 

    Google Scholar 
    Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 79:41–47Berticat C, Duron O, Heyse D, Raymond M (2004) Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet Res 83:189–196CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhatia SC, Deobhankar RB (1963) Reversion of dieldrin-resistance in the field population of A. culicifacies in Maharashtra State (erstwhile Bombay State), India. Indian J Malariol 17:339–351CAS 
    PubMed 

    Google Scholar 
    Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bourguet D, Guillemaud T, Chevillon C, Raymond M (2004) Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution 58:128–135PubMed 
    Article 

    Google Scholar 
    Brooke BD, Hunt RH, Coetzee M (2000) Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol 14:190–194CAS 
    PubMed 
    Article 

    Google Scholar 
    Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharm 68:942–951CAS 
    Article 

    Google Scholar 
    Chen H, Li K, Wang X, Yang X, Lin Y, Cai F et al. (2016) First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty 5:31PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davari B, Vatandoost H, Oshaghi MA, Ladonni H, Enayati AA, Shaeghi M et al. (2007) Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol 89:97–103CAS 
    Article 

    Google Scholar 
    Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, Fontenille D (2008) Aedes albopictus, vector of Chikungunya and Dengue viruses in Reunion Island: biology and control. Parasite 15:3–13CAS 
    PubMed 
    Article 

    Google Scholar 
    Deng J, Guo Y, Su X, Liu S, Yang W, Wu Y et al. (2021) Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis 15:e0009391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou L, Weill M, Hougard J-M, Raymond M, Akogbéto M, Chandre F (2007) Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 44:805–810PubMed 

    Google Scholar 
    Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ et al. (2005) Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 14:179–183CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Labbé P, Berticat C, Rousset F, Guillot S, Raymond M et al. (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451CAS 
    PubMed 
    Article 

    Google Scholar 
    ffrench-Constant RH, Anthony N, Aronstein K, Rocheleau T, Stilwell G (2000) Cyclodiene insecticide resistance: from molecular to population genetics. Annu Rev Entomol 45:449–466CAS 
    PubMed 
    Article 

    Google Scholar 
    Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. SAGE, Thousand Oaks California, https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    Google Scholar 
    Freeman JC, Smith LB, Silva JJ, Fan Y, Sun H, Scott JG (2021) Fitness studies of insecticide resistant strains: lessons learned and future directions. Pest Manag Sci 77:3847–3856CAS 
    PubMed 
    Article 

    Google Scholar 
    Gratz NG (2004) Critical review of the vector status of Aedes albopictus. Med Vet Entomol 18:215–227CAS 
    PubMed 
    Article 

    Google Scholar 
    Grau-Bové X, Tomlinson S, O’Reilly AO, Harding NJ, Miles A, Kwiatkowski D et al. (2020) Evolution of the insecticide target Rdl in African Anopheles is driven by interspecific and interkaryotypic introgression. Mol Biol Evol 37:2900–2917PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grigoraki L, Lagnel J, Kioulos I, Kampouraki A, Morou E, Labbé P et al. (2015) Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 9:e0003771PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamon J, Garret-Jones C (1962) Insecticide-resistance in major vectors of malaria, and its operational importance. Bull World Health Organ, Geneva
    Google Scholar 
    Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK et al. (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci USA 103:8757–8762CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CAS 
    PubMed 
    Article 

    Google Scholar 
    Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665CAS 
    PubMed 
    Article 

    Google Scholar 
    Hosie AM, Baylis HA, Buckingham SD, Sattelle DB (1995) Actions of the insecticide fipronil, on dieldrin-sensitive and -resistant GABA receptors of Drosophila melanogaster. Br J Pharm 115:909–912CAS 
    Article 

    Google Scholar 
    Ishak IH, Riveron JM, Ibrahim SS, Stott R, Longbottom J, Irving H et al. (2016) The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the Dengue vector Aedes albopictus. Sci Rep. 6:24707CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O et al. (2011) First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis 64:217–221CAS 
    PubMed 
    Article 

    Google Scholar 
    Kliot A, Ghanim M (2012) Fitness costs associated with insecticide resistance. Pest Manag Sci 68:1431–1437CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolaczinski J, Curtis C (2001) Laboratory evaluation of fipronil, a phenylpyrazole insecticide, against adult Anopheles (Diptera: Culicidae) and investigation of its possible cross-resistance with dieldrin in Anopheles stephensi. Pest Manag Sci 57:41–45CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM et al. (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labbé P, David J-P, Alout H, Milesi P, Djogbénou L, Pasteur N et al. (2017) 14 – Evolution of resistance to insecticide in disease vectors. In: Tibayrenc M (ed) Genetics and Evolution of Infectious Diseases, Second Edition. Elsevier, London, p 313–339Chapter 

    Google Scholar 
    Latreille AC, Milesi P, Magalon H, Mavingui P, Atyame CM (2019) High genetic diversity but no geographical structure of Aedes albopictus populations in Réunion Island. Parasit Vectors 12:597PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Alout H, Zafihita S, Dehecq JS, Weill M, Tortosa P et al. (2022) Spatio-temporal dynamics of a dieldrin resistance gene in Aedes albopictus and Culex quinquefasciatus populations from Reunion Island. J Insect Sci 22:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebon C, Soupapoule K, Wilkinson DA, Goff GL, Damiens D, Gouagna LC (2018) Laboratory evaluation of the effects of sterilizing doses of γ-rays from Caesium-137 source on the daily flight activity and flight performance of Aedes albopictus males. PLoS ONE 13:e0202236PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G et al. (2018) Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors 11:4PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Low VL, Vinnie-Siow WY, Lim YAL, Tan TK, Leong CS, Chen CD et al. (2015) First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia. Trop Biomed 32:554–556CAS 
    PubMed 

    Google Scholar 
    McKenzie BA, Wilson AE, Zohdy S (2019) Aedes albopictus is a competent vector of Zika virus: a meta-analysis. PLoS ONE 14:e0216794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milesi P, Pocquet N, Labbé P (2013) BioRssay: A R script for bioassay analyses. http://www.isem.univ-montp2.fr/recherche/equipes/genomique-de-ladaptation/personnel/labbepierrick/Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I et al. (2017) Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 11:e0005625PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ozoe Y, Kita T, Ozoe F, Nakao T, Sato K, Hirase K (2013) Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic Biochem Physiol 107:285–292CAS 
    PubMed 
    Article 

    Google Scholar 
    Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M et al. (2009) Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis 10:259–266Article 

    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Platt N, Kwiatkowska RM, Irving H, Diabaté A, Dabire R, Wondji CS (2015) Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. Heredity 115:243–252CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
    Google Scholar 
    Ranson H, Burhani J, Lumjuan N, Black WCI (2010) Insecticide resistance in Dengue vectors. TropIKA.net [online] 1. http://journal.tropika.net/scielo.php?script=sci_arttext&pid=S2078-86062010000100003&lng=en&nrm=iso. Accessed 03 March 2022Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113:287–296PubMed 
    Article 

    Google Scholar 
    Renault P, Solet J-L, Sissoko D, Balleydier E, Larrieu S, Filleul L et al. (2007) A major epidemic of Chikungunya virus infection on Réunion Island, France, 2005–2006. Am J Trop Med Hy 77:727–731Article 

    Google Scholar 
    Rowland M (1991a) Behaviour and fitness of γHCH/dieldrin resistant and susceptible female Anopheles gambiae and An. stephensi mosquitoes in the absence of insecticide. Med Vet Entomol 5:193–206CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowland M (1991b) Activity and mating competitiveness of γHCH/dieldrin resistant and susceptible male and virgin female Anopheles gambiae and An. stephensi mosquitoes, with assessment of an insecticide-rotation strategy. Med Vet Entomol 5:207–222CAS 
    PubMed 
    Article 

    Google Scholar 
    Russell VL (2021) Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.5.1. https://CRAN.R-project.org/package=emmeansSu X, Guo Y, Deng J, Xu J, Zhou G, Zhou T et al. (2019) Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: alarm to the Dengue epidemic. PLoS Negl Trop Dis 13:e0007665CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tantely ML, Tortosa P, Alout H, Berticat C, Berthomieu A, Rutee A et al. (2010) Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Réunion Island. Insect Biochem Mol Biol 40:317–324CAS 
    PubMed 
    Article 

    Google Scholar 
    Taskin BG, Dogaroglu T, Kilic S, Dogac E, Taskin V (2016) Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pestic Biochem Physiol 129:14–27CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor‐Wells J, Brooke BD, Bermudez I, Jones AK (2015) The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J Neurochem 135:705–713PubMed 
    Article 

    Google Scholar 
    Therneau T (2015) A Package for Survival Analysis in S. R package version 2.38. https://CRAN.R-project.org/package=survivalThompson M, Shotkoski F, ffrench-Constant R (1993) Cloning and sequencing of the cylodienne insecticide resistance from the yellow fewer Aedes aegypti. FEBS Lett 325:187–190CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major Dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104:126–131CAS 
    Article 

    Google Scholar 
    Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC (2011) Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol 41:484–491CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu J, Bonizzoni M, Zhong D, Zhou G, Cai S, Li Y et al. (2016) Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus. PLoS Negl Trop Dis 10:e0004696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang C, Huang Z, Li M, Feng X, Qiu X (2017) RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China. Malar J 16:482PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X et al. (2019) Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 12:180PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Warming reduces global agricultural production by decreasing cropping frequency and yields

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).CAS 
    Article 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).Article 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Hodge, I., Hauck, J. & Bonn, A. The alignment of agricultural and nature conservation policies in the European Union. Conserv. Biol. 29, 996–1005 (2015).Article 

    Google Scholar 
    Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon Soy Moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).Article 

    Google Scholar 
    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).CAS 
    Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Security 4, 46–50 (2015).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2020).Article 

    Google Scholar 
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).CAS 
    Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).CAS 
    Article 

    Google Scholar 
    Afifi, T., Liwenga, E. & Kwezi, L. Rainfall-induced crop failure, food insecurity and out-migration in Same-Kilimanjaro, Tanzania. Clim. Dev. 6, 53–60 (2014).Article 

    Google Scholar 
    Stigter, K. in Applied Agrometeorology (ed. Stigter, K.) 531–534 (Springer, 2010).Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).Article 

    Google Scholar 
    Kawasaki, K. Two harvests are better than one: double cropping as a strategy for climate change adaptation. Am. J. Agr. Econ. 101, 172–192 (2019).Article 

    Google Scholar 
    Ceglar, A., Zampieri, M., Toreti, A. & Dentener, F. Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change. Earths Future 7, 1088–1101 (2019).Article 

    Google Scholar 
    Cohn, A. S., VanWey, L. K., Spera, S. A. & Mustard, J. F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6, 601–604 (2016).Article 

    Google Scholar 
    Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5, 034012 (2010).Article 

    Google Scholar 
    Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).Article 

    Google Scholar 
    Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).Article 

    Google Scholar 
    Pugh, T. A. M. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).CAS 
    Article 

    Google Scholar 
    Scherer, L. A., Verburg, P. H. & Schulp, C. J. E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Change 48, 43–55 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change 64, 102131 (2020).Article 

    Google Scholar 
    Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R. & Bommarco, R. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Glob. Chang. Biol. 27, 71–83 (2021).CAS 
    Article 

    Google Scholar 
    Ding, M. et al. Variation in cropping intensity in Northern China from 1982 to 2012 based on GIMMS-NDVI data. Sustainability 8, 1123 (2016).Article 

    Google Scholar 
    Yu, Q., Xiang, M., Sun, Z. & Wu, W. The complexity of measuring cropland use intensity: an empirical study. Agr. Syst. 192, 103180 (2021).Article 

    Google Scholar 
    Moore, F. C. & Lobell, D. B. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).Article 

    Google Scholar 
    Agnolucci, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).Article 

    Google Scholar 
    Zhu, P. & Burney, J. Temperature‐driven harvest decisions amplify US winter wheat loss under climate warming. Glob. Change Biol. 27, 550–562 (2021).CAS 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, 4343 (2018).Article 

    Google Scholar 
    Duku, C., Zwart, S. J. & Hein, L. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE 13, 0192642 (2018).Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Yang, X. et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 208, 76–84 (2015).Article 

    Google Scholar 
    Burney, J., Woltering, L. & Burke, M. Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proc. Natl Acad. Sci. USA 107, 1848–1853 (2010).CAS 
    Article 

    Google Scholar 
    You, L. et al. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36, 770–782 (2011).Article 

    Google Scholar 
    Zheng, B., Chenu, K., Fernanda Dreccer, M. & Chapman, S. C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 18, 2899–2914 (2012).Article 

    Google Scholar 
    Flach, R., Fader, M., Folberth, C., Skalský, R. & Jantke, K. The effects of cropping intensity and cropland expansion of Brazilian soybean production on green water flows. Environ. Res. Commun. 2, 071001 (2020).Article 

    Google Scholar 
    Wood, S. A., Jina, A. S., Jain, M., Kristjanson, P. & DeFries, R. S. Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob. Environ. Change 25, 163–172 (2014).Article 

    Google Scholar 
    Paola, A. D. et al. The expansion of wheat thermal suitability of Russia in response to climate change. Land Use Policy 78, 70–77 (2018).Article 

    Google Scholar 
    Brunelle, T. & Makowski, D. Assessing whether the best land is cultivated first: a quantile analysis. PLoS ONE 15, e0242222 (2020).CAS 
    Article 

    Google Scholar 
    Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).CAS 
    Article 

    Google Scholar 
    Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).Article 

    Google Scholar 
    Petkeviciene, B. The effects of climate factors on sugar beet early sowing timing. Agron. Res. 7, 436–443 (2009).
    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).CAS 
    Article 

    Google Scholar 
    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (Cambridge Univ. Press, 2013).Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Article 

    Google Scholar 
    Asadieh, B. & Krakauer, N. Y. Global trends in extreme precipitation: climate models versus observations. Hydrol. Earth Syst. Sci. 19, 877–891 (2015).Article 

    Google Scholar 
    Zhang, Y., You, L., Lee, D. & Block, P. Integrating climate prediction and regionalization into an agro-economic model to guide agricultural planning. Clim. Change 158, 435–451 (2020).Article 

    Google Scholar 
    Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty‐first century. Earths Future 7, 123–135 (2019).Article 

    Google Scholar 
    Zhu, W., Jia, S., Devineni, N., Lv, A. & Lall, U. Evaluating China’s water security for food production: the role of rainfall and irrigation. Geophys. Res. Lett. 46, 11155–11166 (2019).Article 

    Google Scholar 
    FAOSTAT (Food and Agriculture Organization of the United Nations, 1997).Egli, L., Schröter, M., Scherber, C., Tscharntke, T. & Seppelt, R. Crop asynchrony stabilizes food production. Nature 588, E7–E12 (2020).CAS 
    Article 

    Google Scholar 
    Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1979 to Present (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 1 August 2020); https://doi.org/10.24381/cds.adbb2d47 (2018).Feng, P. et al. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Clim. Change 147, 555–569 (2018).Article 

    Google Scholar 
    Teluguntla, P. et al. in Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (ed. Thenkabail, P. S.) 849 (CRC Press, 2015).Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Change Biol. 19, 937–947 (2013).Article 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25, GB2006 (2011).New, M., New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article 

    Google Scholar 
    Willmott, C. J. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1996) (Center for Climatic Research, 2000); http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.htmlVan Beveren, I. Total factor productivity estimation: a practical review. J. Econ. Surv. 26, 98–128 (2012).Article 

    Google Scholar 
    Xu, J. et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2, 264–273 (2021).Article 

    Google Scholar 
    Friedl, M. & Gray, J. MCD12Q2 MODIS/Terra+ Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V006 (NASA EOSDIS, 2019).Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018).Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS 
    Article 

    Google Scholar 
    Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).Article 

    Google Scholar 
    Peng Zhu. Climate effects on caloric yield and cropping frequency. Zenodo https://doi.org/10.5281/zenodo.7038556 (2022). More

  • in

    Author Correction: Widespread extinction debts and colonization credits in United States breeding bird communities

    In the version of this article initially published, there were errors in equations and notations in the Methods “Model development” subsection which arose during manuscript preparation; the errors affect presentation of the study but not the analysis, results, or code provided with the article. Clarifications to text and equations follow.In Equation (1), “N” replaces “Normal”; in Equations (2), (3), (7) and in text directly below Equations (3), (5) and (7), “ys,i,z” now replaces “Δxs,t1, t2.” In the two paragraphs below Equation (2), “t2 = 2016” and “t1 = 2001” now replace “2016” and “2001” in five instances. Further, Equations (5)–(7) have been revised as follows:$$begin{array}{ll}fleft( {x_{s,t}} right) = {{{mathrm{exp}}}} & left( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} beta _{1,i} x_{s,i,t} + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i}^{K = 5} beta _{2,i,k}x_{s,i,t}x_{k,s,t}}right. \ & quad quad left. {+ mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = 1, k neq i}^{K = 5} beta _{3,i,k}x_{s,i,t}x_{k,s,t}} right)end{array} {rm{Revised}} {rm{Eq}}. (5)$$$$begin{array}{ll}fleft( {x_{s,t}} right) \ = expleft( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{j = 1}^{J = 2} beta _{0,i,j,}x_{i,s,t}^j + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i + 1}^{K = 6} beta _{1,i,k}x_{i,s,t}x_{k,s,t}} right) {mathrm{Original}} {rm{Eq}}. (5)end{array}$$$$y_{s,i,z} = left{ {begin{array}{*{20}{l}} {y_{s,i,1} = left| {Delta x_{s,i}} right|,} hfill & {y_{s,i,2} = 0,} hfill & {{{{mathrm{if}}}},Delta x_{s,i} < 0} hfill \ {y_{s,i,1} = 0,} hfill & {y_{s,i,2} = Delta x_{s,i}} hfill & {{{{mathrm{otherwise}}}}} hfill end{array}} right. {rm{Revised}} {rm{Eq}}. (6)$$$$x_{i,s,} = left{ {begin{array}{*{20}{l}} {x_{1,i,s} = left| {Delta x_{i,s}} right|,} hfill & {x_{2,i,s} = 0,} hfill & {if,Delta x_{i,s} < 0} hfill \ {x_{1,i,s} = 0,} hfill & {x_{2,i,s} = Delta x_{i,s},} hfill & {otherwise} hfill end{array}} right. {rm{Original}} {rm{Eq}}. (6)$$$$omega left( {y_{s,i,z};gamma } right) = {{{mathrm{exp}}}}left( {mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{z = 1}^{Z = 2} - gamma _{i,z} y_{s,i,z}} right) {rm{Revised}} {rm{Eq}}. (7)$$$$omega left( {Delta x_{s,t_1,t_2};gamma } right) = expleft( {mathop {sum }limits_{i = 1}^{I = 5} - gamma _{i,z}Delta x_{z,s,i}} right) {rm{Original}} {rm{Eq}}. (7)$$All changes have been made in the HTML and PDF versions of the article. More

  • in

    Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age

    Brett, C. E. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13, 241–262 (1998).Article 

    Google Scholar 
    Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Rillo, M. C., Woolley, S. & Hillebrand, H. Drivers of global pre‐industrial patterns of species turnover in planktonic foraminifera. Ecography 2022, e05892 (2021).Article 

    Google Scholar 
    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L. et al. Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis. Earth Syst. Sci. Data 12, 1053–1081 (2020).Article 

    Google Scholar 
    Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
    Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).PubMed 
    Article 

    Google Scholar 
    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Morey, A. E., Mix, A. C. & Pisias, N. G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quat. Sci. Rev. 24, 925–950 (2005).Article 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).Article 

    Google Scholar 
    Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20, 127–155 (1995).Article 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).Kucera, M. et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).Article 

    Google Scholar 
    Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).PubMed 
    Article 

    Google Scholar 
    Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2017105118 (2021).Fauth, J. E. et al. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147, 282–286 (1996).Article 

    Google Scholar 
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).CAS 
    Article 

    Google Scholar 
    Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).Liow, L. H., Van Valen, L. & Stenseth, N. C. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 
    Article 

    Google Scholar 
    Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim. Past 5, 33–51 (2009).Article 

    Google Scholar 
    Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).Article 

    Google Scholar 
    Ofstad, S. et al. Development, productivity, and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea. J. Geophys. Res. Biogeosci. 125, e2019JG005387 (2020).CAS 
    Article 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Glob. Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    Butzin, M., Köhler, P. & Lohmann, G. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophys. Res. Lett. 44, 8473–8480 (2017).CAS 
    Article 

    Google Scholar 
    Langner, M. & Mulitza, S. Technical Note: PaleoDataView—A software toolbox for the collection, homogenization and visualization of marine proxy data. Clim 15, 2067–2072 (2019).
    Google Scholar 
    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).Article 

    Google Scholar 
    Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horn, H. S. Measurement of ‘overlap’ in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological diversity: frontiers in measurement and assessment (eds Anne E. Magurran & Brian J. McGill) 66–84 (Oxford University Press, 2011).Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    Juggins, S. rioja: Analysis of quaternary science data. R package version 0.9-26 https://cran.r-project.org/package=rioja (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.4-13 https://CRAN.R-project.org/package=raster (2021).Garnier, S. viridis: Default color maps from ‘matplotlib’. R package version 0.6.1 https://CRAN.R-project.org/package=viridis (2021.)Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 81 (NOAA, 2019). More

  • in

    Early Mars habitability and global cooling by H2-based methanogens

    Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).ADS 
    Article 

    Google Scholar 
    Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).ADS 
    Article 

    Google Scholar 
    Fairén, A. G. et al. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).ADS 
    Article 

    Google Scholar 
    Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010).ADS 
    Article 

    Google Scholar 
    Rivera-Valentín, E. G., Chevrier, V. F., Soto, A. & Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4, 756–761 (2020).ADS 
    Article 

    Google Scholar 
    Stevens, A. H., Patel, M. R. & Lewis, S. R. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars. Icarus 250, 587–594 (2015).ADS 
    Article 

    Google Scholar 
    Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).ADS 
    Article 

    Google Scholar 
    Liu, J. et al. Anoxic chemical weathering under a reducing greenhouse on early Mars. Nat. Astron. 5, 503–509 (2021).ADS 
    Article 

    Google Scholar 
    Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).Article 

    Google Scholar 
    Martin, W. F. & Sousa, F. L. Early microbial evolution: the age of anaerobes. Cold Spring Harbor Perspect. Biol 8, a018127 (2016).Article 

    Google Scholar 
    Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).ADS 
    Article 

    Google Scholar 
    Affholder, A. et al. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).ADS 
    Article 

    Google Scholar 
    Turbet, M., Boulet, C. & Karman, T. Measurements and semi-empirical calculations of CO2 + CH4 and CO2 + H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. Icarus 346, 113762 (2020).Article 

    Google Scholar 
    Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Nat. Acad. Sci. USA 101, 4631–4636 (2004).ADS 
    Article 

    Google Scholar 
    Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).ADS 
    Article 

    Google Scholar 
    Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).ADS 
    Article 

    Google Scholar 
    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).Article 

    Google Scholar 
    Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).ADS 
    Article 

    Google Scholar 
    Yung, Y. L. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 1221–1242 (2018).ADS 
    Article 

    Google Scholar 
    Knutsen, E. W. et al. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357, 114266 (2021).Article 

    Google Scholar 
    Cockell, C. S. Trajectories of martian habitability. Astrobiology 14, 182–203 (2014).ADS 
    Article 

    Google Scholar 
    Westall, F. et al. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology 15, 998–1029 (2015).ADS 
    Article 

    Google Scholar 
    Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev. 209, 103296 (2020).Article 

    Google Scholar 
    Fastook, J. L. & Head, J. W. Glaciation in the late noachian icy highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).ADS 
    Article 

    Google Scholar 
    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).ADS 
    Article 

    Google Scholar 
    Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, Scale 1000,000 (US Geological Survey, 2014); https://doi.org/10.3133/sim3292Sun, V. Z. & Stack, K. M. Geologic Map of Jezero Crater and the Nili Planum Region, Mars: U.S. Geological Survey Scientific Investigations Map 3464, Scale 1000 (US Geological Survey, 2020); https://doi.org/10.3133/sim3464Ward, P. The Medea Hypothesis (Princeton Univ. Press, 2009).Chopra, A. & Lineweaver, C. H. The Case for a Gaian bottleneck: the biology of habitability. Astrobiology 16, 7–22 (2016).ADS 
    Article 

    Google Scholar 
    Arney, G. et al. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. Astrobiology 16, 873–899 (2016).Batalha, N. et al. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).ADS 
    Article 

    Google Scholar 
    Stüeken, E. E. et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).ADS 
    Article 

    Google Scholar 
    Cockell, C. S. et al. Minimum units of habitability and their abundance in the universe. Astrobiology 21, 481–489 (2021).ADS 
    Article 

    Google Scholar 
    Adams, D. et al. Nitrogen fixation at early Mars. Astrobiology 21, 968–980 (2021).ADS 
    Article 

    Google Scholar 
    Fergason, R. L., Hare, T. M. and Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex (US Geological Survey, 2018); http://bit.ly/HRSC_MOLA_Blend_v0Sauterey, B. MarsEcosys v.1.0. Zenodo https://doi.org/10.5281/zenodo.6963348 (2022). More