More stories

  • in

    Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

    Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:7–13Article 

    Google Scholar 
    Akashi HD, Cádiz Díaz A, Shigenobu S, Makino T, Kawata M (2016) Differentially expressed genes associated with adaptation to different thermal environments in three sympatric Cuban Anolis lizards. Mol Ecol 25:2273–2285CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen JA (1877) The influence of Physical conditions in the genesis of species. Radic Rev 1:108–140
    Google Scholar 
    Barghi N, Hermisson J, Schlötterer C (2020) Polygenic adaptation: A unifying framework to understand positive selection. Nat Rev Genet 21:769–781CAS 
    PubMed 
    Article 

    Google Scholar 
    Blem CR (1990) Avian energy storage. Curr Ornithol 7:59–113
    Google Scholar 
    Blix AS (2016) Adaptations to polar life in mammals and birds. J Exp Biol 219:1093–1105PubMed 
    Article 

    Google Scholar 
    Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: From polygenic to omnigenic. Cell 169:1177–1186CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cannon B, Nedergaard J (2010) Thyroid hormones: Igniting brown fat via the brain. Nat Med 16:965–967CAS 
    PubMed 
    Article 

    Google Scholar 
    Castruita JAS, Westbury MV, Lorenzen ED (2020) Analyses of key genes involved in Arctic adaptation in polar bears suggest selection on both standing variation and de novo mutations played an important role. BMC Genom 21:1–8
    Google Scholar 
    Cherel Y, Gilles J, Handrich Y, Le Maho Y (1994) Nutrient reserve dynamics and energetics during long-term fasting in the king penguin (Aptenodytes patagonicus). J Zool 234:1–12Article 

    Google Scholar 
    Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12:849–863PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cristofari R, Bertorelle G, Ancel A, Benazzo A, Le Maho Y, Ponganis PJ et al. (2016) Full circumpolar migration ensures evolutionary utility in the Emperor penguin. Nat Commun 7:1–9Article 

    Google Scholar 
    Cristofari R, Liu X, Bonadonna F, Cherel Y, Pistorius P, Le Maho Y et al. (2018) Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat Clim Change 8:245–251Article 

    Google Scholar 
    Descamps S, Aars J, Fuglei E, Kovacs KM, Lydersen C, Pavlova O et al. (2017) Climate change impacts on wildlife in a High Arctic archipelago-Svalbard, Norway. Glob Change Biol 23:490–502Article 

    Google Scholar 
    Díaz-Franulic I, Raddatz N, Castillo K, González-Nilo FD, Latorre R (2020) A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. PNAS 117:20298–20304PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duchamp C, Marmonier F, Denjean F, Lachuer J, Eldershaw TPD, Rouanet JL et al. (1999) Regulatory, cellular and molecular aspects of avian muscle non-shivering thermogenesis. Ornis Fennica 76:151–165
    Google Scholar 
    Elliott KH, Welcker J, Gaston AJ, Hatch SA, Palace V, Hare JF et al. (2013) Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds. Biol Open 2:580–586CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost PGH, Siegfried WR, Greenwood PJ (1975) Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. J Zool 175:231–241Article 

    Google Scholar 
    Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F et al. (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavryushkina A, Heath TA, Ksepka DT, Stadler T, Welch D, Drummond AJ (2017) Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst Biol 66:57–73PubMed 

    Google Scholar 
    Geering K, Kraehenbuhl JP, Rossier BC (1987) Maturation of the catalytic alpha unit of Na, K-ATPase during intracellular transport. J Cell Biol 105:2613–2619CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Grémillet D et al. (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann N. Y Acad Sci 1249:166–190PubMed 
    Article 

    Google Scholar 
    Goldsmith R, Sladen WJ (1961) Temperature regulation of some Antarctic penguins. J Physiol 157:251–262CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Groscolas R (1990) Metabolic adaptations to fasting in emperor and king penguins. In Penguin Biology (LS Davis & JT Darby ed.), 269-296 San Diego: Academic PressGroscolas R, Robin JP (2001) Long-term fasting and re-feeding in penguins. Comp Biochem Physiol Part A Mol Integr Physiol 128:645–655CAS 

    Google Scholar 
    Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546CAS 
    PubMed 
    Article 

    Google Scholar 
    Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19:859–867CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao Y, Xiong Y, Cheng Y, Song G, Jia C, Qu Y et al. (2019) Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. PNAS 116:11851–11856CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunt BG, Ometto L, Wurm Y, Shoemaker D, Soojin VY, Keller L et al. (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. PNAS 108:15936–15941CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iannello S, Milazzo P, Belfiore F (2007) Animal and human tissue Na,K-ATPase in normal and insulin-resistant states: regulation, behaviour and interpretative hypothesis on NEFA effects. Obes Rev 8:231–251CAS 
    PubMed 
    Article 

    Google Scholar 
    Ishii S, Amano I, Koibuchi N (2021) The role of thyroid hormone in the regulation of cerebellar development. Endocrinol Metab 36:703–716CAS 
    Article 

    Google Scholar 
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C et al. (2014) Whole genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: Physiological roles beyond heat generation. Cell Metab 22:546–559CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kooyman GL, Gentry RL, Bergman WP, Hammel HT (1976) Heat loss in penguins during immersion and compression. Comp Bioch Physiol Part A 54:75–80CAS 
    Article 

    Google Scholar 
    Kumar V, Kutschera VE, Nilsson MA (2015) Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes. BMC Genom 16:1–13Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT et al. (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496PubMed 
    Article 

    Google Scholar 
    Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B et al. (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271:1764–1769CAS 
    PubMed 
    Article 

    Google Scholar 
    Li FG, Li H (2019) A time-dependent genome-wide SNP-SNP interaction analysis of chicken body weight. BMC Genom 20:1–9Article 

    Google Scholar 
    Li C, Zhang Y, Li J, Kong L, Hu H, Pan H et al. (2014) Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. Gigascience 3:2047–2217XArticle 

    Google Scholar 
    Lin Z, Chen L, Chen X, Zhong Y, Yang Y, Xia W et al. (2019) Biological adaptations in the Arctic cervid, the reindeer (Rangifer tarandus). Science 364:eaav6312CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z et al. (2014) Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:785–794CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu S, Westbury MV, Dussex N, Mitchell KJ, Sinding MH, Heintzman PD et al. (2021) Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell 184:4874–4885CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660CAS 
    PubMed 
    Article 

    Google Scholar 
    Löytynoja A (2013) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170Article 

    Google Scholar 
    Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI, Perry GH et al. (2015) Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep 12:217–228CAS 
    PubMed 
    Article 

    Google Scholar 
    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N et al. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:636–641Article 

    Google Scholar 
    Matos-Cruz V, Schneider ER, Mastrotto M, Merriman DK, Bagriantsev SN, Gracheva EO (2017) Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep 21:3329–3337CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Monera OD, Sereda TJ, Zhou NE, Kay CM, Hodges RS (1995) Relationship of sidechain hydrophobicity and α-helical propensity on the stability of the single-stranded amphipathic α-helix. J Pept Sci 1:319–329CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers BR, Sigal YM, Julius D (2009) Evolution of Thermal Response Properties in a Cold-Activated TRP Channel. PloS one 4:e5741PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ng CS, Chen CK, Fan WL, Wu P, Wu SM, Chen JJ et al. (2015) Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genom 16:1–16CAS 
    Article 

    Google Scholar 
    Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARg agonists induce a white-to-brown fat conversion through stabilisation of PRDM16 protein. Cell Metab 15:395–404CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. PNAS 103:17973–17978CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z et al. (2019) High-coverage genomes to elucidate the evolution of penguins. GigaScience 8:1–17Article 

    Google Scholar 
    Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543CAS 
    PubMed 
    Article 

    Google Scholar 
    Poirier H, Niot I, Monnot MC, Braissant O, Meunier-Durmort C, Costet P et al. (2001) Differential involvement of peroxi-some-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355:481–488CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pond SK, Frost S, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinform 21:676–679CAS 
    Article 

    Google Scholar 
    R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Ramasamy S, Ometto L, Crava CM, Revadi S, Kaur R, Horner DS et al. (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos B, González-Acuña D, Loyola DE, Johnson WE, Parker PG, Massaro M et al. (2018) Landscape genomics: natural selection drives the evolution of mitogenome in penguins. BMC Genom 19:1–17Article 

    Google Scholar 
    Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H et al. (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res 47:191–198Article 

    Google Scholar 
    Rey B, Roussel D, Romestaing C, Belouze M, Rouanet JL, Desplanches D et al. (2010) Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC Physiol 10:1–12Article 

    Google Scholar 
    Roussel D, Le Coadic M, Rouanet JL, Duchamp C (2020) Skeletal muscle metabolism in sea-acclimatised king penguins I Thermogenic mechanisms. J Exp Biol 223:pjeb233668Article 

    Google Scholar 
    Rowland LA, Bal NC, Periasamy M (2015) The role of skeletal‐muscle‐based thermogenic mechanisms in vertebrate endothermy. Biol Rev 90:1279–1297PubMed 
    Article 

    Google Scholar 
    Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM et al. (2021) Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biol 19:1–13Article 

    Google Scholar 
    Scholander PF (1955) Evolution of climatic adaptation in homeotherms. Evolution 9:15–26Article 

    Google Scholar 
    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nuc Acids Res 33:382–388Article 

    Google Scholar 
    Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J et al. (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Investig 121:96–105CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith MD, Wertheim JO, Weaver S (2015) Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742CAS 
    PubMed 
    Article 

    Google Scholar 
    Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al. (2016) The genecards suite: From gene data mining to disease genome sequence analysis. Curr Protoc Bioinform 54:1–30Article 

    Google Scholar 
    Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637CAS 
    PubMed 
    Article 

    Google Scholar 
    Storey JD, Bass AJ, Dabney A, Robinson D (2017) qvalue: Q-value estimation for false discovery rate control R package version 2150Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarises and visualises long lists of gene ontology terms. PloS one 6:e21800CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B et al. (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol 558:123–135CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE et al. (2012) Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr Physiol 2:2151–2202PubMed 
    Article 

    Google Scholar 
    Teulier L, Rouanet JL, Letexier D, Romestaing C (2010) Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency. J Exp Biol 213:2476–2482CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas DB, Fordyce RE (2008) The heterothermic loophole exploited by penguins. Aust J Zool 55:317–321Article 

    Google Scholar 
    Tigano A, Reiertsen TK, Walters JR, Friesen VL (2018) A complex copy number variant underlies differences in both colour plumage and cold adaptation in a dimorphic seabird. BioRxiv 507384. https://doi.org/10.1101/507384Toyomizu M, Ueda M, Sato S, Seki Y, Sato K, Akiba Y (2002) Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett 529:313–318CAS 
    PubMed 
    Article 

    Google Scholar 
    Trucchi E, Gratton P, Whittington JD, Cristofari R, Le Maho Y, Stenseth NC et al. (2014) King penguin demography since the last glaciation inferred from genome-wide data. Proc R Soc B 281:20140528PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trucchi E, Cristofari R, Le Bohec C (2019) Reply to: The role of ocean dynamics in king penguin range estimation. Nat Clim Change 9:122–122Article 

    Google Scholar 
    Vermillion KL, Anderson KJ, Hampton M, Andrews MT (2015) Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genom 47:58–74CAS 
    Article 

    Google Scholar 
    Vézina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T (2015) Hormonal correlates and thermoregulatory consequences of moulting on metabolic rate in a northerly wintering shorebird. Physiol Biochem Zool 82:129–142Article 

    Google Scholar 
    Vianna JA, Fernandes FA, Frugone MJ, Figueiró HV, Pertierra LR, Noll D et al. (2020) Genome-wide analyses reveal drivers of penguin diversification. PNAS 117:22303–22310CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang Q, Tan X, Jiao S (2014) Analyzing cold tolerance mechanism in transgenic Zebrafish (Danio rerio). PloS one 9:e102492PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: Detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32:820–832CAS 
    PubMed 
    Article 

    Google Scholar 
    Wollenberg Valero KC, Pathak R, Prajapati I, Bankston S, Thompson A, Usher J et al. (2014) A candidate multimodal functional genetic network for thermal adaptation. PeerJ 2:e578PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang Z (2007) PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang J, Bromage TG, Zhao Q, Xu BH, Gao WL, Tian HF et al. (2011) Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress. PloS one 6:e19833CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang S, Lu X, Wang Y, Xu L, Chen X, Yang F et al. (2020) A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. PNAS 117:8633–8638CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237–241CAS 
    PubMed 
    Article 

    Google Scholar 
    Yudin NS, Larkin DM, Ignatieva EV (2017) A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet 18:33–43Article 

    Google Scholar 
    Zelcer N, Sharpe LJ, Loregger A, Kristiana I, Cook EC, Phan L et al. (2014) The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol 34:1262–1270PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C et al. (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Seasonal challenges of tropical bats in temperate zones

    We analyzed a total of 2196 morbidity reports received in Israel between November 2018 and October 2021 (Fig. 1A). The majority of these were for adult bats 1,783 (81.2%), of which 1432 (80.3%) were from urban areas (settlements populated by 30,000 or more people) and the remaining 351 (19.7%) were from rural areas, including small villages, nature reserves, and army bases. Out of all these adult cases, the animal’s sex was identified in only 295 cases (16.6%), with 171 (58%) being females and 124 (42%) being males. 413 (18.8% of all cases) were pups, up to 4 months old, from throughout the country, without sex identification.We found a dramatic and significant increase in adult bat morbidity during winter (see Fig. 1B) (p  More

  • in

    Sperm whale acoustic abundance and dive behaviour in the western North Atlantic

    Data collectionBetween June 27 and August 25, 2016, 6600 km of simultaneous visual and passive acoustic line transect surveys were completed on the National Oceanic and Atmospheric Administration (NOAA) ship Henry B. Bigelow5. Survey effort was distributed along saw tooth track lines spanning the continental slope from Virginia (US) to the southern tip of Nova Scotia (Canada) (36–42 N) and on several larger track lines over the abyssal plain. Two teams of visual observers independently recorded sightings of marine mammals using high-powered Fujinon binoculars (25 × 150; Fujifilm, Valhalla, NY) as well as environmental conditions (e.g. sea state) every 30 min.The speed of sound in water was collected three times each day (morning, noon, evening) by measuring conductivity, temperature, and depth (CTD) at specific intervals in the water column. The sound speed closest to the depth of the towed hydrophone array was extracted. On alternating survey days, Simrad EK60 single beam scientific echosounders operating at frequencies of 18, 38, 70, 120 and 200 kHz were used to collect active acoustic data.When possible during daylight hours (06:00–18:00 ET), passive acoustic data were collected continuously using a custom-built linear array composed of eight hydrophone elements and a depth sensor (Keller America Inc. PA7FLE, Newport News, VA) within two oil-filled modular sections separated by 30 m of cable (Fig. 1). The array was towed 300 m behind the vessel at approximately 5–10 m depth while the vessel was in waters more than 100 m deep and underway at speeds of 16–20 km/h. For more details see DeAngelis et al.31, with the only change being that two APC hydrophones and one Reson hydrophone in the aft section were replaced with HTI-96-Min hydrophones (High Tech, Inc., Long Beach, MS). The HTI’s had a flat frequency response from 1 to 30 kHz (− 167 dB re V/uPa ± 1.5 dB). Recordings were made using the acoustical software PAMGuard (v.1.15.02)34. This analysis used the data recorded by the last two 192 kHz sampled hydrophones in the array (MF5 and MF6).Figure 1The linear towed array included eight hydrophone elements and a depth sensor within two oil-filled modular sections separated by 30 m of cable. Six hydrophones sampled at 192 kHz (MF1–MF6) and two sampled at 500 kHz. The hydrophones were connected to two National Instruments sound cards (NI-USB-6356). A high pass filter of 1 kHz was applied by the recording system to reduce the amount of vessel noise in the recordings. This analysis used the passive acoustic data from MF5 and MF6. The schematic is not to scale.Full size imageClick detection and 2D event localizationThe passive acoustic data were filtered using a Butterworth band pass filter (4th order) between 2 and 20 kHz and decimated to 96 kHz to improve sperm whale click resolution. Clicks were automatically detected using the PAMGuard (v.2.01.03) general sperm whale click detector with a trigger threshold of 12 dB.Using PAMGuard’s bearing time display, all detections were reviewed to classify click types and mark click trains as “events” based on consistent changes in bearing, audible sound, ICI and spectral characteristics. Each event was marked to an individual level, tracking a whale from the first to the last detected click15,35. All events containing usual clicks were localized with PAMGuard’s Target Motion Analysis (TMA) module’s 2D simplex optimization algorithm. For further analysis, events were truncated at a slant range of 6500 m (Supplementary Fig. S1).Echosounder analysisA regression analysis was run using the R package MASS36. To account for overdispersion, a negative binomial generalized linear model (GLM) with a log link function was applied to a dataset of the daily acoustic detections33. Echosounder state (active versus passive), month (June, July, August), and habitat type (slope or abyssal) were included as covariates, with the total number of daily detections as the response variable. The track line distance covered per day was used as an offset for effort. The best fitting model was selected based on backwards stepwise selection using Akaike’s information criterion (AIC) and the single-term deletion method using Chi-squared goodness-of-fit tests37.3D localizationExtracting a .wav clip for each click and attributing metadataAn automated process was developed using the R package PAMpal38 (v. 0.14.0) to extract the time of each click in the marked events from PAMGuard databases, generate a .wav clip for each click, and attribute all metadata (e.g., event 2D localization, array depth, radial distance, sea state, and sound speed) necessary for estimating the click depth.Slant delayUsing the methods established by DeAngelis et al.31 and custom Matlab R2021a (MathWorks Inc., Natick, NA) scripts, the multipath arrival of clicks and surface reflected echoes were used to mathematically convert the linear array into a 2D planar array and estimate 3D localizations. Using the .wav clips exported from PAMPal, the time delay between the click and the corresponding surface reflected echo, known as the slant delay, was measured via autocorrelation. Within the autocorrelation solution’s envelope of correlation values, the optimal slant delay was measured using the peak with the highest correlation value above a threshold of 0.02 and within an expected time window after the direct click of 0.0005–0.015 s. Although theoretically a surface reflected echo could have arrived less than a millisecond ( 5 min) were categorized as U shaped, and as shallow ( 1600 m) based on the maximum click depth (Fig. 3).Figure 3Example of click depths (m) over time (min) for events categorized as (a) U shaped and shallow ( 1600 m).Full size imageClick depths were then binned at 400 m intervals to account for an animal’s unknown horizontal movement over time as well as uncertainty in the estimated click depths, and the total time an animal spent within each depth bin was calculated. For each event with a U shaped click depth pattern, the depth bin in which the bottom phase occurred6 was determined. Finally, to assess if a whale was diving in the water column or close to the seafloor, the depth bin in which the 90th percentile of the click depths was recorded was compared to the bin including the seafloor depth. If the whale was more than 400 m above the seafloor, it was determined to be diving in the water column.Distance samplingDepth-corrected average horizontal perpendicular distancesFor each event, a depth-corrected average horizontal perpendicular distance was calculated using the TMA derived perpendicular slant range and the average depth or an assumed depth in the Pythagorean theorem19,31. The weighted mean, first quartile, and third quartile of the average depths were tested as assumed depths for events excluded from 3D localization. If depth was greater than or equal to the slant range the perpendicular distance was coerced to 0, indicating the whale was diving directly below the track line. The resulting distribution of depth-corrected perpendicular distances that aligned most with distance sampling theory was used in the final distance analysis.Acoustic density and abundance estimationThe R package Distance41,42 (v.1.0.4) was used to estimate two separate detection functions based on the uncorrected slant ranges and the depth-corrected perpendicular distances. Half-normal, uniform, and hazard rate key functions were tested with cosine, simple polynomial, and Hermite polynomial adjustment terms. The best fitting models were selected based on the AIC, the Kolmogorov–Smirnov (K–S) test, the Cramer-von Mises (CvM) test, quantile–quantile plots, and visual review of the fitted models43. The probability of detection, abundance, and effective strip half width (ESW) were then estimated for foraging sperm whales.Permitting authorityData used in this manuscript were collected during surveys that were completed under U.S. Marine Mammal Protection Act permit numbers 17355 and 21371 issued to the Northeast Fisheries Science Center. More

  • in

    Size-fractionated microbiome observed during an eight-month long sampling in Jiaozhou Bay and the Yellow Sea

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    Azam, F. et al. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology 8, 593–599 (2010).CAS 
    Article 

    Google Scholar 
    Zhang, C. et al. Evolving paradigms in biological carbon cycling in the ocean. National Science Review 5, 481–499 (2018).CAS 
    Article 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proceedings of the National Academy of Sciences 115, E6799–E6807 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 15, 1695–1708 (2021).CAS 
    Article 

    Google Scholar 
    Ortega-Retuerta, E., Joux, F., Jeffrey, W. H. & Ghiglione, J. F. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the beaufort sea (canadian arctic). Biogeosciences 10, 2747–2759 (2013). BG.ADS 
    Article 

    Google Scholar 
    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal 8, 187–211 (2014).CAS 
    Article 

    Google Scholar 
    Chen, S. et al. Interactions between marine group ii archaea and phytoplankton revealed by population correlations in the northern coast of south china sea. Frontiers in Microbiology 12 (2022).Eloe, E. A. et al. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environmental Microbiology Reports 3, 449–458 (2011).Article 

    Google Scholar 
    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol 24, 5692–706 (2015).Article 

    Google Scholar 
    Karner, M. & Herndl, G. J. Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Marine Biology 113, 341–347 (1992).CAS 
    Article 

    Google Scholar 
    Grossart, H.-P., Tang, K. W., Kiørboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiology Letters 266, 194–200 (2007).CAS 
    Article 

    Google Scholar 
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal 6, 1007–1017 (2012).CAS 
    Article 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences 112, 10967–10972 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Chen, Y. et al. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biology and Biochemistry 95, 233–242 (2016).CAS 
    Article 

    Google Scholar 
    Hou, S. et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. The ISME Journal 12, 981–996 (2018).CAS 
    Article 

    Google Scholar 
    Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).CAS 
    Article 

    Google Scholar 
    Ho, A., Di Lonardo, D. P. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology 93 (2017).Xing, J. et al. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Sci Total Environ 576, 617–627 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, L., Xiong, L., Li, J. & Huang, X. Long-term changes of nutrients and biocenoses indicating the anthropogenic influences on ecosystem in Jiaozhou Bay and Daya Bay, China. Mar Pollut Bull 168, 112406 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, X. et al. Effects of organic nitrogen components from terrestrial input on the phytoplankton community in Jiaozhou Bay. Marine Pollution Bulletin 174, 113316 (2022).CAS 
    Article 

    Google Scholar 
    Sharp, J. et al. Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Marine Chemistry 77 (2002).Walters, W. et al. Improved bacterial 16S rrna gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1 (2016).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    Article 

    Google Scholar 
    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–90 (2016).CAS 
    Article 

    Google Scholar 
    Yu, K. et al. Recovery of high-qualitied genomes from a deep-inland salt lake using BASALT. bioRxiv https://doi.org/10.1101/2021.03.05.434042 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).Article 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–7 (2016).CAS 
    Article 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat Methods 11, 1144–6 (2014).CAS 
    Article 

    Google Scholar 
    Nayfach, S. et al. New insights from uncultivated genomes of the global human gut microbiome. Nature 568 (2019).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–55 (2015).CAS 
    Article 

    Google Scholar 
    Olm, M. R, Brown, C. T. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. The ISME Journal 5 (2017).Albanese, D. & Donati, C. Large-scale quality assessment of prokaryotic genomes with metashot/prok-quality. F1000Research 10 (2021).Bowers, R. M. et al. Minimum information about a single amplified genome (misag) and a metagenome-assembled genome (mimag) of bacteria and archaea. Nature Biotechnology 35, 725–731 (2017).CAS 
    Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat Biotechnol 38, 1079–1086 (2020).CAS 
    Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics (2019).Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–7 (2004).CAS 
    Article 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–3 (2009).CAS 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one 25, e9490–e9490 (2010).ADS 
    Article 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP367774 (2022).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP367809 (2022).Tao, J. Jiaozhou bay 16S rDNA & metagenome dataset. figshare https://doi.org/10.6084/m9.figshare.19690459.v6 (2022). More

  • in

    Ornaments are equally informative in male and female birds

    Amundsen, T. In Animal Signals: Signalling and Signal Design in Animal Communication (eds. Espmark, Y., Amundsen, T. & Rosenqvist, G.) 133–154 (Tapir Academic Press, 2000).Amundsen, T. Why are female birds ornamented? Trends Ecol. Evol. 15, 149–155 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lande, R. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305 (1980).PubMed 
    Article 

    Google Scholar 
    Poissant, J., Wilson, A. J. & Coltman, D. W. Sex-specific genetic variance and the evolution of sexual size dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107 (2009).PubMed 
    Article 

    Google Scholar 
    Nordeide, J. T., Kekäläinen, J., Janhunen, M. & Kortet, R. Female ornaments revisited—are they correlated with offspring quality? J. Anim. Ecol. 82, 26–38 (2013).PubMed 
    Article 

    Google Scholar 
    Prum, R. O. The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us (Doubleday, 2017).Clark, C. J. & Rankin, D. Subtle, pervasive genetic correlation between the sexes in the evolution of dimorphic hummingbird tail ornaments. Evolution 74, 528–543 (2020).PubMed 
    Article 

    Google Scholar 
    LeBas, N. R. Female finery is not for males. Trends Ecol. Evol. 21, 170–173 (2006).PubMed 
    Article 

    Google Scholar 
    Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. & Komdeur, J. The evolution of mutual ornamentation. Anim. Behav. 74, 657–677 (2007).Article 

    Google Scholar 
    Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B 367, 2274–2293 (2012).Article 

    Google Scholar 
    Hare, R. M. & Simmons, L. W. Sexual selection and its evolutionary consequences in female animals. Biol. Rev. 94, 1464–7931 (2019).Article 

    Google Scholar 
    Hernández, A., Martínez-Gómez, M., Beamonte-Barrientos, R. & Montoya, B. Colourful traits in female birds relate to individual condition, reproductive performance and male-mate preferences: a meta-analytic approach. Biol. Lett. 17, 20210283 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsuboi, M., Gonzalez-Voyer, A., Höglund, J. & Kolm, N. Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evol. Ecol. 26, 171–185 (2012).Article 

    Google Scholar 
    Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).Doutrelant, C., Fargevieille, A. & Grégoire, A. Evolution of female coloration: what have we learned from birds in general and blue tits in particular. Adv. Study Behav. 52, 123–202 (2020).Article 

    Google Scholar 
    Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771–783 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59, 138–151 (2005).PubMed 
    Article 

    Google Scholar 
    Johnstone, R. A., Rands, S. A. & Evans, M. R. Sexual selection and condition-dependence. J. Evol. Biol. 22, 2387–2394 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cotton, S., Fowler, K. & Pomiankowski, A. Heightened condition dependence is not a general feature of male eyespan in stalk-eyed flies (Diptera: Diopsidae). J. Evol. Biol. 17, 1310–1316 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    David, P. et al. Male sexual ornament size but not asymmetry reflects condition in stalk-eyed flies. Proc. R. Soc. Lond. B 265, 2211–2216 (1998).Article 

    Google Scholar 
    Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zahavi, A. Mate selection-a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meunier, J., Figueiredo Pinto, S., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).Article 

    Google Scholar 
    Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White, T. E. Structural colours reflect individual quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Taylor & Francis Inc., 1988)Andersson, M. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17, 375–393 (1982).Article 

    Google Scholar 
    Walther, B. A. & Clayton, D. H. Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav. Ecol. 16, 89–95 (2005).Article 

    Google Scholar 
    Folstad, I. & Karter, A. K. Parasites, bright males and the immunocompetence handicap. Am. Nat. 139, 603–622 (1992).Article 

    Google Scholar 
    Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. & Sorci, G. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc. R. Soc. Lond. B 274, 819–825 (2007).CAS 

    Google Scholar 
    Weaver, R. J., Koch, R. E. & Hill, G. E. What maintains signal honesty in animal colour displays used in mate choice? Philos. Trans. R. Soc. B 372, 20160343 (2017).Article 

    Google Scholar 
    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huhta, E. Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84, 1793–1799 (2003).Article 

    Google Scholar 
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 18–222 (2004).Article 

    Google Scholar 
    Webster, M. S., Ligon, R. A. & Leighton, G. M. Social costs are an underappreciated force for honest signalling in animal aggregations. Anim. Behav. 143, 167–176 (2018).Article 

    Google Scholar 
    Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).PubMed 
    Article 

    Google Scholar 
    Promislow, D. E. L., Montgomerie, R. & Martin, T. E. Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B 250, 143–150 (1992).ADS 
    Article 

    Google Scholar 
    Guindre-Parker, S. & Love, O. P. Revisiting the condition-dependence of melanin-based plumage. J. Avian Biol. 45, 29–33 (2014).Article 

    Google Scholar 
    Roulin, A. & Dijkstra, C. Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity 90, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jawor, J. M. & Breitwisch, R. Melanin ornaments, honesty, and sexual selection. Auk 120, 249–265 (2003).Article 

    Google Scholar 
    Gunderson, A. R., Frame, A. M., Swaddle, J. P. & Forsyth, M. H. Resistance of melanized feathers to bacterial degradation: is it really so black and white? J. Avian Biol. 39, 539–545 (2008).Article 

    Google Scholar 
    Ruiz-de-Castañeda, R., Burtt, E. H. Jr., González-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol. J. Linn. Soc. 105, 409–419 (2012).Article 

    Google Scholar 
    Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution 68, 216–229 (2014).PubMed 
    Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guilford, T. & Dawkins, M. S. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1–14 (1991).Article 

    Google Scholar 
    Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. The handicap process favors exaggerated, rather than reduced, sexual ornaments. Evolution 68, 2534–2549 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peters, J. L. et al. Assessing publication bias in meta-analyses in the presence of between-study heterogeneity. J. R. Stat. Soc. Ser. A. 173, 575–591 (2010).MathSciNet 
    Article 

    Google Scholar 
    Dumbacher, J. P. & Fleischer, R. C. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc. Biol. Sci. 268, 1971–1976 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jønsson, K. A., Delhey, K., Sangster, G., Ericson, P. G. P. & Irestedt, M. The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proc. R. Soc. B Biol. Sci. B 283, 20160409 (2016).Article 

    Google Scholar 
    Ord, T. J. & Stuart-Fox, D. Ornament evolution in dragon lizards: multiple gains and widespread losses reveal a complex history of evolutionary change. J. Evol. Biol. 19, 797–808 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).PubMed 
    Article 

    Google Scholar 
    LeBas, N. R., Hockham, L. R. & Ritchie, M. G. Nonlinear and correlational sexual selection on ‘honest’ female ornamentation. Proc. R. Soc. Lond. B 270, 2159–2165 (2003).Article 

    Google Scholar 
    Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. Software version 4.5. https://automeris.io/WebPlotDigitizer (2000).Sidney, S. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill,1956).Friedman, H. Simplified determination of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 42, 521–526 (1982).Article 

    Google Scholar 
    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B 363, 399–410 (2008).Article 

    Google Scholar 
    Brown, M. E. In Current Ornithology (eds. Nolan, V. & Ketterson, E. D.) 67–135 (Plenum Press, 1996).Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22 (2012).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol. Lett. 20, 1869–1884 (2018).Article 

    Google Scholar 
    Arnholt, A. T. & Evans, B. BSDA: Basic statistics and data analysis. R package version 1.2.0. https://cran.r-project.org/package=BSDA (2017).Jackson, D., White, I. R., Price, M., Copas, J. & Riley, R. D. Borrowing of strength and study weights in multivariate and network meta-analysis. Stat. Methods Med. Res. 26, 2853–2868 (2017).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).PubMed 
    Article 

    Google Scholar 
    Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modeling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).Article 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).Article 

    Google Scholar 
    Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World (Cornell Laboratory of Ornithology, 2000). More

  • in

    Connectivity modelling in conservation science: a comparative evaluation

    Abram, D. The spell of the sensuous: Perception and language in a more-than-human world. Vintage (2012).Ingold, T. Being alive: Essays on movement, knowledge and description. Routledgehttps://doi.org/10.4324/9780203818336 (2011).Article 

    Google Scholar 
    Kimmerer, R.W. Braiding sweetgrass: Indigenous wisdom, scientific knowledge and the teachings of plants (Milkweed editions, 2013).Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359(6374), 466–469 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Gibbs, J.P. Amphibian movements in response to forest edges, roads, and streambeds in southern New England. in The Journal of Wildlife Management (1998), pp. 584–589. https://doi.org/10.2307/3802333.Moller, H., Berkes, F., O’Brian Lyver, P., & Kislalioglu, M. Combining science and traditional ecological knowledge: Monitoring populations for co-management. in Ecology and society (2004).Lorimer, J. Wildlife in the Anthropocene: conservation after nature. (U of Minnesota Press, 2015).Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3(4), 385–397 (1989).Article 

    Google Scholar 
    Abram, D. Becoming animal: An earthly cosmology. Vintage (2010).Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105(49), 19052–19059 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Tischendorf, L. & Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 90(1), 7–19. https://doi.org/10.1034/j.1600-0706.2000.900102.x (2000).Article 

    Google Scholar 
    Rudnick, D., Ryan, S.J., Beier, P., Cushman, S.A., Dieffenbach, F., Epps, C., Gerber, L.R., Hartter, J.N., Jenness, J.S., & Kintsch, J. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in Ecology (2012).Hilty, J.A., Lidicker, W.Z., & Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation (Island Press, 2012).Cushman, S.A., McRae, B.H., Adriaensen, F., Beier, P., Shirley, M., & Zeller, K. Biological corridors and connectivity [Chapter 21]. in Key Topics in Conservation Biology 2nd ed. (eds Macdonald, D.W., Willis, K.J.) pp. 384–404 (Hoboken, NJ: Wiley-Blackwell, 2013).Unnithan Kumar, S., Turnbull, J., Hartman Davies, O., Hodgetts, T., & Cushman, S.A. Moving beyond landscape resistance: Considerations for the future of connectivity modelling and conservation science. in Landscape Ecology (2022).Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: a review. Landscape Ecol. 27(6), 777–797 (2012).Article 

    Google Scholar 
    Adriaensen, F. et al. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 64(4), 233–247 (2003).Article 

    Google Scholar 
    Cushman, S. A. & McKelvey, K. S. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23(2), 368–376. https://doi.org/10.1111/j.1523-1739.2008.01111.x (2009).Article 
    PubMed 

    Google Scholar 
    Moilanen, A. On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J. Appl. Ecol. pp. 1543–1547 (2011).Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21(3), 788–799. https://doi.org/10.1111/j.1523-1739.2007.00674.x (2007).Article 
    PubMed 

    Google Scholar 
    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1. (2008).Article 
    PubMed 

    Google Scholar 
    Zeller, K. A. et al. Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers. Distrib. 24(7), 868–879. https://doi.org/10.1111/ddi.12742. (2018).Article 

    Google Scholar 
    Pullinger, M. G. & Johnson, C. J. Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol. 25(10), 1547–1560 (2010).Article 

    Google Scholar 
    Sawyer, S. C., Clinton, W. E. & Brashares, J. S. Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes?. J. Appl. Ecol. 48(3), 668–678 (2011).Article 

    Google Scholar 
    Laliberté, J. & St-Laurent, M.-H. Validation of functional connectivity modeling: The Achilles’ heel of landscape connectivity mapping. Landsc. Urban Plan. 202, 103878 (2020).Article 

    Google Scholar 
    Landguth, E. L. & Cushman, S. A. CDPOP: A spatially explicit cost distance popula tion genetics program. Mol. Ecol. Resour. 10(1), 156–161. https://doi.org/10.1111/j.1755-0998.2009.02719.x. (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19(19), 4179–4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cushman, S. A. & Landguth, E. L. Scale dependent inference in landscape genetics. Landsc. Ecol. 25(6), 967–979 (2010).Article 

    Google Scholar 
    Cushman, S. A., Shirk, A. J. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).Article 

    Google Scholar 
    Macdonald, E. A. et al. Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS ONE 13(9), e0196974 (2018).Article 

    Google Scholar 
    Schumaker, N. H. et al. Mapping sources, sinks, and connectivity using a simulation model of northern spotted owls. Landscape Ecol. 29(4), 579–592 (2014).Article 

    Google Scholar 
    Unnithan Kumar, S., Kaszta, Ż & Cushman, S. A. Pathwalker: A new individual-based movement model for conservation science and connectivity modelling. ISPRS Int. J. Geo Inf. 11(6), 329 (2022).Article 

    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020).CAS 
    Article 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14(6), 927–930 (2003).Article 

    Google Scholar 
    Dray, S., Royer-Carenzi, M. & Calenge, C. The exploratory analysis of autocorrelation in animal-movement studies. Ecol. Res. 25(3), 673–681. https://doi.org/10.1007/s11284-010-0701-7 (2010).Article 

    Google Scholar 
    Cushman, S.A. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis. in Spatial Complexity, Informatics, and Wildlife Conservation (Springer, 2010), pp. 131-149.Zeller, K. A. et al. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landscape Ecol. 29(3), 541–557 (2014).Article 

    Google Scholar 
    Kareiva, P. M. & Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 56(2), 234–238 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    Schumaker, N.H. Using landscape indices to predict habitat connectivity. Ecology (1996), pp. 1210–1225.Schumaker, N. H. & Brookes, A. HexSim: A modeling environment for ecology and conservation. Landscape Ecol. 33(2), 197–211 (2018).Article 

    Google Scholar 
    Bocedi, G., Palmer, S. C. F., Malchow, A.-K., Zurell, D. & Watts, K. RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44(10), 1453–1462 (2021).Article 

    Google Scholar 
    Kaszta, Ż, Cushman, S. A. & Slotow, R. Temporal non-stationarity of path- selection movement models and connectivity: An example of African elephants in Kruger national park. Front. Ecol. Evol. 9, 207 (2021).Article 

    Google Scholar 
    Osipova, L. et al. Using step-selection functions to model landscape connectivity for African elephants: Accounting for variability across individuals and seasons. Anim. Conserv. 22(1), 35–48 (2019).Article 

    Google Scholar 
    Vergara, M., Cushman, S. A. & Ruiz-González, A. Ecological differences and limiting factors in different regional contexts: landscape genetics of the stone marten in the Iberian Peninsula. Landscape Ecol. 32(6), 1269–1283 (2017).Article 

    Google Scholar 
    Reddy, P. A., Puyravaud, J.-P., Cushman, S. A. & Segu, H. Spatial variation in the response of tiger gene ow to landscape features and limiting factors. Anim. Conserv. 22(5), 472–480 (2019).Article 

    Google Scholar 
    Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land 9(9), 303. https://doi.org/10.3390/land9090303 (2020).Article 

    Google Scholar 
    Cronon, W. The trouble with wilderness: or, getting back to the wrong nature. Environ. Hist. 1(1), 7–28 (1996).Article 

    Google Scholar 
    Ingold, T. The Perception of the Environment: Essays on Livelihood, Dwelling and Skill (Routledge, 2021).Boettiger, A. N. et al. Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach. Ecology 92(8), 1648–1657 (2011).Article 

    Google Scholar 
    Pooley, S. et al. An interdisciplinary review of current and future approaches to improving human-predator relations. Conserv. Biol. 31(3), 513–523. https://doi.org/10.1111/cobi.12859 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benson, E. S. Minimal animal: Surveillance, simulation, and stochasticity in wildlife biology. Antennae 30, 39 (2014).
    Google Scholar 
    Kaszta, Ż et al. Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol. Cons. 235, 63–76 (2019).Article 

    Google Scholar 
    Penjor, U., Astaras, C., Cushman, S. A., Kaszta, Ż & Macdonald, D. W. Contrasting effects of human settlement on the interaction among sympatric apex carnivores. Proc. R. Soc. B 289(1973), 20212681 (2022).Article 

    Google Scholar 
    Barua, M. Bio-geo-graphy: Landscape, dwelling, and the political ecology of human-elephant relations. Environ. Plann. D Soc. Space 32(5), 915–934 (2014).Article 

    Google Scholar 
    Elliot, N. B., Cushman, S. A., Macdonald, D. W. & Loveridge, A. J. The devil is in the dispersers: Predictions of landscape connectivity change with demography. J. Appl. Ecol. 51(5), 1169–1178 (2014).Article 

    Google Scholar 
    Kareiva, P. & Marvier, M. What is conservation science?. Bioscience 62(11), 962–969 (2012).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).Article 

    Google Scholar 
    Bunnefeld, N., Nicholson, E., & Milner-Gulland, E.J. Decision-Making in Conservation and Natural Resource Management: Models for Interdisciplinary Approaches. (Vol. 22, Cambridge University Press, 2017).Parathian, H. E., McLennan, M. R., Hill, C. M., Fraza o-Moreira, A. & Hockings, K. J. Breaking through disciplinary barriers: Human-wildlife interactions and multispecies ethnography. Int. J. Primatol. 39(5), 749–775 (2018).Article 

    Google Scholar 
    Hodgetts, T. Connectivity as a multiple: In with and as “nature’’. Area 50(1), 83–90. https://doi.org/10.1111/area.12353 (2018).Article 
    PubMed 

    Google Scholar 
    Berkes, F. Sacred ecology (Routledge, 2017). https://doi.org/10.4324/9781315114644.Parrenas, J.S. Decolonizing Extinction: The Work of Care in Orangutan Rehabilitation (Duke University Press, 2018).Bill Adams, W., & Mulligan, M. Decolonizing Nature: Strategies for Conservation in a Post-Colonial Era (Routledge, 2012). More

  • in

    Industrial energy development decouples ungulate migration from the green wave

    Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).PubMed 

    Google Scholar 
    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant. Am. Nat. 131, 781–798 (1988).Article 

    Google Scholar 
    Holdo, R. M., Holt, R. D., Sinclair, A. R., Godley, B. J. & Thirgood, S. in Animal Migration: A Synthesis (eds Milner-Gulland, E. J. et al.) 131–143 (Oxford Univ. Press, 2011).Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Middleton, A. D. et al. Conserving transboundary wildlife migrations: recent insights from the Greater Yellowstone Ecosystem. Front. Ecol. Environ. 18, 83–91 (2020).Article 

    Google Scholar 
    Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).Article 

    Google Scholar 
    Fryxell, J. M. Forage quality and aggregation by large herbivores. Am. Nat. 138, 478–498 (1991).Article 

    Google Scholar 
    Drent, R., Ebbinge, B. & Weijand, B. Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh. Ornithol. Ges. Bayern 23, 239–264 (1978).
    Google Scholar 
    van der Graaf, S. A. J., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).
    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. R. Soc. B. 283, 20160456 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).PubMed 
    Article 

    Google Scholar 
    Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos https://doi.org/10.1111/oik.05227 (2018).Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sawyer, H. et al. A framework for understanding semi‐permeable barrier effects on migratory ungulates. J. Appl. Ecol. 50, 68–78 (2013).Article 

    Google Scholar 
    Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566–569 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).PubMed 
    Article 

    Google Scholar 
    Berry, J. Aspects of wildebeest Connochaetes taurinus ecology in the Etosha National Park—a synthesis for future management. Madoqua 1997, 137–148 (1997).
    Google Scholar 
    Williamson, D. & Williamson, J. Botswana’s fences and the depletion of Kalahari wildlife. Oryx 18, 218–222 (1984).Article 

    Google Scholar 
    Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).PubMed 
    Article 

    Google Scholar 
    Kauffman, M. J., Meacham, J. E., Sawyer, H., Rudd, W. & Ostlind, E. Wild Migrations: Atlas of Wyoming’s Ungulates (Oregon State Univ. Press, 2018).Wyckoff, T. B., Sawyer, H., Albeke, S. E., Garman, S. L. & Kauffman, M. J. Evaluating the influence of energy and residential development on the migratory behavior of mule deer. Ecosphere 9, e02113 (2018).Article 

    Google Scholar 
    Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A. & Bowyer, R. T. Migrating mule deer: effects of anthropogenically altered landscapes. PLoS ONE 8, e64548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lendrum, P. E., Anderson, C. R. Jr, Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural‐gas development. Ecosphere 3, 82 (2012).Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 
    Article 

    Google Scholar 
    Sawyer, H., LeBeau, C. W., McDonald, T. L., Xu, W. & Middleton, A. D. All routes are not created equal: an ungulate’s choice of migration route can influence its survival. J. Appl. Ecol. 56, 1860–1869 (2019).
    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).PubMed 
    Article 

    Google Scholar 
    Skarin, A., Nellemann, C., Rönnegård, L., Sandström, P. & Lundqvist, H. Wind farm construction impacts reindeer migration and movement corridors. Landsc. Ecol. 30, 1527–1540 (2015).Article 

    Google Scholar 
    Mysterud, A., Langvatn, R., Yoccoz, N. G. & Stenseth, N. C. Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography. J. Anim. Ecol. 70, 915–923 (2001).Article 

    Google Scholar 
    Johnson, H. E. et al. Increases in residential and energy development are associated with reductions in recruitment for a large ungulate. Glob. Change Biol. 23, 578–591 (2017).Article 

    Google Scholar 
    Sawyer, H., Korfanta, N. M., Nielson, R. M., Monteith, K. L. & Strickland, D. Mule deer and energy development—long-term trends of habituation and abundance. Glob. Change Biol. 23, 4521–4529 (2017).Article 

    Google Scholar 
    Sawyer, H., Lambert, M. S. & Merkle, J. A. Migratory disturbance thresholds with mule deer and energy development. J. Wildl. Manag. 84, 930–937 (2020).Article 

    Google Scholar 
    Uezu, A., Metzger, J. P. & Vielliard, J. M. E. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 123, 507–519 (2005).Article 

    Google Scholar 
    Keeley, A. T. H., Beier, P. & Jenness, J. S. Connectivity metrics for conservation planning and monitoring. Biol. Conserv. 255, 109008 (2021).Article 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Migration distance and maternal resource allocation determine timing of birth in a large herbivore. Ecology 102, e03334 (2021).PubMed 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Drought reshuffles plant phenology and reduces the foraging benefit of green-wave surfing for a migratory ungulate. Glob. Change Biol. 26, 4215–4225 (2020).Article 

    Google Scholar 
    Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H. & Monteith, K. L. Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88, 450–460 (2019).PubMed 

    Google Scholar 
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).Article 

    Google Scholar 
    Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).PubMed 
    Article 

    Google Scholar 
    Sawyer, H., Hayes, M., Rudd, B. & Kauffman, M. J. The Red Desert to Hoback Mule Deer Migration Assessment (Univ. Wyoming, 2014).Berger, J., Young, J. K. & Berger, K. M. Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol. 6, e165 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Article 

    Google Scholar 
    Vermote, E. MOD09A1 Surface Reflectance 8-day L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).Pettorelli, N., Mysterud, A., Yoccoz, N. G., Langvatn, R. & Stenseth, N. C. Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proc. R. Soc. B. 272, 2357–2364 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pettorelli, N. et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 20, 503–510 (2005).PubMed 
    Article 

    Google Scholar 
    Hamel, S., Garel, M., Festa-Bianchet, M., Gaillard, J. M. & Cote, S. D. Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J. Appl. Ecol. 46, 582–589 (2009).Article 

    Google Scholar 
    Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Single-cell view of deep-sea microbial activity and intracommunity heterogeneity

    Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arístegui J, Gasol JM, Duarte CM, Herndl GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54:1501–29.Article 

    Google Scholar 
    Ebrahimi A, Schwartzman J, Cordero OX. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc Natl Acad Sci USA. 2019;116:23309–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol. 2015;6:469.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simon M, Grossart HP, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28:175–211.Article 

    Google Scholar 
    Alldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Progr Oceanogr. 1988;20:41–82.Article 

    Google Scholar 
    Zehr JP, Kudela RM. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci. 2011;3:197–225.PubMed 
    Article 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol. 2021;4:604.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Teira E, Lebaron P, van Aken H, Herndl GJ. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr. 2006;51:2131–44.CAS 
    Article 

    Google Scholar 
    Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol. 2005;71:2303–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gasol JM, Alonso-Sáez L, Vaqué D, Baltar F, Calleja ML, Duarte CM, et al. Mesopelagic prokaryotic bulk and single-cell heterotrophic activity and community composition in the NW Africa-Canary Islands coastal-transition zone. Progr Oceanogr. 2009;83:189–96.Article 

    Google Scholar 
    Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, et al. Characterizing chemoautotrophy and heterotrophy in marine archaea and bacteria with single-cell multi-isotope NanoSIP. Front Microbiol. 2019;10:2682.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.CAS 
    PubMed 
    Article 

    Google Scholar 
    Orphan VJ, House CH. Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology. 2009;7:360–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol Biol. 2012;881:375–408.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nuñez J, Renslow R, Cliff JB, Anderton CR. NanoSIMS for biological applications: current practices and analyses. Biointerphases. 2018;13:03B301.Article 

    Google Scholar 
    Dawson KS, Scheller S, Dillon JG, Orphan VJ. Stable isotope phenotyping via cluster analysis of NanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front Microbiol. 2016;7:774.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arandia-Gorostidi N, Weber PK, Alonso-Sáez L, Morán XAG, Mayali X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 2017;11:641–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinic I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:1–23.Article 

    Google Scholar 
    Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, et al. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol. 2021;23:6764–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gini C. Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. C. Cuppini, Bologna; 1912.Fernández-Tschieder E, Binkley D. Linking competition with growth dominance and production ecology. Ecol Manag. 2018;414:99–107.Article 

    Google Scholar 
    Cordonnier T, Kunstler G. The Gini index brings asymmetric competition to light. Perspect Plant Ecol Evol Syst. 2015;17:107–15.Article 

    Google Scholar 
    Harch BD, Correll RL, Meech W, Kirkby CA, Pankhurst CE. Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. J Microbiol Methods. 1997;30:91–101.CAS 
    Article 

    Google Scholar 
    Li J, Ma YB, Hu HW, Wang JT, Liu YR, He JZ. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils. Front Microbiol. 2015;6:31.PubMed 
    PubMed Central 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MM. Look@NanoSIMS-a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-nanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arandia‐Gorostidi N, Alonso‐Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: Differential effect of temperature on the use of diatom‐derived carbon by two copiotrophic bacterial taxa. Environ Microbiol. 2020;22:1381–96.PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2021;23:81–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kemp PF, Lee S, Laroche J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol. 1993;59:2594–601.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baltar F, Arístegui J, Gasol J, Sintes E, van Aken H, Herndl G. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat Micro Ecol. 2010;58:287–302.Article 

    Google Scholar 
    Lønborg C, Nieto-Cid M, Hernando-Morales V, Hernández-Ruiz M, Teira E, Álvarez-Salgado XA. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity. FEMS Microbiol Ecol. 2016;92:fiw048.PubMed 
    Article 

    Google Scholar 
    Nagata T, Fukuda H, Fukuda R, Koike I. Bacter-ioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol Oceanogr. 2000;45:426–35.CAS 
    Article 

    Google Scholar 
    Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and Archaea in the deep ocean. Appl Environ Microbiol. 2004;70:4411–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mestre M, Hofer J. The microbial conveyor belt: connecting the globe through dispersion and dormancy. Trends Microbiol. 2020;29:482–92.PubMed 
    Article 

    Google Scholar 
    Giering SLC, Evans C. Overestimation of prokaryotic production by leucine incorporation—and how to avoid it. Limnol Oceanogr. 2022;67:726–38.Article 

    Google Scholar 
    Amos CM, Castelao RM, Medeiros PM. Offshore transport of particulate organic carbon in the California Current System by mesoscale eddies. Nat Commun. 2019;10:4940.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bauer JE, Druffel ERM. Ocean margins as a significant source of organic matter to the deep open ocean. Nature. 1998;392:482–5.CAS 
    Article 

    Google Scholar 
    Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environ Microbiol. 2013;15:1262–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM. Dilution limits dissolved organic carbon utilization in the deep ocean. Science. 2015;348:331–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Musat N, Adam B, Kuypers M, Amann R. HISH-SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol. 2012;35:541–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Klawonn I, Bonaglia S, Whitehouse MJ, Littmann S, Tienken D, Kuypers MMM, et al. Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities. ISME J. 2019;13:1960–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:150720190448005.Article 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Licht TR, Tolker-Nielsen T, Holmstrøm K, Krogfelt KA, Molin S. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents. Environ Microbiol. 1999;1:23–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME J. 2016;10:678–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu J, Gao W, Johnson R, Zhang W, Meldrum D. Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Mar Drugs. 2013;11:3777–801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar  More