More stories

  • in

    Soil meso- and micro-fauna community in response to bamboo-fungus agroforestry management

    Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
    Google Scholar 
    Zhao, J., Wang, B., Li, Q., Yang, H. & Xu, K. Analysis of soil degradation causes in Phyllostachys edulis forests with different mulching years. Forests 9(3), 149 (2018).Article 

    Google Scholar 
    Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).Article 

    Google Scholar 
    Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).CAS 
    Article 

    Google Scholar 
    Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).Article 

    Google Scholar 
    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).Article 

    Google Scholar 
    Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S. & Rachmawati, R. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. J. Degrade. Min. Land Manage. 6(3), 1727–1736 (2019).Article 

    Google Scholar 
    Coleman, B. R., Martin, A. R., Thevathasan, N. V., Gordon, A. M. & Isaac, M. E. Leaf trait variation and decomposition in short-rotation woody biomass crops under agroforestry management. Agric. Ecosyst. Environ. 298, 106971 (2020).CAS 
    Article 

    Google Scholar 
    Cai, C. J., Fan, S. H., Liu, G. L., Wang, S. M. & Feng, Y. Research and development advance of compound management of bamboo forests. World Bamboo Rattan 16(5), 47–52 (2018) (in Chinese).
    Google Scholar 
    Song, Z. et al. Characteristics of Se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol. Trace Elem. Res. 113(1), 81–89 (2009).Article 

    Google Scholar 
    Wang, Q. et al. Effects of drying on the structural characteristics and antioxidant activities of polysaccharides from Stropharia rugosoannulata. J. Food Sci. Technol. 58, 3622–3631 (2021).CAS 
    Article 

    Google Scholar 
    Yan, P., Jiang, J. & Cui, W. Characterization of protoplasts prepared from the edible fungus, Stropharia rugoso-annulata. World J. Microbiol. Biotechnol. 20(2), 173–177 (2004).CAS 
    Article 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilition. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).CAS 
    Article 

    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).Article 

    Google Scholar 
    Tan, B. et al. Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl. Soil Ecol. 155, 103673 (2020).Article 

    Google Scholar 
    John, K., Zaitsev, A. S. & Wolters, V. Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia 84, 150703 (2021).Article 

    Google Scholar 
    Qin, Z. et al. Changes in the soil meso- and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol. Res. 34(2), 265–276 (2019).Article 

    Google Scholar 
    Chauvat, M., Titsch, D., Zaytesev, A. S. & Wolters, V. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For. Ecol. Manag. 262(3), 317–324 (2011).Article 

    Google Scholar 
    Yan, S. et al. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 47(2), 158–165 (2012).CAS 
    Article 

    Google Scholar 
    Reeve, J. R. et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J. 4, 1099–1107 (2010).Article 

    Google Scholar 
    Lavelle, P., Bignell, D. & Lepage, M. Soil function in a changing world: The role of invertebrate engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).Article 

    Google Scholar 
    Zhang, L., Wang, G. & Cao, F. The effect of ginkgo agroforestry patterns on soil fauna diversity. J. Nanjing For. Univ. 39(2), 27–32 (2015) (in Chinese).
    Google Scholar 
    Liu, P. et al. Impact of straw returning on cropland soil mesofauna community in the western part of black soil area. Chin. J. Ecol. 37(1), 139–146 (2018) (in Chinese).
    Google Scholar 
    Liu, M. Study on the model of interplanting edible fungi under bamboo (Phyllostachys edulis) forest and comprehensive benefit comparative. Master’s Thesis, Chinese Academy of Forestry (2021) (in Chinese).Wang, B., Shen, Q., Zhu, W., Shen, X. & Li, Q. Effects of interplanting Dictyophora echinovolvata on physicochemical properties, phospholipid fatty acids characters and enzyme activities in soil of Phyllostachy heterocycla cv. pubescens. For. Environ. Sci. 32(4), 28–32 (2016) (in Chinese).Article 

    Google Scholar 
    Ying, G. H. et al. Effect of cultivation of Dictyophora echinovolvata on shoot yield and soil under Phyllostachy heterocycla cv. pubescens stand. J. Zhejiang For. Sci. Technol. 34(6), 65–67 (2014) (in Chinese).
    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).CAS 
    Article 

    Google Scholar 
    Fujii, K., Hayakawa, C., Inagaki, Y. & Kosaki, T. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446(1), 425–439 (2020).CAS 
    Article 

    Google Scholar 
    Fujii, K. & Toma, T. Comparison of soil acidification rates under different land uses in Indonesia. Plant Soil 465(1–2), 1–17 (2021).CAS 
    Article 

    Google Scholar 
    Poss, R., Smith, C. J., Dunin, F. X. & Angus, J. F. Rate of soil acidification under wheat in a semi-arid environment. Plant Soil 177, 85–100 (1995).CAS 
    Article 

    Google Scholar 
    Yin, X. et al. Distribution and diversity partterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Appl. Soil Ecol. 123, 375–383 (2018).Article 

    Google Scholar 
    Luo, M. L. et al. Effects of different rice straw returning quantities on soil fauna community structure. J. Zhejiang A&F Univ. 37(1), 85–92 (2020) (in Chinese).
    Google Scholar 
    Peng, C. Y. et al. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantation in the upper reaches of Yangtze River. J. Zhejiang Univ. 45(5), 585–595 (2019) (in Chinese).
    Google Scholar 
    Carmen, M. U., Edmond, R. Z. & Michelle, M. W. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem. 64, 103–113 (2013).Article 

    Google Scholar 
    Kamau, S., Karanja, N. K., Ayuke, F. O. & Lehmann, J. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol. Fertil. Soils 55(7), 661–673 (2019).CAS 
    Article 

    Google Scholar 
    Fu, X., Shao, M., Wei, X. & Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155(1–2), 31–35 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Guan, F., Tang, X., Fan, S., Zhao, J. & Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. Catena 133, 455–460 (2015).CAS 
    Article 

    Google Scholar 
    Liu, Y. et al. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10561 (2019).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Complex effects of chytrid parasites on the growth of the cyanobacterium Planktothrix rubescens across interacting temperature and light gradients

    Díez B, Ininbergs K. Ecological importance of cyanobacteria. In Cyanobacteria (pp. 41–63). John Wiley & Sons, Ltd. (2013) https://doi.org/10.1002/9781118402238.ch3Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, et al. Occurrence of cyanobacterial harmful algal blooms workgroup report. Adv Experimental Med Biol. 2008;619:45–103. https://doi.org/10.1007/978-0-387-75865-7_3CAS 
    Article 

    Google Scholar 
    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83. https://doi.org/10.1038/s41579-018-0040-1CAS 
    Article 
    PubMed 

    Google Scholar 
    Plaas HE, Paerl HW. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. In Environmental Science and Technology (Vol. 55, Issue 1, pp. 44–64). American Chem Soc. 2021. https://doi.org/10.1021/acs.est.0c06653Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae. 2016;54:69–86. https://doi.org/10.1016/j.hal.2016.01.004CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus planktothrix. Appl Environ Microbiol. 2013;79:2642–7. https://doi.org/10.1128/AEM.03499-12CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Legnani E, Copetti D, Oggioni A, Tartari G, Palumbo MT, Morabito G. Planktothrix rubescens’ seasonal dynamics and vertical distribution. J Limnol. 2005;64:61–73.Article 

    Google Scholar 
    Walsby A, Ng G, Dunn C, Davis PA. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytologist. 2004;162:133–45. https://doi.org/10.1111/j.1469-8137.2004.01020.xArticle 

    Google Scholar 
    Bruning K. Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res. 1991a;13:707–19. https://doi.org/10.1093/plankt/13.4.707Article 

    Google Scholar 
    Rohrlack T, Haande S, Molversmyr Å, Kyle M. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis. 2015;1–17. https://doi.org/10.1371/journal.pone.0145559Tao Y, Wolinska J, Hölker F, Agha R. Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology. 2020;147:1206–15. https://doi.org/10.1017/S0031182020000931CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis PA, Walsby A. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. New Phytologist. 2002;156:225–39. https://doi.org/10.1046/j.1469-8137.2002.00495.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens 1. J Phycol. 2007;43:1191–9. https://doi.org/10.1111/j.1529-8817.2007.00414.xCAS 
    Article 

    Google Scholar 
    Reynolds CS Growth and replication of phytoplankton. In The Ecology of Phytoplankton (pp. 145–77). Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511542145.005Litchman E, Klausmeier CA . Trait-based community ecology of phytoplankton. Ann Rev Ecol, Evol, Syst. 2008;39:615–39.Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol Oceanography. 2016;61:1232–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Litchman E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecol Biogeog. 2016;25:75–86. https://doi.org/10.1111/geb.12387Article 

    Google Scholar 
    Bright DI, Walsby A. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytologist. 2000;146:301–16. https://doi.org/10.1046/j.1469-8137.2000.00640.xArticle 
    PubMed 

    Google Scholar 
    Jann-Para G, Schwob I, Feuillade M. Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. Toxicon. 2004;43:279–85.CAS 
    Article 

    Google Scholar 
    Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, et al. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae. 2005;4:651–72.Article 

    Google Scholar 
    Lenard T. Metalimnetic bloom of Planktothrix rubescens in relation to environmental conditions. Oceanological Hydrobiological Studies. 2009;38:45–53.
    Google Scholar 
    Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T. Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol Oceanogr. 2011;56:97–109.Article 

    Google Scholar 
    Walsby A. Stratification by cyanobacteria in lakes: A dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist. 2005;168:365–76. https://doi.org/10.1111/j.1469-8137.2005.01508.xArticle 
    PubMed 

    Google Scholar 
    Conroy JD, Kane DD, Quinlan EL, Edwards WJ, Culver DA. Abiotic and biotic controls of phytoplankton biomass dynamics in a freshwater tributary, estuary, and large lake ecosystem: Sandusky bay (lake erie) chemostat. Inland Waters. 2017;7:473–92. https://doi.org/10.1080/20442041.2017.1395142CAS 
    Article 

    Google Scholar 
    Sommer U, Maciej Gliwics Z, Lampert W, Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie. 1986;106:433–71.
    Google Scholar 
    Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Ann Rev Ecol, Evol, Syst. 2012;43:429–48. https://doi.org/10.1146/annurev-ecolsys-110411-160251Article 

    Google Scholar 
    Hatcher MJ, Dunn AM Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press (2011).Marcogliese DJ. Parasites: Small Players with Crucial Roles in the Ecological Theater. EcoHealth. 2004;1:151–64. https://doi.org/10.1007/s10393-004-0028-3Article 

    Google Scholar 
    Sime-Ngando T, Lafferty KD, Biron DG. Roles and Mechanisms of Parasitism in Aquatic Microbial Communities. 2007. https://doi.org/10.3389/978-2-88919-588-6Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology. 2017;19:3802–22. https://doi.org/10.1111/1462-2920.13827Article 
    PubMed 

    Google Scholar 
    Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74. https://doi.org/10.1016/j.hal.2004.12.015Article 

    Google Scholar 
    Gerphagnon M, Macarthur DJ, Gachon C, Van Ogtrop F, Latour D, et al. The biological factors affecting the dynamics of cyanobacterial blooms. 2009.Gleason FH, Jephcott TG, Küpper FC, Gerphagnon M, Sime-Ngando T, Karpov SA, et al. Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol Rev. 2015;29:20–33. https://doi.org/10.1016/j.fbr.2015.03.002Article 

    Google Scholar 
    Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol. 2011;56:754–66. https://doi.org/10.1111/j.1365-2427.2010.02565.xArticle 

    Google Scholar 
    Kagami M, De Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29. https://doi.org/10.1007/s10750-006-0438-zArticle 

    Google Scholar 
    Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS. 2005;103:3165–70.Article 

    Google Scholar 
    McKenzie VJ, Peterson AC. Pathogen pollution and the emergence of a deadly amphibian pathogen. Molecular Ecol. 2012;21:5151–4. https://doi.org/10.1111/mec.12013Article 

    Google Scholar 
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4:125–34. https://doi.org/10.1007/s10393-007-0093-5Article 

    Google Scholar 
    Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol. 2004;40:437–53.Article 

    Google Scholar 
    Bosch J, Martínez-Solano I, García-París. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conserv. 2001;97:331–7. https://doi.org/10.1016/S0006-3207(00)00132-4Article 

    Google Scholar 
    Bruning K, Lingeman R, Ringelberg J. Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr. 1992;37:252–60. https://doi.org/10.4319/lo.1992.37.2.0252Article 

    Google Scholar 
    Paterson RA. Infestation of Chytridiaceous Fungi on Phytoplankton in Relation to Certain Environmental Factors. Ecology. 1960;41:416–24. https://doi.org/10.2307/1933316Article 

    Google Scholar 
    Ṣen B. Fungal parasitism of planktonic algae in Shearwater. IV: Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin. 1998.van Donk E, Ringelberg J. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I. Netherlands Freshwater Biol. 1983;13:241–51. https://doi.org/10.1111/j.1365-2427.1983.tb00674.xArticle 

    Google Scholar 
    Agha R, Saebelfeld M, Manthey C, Rohrlack T, Wolinska J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Scientific Rep. 2016;6. https://doi.org/10.1038/srep35039Frenken T, Wierenga J, van Donk E, Declerck SAJ, de Senerpont Domis LN, Rohrlack T, et al. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol Oceanogr. 2018;63:2384–93. https://doi.org/10.1002/lno.10945Article 

    Google Scholar 
    Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Biological Sci/ Royal Soc. 2007;274:1561–6. https://doi.org/10.1098/rspb.2007.0425Article 

    Google Scholar 
    Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW. Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS One. 2013;8:e71737. https://doi.org/10.1371/journal.pone.0071737CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. J Plankton Res. 2021a;43:658–72.Article 

    Google Scholar 
    Fallowfield HJ, Daft MJ. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction with Lysobacter CP-1. Br Phycol J. 1988;1617:317–26. https://doi.org/10.1080/00071618800650351Article 

    Google Scholar 
    Mueller B, den Haan J, Visser PM, Vermeij MJA, van Duyl FC. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Rep. 2016;6:1–9. https://doi.org/10.1038/srep23248CAS 
    Article 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. II. Effects of light on survival and epidemic development of the parasite. J Plankton Res. 1991c;13:119–29. https://doi.org/10.1093/plankt/13.1.119Article 

    Google Scholar 
    Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ Microbiol. 2013;15:837–47. https://doi.org/10.1111/j.1462-2920.2012.02874.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Almocera AES, Hsu SB, Sy PW. Extinction and uniform persistence in a microbial food web with mycoloop: Limiting behavior of a population model with parasitic fungi. Mathematical Biosci Eng. 2019;16:516–37.Article 

    Google Scholar 
    Frenken T, Miki T, Kagami M, Van de Waal DB, Van Donk E, Rohrlack T, et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology. 2020;101. https://doi.org/10.1002/ecy.2900Gerla DJ, Gsell AS, Kooi BW, Ibelings BW, Van Donk E, Mooij WM. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts. FMeier, M. H. et al. (2015) Neuropsychological Decline in Schizophrenia from the Premorbid to Post-Onset Period: Evidence from a Population-Representative Longitudinal Study. American J Psychiatry. 2013;58:538–51. https://doi.org/10.1111/fwb.12010Article 

    Google Scholar 
    Miki T, Takimoto G, Kagami M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshwater Biol. 2011;56:1173–83. https://doi.org/10.1111/j.1365-2427.2010.02562.xArticle 

    Google Scholar 
    Guillard RRL, Lorenzen CJ. Yellow-green algae with chlorophyllid C. In Phycology. 1972;8:10–14.CAS 

    Google Scholar 
    McKindles KM, Jorge AN, McKay RM, Davis TW, Bullerjahn GS. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl Environ Microbiol. 2021b;87:e02308–20.CAS 
    Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and Environment for Statistical Computing.RStudio Team. (2021). RStudio: Integrated Development Environment for R (1.4.1106).Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the {tidyverse}. J Open Source Software. 2019;4:1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar 
    Champely, S (2018). PairedData (1.1.1).Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in {R}: Package deSolve. J Statistical Software. 2010;33:1–25. https://doi.org/10.18637/jss.v033.i09Article 

    Google Scholar 
    Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biol. 2016;22:299–309. https://doi.org/10.1111/gcb.13095Article 

    Google Scholar 
    Scholz B, Vyverman W, Küpper FC, Ólafsson HG, Karsten U. Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: A laboratory case study. Botanica Marina. 2017;60:419–31. https://doi.org/10.1515/bot-2016-0105CAS 
    Article 

    Google Scholar 
    Sønstebø JH, Rohrlack T. Possible implications of Chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol. 2011;77:1344–51. https://doi.org/10.1128/AEM.02153-10CAS 
    Article 
    PubMed 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J Plankton Res. 1991b;13:103–17. https://doi.org/10.1093/plankt/13.1.103Article 

    Google Scholar 
    Muehlstein LK, Amon JP, Leffler DL. Chemotaxis in the Marine Fungus Rhizophydium littoreum. Appl Environ Microbiol. 1988;54:1668–72. https://doi.org/10.1128/aem.54.7.1668-1672.1988CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esch GW, Fernández JC. Introduction. In A Functional Biology of Parasitism (pp. 1–25). Springer Netherlands (1993). https://doi.org/10.1007/978-94-011-2352-5_1Gerphagnon M, Colombet J, Latour D, Sime-Ngando T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Scientific Rep. 2017;7:6056. https://doi.org/10.1038/s41598-017-06273-1CAS 
    Article 

    Google Scholar 
    Maier MA, Peterson TD. Prevalence of chytrid parasitism among diatom populations in the lower Columbia River (2009–2013). Freshwater Biol. 2017;62:414–28. https://doi.org/10.1111/fwb.12876CAS 
    Article 

    Google Scholar 
    Sime-Ngando T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol. 2012;3:361. https://doi.org/10.3389/fmicb.2012.00361Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami M, Urabe J. Mortality of the planktonic desmid, Staurastrum dorsidentiferum, due to interplay of fungal parasitism and low light conditions. SIL Proceed. 2002;28:1001–5. https://doi.org/10.1080/03680770.2001.11901868Article 

    Google Scholar  More

  • in

    Stress responses to repeated captures in a wild ungulate

    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 

    Google Scholar 
    Keuling, O., Lauterbach, K., Stier, N. & Roth, M. Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. Eur. J. Wildl. Res. 56, 159–167 (2010).Article 

    Google Scholar 
    Trondrud, L. M. et al. Fat storage influences fasting endurance more than body size in an ungulate. Funct. Ecol. 35, 1470–1480 (2021).CAS 
    Article 

    Google Scholar 
    Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).PubMed 
    Article 

    Google Scholar 
    Kukalová, M., Gazárková, A. & Adamík, P. Should i stay or should i go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859 (2013).Article 

    Google Scholar 
    Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995 (2009).Article 

    Google Scholar 
    Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. Effects of capture and transport on blood parameters in free-ranging mouflon (Ovis ammon). J. Zoo Wildl. Med. 28, 428–433 (1997).CAS 
    PubMed 

    Google Scholar 
    Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 89, 973–990 (2008).Article 

    Google Scholar 
    Mortensen, R. M. & Rosell, F. Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal. Sci. Rep. 10, 1–16 (2020).Article 

    Google Scholar 
    Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11, 1164–1181 (2020).Article 

    Google Scholar 
    Herman, J. P. et al. Regulation of the hypothalamic-pituitary- adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Sjaastad, V. Ø., Hove, K. & Sand, O. Physiology of Domestic Animals (Scandinavian Veterinary Press, 2016).
    Google Scholar 
    Omsjø, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85 (2009).Article 

    Google Scholar 
    Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. The stress response to repeated capture in mouflon (Ovis ammon): Physiological, haematological and biochemical parameters. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 45, 243–253 (1998).CAS 
    Article 

    Google Scholar 
    Hattingh, J., Pitts, N. I. & Ganhao, M. F. Immediate response to repeated capture and handling of wild impala. J. Exp. Zool. 248, 109–112 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortega, A. C. et al. Effectiveness of partial sedation to reduce stress in captured mule deer. J. Wildl. Manag. 84, 1445–1456 (2020).Article 

    Google Scholar 
    Arnemo, J. M. & Caulkett, N. Stress. In Zoo Animal and Wildlife Anesthesia and Immobilization (eds West, G. et al.) 103–109 (Blackwell Publications, 2007).
    Google Scholar 
    Sinclair, M. D. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 44, 885–897 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ranheim, B. et al. The effects of medetomidine and its reversal with atipamezole on plasma glucose, cortisol and noradrenaline in cattle and sheep. J. Vet. Pharmacol. Ther. 23, 379–387 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carroll, G. L. et al. Effect of medetomidine and its antagonism with atipamezole on stress-related hormones, metabolites, physiologic responses, sedation, and mechanical threshold in goats. Vet. Anaesth. Analg. 32, 147–157 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rode, K. D. et al. Effects of capturing and collaring on polar bears: finDings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322 (2014).Article 

    Google Scholar 
    Sakamoto, H., Misumi, K., Nakama, M. & Aoki, Y. The effects of xylazine on intrauterine pressure, uterine blood flow, maternal and fetal cardiovascular and pulmonary function in pregnant goats. J. Vet. Med. Sci. 58, 211–217 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katila, T. & Oijala, M. The effect of detomidine (Domosedan) on the maintenance of equine pregnancy and foetal development: ten cases. Equine Vet. J. 20, 323–326 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larsen, D. G. & Gauthier, D. A. Effects of capturing pregnant moose and calves on calf survivorship. J. Wildl. Manag. 53, 564 (1989).Article 

    Google Scholar 
    Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manage. 62, 745–752 (1998).Article 

    Google Scholar 
    DelGiudice, G. D., Mech, L. D., Paul, W. J. & Karns, P. D. Effects on fawn survival of multiple immobilizations of captive pregnant white-tailed deer. J. Wildl. Dis. 22, 245–248 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: The case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wingfield, J. C. et al. Ecological bases of hormone-behavior interactions: The ‘emergency life history stage’. Am. Zool. 38, 191–206 (1998).CAS 
    Article 

    Google Scholar 
    Huber, S., Palme, R. & Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocrinol. 130, 48–54 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morellet, N. et al. The effect of capture on ranging behaviour and activity of the European roe deer Capreolus capreolus. Wildlife Biol. 15, 278–287 (2009).Article 

    Google Scholar 
    Tarlow, E. M. & Blumstein, D. T. Evaluating methods to quantify anthropogenic stressors on wild animals. Appl. Anim. Behav. Sci. 102, 429–451 (2007).Article 

    Google Scholar 
    Hik, D. S. Does risk of predation influence the cyclic decline of snowshoe hares. Wildl. Res. 22, 115–129 (1995).Article 

    Google Scholar 
    Ordiz, A. et al. Lasting behavioural responses of brown bears to experimental encounters with humans. J. Appl. Ecol. 50, 306–314 (2013).Article 

    Google Scholar 
    Dechen Quinn, A. C., Williams, D. M. & Porter, W. F. Postcapture movement rates can inform data-censoring protocols for GPS-collared animals. J. Mammal. 93, 456–463 (2012).Article 

    Google Scholar 
    Cattet, M. R. L. Falling through the cracks: Shortcomings in the collaboration between biologists and veterinarians and their consequences for wildlife. ILAR J. 54, 33–40 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albon, S. D. et al. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore. Glob. Change Biol. 23, 1374–1389 (2017).ADS 
    Article 

    Google Scholar 
    Ovejero, R. et al. Do cortisol and corticosterone play the same role in coping with stressors? Measuring glucocorticoid serum in free-ranging guanacos (Lama guanicoe). J. Exp. Zool. Part A Ecol. Genet. Physiol. 319, 539–547 (2013).CAS 
    Article 

    Google Scholar 
    Bonacic, C., Feber, R. E. & Macdonald, D. W. Capture of the vicuña (Vicugna vicugna) for sustainable use: Animal welfare implications. Biol. Conserv. 129, 543–550 (2006).Article 

    Google Scholar 
    Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. Part A Ecol. Integr. Physiol. 337, 7–14 (2022).CAS 
    Article 

    Google Scholar 
    Sire, J. E. et al. The effect of blood sampling on plasma cortisol in female reindeer (Rangifer tarandus tarandus L). Acta Vet. Scand. 36, 583–587 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harlow, H. J., Thorne, E. T., Williams, E. S., Belden, E. L. & Gern, W. A. Adrenal responsiveness in domestic sheep ( Ovis aries ) to acute and chronic stressors as predicted by remote monitoring of cardiac frequency. Can. J. Zool. 65, 2021–2027 (1987).Article 

    Google Scholar 
    Pottinger, T. G. & Moran, T. A. Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J. Fish Biol. 43, 121–130 (1993).CAS 
    Article 

    Google Scholar 
    Arnemo, J. M. & Ranheim, B. Effects of medetomidine and atipamezole on serum glucose and cortisol levels in captive reindeer (Rangifer tarandus tarandus). Rangifer 19, 85–89 (1999).Article 

    Google Scholar 
    Mentaberre, G. et al. Effects of azaperone and haloperidol on the stress response of drive-net captured Iberian ibexes (Capra pyrenaica). Eur. J. Wildl. Res. 56, 757–764 (2010).Article 

    Google Scholar 
    Northrup, J. M., Anderson, C. R. & Wittemyer, G. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildl. Manag. 78, 731–738 (2014).Article 

    Google Scholar 
    Jung, T. S. et al. Short-term effect of helicopter-based capture on movements of a social ungulate. J. Wildl. Manag. 83, 830–837 (2019).Article 

    Google Scholar 
    Nurmi, H., Laaksonen, S., Raekallio, M. & Hänninen, L. Wintertime pharmacokinetics of intravenously and orally administered meloxicam in semi-domesticated reindeer (Rangifer tarandus tarandus). Vet. Anaesth. Analg. 49, 423–428 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, R. S., English, A. W., Mulley, R. C. & Lepherd, E. E. Haematology and serum biochemistry of captive unsedated chital deer (Axis axis) in Australia. J. Wildl. Dis. 27, 396–406 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brosh, A. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: A review1. J. Anim. Sci. 85, 1213–1227 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suazo, A. A., Delong, A. T., Bard, A. A. & Oddy, D. M. Repeated capture of beach mice (Peromyscus polionotus phasma and P. P. niveiventris) reduces body mass. J. Mammal. 86, 520–523 (2005).Article 

    Google Scholar 
    Hoyle, S. D., Horsup, A. B., Johnson, C. N., Crossman, D. G. & McCallum, H. Live-trapping of the northern hairy-nosed wombat (Lasiorhinus krefftii): Population-size estimates and effects on individuals. Wildl. Res. 22, 741–755 (1995).Article 

    Google Scholar 
    Estruelas, N. F. Short- and long-term physiological effects of capture and handling on free-ranging brown bears (Ursus arctos). PhD Thesis. (Inland Norway University of Applied Sciences, 2017).Veiberg, V. et al. Maternal winter body mass and not spring phenology determine annual calf production in an Arctic herbivore. Oikos 126, 980–987 (2017).Article 

    Google Scholar 
    Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Change Biol. 27, 993–1002 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Larsen, T. S., Nilsson, N. & Blix, A. S. Seasonal changes in lipogenesis and lipolysis in isolated adipocytes from Svalbard and Norwegian reindeer. Acta Physiol. Scand. 123, 97–104 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colman, J. E., Jacobsen, B. W. & Reimers, E. Summer response distances of Svalbard reindeer (Rangifer tarandus platyrhynchus) to provocation by humans on foot. Wildlife Biol. 7, 275–283 (2001).Article 

    Google Scholar 
    Trondrud, L. M. et al. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200215 (2021).Article 

    Google Scholar 
    Pigeon, G. et al. Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore. J. Anim. Ecol. 91, 61–73 (2022).PubMed 
    Article 

    Google Scholar 
    Peeters, B., Pedersen, Å., Veiberg, V. & Hansen, B. Hunting quotas, selectivity and stochastic population dynamics challenge the management of wild reindeer. Clim. Res. https://doi.org/10.3354/cr01668 (2021).Article 

    Google Scholar 
    Loe, L. E. et al. Activity pattern of arctic reindeer in a predator-free environment: No need to keep a daily rhythm. Oecologia 152, 617–624 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Dahl, S. R. et al. Assay of steroids by liquid chromatography–tandem mass spectrometry in monitoring 21-hydroxylase deficiency. Endocr. Connect. 7, 1542–1550 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loe, L. E. et al. Testing five hypotheses of sexual segregation in an arctic ungulate. J. Anim. Ecol. 75, 485–496 (2006).PubMed 
    Article 

    Google Scholar 
    Reimers, E., Lund, S. & Ergon, T. Vigilance and fright behaviour in the insular Svalbard reindeer (Rangifer tarandus platyrhynchus). Can. J. Zool. 89, 753–764 (2011).Article 

    Google Scholar 
    The R Core Team. R: A language and environment for statistical computing (2021).Burnham, K. P. & Anderson, D. R. in Model selection and multimodel inference. A Practical Information-Theoretic Approach. Ecological Modelling (Springer, 2002).Blanchet, F. G., Tikhonov, G. & Norberg, A. HMSC: Hierarchical modelling of species community. R package version 2.2-0 (2019).Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).PubMed 
    Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier Science BV, 2012).MATH 

    Google Scholar 
    Diggle, P. J., Heagerty, P., Liang, K.-Y. & Zeger, S. L. Analysis of Longitudinal Data (Oxford University Press, 2013).MATH 

    Google Scholar  More

  • in

    Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic

    Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 1245–1271 (1995).
    Google Scholar 
    Karl, D. M. et al. Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep Res. Part II Top. Stud. Oceanogr. 43, 539–568 (1996).CAS 

    Google Scholar 
    Yang, B., Emerson, S. R. & Quay, P. D. The subtropical ocean’s biological carbon pump determined from O2 and DIC/DI13C tracers. Geophys. Res. Lett. 46, 5361–5368 (2019).
    Google Scholar 
    Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the ocean’s biological carbon pump. Glob. Biogeochem. Cycles 36, 1–22 (2022).
    Google Scholar 
    Chávez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2011).
    Google Scholar 
    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, 2–6 (2008).
    Google Scholar 
    Irwin, A. J. & Oliver, M. J. Are ocean deserts getting larger? Geophys. Res. Lett. 36, 1–5 (2009).
    Google Scholar 
    Signorini, S. R., Franz, B. A. & McClain, C. R. Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1–11 (2015).
    Google Scholar 
    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).CAS 

    Google Scholar 
    Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).CAS 

    Google Scholar 
    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).
    Google Scholar 
    Flombaum, P., Wang, W. L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).CAS 

    Google Scholar 
    Behrenfeld, M. Uncertain future for ocean algae. Nat. Clim. Chang. 1, 33–34 (2011).CAS 

    Google Scholar 
    Flombaum, P. & Martiny, A. C. Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnol. Oceanogr. 66, 4171–4181 (2021).
    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 10, 1063–1085 (1972).
    Google Scholar 
    Falkowski, P. G. & Oliver, M. J. Mix and max: how climate selects phytoplankton. Nature. Rev. Microbiol. 5, 813–819 (2007).CAS 

    Google Scholar 
    van de Waal, D. B. & Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B Biol. Sci. 375, 1–8 (2020).
    Google Scholar 
    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
    Google Scholar 
    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Chang. Biol. 21, 1025–1040 (2015).PubMed 

    Google Scholar 
    Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Skau, L. F., Andersen, T., Thrane, J.-E. & Hessen, D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 5, e3743 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fernández‐González, C. et al. Effects of temperature and nutrient supply on resource allocation, photosynthetic strategy and metabolic rates of Synechococcus sp. J. Phycol. 56, 818–829 (2020).PubMed 

    Google Scholar 
    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2020).
    Google Scholar 
    Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Chang. Biol. 26, 4800–4811 (2020).PubMed 

    Google Scholar 
    Davey, M. et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic. Limnol. Oceanogr. 53, 1722–1733 (2008).CAS 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 

    Google Scholar 
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).CAS 
    PubMed 

    Google Scholar 
    Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).CAS 
    PubMed 

    Google Scholar 
    Zubkov, M. V., Sleigh, M. A., Tarran, G. A., Burkill, P. H. & Leakey, R. J. G. Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep Res. Part I Oceanogr. Res. Pap. 45, 1339–1355 (1998).
    Google Scholar 
    Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B. & Zubkov, M. V. High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).
    Google Scholar 
    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).
    Google Scholar 
    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).CAS 

    Google Scholar 
    Visintini, N., Martiny, A. C. & Flombaum, P. Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnol. Oceanogr. Lett. 6, 207–215 (2021).
    Google Scholar 
    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).
    Google Scholar 
    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).
    Google Scholar 
    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).PubMed 

    Google Scholar 
    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).CAS 

    Google Scholar 
    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).CAS 
    PubMed 

    Google Scholar 
    Berthelot, H., Duhamel, S., L’Helguen, S., Maguer, J. F. & Cassar, N. Inorganic and organic carbon and nitrogen uptake strategies of picoplankton groups in the northwestern Atlantic Ocean. Limnol. Oceanogr. 66, 3682–3696 (2021).CAS 

    Google Scholar 
    Marañón, E. et al. Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol. Oceanogr. 55, 2339–2352 (2010).
    Google Scholar 
    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).
    Google Scholar 
    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).PubMed 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    PubMed 

    Google Scholar 
    Babin, S. M., Carton, J. A., Dickey, T. D. & Wiggert, J. D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 109, 1–21 (2004).
    Google Scholar 
    Walker, N. D., Leben, R. R. & Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 32, 1–5 (2005).
    Google Scholar 
    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Chang. Biol. 24, 2239–2261 (2018).PubMed 

    Google Scholar 
    Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).CAS 
    PubMed 

    Google Scholar 
    Marañón, E. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 50, 299–310 (2005).
    Google Scholar 
    Halsey, K. H. & Jones, B. M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 7, 265–297 (2015).
    Google Scholar 
    Quevedo, M. & Anadón, R. Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221, 29–38 (2001).
    Google Scholar 
    Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
    Google Scholar 
    Landry, M. R. & Hassett, R. P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67, 283–288 (1982).
    Google Scholar 
    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).
    Google Scholar 
    Cermeño, P. et al. Marine primary productivity is driven by a selection effect. Front. Mar. Sci. 3, 1–10 (2016).Browning, T. J. et al. Nutrient co-limitation in the subtropical Northwest Pacific. Limnol. Oceanogr. Lett. 7, 52–61 (2022).
    Google Scholar 
    Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49, 1463–1470 (2004).
    Google Scholar 
    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
    Google Scholar 
    Geider, R. J. Light and temperature dependence of the carnon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. N. Phytol. 106, 1–34 (1987).CAS 

    Google Scholar 
    Maxwell, D. P., Laudenbach, D. E. & Huner, N. P. Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol. 109, 787–795 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, H. J., Sui, Y., Tang, D. L. & Afanasyev, Y. D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 128, 138–145 (2013).
    Google Scholar 
    Zhang, H., He, H., Zhang, W. Z. & Tian, D. Upper ocean response to tropical cyclones: a review. Geosci. Lett. 8, 1–12 (2021).
    Google Scholar 
    Lin, I. et al. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30, 1–4 (2003).Chai, F. et al. A limited effect of sub-tropical typhoons on phytoplankton dynamics. Biogeosciences 18, 849–859 (2021).
    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    PubMed 

    Google Scholar 
    Somero, G. N. Adaptation of enzymes to temperature: Searching for basic ‘strategies’. Comp. Biochem. Physiol.—B Biochem. Mol. Biol. 139, 321–333 (2004).PubMed 

    Google Scholar 
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).
    Google Scholar 
    Harvey, B. P., Marshall, K. E., Harley, C. D. G. & Russell, B. D. Predicting responses to marine heatwaves using functional traits. Trends Ecol. Evol. 37, 20–29 (2022).PubMed 

    Google Scholar 
    Staehr, P. A. & Birkeland, M. J. Temperature acclimation of growth, photosynthesis and respiration in two mesophilic phytoplankton species. Phycologia 45, 648–656 (2006).
    Google Scholar 
    Morán, X. A. G., Calvo-Díaz, A., Arandia-Gorostidi, N. & Huete-Stauffer, T. M. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ. Microbiol. 20, 3798–3810 (2018).PubMed 

    Google Scholar 
    Courboulès, J. et al. Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau Lagoon. Aquat. Ecol. 55, 647–666 (2021).
    Google Scholar 
    López-Sandoval, D. C., Duarte, C. M. & Agustí, S. Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnol. Oceanogr. 66, 2923–2935 (2021).
    Google Scholar 
    Landry, M. R., Selph, K. E., Hood, R. R., Davies, C. H. & Beckley, L. E. Low temperature sensitivity of picophytoplankton P:B ratios and growth rates across a natural 10 °C temperature gradient in the oligotrophic Indian Ocean. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10224 (2021)Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).CAS 

    Google Scholar 
    Fernández-González, C. & Marañón, E. Effect of temperature on the unimodal size scaling of phytoplankton growth. Sci. Rep. 11, 1–9 (2021).
    Google Scholar 
    Marañón, E. et al. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216, 43–56 (2001).
    Google Scholar 
    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).
    Google Scholar 
    Hillebrand, H. et al. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 1–18 https://doi.org/10.1111/1365-2435.13986 (2021).Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010).
    Google Scholar 
    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).CAS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).
    Google Scholar 
    Fofonoff, N. P. & Millard, R. C. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44, 1–53 (1983).
    Google Scholar 
    Becker, S. et al. GO-SHIP repeat hydrography nutrient manual: the precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.581790 (2020).Marañón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).
    Google Scholar 
    Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. 8, 1–24 (2021).Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia

    Fauna, culture and chronology datasetsA geo-referenced dataset of chronometric dates covering the late MIS 3 (55–30 kyr cal bp) was compiled from the literature (dataset 1). The dataset included 363 radiocarbon, thermoluminescence, optically stimulated luminescence and uranium series dates obtained from 62 archaeological sites and seven palaeontological sites. These chronological determinations were obtained from ten palaeontological levels and 138 archaeological levels. The archaeological levels were culturally attributed to the Mousterian (n = 75), Châtelperronian (n = 6) and Aurignacian (n = 57) technocomplexes. A number of issues can potentially hamper the chronological assessment of Palaeolithic technocomplexes from radiocarbon dates, such as pretreatment protocols that do not remove sufficient contaminants or the quality of the bone collagen extracted. Moreover, discrepancies in cultural attributions or stratigraphic inconsistencies are commonly detected in Palaeolithic archaeology. Information regarding the quality of date determinations and cultural attribution or stratigraphic issues is provided in the Supplementary Information.Our dataset also included the presence of herbivore species recovered from each archaeo-palaeontological site (hereafter referred to as local faunal assemblages (LFAs)), their body masses and their chronology. The mean body mass of both sexes, for each species, was obtained from the PHYLACINE database53 and used in the macroecological modelling approach described below (see ‘Carrying capacity of herbivores’). For visual representation purposes, the herbivore species were grouped into four weight categories: small (500 kg). The chronology of the occurrence of each herbivore species was assumed to be the same as the dated archaeo-palaeontological layer where the species remains were recovered. Thus, to estimate the chronological range of each species in each region, all radiocarbon determinations were calibrated with the IntCal20 calibration curve54 and OxCAL4.2 software55. The BAMs were run to compute the upper and lower chronological boundaries at a CI of 95.4% of each LFA (see ‘Chronological assessment’ for more details). One of the purposes of the current study was to estimate the potential fluctuations in herbivore biomass during the stadial and interstadial periods of the late MIS 3. Accordingly, the time spans of the LFAs were classified into the discrete GS and GI phases provided by Rasmussen et al.51.Geographic settingsThe Iberian Peninsula locates at the southwestern edge of Europe (Fig. 1). It constitutes a large geographic area that exhibits a remarkable diversity of ecosystems, climates and landscapes. Both now and in the past, altitudinal, latitudinal and oceanic gradients affected the conformation of two biogeographical macroregions with different flora and fauna species pools: the Eurosiberian and Mediterranean regions13,46. In the north, along the Pyrenees and Cantabrian strip, the Eurosiberian region is characterized by oceanic influence and mild temperatures in the present day, whereas the Mediterranean region features drier summers and milder winters (Fig. 1). Between the Eurosiberian and Mediterranean regions, there is a transitional area termed Submediterranean or Supramediterranean. Lastly, the Mediterranean region is divided into two distinctive bioclimatic belts: (1) the Thermomediterranean region, located at lower latitudes, with high evapotranspiration rates and affected by its proximity to the coast; and (2) the Mesomediterranean region, with lower temperatures and wetter conditions (Fig. 1).Previous studies have shown that zoocoenosis and phytocenosis differed between these macroregions in the Pleistocene13,46. However, flora and fauna distributions changed during the stadial–interstadial cycles in the Iberian Peninsula, which suggests potential alterations in the boundaries of these biogeographical regions. The modelling approach used in this study to estimate the biomass of primary consumers is dependent on the reconstructed NPP and the herbivore guild structure in each biogeographical region. To test the suitability of the present-day biogeographical demarcations of the Iberian Peninsula during MIS 3, we assessed whether the temporal trends of NPP and the composition of each herbivore palaeocommunity differed between these biogeographical regions during the MUPT.Chouakria and Nagabhusan56 proposed a dissimilarity index to compare time series data by taking into consideration the proximity of values and the temporal correlation of the time series:$${rm{CORT}}(S_1,S_2) = frac{{mathop {sum}nolimits_{i = 1}^{p – 1} {left( {u_{left( {i + 1} right)} – u_i} right)} (v_{(i + 1)} – v_i)}}{{sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(u_{(i + 1)} – u_i)^2} } sqrt {mathop {sum}nolimits_{i = 1}^{p – 1} {(v_{(i + 1)} – v)^2} } }}$$
    (1)
    where S1 and S2 are the time series of data, u and v represent the values of S1 and S2, respectively, and p is the length of values of each time series. CORT(S1, S2) belongs to the interval (−1,1). The value CORT(S1, S2) = 1 indicates that in any observed period (ti, ti+1), the values of the sequence S1 and those of S2 increase or decrease at the same rate, whereas CORT = −1 indicates that when S1 increases, S2 decreases or vice versa. Lastly, CORT(S1, S2) = 0 indicates that the observed trends in S1 are independent of those observed in S2. To complement this approach by considering not only the temporal correlation between each pair of time series but also the proximity between the raw values, these authors proposed an adaptive tuning function defined as follows:$$d{rm{CORT}}left( {S_1,S_2} right) = fleft({{rm{CORT}}left( {S_1,S_2} right)} right)times dleft( {S_1,S_2} right)$$
    (2)
    where$$fleft( x right) = frac{2}{{1 + exp left( {k,x} right)}},k ge 0$$
    (3)
    In this study, k was 2, meaning that the behaviour contribution was 76% and the contribution of the proximity between values was 24%57. Hence, f(x) modulates a conventional pairwise raw data distance (d(S1,S2)) according to the observed temporal correlation56. Consequently, dCORT adjusts the degree of similarity between each pair of observations according to the temporal correlation and the proximity between values. This function was used to compare the reconstructed NPP between biogeographical regions during MIS 3 in the Iberian Peninsula. However, two different biogeographical regions could have experienced similar evolutionary trends in their NPP, even though their biota composition was different. Therefore, this analysis was complemented with a JSI to assess whether the reconstructed herbivore species composition in each palaeocommunity differed among biogeographical regions during the late MIS 3. The JSI was based on presence–absence data and was calculated as follows:$${rm{JSI}} = frac{c}{{(a + b + c)}}$$
    (4)
    where c is the number of shared species in both regions and a and b are the numbers of species that were only present in one of the biogeographical regions. Therefore, the higher the value the more similar the palaeocommunities of both regions were.Chronological assessmentPivotal to any hypothesis of Neanderthal replacement patterns by AMHs is the chronology of that population turnover. To this end, we used three different approaches to provide greater confidence in the results: BAMs, the OLE model and SPD of archaeological assemblages. As detailed below, each of these approaches provides complementary information about the MUPT.First, we built a set of BAMs for the Mousterian, Châtelperronian and Aurignacian technocomplexes in each region during the MIS 3. As stated above, we compiled the available radiocarbon dates for Iberia between 55 and 30 kyr cal bp. However, not all dates or levels were included in the Bayesian chronology models. Radiocarbon determinations obtained from shell remains were incorporated in the dataset (dataset 1); however, the local variation of the reservoir age was unknown from 55 to 30 kyr bp. Because of uncertainties related to marine reservoir offsets, all BAMs that incorporated dates from marine shells were run twice: including and excluding these dates. All of the archaeological levels with cultural attribution issues or stratigraphic inconsistencies were excluded. The Supplementary Note provides a detailed description of the sites, levels and dates excluded and their justification. All BAMs were built for each technocomplex using the OxCAL4.2 software55 and IntCal20 calibration curve54.Bayesian chronology models were built for each archaeological and palaeontological level. Then, the dates associated with each technocomplex were grouped within a single phase to determine each culture’s regional appearance or disappearance. Our interest was not focused on the chronological duration of the Mousterian, Châtelperronian and Aurignacian cultures, but on the probability distribution function of the temporal boundaries of these cultures in each region. Thus, this chronological assessment aims to provide an updated chronological frame for Neanderthal replacement by AMHs in Iberia. For this reason, we did not differentiate between proto- and early Aurignacian cultures, since both are attributed to AMHs.In each BAM, we inserted into the same sequence the radiocarbon dates associated with a given technocomplex within a start and end boundary to bracket each culture, which allowed us to determine the probability distribution function for the beginning and end moment of each cultural phase6. The resolution of all models was set at 20 years. We used a t-type outlier model with an initial 5% probability for each determination, but when more than one radiocarbon date was obtained from the same bone remain, we used an s-type outlier model and the combine function. The thermoluminescence dating likelihoods were included in the models, together with their associated 1σ uncertainty ranges. When dates with low agreement ( More

  • in

    Behaviour dominates impacts

    The impacts of climate change on host–parasite dynamics are particularly complex to predict, as they involve an interplay of both physiological and behavioural factors, from both host and parasite. For example, while warming may increase parasite developmental rates and thus increase transmission, excessive heat may instead exceed thermal limits, leading to higher parasite mortality. Transmission also relates to both the distribution and abundance of host species, which may also shift under changing climates. More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Spring thaw nitrous oxide

    Agriculture soils are a source of nitrous oxide and account for 60% of total emissions. It is well established that nitrogen addition via fertilizers drives nitrous oxide emissions during crop growing season. However, little is known about the role of melting snow and thawing surface soil layers during the spring. Limited knowledge of this phenomenon reduces our ability to develop accurate nitrous oxide emissions inventories required under the UN Framework Convention on Climate Change (UNFCCC). More