Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services
DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
Google Scholar
Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10, 303–311 (2003).
Google Scholar
Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed
Google Scholar
Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023 (2016).PubMed
PubMed Central
Google Scholar
Moleón, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
Google Scholar
Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054 (2014).PubMed
Google Scholar
Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
Google Scholar
Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. Condor 88, 318–323 (1986).
Google Scholar
Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88 (2017).ADS
Google Scholar
Kane, A. & Kendall, C. J. Understanding how mammalian scavengers use information from avian scavengers: Cue from above. J. Anim. Ecol. 86, 837–846 (2017).PubMed
Google Scholar
Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology. https://doi.org/10.1002/ecy.3519 (2021).PubMed
Google Scholar
Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, 2015).
Google Scholar
Bassi, E., Battocchio, D., Marcon, A., Stahlberg, S. & Apollonio, M. Scavenging on ungulate carcasses in a mountain forest area in Northern Italy. Mamm. Study 43, 1–11 (2018).
Google Scholar
Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428 (2021).
Google Scholar
Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. 89, 2156–2167 (2020).PubMed
Google Scholar
Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
Google Scholar
Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed
PubMed Central
Google Scholar
Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography (Cop.) 43, 1143–1155 (2020).
Google Scholar
Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009).
Google Scholar
Sebastián-González, E. et al. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97, 95–105 (2016).PubMed
Google Scholar
Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: Comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026 (2012).
Google Scholar
Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).
Google Scholar
Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography (Cop.) 41, 1173–1183 (2018).
Google Scholar
Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).
Google Scholar
Putman, A. R. J. Patterns of carbon dioxide evolution from decaying carrion: Decomposition of small mammal carrion in temperate systems, Part 1. Oikos 31, 47–57 (1978).CAS
Google Scholar
DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
Google Scholar
Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
Google Scholar
Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS
PubMed
Google Scholar
Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed
Google Scholar
Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
Google Scholar
Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Pedro, P. O. et al.) 23–44 (Springer, 2019).
Google Scholar
Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).
Google Scholar
Animal Care and Use Committee. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J. Mamm. 79, 1416–1431 (1998).
Google Scholar
Committee of Reviewing Taxon Names and Specimen Collections. Guidelines for the Procedure of Obtaining Mammal Specimens as Approved by the Mammal Society of Japan (Revised in 2009) (Mammal Society of Japan, 2009).
Google Scholar
Yoshino, M. Microclimate: New Edition (Chijin Shokan, 1986).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).Sokal, R. R. & Rohlf, F. J. Biometry 4th edn. (WH Freeman and Company, 2012).MATH
Google Scholar
Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1934).MATH
Google Scholar
Therneau, T. A Package for Survival Analysis in S. Version 2.38 (2015).Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
Google Scholar
Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
Google Scholar
DeVault, T. L., Brisbin, I. L. & Rhodes, O. E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
Google Scholar More