More stories

  • in

    Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan

    Hagen, O. et al. gen3sis: a general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urban, M. C. et al. Evolutionary origins for ecological patterns in space. Proc. Natl Acad. Sci. USA 117, 17482–17490 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).PubMed 
    Article 

    Google Scholar 
    de Aguiar, M. A. M., Baranger, M., Baptestini, E. M., Kaufman, L. & Bar-Yam, Y. Global patterns of speciation and diversity. Nature 460, 384 (2009).PubMed 
    Article 

    Google Scholar 
    O’Dwyer, J. P. & Green, J. L. Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol. Lett. 13, 87–95 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. What drives community dynamics? Proc. R. Soc. B 276, 2923–2929 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).PubMed 
    Article 

    Google Scholar 
    Chisholm, R. A. & O’Dwyer, J. P. Species ages in neutral biodiversity models. Theor. Popul. Biol. 93, 85–94 (2014).PubMed 
    Article 

    Google Scholar 
    Nee, S. The neutral theory of biodiversity: do the numbers add up? Funct. Ecol. 19, 173–176 (2005).Article 

    Google Scholar 
    Ricklefs, R. E. A comment on Hubbell’s zero-sum ecological drift model. Oikos 100, 185–192 (2003).Article 

    Google Scholar 
    Etienne, R. S., Apol, M. E. F., Olff, H. & Weissing, F. J. Modes of speciation and the neutral theory of biodiversity. Oikos 116, 241–258 (2007).Article 

    Google Scholar 
    Davies, T. J., Allen, A. P., Borda-de Água, L., Regetz, J. & Melián, C. J. Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution 65, 1841–1850 (2011).PubMed 
    Article 

    Google Scholar 
    Higgs, P. G. & Derrida, B. Stochastic models for species formation in evolving populations. J. Phys. A 24, L985 (1991).Article 

    Google Scholar 
    Gavrilets, S., Li, H. & Vose, M. D. Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. B 265, 1483–1489 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).Gavrilets, S., Acton, R. & Gravner, J. Dynamics of speciation and diversification in a metapopulation. Evolution 54, 1493–1501 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, C. L. N. et al. Signatures of microevolutionary processes in phylogenetic patterns. Syst. Biol. 68, 131–144 (2018).
    Google Scholar 
    Li, J., Huang, J.-P., Sukumaran, J. & Knowles, L. L. Microevolutionary processes impact macroevolutionary patterns. BMC Evol. Biol. 18, 123 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Melián, C. J., Alonso, D., Allesina, S., Condit, R. S. & Etienne, R. S. Does sex speed up evolutionary rate and increase biodiversity? PLoS Comput. Biol. 8, e1002414 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).PubMed 
    Article 

    Google Scholar 
    de Alencar, L. R. V. & Quental, T. B. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol. Evol. 11, 5828–5843 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hurlbert, A. H. & Stegen, J. C. When should species richness be energy limited, and how would we know? Ecol. Lett. 17, 401–413 (2014).PubMed 
    Article 

    Google Scholar 
    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).PubMed 
    Article 

    Google Scholar 
    Rosindell, J., Harmon, L. J. & Etienne, R. S. Unifying ecology and macroevolution with individual-based theory. Ecol. Lett. 18, 472–482 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosindell, J. & Harmon, L. J. A unified model of species immigration, extinction and abundance on islands. J. Biogeogr. 40, 1107–1118 (2013).Article 

    Google Scholar 
    Etienne, R. S. & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204–213 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabosky, D. L. & Matute, D. R. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl Acad. Sci. USA 110, 15354–15359 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Princepe, D. & De Aguiar, M. A. M. Modeling mito-nuclear compatibility and its role in species identification. Syst. Biol. 70, 133–144 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Yaacov, D., Blumberg, A. & Mishmar, D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim. Biophys. Acta 1819, 1107–1111 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunnucks, P., Morales, H. E., Lamb, A. M., Pavlova, A. & Greening, C. Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front. Genet. 8, 25 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hill, G. E. The mitonuclear compatibility species concept. Auk 134, 393–409 (2017).Article 

    Google Scholar 
    Lima, T. G., Burton, R. S. & Willett, C. S. Genomic scans reveal multiple mito-nuclear incompatibilities in population crosses of the copepod Tigriopus californicus. Evolution 73, 609–620 (2019).Barreto, F. S. & Burton, R. S. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proc. R. Soc. B https://doi.org/10.1098/rspb.2013.1521 (2013).Hill, G. E. Mitonuclear compensatory coevolution. Trends Genet. 36, 403–414 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gershoni, M., Templeton, A. R. & Mishmar, D. Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31, 642–650 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol. Evol. 6, 5831–5842 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobler, M., Barts, N. & Greenway, R. Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. Integr. Comp. Biol. 59, 900–911 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol. Ecol. 21, 4942–4957 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: effect on gene flow and speciation. Front. Genet. 10, 62 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lane, N. Biodiversity: on the origin of bar codes. Nature 462, 272–274 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hill, G. E Mitonuclear Ecology (Oxford Univ. Press, 2019).Wolff, J. N., Ladoukakis, E. D., Enríquez, J. A. & Dowling, D. K. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos. Trans. R. Soc. B 369, 20130443 (2014).Article 

    Google Scholar 
    Koch, R. E. et al. Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol. Evol. 36, 321–332 (2021).PubMed 
    Article 

    Google Scholar 
    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).PubMed 
    Article 

    Google Scholar 
    Weir, J. T. Environmental harshness, latitude and incipient speciation. Mol. Ecol. 23, 251–253 (2014).PubMed 
    Article 

    Google Scholar 
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).PubMed 
    Article 

    Google Scholar 
    Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).PubMed 
    Article 

    Google Scholar 
    Zhang, F. & Broughton, R. E. Mitochondrial–nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes? Genome Biol. Evol. 5, 1781–1791 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piccinini, G. et al. Mitonuclear coevolution, but not nuclear compensation, drives evolution of OXPHOS complexes in bivalves. Mol. Biol. Evol. 38, 2597–2614 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barreto, F. S. et al. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat. Ecol. Evol. 2, 1250–1257 (2018).PubMed 
    Article 

    Google Scholar 
    Kennedy, J. D. et al. Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds. J. Biogeogr. 41, 1746–1757 (2014).Article 

    Google Scholar 
    Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).PubMed 
    Article 

    Google Scholar 
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 

    Google Scholar 
    Evans, K. L. & Gaston, K. J. Can the evolutionary-rates hypothesis explain species–energy relationships? Funct. Ecol. 19, 899–915 (2005).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).PubMed 
    Article 

    Google Scholar 
    Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 2171–2185 (2016).PubMed 
    Article 

    Google Scholar 
    Dowling, D. K., Abiega, K. C. & Arnqvist, G. Temperature-specific outcomes of cytoplasmic–nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61, 194–201 (2007).PubMed 
    Article 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freeman, B. G., Weeks, T., Schluter, D. & Tobias, J. A. The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecol. Lett. 25, 635–646 (2022).PubMed 
    Article 

    Google Scholar 
    Vellend, M. Species diversity and genetic diversity: parallel processes and correlated patterns. Am. Nat. 166, 199–215 (2005).PubMed 
    Article 

    Google Scholar 
    Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735 (2017).Article 

    Google Scholar 
    Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araújo, M. S. & Costa-Pereira, R. Latitudinal gradients in intraspecific ecological diversity. Biol. Lett. 9, 20130778 (2013).Derrida, B. & Peliti, L. Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382 (1991).Article 

    Google Scholar 
    de Aguiar, M. A. M. Speciation in the Derrida–Higgs model with finite genomes and spatial populations. J. Phys. A 50, 85602 (2017).Article 

    Google Scholar 
    Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).PubMed 
    Article 

    Google Scholar 
    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. S., Bjørgesæter, A. & Ugland, K. I. On plotting species abundance distributions. J. Anim. Ecol. 75, 752–756 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Warming reduces global agricultural production by decreasing cropping frequency and yields

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    Article 

    Google Scholar 
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).CAS 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).CAS 
    Article 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).Article 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Hodge, I., Hauck, J. & Bonn, A. The alignment of agricultural and nature conservation policies in the European Union. Conserv. Biol. 29, 996–1005 (2015).Article 

    Google Scholar 
    Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon Soy Moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).Article 

    Google Scholar 
    Diffenbaugh, N. S. et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl Acad. Sci. USA 114, 4881–4886 (2017).CAS 
    Article 

    Google Scholar 
    Iizumi, T. & Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Security 4, 46–50 (2015).Article 

    Google Scholar 
    Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2020).Article 

    Google Scholar 
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 3, 908–916 (2020).Article 

    Google Scholar 
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).CAS 
    Article 

    Google Scholar 
    Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).CAS 
    Article 

    Google Scholar 
    Afifi, T., Liwenga, E. & Kwezi, L. Rainfall-induced crop failure, food insecurity and out-migration in Same-Kilimanjaro, Tanzania. Clim. Dev. 6, 53–60 (2014).Article 

    Google Scholar 
    Stigter, K. in Applied Agrometeorology (ed. Stigter, K.) 531–534 (Springer, 2010).Seifert, C. A. & Lobell, D. B. Response of double cropping suitability to climate change in the United States. Environ. Res. Lett. 10, 024002 (2015).Article 

    Google Scholar 
    Kawasaki, K. Two harvests are better than one: double cropping as a strategy for climate change adaptation. Am. J. Agr. Econ. 101, 172–192 (2019).Article 

    Google Scholar 
    Ceglar, A., Zampieri, M., Toreti, A. & Dentener, F. Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change. Earths Future 7, 1088–1101 (2019).Article 

    Google Scholar 
    Cohn, A. S., VanWey, L. K., Spera, S. A. & Mustard, J. F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Change 6, 601–604 (2016).Article 

    Google Scholar 
    Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5, 034012 (2010).Article 

    Google Scholar 
    Ray, D. K. & Foley, J. A. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 044041 (2013).Article 

    Google Scholar 
    Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).Article 

    Google Scholar 
    Pugh, T. A. M. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).CAS 
    Article 

    Google Scholar 
    Scherer, L. A., Verburg, P. H. & Schulp, C. J. E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Change 48, 43–55 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    Waha, K. et al. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change 64, 102131 (2020).Article 

    Google Scholar 
    Raderschall, C. A., Vico, G., Lundin, O., Taylor, A. R. & Bommarco, R. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Glob. Chang. Biol. 27, 71–83 (2021).CAS 
    Article 

    Google Scholar 
    Ding, M. et al. Variation in cropping intensity in Northern China from 1982 to 2012 based on GIMMS-NDVI data. Sustainability 8, 1123 (2016).Article 

    Google Scholar 
    Yu, Q., Xiang, M., Sun, Z. & Wu, W. The complexity of measuring cropland use intensity: an empirical study. Agr. Syst. 192, 103180 (2021).Article 

    Google Scholar 
    Moore, F. C. & Lobell, D. B. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).Article 

    Google Scholar 
    Agnolucci, P. et al. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 1, 562–571 (2020).Article 

    Google Scholar 
    Zhu, P. & Burney, J. Temperature‐driven harvest decisions amplify US winter wheat loss under climate warming. Glob. Change Biol. 27, 550–562 (2021).CAS 
    Article 

    Google Scholar 
    Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, 4343 (2018).Article 

    Google Scholar 
    Duku, C., Zwart, S. J. & Hein, L. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE 13, 0192642 (2018).Article 

    Google Scholar 
    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).Article 

    Google Scholar 
    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).Article 

    Google Scholar 
    Yang, X. et al. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 208, 76–84 (2015).Article 

    Google Scholar 
    Burney, J., Woltering, L. & Burke, M. Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proc. Natl Acad. Sci. USA 107, 1848–1853 (2010).CAS 
    Article 

    Google Scholar 
    You, L. et al. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36, 770–782 (2011).Article 

    Google Scholar 
    Zheng, B., Chenu, K., Fernanda Dreccer, M. & Chapman, S. C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 18, 2899–2914 (2012).Article 

    Google Scholar 
    Flach, R., Fader, M., Folberth, C., Skalský, R. & Jantke, K. The effects of cropping intensity and cropland expansion of Brazilian soybean production on green water flows. Environ. Res. Commun. 2, 071001 (2020).Article 

    Google Scholar 
    Wood, S. A., Jina, A. S., Jain, M., Kristjanson, P. & DeFries, R. S. Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob. Environ. Change 25, 163–172 (2014).Article 

    Google Scholar 
    Paola, A. D. et al. The expansion of wheat thermal suitability of Russia in response to climate change. Land Use Policy 78, 70–77 (2018).Article 

    Google Scholar 
    Brunelle, T. & Makowski, D. Assessing whether the best land is cultivated first: a quantile analysis. PLoS ONE 15, e0242222 (2020).CAS 
    Article 

    Google Scholar 
    Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).CAS 
    Article 

    Google Scholar 
    Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).Article 

    Google Scholar 
    Petkeviciene, B. The effects of climate factors on sugar beet early sowing timing. Agron. Res. 7, 436–443 (2009).
    Google Scholar 
    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).CAS 
    Article 

    Google Scholar 
    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (Cambridge Univ. Press, 2013).Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Article 

    Google Scholar 
    Asadieh, B. & Krakauer, N. Y. Global trends in extreme precipitation: climate models versus observations. Hydrol. Earth Syst. Sci. 19, 877–891 (2015).Article 

    Google Scholar 
    Zhang, Y., You, L., Lee, D. & Block, P. Integrating climate prediction and regionalization into an agro-economic model to guide agricultural planning. Clim. Change 158, 435–451 (2020).Article 

    Google Scholar 
    Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H. & Kyle, P. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty‐first century. Earths Future 7, 123–135 (2019).Article 

    Google Scholar 
    Zhu, W., Jia, S., Devineni, N., Lv, A. & Lall, U. Evaluating China’s water security for food production: the role of rainfall and irrigation. Geophys. Res. Lett. 46, 11155–11166 (2019).Article 

    Google Scholar 
    FAOSTAT (Food and Agriculture Organization of the United Nations, 1997).Egli, L., Schröter, M., Scherber, C., Tscharntke, T. & Seppelt, R. Crop asynchrony stabilizes food production. Nature 588, E7–E12 (2020).CAS 
    Article 

    Google Scholar 
    Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1979 to Present (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 1 August 2020); https://doi.org/10.24381/cds.adbb2d47 (2018).Feng, P. et al. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Clim. Change 147, 555–569 (2018).Article 

    Google Scholar 
    Teluguntla, P. et al. in Land Resources Monitoring, Modeling, and Mapping with Remote Sensing (ed. Thenkabail, P. S.) 849 (CRC Press, 2015).Hawkins, E. et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Change Biol. 19, 937–947 (2013).Article 

    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).Article 

    Google Scholar 
    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25, GB2006 (2011).New, M., New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).Article 

    Google Scholar 
    Willmott, C. J. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1996) (Center for Climatic Research, 2000); http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.htmlVan Beveren, I. Total factor productivity estimation: a practical review. J. Econ. Surv. 26, 98–128 (2012).Article 

    Google Scholar 
    Xu, J. et al. Double cropping and cropland expansion boost grain production in Brazil. Nat. Food 2, 264–273 (2021).Article 

    Google Scholar 
    Friedl, M. & Gray, J. MCD12Q2 MODIS/Terra+ Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid V006 (NASA EOSDIS, 2019).Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (USGS, 2018).Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).CAS 
    Article 

    Google Scholar 
    Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).Article 

    Google Scholar 
    Peng Zhu. Climate effects on caloric yield and cropping frequency. Zenodo https://doi.org/10.5281/zenodo.7038556 (2022). More

  • in

    Author Correction: Widespread extinction debts and colonization credits in United States breeding bird communities

    In the version of this article initially published, there were errors in equations and notations in the Methods “Model development” subsection which arose during manuscript preparation; the errors affect presentation of the study but not the analysis, results, or code provided with the article. Clarifications to text and equations follow.In Equation (1), “N” replaces “Normal”; in Equations (2), (3), (7) and in text directly below Equations (3), (5) and (7), “ys,i,z” now replaces “Δxs,t1, t2.” In the two paragraphs below Equation (2), “t2 = 2016” and “t1 = 2001” now replace “2016” and “2001” in five instances. Further, Equations (5)–(7) have been revised as follows:$$begin{array}{ll}fleft( {x_{s,t}} right) = {{{mathrm{exp}}}} & left( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} beta _{1,i} x_{s,i,t} + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i}^{K = 5} beta _{2,i,k}x_{s,i,t}x_{k,s,t}}right. \ & quad quad left. {+ mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = 1, k neq i}^{K = 5} beta _{3,i,k}x_{s,i,t}x_{k,s,t}} right)end{array} {rm{Revised}} {rm{Eq}}. (5)$$$$begin{array}{ll}fleft( {x_{s,t}} right) \ = expleft( {beta _0 + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{j = 1}^{J = 2} beta _{0,i,j,}x_{i,s,t}^j + mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{k = i + 1}^{K = 6} beta _{1,i,k}x_{i,s,t}x_{k,s,t}} right) {mathrm{Original}} {rm{Eq}}. (5)end{array}$$$$y_{s,i,z} = left{ {begin{array}{*{20}{l}} {y_{s,i,1} = left| {Delta x_{s,i}} right|,} hfill & {y_{s,i,2} = 0,} hfill & {{{{mathrm{if}}}},Delta x_{s,i} < 0} hfill \ {y_{s,i,1} = 0,} hfill & {y_{s,i,2} = Delta x_{s,i}} hfill & {{{{mathrm{otherwise}}}}} hfill end{array}} right. {rm{Revised}} {rm{Eq}}. (6)$$$$x_{i,s,} = left{ {begin{array}{*{20}{l}} {x_{1,i,s} = left| {Delta x_{i,s}} right|,} hfill & {x_{2,i,s} = 0,} hfill & {if,Delta x_{i,s} < 0} hfill \ {x_{1,i,s} = 0,} hfill & {x_{2,i,s} = Delta x_{i,s},} hfill & {otherwise} hfill end{array}} right. {rm{Original}} {rm{Eq}}. (6)$$$$omega left( {y_{s,i,z};gamma } right) = {{{mathrm{exp}}}}left( {mathop {sum }limits_{i = 1}^{I = 5} mathop {sum }limits_{z = 1}^{Z = 2} - gamma _{i,z} y_{s,i,z}} right) {rm{Revised}} {rm{Eq}}. (7)$$$$omega left( {Delta x_{s,t_1,t_2};gamma } right) = expleft( {mathop {sum }limits_{i = 1}^{I = 5} - gamma _{i,z}Delta x_{z,s,i}} right) {rm{Original}} {rm{Eq}}. (7)$$All changes have been made in the HTML and PDF versions of the article. More

  • in

    Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age

    Brett, C. E. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13, 241–262 (1998).Article 

    Google Scholar 
    Brett, C. E., Hendy, A. J. W., Bartholomew, A. J., Bonelli, J. R. & McLaughlin, P. I. Response of shallow marine biotas to sea-level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22, 228–244 (2007).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    Rillo, M. C., Woolley, S. & Hillebrand, H. Drivers of global pre‐industrial patterns of species turnover in planktonic foraminifera. Ecography 2022, e05892 (2021).Article 

    Google Scholar 
    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L. et al. Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis. Earth Syst. Sci. Data 12, 1053–1081 (2020).Article 

    Google Scholar 
    Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).PubMed 
    Article 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).PubMed 
    Article 

    Google Scholar 
    Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).CAS 
    Article 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).Morey, A. E., Mix, A. C. & Pisias, N. G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables. Quat. Sci. Rev. 24, 925–950 (2005).Article 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).CAS 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).Article 

    Google Scholar 
    Southward, A. J., Hawkins, S. J. & Burrows, M. T. Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J. Therm. Biol. 20, 127–155 (1995).Article 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).Kucera, M. et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 24, 951–998 (2005).Article 

    Google Scholar 
    Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).PubMed 
    Article 

    Google Scholar 
    Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 

    Google Scholar 
    Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2017105118 (2021).Fauth, J. E. et al. Simplifying the jargon of community ecology: a conceptual approach. Am. Nat. 147, 282–286 (1996).Article 

    Google Scholar 
    Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).Article 

    Google Scholar 
    Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).CAS 
    Article 

    Google Scholar 
    Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Am. Bull. 88, 1813–1827 (1977).Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).Liow, L. H., Van Valen, L. & Stenseth, N. C. Red Queen: from populations to taxa and communities. Trends Ecol. Evol. 26, 349–358 (2011).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).PubMed 
    Article 

    Google Scholar 
    Van Meerbeeck, C. J., Renssen, H. & Roche, D. M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim. Past 5, 33–51 (2009).Article 

    Google Scholar 
    Jonkers, L. & Kučera, M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera. Biogeosciences 12, 2207–2226 (2015).Article 

    Google Scholar 
    Ofstad, S. et al. Development, productivity, and seasonality of living planktonic foraminiferal faunas and Limacina helicina in an area of intense methane seepage in the Barents Sea. J. Geophys. Res. Biogeosci. 125, e2019JG005387 (2020).CAS 
    Article 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Glob. Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Lisiecki, L. E. & Stern, J. V. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31, 1368–1394 (2016).Article 

    Google Scholar 
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).CAS 
    Article 

    Google Scholar 
    Butzin, M., Köhler, P. & Lohmann, G. Marine radiocarbon reservoir age simulations for the past 50,000 years. Geophys. Res. Lett. 44, 8473–8480 (2017).CAS 
    Article 

    Google Scholar 
    Langner, M. & Mulitza, S. Technical Note: PaleoDataView—A software toolbox for the collection, homogenization and visualization of marine proxy data. Clim 15, 2067–2072 (2019).
    Google Scholar 
    Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).Article 

    Google Scholar 
    Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horn, H. S. Measurement of ‘overlap’ in comparative ecological studies. Am. Nat. 100, 419–424 (1966).Article 

    Google Scholar 
    Jost, L., Chao, A. & Chazdon, R. L. in Biological diversity: frontiers in measurement and assessment (eds Anne E. Magurran & Brian J. McGill) 66–84 (Oxford University Press, 2011).Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    Juggins, S. rioja: Analysis of quaternary science data. R package version 0.9-26 https://cran.r-project.org/package=rioja (2020).Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.4-13 https://CRAN.R-project.org/package=raster (2021).Garnier, S. viridis: Default color maps from ‘matplotlib’. R package version 0.6.1 https://CRAN.R-project.org/package=viridis (2021.)Locarnini, R. A. et al. World Ocean Atlas 2018, Vol. 1: Temperature. NOAA Atlas NESDIS 81 (NOAA, 2019). More

  • in

    Early Mars habitability and global cooling by H2-based methanogens

    Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).ADS 
    Article 

    Google Scholar 
    Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).ADS 
    Article 

    Google Scholar 
    Fairén, A. G. et al. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).ADS 
    Article 

    Google Scholar 
    Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010).ADS 
    Article 

    Google Scholar 
    Rivera-Valentín, E. G., Chevrier, V. F., Soto, A. & Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4, 756–761 (2020).ADS 
    Article 

    Google Scholar 
    Stevens, A. H., Patel, M. R. & Lewis, S. R. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars. Icarus 250, 587–594 (2015).ADS 
    Article 

    Google Scholar 
    Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).ADS 
    Article 

    Google Scholar 
    Liu, J. et al. Anoxic chemical weathering under a reducing greenhouse on early Mars. Nat. Astron. 5, 503–509 (2021).ADS 
    Article 

    Google Scholar 
    Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).Article 

    Google Scholar 
    Martin, W. F. & Sousa, F. L. Early microbial evolution: the age of anaerobes. Cold Spring Harbor Perspect. Biol 8, a018127 (2016).Article 

    Google Scholar 
    Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).ADS 
    Article 

    Google Scholar 
    Affholder, A. et al. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).ADS 
    Article 

    Google Scholar 
    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).ADS 
    Article 

    Google Scholar 
    Turbet, M., Boulet, C. & Karman, T. Measurements and semi-empirical calculations of CO2 + CH4 and CO2 + H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. Icarus 346, 113762 (2020).Article 

    Google Scholar 
    Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Nat. Acad. Sci. USA 101, 4631–4636 (2004).ADS 
    Article 

    Google Scholar 
    Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).ADS 
    Article 

    Google Scholar 
    Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).ADS 
    Article 

    Google Scholar 
    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).Article 

    Google Scholar 
    Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).ADS 
    Article 

    Google Scholar 
    Yung, Y. L. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 1221–1242 (2018).ADS 
    Article 

    Google Scholar 
    Knutsen, E. W. et al. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357, 114266 (2021).Article 

    Google Scholar 
    Cockell, C. S. Trajectories of martian habitability. Astrobiology 14, 182–203 (2014).ADS 
    Article 

    Google Scholar 
    Westall, F. et al. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology 15, 998–1029 (2015).ADS 
    Article 

    Google Scholar 
    Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev. 209, 103296 (2020).Article 

    Google Scholar 
    Fastook, J. L. & Head, J. W. Glaciation in the late noachian icy highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).ADS 
    Article 

    Google Scholar 
    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).ADS 
    Article 

    Google Scholar 
    Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, Scale 1000,000 (US Geological Survey, 2014); https://doi.org/10.3133/sim3292Sun, V. Z. & Stack, K. M. Geologic Map of Jezero Crater and the Nili Planum Region, Mars: U.S. Geological Survey Scientific Investigations Map 3464, Scale 1000 (US Geological Survey, 2020); https://doi.org/10.3133/sim3464Ward, P. The Medea Hypothesis (Princeton Univ. Press, 2009).Chopra, A. & Lineweaver, C. H. The Case for a Gaian bottleneck: the biology of habitability. Astrobiology 16, 7–22 (2016).ADS 
    Article 

    Google Scholar 
    Arney, G. et al. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. Astrobiology 16, 873–899 (2016).Batalha, N. et al. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).ADS 
    Article 

    Google Scholar 
    Stüeken, E. E. et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).ADS 
    Article 

    Google Scholar 
    Cockell, C. S. et al. Minimum units of habitability and their abundance in the universe. Astrobiology 21, 481–489 (2021).ADS 
    Article 

    Google Scholar 
    Adams, D. et al. Nitrogen fixation at early Mars. Astrobiology 21, 968–980 (2021).ADS 
    Article 

    Google Scholar 
    Fergason, R. L., Hare, T. M. and Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex (US Geological Survey, 2018); http://bit.ly/HRSC_MOLA_Blend_v0Sauterey, B. MarsEcosys v.1.0. Zenodo https://doi.org/10.5281/zenodo.6963348 (2022). More

  • in

    Resolving malaria’s dry-season dilemma

    Seasonal fluctuations in animal population dynamics are among the most fundamental attributes of life on Earth. A long recognized but poorly understood example is the dramatic seasonal fluctuation in the abundance of malaria vectors in the semi-arid savannah and Sahel regions of Africa. In these regions, the vector mosquitoes largely disappear during a prolonged 3- to 8-month dry season, when lack of rain causes the aquatic larval habitats to disappear. As a result, malaria transmission plummets. When the rains return, the mosquito vectors rapidly reappear, leading to a resurgence of malaria transmission. How the vector populations are able to persist through the prolonged dry season and rapidly rebound with the onset of rains is referred to as the ‘dry-season malaria paradox’, and has remained an enduring mystery of malariology for nearly 100 years. Writing in Nature Ecology & Evolution, Faiman et al.1 help to resolve this mystery by using an innovative isotopic labelling strategy: they demonstrate that at least approximately 20% of the local population of the malaria vector Anopheles coluzzi in the West African Sahel survive the dry season locally by undergoing summer dormancy, known as aestivation. More

  • in

    Oceanic vertical migrators in a warming world

    Seibel, B. A. & Birk, M. A. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01491-6 (2022).Article 

    Google Scholar 
    Urban, M. C. et al. Science 353, aad8466 (2016).Article 

    Google Scholar 
    Pörtner, H. O. & Knust, R. Science 315, 95–97 (2007).Article 

    Google Scholar 
    Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Ecology 92, 1565–1572 (2011).Article 

    Google Scholar 
    Rubalcaba, J. G., Verberk, W. C., Hendriks, A. J., Saris, B. & Woods, H. A. Proc. Natl Acad. Sci. USA 117, 31963–31968 (2020).CAS 
    Article 

    Google Scholar 
    Deutsch, C. et al. Proc. Natl Acad. Sci. USA 119, e2201345119 (2022).CAS 
    Article 

    Google Scholar 
    Stramma, L. et al. Nat. Clim. Change 2, 33–37 (2012).CAS 
    Article 

    Google Scholar 
    Vergés, A. et al. Proc. R. Soc. B 281, 20140846 (2014).Article 

    Google Scholar  More

  • in

    Protecting the Amazon forest and reducing global warming via agricultural intensification

    Study regions and recent trends in land use changeOur analysis focuses on four biomes (referred to as regions in the rest of the text), accounting for nearly all soybean area in Brazil: the Pampa, the Atlantic Forest, the Cerrado and the Amazon (Supplementary Section 1). Soybean production is negligible in the Pantanal and the Caatinga, so these two regions were excluded from our analysis. We focused on soybean-based systems in Brazil, either those that include one crop per year (single soybean) or those including a second-crop maize. In the latter system, soybean is sown in September–October, and maize is sown right after the soybean harvest in late January–February. Single soybean is common in the Pampa, where the drier climate does not allow double cropping. In contrast, higher precipitation allows double cropping in the Amazon, the Cerrado and most of the Atlantic Forest (Supplementary Section 2).Recent trends in yield, area and production for soybean and second-crop maize were derived from official statistics for the 2007–2019 period16. We fitted linear models to derive the annual rate of yield improvement and harvested area for soybean and second-crop maize, separately for each region (Fig. 1 and Extended Data Fig. 1). Land use change arising from soybean expansion was estimated using data from the MapBiomas project (v.5.0)10 (Supplementary Table 1). Our estimation of land use change accounted for the time lag between land conversion and the beginning of soybean production, which can include transitional stages such as the cultivation of upland rice or short-term pasture-based livestock systems42. To account for this, we looked at the new land brought into soybean production during the 2008–2019 period, and we analysed how much of this land was under a different land use type (forest, savannah, grassland, pasture or other crops) in 2000 (Extended Data Fig. 2).Estimation of yield potential and yield gapsWe used results on yield potential for Brazil that we generated through the Global Yield Gap Atlas project43 using well-validated process-based crop models and the best available sources of weather, soil and management data. Briefly, we selected 32 sites to portray the distribution of the soybean harvested area within the country, following protocols that ensure representativeness and a reasonable coverage of the national crop area44. The 32 sites collectively accounted for half of the soybean harvested area in Brazil. These sites were located within agro-climatic zones accounting for 86% of the national soybean production and accounted for 72–92% of the soybean area in each region. Following protocols that gave preference to measured data at a high level of spatial and temporal resolution45, we collected databases on weather, soil, management and crop yields for soybean for each site, and also for second-crop maize at those sites where double-cropping is practised (Supplementary Tables 2 and 3 and Supplementary Section 3).Yield potential was simulated for widespread cultivars in each region using the CROPGRO soybean model embedded in DSSAT v.4.546 and the Hybrid-Maize model47. Both models simulate crop growth and development on a daily time step. Growth rates are determined by simulating both CO2 assimilation and respiration, with partitioning coefficients to different organs dependent on developmental stage. The model phenological coefficients were calibrated to portray the crop cycle of the most dominant cultivars in each region in Brazil. We used generic default coefficients for growth-related model internal parameters such as photosynthesis, respiration, leaf area expansion, light interception, biomass partitioning and grain filling. In all cases, simulations of yield potential assumed the absence of insect pests, weeds and diseases and no nutrient limitations. In simulating yield potential, both models account for solar radiation, photoperiod, temperature, and the timing and amount of rainfall as well as soil properties influencing crop water balance.We first evaluated the CROPGRO and Hybrid-Maize models on the ability to reproduce measured phenology and yields across 40 well-managed experiments located across the four regions. The models showed satisfactory performance at reproducing the measured values (Extended Data Fig. 3). We then simulated soybean yield potential for the dominant agricultural soils at each site (usually two or three), as determined from the soil maps generated by the Radambrasil project48. The simulations were based on long-term (1999–2018) measured daily weather data retrieved from the Brazilian Institute of Meteorology49. Soybean yield potential was simulated for each year of the time series. We also simulated yield potential for second-crop maize for those sites where double-cropping is practised. To do so, we used sowing dates and cultivar maturities that maximize the overall productivity of the soybean–maize system; these sowing dates and cultivar maturities are within the current ranges in each region21,28. To estimate the average yield potential for each site, we weighted the simulated values for each soil type by soil area fraction at each site. In all cases, the simulations assumed no limitations to crop growth due to nutrient deficiencies or incidence of biotic stresses such as weeds, insect pests and pathogens. The results were upscaled from site to region and then to country following van Bussel et al.44. Briefly, the average yield potential for each region was estimated by averaging the simulated yields across the sites located within each region, weighing sites according to their share of the soybean area within each region. A similar approach was followed to upscale yield potential from region to the national level. Details on crop modelling, data sources and upscaling are provided in Supplementary Section 3.The average farmer yield was calculated separately for soybean and second-crop maize on the basis of the average yield reported over the 2012–2017 period for the municipalities that overlap with each site, weighing municipalities on the basis of their share of the soybean or maize area within each site16. Including more years before 2012 would have led to a biased estimate of average actual yield due to the technological yield trend in Brazil. Average farmer yields were estimated at the region and country levels following the same upscaling approach as for yield potential. Finally, the exploitable yield gap was calculated as the difference between attainable yield and average farmer yield. The attainable yield was calculated as 80% of the simulated yield potential, which is considered a reasonable yield for farmers with adequate access to inputs, markets and technical information (Supplementary Section 2).Assessing scenarios of intensification and land use changeWe explored three scenarios with different soybean and maize yields and areas by 2035 and assessed their outcomes in terms of production, land use change and GWP (Supplementary Table 4). A 15-year future timespan is long enough to facilitate the implementation of long-term policies, investments and technologies devoted to closing the exploitable yield gap and to implement land-use policies, but it is short enough to minimize long-term effects from climate change on crop yields and cropping systems. In the BAU scenario, historical (2007–2019) trends of soybean and second-crop maize area and yield (Extended Data Fig. 1) remain unchanged in all regions between the baseline year (2019) and the final year (2035). Likewise, soybean area expands following the same pattern of land use change observed during 2008–2019 (Extended Data Fig. 2).To explore the available opportunity for increasing production on the existing production area, we considered an NCE scenario in which there is no physical expansion of cropland while full closure of the exploitable yield gap occurs in the regions where the current yield gaps are small (the Pampa and the Atlantic Forest), and 50% closure of the exploitable yield gap takes place in regions where the current yield gaps are large (the Amazon and the Cerrado) (Supplementary Table 4). These rates are comparable to historical yield gains in the Pampa and the Atlantic Forest. A scenario of full yield closure in the Amazon and the Cerrado would have been unrealistic, as it would have required rates of yield improvement that are three to four times higher than historical rates, much higher than those in the Pampa and the Atlantic Forest, and well beyond those reported for main soybean-producing countries. In the case of second-crop maize, we assumed full closure of the exploitable yield gap by 2035 because historical rates of yield improvement are adequate to reach that yield level. Regarding second-crop maize area, we projected the proportion of double-cropping to increase from the current 47% (Amazon), 39% (Cerrado) and 31% (Atlantic Forest) to 100%, 70% and 50%, respectively, as determined on the basis of the degree of water limitation in each region (Supplementary Section 4).Finally, we explored a third scenario of intensification plus target area expansion (INT), in which identical yield gain rates and the adoption of double-cropping equivalent to those in the NCE scenario were assumed, but with physical expansion of the soybean–maize system allowed in low-C ecosystems (that is, pastures and grasslands). In this scenario, soybean expansion is limited to 5% of existing pastures and grasslands in the Pampa, the Atlantic Forest and the Cerrado (total of 5.7 Mha) as a result of a parallel intensification in the pasture-based livestock sector that frees up land for soybean production. The latter would require an increase of current stocking rates, not only for freeing up 5% of the area for soybean cultivation but also to meet the projected 7% beef production increase during the study period (2020–2035)17. Hence, an overall 12% increase in stocking rates would be required within our 15-year timeframe, which is a reasonable target as reported in previous studies and based on current trends in stocking rates16,29,32,33.Another assumption is that the yield potential of pasture and grasslands converted for soybean production is similar to that in existing soybean areas in each region. Cropland expansion into grassland and pastures was allowed in all regions except for the Amazon to prevent ‘leaking’ effects and the impact of road development on land clearing50,51. Similarly, the conversion of area cultivated with food crops for soybean production was not allowed to avoid the negative impact of indirect land use change52.Estimation of GWP and gross incomeWe estimated GHG emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxides (N2O), associated with land conversion (GHGLUC) and crop production (GHGPROD) for the baseline year (2019) and for the three scenarios by year 2035 (BAU, NCE and INT). GHGLUC includes emissions associated with changes in C stocks from aboveground and belowground biomass when land is converted for soybean production (GHGBIO), as well as GHG emissions derived from changes in soil organic C (GHGSOC). For each land use type, annual GHGBIO was estimated on the basis of the difference between C stocks of the land use type that was converted for production (Supplementary Table 5) and, depending on the scenario and region, the average C stocks of the new cropping system53,54,55:$${mathrm{GHG}}_{{mathrm{BIO}}} = {sum} {left( {{mathrm{TDM}}_i-{mathrm{TDM}}_{{mathrm{crop}}}} right) times A_i}$$
    (1)
    where i is the land cover type, TDM is the total dry matter (tC ha−1) in land cover type i and in cropland (crop), and Ai is the annual area converted from land use type i for soybean cultivation (Supplementary Table 4). C stocks for single soybean and soybean–second-crop maize systems were assumed at 2 and 5 tC ha−1, respectively53,54,55. Changes in SOC stocks were estimated following the Intergovernmental Panel on Climate Change 2019 guidelines54, available country-specific emission factors56 and the SOC values estimated for each region57,58:$${mathrm{GHG}}_{{mathrm{SOC}}} = {sum} {left( {{mathrm{SOC}}_{{mathrm{REF}},i} times F_{{mathrm{LU}}}} right) times A_i}$$
    (2)
    where SOCREF is the SOC stock for mineral soils in the upper 30 cm for the reference condition (tC ha−1)57 in land cover type i (Supplementary Table 5), and FLU is the stock change factor for SOC land-use systems for a particular land use (Supplementary Table 4). Because no-till is the predominant soil management strategy in Brazil59, we used FLU = 0.96 for natural vegetation converted to no-till annual crop production, and FLU = 1.16 for pasture and grassland converted to no-till annual crop production56. Because we wanted to assess the full impact of the three scenarios (BAU, NCE and INT) on GWP, we assigned all GHGBIO and GHGSOC derived from land conversion to the first year after land conversion and expressed them as CO2 equivalents by multiplying changes in C stocks by 3.67.Annual GHG emissions derived from soybean and second-crop maize production (GHGPROD) were calculated for each scenario and included those derived from manufacturing, packaging and transportation of agricultural inputs, fossil fuel use for field operations, soil N2O emissions derived from the application of nitrogen (N) fertilizer, and domestic grain transportation. For the baseline year (2019), annual GHG emissions from N, phosphorous (P) and potassium (K) fertilizers and other inputs (lime, pesticides and fuel) were calculated on the basis of current average input rates for soybean and second-crop maize in each region as derived from the crop management data collected for each region (Supplementary Table 6 and Supplementary Section 3.4). To calculate GHG emissions associated with manufacturing, packaging and transportation of N, P and K fertilizers and lime, we used specific updated emissions factors for South America60, selecting those fertilizer sources that are most commonly used for soybean and second-crop maize production: urea (N), monoammonium phosphate (P) and potassium chloride (K). Our calculations also included the extra lime application that is needed to correct soil acidity in converted areas. Emission factors associated with seed production, pesticides and diesel were derived from ref. 61. Soil N2O emissions derived from N fertilizer application were calculated assuming an N2O emission factor of 1% of the applied N fertilizer on the basis of the country-specific emission factor62. Emissions derived from domestic grain transportation for each region were estimated using the GHGs per ton of grain as reported by previous studies for each region63. We assumed that inputs other than nutrient fertilizer will not change relative to the baseline in the BAU scenario. In the INT scenario, applied inputs were calculated on the basis of those reported for current high-yield fields where the yield gap is small. We estimated fertilizer nutrient rates for the three scenarios following a nutrient-balance approach that depends on the projected yield for each scenario (Supplementary Table 6 and Supplementary Section 3.4).GHGPROD in the baseline year (2019) and for the three scenarios in 2035 (BAU, NCE and INT) was estimated for each region by multiplying the emissions per unit of area by the annual soybean harvested area, summing them to estimate GHG emissions at the national level. Overall 100-year GWP was estimated as the sum of GHGLUC and GHGPROD, both expressed as CO2e to account for the higher warming potential of CH4 and N2O, which are 25 and 298 times the intensity of CO2 on a per mass basis, respectively. The gross income was estimated for each scenario by multiplying the annual crop production by the average price for soybean and maize grain during the past ten years (US$453 and US$184 per t for soybean and maize, respectively1). Finally, to combine the environmental and economic impacts into one metric, we calculated the GWP intensity as the ratio between GWP and gross income.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More