More stories

  • in

    Effects of different water management and fertilizer methods on soil temperature, radiation and rice growth

    General description of the experimental areaThe experiment was performed for two years at the National Key Irrigation Experimental Station located on the Songnen Plain in Heping town, Qing’an County, Suihua, Heilongjiang, China, with a geographical location of 45° 63′ N and 125° 44′ E at an elevation of 450 m above sea level (Fig. 1). This region consists of plain topography and has a semiarid cold temperate continental monsoon climate, i.e., a typical cold region with a black soil distribution area. The average annual temperature is 2.5 °C, the average annual precipitation is 550 mm, the precipitation is concentrated from June to September of each year, and the average annual surface evaporation is 750 mm. The growth period of crops is 156–171 days, and there is a frost-free period of approximately 128 days year−122. The soil at the study site is albic paddy soil with a mean bulk density of 1.01 g/cm3 and a porosity of 61.8% prevails. The basic physicochemical properties of the soil were as follows: the mass ratio of organic matter was 41.8 g/kg, pH value was 6.45, total nitrogen mass ratio was 15.06 g/kg, total phosphorus mass ratio was 15.23 g/kg, total potassium mass ratio was 20.11 g/kg, mass ratio of alkaline hydrolysis nitrogen was 198.29 mg/kg, available phosphorus mass ratio was 36.22 mg/kg and available potassium mass ratio was 112.06 mg/kg.Figure 1Location of the study area. The map and inset map in this image were drawn by the authors using ArcGIS software. The software version used was ArcGIS software v.10.2, and its URL is http://www.esri.com/.Full size imageHumic acid fertilizerHumic acid fertilizer was produced by Yunnan Kunming Grey Environmental Protection Engineering Co., Ltd., China (Fig. 2). The organic matter was ≥ 61.4%, and the total nutrients (nitrogen, phosphorus and potassium) were ≥ 18.23%, of which N ≥ 3.63%, P2O5 ≥ 2.03%, and K2O ≥ 12.57%. The moisture content was ≤ 2.51%, the pH value was 5.7, the worm egg mortality rate was ≥ 95%, and the amount of faecal colibacillosis was ≤ 3%. The fertilizer contained numerous elements necessary for plants. The contents of harmful elements, including arsenic, mercury, lead, cadmium and chromium, were ≤ 2.8%, 0.01%, 7.6%, 0.1% and 4.7%, respectively; these were lower than the test standard.Figure 2Humic acid fertilizer in powder form.Full size imageExperimental design and observation methodsIrrigationIn this experiment, three irrigation practices, namely, control irrigation (C), wet irrigation (W) and flood irrigation (F), were designed (Table 1).Table 1 Different irrigation methods.Full size tableControl irrigation (C) of rice had no water layer in the rest of the growing stages, except for the shallow water layer at the regreen stage of rice, which was maintained at 0–30 mm, and the natural dryness in the yellow stage. The irrigation time and irrigation quota were determined by the root soil moisture content as the control index. The upper limit of irrigation was the saturated moisture content of the soil, the lower limit of soil moisture at each growth stage was the percentage of saturated moisture content, and the TPIME-PICO64/32 soil moisture analyser was used to determine the soil moisture content at 7:00 a.m. and 18:00 p.m., respectively. When the soil moisture content was close to or lower than the lower limit of irrigation, artificial irrigation occurred until the upper irrigation limit was reached. The soil moisture content was maintained between the upper irrigation limit and the lower irrigation limit of the corresponding fertility stage. Under the wet irrigation (W) and flood irrigation (F) conditions, it was necessary to read the depth of the water layer through bricks and a vertical ruler embedded in the field before and after 8:00 am every day to determine if irrigation was needed. If irrigation was needed, then the water metre was recorded before and after each irrigation. The difference between before and after was the amount of irrigation23.FertilizationIn our research, five fertilization methods were applied, as shown in Table 2. In this experiment, the rice cultivar “Suijing No. 18” was selected. Urea and humic acid fertilizer were applied according to the proportion of base fertilizer:tillering fertilizer:heading fertilizer (5:3:2). The amounts of phosphorus and potassium fertilizers were the same for all treatments, and P2O5 (45 kg ha−1) and K2O (80 kg ha−1) were used. Phosphorus was applied once as a basal application. Potassium fertilizer was applied twice: once as a basal fertilizer and at 8.5 leaf age (panicle primordium differentiation stage) at a 1:1 ratio22.Table 2 The fertilizer methods.Full size tableThis study was performed with a randomized complete block design with three replications. Three irrigation practices and five fertilizer methods were applied, for a total of 15 treatments as follows: CT1, CT2, CT3, CT4, CT5; WT1, WT2, WT3, WT4, WT5; FT1, FT2, FT3, FT4, and FT5 (C, W, and F represent control irrigation, wet irrigation, and flood irrigation; T represents fertilizer treatment).Measurements of the samplesA soil temperature sensor (HZTJ1-1) was buried in each experimental plot to monitor the temperature of each soil layer (5 cm, 10 cm, 15 cm, 20 cm and 25 cm depth). The transmission of photosynthetically active radiation was measured from 11:00 to 13:00 by using a SunScan Canopy Analysis System (Delta T Devices, Ltd., Cambridge, UK), and data during the crop-growing season were recorded every day24.Plant measurements were taken during the periods of tillering to ripening on days with no wind and good light. The fluorescence parameters were measured by a portable fluorescence measurement system (Li-6400XT, America). The detection light intensity was 1500 μmol m−2 s−1, and the saturated pulsed light intensity was 7200 μmolm−2 s−1. The functional leaves were dark adapted for 30 min, and then the maximum photosynthetic efficiency of PSII (Fv/Fm) was measured. Photochemical quenching (QP) and nonphotochemical quenching (NPQ) were measured with natural light. Simultaneously, the leaf chlorophyll relative content (SPAD) was monitored using SPAD 502 (Konica Minolta, Inc., Tokyo, Japan). For plant agronomic characteristics, the distance from the stem base to the stem tip was measured with a straight ruler to quantify plant height24.Statistical analysisExperimental data obtained for different parameters were analysed statistically using the analysis of variance technique as applicable to randomized complete block design. Duncan’s multiple range test was employed to assess differences between the treatment means at a 5% probability level. All statistical analyses were performed using SPSS 22.0 for Windows24.
    Ethics approvalExperimental research and field studies on plants, including the collection of plant material, comply with relevant institutional, national, and international guidelines and legislation. We had appropriate permissions/licences to perform the experiment in the study area. More

  • in

    A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees

    The bee health modelThe conceptual model of the interactions of various stressors with honey bee health is described by the following system of ordinary differential equations (ODEs)$${{tau }_{{HB}}dot{x}}_{{HB}}= {-{delta }_{{HB}}x}_{{HB}}+{g}_{{TC}}left({x}_{{TC}}right)+{g}_{{VA}}left({x}_{{VA}}right)+{g}_{{VI}}left({x}_{{VI}}right) \ +{bar{f}}_{S,C}left({u}_{S},{u}_{C},{x}_{{TC}},{x}_{{VA}}right)+{bar{f}}_{P}left({u}_{P},{x}_{{TC}}right)+{underline{f}}_{{HB}}left({u}_{T}right)$$
    (1)
    $${{tau }_{{TC}}dot{x}}_{{TC}}={-{delta }_{{TC}}x}_{{TC}}+{g}_{{HB}}left({x}_{{HB}}right)$$
    (2)
    $${{tau }_{{VA}}dot{x}}_{{VA}}={-{delta }_{{VA}}x}_{{VA}}+{h}_{{VA}}left({{x}_{{HB}},x}_{{TC}},varepsilon {x}_{{VI}}right)+{underline{f}}_{{VA}}left({u}_{T}right)$$
    (3)
    $${{tau }_{{VI}}dot{x}}_{{VI}}={-{delta }_{{VI}}x}_{{VI}}+{h}_{{VI}}left({{x}_{{HB}},x}_{{TC}},{varepsilon x}_{{VI}}right)$$
    (4)
    for the state variables ({x}_{{HB}}) representing honey bee health, ({x}_{{TC}}) the stress due to toxic compounds (e.g., neonicotinoid insecticides), ({x}_{{VA}}) the stress due to parasites (e.g., V. destructor) and ({x}_{{VI}}) the stress due to pathogens (e.g., DWV). The system includes the effects of external inputs as sugar ({u}_{S}), pollen ({u}_{P}), absolute deviation from desired temperature ({u}_{T}) and sub-optimal temperature ({u}_{C}). All the inputs and possible parameters are non-negative; the coefficients (tau) denote the time constants; the coefficients (delta) denote the self-regulation parameters; (varepsilon) in the last two equations allows to account for pathogens that can ((varepsilon , > , 0)) or cannot ((varepsilon=0)) impair the immune system (through link m in Fig. 1). We assume that the functions (g) are smooth, bounded, positive, convex and decreasing to 0; the functions (bar{f}) are smooth, bounded, non-negative, concave and increasing with respect to (w.r.t.) (u) arguments (vanishing only when the first (u) argument vanishes) while convex and decreasing to 0 w.r.t. (x) arguments; the functions ({underline{f}}) are smooth, bounded, non-positive and decreasing (vanishing only when (u=0)); the functions (h) are smooth, bounded, positive, convex and decreasing to 0 w.r.t. the first argument while concave and increasing w.r.t. all the other arguments. For a detailed description of the various functions, together with a summary of the biological effects they account for and a reference to the conceptual model in Fig. 1, see Supplementary Table 3.Structural analysis of the bee health modelWe describe here the structural considerations and computations that yield the structural influence matrix for the honey bee health system.The structural influence matrix (M) is defined as follows. (M) is a symbolic matrix with entries ({M}_{{ij}}) chosen among: +,−,0,?, according to the criteria described below. Consider an equilibrium point (bar{x}) and a constant perturbation (u) applied on the (j)-th system variable (small enough not to compromise the stability of the equilibrium). The equilibrium value will be modified as (bar{x}+delta bar{x}). Consider the sign of the perturbation of the (i)-th variable, (delta bar{{x}_{i}}). Then ({M}_{{ij}}) = + if (delta bar{{x}_{i}}) always has the same sign as (u); ({M}_{{ij}}=) − if (delta bar{{x}_{i}}) always has the opposite sign as (u); ({M}_{{ij}}) = 0 if always (delta bar{{x}_{i}}=0); regardless of the system parameters. Conversely, if the sign does depend on the system parameters, we set ({M}_{{ij}}) = ?.In this section we prove that the influence matrix of the honey bee health system is structurally determined, i.e., there are no “?”‘ entries in (M).We start with the following proposition.
    Proposition 1
    Assume that a matrix
    (J)
    is Hurwitz stable (i.e., all its eigenvalues have negative real part) and has the sign pattern
    $${sign}left(Jright)=left[begin{array}{cccc}- & – & – & -\ – & – & 0 & 0\ – &+& – &+\ – &+& 0 & -end{array}right]$$
    Then, the sign pattern of
    ({adj}left(-Jright))
    , the adjoint of
    (-J)
    , is
    $${sign}left({adj}left(-Jright)right)=left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$
    Proof To prove the statement, we just change the sign of the first variable, hence we change sign to the first row and column of matrix (J). The resulting matrix (M) is such that$${sign}left(Mright)=left[begin{array}{cccc}- &+&+&+\+& – & 0 & 0\+&+& – &+\+&+& 0 & -end{array}right]$$We observe that (M) is a Metzler matrix, namely, all its off-diagonal entries are non-negative. Moreover, the matrix is Hurwitz stable. Then, we can proceed as in the proof of Proposition 4 in a previous report16. Given a Metzler matrix that is Hurwitz stable, its inverse has non-positive entries; hence, the inverse of (-M) has non-negative entries: ({left(-Mright)}^{-1}ge 0) elementwise. Moreover, we observe that(,M) is an irreducible matrix, i.e., there is no variable permutation that brings the matrix in a block (either upper or lower) triangular form. This implies that the inverse of (-M) has strictly positive entries: ({left(-Mright)}^{-1} , > , 0) elementwise. Also, stability implies that the determinant of (-M) is positive: ({det }left(-Mright) , > , 0). Then, ({adj}left(-Mright)={left(-Mright)}^{-1}{det }left(-Mright) > 0), hence the adjoint of (-M) is also positive elementwise. To consider again the original sign of the variables, we change sign to the first row and column of ({adj}left(-Mright)), and we get the signature above for ({adj}left(-Jright)).The next step is the characterization of the structural influence matrix, which corresponds to the sign pattern of the adjoint of the negative Jacobian matrix in Proposition 1.To this aim, we first consider the linearized system and write it in a matrix-vector form$$dot{x}left(tright)={Jx}left(tright)+{e}_{j}u$$where (dot{x}left(tright)) is the time derivative of the four-dimensional vector (xleft(tright)) and ({e}_{k}), (k={{{{mathrm{1,2,3,4}}}}}), is an input vector, constant in time, with a single non-zero component, the (k)-th, equal to 1, while the scalar (u , > , 0) is the magnitude of the input. We wish to assess the (i)-th component of (xleft(tright)), ({x}_{i}left(tright)={e}_{i}^{T}xleft(tright)). If (J) is Hurwitz, as assumed, the steady-state value of variable ({x}_{i}left(tright)) due to the input perturbation ({e}_{k}) applied to the equation of variable ({x}_{k}left(tright)) is achieved for$$0=Jbar{x}+{e}_{k}u,$$namely$${x}_{i}=-{e}_{i}^{T}{J}^{-1}{e}_{k}u,$$which implies that the sign of the steady-state value ({bar{x}}_{i}) of variable ({x}_{i}) due to a persistent positive input acting on the (k)-th equation has the same sign as ({(-{J}^{-1})}_{{ik}}), the (left(i,kright)) entry of matrix ({left(-Jright)}^{-1}). Since we assume Hurwitz stability, we have that ({det }left(-Jright)) is positive, hence the sign pattern of the inverse ({left(-Jright)}^{-1}) corresponds to the sign pattern of the adjoint, ({adj}left(-Jright)). In fact, ({adj}left(-Jright)={left(-Jright)}^{-1}{det }left(-Jright)).We next consider the nonlinear system under investigation, which we write in the form$$dot{x}left(tright)=fleft(xleft(tright)right)$$and without restriction we assume that the zero vector is an equilibrium point: (0=fleft(0right)). This condition can be always achieved, without loss of generality, by a translation of coordinates. We also consider a stable equilibrium: we assume that the linearized system at the equilibrium is asymptotically stable, namely its Jacobian (J), which has the sign pattern considered in Proposition 1 above, is Hurwitz. We also assume that a constant input perturbation of magnitude (u) is applied to the system, affecting the (k)-th equation, i.e.,$$dot{x}left(tright)=fleft(xleft(tright)right)+{e}_{k}u,$$and that the perturbation is small enough to keep the state in the domain of attraction of the considered equilibrium. Due to this perturbation, a new steady state (bar{x}left(uright)) is reached that satisfies the condition$$0=fleft(bar{x}left(uright)right)+{e}_{k}u$$To determine the sign of the new equilibrium components (bar{x}left(uright)), we consider this new equilibrium vector as a function of (u) in a small interval (left[0,{x}_{{MAX}}right]). Adopting the implicit function theorem yields$$frac{d}{{dx}}bar{x}left(uright)=-J{left(uright)}^{-1}{e}_{k}u,$$where we have denoted by (Jleft(uright)) the Jacobian matrix computed at the perturbed equilibrium (bar{x}left(uright)). Hence, for (u) small enough, the sign of the derivatives of the entries of the new, perturbed equilibrium are, structurally, the same as those in the (k)-th column of matrix (-{J}^{-1}). Since, by construction, (xleft(0right)=0), this is also the sign of the elements of vector (bar{x}left(uright)), for (u) in the interval (left[0,{x}_{{MAX}}right]).We have therefore proved that the original nonlinear system describing honey bee health admits the following structural influence matrix:$$left[begin{array}{cccc}+& – & – & -\ – &+&+&+\ – &+&+&+\ – &+&+&+end{array}right]$$System equilibriaThe results concerning the system equilibria were obtained through a standard analytical treatment of the nonlinear equations describing the equilibrium conditions of the system of differential Eqs. (1), (2), (3), (4). A detailed description of methods is reported in Supplementary Methods.Laboratory experiments using honey beesTo confirm the bistability of the system representing honey bee health as affected by multiple stressors, we used data from several survival experiments, carried out in a laboratory environment according to the same standardized method, over a 6-year period (Source data file).All experiments involved Apis mellifera worker bees, sampled at the larval stage or before eclosion, from the hives of the experimental apiary of the University of Udine (46°04′54.2″N, 13°12′34.2″E). Previous studies indicated that the local bee population consists of hybrids between A. mellifera ligustica and A.m. carnica62,63. Ethical approval was not required for this study.We considered experiments on the effect of the following stressors: infection with 1000 DWV genome copies administered through the diet before pupation, feeding with a 50 ppm nicotine in a sugar solution at the adult stage, exposition to a sub-optimal temperature of 32 °C at the adult stage. All experiments were replicated 3 to 13 times, using, in total, the number of bees reported in Table 1.For the artificial infection with DWV, we collected with soft forceps individual L4 larvae from the brood cells of several combs. Groups of 20–30 of such larvae were placed in Petri dishes with an artificial diet made of 50% royal jelly, 37% distilled water, 6% glucose, 6% fructose, and 1% yeast. 25 DWV copies per mg of diet were added or not to the diet according to the experimental group (note that a bee larva at this stage consumes about 40 mg of larval food per day, thus the viral infection per bee was 1000 viral copies). After 24 h larvae were transferred onto a piece of filter paper to remove the residues of the diet and then into a clean Petri dish, where they were maintained until eclosion. At the day of emergence, bees were transferred to plastic cages in a thermostatic cabinet, where they were kept until death. The DWV extract was prepared according to previously described protocols64 and quantified according to standard methods.For the treatment with nicotine, 10 µL of pure nicotine were added to 200 g of the sugar solution used for the feeding of the caged bees, to reach the concentration of 50 ppm.Finally, to expose bees to a 32 °C temperature, the plastic cages with the adult bees were kept in a thermostatic cabinet whose temperature was set accordingly.To monitor the survival of the adult bees treated as above, they were maintained from eclosion until death in plastic cages in a dark incubator at 34.5 °C (or 32 °C, according to the experiment), 75% R.H.; two syringes were used to supply a sugar solution made of 2.4 mol/L of glucose and fructose (61% and 31%, respectively) and water, respectively; dead bees were counted daily.All the results of these experiments are reported in Source data file.All experiments were carried out during the summer months, from June to September for 6 consecutive years. Previous data indicated that, in this region, virus prevalence increases along the active season starting from very low levels in spring and reaching 100% of virus-infected honey bees by the end of the summer; virus abundance in infected honey bees follows a similar trend28. For this reason, it can be assumed that bees sampled early in the season are either uninfected or they bear only a very low viral infection level, whereas bees sampled later in the season are likely to be virus-infected, bearing moderate to high viral infections. To confirm this assumption and identify a method for filtering our data according to viral infection, we assessed viral infection in a sample of bees from the untreated control group of each experiment, by means of qRT-PCR. According to standard practice, we assumed that Ct values below 30 are indicative of an effective viral infection, whereas Ct above that threshold are more likely in virus negative bees. As expected, we found that virus prevalence increases from June to September (Supplementary Figure 1a), in such a way that up to mid July only the minority of bees can be considered as viral infected (Supplementary Figure 1b). Therefore, we classified as “early” all the samples collected up to mid July and assumed that viral infection in those samples was low; on the other hand, samples collected from mid July till September were classified as “late” and we assumed that viral infection in those samples was high.qRT-PCR analysis of viral infection was carried out as follows. At the beginning of every experiment (i.e., at day 0), two to five bees for each replication were sampled in liquid nitrogen and transferred in a −80 °C refrigerator. After defrosting of samples in RNA later, the gut of each honey bee was eliminated to avoid the clogging of the mini spin column used after. The whole body of sampled bees was homogenized using a TissueLyser (Qiagen®, Germany). Total RNA was extracted from each bee according to the procedure provided with the RNeasy Plus mini kit (Qiagen®, Germany). The amount of RNA in each sample was quantified with a NanoDrop® spectrophotomer (ThermoFisher™, USA). cDNA was synthetized starting from 500 ng of RNA following the manufacturer specifications (PROMEGA, Italy). Additional negative control samples containing no RT enzyme were included. DWV presence was verified by qRT-PCR considering as positive all samples with a Ct value lower than 30. The following primers were adopted: DWV (F: GGTAAGCGATGGTTGTTTG, R: CCGTGAATATAGTGTGAGG65). 10 ng of cDNA from each sample were analyzed using SYBR®green dye (Ambion®) according to the manufacturer specifications, on a BioRad CFX96 Touch™ Real time PCR Detector. Primer efficiency was calculated according to the formula (E={10}^{left(-1/{{{{{{rm{slope}}}}}}}-1right)*100}). The following thermal cycling profiles were adopted: one cycle at 95 °C for 10 min, 40 cycles at 95 °C for 15 s and 60 °C for 1 min, and one cycle at 68 °C for 7 min.Individual survival and colony stabilityTo investigate how the death rate of forager bees affects colony growth, a compartment model of honey bee colony population dynamics was proposed50. This model showed that death rates over a critical threshold led to colony failure. Here we modified this model to include premature death of bees at younger age, as predicted by our model of individual bee health in the presence of an immuno-suppressive virus. We show that the critical threshold found in the previously published model50 becomes a decreasing function of the death rate of the younger individuals, so that premature death (and, in turn, immune-suppression) favors colony collapse.In more details, we first summarize the results of the previously published model50 where two populations (F) (forager) and (H) (hive) of bees are considered and where conditions are provided on the mortality (m) of (F) under which the whole population collapses: namely, mathematically stated, the system admits the zero equilibrium only. Here we extend the model partitioning (H) in two categories, (Y) (younger hive bees) and (O) (older hive bees), asintroducing an early mortality factor (n) for the young population, showing how such a factor worsens the collapsing condition.The previously published model50 concerns the interaction between hive bees (H) and forager bees (F) and is described by the ODEs$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Above, (L) is the queen’s eggs laying rate, (w) is the rate at which (L) is reached as the total population (H+F) gets large, (alpha) is the maximum rate at which hive bees become forager bees in the absence of the latter, (sigma) measures the reduction of recruitment of hive bees in the presence of forager bees and, finally, (m) is the death rate of forager bees (while the death rate of hive bees is assumed to be negligible).We first summarize the main results in terms of a threshold value for (m) in view of colony collapse, as our further analysis will follow a similar approach. All the parameters are assumed to be positive.The search for the equilibria of the above ODEs leads to the unique nontrivial equilibrium (beyond the trivial one)$$bar{H}=frac{L}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for$$J=Jleft(mright):=frac{alpha -sigma -m+sqrt{{left(alpha -sigma -mright)}^{2}+4malpha }}{2m}.$$Note that (J) is alway positive (and, moreover, it is independent of (L) and (w)). It follows that (bar{F}) and (bar{H}) have the same sign, so that the existence of the nontrivial equilibrium is equivalent to (bar{F}+bar{H} , > , 0). It is not difficult to recover that$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)$$where (l:=L/w) is introduced for brevity. Then if (alpha le l) we get$$bar{F}+bar{H}=frac{w}{m}left(lfrac{1+J}{J}-mright)ge frac{w}{m}left(alpha frac{1+J}{J}-mright)=frac{w}{m}left(sigma+{mJ}right) , > , 0,$$with the last equality following from$$alpha -sigma frac{J}{1+J}-{mJ}=0,$$which in turn comes from annihilating the right-hand side of the second ODE and from using (J=bar{F}/bar{H}) while searching for equilibria. We conclude that, independently of (m), the colony never collapses if the recruitment rate (alpha) of forager bees is sufficiently low.Hence, we assume (alpha , > , l). Observe that$$bar{F}+bar{H}iff l , > , Jleft(m-lright)$$guarantees existence whenever (m) is sufficiently small, viz. (mle l). Assume then (m , > , l), so that the above condition reads$$J , < , frac{l}{m-l}$$leading to the threshold condition$$m , < , bar{m}:=frac{l}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma l}}{alpha -l}$$by using the definition of (J), see Eq. (2) the previously published model50.A standard stability analysis shows that, assuming (alpha,m , > , l), the nontrivial equilibrium is (globally) asymptotically stable whenever it exists (positive), i.e., whenever (m , < , bar{m}). Otherwise, the only (globally) attracting equilibrium is the trivial one, corresponding to colony collapse (see Fig. 5 for the previously published model50 or Fig. 4 for (n=0)). In the mathematical jargon, the disappearance of the positive equilibrium, for (m) exceeding (bar{m}), is referred to as a transcritical bifurcation43.Now, in view of the outcome of the analysis of our model of individual bee health, we introduce a mortality term for the younger bees. As forager bees are recruited from adult hive bees, we divide the class of hive bees (H) in younger (Y) and older (O), assuming that the former die at a rate (n), while the death rate of the latter remains negligible according to the previously published model50. Obviously, (H=Y+O). The original ODEs are consequently modified as$$dot{Y}=Lfrac{H+F}{w+H+F}-Y$$$$dot{O}=left(1-nright)Y-Hleft(alpha -sigma frac{F}{H+F}right)$$$$dot{F}=Hleft(alpha -sigma frac{F}{H+F}right)-{mF}.$$Note that the sum of the first two equations above gives$$dot{H}=Lfrac{H+F}{w+H+F}-Hleft(alpha -sigma frac{F}{H+F}right)-{nY}.$$The new negative mortality term for younger hive bees, (-{nY}), models the fact that only the younger hive bees die prematurely while the rest of the dynamics is unchanged with respect to the original model.The search for equilibria soon gives$$bar{Y}=Lfrac{bar{H}+bar{F}}{w+bar{H}+bar{F}}$$from the first ODE above, so that the remaining two equilibrium conditions lead to$$bar{H}=frac{{L}_{n}}{{mJ}}-frac{w}{1+J}$$$$bar{F}=Jbar{H}$$for the same (J) originally defined and ({L}_{n}:=Lleft(1-nright)) (note that (nin left({{{{mathrm{0,1}}}}}right)), and the case (n=0) brings us back to the original model). From this point on the analysis is the same as that previously summarized for the original model, but for replacing (L) with ({L}_{n}) and (l) with (l:=lleft(1-nright)). Consequently, by assuming (alpha,m , > , {l}_{n}) (which is less restrictive when (n , > , 0)), the threshold condition (m < bar{m}) becomes$$m , < , bar{m}left(nright):=frac{{l}_{n}}{2}frac{alpha+sigma+sqrt{{left(alpha -sigma right)}^{2}+4sigma {l}_{n}}}{alpha -{l}_{n}},$$which clearly returns the original threshold condition when (n=0). Since$$frac{dbar{m}}{{dn}}left(nright) , < , 0$$as it can be immediately verified, it follows that the critical value for (m), (bar{m}left(nright)), beyond which the colony system admits only the zero equilibrium, i.e., the transcritical bifurcation value, decreases with (n) (Fig. 4). We thus conclude that colony collapse is favored by the premature death of younger hive bees, possibly caused by a virus impairing the immune system as shown by the analysis of our model of individual bee health.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands

    Cumer T, Machado AP, Dumont G, Bontzorlos VA, Ceccherelli R, Charter M, Dichmann K, Martens H-D, Kassinis N, Lourenço R, Manzia F, Ovari K, Prévost L, Rakovic M, Siverio F, Roulin A, and Goudet J (2021) Population genomics of barn owls in the Western Parlearctic; NCBI bio project PRJNA727977; https://doi.org/10.1093/molbev/msab343Machado AP, Cumer T, Iseli C, Beaudoing E, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens H-D, Prévost L, Ramsden D, Roulin A, and Goudet J (2021) Population genomics of barn owls in the British Isles; NCBI bio project PRJNA700797; https://doi.org/10.1111/mec.16250Anguita F and Hernán F (2000) The Canary Islands origin: A unifying model. J Volcanol Geotherm Res 103:1–26. Elsevier B.VAstle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N (2016) The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 167:1415–1429.e19. Cell PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balloux F (2004) Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58:1891–1900. Society for the Study of EvolutionPubMed 
    Article 

    Google Scholar 
    Bannerman DA (1963) Birds of the Atlantic Islands. Vol. 1. A history of the birds of the Canary Islands and of the Salvages. Oliver & BoydBirdLife International (2019) The IUCN Red List of Threatened Species. Version 6.2Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri R, Antoniazza S, Gaigher A, Ducrest A-L, Simon C, Fumagalli L, Goudet J, Roulin A (2016) The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 70:140–153PubMed 
    Article 

    Google Scholar 
    Carine MA, Humphries CJ, Guma IR, Reyes-Betancort JA, Santos Guerra A (2009) Areas and algorithms: evaluating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. J Biogeogr 36:593–611Article 

    Google Scholar 
    Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJ, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, Astle WJ, Evangelou E, van Heel DA, Sankaran VG, Okada Y, Soranzo N, Johnson AD, Reiner AP, Auer PL, Lettre G (2020) Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182:1198–1213.e14CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements JF, Schulenberg TS, Iliff MJ, Billerman SM, Fredericks TA, Sullivan BL, and Wood CL (2019) The eBird/clements checklist of birds of the world: v2019Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol 23:3133–3157PubMed 
    Article 

    Google Scholar 
    Cumer T, Machado AP, Dumont G, Bontzorlos VA, Ceccherelli R, Charter M, Dichmann K, Martens H-D, Kassinis N, Lourenço R, Manzia F, Ovari K, Prévost L, Rakovic M, Siverio F, Roulin A, and Goudet J (2021) Landscape and climatic variations of the Quaternary shaped multiple secondary contacts among barn owls (Tyto alba) of the Western Palearctic. Mol Biol Evol, msab343, https://doi.org/10.1093/molbev/msab343.Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darre MJ, Harrison PC (1987) Heart rate, blood pressure, cardiac output, and total peripheral resistance of single comb White Leghorn hens during an acute exposure to 35 C ambient temperature. Poult Sci 66:541–547CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, Petersen AK, Pihur V, Strawbridge RJ, Shungin D, Hughes MF, Meirelles O, Kaakinen M, Bouatia-Naji N, Kristiansson K, Shah S, Kleber ME, Guo X, Lyytikäinen LP, Fava C, Eriksson N, Nolte IM, Magnusson PK, Salfati EL, Rallidis LS, Theusch E, Smith AJP, Folkersen L, Witkowska K, Pers TH, Joehanes R, Kim SK, Lataniotis L, Jansen R, Johnson AD, Warren H, Kim YJ, Zhao W, Wu Y, Tayo BO, Bochud M, Absher D, Adair LS, Amin N, Arking DE, Axelsson T, Baldassarre D, Balkau B, Bandinelli S, Barnes MR, Barroso I, Bevan S, Bis JC, Bjornsdottir G, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Bornstein SR, Brown MJ, Burnier M, Cabrera CP, Chambers JC, Chang IS, Cheng CY, Chines PS, Chung RH, Collins FS, Connell JM, Döring A, Dallongeville J, Danesh J, De Faire U, Delgado G, Dominiczak AF, Doney ASF, Drenos F, Edkins S, Eicher JD, Elosua R, Enroth S, Erdmann J, Eriksson P, Esko T, Evangelou E, Evans A, Fall T, Farrall M, Felix JF, Ferrières J, Ferrucci L, Fornage M, Forrester T, Franceschini N, Franco OH, Franco-Cereceda A, Fraser RM, Ganesh SK, Gao H, Gertow K, Gianfagna F, Gigante B, Giulianini F, Goel A, Goodall AH, Goodarzi MO, Gorski M, Gräßler J, Groves CJ, Gudnason V, Gyllensten U, Hallmans G, Hartikainen AL, Hassinen M, Havulinna AS, Hayward C, Hercberg S, Herzig KH, Hicks AA, Hingorani AD, Hirschhorn JN, Hofman A, Holmen J, Holmen OL, Hottenga JJ, Howard P, Hsiung CA, Hunt SC, Ikram MA, Illig T, Iribarren C, Jensen RA, Kähönen M, Kang HM, Kathiresan S, Keating BJ, Khaw KT, Kim YK, Kim E, Kivimaki M, Klopp N, Kolovou G, Komulainen P, Kooner JS, Kosova G, Krauss RM, Kuh D, Kutalik Z, Kuusisto J, Kvaløy K, Lakka TA, Lee NR, Te Lee I, Lee WJ, Levy D, Li X, Liang KW, Lin H, Lin L, Lindström J, Lobbens S, Männistö S, Müller G, Müller-Nurasyid M, Mach F, Markus HS, Marouli E, McCarthy MI, McKenzie CA, Meneton P, Menni C, Metspalu A, Mijatovic V, Moilanen L, Montasser ME, Morris AD, Morrison AC, Mulas A, Nagaraja R, Narisu N, Nikus K, O’Donnell CJ, O’Reilly PF, Ong KK, Paccaud F, Palmer CD, Parsa A, Pedersen NL, Penninx BW, Perola M, Peters A, Poulter N, Pramstaller PP, Psaty BM, Quertermous T, Rao DC, Rasheed A, Rayner NW, Renström F, Rettig R, Rice KM, Roberts R, Rose LM, Rossouw J, Samani NJ, Sanna S, Saramies J, Schunkert H, Sebert S, Sheu WHH, Shin YA, Sim X, Smit JH, Smith AV, Sosa MX, Spector TD, Stančáková A, Stanton AV, Stirrups KE, Stringham HM, Sundstrom J, Swift AJ, Syvänen AC, Tai ES, Tanaka T, Tarasov KV, Teumer A, Thorsteinsdottir U, Tobin MD, Tremoli E, Uitterlinden AG, Uusitupa M, Vaez A, Vaidya D, Van Duijn CM, Van Iperen EPA, Vasan RS, Verwoert GC, Virtamo J, Vitart V, Voight BF, Vollenweider P, Wagner A, Wain LV, Wareham NJ, Watkins H, Weder AB, Westra HJ, Wilks R, Wilsgaard T, Wilson JF, Wong TY, Yang TP, Yao J, Yengo L, Zhang W, Zhao JH, Zhu X, Bovet P, Cooper RS, Mohlke KL, Saleheen D, Lee JY, Elliott P, Gierman HJ, Willer CJ, Franke L, Hovingh GK, Taylor KD, Dedoussis G, Sever P, Wong A, Lind L, Assimes TL, Njølstad I, Schwarz PEH, Langenberg C, Snieder H, Caulfield MJ, Melander O, Laakso M, Saltevo J, Rauramaa R, Tuomilehto J, Ingelsson E, Lehtimäki T, Hveem K, Palmas W, März W, Kumari M, Salomaa V, Chen YDI, Rotter JI, Froguel P, Jarvelin MR, Lakatta EG, Kuulasmaa K, Franks PW, Hamsten A, Wichmann HE, Palmer CNA, Stefansson K, Ridker PM, Loos RJF, Chakravarti A, Deloukas P, Morris AP, Newton-Cheh C, Munroe PB (2016) The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48:1171–1184. Nature Publishing GroupCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Exposito-Alonso M (2017) rbioclim: Improved getData function from the raster R package to interact with past, present and future climate data from worldclim.orgFirmat C, Gomes Rodrigues H, Renaud S, Claude J, Hutterer R, Garcia-Talavera F, Michaux J (2010) Mandible morphology, dental microwear, and diet of the extinct giant rats Canariomys (Rodentia: Murinae) of the Canary Islands (Spain). Biol J Linn Soc 101:28–40. Blackwell Publishing LtdArticle 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. Oxford AcademicPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327PubMed 
    Article 

    Google Scholar 
    Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.5pd26sGe SX, Jung D, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. Oxford University PressCAS 
    PubMed 
    Article 

    Google Scholar 
    German CA, Sinsheimer JS, Klimentidis YC, Zhou H, Zhou JJ (2020) Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale. Genet Epidemiol 44:248–260. Wiley-Liss IncPubMed 
    Article 

    Google Scholar 
    Gillespie R (2004) Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356–359CAS 
    PubMed 
    Article 

    Google Scholar 
    Gillespie R, Croom H, Hasty G (1997) Phylogenetic relationships and adaptive shifts among major clades of tetragnatha spiders (Araneae: Tetragnathidae) in Hawai’i. Pac Sci 51:380–394CAS 

    Google Scholar 
    Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F -statistics. Mol Ecol Notes 5:184–186Article 

    Google Scholar 
    Goudet J, Kay T, Weir BS (2018) How to estimate kinship. Mol Ecol 27:4121–4135. Blackwell Publishing LtdPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graffelman J (2015) Exploring diallelic genetic markers: the {HardyWeinberg. } Package J Stat Softw 64:1–23
    Google Scholar 
    Graffelman J, Morales-Camarena J (2008) Graphical tests for Hardy-Weinberg Equilibrium based on the ternary plot. Hum Hered 65:77–84PubMed 
    Article 

    Google Scholar 
    Grant PR (1999) Ecology and Evolution of Darwin’s Finches. Princeton University PressGrant PR (1998) Evolution on Islands. Oxford University Press, Oxford, UK
    Google Scholar 
    Gu J, Liang Q, Liu C, Li S (2020) Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China. Front Genet 11:582355CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2011) Relationship between outdoor temperature and blood pressure. Occup Environ Med 68:296–301PubMed 
    Article 

    Google Scholar 
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, Iribarren C, Chakravarti A, Risch N (2017) Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet 49:54–64CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutterer R, Lopez-Jurado LF, Vogel P (1987) The shrews of the eastern Canary Islands: a new species (mammalia: Soricidae). J Nat Hist 21:1347–1357Article 

    Google Scholar 
    Illera JC, Spurgin LG, Rodriguez-Exposito E, Nogales M, Rando JC (2016) What are we learning about speciation and extinction from the Canary Islands? Ardeola 63:15–33Article 

    Google Scholar 
    Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL (2016) Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Ecol 25:4488–4507PubMed 
    Article 

    Google Scholar 
    Irwin DE, Milá B, Toews DPL, Brelsford A, Kenyon HL, Porter AN, Grossen C, Delmore KE, Alcaide M, Irwin JH (2018) A comparison of genomic islands of differentiation across three young avian species pairs. Mol Ecol 27:4839–4855CAS 
    PubMed 
    Article 

    Google Scholar 
    Juan C, Emerson BC, Oromí P, and Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Elsevier Ltd.Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241Article 

    Google Scholar 
    Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL (2019) Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 104:65–75. Cell PressCAS 
    PubMed 
    Article 

    Google Scholar 
    Korneliussen TS, Albrechtsen A, Nielsen R (2014) ANGSD: analysis of next generation sequencing data. BMC Bioinforma 15:1–13. BioMed Central LtdArticle 

    Google Scholar 
    Kulminski AM, Huang J, Loika Y, Arbeev KG, Bagley O, Yashkin A, Duan M, Culminskaya I (2018) Strong impact of natural-selection-free heterogeneity in genetics of age-related phenotypes. Aging 10:492–514. Impact Journals LLCPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin CJ, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. Elsevier LtdArticle 

    Google Scholar 
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lifjeld JT, Anmarkrud JA, Calabuig P, Cooper JEJ, Johannessen LE, Johnsen A, Kearns AM, Lachlan RF, Laskemoen T, Marthinsen G, Stensrud E, García-Del-Rey E (2016) Species-level divergences in multiple functional traits between the two endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands. BMC Zool 1:1–19. BioMed Central LtdArticle 

    Google Scholar 
    Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, Rice K, Morrison AC, Lu Y, Weiss S, Guo X, Palmas W, Martin LW, Chen YDI, Surendran P, Drenos F, Cook JP, Auer PL, Chu AY, Giri A, Zhao W, Jakobsdottir J, Lin LA, Stafford JM, Amin N, Mei H, Yao J, Voorman A, Larson MG, Grove ML, Smith AV, Hwang SJ, Chen H, Huan T, Kosova G, Stitziel NO, Kathiresan S, Samani N, Schunkert H, Deloukas P, Li M, Fuchsberger C, Pattaro C, Gorski M, Kooperberg C, Papanicolaou GJ, Rossouw JE, Faul JD, Kardia SLR, Bouchard C, Raffel LJ, Uitterlinden AG, Franco OH, Vasan RS, O’Donnell CJ, Taylor KD, Liu K, Bottinger EP, Gottesman O, Daw EW, Giulianini F, Ganesh S, Salfati E, Harris TB, Launer LJ, Dörr M, Felix SB, Rettig R, Völzke H, Kim E, Lee WJ, Te Lee I, Sheu WHH, Tsosie KS, Edwards DRV, Liu Y, Correa A, Weir DR, Völker U, Ridker PM, Boerwinkle E, Gudnason V, Reiner AP, Van Duijn CM, Borecki IB, Edwards TL, Chakravarti A, Rotter JI, Psaty BM, Loos RJF, Fornage M, Ehret GB, Newton-Cheh C, Levy D, Chasman DI (2016) Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48:1162–1170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Losos JB, Jackman TR, Larson A, De Queiroz K, Rodríguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118CAS 
    PubMed 
    Article 

    Google Scholar 
    Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–6. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387Article 

    Google Scholar 
    MacArthur RH and Wilson EO (1967) The theory of island biogeography. Princeton University PressMachado AP, Clément L, Uva V, Goudet J, Roulin A (2018) The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America. J Biogeogr 45:1288–1300Article 

    Google Scholar 
    Machado AP, Cumer T, Iseli C, Beaudoing E, Dupasquier M, Guex N, Dichmann K, Lourenço R, Lusby J, Martens H-D, Prévost L, Ramsden D, Roulin A, Goudet J (2021) Unexpected post-glacial colonisation route explains the white colour of barn owls (Tyto alba) from the British Isles. Mol Ecol 1–16. https://doi.org/10.1111/mec.16250Machado AP, Topaloudis A, Cumer T, Lavanchy E, Bontzorlos VA, Ceccherelli R, Charter M, Kassinis N, Lymberakis P, Manzia F, Ducrest AL, Dupasquier M, Guex N, Roulin A, Goudet J (2022) Genomic consequences of colonisation, migration and genetic drift in barn owl insular populations of the eastern Mediterranean. Mol Ecol 31:1375–1388Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Miska EA, Durbin R, Genner MJ, Turner GF (2015) Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350:1493–1498CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martín A, Lorenzo JA (2001) Aves del archipiélago canario. Editor, Francisco Lemus
    Google Scholar 
    Martin SH, Van Belleghem SM (2017) Exploring evolutionary relationships across the genome using topology weighting. Genetics 206:429–438. Genetics Society of AmericaPubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Masseti M (2010) Mammals of the Macaronesian islands (the Azores, Madeira, the Canary and Cape Verde islands): redefinition of the ecological equilibrium. Mammalia 74:3–34Article 

    Google Scholar 
    Mateo JA, Crochet PA, Afonso OM (2011) The species diversity of the genus Gallotia (Sauria: Lacertidae) during the Holocene on La Gomera (Canary Islands) and the Latin names of Gomeran giant lizards. Zootaxa 2755:66–68Article 

    Google Scholar 
    Molina-Borja M (2003) Sexual dimorphism of Gallotia atlantica atlantica and Gallotia atlantica mahoratae (Lacertidae) from the Eastern Canary Islands. J Herpetol 37:769–772Article 

    Google Scholar 
    Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380. https://doi.org/10.1016/j.cub.2015.03.047CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, Van Der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliot KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O’Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O’Reilly PF, Peltonen L, Pouta A, De Jong PE, Snieder H, Van Gilst WH, Clarke R, Goel A, Hamsten A, Altshuler D, Jarvelin MR, Elliott P, Lakatta EG, Forouhi N, Wareham NJ, Loos RJF, Deloukas P, Lathrop GM, Zelenika D, Strachan DP, Soranzo N, Williams FM, Zhai G, Spector TD, Peden JF, Watkins H, Ferrucci L, Caulfield M, Munroe PB, Berglund G, Melander O, Matullo G, Uiterwaal CS, van der Schouw YT, Numans ME, Ernst F, Homuth G, Völker U, Elosua R, Laakso M, Connell JM, Mooser V, Salomaa V, Tuomilehto J, Laan M, Navis G, Seedorf U, Syvänen AC, Tognoni G, Sanna S, Uda M, Scheet P, Schlessinger D, Scuteri A, Dörr M, Felix SB, Reffelmann T, Lorbeer R, Völzke H, Rettig R, Galan P, Hercberg S, Bingham SA, Kooner JS, Bandinelli S, Meneton P, Abecasis G, Thompson JR, Braga Marcano CA, Barke B, Dobson R, Gungadoo J, Lee KL, Onipinla A, Wallace I, Xue M, Clayton DG, Leung HT, Nutland S, Walker NM, Todd JA, Stevens HE, Dunger DB, Widmer B, Downes K, Cardon LR, Kwiatkowski DP, Barrett JC, Evans D, Morris AP, Lindgren CM, Rayner NW, Timpson NJ, Lyons E, Vannberg F, Hill AVS, Teo YY, Rockett KA, Craddock N, Attwood AP, Bryan C, Bumpstead SJ, Chaney A, Ghori J, William RG, Hunt SE, Inouye M, Keniry E, King E, McGinnis R, Potter S, Ravindrarajan R, Whittaker P, Withers D, Bentley D, Groves CJ, Duncanson A, Ouwehand WH, Boorman JP, Cant B, Jolley JD, Knight AS, Koch K, Taylor NC, Watkins NA, Winzer T, Braund PS, Dixon RJ, Mangino M, Stevens S, Donnely P, Davidson D, Marchini JL, Spencer ICA, Cardin NJ, Ferreira T, Pereira-Gale J, Hallgrimsdottir IB, Howie BN, Su Z, Vukcevic D, Easton D, Everson U, Hussey JM, Meech E, Prowse CV, Walters GR, Jones RW, Ring SM, Prembey M, Breen G, St. Clair D, Ceasar S, Gordon-Smith K, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskovina V, Nikolov I, O’Donovan MC, Owen MJ, Craddock N, Collier DA, Elkin A, Farmer A, Williamson R, McGruffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop DT, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Lewis CM, Onnie CM, Prescott NJ, Mathew CG, Forbes A, Sanderson J, Mathew C, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hider SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DPM, Thomson W, Worthington J, Frayling TM, Freathy RM, Lango H, Perry JRB, Weedon MN, Hattersley AT, Shields BM, Hitman GA, Walker M, Newport M, Sirugo G, Conway D, Jallow M, Bradbury LA, Pointon JL, Brown MA, Farrar C, Wordsworth P, Franklyn JA, Heward JM, Simmonds MJ, Cough SCL, Seal S, Stratton MR, Ban M, Goris A, Sawcer SJ, Compston A (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogales M, De León L, Gómez R (1998) On the presence of the endemic skink Chalcides simonyi Steind. 1891 in Lanzarote (Canary Islands). Amphib-Reptilia 19:427–430Article 

    Google Scholar 
    Nogales M, Rando JC, Valido A, Martín A (2001) Discovery of a living giant lizard, genus Gallotia (Reptilia: Lacertidae), from La Gomera, Canary Islands. Herpetologica 57:169–179
    Google Scholar 
    Norder SJ, Proios K, Whittaker RJ, Alonso MR, Borges PAV, Borregaard MK, Cowie RH, Florens FBV, de Frias Martins AM, Ibáñez M, Kissling WD, de Nascimento L, Otto R, Parent CE, Rigal F, Warren BH, Fernández-Palacios JM, van Loon EE, Triantis KA, Rijsdijk KF (2019) Beyond the Last Glacial Maximum: Island endemism is best explained by long-lasting archipelago configurations. Glob Ecol Biogeogr 28:184–197. Blackwell Publishing LtdArticle 

    Google Scholar 
    O’Brien KA, Simonson TS, and Murray AJ (2020) Metabolic adaptation to high altitude. Elsevier Ltd.Oskarsson GR, Oddsson A, Magnusson MK, Kristjansson RP, Halldorsson GH, Ferkingstad E, Zink F, Helgadottir A, Ivarsdottir EV, Arnadottir GA, Jensson BO, Katrinardottir H, Sveinbjornsson G, Kristinsdottir AM, Lee AL, Saemundsdottir J, Stefansdottir L, Sigurdsson JK, Davidsson OB, Benonisdottir S, Jonasdottir A, Jonasdottir A, Jonsson S, Gudmundsson RL, Asselbergs FW, Tragante V, Gunnarsson B, Masson G, Thorleifsson G, Rafnar T, Holm H, Olafsson I, Onundarson PT, Gudbjartsson DF, Norddahl GL, Thorsteinsdottir U, Sulem P, Stefansson K (2020) Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis. Commun Biol 3:1–10. Nature ResearchArticle 

    Google Scholar 
    Palacios CJ (2004) Current status and distribution of birds of prey in the Canary Islands. Bird Conserv Int 14:203–213Article 

    Google Scholar 
    Pestano J, Brown RP, Suárez NM, Benzal J, Fajardo S (2003) Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences. Heredity 90:302–307. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    Pickrell J and Pritchard J (2012) Inference of population splits and mixtures from genome-wide allele frequency data. Nat Preced, https://doi.org/10.1038/npre.2012.6956.1. Springer Science and Business Media LLCPurcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 
    Rodríguez B, Rodríguez A, Siverio F, Siverio M (2018) Factors affecting the spatial distribution and breeding habitat of an insular cliff-nesting raptor community. Curr Zool 64:173–181PubMed 
    Article 

    Google Scholar 
    Rodríguez A, Rodríguez B, Montelongo T, Garcia‐Porta J, Pipa T, Carty M, Danielsen J, Nunes J, Silva C, Geraldes P, Medina FM, and Illera JC (2020) Cryptic differentiation in the Manx Shearwater hinders the identification of a new endemic subspecies. J Avian Biol https://doi.org/10.1111/jav.02633Romano A, Séchaud R, Roulin A (2020) Geographical variation in bill size provides evidence for Allen’s rule in a cosmopolitan raptor. Glob Ecol Biogeogr 29:65–75Article 

    Google Scholar 
    Romano A, Séchaud R, Roulin A (2021) Evolution of wing length and melanin-based coloration in insular populations of a cosmopolitan raptor. J Biogeogr 48:961–973. Blackwell Publishing LtdArticle 

    Google Scholar 
    Senfeld T, Shannon TJ, van Grouw H, Paijmans DM, Tavares ES, Baker AJ, Lees AC, Collinson JM (2020) Taxonomic status of the extinct Canary Islands Oystercatcher Haematopus meadewaldoi. Ibis 162:1068–1074. Blackwell Publishing LtdArticle 

    Google Scholar 
    Siverio F (1998) Distribución y estatus de Tyto alba (Scopoli, 1769) en Tenerife, islas Canarias (Aves, Tytonidae). Vieraea 26:121–131
    Google Scholar 
    Siverio F (2007) Lechuza común, Tyto alba. In: Lorenzo JA (Ed.) Atlas de las aves nidificantes en el archipiélago canario (1997–2003). Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid, p 304–310
    Google Scholar 
    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. Oxford University PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Steinbauer MJ, Field R, Grytnes JA, Trigas P, Ah-Peng C, Attorre F, Birks HJB, Borges PAV, Cardoso P, Chou CH, De Sanctis M, de Sequeira MM, Duarte MC, Elias RB, Fernández-Palacios JM, Gabriel R, Gereau RE, Gillespie RG, Greimler J, Harter DEV, Huang TJ, Irl SDH, Jeanmonod D, Jentsch A, Jump AS, Kueffer C, Nogué S, Otto R, Price J, Romeiras MM, Strasberg D, Stuessy T, Svenning JC, Vetaas OR, Beierkuhnlein C (2016) Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob Ecol Biogeogr 25:1097–1107. Blackwell Publishing LtdArticle 

    Google Scholar 
    Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Nielsen SF, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig KH, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud AC, Nelson CP, Poveda A, Varga TV, Caslake M, De Craen AJM, Trompet S, Luan J, Scott RA, Harris SE, Liewald DCM, Marioni R, Menni C, Farmaki AE, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF, Uria-Nickelsen M, Malarstig A, Reilly DF, Hoek M, Vogt TF, Lin H, Lieb W, Traylor M, Markus HS, Highland HM, Justice AE, Marouli E, Lindström J, Uusitupa M, Komulainen P, Lakka TA, Rauramaa R, Polasek O, Rudan I, Rolandsson O, Franks PW, Dedoussis G, Spector TD, Jousilahti P, Männistö S, Deary IJ, Starr JM, Langenberg C, Wareham NJ, Brown MJ, Dominiczak AF, Connell JM, Jukema JW, Sattar N, Ford I, Packard CJ, Esko T, Mägi R, Metspalu A, De Boer RA, Van Der Meer P, Van Der Harst P, Gambaro G, Ingelsson E, Lind L, De Bakker PIW, Numans ME, Brandslund I, Christensen C, Petersen ERB, Korpi-Hyövälti E, Oksa H, Chambers JC, Kooner JS, Blakemore AIF, Franks S, Jarvelin MR, Husemoen LL, Linneberg A, Skaaby T, Thuesen B, Karpe F, Tuomilehto J, Doney ASF, Morris AD, Palmer CNA, Holmen OL, Hveem K, Willer CJ, Tuomi T, Groop L, Käräjämäki A, Palotie A, Ripatti S, Salomaa V, Alam DS, Majumder AAS, Di Angelantonio E, Chowdhury R, McCarthy MI, Poulter N, Stanton AV, Sever P, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, Deloukas P, Elliott P, Zeggini E, Kathiresan S, Melander O, Kuusisto J, Laakso M, Padmanabhan S, Porteous DJ, Hayward C, Scotland G, Collins FS, Mohlke KL, Hansen T, Pedersen O, Boehnke M, Stringham HM, Frossard P, Newton-Cheh C, Tobin MD, Nordestgaard BG, Caulfield MJ, Mahajan A, Morris AP, Tomaszewski M, Samani NJ, Saleheen D, Asselbergs FW, Lindgren CM, Danesh J, Wain LV, Butterworth AS, Howson JMM, Munroe PB (2016) Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48:1151–1161. Nature Publishing GroupCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorpe RS, Baez M (1993) Geographic variation in scalation of the lizard Gallotia stehlini within the island of Gran Canaria. Biol J Linn Soc 48:75–87. John Wiley & Sons, LtdArticle 

    Google Scholar 
    Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164PubMed 
    Article 

    Google Scholar 
    Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D’Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O’Connel JR, O’Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WHH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, Van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhou W, Zondervan KT, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50:26–35. Nature Publishing GroupCAS 
    PubMed 
    Article 

    Google Scholar 
    Uva V, Päckert M, Cibois A, Fumagalli L, Roulin A (2018) Comprehensive molecular phylogeny of barn owls and relatives (Family: Tytonidae), and their six major Pleistocene radiations. Mol Phylogenet Evol 125:127–137. Academic PressPubMed 
    Article 

    Google Scholar 
    van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform 43:11.10.1–11.10.33. John Wiley & Sons, Inc., Hoboken, NJ, USAArticle 

    Google Scholar 
    Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, Chen MH, Raffield LM, Tardaguila M, Huffman JE, Ritchie SC, Megy K, Ponstingl H, Penkett CJ, Albers PK, Wigdor EM, Sakaue S, Moscati A, Manansala R, Lo KS, Qian H, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala KN, Wilson PWF, Choquet H, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Felix SB, Floyd JS, Broer L, Grarup N, Guo MH, Guo Q, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nikus K, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Ghanbari M, Völker U, Völzke H, Watkins NA, Weiss S, Cai N, Kundu K, Watt SB, Walter K, Zonderman AB, Cho K, Li Y, Loos RJF, Knight JC, Georges M, Stegle O, Evangelou E, Okada Y, Roberts DJ, Inouye M, Johnson AD, Auer PL, Astle WJ, Reiner AP, Butterworth AS, Ouwehand WH, Lettre G, Sankaran VG, Soranzo N (2020) The polygenic and monogenic basis of blood traits and diseases. Cell 182:1214–1231.e11. Cell PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wain LV, Vaez A, Jansen R, Joehanes R, Van Der Most PJ, Erzurumluoglu AM, O’Reilly PF, Cabrera CP, Warren HR, Rose LM, Verwoert GC, Hottenga JJ, Strawbridge RJ, Esko T, Arking DE, Hwang SJ, Guo X, Kutalik Z, Trompet S, Shrine N, Teumer A, Ried JS, Bis JC, Smith AV, Amin N, Nolte IM, Lyytikäinen LP, Mahajan A, Wareham NJ, Hofer E, Joshi PK, Kristiansson K, Traglia M, Havulinna AS, Goel A, Nalls MA, Sõber S, Vuckovic D, Luan J, Del Greco FM, Ayers KL, Marrugat J, Ruggiero D, Lopez LM, Niiranen T, Enroth S, Jackson AU, Nelson CP, Huffman JE, Zhang W, Marten J, Gandin I, Harris SE, Zemunik T, Lu Y, Evangelou E, Shah N, De Borst MH, Mangino M, Prins BP, Campbell A, Li-Gao R, Chauhan G, Oldmeadow C, Abecasis G, Abedi M, Barbieri CM, Barnes MR, Batini C, Beilby J, Blake T, Boehnke M, Bottinger EP, Braund PS, Brown M, Brumat M, Campbell H, Chambers JC, Cocca M, Collins F, Connell J, Cordell HJ, Damman JJ, Davies G, De Geus EJ, De Mutsert R, Deelen J, Demirkale Y, Doney ASF, Dörr M, Farrall M, Ferreira T, Frånberg M, Gao H, Giedraitis V, Gieger C, Giulianini F, Gow AJ, Hamsten A, Harris TB, Hofman A, Holliday EG, Hui J, Jarvelin MR, Johansson Å, Johnson AD, Jousilahti P, Jula A, Kähönen M, Kathiresan S, Khaw KT, Kolcic I, Koskinen S, Langenberg C, Larson M, Launer LJ, Lehne B, Liewald DCM, Lin L, Lind L, Mach F, Mamasoula C, Menni C, Mifsud B, Milaneschi Y, Morgan A, Morris AD, Morrison AC, Munson PJ, Nandakumar P, Nguyen QT, Nutile T, Oldehinkel AJ, Oostra BA, Org E, Padmanabhan S, Palotie A, Paré G, Pattie A, Penninx BWJH, Poulter N, Pramstaller PP, Raitakari OT, Ren M, Rice K, Ridker PM, Riese H, Ripatti S, Robino A, Rotter JI, Rudan I, Saba Y, Saint Pierre A, Sala CF, Sarin AP, Schmidt R, Scott R, Seelen MA, Shields DC, Siscovick D, Sorice R, Stanton A, Stott DJ, Sundström J, Swertz M, Taylor KD, Thom S, Tzoulaki I, Tzourio C, Uitterlinden AG, Völker U, Vollenweider P, Wild S, Willemsen G, Wright AF, Yao J, Thériault S, Conen D, Attia J, Sever P, Debette S, Mook-Kanamori DO, Zeggini E, Spector TD, Van Der Harst P, Palmer CNA, Vergnaud AC, Loos RJF, Polasek O, Starr JM, Girotto G, Hayward C, Kooner JS, Lindgren CM, Vitart V, Samani NJ, Tuomilehto J, Gyllensten U, Knekt P, Deary IJ, Ciullo M, Elosua R, Keavney BD, Hicks AA, Scott RA, Gasparini P, Laan M, Liu Y, Watkins H, Hartman CA, Salomaa V, Toniolo D, Perola M, Wilson JF, Schmidt H, Zhao JH, Lehtimäki T, Van Duijn CM, Gudnason V, Psaty BM, Peters A, Rettig R, James A, Jukema JW, Strachan DP, Palmas W, Metspalu A, Ingelsson E, Boomsma DI, Franco OH, Bochud M, Newton-Cheh C, Munroe PB, Elliott P, Chasman DI, Chakravarti A, Knight J, Morris AP, Levy D, Tobin MD, Snieder H, Caulfield MJ, Ehret GB (2017) Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension 70:e4–e19. Lippincott Williams and WilkinsCAS 
    Article 

    Google Scholar 
    Warren BH, Simberloff D, Ricklefs RE, Aguilée R, Condamine FL, Gravel D, Morlon H, Mouquet N, Rosindell J, Casquet J, Conti E, Cornuault J, Fernández-Palacios JM, Hengl T, Norder SJ, Rijsdijk KF, Sanmartín I, Strasberg D, Triantis KA, Valente LM, Whittaker RJ, Gillespie RG, Emerson BC, and Thébaud C (2015) Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-WilsonWeir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15:1468–1476. Cold Spring Harbor Laboratory PressCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weir BS, Goudet J (2017) A unified characterization of population structure and relatedness. Genetics 206:2085–2103PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Witt KE, Huerta-Sánchez E (2019) Convergent evolution in human and domesticate adaptation to high-altitude environments. Phil. Trans. R. Soc. B 374:20180235Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, O’Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L (2020) Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 145:537–549. Mosby IncCAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Stress responses to repeated captures in a wild ungulate

    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 

    Google Scholar 
    Keuling, O., Lauterbach, K., Stier, N. & Roth, M. Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. Eur. J. Wildl. Res. 56, 159–167 (2010).Article 

    Google Scholar 
    Trondrud, L. M. et al. Fat storage influences fasting endurance more than body size in an ungulate. Funct. Ecol. 35, 1470–1480 (2021).CAS 
    Article 

    Google Scholar 
    Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).PubMed 
    Article 

    Google Scholar 
    Kukalová, M., Gazárková, A. & Adamík, P. Should i stay or should i go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859 (2013).Article 

    Google Scholar 
    Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995 (2009).Article 

    Google Scholar 
    Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. Effects of capture and transport on blood parameters in free-ranging mouflon (Ovis ammon). J. Zoo Wildl. Med. 28, 428–433 (1997).CAS 
    PubMed 

    Google Scholar 
    Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 89, 973–990 (2008).Article 

    Google Scholar 
    Mortensen, R. M. & Rosell, F. Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal. Sci. Rep. 10, 1–16 (2020).Article 

    Google Scholar 
    Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11, 1164–1181 (2020).Article 

    Google Scholar 
    Herman, J. P. et al. Regulation of the hypothalamic-pituitary- adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Sjaastad, V. Ø., Hove, K. & Sand, O. Physiology of Domestic Animals (Scandinavian Veterinary Press, 2016).
    Google Scholar 
    Omsjø, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85 (2009).Article 

    Google Scholar 
    Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. The stress response to repeated capture in mouflon (Ovis ammon): Physiological, haematological and biochemical parameters. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 45, 243–253 (1998).CAS 
    Article 

    Google Scholar 
    Hattingh, J., Pitts, N. I. & Ganhao, M. F. Immediate response to repeated capture and handling of wild impala. J. Exp. Zool. 248, 109–112 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortega, A. C. et al. Effectiveness of partial sedation to reduce stress in captured mule deer. J. Wildl. Manag. 84, 1445–1456 (2020).Article 

    Google Scholar 
    Arnemo, J. M. & Caulkett, N. Stress. In Zoo Animal and Wildlife Anesthesia and Immobilization (eds West, G. et al.) 103–109 (Blackwell Publications, 2007).
    Google Scholar 
    Sinclair, M. D. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 44, 885–897 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ranheim, B. et al. The effects of medetomidine and its reversal with atipamezole on plasma glucose, cortisol and noradrenaline in cattle and sheep. J. Vet. Pharmacol. Ther. 23, 379–387 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carroll, G. L. et al. Effect of medetomidine and its antagonism with atipamezole on stress-related hormones, metabolites, physiologic responses, sedation, and mechanical threshold in goats. Vet. Anaesth. Analg. 32, 147–157 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rode, K. D. et al. Effects of capturing and collaring on polar bears: finDings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322 (2014).Article 

    Google Scholar 
    Sakamoto, H., Misumi, K., Nakama, M. & Aoki, Y. The effects of xylazine on intrauterine pressure, uterine blood flow, maternal and fetal cardiovascular and pulmonary function in pregnant goats. J. Vet. Med. Sci. 58, 211–217 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katila, T. & Oijala, M. The effect of detomidine (Domosedan) on the maintenance of equine pregnancy and foetal development: ten cases. Equine Vet. J. 20, 323–326 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larsen, D. G. & Gauthier, D. A. Effects of capturing pregnant moose and calves on calf survivorship. J. Wildl. Manag. 53, 564 (1989).Article 

    Google Scholar 
    Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manage. 62, 745–752 (1998).Article 

    Google Scholar 
    DelGiudice, G. D., Mech, L. D., Paul, W. J. & Karns, P. D. Effects on fawn survival of multiple immobilizations of captive pregnant white-tailed deer. J. Wildl. Dis. 22, 245–248 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: The case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wingfield, J. C. et al. Ecological bases of hormone-behavior interactions: The ‘emergency life history stage’. Am. Zool. 38, 191–206 (1998).CAS 
    Article 

    Google Scholar 
    Huber, S., Palme, R. & Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocrinol. 130, 48–54 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morellet, N. et al. The effect of capture on ranging behaviour and activity of the European roe deer Capreolus capreolus. Wildlife Biol. 15, 278–287 (2009).Article 

    Google Scholar 
    Tarlow, E. M. & Blumstein, D. T. Evaluating methods to quantify anthropogenic stressors on wild animals. Appl. Anim. Behav. Sci. 102, 429–451 (2007).Article 

    Google Scholar 
    Hik, D. S. Does risk of predation influence the cyclic decline of snowshoe hares. Wildl. Res. 22, 115–129 (1995).Article 

    Google Scholar 
    Ordiz, A. et al. Lasting behavioural responses of brown bears to experimental encounters with humans. J. Appl. Ecol. 50, 306–314 (2013).Article 

    Google Scholar 
    Dechen Quinn, A. C., Williams, D. M. & Porter, W. F. Postcapture movement rates can inform data-censoring protocols for GPS-collared animals. J. Mammal. 93, 456–463 (2012).Article 

    Google Scholar 
    Cattet, M. R. L. Falling through the cracks: Shortcomings in the collaboration between biologists and veterinarians and their consequences for wildlife. ILAR J. 54, 33–40 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albon, S. D. et al. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore. Glob. Change Biol. 23, 1374–1389 (2017).ADS 
    Article 

    Google Scholar 
    Ovejero, R. et al. Do cortisol and corticosterone play the same role in coping with stressors? Measuring glucocorticoid serum in free-ranging guanacos (Lama guanicoe). J. Exp. Zool. Part A Ecol. Genet. Physiol. 319, 539–547 (2013).CAS 
    Article 

    Google Scholar 
    Bonacic, C., Feber, R. E. & Macdonald, D. W. Capture of the vicuña (Vicugna vicugna) for sustainable use: Animal welfare implications. Biol. Conserv. 129, 543–550 (2006).Article 

    Google Scholar 
    Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. Part A Ecol. Integr. Physiol. 337, 7–14 (2022).CAS 
    Article 

    Google Scholar 
    Sire, J. E. et al. The effect of blood sampling on plasma cortisol in female reindeer (Rangifer tarandus tarandus L). Acta Vet. Scand. 36, 583–587 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harlow, H. J., Thorne, E. T., Williams, E. S., Belden, E. L. & Gern, W. A. Adrenal responsiveness in domestic sheep ( Ovis aries ) to acute and chronic stressors as predicted by remote monitoring of cardiac frequency. Can. J. Zool. 65, 2021–2027 (1987).Article 

    Google Scholar 
    Pottinger, T. G. & Moran, T. A. Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J. Fish Biol. 43, 121–130 (1993).CAS 
    Article 

    Google Scholar 
    Arnemo, J. M. & Ranheim, B. Effects of medetomidine and atipamezole on serum glucose and cortisol levels in captive reindeer (Rangifer tarandus tarandus). Rangifer 19, 85–89 (1999).Article 

    Google Scholar 
    Mentaberre, G. et al. Effects of azaperone and haloperidol on the stress response of drive-net captured Iberian ibexes (Capra pyrenaica). Eur. J. Wildl. Res. 56, 757–764 (2010).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. & Wittemyer, G. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildl. Manag. 78, 731–738 (2014).Article 

    Google Scholar 
    Jung, T. S. et al. Short-term effect of helicopter-based capture on movements of a social ungulate. J. Wildl. Manag. 83, 830–837 (2019).Article 

    Google Scholar 
    Nurmi, H., Laaksonen, S., Raekallio, M. & Hänninen, L. Wintertime pharmacokinetics of intravenously and orally administered meloxicam in semi-domesticated reindeer (Rangifer tarandus tarandus). Vet. Anaesth. Analg. 49, 423–428 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, R. S., English, A. W., Mulley, R. C. & Lepherd, E. E. Haematology and serum biochemistry of captive unsedated chital deer (Axis axis) in Australia. J. Wildl. Dis. 27, 396–406 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brosh, A. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: A review1. J. Anim. Sci. 85, 1213–1227 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suazo, A. A., Delong, A. T., Bard, A. A. & Oddy, D. M. Repeated capture of beach mice (Peromyscus polionotus phasma and P. P. niveiventris) reduces body mass. J. Mammal. 86, 520–523 (2005).Article 

    Google Scholar 
    Hoyle, S. D., Horsup, A. B., Johnson, C. N., Crossman, D. G. & McCallum, H. Live-trapping of the northern hairy-nosed wombat (Lasiorhinus krefftii): Population-size estimates and effects on individuals. Wildl. Res. 22, 741–755 (1995).Article 

    Google Scholar 
    Estruelas, N. F. Short- and long-term physiological effects of capture and handling on free-ranging brown bears (Ursus arctos). PhD Thesis. (Inland Norway University of Applied Sciences, 2017).Veiberg, V. et al. Maternal winter body mass and not spring phenology determine annual calf production in an Arctic herbivore. Oikos 126, 980–987 (2017).Article 

    Google Scholar 
    Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Change Biol. 27, 993–1002 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Larsen, T. S., Nilsson, N. & Blix, A. S. Seasonal changes in lipogenesis and lipolysis in isolated adipocytes from Svalbard and Norwegian reindeer. Acta Physiol. Scand. 123, 97–104 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colman, J. E., Jacobsen, B. W. & Reimers, E. Summer response distances of Svalbard reindeer (Rangifer tarandus platyrhynchus) to provocation by humans on foot. Wildlife Biol. 7, 275–283 (2001).Article 

    Google Scholar 
    Trondrud, L. M. et al. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200215 (2021).Article 

    Google Scholar 
    Pigeon, G. et al. Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore. J. Anim. Ecol. 91, 61–73 (2022).PubMed 
    Article 

    Google Scholar 
    Peeters, B., Pedersen, Å., Veiberg, V. & Hansen, B. Hunting quotas, selectivity and stochastic population dynamics challenge the management of wild reindeer. Clim. Res. https://doi.org/10.3354/cr01668 (2021).Article 

    Google Scholar 
    Loe, L. E. et al. Activity pattern of arctic reindeer in a predator-free environment: No need to keep a daily rhythm. Oecologia 152, 617–624 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Dahl, S. R. et al. Assay of steroids by liquid chromatography–tandem mass spectrometry in monitoring 21-hydroxylase deficiency. Endocr. Connect. 7, 1542–1550 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loe, L. E. et al. Testing five hypotheses of sexual segregation in an arctic ungulate. J. Anim. Ecol. 75, 485–496 (2006).PubMed 
    Article 

    Google Scholar 
    Reimers, E., Lund, S. & Ergon, T. Vigilance and fright behaviour in the insular Svalbard reindeer (Rangifer tarandus platyrhynchus). Can. J. Zool. 89, 753–764 (2011).Article 

    Google Scholar 
    The R Core Team. R: A language and environment for statistical computing (2021).Burnham, K. P. & Anderson, D. R. in Model selection and multimodel inference. A Practical Information-Theoretic Approach. Ecological Modelling (Springer, 2002).Blanchet, F. G., Tikhonov, G. & Norberg, A. HMSC: Hierarchical modelling of species community. R package version 2.2-0 (2019).Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).PubMed 
    Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier Science BV, 2012).MATH 

    Google Scholar 
    Diggle, P. J., Heagerty, P., Liang, K.-Y. & Zeger, S. L. Analysis of Longitudinal Data (Oxford University Press, 2013).MATH 

    Google Scholar  More

  • in

    Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).
    Google Scholar 
    Karl, D. M. et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep Res. Part II Top. Stud. Oceanogr. 43, 539–568 (1996).CAS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Quay, P. D. The subtropical ocean’s biological carbon pump determined from O2 and DIC/DI13C tracers. Geophys. Res. Lett. 46, 5361–5368 (2019).
    Google Scholar 
    Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, 1–22 (2022).
    Google Scholar 
    Chávez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).
    Google Scholar 
    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger? Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 
    Signorini, S. R., Franz, B. A. & McClain, C. R. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1–11 (2015).
    Google Scholar 
    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).CAS 

    Google Scholar 
    Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).CAS 

    Google Scholar 
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).
    Google Scholar 
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).CAS 

    Google Scholar 
    Behrenfeld, M. Uncertain future for ocean algae. Nat. Clim. Chang. 1, 33–34 (2011).CAS 

    Google Scholar 
    Flombaum, P. & Martiny, A. C. Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnol. Oceanogr. 66, 4171–4181 (2021).
    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 10, 1063–1085 (1972).
    Google Scholar 
    Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature. Rev. Microbiol. 5, 813–819 (2007).CAS 

    Google Scholar 
    van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B Biol. Sci. 375, 1–8 (2020).
    Google Scholar 
    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
    Google Scholar 
    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Chang. Biol. 21, 1025–1040 (2015).PubMed 

    Google Scholar 
    Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Skau, L. F., Andersen, T., Thrane, J.-E. & Hessen, D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 5, e3743 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fernández‐González, C. et al. Effects of temperature and nutrient supply on resource allocation, photosynthetic strategy and metabolic rates of Synechococcus sp. J. Phycol. 56, 818–829 (2020).PubMed 

    Google Scholar 
    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2020).
    Google Scholar 
    Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 26, 4800–4811 (2020).PubMed 

    Google Scholar 
    Davey, M. et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol. Oceanogr. 53, 1722–1733 (2008).CAS 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 

    Google Scholar 
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).CAS 
    PubMed 

    Google Scholar 
    Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).CAS 
    PubMed 

    Google Scholar 
    Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H. & Leakey, R. J. G. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Res. Part I Oceanogr. Res. Pap. 45, 1339–1355 (1998).
    Google Scholar 
    Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B. & Zubkov, M. V. High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).
    Google Scholar 
    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).
    Google Scholar 
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).CAS 

    Google Scholar 
    Visintini, N., Martiny, A. C. & Flombaum, P. Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnol. Oceanogr. Lett. 6, 207–215 (2021).
    Google Scholar 
    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
    Google Scholar 
    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
    Google Scholar 
    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).PubMed 

    Google Scholar 
    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).CAS 

    Google Scholar 
    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).CAS 
    PubMed 

    Google Scholar 
    Berthelot, H., Duhamel, S., L’Helguen, S., Maguer, J. F. & Cassar, N. Inorganic and organic carbon and nitrogen uptake strategies of picoplankton groups in the northwestern Atlantic Ocean. Limnol. Oceanogr. 66, 3682–3696 (2021).CAS 

    Google Scholar 
    Marañón, E. et al. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55, 2339–2352 (2010).
    Google Scholar 
    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
    Google Scholar 
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    PubMed 

    Google Scholar 
    Babin, S. M., Carton, J. A., Dickey, T. D. & Wiggert, J. D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 109, 1–21 (2004).
    Google Scholar 
    Walker, N. D., Leben, R. R. & Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 32, 1–5 (2005).
    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Chang. Biol. 24, 2239–2261 (2018).PubMed 

    Google Scholar 
    Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).CAS 
    PubMed 

    Google Scholar 
    Marañón, E. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 50, 299–310 (2005).
    Google Scholar 
    Halsey, K. H. & Jones, B. M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 7, 265–297 (2015).
    Google Scholar 
    Quevedo, M. & Anadón, R. Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221, 29–38 (2001).
    Google Scholar 
    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
    Google Scholar 
    Landry, M. R. & Hassett, R. P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283–288 (1982).
    Google Scholar 
    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
    Google Scholar 
    Cermeño, P. et al. Marine primary productivity is driven by a selection effect. Front. Mar. Sci. 3, 1–10 (2016).Browning, T. J. et al. Nutrient co-limitation in the subtropical Northwest Pacific. Limnol. Oceanogr. Lett. 7, 52–61 (2022).
    Google Scholar 
    Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).
    Google Scholar 
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Google Scholar 
    Geider, R. J. Light and temperature dependence of the carnon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. N. Phytol. 106, 1–34 (1987).CAS 

    Google Scholar 
    Maxwell, D. P., Laudenbach, D. E. & Huner, N. P. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol. 109, 787–795 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, H. J., Sui, Y., Tang, D. L. & Afanasyev, Y. D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 128, 138–145 (2013).
    Google Scholar 
    Zhang, H., He, H., Zhang, W. Z. & Tian, D. Upper ocean response to tropical cyclones: a review. Geosci. Lett. 8, 1–12 (2021).
    Google Scholar 
    Lin, I. et al. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30, 1–4 (2003).Chai, F. et al. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 18, 849–859 (2021).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    PubMed 

    Google Scholar 
    Somero, G. N. Adaptation of enzymes to temperature: Searching for basic ‘strategies’. Comp. Biochem. Physiol.—B Biochem. Mol. Biol. 139, 321–333 (2004).PubMed 

    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).
    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Predicting responses to marine heatwaves using functional traits. Trends Ecol. Evol. 37, 20–29 (2022).PubMed 

    Google Scholar 
    Staehr, P. A. & Birkeland, M. J. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologia 45, 648–656 (2006).
    Google Scholar 
    Morán, X. A. G., Calvo-Díaz, A., Arandia-Gorostidi, N. & Huete-Stauffer, T. M. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ. Microbiol. 20, 3798–3810 (2018).PubMed 

    Google Scholar 
    Courboulès, J. et al. Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau Lagoon. Aquat. Ecol. 55, 647–666 (2021).
    Google Scholar 
    López-Sandoval, D. C., Duarte, C. M. & Agustí, S. Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnol. Oceanogr. 66, 2923–2935 (2021).
    Google Scholar 
    Landry, M. R., Selph, K. E., Hood, R. R., Davies, C. H. & Beckley, L. E. Low temperature sensitivity of picophytoplankton P:B ratios and growth rates across a natural 10 °C temperature gradient in the oligotrophic Indian Ocean. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10224 (2021)Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).CAS 

    Google Scholar 
    Fernández-González, C. & Marañón, E. Effect of temperature on the unimodal size scaling of phytoplankton growth. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Marañón, E. et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43–56 (2001).
    Google Scholar 
    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
    Google Scholar 
    Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 1–18 https://doi.org/10.1111/1365-2435.13986 (2021).Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010).
    Google Scholar 
    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).CAS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).
    Google Scholar 
    Fofonoff, N. P. & Millard, R. C. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44, 1–53 (1983).
    Google Scholar 
    Becker, S. et al. GO-SHIP repeat hydrography nutrient manual: the precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.581790 (2020).Marañón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. 8, 1–24 (2021).Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia

    Fauna, culture and chronology datasetsA geo-referenced dataset of chronometric dates covering the late MIS 3 (55–30 kyr cal bp) was compiled from the literature (dataset 1). The dataset included 363 radiocarbon, thermoluminescence, optically stimulated luminescence and uranium series dates obtained from 62 archaeological sites and seven palaeontological sites. These chronological determinations were obtained from ten palaeontological levels and 138 archaeological levels. The archaeological levels were culturally attributed to the Mousterian (n = 75), Châtelperronian (n = 6) and Aurignacian (n = 57) technocomplexes. A number of issues can potentially hamper the chronological assessment of Palaeolithic technocomplexes from radiocarbon dates, such as pretreatment protocols that do not remove sufficient contaminants or the quality of the bone collagen extracted. Moreover, discrepancies in cultural attributions or stratigraphic inconsistencies are commonly detected in Palaeolithic archaeology. Information regarding the quality of date determinations and cultural attribution or stratigraphic issues is provided in the Supplementary Information.Our dataset also included the presence of herbivore species recovered from each archaeo-palaeontological site (hereafter referred to as local faunal assemblages (LFAs)), their body masses and their chronology. The mean body mass of both sexes, for each species, was obtained from the PHYLACINE database53 and used in the macroecological modelling approach described below (see ‘Carrying capacity of herbivores’). For visual representation purposes, the herbivore species were grouped into four weight categories: small (500 kg). The chronology of the occurrence of each herbivore species was assumed to be the same as the dated archaeo-palaeontological layer where the species remains were recovered. Thus, to estimate the chronological range of each species in each region, all radiocarbon determinations were calibrated with the IntCal20 calibration curve54 and OxCAL4.2 software55. The BAMs were run to compute the upper and lower chronological boundaries at a CI of 95.4% of each LFA (see ‘Chronological assessment’ for more details). One of the purposes of the current study was to estimate the potential fluctuations in herbivore biomass during the stadial and interstadial periods of the late MIS 3. Accordingly, the time spans of the LFAs were classified into the discrete GS and GI phases provided by Rasmussen et al.51.Geographic settingsThe Iberian Peninsula locates at the southwestern edge of Europe (Fig. 1). It constitutes a large geographic area that exhibits a remarkable diversity of ecosystems, climates and landscapes. Both now and in the past, altitudinal, latitudinal and oceanic gradients affected the conformation of two biogeographical macroregions with different flora and fauna species pools: the Eurosiberian and Mediterranean regions13,46. In the north, along the Pyrenees and Cantabrian strip, the Eurosiberian region is characterized by oceanic influence and mild temperatures in the present day, whereas the Mediterranean region features drier summers and milder winters (Fig. 1). Between the Eurosiberian and Mediterranean regions, there is a transitional area termed Submediterranean or Supramediterranean. Lastly, the Mediterranean region is divided into two distinctive bioclimatic belts: (1) the Thermomediterranean region, located at lower latitudes, with high evapotranspiration rates and affected by its proximity to the coast; and (2) the Mesomediterranean region, with lower temperatures and wetter conditions (Fig. 1).Previous studies have shown that zoocoenosis and phytocenosis differed between these macroregions in the Pleistocene13,46. However, flora and fauna distributions changed during the stadial–interstadial cycles in the Iberian Peninsula, which suggests potential alterations in the boundaries of these biogeographical regions. The modelling approach used in this study to estimate the biomass of primary consumers is dependent on the reconstructed NPP and the herbivore guild structure in each biogeographical region. To test the suitability of the present-day biogeographical demarcations of the Iberian Peninsula during MIS 3, we assessed whether the temporal trends of NPP and the composition of each herbivore palaeocommunity differed between these biogeographical regions during the MUPT.Chouakria and Nagabhusan56 proposed a dissimilarity index to compare time series data by taking into consideration the proximity of values and the temporal correlation of the time series:$${rm{CORT}}(S_1,S_2) = frac{{mathop {sum}nolimits_{i = 1}^{p – 1} {left( {u_{left( {i + 1} right)} – u_i} right)} (v_{(i + 1)} – v_i)}}{{sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(u_{(i + 1)} – u_i)^2} } sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(v_{(i + 1)} – v)^2} } }}$$
    (1)
    where S1 and S2 are the time series of data, u and v represent the values of S1 and S2, respectively, and p is the length of values of each time series. CORT(S1, S2) belongs to the interval (−1,1). The value CORT(S1, S2) = 1 indicates that in any observed period (ti, ti+1), the values of the sequence S1 and those of S2 increase or decrease at the same rate, whereas CORT = −1 indicates that when S1 increases, S2 decreases or vice versa. Lastly, CORT(S1, S2) = 0 indicates that the observed trends in S1 are independent of those observed in S2. To complement this approach by considering not only the temporal correlation between each pair of time series but also the proximity between the raw values, these authors proposed an adaptive tuning function defined as follows:$$d{rm{CORT}}left( {S_1,S_2} right) = fleft({{rm{CORT}}left( {S_1,S_2} right)} right)times dleft( {S_1,S_2} right)$$
    (2)
    where$$fleft( x right) = frac{2}{{1 + exp left( {k,x} right)}},k ge 0$$
    (3)
    In this study, k was 2, meaning that the behaviour contribution was 76% and the contribution of the proximity between values was 24%57. Hence, f(x) modulates a conventional pairwise raw data distance (d(S1,S2)) according to the observed temporal correlation56. Consequently, dCORT adjusts the degree of similarity between each pair of observations according to the temporal correlation and the proximity between values. This function was used to compare the reconstructed NPP between biogeographical regions during MIS 3 in the Iberian Peninsula. However, two different biogeographical regions could have experienced similar evolutionary trends in their NPP, even though their biota composition was different. Therefore, this analysis was complemented with a JSI to assess whether the reconstructed herbivore species composition in each palaeocommunity differed among biogeographical regions during the late MIS 3. The JSI was based on presence–absence data and was calculated as follows:$${rm{JSI}} = frac{c}{{(a + b + c)}}$$
    (4)
    where c is the number of shared species in both regions and a and b are the numbers of species that were only present in one of the biogeographical regions. Therefore, the higher the value the more similar the palaeocommunities of both regions were.Chronological assessmentPivotal to any hypothesis of Neanderthal replacement patterns by AMHs is the chronology of that population turnover. To this end, we used three different approaches to provide greater confidence in the results: BAMs, the OLE model and SPD of archaeological assemblages. As detailed below, each of these approaches provides complementary information about the MUPT.First, we built a set of BAMs for the Mousterian, Châtelperronian and Aurignacian technocomplexes in each region during the MIS 3. As stated above, we compiled the available radiocarbon dates for Iberia between 55 and 30 kyr cal bp. However, not all dates or levels were included in the Bayesian chronology models. Radiocarbon determinations obtained from shell remains were incorporated in the dataset (dataset 1); however, the local variation of the reservoir age was unknown from 55 to 30 kyr bp. Because of uncertainties related to marine reservoir offsets, all BAMs that incorporated dates from marine shells were run twice: including and excluding these dates. All of the archaeological levels with cultural attribution issues or stratigraphic inconsistencies were excluded. The Supplementary Note provides a detailed description of the sites, levels and dates excluded and their justification. All BAMs were built for each technocomplex using the OxCAL4.2 software55 and IntCal20 calibration curve54.Bayesian chronology models were built for each archaeological and palaeontological level. Then, the dates associated with each technocomplex were grouped within a single phase to determine each culture’s regional appearance or disappearance. Our interest was not focused on the chronological duration of the Mousterian, Châtelperronian and Aurignacian cultures, but on the probability distribution function of the temporal boundaries of these cultures in each region. Thus, this chronological assessment aims to provide an updated chronological frame for Neanderthal replacement by AMHs in Iberia. For this reason, we did not differentiate between proto- and early Aurignacian cultures, since both are attributed to AMHs.In each BAM, we inserted into the same sequence the radiocarbon dates associated with a given technocomplex within a start and end boundary to bracket each culture, which allowed us to determine the probability distribution function for the beginning and end moment of each cultural phase6. The resolution of all models was set at 20 years. We used a t-type outlier model with an initial 5% probability for each determination, but when more than one radiocarbon date was obtained from the same bone remain, we used an s-type outlier model and the combine function. The thermoluminescence dating likelihoods were included in the models, together with their associated 1σ uncertainty ranges. When dates with low agreement ( More

  • in

    Honey bees save energy in honey processing by dehydrating nectar before returning to the nest

    Berenbaum, M. R. & Calla, B. Honey as a functional food for Apis mellifera. Annu. Rev. Entomol. 66, 185–208. https://doi.org/10.1146/annurev-ento-040320-074933 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Crane, E. Honey: A Comprehensive Survey (Heinemann, 1975).
    Google Scholar 
    Park, O. W. The storing and ripening of honey by honeybees. J. Econ. Entomol. 18, 405–410 (1925).Article 

    Google Scholar 
    Reinhardt, J. F. Ventilating the bee colony to facilitate the honey ripening process. J. Econ. Entomol. 32, 654–660. https://doi.org/10.1093/jee/32.5.654 (1939).Article 

    Google Scholar 
    Eyer, M., Neumann, P. & Dietemann, V. A look into the cell: Honey storage in honey bees, Apis mellifera. PLoS ONE 11(8), e0161059 (2016).Article 

    Google Scholar 
    Oertel, E., Fieger, E. A., Williams, V. R. & Andrews, E. A. Inversion of cane sugar in the honey stomach of the bee. J. Econ. Entomol. 44, 487–492 (1951).CAS 
    Article 

    Google Scholar 
    Park, O. W. Studies on the changes in nectar concentration produced by the honeybee, Apis mellifera. Part I. Changes which occur between the flower and the hive. Res. Bull. Iowa Agric. Exp. Station 151, 211–243 (1932).
    Google Scholar 
    Nicolson, S. W. & Human, H. Bees get a head start on honey production. Biol. Let. 4, 299–301. https://doi.org/10.1098/rsbl.2008.0034 (2008).Article 

    Google Scholar 
    Nicolson, S. W. & Louw, G. N. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222, 287–296 (1982).Article 

    Google Scholar 
    Schmid-Hempel, P., Kacelnik, A. & Houston, A. I. Honeybees maximize efficiency by not filling their crop. Behav. Ecol. Sociobiol. 17, 61–66 (1985).Article 

    Google Scholar 
    Kacelnik, A., Houston, A. I. & Schmid-Hempel, P. Central-place foraging in honey bees: The effect of travel time and nectar flow on crop filling. Behav. Ecol. Sociobiol. 19, 19–24. https://doi.org/10.1007/BF00303838 (1986).Article 

    Google Scholar 
    Wolf, T. J., Schmid-Hempel, P., Ellington, C. P. & Stevenson, R. D. Physiological correlates of foraging efforts in honey-bees: Oxygen consumption and nectar load. Funct. Ecol. 3, 417–424 (1989).Article 

    Google Scholar 
    Mitchell, D. Thermal efficiency extends distance and variety for honeybee foragers: Analysis of the energetics of nectar collection and desiccation by Apis mellifera. J. R. Soc. Interface 16, 20180879. https://doi.org/10.1098/rsif.2018.0879 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbet, S. A. et al. Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).Article 

    Google Scholar 
    Harano, K. & Nakamura, J. Nectar loads as fuel for collecting nectar and pollen in honeybees: Adjustment by sugar concentration. J. Comp. Physiol. A. https://doi.org/10.1007/s00359-016-1088-x (2016).Article 

    Google Scholar 
    Nicolson, S. W. & van Wyk, B.-E. Nectar sugars in Proteaceae: Patterns and processes. Aust. J. Bot. 46, 489–504 (1998).Article 

    Google Scholar 
    Corbet, S. A. Nectar sugar content: Estimating standing crop and secretion rate in the field. Apidologie 34, 1–10. https://doi.org/10.1051/apido:2002049 (2003).CAS 
    Article 

    Google Scholar 
    Southwick, E. E. & Pimentel, D. Energy efficiency of honey production by bees. Bioscience 31, 730–732. https://doi.org/10.2307/1308779 (1981).Article 

    Google Scholar 
    Mitchell, D. Nectar, humidity, honey bees (Apis mellifera) and varroa in summer: A theoretical thermofluid analysis of the fate of water vapour from honey ripening and its implications on the control of Varroa destructor. J. R. Soc. Interface 16, 20190048. https://doi.org/10.1098/rsif.2019.0048 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human, H., Nicolson, S. W. & Dietemann, V. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?. Naturwissenschaften 93, 397–401 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Ellis, M. B. Homeostasis: Humidity and water relations in honeybee colonies, MSc thesis, University of Pretoria (2008).Ellis, M., Nicolson, S., Crewe, R. & Dietemann, V. Hygropreference and brood care in the honeybee (Apis mellifera). J. Insect Physiol. 54, 1516–1521. https://doi.org/10.1016/j.jinsphys.2008.08.011 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Portman, Z. M., Ascher, J. S. & Cariveau, D. P. Nectar concentrating behavior by bees (Hymenoptera: Anthophila). Apidologie 52, 1169–1194. https://doi.org/10.1007/s13592-021-00895-1 (2021).Article 

    Google Scholar 
    Nicolson, S. W. Water homeostasis in bees, with the emphasis on sociality. J. Exp. Biol. 212, 429–434. https://doi.org/10.1242/jeb.022343 (2009).Article 
    PubMed 

    Google Scholar 
    Pokorny, T., Lunau, K. & Eltz, T. Raising the sugar content – orchid bees overcome the constraints of suction feeding through manipulation of nectar and pollen provisions. PLoS ONE 9(11), e113823. https://doi.org/10.1371/journal.pone.0113823 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindauer, M. The water economy and temperature regulation of the honeybee colony. Bee World 36, 81–92 (1955).Article 

    Google Scholar 
    Heinrich, B. Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. J. Exp. Biol. 85, 61–72 (1980).Article 

    Google Scholar 
    Cooper, P. D., Schaffer, W. M. & Buchmann, S. L. Temperature regulation of honeybees (Apis mellifera) foraging in the Sonoran desert. J. Exp. Biol. 114, 1–15 (1985).Article 

    Google Scholar 
    Louw, G. N. & Hadley, N. F. Water economy of the honeybee: A stoichiometric accounting. J. Exp. Zool. 235, 147–150 (1985).Article 

    Google Scholar 
    Rodney, S. & Purdy, J. Dietary requirements of individual nectar foragers, and colony-level pollen and nectar consumption: A review to support pesticide exposure assessment for honey bees. Apidologie 51, 163–179. https://doi.org/10.1007/s13592-019-00694-9 (2020).Article 

    Google Scholar 
    Drezner-Levy, T., Smith, B. & Shafir, S. The effect of foraging specialization on various learning tasks in the honey bee (Apis mellifera). Behav. Ecol. Sociobiol. 64, 135–148. https://doi.org/10.1007/s00265-009-0829-z (2009).Article 

    Google Scholar 
    Afik, O. & Shafir, S. Effect of ambient temperature on crop loading in the honey bee, Apis mellifera (Hymenoptera: Apidae). Entomologia Generalis 29, 135–148 (2007).Article 

    Google Scholar 
    Seeley, T. D. Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34, 51–62 (1994).Article 

    Google Scholar 
    Waller, G. D. Evaluating responses of honeybees to sugar solutions using an artificial-flower feeder. Ann. Entomol. Soc. Am. 65, 857–862 (1972).CAS 
    Article 

    Google Scholar 
    Nicolson, S. W., de Veer, L., Köhler, A. & Pirk, C. W. W. Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration. Proc. R. Soc. B: Biol. Sci. 280, 20131597. https://doi.org/10.1098/rspb.2013.1597 (2013).Article 

    Google Scholar 
    Neff, J. L. & Simpson, B. B. The roles of phenology and reward structure in the pollination biology of wild sunflower (Helianthus annuus L., Asteraceae). Israel J. Bot. 39, 197–216 (1990).
    Google Scholar 
    Waller, G. D., Carpenter, E. W. & Ziehl, O. A. Potassium in onion nectar and its probable effect on attractiveness of onion flowers to honey bees. J. Am. Soc. Hortic. Sci. 97, 535–539 (1972).CAS 
    Article 

    Google Scholar 
    Roubik, D. W., Yanega, D., Aluja, M., Buchmann, S. L. & Inouye, D. W. On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie 26, 197–211 (1995).Article 

    Google Scholar 
    Power, E. F., Stabler, D., Borland, A. M., Barnes, J. & Wright, G. A. Analysis of nectar from low-volume flowers: A comparison of collection methods for free amino acids. Methods Ecol. Evol. 9, 734–743. https://doi.org/10.1111/2041-210X.12928 (2018).Article 
    PubMed 

    Google Scholar 
    Pattrick, J. G., Symington, H. A., Federle, W. & Glover, B. J. The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging. J. R. Soc. Interface 17, 20190632. https://doi.org/10.1098/rsif.2019.0632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strauss, U., Dietemann, V., Human, H., Crewe, R. M. & Pirk, C. W. W. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor. Parasitology 143, 374–387. https://doi.org/10.1017/s0031182015001754 (2016).Article 
    PubMed 

    Google Scholar 
    Dyer, F. C. & Seeley, T. D. Interspecific comparisons of endothermy in honey-bees (Apis): Deviations from the expected size-related patterns. J. Exp. Biol. 127, 1–26. https://doi.org/10.1242/jeb.127.1.1 (1987).Article 

    Google Scholar  More

  • in

    Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).
    Google Scholar 
    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).
    Google Scholar 
    Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE 7, e32569 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).
    Google Scholar 
    Jenkins, A. R. et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21, 303–310 (2011).
    Google Scholar 
    Shaw, J. M., Reid, T. A., Schutgens, M., Jenkins, A. R. & Ryan, P. G. High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (Lond. 1859) 1859(160), 431–446 (2018).
    Google Scholar 
    Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 68, 71–94 (2021).
    Google Scholar 
    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).
    Google Scholar 
    Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).
    Google Scholar 
    Brooks, J. W. & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, J. W.) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).
    Google Scholar 
    Hau, T. C., Hamzah, N. H., Lian, H. H. & Amir Hamzah, S. P. A. Decomposition process and post mortem changes: Review. Sains Malaysiana 43, 1873–1882 (2014).
    Google Scholar 
    Cooper, J. E. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553Sutherland, A., Myburgh, J., Steyn, M. & Becker, P. J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231, 257–262 (2013).CAS 
    PubMed 

    Google Scholar 
    Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, A. J. Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 66, 1–13 (2020).
    Google Scholar 
    Goff, M. L. in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 134, 1361–1373 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Sci. 7, 6 (2020).PubMed Central 

    Google Scholar 
    Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of Gallus gallus decomposition. J. Taphon. 6, 21–40 (2008).
    Google Scholar 
    Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, N.E., Nebraska Game and Parks Commission, 1984).Hewadikaram, K. A. & Goff, M. L. Effect of carcass size on rate of decomposition and arthropod succession patterns. Am. J. Forensic Med. Pathol. 12, 240–265 (1991).
    Google Scholar 
    Zhou, C. & Byard, R. W. Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 18, 6–9 (2011).PubMed 

    Google Scholar 
    Cockle, D. L. & Bell, L. S. Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).
    Google Scholar 
    Azevedo, R. R. & Krüger, R. F. The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Série Zool. 103, 145–152 (2013).
    Google Scholar 
    Barnes, K. M. in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).Mann, R. W., Bass, W. M. & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35, 103–111 (1990).CAS 
    PubMed 

    Google Scholar 
    Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).ADS 

    Google Scholar 
    Araujo, P. I., Grasso, A. A., González-Arzac, A., Méndez, M. S. & Austin, A. T. Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. Environ. 330, 107908 (2022).
    Google Scholar 
    Fernández-Palacios, J. M. & Martín-Esquivel, J. L. Naturaleza de las Islas Canarias: Ecología y Conservación. (Turquesa, 2001).Kenward, M. G. & Roger, J. H. An improved approximation to the precision of fixed effects from restricted maximum likelihood. Comput. Stat. Data Anal. 53, 2583–2595 (2009).MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).
    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Sage, 2011).Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.43.6, 2019).De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (R Package Version 0.2–1, 2015).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28, 190–192 (2001).
    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, W. D. & Sorg, M. H.) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 12, 18–27 (2001).
    Google Scholar 
    Austin, A. T., Araujo, P. I. & Leva, P. E. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90, 2642–2647 (2009).PubMed 

    Google Scholar 
    Brandt, L. A., Bonnet, C. & King, J. Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114, G02004 (2009).ADS 

    Google Scholar 
    Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Chang. Biol. 18, 1185–1195 (2012).ADS 

    Google Scholar 
    Zepp, R. G., Erickson, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).CAS 
    PubMed 

    Google Scholar 
    Archer, M. S. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).Simmons, T., Adlam, R. E. & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 55, 8–13 (2010).PubMed 

    Google Scholar 
    Spicka, A., Johnson, R., Bushing, J., Higley, L. G. & Carter, D. O. Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 209, 80–85 (2011).CAS 
    PubMed 

    Google Scholar 
    Tracqui. in Encyclopaedia of Forensic Sciences (eds. Siegel, J. A., Saukko, P. J. & Max, M. H.) 1357–1363 (Academic Press, 2000).Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).PubMed 

    Google Scholar  More