More stories

  • in

    Author Correction: Protect European green agricultural policies for future food security

    Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, SpainManuel B. Morales & Juan TrabaCentro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Madrid, SpainManuel B. Morales, Juan Traba & Elena D. ConcepciónMuseo Nacional de Ciencias Naturales, CSIC, Madrid, SpainMario Díaz & Elena D. ConcepciónConservation Biology Group, Landscape Dynamics and Biodiversity Program, Conservation Biology Group (GBiC), Forest Science and Technology Centre of Catalonia (CTFC), Solsona, SpainDavid Giralt, Francesc Sardà-Palomera & Gerard BotaInstituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, SpainFrançois Mougeot & Beatriz ArroyoEstación Biológica de Doñana, CSIC, Sevilla, SpainDavid SerranoDepartament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, SpainSanti MañosaInstitut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, SpainSanti MañosaUSC 1339 Centre d’Etudes Biologiques de Chizé, INRAE, CNRS & Université de La Rochelle, F-79360, Villiers-en-Bois, FranceSabrina GabaUMR 7372 Centre d’Etudes Biologiques de Chizé, CNRS & Université de La Rochelle, F-79360, Villiers-en-Bois, FranceSabrina GabaCIBIO/InBio–University of Porto and Institute of Agronomy–University of Lisbon, Lisbon, PortugalFrancisco MoreiraSwedish University of Agricultural Sciences, Uppsala, SwedenTomas PärtSustainable Forest Management Research Institute (iuFOR), Universidad de Valladolid & INIA, Valladolid, SpainRocío Tarjuelo More

  • in

    Latitudinal and temporal variation in injury and its impacts in the invasive Asian shore crab Hemigrapsus sanguineus

    Bryant, S. V., Endo, T. & Gardiner, D. M. Vertebrate limb regeneration and the origin of limb stem cells. Int. J. Dev. Biol. 46, 887–896 (2004).
    Google Scholar 
    Fleming, P. A., Muller, D. & Bateman, P. W. Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biol. Rev. 82, 481–510 (2007).PubMed 
    Article 

    Google Scholar 
    Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 
    Article 

    Google Scholar 
    Lindsay, S. M. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr. Comp. Biol. 50, 479–493 (2010).PubMed 
    Article 

    Google Scholar 
    Wilson, B. S. Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana). Oecologia 92, 145–152 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, D. G. & Swain, R. Inter-populational variation in the cost of autotomy in the metallic skink (Niveoscincus metallicus). J. Zool. 264, 411–418 (2004).Article 

    Google Scholar 
    Tyler, R. K., Winchell, K. M. & Revell, L. J. Tails of the city: Caudal autotomy in the tropical lizard, Anolis cristatellus, in urban and natural areas of Puerto Rico. J. Herpetol. 50, 435–441 (2016).Article 

    Google Scholar 
    Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).ADS 
    Article 

    Google Scholar 
    Smith, L. D. & Hines, A. H. Autotomy in blue crab (Callinectes sapidus Rathbun) populations: Geographic, temporal, and ontogenetic variation. Biol. Bull. 180, 416–431 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872 (2006).Article 

    Google Scholar 
    Suma Gupta, N. V., Kurup, K. N. P., Adiyodi, R. G. & Adiyodi, K. G. The antagonism between somatic growth and testicular activity during different phases in intermoult (stage C4) in sexually mature freshwater crab, Paratelphusa hydrodromous. Invertebr. Reprod. Dev. 16, 195–203 (1989).Article 

    Google Scholar 
    Devi, S. & Adiyodi, R. G. Effect of multiple limb autotomy on oogenesis and somatic growth in Paratelphusa hydromous. Trop. Freshw. Biol. 9, 43–56 (2000).
    Google Scholar 
    Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).Article 

    Google Scholar 
    Cheng, J. H. & Chang, E. S. Determinants of postmolt size in the American lobster (Homarus americanus). I. D13 is the critical stage. Can. J. Fish. Aquat. Sci. 50, 2106–2111 (1993).Article 

    Google Scholar 
    Kuris, A. M. & Mager, M. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes. J. Exp. Zool. 193, 353–359 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ballinger, R. E. & Tinkle, D. W. On the cost of tail regeneration to body growth in lizards. J. Herpetol. 13, 374–375 (1979).Article 

    Google Scholar 
    Hopkins, P. M. & Das, S. Regeneration in crustaceans. Nat. Hist. Crustacea 4, 168–198 (2015).
    Google Scholar 
    Lai, A. G. & Aboobaker, A. A. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev. Biol. 433, 118–131 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    Bondad-Reantaso, M. G., Subasinghe, R. P., Josupeit, H., Cai, J. & Zhou, X. The role of crustacean fisheries and aquaculture in global food security: Past, present and future. J. Invertebr. Pathol. 110, 158–165 (2012).PubMed 
    Article 

    Google Scholar 
    Galil, B. S., Clark, P. F. & Carleton, J. T. In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology, and Impacts (Springer, 2011).Book 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS One 13, e0193085 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffen, B. D., van den Akker, D., DiNuzzo, E. R., Anderson, L. & Vernier, A. Comparing methods for predicting the impacts of invasive species. Biol. Invasions 23, 491–505 (2021).Article 

    Google Scholar 
    Williams, A. B. & McDermott, J. J. An eastern United States record for the western Indo-Pacific crab, Hemigrapsus sanguineus (Crustacea: Decapoda: Grapsidae). Proc. Biol. Soc. Wash. 103, 108–109 (1990).
    Google Scholar 
    Blakeslee, A. M. et al. Reconstructing the invasion history of the Asian shorecrab, Hemigrapsus sanguineus (De Haan 1835) in the Western Atlantic. Mar. Biol. 164, 1–19 (2017).
    Google Scholar 
    Griffen, B. D. & Delaney, D. G. Species invasion shifts the importance of predator dependence. Ecology 88, 3012–3021 (2007).PubMed 
    Article 

    Google Scholar 
    Epifanio, C. E. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. J. Exp. Mar. Biol. Ecol. 441, 33–49 (2013).Article 

    Google Scholar 
    Gerard, V. A., Cerrato, R. M. & Larson, A. A. Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol. Invasions 1, 353–361 (1999).Article 

    Google Scholar 
    Kraemer, G. P., Sellberg, M., Gordon, A. & Main, J. Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. Northeast. Nat. 14, 207–224 (2007).Article 

    Google Scholar 
    Davis, J. L. et al. Autotomy in the Asian shore crab (Hemigrapsus sanguineus) in a non-native area of its range. J. Crust. Biol. 25, 655–660 (2005).Article 

    Google Scholar 
    Delaney, D. G., Griffen, B. D. & Leung, B. Does consumer injury modify invasion impact?. Biol. Invasions 13, 2935–2945 (2011).Article 

    Google Scholar 
    Jensen, G. C., McDonald, P. S. & Armstrong, D. A. East meets west: Competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).ADS 
    Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Interactions among aliens: Apparent replacement of one exotic species by another. Ecology 83, 719–732 (2002).Article 

    Google Scholar 
    Griffen, B. D. & Williamson, T. Influence of predator density on nonindependent effects of multiple predator species. Oecologia 155, 151–159 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vernier, A. & Griffen, B. D. Physiological effects of limb loss on the Asian shore crab Hemigrapsus sanguineus. Northeast. Nat. 26, 761–771 (2019).Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar. Ecol. Prog. Ser. 227, 135–144 (2002).ADS 
    Article 

    Google Scholar 
    Goldstein, J. S. & Carloni, J. T. Assessing the implications of live claw removal on Jonah crab (Cancer borealis), an emerging fishery in the Northwest Atlantic. Fish. Res. 243, 106046 (2021).Article 

    Google Scholar 
    Hines, A. H. Allometric constraints and variables of reproductive effort in brachyuran crabs. Mar. Biol. 69, 309–320 (1982).Article 

    Google Scholar 
    Pörtner, H. O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).PubMed 
    Article 

    Google Scholar 
    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    Prestholdt, T. et al. Tradeoffs associated with autotomy and regeneration and their potential role in the evolution of regenerative abilities. Behav. Ecol. 33, 518–525 (2022).Article 

    Google Scholar 
    McDermott, J. J. The western Pacific brachyuran Hemigrapsus sanguineus (Grapsidae) in its new habitat along the Atlantic coast of the United States: Reproduction. J. Crustac. Biol. 18, 308–316 (1998).Article 

    Google Scholar 
    Depledge, M. H. Hemigrapsus sanguineus (De Haan). Asian Mar. Biol. 1, 115–123 (1984).
    Google Scholar 
    Saigusa, M. & Kawagoye, O. Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: Synchrony with unequal tide height and involvement of a light-response mechanism. Mar. Biol. 129, 87–96 (1997).Article 

    Google Scholar 
    Choy, S. C. A rapid method for removing and counting eggs from fresh and preserved decapod crustaceans. Aquaculture 48, 369–372 (1985).Article 

    Google Scholar 
    Rosa, R., Calado, R., Narciso, L. & Nunes, M. L. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: A fatty acid approach. Mar. Biol. 151, 935–947 (2007).Article 

    Google Scholar 
    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Zero-truncated and zero-inflated models for count data. In Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).MATH 
    Chapter 

    Google Scholar 
    Griffen, B. D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 174, 121–130 (2014).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies

    Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE, Doney SC, et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun. 2014;5:4318.CAS 
    PubMed 
    Article 

    Google Scholar 
    Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 
    Article 

    Google Scholar 
    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: Phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:1–12.Article 

    Google Scholar 
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil L-A, Thingstad F. The ecological role of water-column microbes in the sea. Marine ecology progress series. 1983;10:257–63.Ratnarajah L, Blain S, Boyd PW, Fourquez M, Obernosterer I, Tagliabue A. Resource colimitation drives competition between phytoplankton and bacteria in the Southern Ocean. Geophys Res Lett. 2021;48:e2020GL088369.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis. 2016;69:131–9.Article 

    Google Scholar 
    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.PubMed 
    Article 

    Google Scholar 
    Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole JJ. Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst. 1982;13:291–314.Article 

    Google Scholar 
    Durham B. Deciphering metabolic currencies that support marine microbial networks. mSystems. 2021;6:e00763-21.Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.Article 

    Google Scholar 
    Baker LJ, Kemp PF. Exploring bacteria–diatom associations using single-cell whole genome amplification. Aquat Microb Ecol. 2014;72:73–88.Article 

    Google Scholar 
    Graff JR, Rines JE, Donaghay PL. Bacterial attachment to phytoplankton in the pelagic marine environment. Mar Ecol Prog Ser. 2011;441:15–24.Article 

    Google Scholar 
    Baker LJ, Alegado RA, Kemp PF. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system. Environ Microbiol Rep. 2016;8:917–27.PubMed 
    Article 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leinweber K, Kroth PG. Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria. PeerJ. 2015;3:e858.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo S, Stevens CA, Vance TDR, Olijve LLC, Graham LA, Campbell RL, et al. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Sci Adv. 2017;3:e1701440.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rao D, Webb JS, Kjelleberg S. Microbial colonization and competition on the Marine Alga Ulva australis. Appl Environ Microbiol. 2006;72:5547–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou J, Chen G-F, Ying K-Z, Jin H, Song J-T, Cai Z-H, et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl Environ Microbiol. 2019;85:e00349–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.Article 

    Google Scholar 
    Strzepek RF, Hunter KA, Frew RD, Harrison PJ, Boyd PW. Iron‐light interactions differ in Southern Ocean phytoplankton. Limnol Oceanogr. 2012;57:1182–200.CAS 
    Article 

    Google Scholar 
    Andrew SM, Strzepek RF, M Whitney S, Chow WS, Ellwood MJ. Divergent physiological and molecular responses of light‐and iron‐limited Southern Ocean phytoplankton. Limnol Oceanogr Lett. 2022;7:150–8.CAS 
    Article 

    Google Scholar 
    Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.CAS 
    Article 

    Google Scholar 
    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci. 2015;112:9938–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bates SSB, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: new research since 2011. Harmful Algae. 2018;79:3–43.PubMed 
    Article 

    Google Scholar 
    Almandoz GO, Ferreyra GA, Schloss IR, Dogliotti AI, Rupolo V, Paparazzo FE, et al. Distribution and ecology of Pseudo-nitzschia species (Bacillariophyceae) in surface waters of the Weddell Sea (Antarctica). Polar Biol. 2008;31:429–42.Article 

    Google Scholar 
    Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, Spackeen JL, et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci. 2021;118:e2107238118.Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci. 2016;113:E1516–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno CM, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol. 2018;41:679–96.Article 

    Google Scholar 
    Ellis KA, Cohen NR, Moreno C, Marchetti A. Cobalamin-independent methionine synthase distribution and influence on vitamin B12 growth requirements in marine diatoms. Protist. 2017;168:32–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PM, Palenik B, et al. Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr. 1989;6:443–61.Article 

    Google Scholar 
    Hubbard KA, Rocap G, Armbrust EV. Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol. 2008;44:637–49.CAS 
    Article 

    Google Scholar 
    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brand LE, Guillard RR, Murphy LS. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res. 1981;3:193–201.Article 

    Google Scholar 
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucl Acids Res. 2018;46:W282–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol. 1998;14:113–8.Article 

    Google Scholar 
    Alcamán-Arias ME, Fuentes-Alburquenque S, Vergara-Barros P, Cifuentes-Anticevic J, Verdugo J, Polz M, et al. Coastal bacterial community response to glacier melting in the Western Antarctic Peninsula. Microorganisms. 2021;9:88.PubMed Central 
    Article 

    Google Scholar 
    Bowman JP, Gosink JJ, McCAMMON SA, Lewis TE, Nichols DS, Nichols PD, et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: ω63). Int J Syst Evol Microbiol. 1998;48:1171–80.CAS 

    Google Scholar 
    Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nichols CM, Bowman JP, Guezennec J. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol. 2005;55:1557–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    von Scheibner M, Sommer U, Jürgens K. Tight coupling of Glaciecola spp. and diatoms during cold-water Phytoplankton spring blooms. Front Microbiol. 2017;8:27.Holmstrom C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol. 1999;30:285–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci. 2005;102:10913–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.CAS 
    PubMed 

    Google Scholar 
    Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, et al. Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol. 2015;65:95–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brussaard CPD, Riegman R. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aqua Microb Ecol. 1998;14:271–80.Article 

    Google Scholar 
    Cohen NR, A. Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, et al. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean. Limnol Oceanogr. 2017;62:2076–96.CAS 
    Article 

    Google Scholar 
    Hunken M, Harder J, Kirst G. Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol. 2008;10:519–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes–from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol. 2019;57:72–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci. 2006;103:13186–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol. 2005;43:101–9.CAS 
    PubMed 

    Google Scholar 
    Núñez-Montero K, Barrientos L. Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics. 2018;7:90.Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci. 2021;118:e2101178118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser. 1995;121:217–26.Article 

    Google Scholar 
    Sharpe GC, Gifford SM, Septer AN. A model roseobacter, Ruegeria pomeroyi DSS-3, employs a diffusible killing mechanism to eliminate competitors. Msystems. 2020;5:e00443–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol. 2012;78:4771–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol. 2005;71:8531–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruhn JB, Gram L, Belas R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol. 2007;73:442–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP, Nyholm SV, et al. Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol. 2016;7:1342.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharifah EN, Eguchi M. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One. 2011;6:e26756.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. MBio. 2019;10:e02376–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonelli M, Signori CN, Bendia A, Neiva J, Ferrero B, Pellizari V, et al. Climate projections for the southern ocean reveal impacts in the marine microbial communities following increases in sea surface temperature. Front Mar Sci. 2021;8:636226.Andrew SM, Morell HT, Strzepek RF, Boyd PW, Ellwood MJ. Iron availability influences the tolerance of southern ocean phytoplankton to warming and elevated irradiance. Front Mar Sci. 2019;6:681.Andrew SM, Strzepek RF, Branson O, Ellwood MJ. Ocean acidification reduces the growth of two Southern Ocean phytoplankton. Mar Ecol Prog Ser. 2022;682:51–64.CAS 
    Article 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Weezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res. 2021;49:W29–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 

    Google Scholar  More

  • in

    Defending Earth’s terrestrial microbiome

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, M. J., May, R. M. & Stork, N. E. Can we name earth’s species before they go extinct? Science 339, 413–416 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Corlett, R. T. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38, 10–16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022).CAS 
    Article 

    Google Scholar 
    Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).Article 

    Google Scholar 
    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schopf, J. W. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl Acad. Sci. USA 91, 6735–6742 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seager, S., Huang, J., Petkowski, J. J. & Pajusalu, M. Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres. Nat. Astron. 4, 802–806 (2020).Article 

    Google Scholar 
    Halme, P., Holec, J. & Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 27, 193–201 (2017).Article 

    Google Scholar 
    Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35, 209–244 (1991).Article 

    Google Scholar 
    Boddy, L. in The Fungi (eds Watkinson, S. C. et al.) 361–400 (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-382034-1.00011-6Zimmerman, M. The mushroom message. Sun 11A (1992).Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article 

    Google Scholar 
    Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).Article 

    Google Scholar 
    Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020).Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carthey, A. J., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. 34, 764–776 (2020).Article 

    Google Scholar 
    Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol. 12, 2094 (2021).Article 

    Google Scholar 
    Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anthony, M. A., Stinson, K. A., Moore, J. A. M. & Frey, S. D. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 194, 659–672 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4, 174–183 (2011).Article 

    Google Scholar 
    Gibbons, S. M. et al. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2, e00178-16 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Certini, G., Moya, D., Lucas-Borja, M. E. & Mastrolonardo, G. The impact of fire on soil-dwelling biota: a review. For. Ecol. Manage. 488, 118989 (2021).Article 

    Google Scholar 
    Caruso, T., Hempel, S., Powell, J. R., Barto, E. K. & Rillig, M. C. Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93, 1115–1124 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M., Frey, S. & Stinson, K. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8, e01951 (2017).Article 

    Google Scholar 
    Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed 
    Article 

    Google Scholar 
    Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega‐fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Novacek, M. J. & Cleland, E. E. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl Acad. Sci. USA 98, 5466–5470 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 

    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01173-1 (2022).Box, G. E. P. & Draper, N. R. Empirical Model-building and Response Surfaces (Wiley, 1987).Box, G. E. P., Hunter, W. G. & Hunter, J. S. Statistics for Experimenters: an Introduction to Design, Data Analysis, and Model Building (Wiley, 1978).Kothamasi, D., Spurlock, M. & Kiers, E. T. Agricultural microbial resources: private property or global commons? Nat. Biotechnol. 29, 1091–1093 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, 21 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pan, K., Guo, Z. & Liu, J. Building and materializing of China Soil Microbiome Data Platform. Acta Pedol. Sin. 56, 1023–1033 (2019).
    Google Scholar 
    Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández‐Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).Article 

    Google Scholar 
    Hinckley, E. S. et al. The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network. Ecosphere 7, e01234 (2016).Article 

    Google Scholar 
    Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jackson, F. Sustainable agriculture and a low carbon future: are we missing out on mycelium? Forbes https://www.forbes.com/sites/feliciajackson/2021/12/02/sustainable-agriculture-and-a-low-carbon-future-are-we-missing-out-on-mycelium/?sh=3dc1a6d076ed (2021).Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta‐analysis. J. Appl. Ecol. 51, 1669–1679 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).CAS 
    Article 

    Google Scholar 
    Status of the World’s Soil Resources: Main Report (FAO, 2015).Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).Article 

    Google Scholar 
    Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020).Article 

    Google Scholar 
    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021).Article 

    Google Scholar 
    Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).Article 

    Google Scholar 
    Koziol, L. et al. Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14036 (2021).Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).PubMed 
    Article 

    Google Scholar 
    Bever, J. & Schultz, P. Prairie mycorrhizal fungi inoculant may increase native plant diversity on restored sites (Illinois). Ecol. Restor. 21, 311–312 (2003).
    Google Scholar 
    Vahter, T. et al. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J. Appl. Ecol. 57, 1741–1751 (2020).CAS 
    Article 

    Google Scholar 
    Egan, C. P. et al. Restoration of the mycobiome of the endangered Hawaiian mint Phyllostegia kaalaensis increases its resistance to a common powdery mildew. Fungal Ecol. 52, 101070 (2021).Article 

    Google Scholar 
    Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long‐term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 203, 120–124 (2016).Article 

    Google Scholar 
    Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022).Article 

    Google Scholar 
    Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis: mycorrhizal inoculation in restoration. Restor. Ecol. 23, 625–634 (2015).Article 

    Google Scholar 
    Busby, P. E., Newcombe, G., Neat, A. S. & Averill, C. Facilitating reforestation through the plant microbiome: perspectives from the phyllosphere. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev-phyto-021320-010717 (2022).van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 

    Google Scholar 
    Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994 (2014).Article 

    Google Scholar 
    Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 12, 1758–1767 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ceballos, I. et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE 8, e70633 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buysens, C., César, V., Ferrais, F., de Boulois, H. D. & Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105, 137–143 (2016).Article 

    Google Scholar 
    Antunes, P. M. et al. Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317, 257–266 (2009).CAS 
    Article 

    Google Scholar 
    Emam, T. Local soil, but not commercial AMF inoculum, increases native and non‐native grass growth at a mine restoration site. Restor. Ecol. 24, 35–44 (2016).Article 

    Google Scholar 
    Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010).PubMed 
    Article 

    Google Scholar 
    Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. R. & Bhatnagar, J. M. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020).Article 

    Google Scholar 
    Hoeksema, J. D. et al. Ectomycorrhizal plant-fungal co-invasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences. Front. Glob. Change 3, 84 (2020).Article 

    Google Scholar 
    Land Use Statistics and Indicators. Global, Regional and Country Trends 1990– 2019 FAOSTAT Analytical Brief Series No. 28 (FAO, 2021).Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 1–6 (2005).Article 

    Google Scholar 
    Harlander, S. K. The evolution of modern agriculture and its future with biotechnology. J. Am. Coll. Nutr. 21, 161S–165S (2002).PubMed 
    Article 

    Google Scholar 
    Cooper, J. & Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 26, 1337–1348 (2007).CAS 
    Article 

    Google Scholar 
    Zsögön, A., Peres, L. E. P., Xiao, Y., Yan, J. & Fernie, A. R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. https://doi.org/10.1111/tpj.15626 (2021).IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Phil. Trans. R. Soc. Lond. B 371, 20160026 (2016).Article 

    Google Scholar 
    Avelino, J. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 7, 303–321 (2015).Article 

    Google Scholar 
    Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ploetz, R. C. Panama disease: a classic and destructive disease of banana. Plant Health Prog. https://doi.org/10.1094/PHP-2000-1204-01-HM (2000).Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed 
    Article 

    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed 
    Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).PubMed 
    Article 

    Google Scholar 
    Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. 3, 753474 (2021).Article 

    Google Scholar 
    Manning, L. Groundwork BioAg raises $11m to expand mycorrhizal inputs business. AgFunder Network https://agfundernews.com/groundwork-bioag-raises-11m-to-expand-mycorrhizal-inputs-business (2021).Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olle, M. & Williams, I. H. Effective microorganisms and their influence on vegetable production—a review. J. Hortic. Sci. Biotechnol. 88, 380–386 (2013).Article 

    Google Scholar 
    Mayer, J., Scheid, S., Widmer, F., Fließbach, A. & Oberholzer, H.-R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239 (2010).Article 

    Google Scholar 
    Kodippili, K. P. A. N. & Nimalan, J. Effect of homemade effective microorganisms on the growth and yield of chilli (Capsicum annuum) MI-2. AGRIEAST J. Agric. Sci. https://doi.org/10.4038/agrieast.v12i2.57 (2018).de Araujo Avila, G. M., Gabardo, G., Clock, D. C. & de Lima Junior, O. S. Use of efficient microorganisms in agriculture. Res. Soc. Dev. https://doi.org/10.33448/rsd-v10i8.17515 (2021).Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).Article 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).PubMed 
    Article 

    Google Scholar 
    Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).CAS 
    Article 

    Google Scholar 
    Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).Article 

    Google Scholar 
    Veen, C. G. F., Snoek, B. L., Bakx-Schotman, T., Wardle, D. A. & van der Putten, W. H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 33, 1524–1535 (2019).Article 

    Google Scholar 
    Wang, Q., Zhong, M. & He, T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils 49, 427–434 (2013).CAS 
    Article 

    Google Scholar 
    Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Graaff, M.-A., Adkins, J., Kardol, P. & Throop, H. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1, 257–271 (2015).Article 

    Google Scholar 
    Gao, J. et al. Assessing the effect of leaf litter diversity on the decomposition and associated diversity of fungal assemblages. Forests 6, 2371–2386 (2015).Article 

    Google Scholar 
    Selosse, M.-A., Bouchard, D., Martin, F. & Tacon, F. L. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can. J. Res. 30, 360–371 (2000).Article 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Unravelling the interplay of ecological processes structuring the bacterial rare biosphere

    Pedros-Alio C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66. https://doi.org/10.1146/annurev-marine-120710-100948.Article 
    PubMed 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci. 2006;103:12115–20. https://doi.org/10.1073/pnas.0605127103.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. mBio. 2019;10:e02189–18. https://doi.org/10.1128/mBio.02189-18.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pester M, Bittner N, Deevong P, Wagner M, Loy AA. ‘Rare biosphere’microorganism contributes to sulfate reduction in a peatland. ISME J. 2010;4:1591–602.Article 

    Google Scholar 
    Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72. https://doi.org/10.1038/s41564-018-0180-0.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64. https://doi.org/10.1073/pnas.1109326109.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.Article 

    Google Scholar 
    Rabinowitz D, Rapp JK, Dixon PM. Competitive abilities of sparse grass species: means of persistence or cause of abundance. Ecology. 1984;65:1144–54. https://doi.org/10.2307/1938322.Article 

    Google Scholar 
    Reinhardt K, Köhler G, Maas S, Detzel P. Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography. 2005;28:593–602. https://doi.org/10.1111/j.2005.0906-7590.04285.x.Article 

    Google Scholar 
    Yenni G, Adler PB, Ernest S. Strong self-limitation promotes the persistence of rare species. Ecology. 2012;93:456–61.Article 

    Google Scholar 
    Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. The ISME J. 2017;11:853–62. https://doi.org/10.1038/ismej.2016.174.Article 
    PubMed 

    Google Scholar 
    Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8. https://doi.org/10.4319/lo.2000.45.6.1320.Article 

    Google Scholar 
    Szekely AJ, Langenheder S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol. 2014;87:102–12. https://doi.org/10.1111/1574-6941.12195.Article 
    PubMed 

    Google Scholar 
    Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 2018;12:2198–210. https://doi.org/10.1038/s41396-018-0153-6.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biology Rev. 2013;77:342–56. https://doi.org/10.1128/MMBR.00051-12.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206. https://doi.org/10.1086/652373.Article 
    PubMed 

    Google Scholar 
    Vellend M The Theory of Ecological Communities. Princeton University Pres. 2016:61-7.Jia X, Dini-Andreote F, Falcao Salles J. Community assembly processes of the microbial rare biosphere. Trends Microbiol. 2018;26:738–47. https://doi.org/10.1016/j.tim.2018.02.011.Article 
    PubMed 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79. https://doi.org/10.1038/ismej.2013.93.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:https://doi.org/10.3389/fmicb.2015.00370.Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Ann Rev Ecol Syst. 2002;33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448.Article 

    Google Scholar 
    Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Micro. 2015;13:217–29. https://doi.org/10.1038/nrmicro3400.Article 

    Google Scholar 
    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–E32. https://doi.org/10.1073/pnas.1414261112.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere. 2011;2:art24 https://doi.org/10.1890/es10-00117.1.Article 

    Google Scholar 
    Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:e01371–14. https://doi.org/10.1128/mBio.01371-14.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96. https://doi.org/10.1007/s002530051340.Article 

    Google Scholar 
    Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:94. https://doi.org/10.3389/fmicb.2011.00094.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jia X, Dini-Andreote F, Falcao Salles J. Comparing the influence of assembly processes governing bacterial community succession based on DNA and RNA Data. Microorganisms. 2020;8. https://doi.org/10.3390/microorganisms8060798.Olff H, De Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol. 1997;85:799–814. https://doi.org/10.2307/2960603.Article 

    Google Scholar 
    Dini-Andreote F, Silva M, Triado-Margarit X, Casamayor EO, van Elsas JD, Salles JF. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J. 2014;8:1989–2001. https://doi.org/10.1038/ismej.2014.54.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dini-Andreote F, Pylro VS, Baldrian P, van Elsas JD, Salles JF. Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities. ISME J. 2016;10:1984–97.Article 

    Google Scholar 
    Schrama M, Berg MP, Olff H. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology. 2012;93:2353–64.Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22. https://doi.org/10.1073/pnas.1000080107.Article 
    PubMed 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.Article 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242. https://doi.org/10.1038/nmicrobiol.2016.242.Article 
    PubMed 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints. 2018;6:e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2.Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209.Article 
    PubMed 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.Article 

    Google Scholar 
    R Core Team: R: A language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2017.RStudio Team: RStudio: integrated development for R. In., vol. 42. Boston, MA: RStudio, Inc.; 2015.Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 2010;35:65–88.
    Google Scholar 
    Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 2011;12:35.Article 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.Article 

    Google Scholar 
    Yamamoto K, Hackley KC, Kelly WR, Panno SV, Sekiguchi Y, Sanford RA, et al. Diversity and geochemical community assembly processes of the living rare biosphere in a sand-and-gravel aquifer ecosystem in the Midwestern United States. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-49996-z.Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci. 2009;106:22427–32. https://doi.org/10.1073/pnas.0908284106.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reveillaud J, Maignien L, Murat Eren A, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209. https://doi.org/10.1038/ismej.2013.227.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of rare and abundant marine microbial eukaryotes. Curr Biol. 2014;24:813–21. https://doi.org/10.1016/j.cub.2014.02.050.Article 
    PubMed 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81. https://doi.org/10.1073/pnas.1101405108.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA. 2005;102:16569. https://doi.org/10.1073/pnas.0507655102.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101. https://doi.org/10.1038/ismej.2013.10.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England). 2004;20:289–90.Article 

    Google Scholar 
    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.Article 

    Google Scholar 
    Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64. https://doi.org/10.1038/ismej.2012.22.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiao S, Lu Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ Microbiol. 2020;22:1052–65. https://doi.org/10.1111/1462-2920.14815.Article 
    PubMed 

    Google Scholar 
    Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2012;7:937–48. https://doi.org/10.1038/ismej.2012.168.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kurm V, van der Putten WH, Weidner S, Geisen S, Snoek BL, Bakx T, et al. Competition and predation as possible causes of bacterial rarity. Environ Microbiol. 2019;21:1356–68. https://doi.org/10.1111/1462-2920.14569.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aanderud ZT, Saurey S, Ball BA, Wall DH, Barrett JE, Muscarella ME, et al. Stoichiometric shifts in Soil C:N:P promote bacterial taxa dominance, maintain biodiversity, and deconstruct community assemblages. Front Microbiol. 2018;9:1401 https://doi.org/10.3389/fmicb.2018.01401.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol. 2007;53:443–55. https://doi.org/10.1007/s00248-006-9141-x.Article 
    PubMed 

    Google Scholar 
    Magurran AE, McGill BJ. Biological diversity: frontiers in measurement and assessment. Oxford University Press; 2011.Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wust PK, Bunk B, et al. Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Front Microbiol. 2020;11:1391. https://doi.org/10.3389/fmicb.2020.01391.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12:496–508. https://doi.org/10.1016/j.chom.2012.09.009.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Veelen HPJ, Falcao Salles J, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156. https://doi.org/10.1186/s40168-017-0371-6.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae. Soil Biology Biochem. 2011;43:760–5. https://doi.org/10.1016/j.soilbio.2010.12.009.Article 

    Google Scholar 
    Snell Taylor SJ, Evans BS, White EP, Hurlbert AH. The prevalence and impact of transient species in ecological communities. Ecology. 2018;99:1825–35. https://doi.org/10.1002/ecy.2398.Article 
    PubMed 

    Google Scholar 
    Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol. 2019;21:750–8. https://doi.org/10.1111/1462-2920.14492.Article 
    PubMed 

    Google Scholar 
    Wang Y, Hatt JK, Tsementzi D, Rodriguez RL, Ruiz-Perez CA, Weigand MR, et al. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Appl Environ Microbiol. 2017;83:e03321–16. https://doi.org/10.1128/AEM.03321-16.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155. https://doi.org/10.1016/j.apsoil.2020.103647.Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns. ISME J. 2018;12:1404–13. https://doi.org/10.1038/s41396-018-0103-3.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson RE, Sogin ML, Baross JA. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol. 2015;91:1–11. https://doi.org/10.1093/femsec/fiu016.Article 
    PubMed 

    Google Scholar 
    Mallon CA, Le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41. https://doi.org/10.1038/s41396-017-0003-y.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langenheder S, Bulling MT, Solan M, Prosser JI. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS One. 2010;5:e10834. https://doi.org/10.1371/journal.pone.0010834.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505.Article 

    Google Scholar 
    Griffiths B, Ritz K, Wheatley R, Kuan H, Boag B, Christensen S, et al. An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem. 2001;33:1713–22.Article 

    Google Scholar 
    Hooper DU, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.Article 

    Google Scholar 
    Logares R, Tesson SVM, Canback B, Pontarp M, Hedlund K, Rengefors K. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol. 2018;20:2231–40. https://doi.org/10.1111/1462-2920.14265.Article 
    PubMed 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.Article 

    Google Scholar 
    Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberod AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55. https://doi.org/10.1186/s40168-020-00827-8.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dini-Andreote F, Brossi MJ, van Elsas JD, Salles JF. Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem. Front Microbiol. 2016;7:902. https://doi.org/10.3389/fmicb.2016.00902.Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Detection parameters for managing invasive rats in urban environments

    Study areaWe conducted our study in two suburbs in Wellington, New Zealand (Fig. 1). The 4.7-hectare site in the suburb of Kelburn (-41.285°S, 174.770°E) was situated on the grounds of student accommodation for Victoria University of Wellington. The site comprised bungalow houses, two accommodation halls, and access roads and paths. About half of the vegetation at the Kelburn site was a mix of tended grass lawns and gardens containing a variety of native New Zealand plant species, e.g., flax (Phormium spp.), longwood tussock (Carex comans), and cabbage tree (Cordyline australis). The other half was a mix of dense ground cover dominated by invasive weed species and native and exotic trees and shrubs, e.g., pōhutukawa (Metrosideros excelsa), common oak (Quercus robur), kawakawa (Piper excelsum), and taupata (Coprosma repens). The second suburb was Roseneath (−41.292°S, 174.801°E) on a small peninsula on the north-eastern side of Mount Victoria. The site was 8.5 hectares comprising 76 residential properties, public thoroughfares, and footpaths. We conducted fieldwork in the gardens of 25 of these properties. The vegetation varied considerably between gardens, comprising native and introduced garden plants and invasive weeds, especially blackberry (Rubus fruticosus).Figure 1(A) The study was conducted in the suburbs of Kelburn (left yellow dot) and Roseneath (right yellow dot) in the city of Wellington, New Zealand. The black polygon represents the 1475 ha area that will be targeted for ship rat (Rattus rattus) eradication in Wellington city, New Zealand. In each suburb, we radio-collared ship rats and deployed three types of devices (bait stations, chew cards, and WaxTags) to estimate home range and detection parameters. (B) In Kelburn, we radio-collared 14 rats and deployed eight devices. (C) In Roseneath, we radio-collared 16 rats and deployed 30 devices. The yellow circles indicate home range centers of individual rats, the red triangles indicate the location of bait stations and detection devices, and the small black dots indicate the telemetry locations of rats.Full size imageRat capture, radio-collaring, and field methodologyWe set 100 live-capture cage traps (custom-made, spring-loaded traps) in Kelburn from 12 July to 15 August 2020, and another 100 in Roseneath from 20 August to 20 October 2020. We baited cage traps with apple coated in chocolate spread and checked them at least once every 24 h. We set cage traps in areas with complex vegetative groundcover and understorey to maximize capture rates of ship rats (see35), and to provide shelter from inclement weather. We provided additional shelter by inserting bedding inside a tin can placed in the cage traps, along with a plastic cover over the traps to limit exposure to wind and rain. Cage traps were active for 5 days per week on average. We released all non-target species (house mice Mus musculus, European hedgehogs Erinaceus europaeus, and Eurasian blackbirds Turdus merula).We transferred any trap containing a captured rat into a sealed plastic container. Depending on the estimated size of the captured rat, we placed between one and three cotton balls soaked in isoflurane (99.9%, Attane, Piramal Critical Care Inc., Bethlehem, Pennsylvania, USA) inside the plastic container. A rat was anesthetized when it lost balance and was unable to regain balance when we gently rotated the container. We then removed the rat from the cage trap and placed it next to a heat pad with its head close to the cotton balls soaked in isoflurane to maintain anaesthesia while handling them. We fitted all rats weighing  > 110 g with a V1C 118B VHF radio-collar (Lotek, Havelock North, New Zealand). We marked each collared rat with a unique pelage code using a permanent blonde hair dye60. We also recorded biometrics, including sex, weight, and length. When processing was finished, we placed the rat into another container to recover. This container had a heating pad for warmth and an apple for food to avoid a drop in body temperature and hypoglycemia, which are common problems with anaesthesia62. When the rat appeared mobile, energetic, and behaving normally, we released it at the point of capture.We monitored radio-collared rats using a Yagi antenna (Lotek, Havelock North, New Zealand) and a Telonics R-1000 receiver (Telonics Inc., Mesa, Arizona, USA). We conducted radio-telemetry work during August–November 2020, with fixes taken during the day and night. We recorded a total of three fixes per rat per night, taken at two-hour intervals between the hours of sunset (2200 h) and sunrise (0500 h). We mostly attempted one day-time fix (1200 h); however, if a tracked rat was active (determined by a VHF signal that was moving or changing amplitude), we attempted a second fix in the afternoon. To minimize location error, we used the close approach radio-tracking method described by63. Once a successful fix was made, we used a handheld GPS unit to record the location, date, and time. Telemetry fixes were collected for each radio-collared rat for 18–97 days.After approximately one week of radiotracking an animal, we obtained an initial crude estimate of the center of each rat’s home range as the mean of all eastings and northings (based on a minimum of 15 telemetry points per rat). A bait station baited with non-toxic pellets (Protecta Sidekick bait stations, Bell Laboratories Inc., Windsor, Wisconsin, USA), a WaxTag with a peanut butter odor incorporated into the wax (PCR WaxTags, Traps.co.nz, Rolleston, New Zealand), and a chew card (a corflute card baited with peanut butter) were deployed at varying distances (max. 50 m) and cardinal directions from the estimated home range center of each individual rat. This layout maximized the likelihood of encounters with devices, compared with a regular grid-type deployment where some of the devices could fall outside a collared rat’s home range and thus never be encountered. Note that the crude estimate of the location of the home range center for each rat was only used to guide device placement, i.e., it was not used in any statistical analyses, or to describe rat home range sizes. Further, to avoid a choice-type experiment (i.e., all three devices set immediately next to each other), we randomly assigned a distance and cardinal direction to each device type within each rat’s home range but ensured all devices were deployed  > 15 m apart. The three device types were chosen because they are used by Predator Free Wellington to conduct their eradication operations.Every deployed device had a trail camera (Browning Strike Force HD Pro Micro Series, Morgan, Utah, USA) taking video of rats encountering and interacting with the device. We set cameras to take 20 s of video footage when triggered, followed by a 1 s re-trigger interval. We fixed trail cameras to trees at a height of 50 cm above ground level and placed the devices 1.5 m in front of the camera (after64). This strategy allowed accurate identification of pelage codes on marked rats. We cleared vegetation in front of and immediately behind the trail cameras to avoid accidental triggers. We used pegs to mark a 30-cm-radius circle around each device and considered a rat–device encounter when a rat entered that circle. We serviced trail camera–device pairs at least once every three days. This included adding more non-lethal bait to bait stations and peanut butter to monitoring devices, installing new WaxTags or chew cards if they had been destroyed, and replacing batteries and SD cards in trail cameras. We set up 54 trail camera–device pairs. However, due to trail camera malfunctions, we were able to retrieve footage from only 38 cameras, 8 in Kelburn and 30 in Roseneath. Trail camera–device pairs were active for 20–70 days, but we retained data from only the first 20 days for the analyses.Video processingAll video footage was viewed and interpreted by the same individual (HRM) for consistency. We extracted the following information: date and time of rat sightings, rat ID (according to the pelage code, or designated as ‘R’ for unmarked rats), the duration of the visit to a device, whether or not an encounter occurred (as defined above), and whether or not an interaction occurred. We defined an interaction as a rat either gnawing on a chew card or WaxTag or entering a bait station.Data analysisWe combined all ship rat telemetry data with the device encounter and interaction data, and developed a hierarchical Bayesian model to infer factors influencing the key parameters σ, ε0, and θ. The analytical approach builds on that described in65. For the purpose of estimating ε0 and θ, multiple encounters or interactions by the same individual with the same device on the same night were counted as a single encounter or interaction.The VHF telemetry data Zij were composed of xij (eastings) and yij (northings) locations for each individual rat i at site j (either Kelburn or Roseneath). To simplify the notation, we drop the j subscript from all subsequent equations. We modelled the probability of observing Zi as a symmetric bivariate normal variable$$P({Z}_{i})= prod_{i=1}^{{L}_{i}}Normal(Delta {x}_{i}|0,{sigma }_{i}^{2})Normal(Delta {y}_{i}|0,{sigma }_{i}^{2})$$
    (1)
    where σi is the standard deviation of a normal distribution with zero mean, Li is the number of location fixes for individual i, and Δxi and Δyi are the straight-line distances from the home range center of individual i to xi and yi, respectively.Home range centers can be estimated using various methods, all of which have underlying assumptions (e.g.,66,67). We calculated the home range center for each individual as the mean of all xi and yi, i.e., the centroid of all locations that we recorded for each individual ( > 30 VHF fixes in all instances). Under this formulation, the home range center is assumed to be perfectly observed, an assumption that is supported by the sample size of telemetry locations that we obtained for each individual (see Supplementary Table 266).We modelled σi as a log-normal variable with mean ln(μi), which was a function of the sex of the individual:$$lnleft({sigma }_{i}right)sim Normal(mathit{ln}left({mu }_{i}right), V)$$
    (2)
    $$lnleft({mu }_{i}right)= {beta }_{0}+ {beta }_{1}{sex}_{i}$$
    (3)
    where V is the variance of ln(σi), and ln(μi) is a linear function of a categorical variable indicating whether rat i is a male (0) or a female (1). The priors on the β coefficients and V were Normal(0, 10) and InverseGamma(0.01, 0.01), respectively.The encounter data (Eimt) across all devices m and nights t was modelled as a Bernoulli process:$${E}_{imt}sim Bernoulli({gamma }_{imt})$$
    (4)
    $$logitleft({gamma }_{imt}right)sim MultivariateNormal(logitleft({P}_{imt}right), varSigma )$$
    (5)
    where γimt is a latent variable representing the degree to which the nightly probability of rat i encountering a given device is not independent of the encounter outcomes of nearby devices, i.e., we assumed there is spatial autocorrelation in the nightly probability of encountering a device. To account for the spatial autocorrelation not explained by the covariates explicitly modelled (i.e., σ and device type, see below), we included an exponential spatial covariance error structure (Σ) as follows:$$varSigma = {nu }^{2}{e}^{-varphi r}$$
    (6)
    where ν2 is the variance, φ is a correlation distance parameter, and r is the distance (in m) between pairs of devices68,69. Further, because not all devices were available on all nights, Σ was calculated iteratively for each night considering only those devices that were available. We used moderately informative log-normal priors for the covariance parameters to obtain proper posteriors69: ν2 ~ logN(3,1) and φ ~ logN(1,1).The nightly probability of encounter of device m by individual i on night t (Pimt) was calculated using a half-normal detection function70:$${P}_{imt}= {{left({varepsilon }_{0, im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{{tau E}_{it}^{*}}}times {{left({varepsilon }_{0,im}{e}^{left(-frac{{d}_{im}^{2}}{2{sigma }_{i}^{2}}right)}right)}^{1-{E}_{it}^{*}}}$$
    (7)
    where ε0,im is the maximum nightly probability of encounter for device m, or the probability if device m was placed at the center of the home range of rat i. The variable σi is the standard deviation from Eq. (1) (i.e., σi is estimated jointly from the telemetry and encounter data) and dim is the distance (in m) between the home range center of rat i and device m; only devices within a distance of 3.72σi from the home range center were considered in the calculation in Eq. (7)70. Finally, τ is a strictly positive parameter (i.e., τ  > 0), measuring the degree of device-shyness, which is multiplied by an indicator variable (left({E}_{it}^{*}right)) which takes a value of 0 when individual i has not encountered a device (of any type) on nights prior to night t, or a value of 1 if it had previously encountered one, regardless of the type of device it encountered. If τ  1 then rats are ‘device-shy’ and thus more likely to avoid devices on nights following an initial encounter. ({E}_{it}^{*}) was reset to 0 after 20 days of no encounters with a device. Following65 we set the prior on τ as Gamma(0.933, 8.33) (shape and rate parameters, respectively).Values of ε0,im were predicted as a function of σi, device type, and individual effects using the following equation:$$logitleft({varepsilon }_{0, im}right)={alpha }_{0}+ {alpha }_{1}mathrm{ln}left({sigma }_{i}right)+ {alpha }_{2}{chewcard}_{m}+{alpha }_{3}{waxtag}_{m}+{delta }_{i}$$
    (8)
    where α2 and α3 quantify the increase or decrease in the maximal probability of encountering a chew card or a WaxTag relative to a bait station (which is the reference category). The δi parameters account for individual differences in ε0. Finally, we allowed ε0 to be a function of ln(σi) because we assumed encounter probability at home range center will decrease with increasing home range size (as suggested by71 and shown by65). The priors on the α coefficients and δ were Normal(0, 10) and Normal(0, 1), respectively.The interaction data (Iimn) across all devices m and nights n when encounters occurred was modelled as a Bernoulli process with probability θ, which was a function of device type and individual effects:$${mathrm{I}}_{imn}sim Bernoullileft({theta }_{imn}right)$$
    (9)
    $$logitleft({theta }_{imn}right)={lambda }_{0}+ {lambda }_{1}{chewcard}_{m}+{lambda }_{2}{waxtag}_{m}+{lambda }_{3}{I}_{in}^{*}+{rho }_{i}$$
    (10)
    where θimn is the probability of rat i interacting with device m given that it has encountered it on night n, and λ1 and λ2 quantify the increase or decrease in the conditional probability of interaction for a chew card or a WaxTag relative to a bait station. The λ3 parameter is analogous to τ in Eq. (7) but for the process of interaction given encounter with a device. However, by incorporating λ3 directly into a linear equation, this parameter can take negative values and thus should be interpreted differently to τ: if λ3  0 indicates that individuals become ‘device-happy’ after an initial interaction. This parameter is multiplied by an indicator variable ({(I}_{in}^{*})) which takes a value of 0 when individual i has not interacted with a device (of any type) on nights prior to night n, or a value of 1 when it has interacted with one previously, regardless of the type of device it interacted with. If a rat had not interacted with a device for 20 days, ({I}_{in}^{*}) was reset to 0. Finally, the ρi parameters account for individual differences in θ. The priors on the λ coefficients and ρ were Normal(0, 10) and Normal(0, 1), respectively. Although we explicitly modelled spatial autocorrelation in the probability of encountering a device, we did not do so for the probability of interaction given an encounter. In this instance we assumed that whether an animal chose to interact with an encountered device would depend on its previous experience (as quantified by λ3) rather than the spatial location of nearby devices.We used Markov Chain Monte Carlo (MCMC) simulation to estimate model parameters using Python programming language. The variance parameter V was sampled from the full conditional posteriors, but all other parameters were estimated using the Metropolis algorithm69. Posterior summaries were taken from four chains containing 3000 samples each (with a burn-in of 2000 and a thinning rate of 30). Convergence on posteriors was assessed by visual inspection and a scale reduction factor  More

  • in

    Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Wolfe, K. et al. Priority species to support the functional integrity of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 58, 179–318 (2020).Article 

    Google Scholar 
    Ip, Y. K. & Chew, S. F. Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Front. Mar. Sci. 8, 627722 (2021).Article 

    Google Scholar 
    Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-symbiodiniaceae associations supports environmental niche adaption. Ecol. Evol. 11, 3393–3406 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 55, 87–388 (2017).Article 

    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Lokier, S., Al-Suwaidi, A. E. & Steuber, T. Stable isotope sclerochronology of Pleistocene shells of the ‘Giant Clam’ Tridacna from Abu Dhabi. Tribulus 20, 21–23 (2012).
    Google Scholar 
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Biogeography of butterflyfishes: A global model for reef fishes? In Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 70–106 (CRC Press, 2013).Chapter 

    Google Scholar 
    DiBattista, J. D. et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 43, 13–30 (2016).Article 

    Google Scholar 
    Kemp, J. M. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of coral reef fishes from Arabia. Fauna Arabia 18, 293–321 (2000).
    Google Scholar 
    Sheppard, C. R. C. & Salm, R. V. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J. Nat. Hist. 22, 263–279 (1988).Article 

    Google Scholar 
    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).Article 

    Google Scholar 
    Torquato, F. & Møller, P. R. Physical-biological interactions underlying the connectivity patterns of coral-dependent fishes around the Arabian Peninsula. J. Biogeogr. 49, 483–496 (2022).Article 

    Google Scholar 
    Watanabe, T., Suzuki, A., Kawahata, H., Kan, H. & Ogawa, S. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: Physiological and paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 343–354 (2004).Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 123–142 (2009).Article 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Hori, M. et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep. 5, 8734 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A. & Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 123, 1460–1474 (2018).CAS 
    Article 

    Google Scholar 
    Yuan, Y., Kusky, T. M. & Rajendran, S. Tertiary and Quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J. Earth Sci. 27, 955–970 (2016).CAS 
    Article 

    Google Scholar 
    Louis, V., Besseau, L. & Lartaud, F. Step in time: Biomineralisation of bivalve’s shell. Front. Mar. Sci. 9, 906085 (2022).Article 

    Google Scholar 
    Mossadegh, Z. K. et al. Palaeoecology of well-preserved coral communities in a siliciclastic environment from the Late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): The development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int. J. Earth Sci. 102, 545–570 (2013).Article 

    Google Scholar 
    Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the U.S. mid-Atlantic constrain laurentide ice sheet extent during marine isotope stage 3. Nat. Commun. 8, 15612 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, G. et al. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870 (2020).Article 

    Google Scholar 
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).ADS 
    Article 

    Google Scholar 
    Hoffmann, G., Rupprechter, M., Rahn, M. & Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quat. Int. 382, 145–153 (2015).Article 

    Google Scholar 
    Kobashi, T. & Grossman, E. J. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol. Res. 7, 343–355 (2003).Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. 7, 4568 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaram, C. et al. Analysis of gap-free chlorophyll-α data from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 39, 7506–7522 (2018).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, J. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Ayouche, A. et al. Structure and dynamics of the Ras al Hadd oceanic dipole in the Arabian Sea. Oceans 2, 105–125 (2021).Article 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Santos, G. M. et al. Δ14C and δ13C of seawater DIC as tracers of coastal upwelling: A 5-year time series from Southern California. Radiocarbon 53, 669–677 (2011).CAS 
    Article 

    Google Scholar 
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    Zhang, X. & Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 242, 106443 (2020).Article 

    Google Scholar 
    Schulte, S. & Müller, P. J. Variations of sea surface temperature and primary productivity during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-Mar. Lett. 21, 168–175 (2001).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114 (2014).ADS 
    Article 

    Google Scholar 
    Duprey, N. et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data. Coral Reefs 34, 437–450 (2015).ADS 
    Article 

    Google Scholar 
    Govil, P. & Naidu, P. D. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability. Paleoceanography 25, 1210 (2010).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Corals reveal an unprecedented decrease of Arabian Sea upwelling during the current warming era. Geophys. Res. Lett. 48, e2021GL092432 (2021).ADS 
    Article 

    Google Scholar 
    Gaye, B. et al. Glacial−interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeosciences 15, 507–527 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 9658 (2018).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Abram, N. J., Webster, J. M., Davies, P. J. & Dullo, W. C. Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20, 221–234 (2001).Article 

    Google Scholar 
    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Banakar, V. K., Mahesh, B. S., Burr, G. & Chondankar, A. R. Climatology of the Eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat. Res. 73, 535–540 (2010).CAS 
    Article 

    Google Scholar 
    Mattern, F. et al. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 138, 192–200 (2018).Article 

    Google Scholar 
    Hoffmann, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).ADS 
    Article 

    Google Scholar 
    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 1245 (2011).
    Google Scholar 
    Nicholl, J. A. L. et al. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tzedenakis, P. C. et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat. Commun. 9, 4235 (2018).ADS 
    Article 

    Google Scholar 
    Sandeep, N. et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 54, 3507–3524 (2020).Article 

    Google Scholar 
    Rao, S. A. et al. Why is Indian Ocean warming consistently? Clim. Change 110, 709–719 (2012).ADS 
    Article 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Mar. Ecol. Prog. Ser. 416, 47–56 (2010).ADS 
    Article 

    Google Scholar 
    Praveen, V., Ajayamohan, R. S., Valsala, V. & Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 43, 7581–7589 (2016).ADS 
    Article 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the East Australian Shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, 636 (2019).Article 

    Google Scholar 
    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W.W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).Article 

    Google Scholar 
    Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).CAS 
    Article 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. Termite: An R script for fast reduction laser ablation inductivity coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 31, 1079–1087 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).CAS 
    Article 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newslett. 26, 95–99 (2002).CAS 
    Article 

    Google Scholar 
    Sekimoto, S. et al. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 322, 1579–1583 (2019).CAS 
    Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ADS 
    Article 

    Google Scholar  More

  • in

    Revealing the uncharacterised diversity of amphibian and reptile viruses

    Benton MJ, Donoghue PCJ. Paleontological evidence to date the tree of life. Mol Biol Evol. 2006;24:26–53.PubMed 

    Google Scholar 
    Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol. 2017;1:1677–82.PubMed 

    Google Scholar 
    IUCN, The IUCN Red List of Threatened Species. Version 2021-3. 2021.Medicine, N.L.o., NCBI Genome. 2022, National Center for Biotechnology Information.Hotaling S, Kelley JL, Frandsen PB. Toward a genome sequence for every animal: Where are we now? Proc Natl Acad Sci. 2021;118:e2109019118.PubMed 
    PubMed Central 

    Google Scholar 
    Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556:197–202.PubMed 

    Google Scholar 
    Parry R, Wille M, Turnbull OMH, Geoghegan JL, Holmes EC. Divergent influenzalike viruses of amphibians and fish support an ancient evolutionary association. Viruses. 2020;12:1042.PubMed Central 

    Google Scholar 
    Peck KM, Lauring AS, Christopher S, Complexities of viral mutation rates. J Virol. 92: e01031-17.Latney LV, Klaphake E. Selected emerging infectious diseases of amphibians. Vet Clin N Am—Exotic Animal Pract. 2020;23:397–412.
    Google Scholar 
    Zhang J, Finlaison DS, Frost MJ, Gestier S, Gu X, Hall J, et al. Identification of a novel nidovirus as a potential cause of large scale mortalities in the endangered Bellinger River snapping turtle (Myuchelys georgesi). PLOS ONE. 2018;13:e0205209.PubMed 
    PubMed Central 

    Google Scholar 
    Parrish K, Kirkland PD, Skerratt LF, Ariel E. Nidoviruses in reptiles: a review. Front Vet Sci. 2021;8:733404.PubMed 
    PubMed Central 

    Google Scholar 
    Chang WS, Li CX, Hall J, Eden JS, Hyndman TH, Holmes EC, et al. Metatranscriptomic discovery of a divergent circovirus and a chaphamaparvovirus in captive reptiles with proliferative respiratory syndrome. Viruses. 2020;12:1073.PubMed Central 

    Google Scholar 
    Mendoza-Roldan JA, Mendoza-Roldan MA, Otranto D. Reptile vector-borne diseases of zoonotic concern. Int J Parasitol: Parasites Wildl. 2021;15:132–42.
    Google Scholar 
    Essbauer S, Ahne W. Viruses of lower vertebrates. J Vet Med Ser B. 2001;48:403–75.
    Google Scholar 
    Mercer LK, Harding EF, Yan GJH, White PA. Novel viruses discovered in the transcriptomes of agnathan fish. J Fish Dis. 2022;45:931–8.PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat biotechnol. 2011;29:644–52.PubMed 
    PubMed Central 

    Google Scholar 
    Harding EF, Russo AG, Yan GJH, Waters PD, White PA. Ancient viral integrations in marsupials: a potential antiviral defence. Virus Evol. 2021;7:veab076.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.PubMed 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.PubMed 
    PubMed Central 

    Google Scholar 
    Kelly AG, Netzler NE, White PA. Ancient recombination events and the origins of hepatitis E virus. BMC Evol Biol. 2016;16:210.PubMed 
    PubMed Central 

    Google Scholar 
    Rector A, Van, Ranst M. Animal papillomaviruses. Virology. 2013;445:213–23.PubMed 

    Google Scholar 
    Blahak S, Jenckel M, Höper D, Beer M, Hoffmann B, Schlottau K. Investigations into the presence of nidoviruses in pythons. Virol J. 2020;17:6.PubMed 
    PubMed Central 

    Google Scholar 
    Marschang RE. Viruses infecting reptiles. Viruses. 2011;3:2087–126.PubMed 
    PubMed Central 

    Google Scholar 
    Horie M, Akashi H, Kawata M, Tomonaga K. Identification of a reptile lyssavirus in Anolis allogus provided novel insights into lyssavirus evolution. Virus Genes. 2021;57:40–49.PubMed 

    Google Scholar 
    Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, Reavill DR, et al. Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. mBio. 2012;3:e00180–12.PubMed 
    PubMed Central 

    Google Scholar 
    Garver KA, Leskisenoja K, Macrae R, Hawley LM, Subramaniam K, Waltzek TB, et al. An alloherpesvirus infection of european perch perca fluviatilis in Finland. Dis Aquat Org. 2018;128:175–85.
    Google Scholar 
    Hellebuyck T, Couck L, Ducatelle R, Broeck WV, Marschang RE. Cheilitis associated with a novel herpesvirus in two panther chameleons (Furcifer pardalis). J Comp Pathol. 2021;182:58–66.PubMed 

    Google Scholar 
    Altan E, Kubiski SV, Burchell J, Bicknese E, Deng X, Delwart E. The first reptilian circovirus identified infects gut and liver tissues of black-headed pythons. Vet Res. 2019;50:35.PubMed 
    PubMed Central 

    Google Scholar 
    Russo AG, Harding EF, Yan GJH, Selechnik D, Ducatez S, DeVore JL, et al. Discovery of novel viruses associated with the invasive cane toad (Rhinella marina) in its native and introduced ranges. Front Microbiol. 2021;12:733631.PubMed 
    PubMed Central 

    Google Scholar 
    Chen X-X, Wu W-C, Shi M. Discovery and characterization of actively replicating DNA and retro-transcribing viruses in lower vertebrate hosts based on RNA sequencing. Viruses. 2021;13:1042.PubMed 
    PubMed Central 

    Google Scholar 
    Russo AG, Eden JS, Tuipulotu DE, Shi M, Selechnik D, Shine R, et al. Viral discovery in the invasive Australian cane toad (Rhinella marina) using metatranscriptomic and genomic approaches. J Virol. 2018;92:e00768–18.PubMed 
    PubMed Central 

    Google Scholar 
    López-Bueno A, Mavian C, Labella AM, Castro D, Borrego JJ, Alcami A, et al. Concurrence of Iridovirus, Polyomavirus, and a unique member of a new group of fish Papillomaviruses in Lymphocystis disease-affected gilthead sea bream. Journal of virology. 2016;90:8768–79.PubMed 
    PubMed Central 

    Google Scholar 
    Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol. 2018;99:1345–56.PubMed 

    Google Scholar 
    Diemer GS, Stedman KM. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct. 2012;7:13.PubMed 
    PubMed Central 

    Google Scholar 
    Welch, NL, MJ Tisza, GJ Starrett, AK Belford, DV Pastrana, Y-YS Pang, et al. Identification of Adomavirus Virion proteins. bioRxiv. 2020:341131. https://doi.org/10.1101/341131Dill JA, Camus AC, Leary JH, Ng TFF, Zheng Z-M, Meng X-J. Microscopic and Molecular Evidence of the First Elasmobranch Adomavirus, the Cause of Skin Disease in a Giant Guitarfish, Rhynchobatus djiddensis. mBio. 2018;9:e00185–18.PubMed 
    PubMed Central 

    Google Scholar 
    Yang J-X, Chen X, Li Y-Y, Song T-Y, Ge J-Q. Isolation of a novel adomavirus from cultured American eels, Anguilla rostrata, with haemorrhagic gill necrosis disease. J Fish Dis. 2021;44:1811–8.PubMed 

    Google Scholar 
    King AMQ, Adams MJ, Carstens EB & Lefkowitz EJ, Order – Nidovirales, in virus taxonomy: classification and nomenclature of viruses. 2012, Elsevier/Academic Press: San Diego.Lyu S, Yuan X, Zhang H, Shi W, Hang X, Liu L, et al. Complete genome sequence and analysis of a new lethal arterivirus, Trionyx sinensis hemorrhagic syndrome virus (TSHSV), amplified from an infected Chinese softshell turtle. Arch Virol. 2019;164:2593–7.PubMed 
    PubMed Central 

    Google Scholar 
    Sinzelle L, Carradec Q, Paillard E, Bronchain OJ, Pollet N. Characterization of a Xenopus tropicalis endogenous retrovirus with developmental and stress-dependent expression. J Virol. 2011;85:2167–79.PubMed 

    Google Scholar 
    Wei X, Chen Y, Duan G, Holmes EC, Cui J. A reptilian endogenous foamy virus sheds light on the early evolution of retroviruses. Virus Evol. 2019;5:vez001.PubMed 
    PubMed Central 

    Google Scholar 
    Debat HJ, Ng TFF. Complete genome sequence of a divergent strain of Tibetan frog hepatitis B virus associated with a concave-eared torrent frog (Odorrana tormota). Arch Virol. 2019;164:1727–32.PubMed 

    Google Scholar 
    Reuter G, Boros Á, Tóth Z, Gia Phan T, Delwart E, Pankovics P. A highly divergent picornavirus in an amphibian, the smooth newt (Lissotriton vulgaris). J Gen Virol. 2015;96:2607–13.PubMed 
    PubMed Central 

    Google Scholar 
    ICTV. Subfamily: Secondpapillomavirinae. 2021 [cited 2022 15/06/2022]; Virus Taxonomy: 2021 Release:[Available from: https://talk.ictvonline.org/ictv-reports/ictv_online_report/dsdna-viruses/w/papillomaviridae/894/subfamilysecondpapillomavirinae.Willemsen A, Bravo IG. Origin and evolution of papillomavirus (onco)genes and genomes. Philos Trans R Soc B: Biol Sci. 2019;374:20180303.
    Google Scholar 
    Agius JE, Phalen DN, Rose K, Eden J-S. New insights into Sauropsid Papillomaviridae evolution and epizootiology: discovery of two novel papillomaviruses in native and invasive Island geckos. Virus Evol. 2019;5:vez051.PubMed 
    PubMed Central 

    Google Scholar 
    Bienentreu J-F, Lesbarrères D. Amphibian disease ecology: are we just scratching the surface? Herpetologica. 2020;76:153–66.
    Google Scholar 
    Mashkour N, Jones K, Wirth W, Burgess G, Ariel E. The concurrent detection of Chelonid Alphaherpesvirus 5 and Chelonia mydas Papillomavirus 1 in tumoured and non-tumoured green turtles. Animals. 2021;11:697.PubMed 
    PubMed Central 

    Google Scholar 
    Hoon-Hanks LL, Layton ML, Ossiboff RJ, Parker JSL, Dubovi EJ, Stenglein MD. Respiratory disease in ball pythons (Python regius) experimentally infected with ball python nidovirus. Virology. 2018;517:77–87.PubMed 

    Google Scholar 
    Dervas E, Hepojoki J, Smura T, Prähauser B, Windbichler K, Blümich S, et al. Serpentoviruses: More than respiratory pathogens. J Virol. 2020;94:e00649–20.PubMed 
    PubMed Central 

    Google Scholar 
    O’Dea MA, Jackson B, Jackson C, Xavier P, Warren K. Discovery and Partial Genomic Characterisation of a Novel Nidovirus Associated with Respiratory Disease in Wild Shingleback Lizards (Tiliqua rugosa). PloS One. 2016;11:e0165209.PubMed 
    PubMed Central 

    Google Scholar 
    Dervas E, Hepojoki J, Laimbacher A, Romero-Palomo F, Jelinek C, Keller S, et al. Nidovirus-associated proliferative pneumonia in the green tree python (Morelia viridis). J Virol. 2017;91:e00718–17.PubMed 
    PubMed Central 

    Google Scholar 
    Oberhuber M, Schopf A, Hennrich AA, Santos-Mandujano R, Huhn AG, Seitz S, et al. Glycoproteins of predicted amphibian and reptile lyssaviruses can mediate infection of mammalian and reptile cells. Viruses. 2021;13:1726.PubMed 
    PubMed Central 

    Google Scholar 
    Ritchie BW, Niagro FD, Lukert PD, Steffens WL, Latimer KS. Characterization of a new virus from cockatoos with psittacine beak and feather disease. Virology. 1989;171:83–88.PubMed 

    Google Scholar 
    Eleni C, Corteggio A, Altamura G, Meoli R, Cocumelli C, Rossi G, et al. Detection of Papillomavirus DNA in cutaneous squamous cell carcinoma and multiple papillomas in captive reptiles. J Comp Pathol. 2017;157:23–26.PubMed 

    Google Scholar 
    Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour. Virus Res. 2021;12:200225.
    Google Scholar 
    Chen XX, Wu WC, Shi M. Discovery and characterization of actively replicating dna and retro-transcribing viruses in lower vertebrate hosts based on rna sequencing. Viruses. 2021;13:1042.PubMed 
    PubMed Central 

    Google Scholar 
    Liu W, Zhang Y, Ma J, Jiang N, Fan Y, Zhou Y, et al. Determination of a novel parvovirus pathogen associated with massive mortality in adult tilapia. PLOS Pathogens. 2020;16:e1008765.PubMed 
    PubMed Central 

    Google Scholar  More