Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 9, e1001127 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
Costello, M. J., May, R. M. & Stork, N. E. Can we name earth’s species before they go extinct? Science 339, 413–416 (2013).CAS
PubMed
Article
Google Scholar
Corlett, R. T. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38, 10–16 (2016).PubMed
PubMed Central
Article
Google Scholar
Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022).CAS
Article
Google Scholar
Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).Article
Google Scholar
Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Schopf, J. W. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl Acad. Sci. USA 91, 6735–6742 (1994).CAS
PubMed
PubMed Central
Article
Google Scholar
Seager, S., Huang, J., Petkowski, J. J. & Pajusalu, M. Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres. Nat. Astron. 4, 802–806 (2020).Article
Google Scholar
Halme, P., Holec, J. & Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 27, 193–201 (2017).Article
Google Scholar
Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35, 209–244 (1991).Article
Google Scholar
Boddy, L. in The Fungi (eds Watkinson, S. C. et al.) 361–400 (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-382034-1.00011-6Zimmerman, M. The mushroom message. Sun 11A (1992).Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article
Google Scholar
Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).Article
Google Scholar
Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020).Article
Google Scholar
Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS
PubMed
Article
Google Scholar
Carthey, A. J., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. 34, 764–776 (2020).Article
Google Scholar
Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol. 12, 2094 (2021).Article
Google Scholar
Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Anthony, M. A., Stinson, K. A., Moore, J. A. M. & Frey, S. D. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 194, 659–672 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4, 174–183 (2011).Article
Google Scholar
Gibbons, S. M. et al. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2, e00178-16 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Certini, G., Moya, D., Lucas-Borja, M. E. & Mastrolonardo, G. The impact of fire on soil-dwelling biota: a review. For. Ecol. Manage. 488, 118989 (2021).Article
Google Scholar
Caruso, T., Hempel, S., Powell, J. R., Barto, E. K. & Rillig, M. C. Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93, 1115–1124 (2012).CAS
PubMed
Article
Google Scholar
Anthony, M., Frey, S. & Stinson, K. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8, e01951 (2017).Article
Google Scholar
Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed
Article
Google Scholar
Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega‐fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022).CAS
PubMed
Article
Google Scholar
Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).CAS
PubMed
PubMed Central
Article
Google Scholar
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).CAS
PubMed
Article
Google Scholar
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).PubMed
PubMed Central
Article
Google Scholar
Novacek, M. J. & Cleland, E. E. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl Acad. Sci. USA 98, 5466–5470 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS
PubMed
Article
Google Scholar
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed
Article
Google Scholar
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed
Article
Google Scholar
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS
PubMed
Article
Google Scholar
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).CAS
PubMed
Article
Google Scholar
Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01173-1 (2022).Box, G. E. P. & Draper, N. R. Empirical Model-building and Response Surfaces (Wiley, 1987).Box, G. E. P., Hunter, W. G. & Hunter, J. S. Statistics for Experimenters: an Introduction to Design, Data Analysis, and Model Building (Wiley, 1978).Kothamasi, D., Spurlock, M. & Kiers, E. T. Agricultural microbial resources: private property or global commons? Nat. Biotechnol. 29, 1091–1093 (2011).CAS
PubMed
Article
Google Scholar
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS
PubMed
Article
Google Scholar
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).PubMed
Article
Google Scholar
Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS
PubMed
Article
Google Scholar
Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).CAS
PubMed
Article
Google Scholar
Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016).CAS
PubMed
Article
Google Scholar
Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, 21 (2016).PubMed
PubMed Central
Article
Google Scholar
Pan, K., Guo, Z. & Liu, J. Building and materializing of China Soil Microbiome Data Platform. Acta Pedol. Sin. 56, 1023–1033 (2019).
Google Scholar
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández‐Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).Article
Google Scholar
Hinckley, E. S. et al. The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network. Ecosphere 7, e01234 (2016).Article
Google Scholar
Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).PubMed
PubMed Central
Article
Google Scholar
Jackson, F. Sustainable agriculture and a low carbon future: are we missing out on mycelium? Forbes https://www.forbes.com/sites/feliciajackson/2021/12/02/sustainable-agriculture-and-a-low-carbon-future-are-we-missing-out-on-mycelium/?sh=3dc1a6d076ed (2021).Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).PubMed
PubMed Central
Article
Google Scholar
Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta‐analysis. J. Appl. Ecol. 51, 1669–1679 (2014).PubMed
PubMed Central
Article
Google Scholar
Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).CAS
Article
Google Scholar
Status of the World’s Soil Resources: Main Report (FAO, 2015).Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).Article
Google Scholar
Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).Article
Google Scholar
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).CAS
PubMed
Article
Google Scholar
Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021).Article
Google Scholar
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).Article
Google Scholar
Koziol, L. et al. Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14036 (2021).Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).PubMed
Article
Google Scholar
Bever, J. & Schultz, P. Prairie mycorrhizal fungi inoculant may increase native plant diversity on restored sites (Illinois). Ecol. Restor. 21, 311–312 (2003).
Google Scholar
Vahter, T. et al. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J. Appl. Ecol. 57, 1741–1751 (2020).CAS
Article
Google Scholar
Egan, C. P. et al. Restoration of the mycobiome of the endangered Hawaiian mint Phyllostegia kaalaensis increases its resistance to a common powdery mildew. Fungal Ecol. 52, 101070 (2021).Article
Google Scholar
Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long‐term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).PubMed
PubMed Central
Article
Google Scholar
Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 203, 120–124 (2016).Article
Google Scholar
Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022).Article
Google Scholar
Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis: mycorrhizal inoculation in restoration. Restor. Ecol. 23, 625–634 (2015).Article
Google Scholar
Busby, P. E., Newcombe, G., Neat, A. S. & Averill, C. Facilitating reforestation through the plant microbiome: perspectives from the phyllosphere. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev-phyto-021320-010717 (2022).van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed
Article
Google Scholar
Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994 (2014).Article
Google Scholar
Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019).CAS
PubMed
Article
Google Scholar
Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 12, 1758–1767 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Ceballos, I. et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE 8, e70633 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
Buysens, C., César, V., Ferrais, F., de Boulois, H. D. & Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105, 137–143 (2016).Article
Google Scholar
Antunes, P. M. et al. Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317, 257–266 (2009).CAS
Article
Google Scholar
Emam, T. Local soil, but not commercial AMF inoculum, increases native and non‐native grass growth at a mine restoration site. Restor. Ecol. 24, 35–44 (2016).Article
Google Scholar
Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).PubMed
Article
Google Scholar
Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. R. & Bhatnagar, J. M. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).Article
Google Scholar
Hoeksema, J. D. et al. Ectomycorrhizal plant-fungal co-invasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences. Front. Glob. Change 3, 84 (2020).Article
Google Scholar
Land Use Statistics and Indicators. Global, Regional and Country Trends 1990– 2019 FAOSTAT Analytical Brief Series No. 28 (FAO, 2021).Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 1–6 (2005).Article
Google Scholar
Harlander, S. K. The evolution of modern agriculture and its future with biotechnology. J. Am. Coll. Nutr. 21, 161S–165S (2002).PubMed
Article
Google Scholar
Cooper, J. & Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 26, 1337–1348 (2007).CAS
Article
Google Scholar
Zsögön, A., Peres, L. E. P., Xiao, Y., Yan, J. & Fernie, A. R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. https://doi.org/10.1111/tpj.15626 (2021).IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Phil. Trans. R. Soc. Lond. B 371, 20160026 (2016).Article
Google Scholar
Avelino, J. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 7, 303–321 (2015).Article
Google Scholar
Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
Ploetz, R. C. Panama disease: a classic and destructive disease of banana. Plant Health Prog. https://doi.org/10.1094/PHP-2000-1204-01-HM (2000).Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed
Article
Google Scholar
Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed
Article
Google Scholar
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS
PubMed
Article
Google Scholar
Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).CAS
PubMed
Article
Google Scholar
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).PubMed
Article
Google Scholar
Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. 3, 753474 (2021).Article
Google Scholar
Manning, L. Groundwork BioAg raises $11m to expand mycorrhizal inputs business. AgFunder Network https://agfundernews.com/groundwork-bioag-raises-11m-to-expand-mycorrhizal-inputs-business (2021).Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).PubMed
PubMed Central
Article
Google Scholar
Olle, M. & Williams, I. H. Effective microorganisms and their influence on vegetable production—a review. J. Hortic. Sci. Biotechnol. 88, 380–386 (2013).Article
Google Scholar
Mayer, J., Scheid, S., Widmer, F., Fließbach, A. & Oberholzer, H.-R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239 (2010).Article
Google Scholar
Kodippili, K. P. A. N. & Nimalan, J. Effect of homemade effective microorganisms on the growth and yield of chilli (Capsicum annuum) MI-2. AGRIEAST J. Agric. Sci. https://doi.org/10.4038/agrieast.v12i2.57 (2018).de Araujo Avila, G. M., Gabardo, G., Clock, D. C. & de Lima Junior, O. S. Use of efficient microorganisms in agriculture. Res. Soc. Dev. https://doi.org/10.33448/rsd-v10i8.17515 (2021).Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).Article
Google Scholar
Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).PubMed
Article
Google Scholar
Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).CAS
Article
Google Scholar
Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).Article
Google Scholar
Veen, C. G. F., Snoek, B. L., Bakx-Schotman, T., Wardle, D. A. & van der Putten, W. H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 33, 1524–1535 (2019).Article
Google Scholar
Wang, Q., Zhong, M. & He, T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils 49, 427–434 (2013).CAS
Article
Google Scholar
Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).PubMed
PubMed Central
Article
Google Scholar
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).CAS
PubMed
Article
Google Scholar
de Graaff, M.-A., Adkins, J., Kardol, P. & Throop, H. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1, 257–271 (2015).Article
Google Scholar
Gao, J. et al. Assessing the effect of leaf litter diversity on the decomposition and associated diversity of fungal assemblages. Forests 6, 2371–2386 (2015).Article
Google Scholar
Selosse, M.-A., Bouchard, D., Martin, F. & Tacon, F. L. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can. J. Res. 30, 360–371 (2000).Article
Google Scholar
Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed
PubMed Central
Article
Google Scholar More