More stories

  • in

    The relationships between growth rate and mitochondrial metabolism varies over time

    The experiments were approved by the French Ethics Committee in charge of Animal Experimentation (no.2019072411491441) and were in accordance with institutional and ARRIVE guidelines.Animal collection and husbandryIn May 2019, juvenile European sea bass, Dicentrarchus labrax (Linnaeus 1758) (6 months old, mass 5 g), were transferred from a fish farm (Turbot Ichtus, Trédarzec, France) to the Ifremer rearing facility (Plouzané, France). Fish were kept in a common tank for 5 months, maintained under a 12 L: 12 D photoperiod, and fed at satiety three times a week using commercial pellets (Neo Start, Le Gouessant, Lamballe, France).In October 2019, fish (n = 40) were anaesthetized (Tricaïne; 125 mg L−1), weighed (41.5 ± 1.8 g, MCE11201S-2S00-0, Sartorius, Göttingen, Germany), and implanted subcutaneously with an identification tag (RFID; Biolog-id, Bernay, France). The fish were then randomly allocated to ten replicate 400 L tanks supplied with open-flow, fully aerated seawater (oxygen saturation  > 95%, salinity 32 ppt), thermo-regulated during winter to avoid falling below 13 °C, and fed at satiety three times a week. Temperature was recorded weekly. To account for the potential effect of temperature variation over the duration of the trial (15.5 ± 0.5 °C, range: 13.1–17.9 °C) on growth, a correlations analysis was performed between temperature and specific growth rate (SGR). No statistical relationship was found between SGR and temperature (Spearman R2 = 0.060, P = 0.596). Additional fish (n = 40) were present in the tanks (final density: n = 8 per tank) for the need of another project.Growth measurementsBody mass (BM) was measured about every four weeks from October 2019 to June 2020. The fish were fasted for 48 h and anesthetized before each BM measurement (± 0.1 g). The specific growth rate (% day-1) was estimated as follows:$${text{Specific~Growth~Rate}} = ~frac{{ln left( {final~BM} right) – ln left( {initial~BM} right)}}{{{text{days~elapsed}}}} times 100$$In March 2020, a red muscle biopsy sample was collected from fish to measure the mitochondrial metabolic traits. Past growth was defined as specific growth rates before the analysis of mitochondrial metabolic traits (past specific growth rate, SGRpast). SGRpast were calculated using the BM at the muscle biopsy as the final BM and the BM at 7, 11, 16, and 20 weeks before the muscle biopsy as the initial BM (Fig. 1). Future growth was defined as specific growth rates after analysis of mitochondrial metabolic traits (future specific growth rates, SGRfuture). SGRfuture were calculated using the BM at 4, 8, and 12 weeks after the muscle biopsy as the final BM and the BM at the muscle biopsy as the initial BM. In European sea bass, most of the somatic growth occur within the first 3 to 5 years of life, so several months of growth measurement at the juvenile stage might be representative of the overall growth of the animal.Figure 1Experimental design. Juvenile European sea bass (n = 40) were weighted about every four weeks over a 32-week period. At week 20, a biopsy of red muscle was used for mitochondrial assay. Specific growth rates (SGR) were calculated relative to the time of the biopsy. Past growth rate corresponds to SGR calculated before the biopsy, and future growth rate corresponds to SGR calculated after the biopsy.Full size imageMuscle biopsy procedureMuscle biopsy was performed as a non-lethal means of sampling tissue for the mitochondrial assay while allowing us to determine future growth rate. Fish were anaesthetized with tricaine (as above), weighed (76.7 ± 3.6 g), and biopsied. A skin incision ( More

  • in

    Signals of local bioclimate-driven ecomorphological changes in wild birds

    Study areaWe conducted field studies in both regions from August to March, each year from 2012 to 2016. In north India, we selected the two traditional breeding colonies of the Painted Storks, viz., the Delhi Zoo (28° 36′ N 77° 14′ E) and Keoladeo National Park (KNP) (27° 17′ N 77° 52′ E), Bharatpur, Rajasthan (Fig. 1). In the Delhi Zoo, close to the river Yamuna, the Painted Storks nest in the traditional heronries with other colonial nesters, Little Cormorant, Indian Cormorant, Black-headed Ibis, and Night Heron38. The KNP, a Ramsar site spread over 29 km2, situated at the confluence of the rivers Gambhir and Banganga on the western edge of the Gangetic basin, supports diverse fauna, flora, and a mosaic of habitats, wetlands, woodlands, scrub forests, grasslands, and heronries39. In 2013, we recorded 680 adults and 310 nests in the Delhi Zoo and 1584 adults and 430 nests of Painted Storks in the KNP.We selected the Vedanthangal Bird Sanctuary (VBS), the nesting colonies at Melmaruvathur Lake, and Koonthankulam Bird Sanctuary (KBS). The KBS & VBS are the newly declared Ramsar sites in Tamil Nadu, south India. The VBS (12° 32′ 02″ N and 79° 52′ 29″ E) is a 40.3-hectare community reserve effectively protected by the state Forest Department, Tamil Nadu, and Vedanthangal villagers40. It is the oldest breeding waterbird reserve in south India, located 85 km southwest of Chennai. More than 40 species of waterbirds, both residents and migrants, live here. Along with the other 17 heronry species, the Painted Storks build nests every year from November to April during its breeding season. The Painted Stork nesting colonies at Melmaruvathur Lake (12° 25′ 53″ N and 79° 49′ 36″ E) are about 20 km away from the VBS. Here, the Painted Storks build nests at 1.8–5 m above the water level, on trees of Acacia nilotica and Barringtonia acutangula on mounds surrounded by water41. In 2012, we recorded a total of 3185 nests in the VBS, with a maximum number of nests belonging to Spot-billed Pelican (1050 nests) followed by Painted Stork (550 nests), Asian Open-bill (770 nests), and others.Birds have been breeding in Melmaruvathur Lake since 2013, and we counted 80 nests of Spot-billed pelican, 45 nests of Oriental White Ibis, and 56 nests of Painted Stork during the winter of the year 2014. The Lake is spread over 0.19 km2 with islets (mounds) with four clusters of Acacia nilotica and Barringtonia acutangula trees. Rainwater and domestic sewage from the neighboring residential complex are the primary water source, and recreational boating attracts a large crowd visiting the Melmaruvathur temple41. KBS (8° 29′ 44″ N and 77° 45′ 30″ E) is about a 1.3 km2 protected area, declared a bird sanctuary in 1994 and an Important Bird Area40. It comprises Koonthankulam and Kadankulam irrigation tanks actively protected and managed by the local community. We noticed the frequent failures of breeding events due to water shortages related to monsoon failures in VBS and KBS. In 2015, we also observed Painted Storks’ breeding failure across northern India for unknown reasons; therefore, data could not be collected for those periods.Bioclimatic variablesWe obtained the bioclimatic variable, particularly temperature at 2 m height for all the four study sites, from the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) Prediction of Worldwide Energy Resource (POWER) Project funded through the NASA Earth Science/Applied Science Program. The monthly average data from 2010 to 2020 was downloaded from the POWER Project’s Hourly 2.0.0 version on 2022/01/04.Digital images of Painted Storks collected under field conditionsUsing Binoculars (Olympus 10X50), Digital Cameras (Canon 5D Mark III and Sony handy-cam), we monitored and recorded all active nests with juveniles and adult Painted Storks twice a week. The nests were on trees, 3–7 m in height, and chicks and adults were visible, which aided the photography. Nests were numbered for our records by taking note of tree branching patterns, the nest’s position on the tree, and other local identification marks. Numbering the nests helped us identify the individuals associated with a given nest and avoided re-recording the same individual (pseudoreplication). Storks show site fidelity42,43, and hence we assumed the same breeding pairs occupied the same nesting site.During the initial months of the breeding seasons, pairing and copulations of the breeding pairs could be readily noticeable. We took consecutive photographs when they were copulating at the nest. After disengagement following the copulation, the birds (male and female) standing side by side at the nest were also photographed. The first author noted all the relevant spatial orientations of males and females during each copulation event in the field notes. Thus nearly 100 copulations involving different individuals of the Painted Storks pair were photographed. To minimize measurement errors, we selected for further analysis only the images of males and females standing parallel and close to each other, perpendicular to the camera. Since we used the digital images of the free-living Storks, we did not have the freedom to choose all morphological features resulting in some missing values. Therefore, we selected a hundred and forty-eight individuals for the analysis from nearly 1500 localized adults. The technique has an efficiency of less than 10% of the population, more efficient than the traditional capture, measure, and release of individuals. Though many individuals were recorded, only a few were subjected to the analyses. Moreover from the digital images, not all the morphological characters of the individuals were measured. The birds’ orientation towards the camera assumes importance because the correct direction ensures maximum exposure of body parts in the picture. In many pictures, correct orientation was missing as the birds were behind other individuals or branches of the trees or leaves. Therefore, selecting the right digital image becomes crucial. Keeping all the above criteria, we filtered images that were later included in the analysis.Calibrations of subject-distance using Exif MetadataWe extracted the EXIF metadata from each JPEG image of Painted Stork. EXIF metadata includes the filename, type, date, and time of the image captured, image width and height in pixels, camera model, lens information, field of view, focal length, and subject-distance. The subject-distance (Painted Stork distance from the camera) being a critical variable and its Exif metadata were standardized with the following equation.$${text{Subject{-}distance}} = 0.7864 times {text{(EXIF subject{-}distance)}}^{{1.0301}}$$
    (1)
    Using the Eq. (1) derived from an earlier study5, we regressed actual subject-distance with the Exif subject-distance from the images. Then multiplying with the field of view, available as Exif metadata (angle of view) with standardized subject-distance (Eq. 1), the total image size (length and width) in metric units was estimated. We excluded the cropped or manipulated images because Image (size) estimation is possible only for the images coming straight from the camera with EXIF tags. The methodological details for calibration and estimation of in-situ measurements of the morphological variables are given in Mahendiran et al.5.Measurements of the morphological variablesWe created a TPS file for JPEG images of Painted Storks with the TPSUtility Program44. Using the TPS file in the TPSDig (v. 2.17) program44, we measured the selected characters (morphological variables) in pixels. Later, it was used along with the total image size to estimate the size of the specific morphological features in metric units, following Mahendiran et al.5. Ten different morphological variables were measured: Bill length (upper and lower mandible), tibia & tarsus length of both legs, distances among the ear, nostril and corners of the mouth, and body length. We estimated the dimensions of the rigid body parts, viz., bill length, tibia, and tarsus using the given methodology13,15,21. Bill length is the distance from the tip of the upper mandible to the beginning of skin corners near nostrils, the proximal end of the beak (marked as ‘a’ in Fig. 3); Tibia length is the distance from the joint of the tibia-tarsus to the feathers (marked as ‘b’ in Fig. 3); Tarsus length is the distance between the tibia-tarsus joint and foot (marked as ‘c’ in Fig. 3). We took measurements of each individual’s right and left legs and other characters, viz., inter-distances among the nostril, corner of the eye, corner of the mouth on each side (marked as ‘d’, ‘e’, ‘f’ in Fig. 3). Body depth is the distance from the base of the neck near the breast to the tip of the tail (marked as ‘g’ in Fig. 3).Data analysisWe performed the statistical analysis in R45, primarily through the nlme, ggbiplot, nnet, tidyverse, devtools packages. We did not have the freedom to measure a few morphological variables due to the problems mentioned above, which led to missing values in the datasets. We filled the missing values with the impute function using the R Core team45 through mice & VIM packages. When the missing values are high in numbers, we discard the data rather than use the impute function. Since almost about 70% of the lower mandible values were missing, we discarded them and ended up having only nine morphological variables in the final analysis. Moreover, the lower mandible is movable, with the mouth being open and closed, producing a considerable variation in measurements.We designed the matrix (Individuals × Region × Sex) representing the intraspecific variations concerning the region and sexes of Painted Storks46. The individuals are in rows (R), their region in column (C1), and sex in column (C2). We considered the regional variations as a sequence of the latitudinal gradient of the study sites. The values of the individuals (R) were the selected morphological variables. This matrix helped us investigate the critical questions relating to eco-geographic variations and sexual dimorphism.To determine whether temperature varied between study sites, we conducted a two-way ANOVA to analyse the effect of study sites (between North India (DZ & KNP) and South India (VBS & KBS)) and months of the year on the temperature at 2 m. For each character, Dimorphism Index (DI) was calculated as a mean value of female divided by the mean male, multiplied by 100, following the method of Urfi and Kalam15. We estimated the general body size of Painted Storks from the selected morphological variables through Principal Component Analysis (PCA) and tested hypotheses on Eco-geographic variations (Bergmann’s or Allen’s rules)2,47 and the sexual dimorphism15,48. The dimension reduction through PCA was carried out after the imputation as there were a few missing values. Body depth was omitted only for the principal component analysis due to many missing values. However, the values of all the characters are presented in the summary statistics in Table 1. The first principal component is characterized as a measure of size, and subsequent components describe various aspects of shape; therefore, it is considered a measure of general body size15,48,49. The PC1 indicated the body size variation, and PC2 revealed leg length variation (tibia and tarsus). We used nested ANOVA to test their body size variation between regions and sexes. The sexes nested within the region explained the eco-geographic rules and sexual selection patterns.Using a multinomial logistic regression model, we compared the Painted Storks’ northern male (NM), southern male (SM), and female (SF) with the reference category, northern female (NF). Then, we classified the data through multinomial log-linear and feed-forward neural network models. We predicted the Painted Stork’s region and sex using the Machine Learning (ML) algorithms through open-source software Waikato Environment for Knowledge Analysis (WEKA.3.9.5) implemented in Java50. WEKA has standard Machine learning/data-mining algorithms with pre-processing tools generating insightful knowledge from the Painted Storks’ morphological data.Using the R and Python interfaces, we used different ML software frameworks, libraries, and computer programs, viz., TensorFlow and Keras, and extensively explored the WEKA workbench environment to predict the sex and region of the Painted Stork. We used the k-fold cross-validation (k = 10) to avoid overlapping test sets, including splitting the data into k subsets of equal size, using each subset for testing and the remainder for training. We analyzed using the WEKA on a Lenovo ThinkPad P53s Mobile Workstation with the 8th Gen Intel® Core i7 @ 1.80 GHz processor, 48 GB DDR4 Memory, NVIDIA® Quadro® P520 with 2 GB GDDR5 Graphics. The performance criteria for all the eight models were assessed by using the Precision (TP/(TP + FP)), Recall (TP/(TP + FN)), Area under Curve (AUC) = (Sensitivity + Specificity)/2, Accuracy = (TP + TN)/(TP + TN + FP + FN), where TP, TN, FN and FP are the acronyms of true positive, true negative, false negative and false positive, respectively. We used the WEKA experimenter environment to test the statistical significance of the selected Machine Learning algorithms. We performed the Paired T-tester based on the number of correctly classified instances and areas under the curve. More

  • in

    Save the world’s forest giants from infernos

    Gigantic trees occur in only a few regions on Earth. Some of the world’s largest eucalypts, for example, are on the island of Tasmania, off southeastern Australia. As wildfires increase in severity and frequency as a result of climate change, we urge the authorities to protect these trees by adopting measures similar to those applied to safeguard California’s redwood forests.
    Competing Interests
    The authors declare no competing interests. More

  • in

    From the archive: ancient poisonous honey, and museum photography

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs

    Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).PubMed 

    Google Scholar 
    Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evolution 8, 1929–1939 (2016).CAS 

    Google Scholar 
    Liu, W. et al. Single genome amplification and direct amplicon sequencing of Plasmodium spp. DNA from ape fecal specimens. Protocol Exchange 1–14 (2010).Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Prugnolle, F. et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Otto, T. D. et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat. Microbiol. 3, 687–697 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boundenga, L. et al. Diversity of malaria parasites in great apes in Gabon. Malar. J. 14, 1–8 (2015).CAS 

    Google Scholar 
    Délicat-Loembet, L. et al. No evidence for ape Plasmodium infections in humans in gabon. Plos One 10, e0126933 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sundararaman, S. A. et al. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria. Proc. Natl Acad. Sci. USA 110, 7020–7025 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Junker, J. et al. Recent decline in suitable environmental conditions for African great apes. Diversity Distrib. 18, 1077–1091 (2012).
    Google Scholar 
    de Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    de Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser, M. et al. Wild chimpanzees infected with 5 Plasmodium species. Emerg. Infect. Dis. 16, 1956–1959 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Paupy, C. et al. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon. PLoS ONE 8, e57294 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl Acad. Sci. USA 113, 5329–5334 (2016).Loy, D. E. et al. Investigating zoonotic infection barriers to ape Plasmodium parasites using faecal DNA analysis. Int. J. Parasitol. 48, 531–542 (2018).Martin, M., Rayner, J., Gagneux, P., Barnwell, J. & Varki, A. Evolution of human–chimpanzee differences in malaria susceptibility: Relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl Acad. Sci. USA 102, 12819–12824 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scully, E. J., Kanjee, U. & Duraisingh, M. T. Molecular interactions governing host-specificity of blood stage malaria parasites. Curr. Opin. Microbiol. 40, 21–31 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sundararaman, S. A. et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wanaguru, M., Liu, W., Hahn, B. H., Rayner, J. C. & Wright, G. J. RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 20735–20740 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ngoubangoye, B. et al. The host specificity of ape malaria parasites can be broken in confined environments. Int. J. Parasitol. 46, 737–744 (2016).PubMed 

    Google Scholar 
    Mapua, M. I. et al. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar. J. 15, 423 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D. F. et al. Seasonal and inter-annual variation of malaria parasite detection in wild chimpanzees. Malar. J. 17, 1–5 (2018).CAS 

    Google Scholar 
    Craig, M., le Sueur, D. & Snow, B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).CAS 
    PubMed 

    Google Scholar 
    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 

    Google Scholar 
    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).PubMed 

    Google Scholar 
    LaPointe, D. A., Goff, M. L. & Atkinson, C. T. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J. Parasitol. 96, 318–324 (2010).PubMed 

    Google Scholar 
    Vanderberg, J. P. & Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. J. Parasitol. 52, 559–564 (1966).Macdonald, G. The Epidemiology and Control of Malaria (Oxford University Press, 1957).Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gemperli, A. et al. Mapping malaria transmission in West and Central Africa. Tropical Med. Int. Health 11, 1032–1046 (2006).
    Google Scholar 
    Gething, P. W. et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites Vectors 4, 92 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Weiss, D. J. et al. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: a high-resolution spatiotemporal prediction. Malar. J. 13, 171 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lyons, C. L., Coetzee, M. & Chown, S. L. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasites Vectors 6, 104 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One 2, e1146 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Faust, C. & Dobson, A. P. Primate malarias: diversity, distribution and insights for zoonotic Plasmodium. One Health 1, 66–75 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Tucker Lima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 372, 20160125 (2017).
    Google Scholar 
    Borner, J. et al. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol. Phylogenetics Evolution 94, 221–231 (2016).CAS 

    Google Scholar 
    Emery Thompson, M., Muller, M. N., Machanda, Z. P., Otali, E. & Wrangham, R. W. The Kibale Chimpanzee Project: over thirty years of research, conservation, and change. Biol. Conserv. 252, 108857 (2020).
    Google Scholar 
    Langergraber, K. E., Mitani, J. C. & Vigilant, L. The limited impact of kinship on cooperation in wild chimpanzees. Proc. Natl Acad. Sci. USA 104, 7786–7790 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).CAS 
    PubMed 

    Google Scholar 
    Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 220 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Torres, J. R. Therapy of Infectious Diseases 597–613 (2003).Trampuz, A., Jereb, M., Muzlovic, I. & Prabhu, R. M. Clinical review: severe malaria. Crit. Care 7, 315 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    Akim, N. I. et al. Dynamics of P. falciparum gametocytemia in symptomatic patients in an area of intense perennial transmission in Tanzania. Am. J. Tropical Med. Hyg. 63, 199–203 (2000).CAS 

    Google Scholar 
    Mackinnon, M. J. & Read, A. F. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution 53, 689–703 (1999).PubMed 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).CAS 
    PubMed 

    Google Scholar 
    Prugnolle, F. et al. African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains. Proc. Natl Acad. Sci. USA 108, 11948–11953 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayouba, A. et al. Ubiquitous Hepatocystis infections, but no evidence of Plasmodium falciparum-like malaria parasites in wild greater spot-nosed monkeys (Cercopithecus nictitans). Int. J. Parasitol. 42, 709–713 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogenetics Evolution 47, 261–273 (2008).CAS 

    Google Scholar 
    Thurber, M. I. et al. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community. Int. J. Parasitol. 43, 613–619 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Baayen, R. H. Analyzing Linguistic Data: A Practical Introduction to Statistics (Cambridge University Press, 2008).Stanisic, D. I. et al. Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response. Infect. Immun. 83, 646–660 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Taylor, R. R., Allen, S. J., Greenwood, B. M. & Riley, E. M. IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. Am. J. Tropical Med. Hyg. 58, 406–413 (1998).CAS 

    Google Scholar 
    World Malaria Report (World Health Organization, 2015).Shaman, J. Letter to the Editor: Caution needed when using gridded meteorological data products for analyses in Africa. Eur. Surveill. 19, 20930 (2014).
    Google Scholar 
    Tatem, A. J., Goetz, S. J. & Hay, S. I. Terra and Aqua: new data for epidemiology and public health. Int. J. Appl. Earth Observation Geoinf. 6, 33–46 (2004).
    Google Scholar 
    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).
    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 

    Google Scholar 
    Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarello, W. A fatal Plasmodium reichenowi infection in a chimpanzee? Rev. de. Med. Veterinaire 156, 503–505 (2005).
    Google Scholar 
    Taylor, D. W. et al. Parasitologic and immunologic studies of experimental Plasmodium falciparum infection in nonsplenectomized chimpanzees (Pan troglodytes). Am. J. Tropical Med. Hyg. 34, 36–44 (1985).CAS 

    Google Scholar 
    Krief, S., Martin, M., Grellier, P., Kasenene, J. & Sevenet, T. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrobial Agents Chemother. 48, 3196–3199 (2004).CAS 

    Google Scholar 
    Cox-Singh, J. et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46, 165–171 (2008).CAS 
    PubMed 

    Google Scholar 
    Singh, B. & Daneshvar, C. Human infections and detection of Plasmodium knowlesi. Clin. Microbiol. Rev. 26, 165–184 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brasil, P. et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Global Health 5, e1038–e1046 (2017).Krief, S. et al. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos. PLoS Pathog. 6, e1000765 (2010).Pacheco, M. A., Cranfield, M., Cameron, K. & Escalante, A. A. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malar. J. 12, 328 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Etienne, L. et al. Noninvasive follow-up of simian immunodeficiency virus infection in wild-living nonhabituated western lowland gorillas in Cameroon. J. Virol. 86, 9760–9772 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keele, B. F. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keele, B. F. et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460, 515–519 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 86, 10776–10791 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neel, C. et al. Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J. Virol. 84, 1464–1476 (2010).CAS 
    PubMed 

    Google Scholar 
    Rudicell, R. S. et al. Impact of simian immunodeficiency virus infection on chimpanzee population dynamics. PLoS Pathog. 6, 1–17 (2010).
    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D. & Maechler, M. Lme4: linear mixed-effects models using s4 classes. Cran R Project Website (2010). More

  • in

    Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades

    Morens, D. M. et al. The origin of COVID-19 and why it matters. Am. J. Trop. Med. Hyg. 103, 955–959 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gates, B. The next epidemic—Lessons from Ebola., https://doi.org/10.1056/NEJMp1502918 (2015).World Health Organization. Lassa fever research and development (R&D) roadmap. https://www.who.int/publications/m/item/lassa-fever-research-and-development-(r-d)-roadmap (2018).World Health Organization. Prioritizing diseases for research and development in emergency contexts. https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts.Akpede, G. O. et al. Caseload and case fatality of Lassa fever in Nigeria, 2001–2018: A specialist center’s experience and its implications. Front. Public Health 7, https://doi.org/10.3389/fpubh.2019.00170 (2019).Eberhardt, K. A. et al. Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. Int. J. Infect. Dis. 87, 15–20 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lukashevich, I. S., Paessler, S. & de la Torre, J. C. Lassa virus diversity and feasibility for universal prophylactic vaccine. F1000Res 8, https://doi.org/10.12688/f1000research.16989.1 (2019).Purushotham, J., Lambe, T. & Gilbert, S. C. Vaccine platforms for the prevention of Lassa fever. Immunol. Lett. 215, 1–11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mateo, M. et al. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci. Transl. Med. 13, eabf6348 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCormick, J. B. et al. Lassa Fever. N. Engl. J. Med. 314, 20–26 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bell-Kareem, A. R. & Smither, A. R. Epidemiology of Lassa fever. in 1–23 (Springer, 2021). https://doi.org/10.1007/82_2021_234.Nigeria Centre for Disease Control. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.Manning, J. T., Forrester, N. & Paessler, S. Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front. Microbiol. 6, https://doi.org/10.3389/fmicb.2015.01037 (2015).Dzotsi, E. K. et al. The first cases of Lassa fever in Ghana. Ghana. Med. J. 46, 166–170 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patassi, A. A. et al. Emergence of Lassa fever disease in northern Togo: Report of two cases in Oti District in 2016. Case Rep. Infect. Dis. 2017, 8242313 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yadouleton, A. et al. Lassa fever in Benin: Description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus. Emerg. Microbes Infect. 9, 1761–1770 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCormick, J. B. & Fisher-Hoch, S. P. Lassa fever. Curr. Top. Microbiol. Immunol. 262, 75–109 (2002).CAS 
    PubMed 

    Google Scholar 
    Monath, T. P., Newhouse, V. F., Kemp, G. E., Setzer, H. W. & Cacciapuoti, A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 185, 263–265 (1974).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stephenson, E. H., Larson, E. W. & Dominik, J. W. Effect of environmental factors on aerosol-induced Lassa virus infection. J. Med. Virol. 14, 295–303 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wozniak, D. M. et al. Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir – Mastomys natalensis. Emerg. Microbes Infect. 10, 2313–2325 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Meulen, J. et al. Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am. J. Trop. Med. Hyg. 55, 661–666 (1996).PubMed 
    Article 

    Google Scholar 
    Downs, I. L. et al. Natural history of aerosol induced Lassa fever in non-human primates. Viruses 12, 593 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Lecompte, E. et al. Mastomys natalensis and Lassa Fever, West Africa. Emerg. Infect. Dis. 12, 1971–1974 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smither, A. R. & Bell-Kareem, A. R. Ecology of Lassa Virus. in 1–20 (Springer, 2021). https://doi.org/10.1007/82_2020_231.Ogbu, O., Ajuluchukwu, E. & Uneke, C. J. Lassa fever in West African sub-region: An overview. J. Vector Borne Dis. 44, 1–11 (2007).CAS 
    PubMed 

    Google Scholar 
    Fichet-Calvet, E. et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 7, 119–128 (2007).PubMed 
    Article 

    Google Scholar 
    Fichet-Calvet, E., Becker-Ziaja, B., Koivogui, L. & Günther, S. Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne Zoonotic Dis. 14, 665–674 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lo Iacono, G. et al. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: The case of Lassa fever. PLoS Negl. Trop. Dis. 9, e3398 (2015).Siddle, K. J. et al. Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N. Engl. J. Med. 379, 1745–1753 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kafetzopoulou, L. E. et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363, 74–77 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, K. G. et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162, 738–750 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lalis, A. & Wirth, T. Mice and men: An evolutionary history of Lassa fever. in Biodiversity and Evolution (eds. Grandcolas, P. & Maurel, M.-C.) 189–212, https://doi.org/10.1016/B978-1-78548-277-9.50011-5 (Elsevier, 2018).Mylne, A. Q. N. et al. Mapping the zoonotic niche of Lassa fever in Africa. Trans. R. Soc. Trop. Med. Hyg. 109, 483–492 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colangelo, P. et al. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol. J. Linn. Soc. 108, 901–916 (2013).Article 

    Google Scholar 
    Gryseels, S. et al. When viruses don’t go viral: The importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Path 13, e1006073 (2017).Article 

    Google Scholar 
    Cuypers, L. N. et al. Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: Same host specificity, but different spatial genetic structure? Virus Evol. https://doi.org/10.1093/ve/veaa039 (2020).Vazeille, M., Gaborit, P., Mousson, L., Girod, R. & Failloux, A.-B. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. BMC Infect. Dis. 16, 318 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chan, K. F. et al. Investigating viral interference between influenza A virus and human respiratory syncytial virus in a ferret model of infection. J. Infect. Dis. 218, 406–417 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meunier, D. Y., McCormick, J. B., Georges, A. J., Georges, M. C. & Gonzalez, J. P. Comparison of Lassa, Mobala, and Ippy virus reactions by immunofluorescence test. Lancet 1, 873–874 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard, C. R. Antigenic diversity among the Arenaviruses. in The Arenaviridae (ed. Salvato, M. S.) 37–49, https://doi.org/10.1007/978-1-4615-3028-2_3 (Springer US, 1993).Bhattacharyya, S., Gesteland, P. H., Korgenski, K., Bjørnstad, O. N. & Adler, F. R. Cross-immunity between strains explains the dynamical pattern of paramyxoviruses. Proc. Natl Acad. Sci. U. S. A. 112, 13396–13400 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luis, A. D., Douglass, R. J., Mills, J. N. & Bjørnstad, O. N. Environmental fluctuations lead to predictability in Sin Nombre hantavirus outbreaks. Ecology 96, 1691–1701 (2015).Article 

    Google Scholar 
    Anderson, R. M., Jackson, H. C., May, R. M. & Smith, A. M. Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian, H. et al. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLoS Pathog. 13, e1006198 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Peterson, A. T., Moses, L. M. & Bausch, D. G. Mapping transmission risk of Lassa fever in West Africa: the importance of quality control, sampling bias, and error weighting. PLoS One 9, e100711 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fichet-Calvet, E. & Rogers, D. J. Risk maps of Lassa fever in West Africa. PLoS. Negl. Trop. Dis. 3, e388 (2009).Basinski, A. J. et al. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput. Biol. 17, e1008811 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iacono, G. L. et al. A unified framework for the infection dynamics of zoonotic spillover and spread. PLoS Negl. Trop. Dis. 10, e0004957 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).ADS 
    Article 

    Google Scholar 
    Coumou, D., Robinson, A. & Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Clim. Change 118, 771–782 (2013).ADS 
    Article 

    Google Scholar 
    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, eaar5809 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arneth, A. Uncertain future for vegetation cover. Nature 524, 44–45 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 81 (2017).PubMed 
    Article 

    Google Scholar 
    Herrmann, S. M., Brandt, M., Rasmussen, K. & Fensholt, R. Accelerating land cover change in West Africa over four decades as population pressure increased. Com. Earth Envir 1, 1–10 (2020).
    Google Scholar 
    Gibb, R., Moses, L. M., Redding, D. W. & Jones, K. E. Understanding the cryptic nature of Lassa fever in West Africa. Pathog. Glob. Health 111, 276–288 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).ADS 
    Article 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl Acad. Sci. U. S. A. 106, 19644–19650 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lukashevich, I. S. Generation of reassortants between African arenaviruses. Virology 188, 600–605 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vijaykrishna, D., Mukerji, R. & Smith, G. J. D. RNA virus reassortment: an evolutionary mechanism for host jumps and immune evasion. PLoS Path 11, e1004902 (2015).Article 

    Google Scholar 
    Whitmer, S. L. M. et al. New lineage of Lassa Virus, Togo, 2016. Emerg. Infect. Dis. 24, 599 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ehichioya, D. U. et al. Phylogeography of Lassa virus in Nigeria. J. Virol. 93, e00929–19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S., Rose, R., Faria, N. R., Lemey, P. & Pybus, O. G. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics 32, 3204–3206 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol. Biol. Evol. 34, 2563–2571 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 5620 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos, Trans. Am. Geophys. Union 38, 913–920 (1957).Article 

    Google Scholar 
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ehichioya, D. U. et al. Current molecular epidemiology of Lassa virus in Nigeria. J. Clin. Microbiol. 49, 1157 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oloniniyi, O. K. et al. Genetic characterization of Lassa virus strains isolated from 2012 to 2016 in southeastern Nigeria. PLoS Negl. Trop. Dis. 12, e0006971 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olesen, J. E. et al. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim. Change 81, 123–143 (2007).Article 

    Google Scholar 
    Simo Tchetgna, H. et al. Molecular characterization of a new highly divergent Mobala related arenavirus isolated from Praomys sp. rodents. Sci. Rep. 11, 10188 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olayemi, A. et al. New hosts of the Lassa virus. Sci. Rep. 6, 25280 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaidi, M. B. et al. Competitive suppression of dengue virus replication occurs in chikungunya and dengue co-infected Mexican infants. Parasit. Vectors 11, 378 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olayemi, A. et al. Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasit. Vectors 11, 416 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nigeria Centre for Disease Control. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.Norris, K. et al. Biodiversity in a forestagriculture mosaic: the changing face of west Africa rainforests. Biol. Conserv. 143, 2341–2350 (2010).Article 

    Google Scholar 
    Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, United Kingdom and New York, 2013).Buba, M. I. et al. Mortality among confirmed Lassa fever cases during the 2015-2016 outbreak in Nigeria. Am. J. Public Health 108, 262–264 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tobin, E. A. et al. Knowledge of secondary school children in Edo State on Lassa fever and its implications for prevention and control. West. Afr. J. Med. 34, 101–107 (2015).CAS 
    PubMed 

    Google Scholar 
    Saez, A. M. et al. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 12, e0006829 (2018).Article 

    Google Scholar 
    Ejembi, J. et al. Contact tracing in Lassa fever outbreak response, an effective strategy for control? Online J. Public Health Inf. 11, e378 (2019).
    Google Scholar 
    ECHO Flash List. https://erccportal.jrc.ec.europa.eu/ECHO-Flash/ECHO-Flash-List/yy/2018/mm/2.Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390, 2662–2672 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology https://doi.org/10.1038/s41564-019-0376-y (2019).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Dhingra, M. S. et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. eLife 5, e19571 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Valavi, R., Elith, J., Lahoz‐Monfort, J. J. & Guillera‐Arroita, G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Randin, C. F. et al. Are niche-based species distribution models transferable in space? J. Biogeogr. 33, 1689–1703 (2006).Article 

    Google Scholar 
    Lange, S. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth Syst. Dyn. 9, 627–645 (2018).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).ADS 
    Article 

    Google Scholar 
    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, M. et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335 (2010).ADS 
    Article 

    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 1–65 https://doi.org/10.5194/gmd-2019-360 (2020)Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).ADS 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ayres, D. L. et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst. Biol. https://doi.org/10.1093/sysbio/syz020 (2019).Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17, 57–86 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laenen, L. et al. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol. Ecol. 25, 5994–6008 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dellicour, S. et al. Landscape genetic analyses of Cervus elaphus and Sus scrofa: comparative study and analytical developments. Heredity 123, 228–241 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dellicour, S. et al. Phylogeographic and phylodynamic approaches to epidemiological hypothesis testing. bioRxiv https://doi.org/10.1101/788059 (2020).Dellicour, S., Rose, R. & Pybus, O. G. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinform 17, 1–12 (2016).Article 

    Google Scholar 
    McRae, B. H. Isolation by resistance. Evolution 60, 1551–1561 (2006).PubMed 
    Article 

    Google Scholar 
    Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. R. Soc. Lond. B 284, 20170919 (2017).
    Google Scholar 
    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karcher, M. D., Palacios, J. A., Bedford, T., Suchard, M. A. & Minin, V. N. Quantifying and mitigating the effect of preferential sampling on phylodynamic inference. PLoS Comput. Biol. 12, e1004789 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Microbacterium kunmingensis sp. nov., an attached bacterium of Microcystis aeruginosa

    Liu LP. Characteristics of blue algal bloom in Dianchi Lake and analysis on its cause. Res Environ Sci. 1999;12:36–37.
    Google Scholar 
    Liu YM, Chen W, Li DH, Shen YW, Liu YD, Song LR. Analysis of paralytic shellfish toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ Toxicol. 2006;21:289–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dziallas C, Grossart HP. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol. 2011;13:1632–41.PubMed 
    Article 

    Google Scholar 
    Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ Microbiol Rep. 2013;5:716–24.CAS 
    PubMed 

    Google Scholar 
    Shi LM, Cai YF, Kong FX, Yu Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ Microbiol Rep. 2012;4:669–78.CAS 
    PubMed 

    Google Scholar 
    Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotech. 2015;33:125–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.PubMed 
    Article 

    Google Scholar 
    Yang L, Xiao L. Outburst, jeopardize and control of cyanobacterial bloom in lakes. Beijing: Science Press; 2011. p. 71–212.
    Google Scholar 
    de-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol. 2008;44:938–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao Y, Wang L, Wang X, Chen M, Chen J, Tian BY, Zhang BH. Nocardioides lacusdianchii sp. nov., an attached bacterium of Microcystis aeruginosa. Antonie van Leeuwenhoek. 2022;115:141–53.PubMed 
    Article 

    Google Scholar 
    Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.Article 

    Google Scholar 
    Zhang BH, Chen W, Li HQ, Zhou EM, Hu WY, Duan YQ, Mohamad OA, Gao R, Li WJ. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol. 2015;99:7673–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Xiao M, Li HQ, Yang JY, Zha DM, Li WJ. Citricoccus lacusdiani sp. nov., an actinobacterium promoting Microcystis growth with limited soluble phosphorus. Antonie Van Leeuwenhoek. 2016;109:1457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Guo QG, Li WJ. Microbacterium lacusdiani sp. nov., a phosphate–solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis. J Antibiot. 2017;70:147–51.Article 

    Google Scholar 
    Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR, editors. Methods for general and molecular bacteriology. Washington, DC: American Society for Microbiology; 1994. p. 607–54.Dong XZ, Cai MY. Manual of systematic identification of common bacteria. Beijing: Science Press; 2001. p. p349–89.
    Google Scholar 
    Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol. 1979;47:87–95.CAS 
    Article 

    Google Scholar 
    Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol. 1983;54:31–36.CAS 
    Article 

    Google Scholar 
    Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972;36:407–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol. 2009;59:2025–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBiocloud: a taxonomically united database of 16S rRNA gene sequences and whole–genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saitou N, Nei M. The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–42.CAS 
    PubMed 

    Google Scholar 
    Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.Article 

    Google Scholar 
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.PubMed 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F, Rougemont J, Cole ST, Deplancke B. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods. 2010;7:485–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinforma. 2007;8:209.Article 

    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence–based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.Article 

    Google Scholar 
    Xiao Y, Chen J, Chen M, Deng SJ, Xiong ZQ, Tian BY, Zhang BH. Mycolicibacterium lacusdiani sp. nov., an attached bacterium of Microcystis aeruginosa. Front Microbiol. 2022;13:861291.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaz-Moreira I, Lopes AR, Faria C, Spröer C, Schumann P, Nunes OC, Manaia CM. Microbacterium invictum sp. nov., isolated from homemade compost. Int J Syst Evol Microbiol. 2009;59:2036–41.PubMed 
    Article 

    Google Scholar 
    Ohta Y, Ito T, Mori K, Nishi S, Shimane Y, Mikuni K, Hatada Y. Microbacterium saccharophilum sp. nov., isolated from a sucrose-refining factory. Int J Syst Evol Microbiol. 2013;63:2765–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kageyama A, Takahashi Y, Ōmura S. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol. 2006;56:2113–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.
    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinforma. 2013;14:60.Article 

    Google Scholar 
    Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR, Mendoza V, Poole AC, Zimmerman ZP, Utz LK, Wurch LL, Steffen MM. Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE. 2021;16:e0257017.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Zhang YQ, Ai MJ, Hozzein WN, Li WJ. Modestobacter lacusdianchii sp. nov., a phosphate-solubilizing actinobacterium with ability to promote Microcystis growth. PLoS ONE. 2016;11:e0161069.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study

    Case studyThe experimental setup for the field studies that provided the bacterial population and weather data used here was previously described by Belias et al. [9]. Briefly, baby spinach and lettuce plants were spray-inoculated with E. coli and S. enterica (Salmonella) onto field plots established in Davis, CA (University of California, Plant Sciences Field Research Facility); Freeville, NY (Homer C. Thompson Research Farm, Cornell University); and Murcia, Spain (La Matanza Research Farm). The spinach and lettuce varieties were selected based on their suitability for baby leaf production: lettuce var. Tamarindo, and spinach var. Acadia F1 and Seaside F1. Four replicate trials at different times of the regional growing season were carried out per location. The plants were spray-inoculated with a 104 CFU/mL cocktail of rifampin-resistant strains of commensal E. coli and attenuated S. enterica serovar Typhimurium (Salmonella), and samples were collected for bacterial cell quantification by plate counts on selective and differential media at 0, 4, 8, 24, 48, 72 and 96 h post-inoculation. Concurrent with leaf sample collection, weather variables (temperature, relative humidity (RH), solar radiation intensity, and wind velocity) were recorded hourly for the respective field locations. The hourly dew point (DP) was calculated as a function of both the hourly temperature and RH.Model for persister formation on plantsMathematical modeling to characterize the switch rate from a non-persister bacterial cell (hereafter termed “normal cell”) to a persister cell in the phyllosphere under laboratory conditions was performed as described in our previously published study [24]. Briefly, persister cell fractions were quantified in culturable EcO157 populations after inoculation onto young lettuce plants cultivated in plant growth chambers. Persister cells recovered from the lettuce phyllosphere were identified using the antibiotic lysing method [23]. The greatest persister fraction in the EcO157 population on lettuce in our laboratory investigation above was observed during population decline on leaf surfaces of plants left to dry after inoculation. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on these data [24]. Importantly, our laboratory conditions mimicked inoculation conditions in which E. coli arrived via water on leaves, the surfaces of which progressively dried like under prevailing weather conditions in the field.Based on the main dynamic observed in the field study data [9] and building on our previous study [24], we assumed that the total enteric pathogen population is composed of (i) non-persister (normal) cells consisting of two sub-populations, characterized by fast (n1) (CFU/100g) and slow (n2) (CFU/100g) decay, and (ii) the persister population, leading to the following model from Munther et al. [24]:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1 + beta _dleft( {1 – sigma } right)hat p,$$
    (1a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2 – alpha _dn_2 + beta _dsigma hat p,$$
    (1b)
    $$frac{{dhat p}}{{dt}} = – mu _{hat p}hat p – beta _dhat p + alpha _dleft( {n_1 + n_2} right),$$
    (1c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (1d)
    where (theta _{n_i})(1/h) is the death rate of the normal cells (subscript i = 1 for fast and i = 2 for slow), (hat p) (CFU/100 g) represents the persister cell population at time t (h), (mu _{hat p}) (1/h) reflects the persister population inactivation rate, αd (1/h) is the switch rate from normal to persister state, βd (1/h) is the switch rate from persister to the normal state, and σ ∈ (0,1) is a constant, describing the fraction of persister cells switching back to the normal, slowly decaying state. Equation (1a) and (1b) reflect the assumption that times between switching states are exponentially distributed, using the expected values (frac{1}{{alpha _d}}) (h) and (frac{1}{{beta _d}}) (h) of the respective distributions.Lacking data for potential persister populations from the field trials, we assumed the persister population is a fraction 1  > k  > 0 of the tail population, as observed in Munther et al. [24]. Regarding the model above, this implies that (hat p approx kn_2) for (t ge t^ ast), where (t^ ast approx frac{1}{{theta _{n_1}}}) (the time scale of survival for the fast-decaying population (n1)). In accord with bi-phasic decay, for (t ge t^ ast), the main dynamics for slow decaying population (n2) is dictated by (- theta _{n_2}n_2) in Eq. (1b). This suggests that the effective switch rates from n2 to (hat p) and from (hat p) back to n2 balance, so that (beta _dsigma hat p approx alpha _dn_2) in Eq. (1b). Following these ideas, we simplified the model in Eq. (1a)–(1d) to:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha _dn_1,$$
    (2a)
    $$frac{{dn_2}}{{dt}} = – theta _{n_2}n_2,$$
    (2b)
    $$frac{{dhat p}}{{dt}} = – theta _{hat p}hat p + alpha _dn_1,$$
    (2c)
    $$n_1left( 0 right) = n_{10},n_2left( 0 right) = n_{20},, hat pleft( 0 right) = widehat {p_0},$$
    (2d)
    where we ignored (beta _dleft( {1 – sigma } right)hat p) in (1a) since the decay rate ((theta _{n_1})) dominates. Also, by setting (theta _{hat p} = mu _{hat p} + beta _d(1 – sigma )), and using (beta _dsigma hat p approx alpha _dn_2), we obtained Eq. (2c). Furthermore, because (hat p approx kn_2) for (t ge t^ ast), (theta _{hat p} approx) (theta _{n_2}).In particular, the assumption that (hat p approx kn_2) for (t ge t^ ast) characterizes the switch rate from normal to persister cells, αd, as (alpha _d approx kalpha), where α is a hypothetical switch rate assuming that the population is composed only of fast decaying normal cells (n1) and a hypothetical persister cell population (p). In this case, the hypothetical population p starts small at (widehat {p_0}), initially increases due to switching from population n1 and then slowly decays as the n1 population is effectively inactivated (i.e., the tail of the total population is comprised entirely of p). From this perspective we utilized the following equations:$$frac{{dn_1}}{{dt}} = – theta _{n_1}n_1 – alpha n_1,$$
    (3a)
    $$frac{{dp}}{{dt}} = alpha n_1 – theta _pp.$$
    (3b)
    $$n_1left( 0 right) = n_0,, pleft( 0 right) = widehat {p_0},$$
    (3c)
    For mathematical justification regarding the relationship (alpha _d approx kalpha), please see the appendix (Supplementary Information).The utility of the relationship (alpha _d approx kalpha), is twofold. First, we used model fitting (Eqs. (3a)–(3c)) to determine α from the respective field study data [9]. Note that using Eqs. (3a)–(3c), we actually fit for (theta _{n_1}), θp, and α using the field study data [9]. Please reference the “model fitting procedure” section as well as the appendix for details concerning the unique determination of the aforementioned parameters, i.e., the practical identifiability of these parameters, and justification regarding the legitimacy of measured tail populations relative to the respective field trial data [9]. Second, because we wanted to examine Spearman’s correlations (corr) between αd and various weather factors, given a particular weather factor (vec w) across trials (i = 1, ldots ,n), let k be the maximum persister fraction (of the tail) across these n trials, that is, for each i, we have (alpha _{d_i} approx k_ialpha _i), so (alpha _{d_i} lesssim kalpha _i). Thus kαi represents the maximum persister switch rate for each trial i, and since corr((kvec alpha ,vec w)) =corr((vec alpha ,vec w)), we conducted the correlation analysis with the fitted α values in lieu of the actual persister switch rate αd.The assumptions behind our approach are summarized below:

    A.

    The tails of pathogen populations surviving on plants in the field study [9] are comprised of some fraction k ∈(0,1) of persister cells since their decay rate is quite small and they remain culturable.

    B.

    Because (alpha _d approx kalpha), we hereafter utilize α from model (3a)–(3c) as the representative persister switch rate.

    C.

    Given that the experimental context [24] for modeling persister switching occurred during population decline, we only employed trials from Belias et al. [9] that exhibited bi-phasic decay. Namely, we did not include trials in which significant bacterial growth was observed at the time scale of successive data points (the time scale in the field study is on the order of 4–16 h for the 1st day and then 24 h thereafter.)

    D.

    The switch rate from normal to persister cell is on average a monotonic function of some measure of environmental stress.

    Based on assumptions A–D above, we applied the model (3a)–(3c) to published pathogen population size and weather data from four replicate trials in Spain, two in California, and one in NY [9]. More specifically, we fit model (3a)–(3c) to the respective population data in order to:

    1.

    determine values for the maximum switch rate α relative to the produce/bacteria type at the field scale,

    2.

    describe the correlative relationship between α and weather factors in the respective field trials.

    Model fitting procedureIn model (3a)–(3c) above, we supposed dp/dtt = 0  > 0, i.e., we assumed that bacteria experience stress from the change in conditions from culture growth and inoculum suspension preparation to those on the plant surface and therefore, that persister formation increases in the phyllosphere immediately following inoculation. The report that EcO157 persister formation increases as early as 1 h after inoculation into leaf wash water [23], which could be considered as a proxy for the average oligotrophic environment that bacterial cells experience after spray inoculation onto leaves or through irrigation in the field, supports this assumption. To avoid identifiability issues between the initial persister population (widehat {p_0}) and α regarding the model fits above, we assumed that (widehat {p_0})= 1 ((widehat {p_0}) = 0 gives the same results). Thus, the initial persister population at inoculation is at its lowest, an assumption supported by Munther et al. [24], who observed an average fraction of EcO157 persisters of 0.0043% in the inoculum population. This imparts the largest possible switch rate, α, onto the population, corresponding to the largest and hence most conservative food safety risk.Let yk (CFU/100 g of produce) be the average bacteria population measurement at time tk (h) and let Pk,X (CFU/100 g of produce) represent the model prediction (total population) at time tk relative to the parameter vector (X = [ {theta _{n_1} , theta_p , alpha } ]^T). Following Eqs. (3a) and (3b), this means that ({{{{{{{mathrm{P}}}}}}}}_{k,X} = n_1left( {t_k,X} right) + p(t_k,X)). Since the population data spans multiple orders of magnitude, we calculated the residuals as (e_{k,X} = log _{10}y_k – log _{10}P_{k,X}). To determine the optimal model fit (see the appendix for details regarding a priori bounds on parameter ranges), we utilized the fminsearch function in MATLAB (MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts, United States) to determine the parameter vector X that minimizes the 2-norm of the following function F:$$| | Fleft( X right) | |_2 = left( {mathop {sum }limits_k e_{k,X}^2} right)^{frac{1}{2}}$$Correlation analysisTo provide a statistical foundation from which to relate the switch rate α and measured weather factors, we utilized Spearman and partial Spearman correlation. First, we calculated the Spearman correlation coefficients between α and each of the respective factors: 8-h average of temperature, RH, solar radiation, wind speed post-inoculation, and then we calculated the partial Spearman correlation coefficients for each respective weather factor, while controlling for the other three factors and simultaneously controlling for produce type (using lettuce =1 and spinach =0) (For details regarding why 8-h weather variables were used, see the “model fitting” subsection of the results.) The correlation coefficients were determined using the corr and partialcorr functions in MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA). Considering the significant association of Salmonella α with RH and temperature, we also examined the correlation between α and dew point. Figure 1 presents a logical flow of the statistical analysis. Partial correlations with a P value of less than 0.05 were deemed significant. If the 8-h average of a weather factor exhibited a significant correlation with the switch rate, the 8-h minimum and range of the weather factor were also tested.Fig. 1: Logical flow diagram for statistical analysis.Factors in Step 1: UV (average ultraviolet radiation intensity), RH (average air relative humidity), Wind (average wind speed), and Temp (average air temperature). All weather data used in the statistical analysis were obtained over 8 h post-inoculation of E. coli and Salmonella onto lettuce and spinach leaves in the field.Full size image More