More stories

  • in

    Delayed dynamics and detoxification in nutrient-phytoplankto-by-product systems: mechanisms driving bloom stability and oscillations

    AbstractPhytoplankton blooms emerge from the interplay between nutrient availability, biomass growth, and inhibitory by-products such as toxins or exudates. Here, we develop a mechanistic nutrient–phytoplankton–by-product model that couples Beddington–DeAngelis nutrient uptake, by-product-mediated inhibition, and nutrient-dependent detoxification. Analytical results demonstrate that the system remains biologically feasible and bounded, and that a threshold condition governs bloom initiation. Linear stability and bifurcation analyses reveal how detoxification delays can trigger oscillatory bloom behaviour. Across ecologically realistic parameter regimes, the system tends to a stable coexistence state—either directly or through damped oscillations—rather than exhibiting repeated bloom–crash cycles. Global sensitivity analysis (PRCC and Sobol indices) highlights by-product production, inhibition strength, detoxification rate, toxin-linked mortality, and saturation effects as dominant regulators of stability and damping time. Introducing an explicit ecological delay exposes a critical threshold at which a Hopf bifurcation arises, converting the stable equilibrium into sustained oscillations. Numerical simulations confirm the transversality condition and indicate a supercritical onset. Collectively, these results provide a quantitative diagnostic for distinguishing transient from sustained bloom oscillations and identify measurable ecological processes—particularly detoxification and delayed feedback—that govern transitions between stable and oscillatory regimes.

    Similar content being viewed by others

    Seasonal refuge patterns of phytoplankton trigger irregular bloom events in a contaminated environment

    Article
    Open access
    24 October 2024

    Phytoplankton community structuring and succession in a competition-neutral resource landscape

    Article
    Open access
    14 April 2021

    Dynamical complexity of a three species food chain model incorporating delays and toxic habitat

    Article
    Open access
    11 December 2025

    Data availability

    The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.
    ReferencesReynolds, C. S. The Ecology of Phytoplankton (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511542145.
    Google Scholar 
    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65(4), 995–1010. https://doi.org/10.1007/s00248-012-0159-y (2013).
    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471–483. https://doi.org/10.1038/s41579-018-0040-1 (2018).
    Google Scholar 
    Paerl, H. W. & Otten, T. G. Duelling CyanoHABs: Unravelling the environmental drivers controlling dominance. Environ. Microbiol. 22(10), 3817–3828. https://doi.org/10.1111/1462-2920.15125 (2020).
    Google Scholar 
    Taranu, Z. E. et al. Widespread increases in cyanobacteria blooms are reshaping lake ecosystems. Proc. R. Soc. B 289, 20221056. https://doi.org/10.1098/rspb.2022.1056 (2022).
    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms: The role of climate change and nutrient loading. Nat. Rev. Microbiol. 18(1), 64–76. https://doi.org/10.1038/s41579-019-0286-0 (2020).
    Google Scholar 
    Anderson, D. M. et al. Harmful algal blooms and climate change. Harmful Algae 108, 102105. https://doi.org/10.1016/j.hal.2021.102105 (2021).
    Google Scholar 
    Glibert, P. M. Harmful algal blooms: A global perspective. J. Oceanol. Limnol. 38, 1225–1244. https://doi.org/10.1007/s00343-020-00070-z (2020).
    Google Scholar 
    Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton: Biochemical, ecological and evolutionary aspects. Phycologia 42(4), 406–419. https://doi.org/10.2216/i0031-8884-42-4-406.1 (2003).
    Google Scholar 
    Graneli, E. & Hansen, P. J. Allelopathy in harmful algae: A mechanism to compete for resources. In Ecology of Harmful Algae (eds Graneli, E. & Turner, J. T.) 189–201 (Springer, 2006).
    Google Scholar 
    Graneli, E., Weberg, M. & Salomon, P. S. Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae 8(1), 94–102. https://doi.org/10.1016/j.hal.2008.08.011 (2008).
    Google Scholar 
    Fistarol, G. O., Legrand, C. & Graneli, E. Allelopathic effect on a nutrient-limited phytoplankton species. Mar. Ecol. – Prog. Ser. 255, 115–125. https://doi.org/10.3354/meps255115 (2003).
    Google Scholar 
    Tillmann, U. et al. Inhibition of competing phytoplankton by Alexandrium ostenfeldii: A review of allelochemical potency. J. Plankton Res. 29(6), 547–565. https://doi.org/10.1093/plankt/fbm041 (2007).
    Google Scholar 
    Dzyubenko, E. V. et al. Mechanisms of allelopathy in marine and freshwater microalgae. Harmful Algae 108, 102099. https://doi.org/10.1016/j.hal.2021.102099 (2021).
    Google Scholar 
    Zhang, Y. et al. Dynamics of transparent exopolymer particles in bloom-forming cyanobacteria. Environ. Sci. Technol. 56(4), 2449–2459. https://doi.org/10.1021/acs.est.1c05508 (2022).
    Google Scholar 
    Hansell, D. A., & Carlson, C. A. (Eds.). Biogeochemistry of Marine Dissolved Organic Matter (2nd ed.). Academic Press. (2015).Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 922. https://doi.org/10.3389/fmicb.2017.00922 (2017).
    Google Scholar 
    Verdugo, P. Marine microgels. Annu. Rev. Mar. Sci. 4, 375–400. https://doi.org/10.1146/annurev-marine-120709-142759 (2012).
    Google Scholar 
    Cisternas-Novoa, C., Lee, C. & Engel, A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): A review. Mar. Chem. 175, 4–13. https://doi.org/10.1016/j.marchem.2015.03.009 (2015).
    Google Scholar 
    Grossart, H. P. et al. Extracellular polymeric substances in aquatic systems: Role and composition. Nat. Microbiol. 6, 169–181. https://doi.org/10.1038/s41564-020-00807-w (2021).
    Google Scholar 
    Park, H.-D. et al. Degradation of microcystin by a new bacterium isolated from a hypertrophic lake. Lett. Appl. Microbiol. 33(3), 247–251. https://doi.org/10.1046/j.1472-765X.2001.00993.x (2001).
    Google Scholar 
    Bourne, D. G. et al. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin-LR. Appl. Environ. Microbiol. 62(11), 4086–4094 (1996).
    Google Scholar 
    Faassen, E. J. Cyanotoxins: Occurrence, toxicology, and detection. Toxins 14(1), 48. https://doi.org/10.3390/toxins14010048 (2022).
    Google Scholar 
    Orellana, M. V. et al. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. 108(33), 13612–13617. https://doi.org/10.1073/pnas.1102457108 (2011).
    Google Scholar 
    Gerphagnon, M. et al. Virus-phytoplankton interactions and the control of bloom dynamics. ISME Journal 14, 1431–1442. https://doi.org/10.1038/s41396-020-0624-8 (2020).
    Google Scholar 
    Su, X. et al. Functional roles of microbial aggregates in aquatic ecosystems. Trends Microbiol. 29(6), 485–497. https://doi.org/10.1016/j.tim.2020.12.007 (2021).
    Google Scholar 
    Beversdorf, L. J. et al. Phytoplankton community shifts under warming conditions explain cyanobacteria expansion. Limnol. Oceanogr. 65(12), 3186–3202. https://doi.org/10.1002/lno.11584 (2020).
    Google Scholar 
    Boero, F. et al. Marine plankton trophic interactions and regime shifts. Mar. Ecol. – Prog. Ser. 646, 1–15. https://doi.org/10.3354/meps13380 (2020).
    Google Scholar 
    Lin, S. et al. Adaptive strategies of harmful algae under nutrient stress. Nat. Commun. 14, 1254. https://doi.org/10.1038/s41467-023-36912-7 (2023).
    Google Scholar 
    Lu, J. et al. Global rise of harmful algal blooms: Drivers, risks, and management strategies. Sci. Total Environ. 909, 168771. https://doi.org/10.1016/j.scitotenv.2023.168771 (2024).
    Google Scholar 
    Rosenzweig, M. L. & MacArthur, R. H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 97(895), 209–223. https://doi.org/10.1086/282272 (1963).
    Google Scholar 
    Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91(5), 293–320. https://doi.org/10.4039/Ent91293-5 (1959).
    Google Scholar 
    Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340. https://doi.org/10.2307/3866 (1975).
    Google Scholar 
    DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for trophic interaction. Ecology 56(4), 881–892. https://doi.org/10.2307/1936298 (1975).
    Google Scholar 
    Smith, H. L. & Waltman, P. The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511530043.
    Google Scholar 
    Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103 (1949).
    Google Scholar 
    Droop, M. R. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. U. K. 54(4), 825–855 (1974).
    Google Scholar 
    Strogatz, S. H. Nonlinear Dynamics and Chaos 2nd ed. (CRC Press, 2018). https://doi.org/10.1201/9780429492563.
    Google Scholar 
    Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer https://doi.org/10.1007/978-1-4612-1140-2 (1983).
    Google Scholar 
    Kuznetsov, Y. A. Elements of Applied Bifurcation Theory 3rd ed. (Springer, 2004). https://doi.org/10.1007/978-1-4757-3978-7.
    Google Scholar 
    Pareek, S. & Baghel, R. S. A food web exhibiting group defenses in spatiotemporal dynamics. Int. J. Appl. Comput. Math. 11(5), 1–30 (2025) (Springer).
    Google Scholar 
    Baghel, R. S. Memory and delay-driven dynamics in a tritrophic food chain model with Allee effect and nonlinear predation, Nonlinear Sci., 100069, https://doi.org/10.1016/j.nls.2025.100069 (2025).Liao, T. & Yin, H. Joint impact of global warming and Allee effect on the phytoplankton-zooplankton dynamics under the mean-reverting Ornstein-Uhlenbeck process. Eur. Phys. J. Plus 140(5), 423 (2025).
    Google Scholar 
    Liao, T. The impact of temperature variation on the algae-zooplankton dynamics with size-selective disturbance. Chaos, Solitons & Fractals 181, 114615 (2024).
    Google Scholar 
    Liao, T. Dynamical complexity driven by water temperature in a size-dependent phytoplankton-zooplankton model with environmental variability. Chin. J. Phys. 88, 557–583 (2024).
    Google Scholar 
    Liao, T. Dynamics complexity induced by salinity in a stochastic phytoplankton-zooplankton model under acid-base changes. Math. Methods Appl. Sci.. 48(12), 12258–12281 (2025).Li, X. et al. Bifurcation analysis of a new aquatic ecological model with aggregation effect. Math. Comput. Simul. 190, 75–96 (2021).
    Google Scholar 
    Saito, M. A. et al. Microbial nutrient limitation in the ocean. Annu. Rev. Mar. Sci. 12, 187–217. https://doi.org/10.1146/annurev-marine-010318-095241 (2020).
    Google Scholar 
    Pettersson, L. H. et al. Hybrid models of plankton dynamics: Integrating mechanistic and data-driven frameworks. Ecol. Model. 464, 109844. https://doi.org/10.1016/j.ecolmodel.2022.109844 (2022).
    Google Scholar 
    Levine, N. M. et al. Modeling phytoplankton-nutrient interactions under climate change. PNAS 118(30), e2026815118. https://doi.org/10.1073/pnas.2026815118 (2021).
    Google Scholar 
    Dakos, V. et al. Indicators of tipping points in ecological systems. Nat. Ecol. Evol. 5, 620–632. https://doi.org/10.1038/s41559-020-01313-9 (2021).
    Google Scholar 
    Pareek, S., & Baghel, R. S. Controlling cyanobacterial blooms using a biological filter-feeding and aggregation effect. Iran. J. Sci. pp. 1–12, (Springer, 2025)Schindler, D. W. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184(4139), 897–899. https://doi.org/10.1126/science.184.4139.897 (1974).
    Google Scholar 
    Carpenter, S. R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. 105(32), 11039–11040. https://doi.org/10.1073/pnas.0806112105 (2008).
    Google Scholar 
    Vollenweider, R. A. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters. OECD. (1968).Smith, V. H. & Schindler, D. W. Eutrophication science: Where do we go from here-. Trends Ecol. Evol. 24(4), 201–207. https://doi.org/10.1016/j.tree.2008.11.009 (2009).
    Google Scholar 
    Hansell, D. A. & Carlson, C. A. Marine dissolved organic matter and the carbon cycle. Oceanography 14(4), 41–49. https://doi.org/10.5670/oceanog.2001.05 (2001).
    Google Scholar 
    Li, M. et al. Global trends in cyanobacterial harmful algal blooms. Nat. Commun. 12, 5859. https://doi.org/10.1038/s41467-021-26188-0 (2021).
    Google Scholar 
    Baghel, R. S. A toxins role in controlling chaos with a spatial effect in an aquatic systems. Int. J. Appl. Comput. Math. 11(3), 99 (2025) (Springer).
    Google Scholar 
    Baghel, R. S. Spatiotemporal dynamics of toxin producing phytoplankton-zooplankton interactions with Holling Type II functional responses. Results Control Optim. 17, 100478 (2024) (Elsevier).
    Google Scholar 
    Skalski, G. T. & Gilliam, J. F. Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001).
    Google Scholar 
    Hairer, E., Norsett, S. P. & Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems 2nd ed. (Springer, 2008). https://doi.org/10.1007/978-3-540-78862-1.
    Google Scholar 
    Butcher, J. C. Numerical Methods for Ordinary Differential Equations 3rd ed. (Wiley, 2016). https://doi.org/10.1002/9781119121534.
    Google Scholar 
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing 3rd ed. (Cambridge University Press, 2007).
    Google Scholar 
    Download referencesFundingOpen access funding provided by Manipal Academy of Higher Education, Manipal. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Author informationAuthors and AffiliationsDepartment of Mathematics, Poornima University, Jaipur, 303905, Rajasthan, IndiaRandhir Singh BaghelDepartment of Physics, Poornima University, Jaipur, 303905, Rajasthan, IndiaShrikant VermaDepartment of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, IndiaNarendra KhatriAuthorsRandhir Singh BaghelView author publicationsSearch author on:PubMed Google ScholarShrikant VermaView author publicationsSearch author on:PubMed Google ScholarNarendra KhatriView author publicationsSearch author on:PubMed Google ScholarContributionsR.S.B. and S.V. conceptualized and designed the study. R.S.B. conducted the experimental work and data collection. S.V. performed the data analysis and interpretation. N.K. contributed to reviewing, editing, and redrafting the manuscript and handled the correspondence. All authors reviewed and approved the final version of the manuscript.Corresponding authorCorrespondence to
    Narendra Khatri.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Declaration on the use of AI
    The authors declare that Artificial Intelligence (AI) tools, including QuillBot, were used for paraphrasing and redrafting portions of the manuscript with the aim of improving clarity and readability. All AI-generated content was critically reviewed, verified, and edited by the authors to ensure accuracy, originality, and conformity with academic standards. The authors take full responsibility for the integrity and reliability of the final manuscript.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleBaghel, R.S., Verma, S. & Khatri, N. Delayed dynamics and detoxification in nutrient-phytoplankto-by-product systems: mechanisms driving bloom stability and oscillations.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-32146-zDownload citationReceived: 15 September 2025Accepted: 08 December 2025Published: 21 December 2025DOI: https://doi.org/10.1038/s41598-025-32146-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsPhytoplankton-nutrient dynamicsBeddington-DeAngelis uptakeBy-product interference (allelopathy)Stability and Hopf bifurcationGlobal sensitivity analysis (Sobol, PRCC)Delay More

  • in

    Molecular signatures and machine learning driven stress biomarkers for rainbow trout aquaculture and climate adaptation

    AbstractClimate-induced stressors pose significant threats to fish growth, survival, and ecological stability. Identifying reliable molecular biomarkers is crucial for improving stress management and acclimation strategies. This study employed a comprehensive transcriptomic analysis to examine stress responses in rainbow trout (Oncorhynchus mykiss) exposed to five distinct environmental stressors—high and low temperatures, crowding, salinity, and low water quality (characterized by reduced dissolved oxygen and elevated CO2)—over six hours. A total of 21,580 differentially expressed transcripts (DETs) were identified, including 16,959 unique DETs. Heat stress and salinity induced the most pronounced transcriptomic responses, with most DETs being stressor-specific, highlighting distinct physiological acclimation mechanisms. Only 39 DETs were consistently regulated across all stress conditions. Key DETs associated with heat stress were further analyzed using machine learning models to evaluate their predictive potential in distinguishing control and heat-stressed fish from natural Redband trout populations. The logistic model tree (LMT) classifier demonstrated the highest accuracy with a set of 234 DETs. When the dataset was reduced to 50 or 2 DETs, the Random Forest model achieved optimal classification, consistently identifying two heat shock protein transcripts, hsp47 and hspa4l, as primary predictors across both short- and long-term stress responses. In contrast, core DETs shared across stressors exhibited limited predictive power, achieving only 52.78% classification accuracy. These findings underscore the specificity of molecular signatures to individual stressors and highlight the potential of transcriptomic biomarkers for monitoring climate-induced stress in fish populations. The study recommends the integration of these biomarkers into selective breeding programs and conservation strategies to enhance fish resilience and welfare in the face of environmental change.

    Similar content being viewed by others

    Comparative study of fish adaptation at cellular and genetic levels across eco-sensitive zones with contrasting oxygen and temperature regimes

    Article
    Open access
    09 October 2025

    Acclimation to higher temperature and antioxidant supplemented diets improved rainbow trout (Oncorhynchus mykiss) resilience to heatwaves

    Article
    Open access
    18 May 2024

    IoT and ML approach for ornamental fish behaviour analysis

    Article
    Open access
    05 December 2023

    Data availability

    The raw sequencing data from three strains of Redband trout were downloaded from the NCBI Short Read Archive (SRA) under accession number PRJNA233945. The rainbow trout genome annotation was obtained from NCBI (GCA_013265735.3, https://www.ncbi.nlm.nih.gov/assembly/ GCF_013265735.2/). Additionally, RNA-seq datasets from fish exposed to five different stress conditions were retrieved from the NCBI Sequence Read Archive (SRA) using the accession number SRP070774.
    ReferencesHuang, J., Li, Y., Liu, Z., Kang, Y. & Wang, J. Transcriptomic responses to heat stress in rainbow trout Oncorhynchus mykiss head kidney. Fish Shellfish Immunol. 82, 32–40. https://doi.org/10.1016/j.fsi.2018.08.002 (2018).
    Google Scholar 
    Komatsu, E., Fukushima, T. & Harasawa, H. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 209, 351–366. https://doi.org/10.1016/j.ecolmodel.2007.07.021 (2007).
    Google Scholar 
    Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, A. J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123. https://doi.org/10.1623/hysj.54.1.101 (2009).
    Google Scholar 
    Mooij, W. M., De Senerpont Domis, L. N. & Janse, J. H. Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model. Ecol. Model. 220, 3011–3020. https://doi.org/10.1016/j.ecolmodel.2009.02.003 (2009).
    Google Scholar 
    Isangedighi I, Asuquo & Afia O. Climate change: Its Effect on water quality and fish growth. 10, 326-338 (2023)Dediu, L. et al. Effects of stocking density on growth performance and stress responses of bester and bester female symbol x beluga male symbol juveniles in recirculating aquaculture systems. Animals: Open Access J.MDPI https://doi.org/10.3390/ani11082292 (2021).
    Google Scholar 
    Ali, A., Thorgaard, G. H. & Salem, M. PacBio Iso-Seq improves the rainbow trout genome annotation and identifies alternative splicing associated with economically important phenotypes. Front Genet 12, 683408. https://doi.org/10.3389/fgene.2021.683408 (2021).
    Google Scholar 
    Liu, S. et al. RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout. PLoS ONE 9, e88492. https://doi.org/10.1371/journal.pone.0088492 (2014).
    Google Scholar 
    NOAA. (ed National Marine Fisheries Service) (2022).Weber, G. M. & Silverstein, J. T. Evaluation of a stress response for use in a selective breeding program for improved growth and disease resistance in rainbow trout. N. Am. J. Aquac. 69, 69–79. https://doi.org/10.1577/a05-103.1 (2007).
    Google Scholar 
    Rexroad, C. E., Vallejo, R. L., Liu, S., Palti, Y. & Weber, G. M. Quantitative trait loci affecting response to crowding stress in an F(2) generation of rainbow trout produced through phenotypic selection. Marine Biotechnol. 15, 613–627. https://doi.org/10.1007/s10126-013-9512-5 (2013).
    Google Scholar 
    Smith, S., Bernatchez, L. & Beheregaray, L. B. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14, 375. https://doi.org/10.1186/1471-2164-14-375 (2013).
    Google Scholar 
    Liu, S. et al. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol. Genomics 45, 462–476. https://doi.org/10.1152/physiolgenomics.00026.2013 (2013).
    Google Scholar 
    Sun, J. et al. RNA-seq analysis reveals alternative splicing under heat stress in rainbow trout (Oncorhynchus mykiss). Marine Biotechnol. 24, 5–17. https://doi.org/10.1007/s10126-021-10082-z (2022).
    Google Scholar 
    Hou, Z. S. et al. Transcriptional Profiles of genes related to stress and immune response in rainbow trout (Oncorhynchus mykiss) symptomatically or asymptomatically infected with vibrio anguillarum. Front. Immunol. 12, 639489. https://doi.org/10.3389/fimmu.2021.639489 (2021).
    Google Scholar 
    Quan, J. et al. Identification and characterization of long noncoding RNAs provide insight into the regulation of gene expression in response to heat stress in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part D Genomics Proteomics 36, 100707. https://doi.org/10.1016/j.cbd.2020.100707 (2020).
    Google Scholar 
    Quan, J. et al. Integrated analysis of the responses of a circRNA-miRNA-mRNA ceRNA network to heat stress in rainbow trout (Oncorhynchus mykiss) liver. BMC Genomics 22, 48. https://doi.org/10.1186/s12864-020-07335-x (2021).
    Google Scholar 
    Zhao, G. et al. Ribosome profiling and RNA sequencing reveal translation and transcription regulation under acute heat stress in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) Liver. Int. J. Mol. Sci. 25, 8848. https://doi.org/10.3390/ijms25168848 (2024).
    Google Scholar 
    Narum, S. R. & Campbell, N. R. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics 16, 103. https://doi.org/10.1186/s12864-015-1246-5 (2015).
    Google Scholar 
    Narum, S. R., Campbell, N. R., Kozfkay, C. C. & Meyer, K. A. Adaptation of redband trout in desert and montane environments. Mol Ecol 19, 4622–4637. https://doi.org/10.1111/j.1365-294X.2010.04839.x (2010).
    Google Scholar 
    Rehrauer, H., Opitz, L., Tan, G., Sieverling, L. & Schlapbach, R. Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching. BMC Bioinform. 14, 370. https://doi.org/10.1186/1471-2105-14-370 (2013).
    Google Scholar 
    Hirsch, C. D., Springer, N. M. & Hirsch, C. N. Genomic limitations to RNA sequencing expression profiling. Plant J. Cell Mol. Biol. 84, 491–503. https://doi.org/10.1111/tpj.13014 (2015).
    Google Scholar 
    Sahraeian, S. M. E. et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat. Commun. 8, 59. https://doi.org/10.1038/s41467-017-00050-4 (2017).
    Google Scholar 
    Rajkumar, A. P. et al. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics 16, 548. https://doi.org/10.1186/s12864-015-1767-y (2015).
    Google Scholar 
    Fang, Z., Martin, J. & Wang, Z. Statistical methods for identifying differentially expressed genes in RNA-Seq experiments. Cell Biosci. 2, 26. https://doi.org/10.1186/2045-3701-2-26 (2012).
    Google Scholar 
    Ozsolak, F. & Milos, P. M. RNA sequencing: Advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98. https://doi.org/10.1038/nrg2934 (2011).
    Google Scholar 
    Wang, L., Xi, Y., Sung, S. & Qiao, H. RNA-seq assistant: Machine learning based methods to identify more transcriptional regulated genes. BMC Genomics 19, 546. https://doi.org/10.1186/s12864-018-4932-2 (2018).
    Google Scholar 
    Mjolsness, E. & DeCoste, D. Machine learning for science: State of the art and future prospects. Science 293, 2051–2055. https://doi.org/10.1126/science.293.5537.2051 (2001).
    Google Scholar 
    Kan, A. Machine learning applications in cell image analysis. Immunol. Cell Biol. 95, 525–530. https://doi.org/10.1038/icb.2017.16 (2017).
    Google Scholar 
    Vidyasagar, M. Machine learning methods in the computational biology of cancer. Proceed. Math. Phys. Eng. Sci. 470, 20140081. https://doi.org/10.1098/rspa.2014.0081 (2014).
    Google Scholar 
    Zhang, J. et al. Computer vision and machine learning for robust phenotyping in genome-wide studies. Sci. Rep. 7, 44048. https://doi.org/10.1038/srep44048 (2017).
    Google Scholar 
    Li, J., Ching, T., Huang, S. & Garmire, L. X. Using epigenomics data to predict gene expression in lung cancer. BMC Bioinform. https://doi.org/10.1186/1471-2105-16-S5-S10 (2015).
    Google Scholar 
    Ma, C., Xin, M., Feldmann, K. A. & Wang, X. Machine learning-based differential network analysis: A study of stress-responsive transcriptomes in Arabidopsis. Plant Cell 26, 520–537. https://doi.org/10.1105/tpc.113.121913 (2014).
    Google Scholar 
    Zhang, Y. et al. Wearable bioimpedance-based deep learning techniques for live fish health assessment under waterless and low-temperature conditions. Sensors 23, 8210. https://doi.org/10.3390/s23198210 (2023).
    Google Scholar 
    Fandino Pelayo, J. S., Mendoza Castellanos, L. S., Cazes Ortega, R. & Hernandez-Rojas, L. G. AI-driven monitoring for fish welfare in aquaponics: A predictive approach. Sensors 25, 6107. https://doi.org/10.3390/s25196107 (2025).
    Google Scholar 
    Zhu, Y., Zhang, W., Zhang, Y. & Zhang, X. Fish vitality assessment under adversity stress based on multi-sensing fusion and deep learning techniques. Aquaculture 609, 742871. https://doi.org/10.1016/j.aquaculture.2025.742871 (2025).
    Google Scholar 
    Sanchez, C. C. et al. Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics 12, 626. https://doi.org/10.1186/1471-2164-12-626 (2011).
    Google Scholar 
    Silverstein, J. T., Rexroad, C. E. & King, T. L. Genetic variation measured by microsatellites among three strains of domesticated rainbow trout (Oncorhynchus mykiss, Walbaum). Aquac. Res. 35, 40–48. https://doi.org/10.1111/j.1365-2109.2004.00979.x (2004).
    Google Scholar 
    Weber, G. M., Vallejo, R. L., Lankford, S. E., Silverstein, J. T. & Welch, T. J. Cortisol Response to a Crowding Stress: Heritability and Association with Disease Resistance to Yersinia ruckeri in Rainbow Trout. N. Am. J. Aquac. 70, 425–433. https://doi.org/10.1577/a07-059.1 (2008).
    Google Scholar 
    Pottinger, T. G. & Carrick, T. R. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen. Comp. Endocrinol. 116, 122–132. https://doi.org/10.1006/gcen.1999.7355 (1999).
    Google Scholar 
    Hall, M. et al. The WEKA data mining software. ACM SIGKDD Explorations Newsl 11, 10–18. https://doi.org/10.1145/1656274.1656278 (2009).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England) 36, 2628–2629. https://doi.org/10.1093/bioinformatics/btz931 (2020).
    Google Scholar 
    Newell, A. J., Jima, D., Reading, B. & Patisaul, H. B. Machine learning reveals common transcriptomic signatures across rat brain and placenta following developmental organophosphate ester exposure. Toxicol. Sci. 195, 103–122. https://doi.org/10.1093/toxsci/kfad062 (2023).
    Google Scholar 
    Pan, H., Xu, R. & Zhang, Y. Role of SPRY4 in health and disease. Front. Oncol. 14, 1376873. https://doi.org/10.3389/fonc.2024.1376873 (2024).
    Google Scholar 
    Jiang, W. I. et al. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. Sci. Adv. 10, eadj3880. https://doi.org/10.1126/sciadv.adj3880 (2024).
    Google Scholar 
    Mani, B. et al. Tetraspanin 5 orchestrates resilience to salt stress through the regulation of ion and reactive oxygen species homeostasis in rice. Plant Biotechnol. J. 23, 51–71. https://doi.org/10.1111/pbi.14476 (2025).
    Google Scholar 
    Costa, A., Hood, I. V. & Berger, J. M. Mechanisms for initiating cellular DNA replication. Annu. Rev. Biochem. 82, 25–54. https://doi.org/10.1146/annurev-biochem-052610-094414 (2013).
    Google Scholar 
    Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 79, 89–130. https://doi.org/10.1146/annurev.biochem.052308.103205 (2010).
    Google Scholar 
    Alvarez, S. et al. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nat. Commun. 6, 8548. https://doi.org/10.1038/ncomms9548 (2015).
    Google Scholar 
    Ninomiya, K. et al. LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J. 39, e102729. https://doi.org/10.15252/embj.2019102729 (2020).
    Google Scholar 
    Islas, S., Vega, J., Ponce, L. & Gonzalez-Mariscal, L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp. Cell Res. 274, 138–148. https://doi.org/10.1006/excr.2001.5457 (2002).
    Google Scholar 
    Traweger, A. et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J. Biol. Chem. 278, 2692–2700. https://doi.org/10.1074/jbc.M206821200 (2003).
    Google Scholar 
    Chang, S. W. et al. Heat stress activates interleukin-8 and the antioxidant system via Nrf2 pathways in human dental pulp cells. J. Endodontics 35, 1222–1228. https://doi.org/10.1016/j.joen.2009.06.005 (2009).
    Google Scholar 
    Wang, Z., Zhang, H. & Cheng, Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed. Pharmacother 122, 109688. https://doi.org/10.1016/j.biopha.2019.109688 (2020).
    Google Scholar 
    Hu, L. et al. The HSP90AA1 gene is involved in heat stress responses and its functional genetic polymorphisms are associated with heat tolerance in Holstein cows. J. Dairy Sci. 107, 5132–5149. https://doi.org/10.3168/jds.2023-24007 (2024).
    Google Scholar 
    Srikanth, K., Kwon, A., Lee, E. & Chung, H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 22, 29–42. https://doi.org/10.1007/s12192-016-0739-8 (2017).
    Google Scholar 
    Videla Rodriguez, E. A., Mitchell, J. B. O. & Smith, V. A. Robust identification of interactions between heat-stress responsive genes in the chicken brain using Bayesian networks and augmented expression data. Sci. Rep. 14, 9019. https://doi.org/10.1038/s41598-024-58679-3 (2024).
    Google Scholar 
    Elliott, E. N., Sheaffer, K. L. & Kaestner, K. H. The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. Elife 5, e12975. https://doi.org/10.7554/eLife.12975 (2016).
    Google Scholar 
    Korotko, U., Chwialkowska, K., Sanko-Sawczenko, I. & Kwasniewski, M. DNA demethylation in response to heat stress in Arabidopsis thaliana. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22041555 (2021).
    Google Scholar 
    Singh, A. K. et al. Genome-wide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu x taurine) cattle. Cell Stress Chaperones 25, 327–344. https://doi.org/10.1007/s12192-020-01076-2 (2020).
    Google Scholar 
    Smolenski, R. T. et al. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther 28, 183–189. https://doi.org/10.1007/s10557-013-6506-5 (2014).
    Google Scholar 
    Wang, L. et al. Integrative multiomics analysis of the heat stress response of enterococcus faecium. Biomolecules 13, 437 (2023).
    Google Scholar 
    Guo, D. C. et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am. J. Hum. Genet. 96, 170–177. https://doi.org/10.1016/j.ajhg.2014.11.015 (2015).
    Google Scholar 
    Sekhar, R. V. et al. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 94, 847–853. https://doi.org/10.3945/ajcn.110.003483 (2011).
    Google Scholar 
    Smith, P. G., Roy, C., Zhang, Y. N. & Chauduri, S. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 28, 436–442. https://doi.org/10.1165/rcmb.4754 (2003).
    Google Scholar 
    Williams, J. L. et al. Abstract P2005: Loss of full-length Mylk3 causes dilated cardiomyopathy via a Myl2-independent mechanism. Circul. Res. 131, AP2005–AP2005. https://doi.org/10.1161/res.131.suppl_1.P2005 (2022).
    Google Scholar 
    Bonam, S. R., Ruff, M. & Muller, S. HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells 8, 849. https://doi.org/10.3390/cells8080849 (2019).
    Google Scholar 
    Fusakio, M. E. et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol. Biol. Cell 27, 1536–1551. https://doi.org/10.1091/mbc.E16-01-0039 (2016).
    Google Scholar 
    Schwab, R. A. et al. The fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361. https://doi.org/10.1016/j.molcel.2015.09.012 (2015).
    Google Scholar 
    Varga, T., Czimmerer, Z. & Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochem. Biophys. Acta. 1812, 1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014 (2011).
    Google Scholar 
    Lee, J., Ellis, J. M. & Wolfgang, M. J. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 10, 266–279. https://doi.org/10.1016/j.celrep.2014.12.023 (2015).
    Google Scholar 
    Yu, Y. et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193. https://doi.org/10.1038/s41420-021-00579-w (2021).
    Google Scholar 
    Samaj, J. et al. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol. 135, 1150–1161. https://doi.org/10.1104/pp.104.040683 (2004).
    Google Scholar 
    Leithner, K. New roles for gluconeogenesis in vertebrates. Current Opinion Syst. Biol. 28, 100389. https://doi.org/10.1016/j.coisb.2021.100389 (2021).
    Google Scholar 
    Bi, P. & Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol. Metab. 26, 248–255. https://doi.org/10.1016/j.tem.2015.02.006 (2015).
    Google Scholar 
    Chen, G., Shaw, M. H., Kim, Y. G. & Nunez, G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4, 365–398. https://doi.org/10.1146/annurev.pathol.4.110807.092239 (2009).
    Google Scholar 
    UniProt, C. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531. https://doi.org/10.1093/nar/gkac1052 (2023).
    Google Scholar 
    Hostetter, D. R., Loeb, C. R., Chu, F. & Craik, C. S. Hip is a pro-survival substrate of granzyme B. J. Biol. Chem. 282, 27865–27874 (2007).
    Google Scholar 
    Bredemeyer, A. J., Carrigan, P. E., Fehniger, T. A., Smith, D. F. & Ley, T. J. Hop cleavage and function in granzyme B-induced apoptosis. J. Biol. Chem. 281, 37130–37141. https://doi.org/10.1074/jbc.M607969200 (2006).
    Google Scholar 
    Bredemeyer, A. J. et al. A proteomic approach for the discovery of protease substrates. Proc. Natl. Acad. Sci. U.S.A. 101, 11785–11790. https://doi.org/10.1073/pnas.0402353101 (2004).
    Google Scholar 
    Caruso, J. A. & Reiners, J. J. Proteolysis of HIP during apoptosis occurs within a region similar to the BID loop. Apoptosis 11, 1877–1885 (2006).
    Google Scholar 
    Boivin, W. A., Cooper, D. M., Hiebert, P. R. & Granville, D. J. Intracellular versus extracellular granzyme B in immunity and disease: Challenging the dogma. Lab Invest 89, 1195–1220. https://doi.org/10.1038/labinvest.2009.91 (2009).
    Google Scholar 
    Cai, W., Wei, Y., Jarnik, M., Reich, J. & Lilly, M. A. The GATOR2 component Wdr24 regulates TORC1 activity and lysosome function. PLoS Genet 12, e1006036. https://doi.org/10.1371/journal.pgen.1006036 (2016).
    Google Scholar 
    Li, H. et al. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci. Rep. 7, 5745. https://doi.org/10.1038/s41598-017-06058-6 (2017).
    Google Scholar 
    Kim, J. S. et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci. Rep. 5, 9502. https://doi.org/10.1038/srep09502 (2015).
    Google Scholar 
    Tamai, S. et al. Acute cold stress induces transient MuRF1 upregulation in the skeletal muscle of zebrafish. Biochem. Biophys. Res. Commun 608, 59–65. https://doi.org/10.1016/j.bbrc.2022.03.093 (2022).
    Google Scholar 
    Schulz, P., Herde, M. & Romeis, T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol. 163, 523–530. https://doi.org/10.1104/pp.113.222539 (2013).
    Google Scholar 
    Malko, M. M. et al. Effect of Exogenous Calcium on Tolerance of Winter Wheat to Cold Stress during Stem Elongation Stage. Plants (2023).Cibis, H., Biyanee, A., Dorner, W., Mootz, H. D. & Klempnauer, K. H. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci. Rep. 10, 8390. https://doi.org/10.1038/s41598-020-65443-w (2020).
    Google Scholar 
    Los, D. A. & Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochem. Biophys. Acta. 1666, 142–157. https://doi.org/10.1016/j.bbamem.2004.08.002 (2004).
    Google Scholar 
    Greaney, J. L., Alexander, L. M. & Kenney, W. L. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J. Appl. Physiol. 119, 771–782. https://doi.org/10.1152/japplphysiol.00527.2015 (2015).
    Google Scholar 
    Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nat. Rev. Neurosci. 5, 917–930. https://doi.org/10.1038/nrn1555 (2004).
    Google Scholar 
    Keebaugh, A. C., Sullivan, R. T., Program, N. C. S. & Thomas, J. W. Gene duplication and inactivation in the HPRT gene family. Genomics 89, 134–142. https://doi.org/10.1016/j.ygeno.2006.07.003 (2007).
    Google Scholar 
    Harrell Stewart, D. R. & Clark, G. J. Pumping the brakes on RAS – negative regulators and death effectors of RAS. J. Cell Sci. 133, jcs238865. https://doi.org/10.1242/jcs.238865 (2020).
    Google Scholar 
    Lapinski, P. E., Qiao, Y., Chang, C. H. & King, P. D. A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J. immunol. 187, 151–163. https://doi.org/10.4049/jimmunol.1100178 (2011).
    Google Scholar 
    Garcia-Beltran, J. M. et al. The susceptibility of shi drum juveniles to betanodavirus increases with rearing densities in a process mediated by neuroactive ligand-receptor interaction. Front. Immunol. 15, 1304603. https://doi.org/10.3389/fimmu.2024.1304603 (2024).
    Google Scholar 
    Khalifeh, D. M., Czegledi, L. & Gulyas, G. Investigating the potential role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in regulating the ubiquitin signaling pathway in poultry. Gen. Comp. Endocrinol. 356, 114577. https://doi.org/10.1016/j.ygcen.2024.114577 (2024).
    Google Scholar 
    de Assis Pinheiro, J. et al. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation. Sci. Rep. 11, 6768. https://doi.org/10.1038/s41598-021-86189-z (2021).
    Google Scholar 
    Fransen, M., Nordgren, M., Wang, B. & Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochem. Biophys. Acta. 1363–1373, 2012. https://doi.org/10.1016/j.bbadis.2011.12.001 (1822).
    Google Scholar 
    Wysocka, M. B., Pietraszek-Gremplewicz, K. & Nowak, D. The role of apelin in cardiovascular diseases, obesity and cancer. Front. Physiol. 9, 557. https://doi.org/10.3389/fphys.2018.00557 (2018).
    Google Scholar 
    Akinrotimi, O., Agokei, E. & Aranyo, A. Changes in blood parameters of Tilapia guineensis exposed to different salinity levels. J. Environ. Eng. Technol. 1, 4–12 (2012).
    Google Scholar 
    Baghdadi, H., El-Gharabawy, M., Zaki, M. & El-Greisy, Z. Effect of some environmental and physiological factors on the blood count of Mugil capito during the breeding season. Rapport Comm. Int. Mer Méditerranée 35, 370–371 (1998).
    Google Scholar 
    Bosisio, F., Rezende, K. F. O. & Barbieri, E. Alterations in the hematological parameters of juvenile Nile tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American J. Aquatic Sci. 12, 146–154. https://doi.org/10.5281/zenodo.3531596 (2017).
    Google Scholar 
    Ali, A. et al. Repercussion of salinity on hematological parameters and tissue morphology of gill and kidney at early life of tilapia. Aquaculture Fisheries 9, 256–264. https://doi.org/10.1016/j.aaf.2022.04.006 (2024).
    Google Scholar 
    Mastrodonato, V., Morelli, E. & Vaccari, T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell stress 2, 72–81. https://doi.org/10.15698/cst2018.04.130 (2018).
    Google Scholar 
    Pietrobon, A., Yockell-Lelievre, J., Flood, T. A. & Stanford, W. L. Renal organoid modeling of tuberous sclerosis complex reveals lesion features arise from diverse developmental processes. Cell Rep 40, 111048. https://doi.org/10.1016/j.celrep.2022.111048 (2022).
    Google Scholar 
    Seifikalhor, M. et al. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal. Behav. 14, 1665455. https://doi.org/10.1080/15592324.2019.1665455 (2019).
    Google Scholar 
    Su, H., Ma, D., Zhu, H., Liu, Z. & Gao, F. Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (Oreochromis mossambicus female x O. urolepis hornorum male). BMC Genomics 21, 110. https://doi.org/10.1186/s12864-020-6512-5 (2020).
    Google Scholar 
    van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. U.S.A. 97, 7102–7106. https://doi.org/10.1073/pnas.97.13.7102 (2000).
    Google Scholar 
    Ding, L. et al. Effects of saline-alkaline stress on metabolome, biochemical parameters, and histopathology in the kidney of crucian carp (Carassius auratus). Metabolites https://doi.org/10.3390/metabo13020159 (2023).
    Google Scholar 
    Perenthaler, E. et al. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol. 139, 415–442. https://doi.org/10.1007/s00401-019-02109-6 (2020).
    Google Scholar 
    Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122. https://doi.org/10.1016/j.cell.2007.01.047 (2007).
    Google Scholar 
    Cristofani, R. et al. The role of HSPB8, a component of the chaperone-assisted selective autophagy machinery, in cancer. Cells 10, 335 (2021).
    Google Scholar 
    Chen, L., Wu, M. & Zhou, Y. HSPB8 binding to c-Myc alleviates hypoxia/reoxygenation-induced trophoblast cell dysfunction. Exp. Ther. Med. 27, 114. https://doi.org/10.3892/etm.2024.12402 (2024).
    Google Scholar 
    Lian, P., Braber, S., Varasteh, S., Wichers, H. J. & Folkerts, G. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Sci. Rep. 11, 13186. https://doi.org/10.1038/s41598-021-92574-5 (2021).
    Google Scholar 
    Saha, N., Koner, D. & Sharma, R. Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes. Aquacul. Fisheries 7, 572–582. https://doi.org/10.1016/j.aaf.2022.02.002 (2022).
    Google Scholar 
    Teitsma, C. et al. Identification of potential sites of cortisol actions on the reproductive axis in rainbow trout. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 119, 243–249. https://doi.org/10.1016/s0742-8413(98)00013-9 (1998).
    Google Scholar 
    Svitačová, K., Slavík, O. & Horký, P. Pigmentation potentially influences fish welfare in aquaculture. Appl. Anim. Behav. Sci. 262, 105903. https://doi.org/10.1016/j.applanim.2023.105903 (2023).
    Google Scholar 
    Awad, S. T. et al. Gender-specific responses in gene expression of Nile tilapia (Oreochromis niloticus) to heavy metal pollution in different aquatic habitats. Sci. Rep. 14, 14671. https://doi.org/10.1038/s41598-024-64300-4 (2024).
    Google Scholar 
    Cano, G. et al. Automatic selection of molecular descriptors using random forest: Application to drug discovery. Expert Syst. Appl. 72, 151–159. https://doi.org/10.1016/j.eswa.2016.12.008 (2017).
    Google Scholar 
    Ignatz, E. H. et al. Application of genomic tools to study and potentially improve the upper thermal tolerance of farmed Atlantic salmon (Salmo salar). BMC Genomics 26, 294. https://doi.org/10.1186/s12864-025-11482-4 (2025).
    Google Scholar 
    Raymo, G. et al. Fecal microbiome analysis uncovers hidden stress effects of low stocking density on rainbow trout. Anim. Microbiome 6, 57. https://doi.org/10.1186/s42523-024-00344-1 (2024).
    Google Scholar 
    Pihlajaniemi, T., Myllyla, R. & Kivirikko, K. I. Prolyl 4-hydroxylase and its role in collagen synthesis. J. Hepatol. 13(Suppl 3), S2-7. https://doi.org/10.1016/0168-8278(91)90002-s (1991).
    Google Scholar 
    Mendoza-Porras, O., Rusu, A. G., Stratford, C. & Wade, N. M. Rapid detection of heat stress biomarkers in Atlantic salmon (Salmo salar) liver using targeted proteomics, Aquaculture. Fish Fisheries 4, e147. https://doi.org/10.1002/aff2.147 (2023).
    Google Scholar 
    Akbarzadeh, A. et al. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 19, 749. https://doi.org/10.1186/s12864-018-5108-9 (2018).
    Google Scholar 
    Rebl, A. et al. The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (Oncorhynchus mykiss). Sci. Rep. 10, 14913. https://doi.org/10.1038/s41598-020-71852-8 (2020).
    Google Scholar 
    Ito, S. & Nagata, K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 62, 142–151. https://doi.org/10.1016/j.semcdb.2016.11.005 (2017).
    Google Scholar 
    Lin, F. et al. Effects of temperature on muscle growth and collagen deposition in zebrafish (Danio rerio). Aquacul. Rep. 22, 100952. https://doi.org/10.1016/j.aqrep.2021.100952 (2022).
    Google Scholar 
    Ma, F. & Luo, L. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress. PeerJ 8, e10022. https://doi.org/10.7717/peerj.10022 (2020).
    Google Scholar 
    Yin, P. et al. Environmentally driven changes in Atlantic salmon oxidative status interact with physiological performance. Aquaculture 581, 740400. https://doi.org/10.1016/j.aquaculture.2023.740400 (2024).
    Google Scholar 
    Waraniak, J., Batchelor, S., Wagner, T. & Keagy, J. Landscape transcriptomic analysis detects thermal stress responses and potential adaptive variation in wild brook trout (Salvelinus fontinalis) during successive heatwaves. Sci. Total Environ. 969, 178960. https://doi.org/10.1016/j.scitotenv.2025.178960 (2025).
    Google Scholar 
    Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111. https://doi.org/10.1007/s12192-008-0068-7 (2009).
    Google Scholar 
    Download referencesFundingNothing to report.Author informationAuthors and AffiliationsDepartment of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742-231, USAAli Ali, Youssef Ali, Guglielmo Raymo & Mohamed SalemCollege of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742-231, USAAsutosh DaleiAuthorsAli AliView author publicationsSearch author on:PubMed Google ScholarYoussef AliView author publicationsSearch author on:PubMed Google ScholarGuglielmo RaymoView author publicationsSearch author on:PubMed Google ScholarAsutosh DaleiView author publicationsSearch author on:PubMed Google ScholarMohamed SalemView author publicationsSearch author on:PubMed Google ScholarContributionsY.A., A.A., and M.S. Conceived the study. Y.A., A.A., G.R., A.D. and M.S. analyzed the data. Y.A. Drafted the manuscript. All authors read and approved the final manuscript. Y.A. and A.A. contributed equally.Corresponding authorCorrespondence to
    Mohamed Salem.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationBelow is the link to the electronic supplementary material.Supplementary Material 1Supplementary Material 2Supplementary Material 3Supplementary Material 4Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleAli, A., Ali, Y., Raymo, G. et al. Molecular signatures and machine learning driven stress biomarkers for rainbow trout aquaculture and climate adaptation.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-30120-3Download citationReceived: 04 April 2025Accepted: 21 November 2025Published: 20 December 2025DOI: https://doi.org/10.1038/s41598-025-30120-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsEnvironmental stressorsHeat stressFish welfarePredictive modelingAquaculture stress breeding More

  • in

    Omics exploration of deep-sea biodiversity: data from the “Pourquoi Pas les Abysses?” and eDNAbyss projects

    AbstractThe deep-sea floor encompasses more than half of the surface of our planet, yet the extent and distribution of deep-sea biodiversity and its contribution to large biogeochemical cycles remain poorly understood. This knowledge gap stems from several factors, including sampling issues, the magnitude of the work required for morphological inventories, and the difficulty of integrating results from disparate local studies. The application of meta-omics to environmental DNA now makes it possible to assemble interoperable datasets at different spatial scales to move towards a global assessment of deep-sea biodiversity. We present a large-scale dataset on deep-sea biodiversity, with data and metadata openly accessible at ENA and Zenodo. The resource was generated using standardized protocols developed according to FAIR principles, covering fieldwork through bioinformatic analysis, within “Pourquoi Pas les Abysses?” and eDNAbyss projects. Together with information ensuring reproducibility, this dataset —combining metagenomics, metabarcoding across the Tree of Life and capture-by-hybridization— contributes to the international concerted effort to achieve a holistic view of the biodiversity in the largest biome on Earth.

    Similar content being viewed by others

    North Atlantic deep-sea benthic biodiversity unveiled through sponge natural sampler DNA

    Article
    Open access
    19 August 2024

    Seasonal microbial dynamics in the ocean inferred from assembled and unassembled data: a view on the unknown biosphere

    Article
    Open access
    21 September 2022

    Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation

    Article
    Open access
    07 July 2023

    Data availability

    The global dataset has been deposited in European Nucleotide Archive (ENA) as project PRJEB 39225 (https://www.ebi.ac.uk/ena/browser/view/PRJEB39225), with metadata available on Zenodo (https://zenodo.org/records/6815677).
    Code availability

    1. Time Analysis software: https://www.illumina.com/search.html?filter=support&q=RTA%20download&p=1.
    2. Bcl2fastq Conversion: https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html
    3. Cutadapt, https://github.com/marcelm/cutadapt/releases/tag/v1.18
    4. Fastx_clean software, http://www.genoscope.cns.fr/fastxtend
    5. FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/index.html
    6. SortMeRNA v2.1, https://github.com/biocore/sortmerna
    7. fastx_estimate_duplicate software, http://www.genoscope.cns.fr/fastxtend
    8. fastx_mergepairs software, http://www.genoscope.cns.fr/fastxtend
    9. Usearch, https://www.drive5.com/usearch/
    10. Trimmomatic: https://github.com/usadellab/Trimmomatic
    11. Decontam: https://github.com/benjjneb/decontam
    12. Prinseq: https://github.com/uwb-linux/prinseq
    13. Qiime2 feature classifier: https://github.com/qiime2/q2-feature-classifier
    14. FastQC: https://github.com/s-andrews/FastQC
    15. BBTools: https://github.com/kbaseapps/BBTools
    16. MultiQC: https://github.com/MultiQC/MultiQC
    17. MetaRib: https://github.com/yxxue/MetaRib
    18. EMIRGE: https://github.com/csmiller/EMIRGE
    19. VSearch: https://github.com/torognes/vsearch
    20. 1IDBA_UD: https://github.com/1928d/idba_ud
    21. CAP3: https://faculty.sites.iastate.edu/xqhuang/cap3-and-pcap-sequence-and-genome-assemblyprograms
    22. eDNAbyss pipeline: https://gitlab.ifremer.fr/abyss-project/
    23. MUMU algorithm: https://github.com/frederic-mahe/mumu
    24. bbmap: https://sourceforge.net/projects/bbmap/
    26. RiboTaxa: https://github.com/oschakoory/RiboTaxa
    27. eDNAbyss pipeline(s): https://gitlab.ifremer.fr/abyss-project/),
    ReferencesRamirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
    Google Scholar 
    Levin, L. A. et al. Deep-sea impacts of climate interventions. Science 379, 978–981 (2023).
    Google Scholar 
    Paulus, E. Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front. Mar. Sci. 8, 667048 (2021).
    Google Scholar 
    Sanders, H. L., Hessler, R. R. & Hampson, G. R. An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep Sea Res. Oceanogr. Abstr. 12, 845–848 (1965).
    Google Scholar 
    Hessler, R. R. & Sanders, H. L. Faunal diversity in the deep-sea. Deep Sea Res. Oceanogr. Abstr. 14, 65–70 (1967).
    Google Scholar 
    Grassle, J. F. & Maciolek, N. J. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139, 313–341 (1992).
    Google Scholar 
    WoRMS Editorial Board. World register of marine species. https://www.marinespecies.org (2025).WoRDSS Editorial Board. World register of deep-sea species. https://www.deepseaspecies.org (2025).Gage, J. D. & May, R. M. A dip into the deep seas. Nature 365, 609–610 (1993).
    Google Scholar 
    Levin, L. A. et al. Environmental influences on regional deep-sea species diversity. Annu. Rev. Ecol. Syst. 32, 51–53 (2001).
    Google Scholar 
    Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS One 6, e22588 (2011).
    Google Scholar 
    Bell, K. L. C., Johannes, K. N., Kennedy, B. R. C. & Poulton, S. E. How little we’ve seen: a visual coverage estimate of the deep seafloor. Sci. Adv. 11, eadp8602 (2025).
    Google Scholar 
    Mejía-Saenz, A., Simon-Lledó, E., Partridge, L. S., Xavier, J. R. & Jones, D. O. B. Rock outcrops enhance abyssal benthic biodiversity. Deep Sea Res. I Oceanogr. Res. Pap. 195, 103999 (2023).
    Google Scholar 
    Simon-Lledó, E. et al. Carbonate compensation depth drives abyssal biogeography in the Northeast Pacific. Nat. Ecol. Evol. 7, 1388–1397 (2023).
    Google Scholar 
    Smith, C. R., Clark, M. R., Goetze, E., Glover, A. G. & Howell, K. L. Editorial: biodiversity, connectivity and ecosystem function across the clarion-clipperton zone: a regional synthesis for an area targeted for nodule mining. Front. Mar. Sci. 8, 797516 (2021).
    Google Scholar 
    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).
    Google Scholar 
    Snelgrove, P. et al. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583 (1997).
    Google Scholar 
    McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges in the deep sea. Proc. R. Soc. B Biol. Sci. 277, 3533–3546 (2010).
    Google Scholar 
    Valentine, J. W. & Jablonski, D. A twofold role for global energy gradients in marine biodiversity trends. J. Biogeogr. 42, 997–1005 (2015).
    Google Scholar 
    Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).
    Google Scholar 
    Rex, M. A. & Etter, R. J. Deep-Sea Biodiversity: Pattern and Scale (Harvard Univ. Press, 2010).Gauthier, O., Sarrazin, J. & Desbruyères, D. Measure and mis-measure of species diversity in deep-sea chemosynthetic communities. Mar. Ecol. Prog. Ser. 402, 285–302 (2010).
    Google Scholar 
    Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 11559 (2019).
    Google Scholar 
    Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).
    Google Scholar 
    Laroche, O., Kersten, O., Smith, C. R. & Goetze, E. Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the Western Clarion Clipperton zone. Mol. Ecol. Resour. 29, 4588–4604 (2020).
    Google Scholar 
    Sinniger, F. et al. Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Front. Mar. Sci. 3, 92 (2016).
    Google Scholar 
    Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. 9, e1001177 (2011).
    Google Scholar 
    De Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
    Google Scholar 
    Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
    Google Scholar 
    Salazar, G. et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 10, 596–608 (2016).
    Google Scholar 
    Brandt, M. I. et al. Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA. Sci. Rep. 11, 7856 (2021).
    Google Scholar 
    Brandt, M. I. et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front. Mar. Sci. 7, 234 (2020).
    Google Scholar 
    Gunther, B. et al. Capture by hybridization for full-length barcode-based eukaryotic and prokaryotic biodiversity inventories of deep sea ecosystems. Mol. Ecol. Resour. 22, 623–637 (2021).
    Google Scholar 
    Brandt, M. I. et al. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 21, 1904–1921 (2021).
    Google Scholar 
    Cordier, T. et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 8, eabj9309 (2022).
    Google Scholar 
    ENA European Nucleotide Archive. Project: PRJEB39225. https://identifiers.org/ena.embl:PRJEB39225 (2025).Bett, B. J. et al. Sampler bias in the quantitative study of deep-sea meiobenthos. Mar. Ecol. Prog. Ser. 104, 197–203 (1994).
    Google Scholar 
    Schauberger, C. et al. Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. ISME J. 15, 3455–3467 (2021).
    Google Scholar 
    Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl. Acad. Sci. USA. 118, e2104529118 (2021).
    Google Scholar 
    Armbrecht, L. H. et al. Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation. Earth Sci. Rev. 196, 102887 (2019).
    Google Scholar 
    Lejzerowicz, F. et al. Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol. Lett. 9, 20130283 (2013).
    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).
    Google Scholar 
    Trouche, B. et al. Distribution and genomic variation of ammonia-oxidizing archaea in abyssal and hadal surface sediments. ISME Commun. 3, 133 (2023).
    Google Scholar 
    Schauberger, C. et al. Metagenome-assembled genomes of deep-sea sediments: changes in microbial functional potential lag behind redox transitions. ISME Commun. 4, ycad005 (2024).
    Google Scholar 
    Cosson, N., Sibuet, M. & Galeron, J. Community structure and spatial heterogeneity of the deep-sea macrofauna at three contrasting stations in the tropical Northeast Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 44, 247–269 (1997).
    Google Scholar 
    Vincx, M. et al. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) 1–88 (Academic Press, 1994).Lins, L. et al. Toward a reliable assessment of potential ecological impacts of deep-sea polymetallic nodule mining on abyssal infauna. Limnol. Oceanogr. Methods 19, 626–650 (2021).
    Google Scholar 
    Soto, E. H. et al. Temporal variability in polychaete assemblages of the abyssal NE Atlantic Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 57, 1396–1405 (2010).
    Google Scholar 
    Nomaki, H. et al. Abyssal fauna, benthic microbes, and organic matter quality across a range of trophic conditions in the Western Pacific ocean. Prog. Oceanogr. 195, 102591 (2021).
    Google Scholar 
    Good, E. et al. Detection of community-wide impacts of bottom trawl fishing on deep-sea assemblages using environmental DNA metabarcoding. Mar. Pollut. Bull. 183, 114062 (2022).
    Google Scholar 
    Vanhove, S., Vermeeren, H. & Vanreusel, A. Meiofauna towards the South Sandwich Trench (750–6300m), focus on nematodes. Deep Sea Res. II Top. Stud. Oceanogr. 51, 1665–1687 (2004).
    Google Scholar 
    Narayanaswamy, B. et al. in Biological Sampling in the Deep-Sea (eds. Clark, M. R., Consalvey, M. & Rowden, A. A.) 207–227 (Blackwell Publishing, 2016).Sarrazin, J. & Bignon, L. A new tool to sample hard substratum faunal communities in the deep sea.Cowart, D. A., Matabos, M., Brandt, M. I., Marticorena, J. & Sarrazin, J. Exploring environmental DNA (eDNA) to assess biodiversity of hard substratum faunal communities on the lucky strike vent field (Mid-Atlantic ridge) and investigate recolonization dynamics after an induced disturbance. Front. Mar. Sci. 6, 783 (2020).
    Google Scholar 
    Roussel, E. G. et al. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol. Ecol. 77, 647–665 (2011).
    Google Scholar 
    Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Google Scholar 
    Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50, 10456–10464 (2016).
    Google Scholar 
    Andruszkiewicz, E. A., Sassoubre, L. M. & Boehm, A. B. Persistence of marine fish environmental DNA and the influence of sunlight. PLoS One 12, e0185043 (2017).
    Google Scholar 
    Wei, N., Nakajima, F. & Tobino, T. A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. Environ. Sci. Technol. 52, 12428–12435 (2018).
    Google Scholar 
    Mauvisseau, Q. et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ. Sci. Technol. 56, 5322–5333 (2022).
    Google Scholar 
    Corinaldesi, C., Barucca, M., Luna, G. M. & Dell’Anno, A. Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Mol. Ecol. 20, 642–654 (2011).
    Google Scholar 
    Armbrecht, L. et al. An optimized method for the extraction of ancient eukaryote DNA from marine sediments. Mol. Ecol. Resour. 20, 906–919 (2020).
    Google Scholar 
    Siano, R. et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 31, 2682–2689.e7 (2021).
    Google Scholar 
    Kirkpatrick, J. B., Walsh, E. A. & D’Hondt, S. Fossil DNA persistence and decay in marine sediment over hundred-thousand-year to million-year time scales. Geology 44, 615–618 (2016).
    Google Scholar 
    Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. mBio 9, e00637–18 (2018).
    Google Scholar 
    Armbrecht, L. et al. Ancient marine sediment DNA reveals diatom transition in Antarctica. Nat. Commun. 13, 5787 (2022).
    Google Scholar 
    Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8, e56335 (2013).
    Google Scholar 
    Cristescu, M. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).
    Google Scholar 
    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 1–20 (2017).
    Google Scholar 
    Belser, C. et al. Integrative omics framework for characterization of coral reef ecosystems from the Tara Pacific expedition. Sci. Data 10, 326 (2023).
    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
    Google Scholar 
    Stoeck, T. et al. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol. 7, 72 (2009).
    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4, e6372 (2009).
    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
    Google Scholar 
    Topcuoglu, B. D. et al. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front. Microbiol. 7, 1240 (2016).
    Google Scholar 
    Gasc, C., Peyretaillade, E. & Peyret, P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 44, 4504–4518 (2016).
    Google Scholar 
    Parisot, N., Denonfoux, J., Dugat-Bony, E., Peyret, P. & Peyretaillade, E. KASpOD–a web service for highly specific and explorative oligonucleotide design. Bioinformatics 28, 3161–3162 (2012).
    Google Scholar 
    Marre, S. et al. Revealing microbial species diversity using sequence capture by hybridization. Microb. Genom. 7, 000714 (2021).
    Google Scholar 
    Comtet-Marre, S., Chakoory, O. & Peyret, P. Targeted 16S rRNA gene capture by hybridization and bioinformatic analysis. Methods Mol. Biol. 2605, 187–208 (2023).
    Google Scholar 
    Ribiere, C. et al. Targeted gene capture by hybridization to illuminate ecosystem functioning. Methods Mol. Biol. 1399, 167–182 (2016).
    Google Scholar 
    Jaziri, F. et al. PhylOPDb: a 16S rRNA oligonucleotide probe database for prokaryotic identification. Database (Oxford) 2014, bau036 (2014).
    Google Scholar 
    Militon, C. et al. PhylArray: phylogenetic probe design algorithm for microarray. Bioinformatics 23, 2550–2557 (2007).
    Google Scholar 
    Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 170027 (2017).
    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
    Google Scholar 
    Guillou, L. et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    Google Scholar 
    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
    Google Scholar 
    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
    Google Scholar 
    Jacobsen, A. et al. FAIR principles: interpretations and implementation considerations. Data Intell. 2, 10–29 (2020).
    Google Scholar 
    Pesant, S. et al. eDNAbyss samples provenance and environmental context – version 1 (version 1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6815677 (2022).Callahan, B. J. et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    Google Scholar 
    Mahe, F., Rognes, T., Quince, C., De Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).
    Google Scholar 
    Mahé, F. MUMU: post-clustering curation tool for metabarcoding data, version 1.0.2. https://github.com/frederic-mahe/mumu (2023).Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188 (2017).
    Google Scholar 
    Blaxter, M. et al. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. B Biol. Sci. 360, 1935–1943 (2005).
    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
    Google Scholar 
    Antich, A., Palacin, C., Wangensteen, O. S. & Turon, X. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinformatics 22, 177 (2021).
    Google Scholar 
    Harris, J. D. Can you bank on GenBank? Trends Ecol. Evol. 18, 317–319 (2003).
    Google Scholar 
    Viard, F., Roby, C., Turon, X., Bouchemousse, S. & Bishop, J. Cryptic diversity and database errors challenge non-indigenous species surveys: an illustration with Botrylloides spp. in the english channel and Mediterranean sea. Front. Mar. Sci. 6, 615 (2019).
    Google Scholar 
    Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One 8, e66643 (2013).
    Google Scholar 
    Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).
    Google Scholar 
    Köster, J. & Rahmann, S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).
    Google Scholar 
    Shaiber, A. et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biol. 21, 292 (2020).
    Google Scholar 
    Eren, A. M. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).
    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).
    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).
    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
    Google Scholar 
    Chakoory, O., Comtet-Marre, S. & Peyret, P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. Nar Genom. Bioinform. 4, lqac070 (2022).
    Google Scholar 
    Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
    Google Scholar 
    Xue, Y. X., Lanzén, A. & Jonassen, I. Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data. Bioinformatics 36, 3365–3371 (2020).
    Google Scholar 
    Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12, R44 (2011).
    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    Google Scholar 
    Lu, J. N. & Salzberg, S. L. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 8, 124 (2020).
    Google Scholar 
    Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
    Google Scholar 
    Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
    Google Scholar 
    Huang, X. Q. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).
    Google Scholar 
    Download referencesAcknowledgementsWe express special gratitude to the scientific direction and scientific committee of the “Pourquoi Pas les Abysses?” project and to the board of the French Oceanographic Fleet for allowing unusual use of boat time (including transits) through the AMIGO series and to the mission chiefs of all the crews who kindly sampled for the project. This work was supported by Ifremer during the development of prototypes and protocols in “Pourquoi Pas les Abysses?” and by Genoscope, the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and France Génomique (ANR-10-INBS-09) for high-throughput sequencing in eDNAbyss (AP2016–228 France Génomique). We also thank the HADES-ERC Advanced grant (#669947) and the EU Atlas project (678760) and benefited from State aid managed by the National Research Agency under France 2030 for the LIFEDEEPER project (ANR-22-POCE-0007) and the ANR Cerberus (ANR-17-CE02-0003) for samples gathered during the associated cruises and the project MarEEE (MUSE, Montpellier, ANR-16-IDEX-0006) for the improvement of the original bioinformatic pipeline. We warmly acknowledge all the crews, mission chiefs and colleagues who contributed gathering this widespread sampling collection: Covadonga Orejas, Martin Ludvigsen and Eva Ramirez-Llodra, Jean-Paul Justiniano, Yves Fouquet and Ewan Pelleter, Ewen Raugel, Wayne Crawford, Cécile Guieu, Sophie Bonnet, Sophie Arnaud-Haond, François Bonhomme, Pierre-Marie Sarradin, Carlos Duarte, Franck Wenzhoefer, Mathilde Cannat, Norbert Franck, Marie-Anne Cambon, Stéphane Hourdez and Didier Jollivet. We would like gratefully acknowledge the entire Genoscope technical team: Julie Batisse, Odette Beluche, Isabelle Bordelais, Elodie Brun, Maria Dubois, Corinne Dumont, Zineb El Hajji, Barbara Estrada, Thomas Guérin, Chadia Hamon, Sandrine Lebled, Patricia Lenoble and Marine Lepretre, Claudine Louesse, Ghislaine Magdelenat, Eric Mahieu, Claire Milani, Sophie Oztas, Emilie Payen, Emmanuelle Petit, Muriel Ronsin and Benoît Vacherie, for their invaluable work in producing the data. We thank the editorial team and the referees for the improvements suggested to previous versions of this manuscript.Author informationAuthor notesBabett GüntherPresent address: GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, GermanyThese authors contributed equally: Julie Poulain, Caroline BelserThe Genoscope technical team members are listed in the Acknowledgements section.Authors and AffiliationsMARBEC, Univ Montpellier, IFREMER, IRD, CNRS, Sète, FranceSophie Arnaud-Haond, Cathy Liautard-Haag, Miriam I. Brandt, Annaëlle Caillarec-Joly, Florence Cornette, Christine Felix, Babett Günther, Adrien Tran Lu Y & Sandrine VazUniv Brest, Ifremer, BEEP, F-29280, Plouzané, FranceBlandine Trouche, Karine Alain, Johanne Aubé, Marie-Anne Cambon, Valérie Cueff-Gauchard, Sandra Fuchs, Françoise Lesongeur, Loïs Maignien, Marjolaine Matabos, Emmanuelle Omnes, Florence Pradillon, Jozée Sarrazin & Daniela ZeppiliISEM, Univ Montpellier, CNRS, IRD, Montpellier, FranceFrançois Bonhomme & Frédérique ViardNORCE, Norwegian Research Centre AS, Climate & Environment department, Bergen, NorwayMiriam I. BrandtIfremer, IRSI, SeBiMER Service de Bioinformatique de l’Ifremer, Plouzané, FrancePatrick DurandSorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144 Adaptation and diversity in the marine environment, Place Georges Teissier, Roscoff, FranceColomban de Vargas, Didier Jollivet & Anne-Sophie Le PortResearch Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, 3 rue Michel-Ange, Paris, 75016, FranceColomban de Vargas & Nicolas HenryCNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, FranceNicolas HenryUMR 8222 LECOB CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Avenue du Fontaulé, 66650, Banyuls-sur-mer, FranceStéphane HourdezUniversité Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, FranceSophie Comtet-Marre & Pierre PeyretHadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, DenmarkClemens SchaubergerInstituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, ChileOsvaldo UlloaGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, FranceFrédérick Gavory, Jean-Marc Aury, Patrick Wincker, Julie Poulain & Caroline BelserGenoscope, Institut François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, FranceShahinaz Gaz, Julie Guy, E’Krame Jacoby, Pedro H. Oliveira & Gaëlle SamsonEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UKStéphane PesantAuthorsSophie Arnaud-HaondView author publicationsSearch author on:PubMed Google ScholarBlandine TroucheView author publicationsSearch author on:PubMed Google ScholarCathy Liautard-HaagView author publicationsSearch author on:PubMed Google ScholarKarine AlainView author publicationsSearch author on:PubMed Google ScholarJohanne AubéView author publicationsSearch author on:PubMed Google ScholarFrançois BonhommeView author publicationsSearch author on:PubMed Google ScholarMiriam I. BrandtView author publicationsSearch author on:PubMed Google ScholarAnnaëlle Caillarec-JolyView author publicationsSearch author on:PubMed Google ScholarMarie-Anne CambonView author publicationsSearch author on:PubMed Google ScholarFlorence CornetteView author publicationsSearch author on:PubMed Google ScholarValérie Cueff-GauchardView author publicationsSearch author on:PubMed Google ScholarPatrick DurandView author publicationsSearch author on:PubMed Google ScholarColomban de VargasView author publicationsSearch author on:PubMed Google ScholarChristine FelixView author publicationsSearch author on:PubMed Google ScholarSandra FuchsView author publicationsSearch author on:PubMed Google ScholarBabett GüntherView author publicationsSearch author on:PubMed Google ScholarNicolas HenryView author publicationsSearch author on:PubMed Google ScholarStéphane HourdezView author publicationsSearch author on:PubMed Google ScholarDidier JollivetView author publicationsSearch author on:PubMed Google ScholarAnne-Sophie Le PortView author publicationsSearch author on:PubMed Google ScholarFrançoise LesongeurView author publicationsSearch author on:PubMed Google ScholarLoïs MaignienView author publicationsSearch author on:PubMed Google ScholarSophie Comtet-MarreView author publicationsSearch author on:PubMed Google ScholarMarjolaine MatabosView author publicationsSearch author on:PubMed Google ScholarEmmanuelle OmnesView author publicationsSearch author on:PubMed Google ScholarPierre PeyretView author publicationsSearch author on:PubMed Google ScholarFlorence PradillonView author publicationsSearch author on:PubMed Google ScholarJozée SarrazinView author publicationsSearch author on:PubMed Google ScholarClemens SchaubergerView author publicationsSearch author on:PubMed Google ScholarAdrien Tran Lu YView author publicationsSearch author on:PubMed Google ScholarOsvaldo UlloaView author publicationsSearch author on:PubMed Google ScholarSandrine VazView author publicationsSearch author on:PubMed Google ScholarDaniela ZeppiliView author publicationsSearch author on:PubMed Google ScholarFrédérique ViardView author publicationsSearch author on:PubMed Google ScholarFrédérick GavoryView author publicationsSearch author on:PubMed Google ScholarShahinaz GazView author publicationsSearch author on:PubMed Google ScholarJulie GuyView author publicationsSearch author on:PubMed Google ScholarE’Krame JacobyView author publicationsSearch author on:PubMed Google ScholarPedro H. OliveiraView author publicationsSearch author on:PubMed Google ScholarGaëlle SamsonView author publicationsSearch author on:PubMed Google ScholarJean-Marc AuryView author publicationsSearch author on:PubMed Google ScholarPatrick WinckerView author publicationsSearch author on:PubMed Google ScholarStéphane PesantView author publicationsSearch author on:PubMed Google ScholarJulie PoulainView author publicationsSearch author on:PubMed Google ScholarCaroline BelserView author publicationsSearch author on:PubMed Google ScholarConsortiaGenoscope Technical TeamContributionsS.A.H., C.B., J.P., S.C.M. and F.P. wrote the manuscript with the help of F.V., S.H. and M.M. All coauthors reviewed the manuscript. S.A.H., F.P., J.S., C.dV., J.P. and P.W. conceptualized the project. S.A.H. and P.W. obtained funding and administrated the project. B.T., C.L.H., J.A., M.I.B., M.C., S.F., V.C.G., D.J., A.S.L., F.P., J.S., P.M.S., C.S., M.C., A.T.L., S.V., F.B., D.Z., O.U. and J.P., as well as all mission chiefs, contributed to the collection of the environmental samples. B.T., C.L.H., K.A., J.A., M.I.B., F.C., V.C.G., B.G., C.F., S.F., F.L., E.O., G.T.T. and S.A.H. performed the DNA extractions. J.P., C.B., M.I.B. and C.L.H. developed the amplicon sequencing protocol, and S.C.M. and P.P. developed the C.B.H. protocol. J.P., K.L., F.G., P.H.O. and all the Genoscope technical teams were involved in the library preparations and sequencing tasks for metagenomics and metabarcoding, and data curation, S.C.M. and PP for the libraries and sequencing for C.B.H. C.B. and J.M.A. developed Data validation and visualization softwares. S.A.H., B.T., M.V., J.M.A., J.P. and C.B. contributed to Validation. M.I.B., A.C.J., B.G., B.T., L.M., P.D., S.A.H., N.H., K.A., F.V., S.C.M. and P.P. developed the bioinformatics pipelines and/or performed the data analysis. S.P., C.B., S.A.H. and S.V. provided the metadata and data. C.B.H., S.G., J.G., G.S., E.K.J., S.P., S.C.M. and P.D. managed the data to be transmitted to a public repository.Corresponding authorsCorrespondence to
    Sophie Arnaud-Haond or Julie Poulain.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary informationRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleArnaud-Haond, S., Trouche, B., Liautard-Haag, C. et al. Omics exploration of deep-sea biodiversity: data from the “Pourquoi Pas les Abysses?” and eDNAbyss projects.
    Sci Data (2025). https://doi.org/10.1038/s41597-025-06009-1Download citationReceived: 17 May 2024Accepted: 22 September 2025Published: 20 December 2025DOI: https://doi.org/10.1038/s41597-025-06009-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    A taxonomically harmonized global dataset of wild bird hosts for avian influenza virus surveillance

    AbstractWild birds are key natural reservoirs and play a central role in the global spread of avian influenza viruses (AIVs). However, the absence of a standardized global list of wild bird hosts has limited comprehensive AIV risk monitoring and assessment within the One Health framework. Here, we generate a taxonomically harmonized dataset of AIV wild bird hosts, derived from 23,358 viral isolates of wild bird origin reported in the GISAID EpiFluTM database from 1973 to 2023. Host names were systematically extracted, validated, and harmonized to resolve reporting inconsistencies and unify taxonomy across records. The dataset comprises 394 wild bird species spanning 26 orders, with Anseriformes and Charadriiformes representing a substantial share of host diversity. By clarifying the global spectrum of wild bird hosts for AIVs, this dataset provides a foundation for host identification, phylogenetic annotation, and ecological trait-based analysis. Structured in machine-readable formats, it enables reproducible and large-scale, species-level studies spanning virology, epidemiology, and biodiversity.

    Data availability

    The dataset associated with this study is publicly avaiable on Zenodo: https://zenodo.org/records/15970977. All data are provided in CSV format. Further details regarding the dataset structure and variable descriptions are avaiable in the Data Records section.
    Code availability

    The code for the study can be accessed at https://github.com/gogofxd/InfluenzaWildBirdHost.
    ReferencesStallknecht, D. E. & Shane, S. M. Host range of avian influenza virus in free-living birds. Vet. Res. Commun. 12, 125–141, https://doi.org/10.1007/BF00362792 (1988).
    Google Scholar 
    Long, J. S., Mistry, B., Haslam, S. M. & Barclay, W. S. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 17, 67–81, https://doi.org/10.1038/s41579-018-0115-z (2019).
    Google Scholar 
    Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–388, https://doi.org/10.1126/science.1122438 (2006).
    Google Scholar 
    Alexander, D. J. A review of avian influenza in different bird species. Vet Microbiol 74, 3–13, https://doi.org/10.1016/S0378-1135(00)00160-7 (2000).
    Google Scholar 
    Tian, H. et al. Avian influenza H5N1 viral and bird migration networks in Asia. Proc Natl Acad Sci USA 112, 172–177, https://doi.org/10.1073/pnas.1405216112 (2015).
    Google Scholar 
    The Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217, https://doi.org/10.1126/science.aaf8852 (2016).
    Google Scholar 
    Lycett, S. J. et al. Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc Natl Acad Sci USA 117, 20814–20825, https://doi.org/10.1073/pnas.2001813117 (2020).
    Google Scholar 
    Xie, R. et al. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 622, 810–817, https://doi.org/10.1038/s41586-023-06631-2 (2023).
    Google Scholar 
    Zeng, J. et al. Spatiotemporal genotype replacement of H5N8 avian influenza viruses contributed to H5N1 emergence in 2021/2022 panzootic. J. Virol. 98, e0140123, https://doi.org/10.1128/jvi.01401-23 (2024).
    Google Scholar 
    Yang, Q. et al. Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders. Nat Commun 15, 1126, https://doi.org/10.1038/s41467-024-45462-1 (2024).
    Google Scholar 
    Duan, L. et al. Characterization of low-pathogenic H5 subtype influenza viruses from eurasia: implications for the origin of highly pathogenic H5N1 viruses. J. Virol. 81, 7529–7539, https://doi.org/10.1128/jvi.00327-07 (2007).
    Google Scholar 
    Hill, N. J. et al. Crossroads of highly pathogenic H5N1: overlap between wild and domestic birds in the black sea-mediterranean impacts global transmission. Virus Evol. 7, veaa093, https://doi.org/10.1093/ve/veaa093 (2020).
    Google Scholar 
    Lee, D.-H. et al. Intercontinental spread of asian-origin H5N8 to North America through beringia by migratory birds. J. Virol. 89, 6521–6524, https://doi.org/10.1128/JVI.00728-15 (2015).
    Google Scholar 
    Leguia, M. et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun 14, 5489, https://doi.org/10.1038/s41467-023-41182-0 (2023).
    Google Scholar 
    Graziosi, G., Lupini, C., Catelli, E. & Carnaccini, S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 14, 1372, https://doi.org/10.3390/ani14091372 (2024).
    Google Scholar 
    Burrough, E. R. et al. Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus infection in domestic dairy cattle and cats, United States, 2024. Emerging Infectious Diseases 30, 1335–1343, https://doi.org/10.3201/eid3007.240508 (2024).
    Google Scholar 
    Nguyen, T.-Q. et al. Emergence and interstate spread of highly pathogenic avian influenza A(H5N1) in dairy cattle in the United States. Science 388, eadq0900, https://doi.org/10.1126/science.adq0900 (2025).
    Google Scholar 
    Ford, C. T. et al. Large-scale computational modelling of H5 influenza variants against HA1-neutralising antibodies. Ebiomedicine 114, 105632, https://doi.org/10.1016/j.ebiom.2025.105632 (2025).
    Google Scholar 
    Falchieri, M. et al. Shift in HPAI infection dynamics causes significant losses in seabird populations across great britain. Vet Rec 191, 294–296, https://doi.org/10.1002/vetr.2311 (2022).
    Google Scholar 
    Kareinen, L. et al. Highly pathogenic avian influenza a(H5N1) virus infections on fur farms connected to mass mortalities of black-headed gulls, finland, july to October 2023. Euro Surveill 29, 2400063, https://doi.org/10.2807/1560-7917.ES.2024.29.25.2400063 (2024).
    Google Scholar 
    Hill, N. J. et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog 18, e1010062, https://doi.org/10.1371/journal.ppat.1010062 (2022).
    Google Scholar 
    Hoye, B. J., Munster, V. J., Nishiura, H., Klaassen, M. & Fouchier, R. A. M. Surveillance of wild birds for avian influenza virus. Emerg. Infect. Dis. 16, 1827–1834, https://doi.org/10.3201/eid1612.100589 (2010).
    Google Scholar 
    Teitelbaum, C. S. et al. North American wintering mallards infected with highly pathogenic avian influenza show few signs of altered local or migratory movements. Sci Rep 13, 14473, https://doi.org/10.1038/s41598-023-40921-z (2023).
    Google Scholar 
    Spackman, E., Pantin-Jackwood, M. J., Lee, S. A. & Prosser, D. The pathogenesis of a 2022 North American highly pathogenic clade 2.3.4.4b H5N1 avian influenza virus in mallards (Anas platyrhynchos). Avian Pathol 52, 219–228, https://doi.org/10.1080/03079457.2023.2196258 (2023).
    Google Scholar 
    Hall, J. S. et al. Avian influenza in shorebirds: experimental infection of ruddy turnstones (arenaria interpres) with avian influenza virus. Influenza Other Respir Viruses 7, 85–92, https://doi.org/10.1111/j.1750-2659.2012.00358.x (2013).
    Google Scholar 
    Khare, S. et al. GISAID’s role in pandemic response. China CDC Weekly 3, 1049–1051, https://doi.org/10.46234/ccdcw2021.255 (2021).
    Google Scholar 
    World Health Organization. A revision of the system of nomenclature for influenza viruses: a WHO memorandum. Bull World Health Organ 58, 585–591, https://www.ncbi.nlm.nih.gov/pubmed/6969132 (1980).
    Google Scholar 
    Hayati, M., Sobkowiak, B., Stockdale, J. E. & Colijn, C. Phylogenetic identification of influenza virus candidates for seasonal vaccines. Sci. Adv. 9(44), eabp9185, https://doi.org/10.1126/sciadv.abp9185 (2023).
    Google Scholar 
    Caserta, L. C. et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 634, 669–676, https://doi.org/10.1038/s41586-024-07849-4 (2024).
    Google Scholar 
    Shah, S. A. W. et al. Seasonal antigenic prediction of influenza a H3N2 using machine learning. Nat. Commun. 15, 3833, https://doi.org/10.1038/s41467-024-47862-9 (2024).
    Google Scholar 
    Good, M. R. et al. A single mutation in dairy cow-associated H5N1 viruses increases receptor binding breadth. Nat. Commun. 15, 10768, https://doi.org/10.1038/s41467-024-54934-3 (2024).
    Google Scholar 
    Li, Y.-T. et al. From emergence to endemicity of highly pathogenic H5 avian influenza viruses in taiwan. Nat. Commun. 15, 9348, https://doi.org/10.1038/s41467-024-53816-y (2024).
    Google Scholar 
    AviList Core Team. AviList: The Global Avian Checklist, v2025. https://doi.org/10.2173/avilist.v2025 (2025).Du, F. et al. A taxonomically harmonized global dataset of wild bird hosts for avian influenza virus surveillance. Zenodo https://doi.org/10.5281/zenodo.15970977 (2025).Gao, R. et al. Human infection with a novel avian-origin influenza a (H7N9) virus. N. Engl. J. Med. 368, 1888–1897, https://doi.org/10.1056/NEJMoa1304459 (2013).
    Google Scholar 
    Butler, D. Swine flu goes global. Nature 458, 1082–1083, https://doi.org/10.1038/4581082a (2009).
    Google Scholar 
    Download referencesAcknowledgementsThis work was supported by the National Key Research and Development Program of China (grant number: 2022YFF0802400) and the National Natural Science Foundation of China (grant number: 81961128002). We gratefully acknowledge all the data contributors, i.e., the authors and their originating laboratories responsible for obtaining the specimens and their submitting laboratories for generating the genetic sequences and metadata and sharing via the GISAID Initiative, on which this research is based. We acknowledge all the members of the AviList Core Team for collecting and providing the bird data. We also acknowledge Yue Wu for help with the bird taxonomic assignment.Author informationAuthor notesThese authors contributed equally: Fanshu Du, Qiang Zhang.Authors and AffiliationsNational Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. ChinaFanshu Du, Lu Wang, Honglei Sun, Yipeng Sun, Jinhua Liu & Juan PuInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P. R. ChinaQiang Zhang & Zhichao LiUniversity of Chinese Academy of Sciences, Beijing, 100101, P. R. ChinaQiang Zhang & Zhichao LiThird Institute of Oceanography, Ministry of Natural Resources, PRC, Daxue Road No. 178, Siming District, Xiamen, Fujian, 361005, P. R. ChinaYachang ChengState Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, P. R. ChinaYang LiuKey Laboratory for Biodiversity Science and Ecological Engineering, Demonstration Center for Experimental Life Sciences & Biotechnology Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, P. R. ChinaWeipan LeiAuthorsFanshu DuView author publicationsSearch author on:PubMed Google ScholarQiang ZhangView author publicationsSearch author on:PubMed Google ScholarYachang ChengView author publicationsSearch author on:PubMed Google ScholarYang LiuView author publicationsSearch author on:PubMed Google ScholarWeipan LeiView author publicationsSearch author on:PubMed Google ScholarLu WangView author publicationsSearch author on:PubMed Google ScholarHonglei SunView author publicationsSearch author on:PubMed Google ScholarYipeng SunView author publicationsSearch author on:PubMed Google ScholarJinhua LiuView author publicationsSearch author on:PubMed Google ScholarZhichao LiView author publicationsSearch author on:PubMed Google ScholarJuan PuView author publicationsSearch author on:PubMed Google ScholarContributionsF.D. and Q.Z. jointly conceived and designed the study. F.D. led the data extraction, performed the core analyses, interpreted the results, and drafted the initial manuscript. Q.Z. independently conducted a parallel round of host classification and contributed to the methodological design and critical revision of the manuscript. Y.C., Y.L., and W.L. participated in species-level data validation and cross-verification of host taxonomy. L.W. contributed to background research and assisted in data integration. Z.L. and J.P. supervised the overall research process, provided guidance on result interpretation, and revised the manuscript for important intellectual content. All the authors reviewed and approved the final version of the manuscript.Corresponding authorsCorrespondence to
    Zhichao Li or Juan Pu.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleDu, F., Zhang, Q., Cheng, Y. et al. A taxonomically harmonized global dataset of wild bird hosts for avian influenza virus surveillance.
    Sci Data (2025). https://doi.org/10.1038/s41597-025-06451-1Download citationReceived: 21 July 2025Accepted: 09 December 2025Published: 19 December 2025DOI: https://doi.org/10.1038/s41597-025-06451-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    A dataset on worldwide penguin diet

    AbstractStudying the diet of penguins is essential for understanding their role in marine ecosystems, evaluating their responses to environmental changes, and informing conservation strategies. This manuscript presents the ‘Penguin Diet Dataset-v2’, a comprehensive compilation of dietary data for 17 out of 19 currently recorded penguin species, obtained through a systematic review of the scientific literature. Spanning the 1980–2019 period and covering 149 global locations, the dataset includes 2.749 dietary entries with both qualitative and quantitative information on prey types. The dataset is enriched with metadata such as geographic locations, time periods, seasons, and life stages, providing insights into species-specific dietary patterns and ecological trends. Key prey groups include fish from the class Teleostei, crustaceans from the class Malacostraca, and mollusks from the class Cephalopoda. The Adélie Penguin and the Magellanic Penguin are the most extensively studied species. This dataset serves as a valuable resource for advancing research on penguin feeding ecology and addressing gaps in knowledge on understudied species, regions, and time periods.

    Data availability

    The Penguin Diet Dataset-v2, now publicly available on Digital.CSIC (https://doi.org/10.20350/digitalCSIC/17565, URL: http://hdl.handle.net/10261/399953), brings together dietary data for 17 of the 19 known penguin species. Compiled in an accessible.xlsx format, the dataset includes detailed predator–prey interactions, along with essential metadata to support interpretation and reuse. Users will find clearly organized sheets for diet entries, variable definitions, species and prey codes, and geographic coordinates.
    Code availability

    No computational code is associated with this dataset, as all information has been exclusively sourced from available literature.
    ReferencesFrugone, M. J. et al. Taxonomy based on limited genomic markers may underestimate species diversity of rockhopper penguins and threaten their conservation. Diversity and Distributions 27, 2277–2296 (2021).
    Google Scholar 
    Gimeno, M. et al. Climate and human stressors on global penguin hotspots: Current assessments for future conservation. Global Change Biology 30, e17143 (2024).
    Google Scholar 
    Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci Rep 6, 28785 (2016).
    Google Scholar 
    Sánchez, S. et al. Within-colony spatial segregation leads to foraging behaviour variation in a seabird. Mar. Ecol. Prog. Ser. 606, 215–230 (2018).
    Google Scholar 
    Ramírez, F. et al. Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere 5, art38 (2014).
    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Frontiers in Marine Science 7, (2021).Hindell, M. A. et al. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 580, 87–92 (2020).
    Google Scholar 
    Trathan, P. N. et al. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conservation Biology 29, 31–41 (2015).
    Google Scholar 
    Ropert-Coudert, Y. et al. Happy Feet in a Hostile World? The Future of Penguins Depends on Proactive Management of Current and Expected Threats. Front. Mar. Sci. 6, 248 (2019).
    Google Scholar 
    Chiaradia, A., Forero, M. G., Hobson, K. A. & Cullen, J. M. Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey. ICES Journal of Marine Science 67, 1720 (2010).
    Google Scholar 
    Cherel, Y., Hobson, K. A., Guinet, C. & Vanpe, C. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. Journal of Animal Ecology 76, 826–836 (2007).
    Google Scholar 
    Campbell, K. J. et al. Local forage fish abundance influences foraging effort and offspring condition in an endangered marine predator. Journal of Applied Ecology 56, 1751–1760 (2019).
    Google Scholar 
    Carpenter-Kling, T. et al. Gentoo penguins as sentinels of climate change at the sub-Antarctic Prince Edward Archipelago, Southern Ocean. Ecological Indicators 101, 163–172 (2019).
    Google Scholar 
    Ciancio, J. E., Yorio, P., Buratti, C., Colombo, G. Á. & Frere, E. Isotopic niche plasticity in a marine top predator as indicator of a large marine ecosystem food web status. Ecological Indicators 126, 107687 (2021).
    Google Scholar 
    Kowalczyk, N. D., Chiaradia, A., Preston, T. J. & Reina, R. D. Linking dietary shifts and reproductive failure in seabirds: a stable isotope approach. Funct Ecol 28, 755–765 (2014).
    Google Scholar 
    Waluda, C. M., Hill, S. L., Peat, H. J. & Trathan, P. N. Long-term variability in the diet and reproductive performance of penguins at Bird Island, South Georgia. Mar Biol 164, 39 (2017).
    Google Scholar 
    Aparicio-Estalella, C., Buil, H., Gimeno, M., Coll, M. & Ramírez, F. A comprehensive dataset on worldwide penguin diet: Penguin Diet Dataset-v2. http://hdl.handle.net/10261/399953 (2025).Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ n71, https://doi.org/10.1136/bmj.n71 (2021).Tierney, M., Emmerson, L. & Hindell, M. Temporal variation in Adélie penguin diet at Béchervaise Island, east Antarctica and its relationship to reproductive performance. Mar Biol 156, 1633–1645 (2009).
    Google Scholar 
    Bingham, M. The decline of Falkland Islands penguins in the presence of a commercial fishing industry. Rev. chil. hist. nat. 75, (2002).Booth, J. & McQuaid, C. Northern rockhopper penguins prioritise future reproduction over chick provisioning. Mar. Ecol. Prog. Ser. 486, 289–304 (2013).
    Google Scholar 
    Browne, T., Lalas, C., Mattern, T. & Van Heezik, Y. Chick starvation in yellow‐eyed penguins: Evidence for poor diet quality and selective provisioning of chicks from conventional diet analysis and stable isotopes. Austral Ecology 36, 99–108 (2011).
    Google Scholar 
    Castillo, J., Yorio, P. & Gatto, A. Shared dietary niche between sexes in Magellanic Penguins. Austral Ecology 44, 635–647 (2019).
    Google Scholar 
    Cavallo, C. et al. Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Functional Ecology 34, 1626–1639 (2020).
    Google Scholar 
    Cavallo, C. et al. Molecular analysis of predator scats reveals role of salps in temperate inshore food webs. Front. Mar. Sci. 5, 381 (2018).
    Google Scholar 
    Cherel, Y. & Kooyman, G. L. Food of emperor penguins (Aptenodytes forsteri) in the western Ross Sea, Antarctica. Marine Biology 130, 335–344 (1998).
    Google Scholar 
    Cherel, Y., Pütz, K. & Hobson, K. A. Summer diet of king penguins (Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biol 25, 898–906 (2002).
    Google Scholar 
    Cherel, Y., Ridoux, V. & Rodhouse, P. G. Fish and squid in the diet of king penguin chicks, Aptenodytes patagonicus, during winter at sub-antarctic Crozet Islands. Marine Biology 126, 559–570 (1996).
    Google Scholar 
    Chiaradia, A., Costalunga, A. & Kerry, K. The diet of Little Penguins (Eudyptula minor) at Phillip Island, Victoria, in the absence of a major prey—Pilchard (Sardinops sagax). Emu – Austral Ornithology 103, 43–48 (2003).
    Google Scholar 
    Chiaradia, A. et al. Diet segregation between two colonies of little penguins Eudyptula minor in southeast Australia. Austral Ecology 37, 610–619 (2012).
    Google Scholar 
    Corsolini, S., Ademollo, N., Romeo, T., Olmastroni, S. & Focardi, S. Persistent organic pollutants in some species of a Ross Sea pelagic trophic web. Antartic science 15, 95–104 (2003).
    Google Scholar 
    Crawford, R. J. M. et al. Decrease in Numbers of the Eastern Rockhopper Penguin Eudyptes Chrysocome Filholi at Marion Island, 1994/95–2002/03. African Journal of Marine Science 25, 487–498 (2003).
    Google Scholar 
    Crawford, R. J. M. & Dyer, B. M. Responses by four seabird species to a fluctuating availability of Cape Anchovy Engraulis capensis off South Africa. Ibis 137, 329–339 (1995).
    Google Scholar 
    Croxall, J. P., Prince, P. A., Baird, A. & Ward, P. The diet of the Southern rockhopper penguin Eudyptes chrysocome chrysocome at Beauchene Island, Falkland Islands. Journal of Zoology 206, 485–496 (1985).
    Google Scholar 
    Cullen, J. M., Montague, T. L. & Hull, C. Food of Little Penguins Eudyptula minor in Victoria: Comparison of Three Localities between 1985 and 1988. Emu – Austral Ornithology 91, 318–341 (1991).
    Google Scholar 
    Dakwa, F. et al. Long-term variation in the breeding diets of macaroni and eastern rockhopper penguins at Marion Island (1994–2018). African Journal of Marine Science 43, 187–199 (2021).
    Google Scholar 
    De Paula, A. A., Ott, P. H., Tavares, M., Santos, R. A. & Silva-Souza, Â. T. Host–parasite relationship in Magellanic Penguins (Spheniscus magellanicus) during their long northward journey to the Brazilian coast. Polar Biol 43, 1261–1272 (2020).
    Google Scholar 
    Deagle, B. E., Chiaradia, A., McInnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv Genet 11, 2039–2048 (2010).
    Google Scholar 
    Dehnhard, N. et al. Plasticity in foraging behaviour and diet buffers effects of inter-annual environmental differences on chick growth and survival in southern rockhopper penguins Eudyptes chrysocome chrysocome. Polar Biol 39, 1627–1641 (2016).
    Google Scholar 
    Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarctic Science 25, 213–218 (2013).
    Google Scholar 
    Fernandez, S. J., Yorio, P. & Ciancio, J. E. Diet composition of expanding breeding populations of the Magellanic Penguin. Marine Biology Research 15, 84–96 (2019).
    Google Scholar 
    Flemming, S. A. & Van Heezik, Y. Stable isotope analysis as a tool to monitor dietary trends in little penguins Eudyptula minor: Little penguin isotopic mixing models. Austral Ecology 39, 656–667 (2014).
    Google Scholar 
    Da, S., Fonseca, V. S., Petry, M. V. & Jost, A. H. Diet of the Magellanic Penguin on the Coast of Rio Grande do Sul, Brazil. Waterbirds: The International Journal of Waterbird Biology 24, 290 (2001).
    Google Scholar 
    Forero, M. et al. Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar. Ecol. Prog. Ser. 234, 289–299 (2002).
    Google Scholar 
    Fragão, J. et al. Microplastics and other anthropogenic particles in Antarctica: Using penguins as biological samplers. Science of The Total Environment 788, 147698 (2021).
    Google Scholar 
    Fraser, M. M. & Lalas, C. Seasonal variation in the diet of blue penguins (Eudyptula minor) at Oamaru, New Zealand. Notornis 51, 7 (2004).
    Google Scholar 
    Fromant, A., Schumann, N., Dann, P., Cherel, Y. & Arnould, J. P. Y. Trophic niches of a seabird assemblage in Bass Strait, south-eastern Australia. PeerJ 8, e8700 (2020).
    Google Scholar 
    Gales, N. J., Klages, N. T. W., Williams, R. & Woehler, E. J. The diet of the emperor penguin, Aptenodytes forsteri, in Amanda Bay, Princess Elizabeth Land, Antarctica. Antartic science 2, 23–28 (1990).
    Google Scholar 
    Gandini, P. A., Frere, E., Pettovello, A. D. & Cedrola, P. V. Interaction between Magellanic Penguins and Shrimp Fisheries in Patagonia, Argentina. The Condor 101, 783–789 (1999).
    Google Scholar 
    Gauthier-Clerc, M., Le Maho, Y., Clerquin, Y., Bost, C. & Handrich, Y. Seabird reproduction in an unpredictable environment: how King penguins provide their young chicks with food. Mar. Ecol. Prog. Ser. 237, 291–300 (2002).
    Google Scholar 
    Guímaro, H. R. et al. Cephalopods habitat and trophic ecology: historical data using snares penguin as biological sampler. Polar Biol 44, 73–84 (2021).
    Google Scholar 
    Herling, C., Culik, B. M. & Hennicke, J. C. Diet of the Humboldt penguin (Spheniscus humboldti) in northern and southern Chile. Marine Biology 147, 13–25 (2005).
    Google Scholar 
    Hindell, M. A. The diet of the King Penguin Aptenodytes patagonicus at Macquarie Island. Ibis 130, 193–203 (1988).
    Google Scholar 
    Hong, S.-Y. et al. Regional differences in the diets of Adélie and Emperor penguins in the Ross Sea, Antarctica. Animals 11, 2681 (2021).
    Google Scholar 
    Hull, C. L. Comparison of the diets of breeding royal (Eudyptes schlegeli) and rockhopper (Eudyptes chrysocome) penguins on Macquarie Island over three years. Journal of Zoology 247, 507–529 (1999).
    Google Scholar 
    Jafari, V. et al. Spatial and temporal diet variability of Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) Penguin: a multi tissue stable isotope analysis. Polar Biol 44, 1869–1881 (2021).
    Google Scholar 
    Jarman, S. N., Gales, N. J., Tierney, M., Gill, P. C. & Elliott, N. G. A DNA‐based method for identification of krill species and its application to analysing the diet of marine vertebrate predators. Molecular Ecology 11, 2679–2690 (2002).
    Google Scholar 
    Jarman, S. N. et al. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8, e82227 (2013).
    Google Scholar 
    Juáres, M. A. et al. Diet of Adélie penguins (Pygoscelis adeliae) at Stranger Point (25 de Mayo/King George Island, Antarctica) over a 13-year period (2003–2015). Polar Biol 41, 303–311 (2018).
    Google Scholar 
    Juáres, M. A., Santos, M., Mennucci, J. A., Coria, N. R. & Mariano-Jelicich, R. Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar Biol 163, 105 (2016).
    Google Scholar 
    Kent, S., Seddon, J., Robertson, G. & Wienecke, B. Diet of Adelie Penguins Pygoscelis Adeliae at Shirley Island, East Antarctica, January 1992. MO 26, (1998).Kirkwood, R. & Robertson, G. Seasonal change in the foraging ecology of emperor penguins on the Mawson Coast, Antarctica. Mar. Ecol. Prog. Ser. 156, 205–223 (1997).
    Google Scholar 
    Kirkwood, R. & Robertson, G. The foraging ecology of female emperor penguins in winter. Ecological Monographs 67, 155–176 (1997).
    Google Scholar 
    Klages, N. Food and feeding ecology of emperor penguins in the eastern Weddell Sea. Polar Biol 9, 385–390 (1989).
    Google Scholar 
    Klages, N. T., Brooke, M. D. L. & Watkins, B. P. Prey of Northern Rockhopper penguins at Gough Island, South Atlantic Ocean. Ostrich 59, 162–165 (1988).
    Google Scholar 
    Klomp, N. & Wooller, R. Diet of little penguins, Eudyptula minor, from Penguin Island, Western Australia. Mar. Freshwater Res. 39, 633 (1988).
    Google Scholar 
    Kowalczyk, N. D., Chiaradia, A., Preston, T. J. & Reina, R. D. Fine-scale dietary changes between the breeding and non-breeding diet of a resident seabird. R. Soc. open sci. 2, 140291 (2015).
    Google Scholar 
    Laugksch, R. C. & Adams, N. J. Trends in pelagic fish populations of the Saldanha Bay region, southern Benguela upwelling system, 1980–1990: a predator’s perspective. South African Journal of Marine Science 13, 295–307 (1993).
    Google Scholar 
    Ludynia, K., Roux, J.-P., Jones, R., Kemper, J. & Underhill, L. G. Surviving off junk: low-energy prey dominates the diet of African penguins Spheniscus demersus at Mercury Island, Namibia, between 1996 and 2009. African Journal of Marine Science 32, 563–572 (2010).
    Google Scholar 
    Lynnes, A. S., Reid, K. & Croxall, J. P. Diet and reproductive success of Adélie and chinstrap penguins: linking response of predators to prey population dynamics. Polar Biol 27, (2004).Maccapan, D. et al. Effects of sea-ice persistence on the diet of Adélie penguin (Pygoscelis adeliae) chicks and the trophic differences between chicks and adults in the Ross Sea, Antarctica. Biology 12, 708 (2023).
    Google Scholar 
    Marques, F. P., Cardoso, L. G., Haimovici, M. & Bugoni, L. Trophic ecology of Magellanic penguins (Spheniscus magellanicus) during the non-breeding period. Estuarine, Coastal and Shelf Science 210, 109–122 (2018).
    Google Scholar 
    Masello, J. F. et al. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. Mov Ecol 9, 24 (2021).
    Google Scholar 
    Miller, A. K. & Trivelpiece, W. Z. Cycles of Euphausia superba recruitment evident in the diet of Pygoscelid penguins and net trawls in the South Shetland Islands, Antarctica. Polar Biol 30, 1615–1623 (2007).
    Google Scholar 
    Moore, P. J. & Wakelin, M. Diet of the Yellow-eyed Penguin Megadyptes antipodes, South Island, New Zealand, 1991_1993. MO 25, (1997).Murray, D. C. et al. DNA-based faecal dietary analysis: A comparison of qPCR and High Throughput sequencing approaches. PLoS ONE 6, e25776 (2011).
    Google Scholar 
    Negrete, P. et al. Temporal variation in isotopic composition of Pygoscelis penguins at Ardley Island, Antarctic: Are foraging habits impacted by environmental change? Polar Biol 40, 903–916 (2017).
    Google Scholar 
    Panasiuk, A., Wawrzynek-Borejko, J., Musiał, A. & Korczak-Abshire, M. Pygoscelis penguin diets on King George Island, South Shetland Islands, with a special focus on the krill Euphausia superba. Antarctic Science 32, 21–28 (2020).
    Google Scholar 
    Petrovski, N., Sutton, G. J. & Arnould, J. P. Y. Energetic consequences of prey type in little penguins (Eudyptula minor). R. Soc. open sci. 10, 221595 (2023).
    Google Scholar 
    Pickett, E. P. et al. Spatial niche partitioning may promote coexistence of Pygoscelis penguins as climate‐induced sympatry occurs. Ecology and Evolution 8, 9764–9778 (2018).
    Google Scholar 
    Puddicombe, R. A. & Johnstone, G. W. The breeding season diet of Adélie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia 165, 239–253 (1988).
    Google Scholar 
    Pütz, K., Ingham, R., Smith, J. & Croxall, J. Population trends, breeding success and diet composition of gentoo Pygoscelis papua, magellanic Spheniscus magellanicus and rockhopper Eudyptes chrysocome penguins in the Falkland Islands. A review. Polar Biology 24, 793–807 (2001).
    Google Scholar 
    Pütz, K. The post-moult diet of Emperor Penguins (Aptenodytes forsteri) in the eastern Weddell Sea, Antarctica. Polar Biol 15, (1995).Raclot, T., Groscolas, R. & Cherel, Y. Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins, Aptenodytes patagonicus. Marine Biology 132, 523–533 (1998).
    Google Scholar 
    Ramírez, F. et al. Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere 5, 1–21 (2014).
    Google Scholar 
    Raya Rey, A. & Schiavini, A. Inter-annual variation in the diet of female southern rockhopper penguin (Eudyptes chrysocome chrysocome) at Tierra del Fuego. Polar Biol 28, 132–141 (2005).
    Google Scholar 
    Raya Rey, A., Trathan, P. & Schiavini, A. Inter‐annual variation in provisioning behaviour of Southern Rockhopper Penguins Eudyptes chrysocome chrysocome at Staten Island, Argentina. Ibis 149, 826–835 (2007).
    Google Scholar 
    Ridoux, V. The diets and dietary segregation of seabirds at the subantarctic Crozet Islands (part 2). MO 22, (1994).Robinson, S. A. & Hindell, M. A. Foraging ecology of Gentoo Penguins Pygoscelis papua at Macquarie Island during the period of chick care. Ibis 138, 722–731 (1996).
    Google Scholar 
    Rombolá, E. F., Marschoff, E. & Coria, N. Inter-annual variability in Chinstrap penguin diet at South Shetland and South Orkneys Islands. Polar Biol 33, 799–806 (2010).
    Google Scholar 
    Santos, R. A. & Haimovici, M. Trophic relationships of the long-finned squid Loligo sanpaulensis on the southern Brazilian shelf. South African Journal of Marine Science 20, 81–91 (1998).
    Google Scholar 
    Scioscia, G., Raya Rey, A., Saenz Samaniego, R. A., Florentín, O. & Schiavini, A. Intra- and interannual variation in the diet of the Magellanic penguin (Spheniscus magellanicus) at Martillo Island, Beagle Channel. Polar Biol 37, 1421–1433 (2014).
    Google Scholar 
    Scolaro, J. A. et al. Feeding preferences of the Magellanic penguin over its breeding range in Argentina. Waterbirds: The International Journal of Waterbird Biology 22, 104 (1999).
    Google Scholar 
    Sherley, R. et al. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar. Ecol. Prog. Ser. 473, 291–301 (2013).
    Google Scholar 
    Silva, L. A. et al. Diferencias estacionales en la dieta de individuos juveniles del Pingüino Patagónico (Spheniscus magellanicus) reveladas en base al análisis de isótopos estables en uñas. El Hornero 30, 45–54 (2015).
    Google Scholar 
    Silvestro, A. M. & Casaux, R. Diet composition of Adelie penguins Pygoscelis adeliae at Hope/Esperanza Bay during 2014–2019. MO 51, (2023).Sutton, G. J. et al. Fine-scale foraging effort and efficiency of Macaroni penguins is influenced by prey type, patch density and temporal dynamics. Mar Biol 168, 3 (2021).
    Google Scholar 
    Tierney, M., Nichols, P. D., Wheatley, K. E. & Hindell, M. A. Blood fatty acids indicate inter- and intra-annual variation in the diet of Adélie penguins: Comparison with stomach content and stable isotope analysis. Journal of Experimental Marine Biology and Ecology 367, 65–74 (2008).
    Google Scholar 
    Tremblay, Y., Guinard, E. & Cherel, Y. Maximum diving depths of northern rockhopper penguins (Eudyptes chrysocome moseleyi) at Amsterdam Island. Polar Biology 17, 119–122 (1997).
    Google Scholar 
    Van Heezik, Y. Diets of yellow-eyed, Fiordland crested, and little blue penguins breeding sympatrically on Codfish Island, New Zealand. New Zealand Journal of Zoology 17, 543–548 (1990).
    Google Scholar 
    Van Heezik, Y. Seasonal, geographical, and age-related variations in the diet of the yellow-eyed penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201–212 (1990).
    Google Scholar 
    Vanstreels, R. E. T. et al. Seashell and debris ingestion by African penguins. Emu – Austral Ornithology 120, 90–96 (2020).
    Google Scholar 
    Waluda, C., Hill, S., Peat, H. & Trathan, P. Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia. Mar. Ecol. Prog. Ser. 466, 261–274 (2012).
    Google Scholar 
    Wienecke, B. & Robertson, G. Foraging space of emperor penguins Aptenodytes forsteri in Antarctic shelf waters in winter. Mar. Ecol. Prog. Ser. 159, 249–263 (1997).
    Google Scholar 
    Wienecke, B. & Robertson, G. Comparison of foraging strategies of incubating king penguins Aptenodytes patagonicus from Macquarie and Heard islands. Polar Biol 29, 424–438 (2006).
    Google Scholar 
    Yorio, P., González-Zevallos, D., Gatto, A., Biagioni, O. & Castillo, J. Relevance of forage fish in the diet of Magellanic penguins breeding in northern Patagonia, Argentina. Marine Biology Research 13, 603–617 (2017).
    Google Scholar 
    Rioseco, E. A. Dieta del pingüino de Magallanes durante la temporada reproductiva 1992–93 en el Seno Otway, sur de Chile. Revista chilena de Ornitología 24, 15–19 (2018).
    Google Scholar 
    Chamberlain, S., Szoecs, E., Foster, Z. & Arendsee, Z. taxize: Taxonomic Information from Around the Web. 0.10.0 https://doi.org/10.32614/CRAN.package.taxize (2012).
    Google Scholar 
    Download referencesAcknowledgementsWe would like to thank Helena Buil for her invaluable assistance with literature screening and data extraction. We also sincerely thank the Handling Editor and the two anonymous reviewers for their insightful and constructive feedback on the manuscript and accompanying dataset. This work is supported by the Spanish government through the following projects: SOSPEN (Spanish National Plan for Scientific and Technical Research and Innovation, 2021, PID2021-124831OA-I00), SEASentinels (Spanish National Plan for Scientific and Technical Research and Innovation, 2023, CNS2022-135631), and ProOceans (Spanish National Plan for Scientific and Technical Research and Innovation, 2020, PID2020-118097RB-I00). Additionally, this research is part of the Integrated Marine Ecosystem Assessments (iMARES) research group, funded by the Agència de Gestió d’Ajuts Universitaris i de Recerca (Generalitat de Catalunya), Grant No. 2021 SGR 00435. MG was supported by the FPI-SO fellowship (PRE2022-101875). This study is a contribution to the ICM-TEC (Trophic Ecology and Connectivity Scientific-Technical service of the Institut de Ciències del Mar CSIC; https://www.icm.csic.es/en/service/trophic-ecology-and-connectivity).Author informationAuthors and AffiliationsInstitut de Ciències del Mar, Recursos Marins Renovables, Barcelona, SpainFrancisco Ramírez, Claudia Aparicio-Estalella, Míriam Gimeno & Marta CollAuthorsFrancisco RamírezView author publicationsSearch author on:PubMed Google ScholarClaudia Aparicio-EstalellaView author publicationsSearch author on:PubMed Google ScholarMíriam GimenoView author publicationsSearch author on:PubMed Google ScholarMarta CollView author publicationsSearch author on:PubMed Google ScholarContributionsF.R.: conceptualization, methodology, investigation, writing – original draft, supervision, project administration, funding acquisition; C.A.: methodology, investigation, data curation, writing – review & editing; M.G.: visualization, writing review & editing; M.C.: conceptualization, methodology, supervision, writing – review & editing, funding acquisition.Corresponding authorCorrespondence to
    Francisco Ramírez.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleRamírez, F., Aparicio-Estalella, C., Gimeno, M. et al. A dataset on worldwide penguin diet.
    Sci Data (2025). https://doi.org/10.1038/s41597-025-06458-8Download citationReceived: 19 March 2025Accepted: 11 December 2025Published: 19 December 2025DOI: https://doi.org/10.1038/s41597-025-06458-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Physicochemical and typological insights into Aedes albopictus and Aedes aegypti larval habitats in a sub-Saharan African urban gradient setting

    AbstractEnvironmental changes including urbanization significantly influence the spatial distribution and the ecology of mosquito vectors, such as Aedes albopictus and Aedes aegypti, which are responsible of the transmitting of dengue, chikungunya, and Zika arboviruses. While studies often focus on breeding site typology, the physicochemical characteristics of these habitats remain underexplored, especially in sub-Saharan Africa. This study investigates (i) the larval ecology of Ae. albopictus and Ae. aegypti in Franceville, an equatorial forest region undergoing urbanization, south-eastern Gabon, and (ii) emphasizing habitat typology and the physicochemical attributes influencing their proliferation. Field larval surveys were conducted across central, intermediate, and peripheral settings of the town, documenting the diversity of larval habitats and their physical features (nature, substrate material and size) and the mosquito species recovered. Water samples were analysed to determine physicochemical properties including pH, salinity, conductivity, and the presence of organic matter. The results reveal significant physicochemical heterogeneity across settings, with central urban areas more characterised by plastic (12.9%) and rubber (10.7%) breeding sites while peripheral areas were dominated by cement microhabitats (15.7%). Notably, the findings have clarified the ecological niche of these two species (Ae. albopictus and Ae. aegypti), revealing a preference for anthropogenic water bodies composed of rubber, plastic, or cement materials, with small to medium surface areas (< 1,250 cm2) and low to medium salinity levels (< 0.4 ppt). These findings underscore the importance of integrating physicochemical analyses into vector ecology studies to enhance our understanding of vector proliferation in rapidly urbanizing regions. By addressing this knowledge gap, the study provides critical insights to inform public health strategies and urban planning, offering a foundation for targeted vector control interventions.

    Data availability

    All data generated or analysed during this study are included in this published article.
    AbbreviationsPCA:
    Principal component analysis
    GLM:
    Generalized linear model
    ReferencesDjiappi-Tchamen, B. et al. Aedes mosquito distribution along a transect from rural to urban settings in Yaoundé, Cameroon. Insects 12(9), 819 (2021).
    Google Scholar 
    Obame-Nkoghe, J. et al. Urban green spaces and vector-borne disease risk in Africa: The case of an unclean forested park in libreville (Gabon, Central Africa). Int. J. Environ. Res. Public Health 20(10), 5774 (2023).
    Google Scholar 
    Medeiros-Sousa, A. R. et al. Influence of water’s physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of Sao Paulo, Brazil. Acta Trop. 205, 105394 (2020).
    Google Scholar 
    Herath, J. M. K., De Silva, W. P. P., Weeraratne, T. C. & Karunaratne, S. P. Breeding habitat preference of the dengue vector mosquitoes aedes aegypti and aedes albopictus from urban, semiurban, and rural areas in Kurunegala District, Sri Lanka. J. Trop. Med. 2024(1), 4123543 (2024).
    Google Scholar 
    Ngoagouni, C., Kamgang, B., Nakouné, E., Paupy, C. & Kazanji, M. Invasion of Aedes albopictus (Diptera: Culicidae) into central Africa: What consequences for emerging diseases?. Parasit. Vectors. 8, 1–7 (2015).
    Google Scholar 
    Ovono, P. O., Gatarasi, T., Minko, D. O., Koumagoye, D. M. & Kevers, C. Etude de la dynamique des populations d’insectes sur la culture du riz NERICA dans les conditions du Masuku, Sud-Est du Gabon (Franceville). Int. J. Biol. Chem. Sci. 8(1), 218–236 (2014).
    Google Scholar 
    Cockerell, T. D. A. The African mosquitoes: Mosquitoes of the Ethiopian Region III. Culicine adults and pupae. By F. W. Edwards. British Museum, 1941. 499 pp.. Science 96(2502), 537–538 (1942).
    Google Scholar 
    Huang, Y. M. The subgenus Stegomyia of Aedes in the Afrotropical Region with keys to the species (Diptera: Culicidae). Zootaxa 700(1), 1–120 (2004).
    Google Scholar 
    Stewart Ibarra, A. M. et al. A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 4(14), 1135 (2014).
    Google Scholar 
    Pagès, F. et al. Aedes albopictus mosquito: The main vector of the 2007 Chikungunya outbreak in Gabon. PLoS ONE 4(3), e4691 (2009).
    Google Scholar 
    Paupy, C. et al. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis. Larchmt. N. 10(3), 259–266 (2010).
    Google Scholar 
    Delatte, H. et al. Blood-Feeding Behavior of Aedes albopictus, a Vector of Chikungunya on La Réunion. Vector-Borne Zoonotic Dis. 10(3), 249–258 (2010).
    Google Scholar 
    Deerman, H. & Yee, D. A. Competitive interactions with Aedes albopictus alter the nutrient content of Aedes aegypti. Med. Vet. Entomol. 37(4), 715–722 (2023).
    Google Scholar 
    Yang, B. et al. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Negl. Trop Dis. 15(3), e0009063 (2021).
    Google Scholar 
    Multini, L. C. et al. The influence of the pH and salinity of water in breeding sites on the occurrence and community composition of immature mosquitoes in the green belt of the City of São Paulo, Brazil. Insects 12(9), 797 (2021).
    Google Scholar 
    Ouédraogo, W. M. et al. Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City, Burkina Faso. Parasit. Vectors. 15(1), 478 (2022).
    Google Scholar 
    Ruairuen, W., Amnakmanee, K., Primprao, O. & Boonrod, T. Effect of ecological factors and breeding habitat types on Culicine larvae occurrence and abundance in residential areas Southern Thailand. Acta Trop. 234, 106630 (2022).
    Google Scholar 
    Download referencesAcknowledgementsWe would like to thank the institutions that helped us carry out this study, in particular the Interdisciplinary Centre for Medical Research of Franceville (CIRMF) and the Masuku University of Science and Technology (USTM), for the technical support they provided. We would particularly like to thank the Biology Department of the Faculty of Science of the USTM, and the staff of the Health Ecology Research Unit of the CIRMF and the Zoology and Entomology Department of the UFS, who welcomed us.FundingThis study has been conducted with the financial support of the European Union (Grant no. ARISE-PP-FA-072 to JON), through the African Research Initiative for Scientific Excellence (ARISE), pilot program. ARISE is implemented by the African Academy of Sciences with support from the European Commission and the African Union Commission. This study also benefited from the internal support of the University of the Free State, South Africa (to PVO), for English editing services in addition to the salary support provided to the corresponding author by the University of Science and Technology of Masuku and the Interdisciplinary Centre for Medical Research, Gabon. We benefited from the support GDRI-GRAVIR network (led by CP) in conceptualizing the study. The contents of this document are the sole responsibility of the authors and can under no circumstances be regarded as reflecting the position of the European Union, the African Academy of Sciences, the African Union Commission, or the institutions to which the authors are affiliated. The funders played no role in the design of the study, the collection and analysis of the data, the decision to publish or the preparation of the manuscript.Author informationAuthors and AffiliationsLab-MC, Département de Biologie, Faculté Des Sciences de L, Université Des Sciences Et Techniques de Masuku (USTM), BP 901, Franceville, GabonJudicaël Obame-Nkoghe, Faël Moudoumi Kondji, Brad Ghaven Niangui & Landry Erik MomboEcotoxicology Research Laboratory, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South AfricaJudicaël Obame-Nkoghe & Patricks Voua OtomoAgence Nationale Des Parc Nationaux, Libreville, GabonRicardo Ewak ObameCentre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, GabonArnauld Ondo Oyono, Natif Yapet Koumlah, Patrick Yangari, Neil Michel Longo-Pendy, Lynda Chancelya Nkoghe Nkoghe, Marc-Flaubert Ngangue & Yasmine Okomo NguemaMIVEGEC, Univ. Montpellier, CNRS, Montpellier, IRD, FranceChristophe Paupy & Pierre KengneCentre for Global Change, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South AfricaPatricks Voua OtomoAuthorsJudicaël Obame-NkogheView author publicationsSearch author on:PubMed Google ScholarFaël Moudoumi KondjiView author publicationsSearch author on:PubMed Google ScholarBrad Ghaven NianguiView author publicationsSearch author on:PubMed Google ScholarRicardo Ewak ObameView author publicationsSearch author on:PubMed Google ScholarArnauld Ondo OyonoView author publicationsSearch author on:PubMed Google ScholarNatif Yapet KoumlahView author publicationsSearch author on:PubMed Google ScholarPatrick YangariView author publicationsSearch author on:PubMed Google ScholarNeil Michel Longo-PendyView author publicationsSearch author on:PubMed Google ScholarLynda Chancelya Nkoghe NkogheView author publicationsSearch author on:PubMed Google ScholarMarc-Flaubert NgangueView author publicationsSearch author on:PubMed Google ScholarYasmine Okomo NguemaView author publicationsSearch author on:PubMed Google ScholarLandry Erik MomboView author publicationsSearch author on:PubMed Google ScholarChristophe PaupyView author publicationsSearch author on:PubMed Google ScholarPatricks Voua OtomoView author publicationsSearch author on:PubMed Google ScholarPierre KengneView author publicationsSearch author on:PubMed Google ScholarContributionsConceptualisation: JO-N, PK, CP; Data curation: NYK, AOO, JO-N, FMK, BGN, MFN, LCNN, PY, NMLP; Formal analysis: JO-N, AOO, YON, NYK, FMK, REO; Data visualization: FMK, LEM, PVO, REO, JO-N; First article drafting: JO-N, FMK, AOO; Reviewing and editing: PK, PVO, LEM, YON, Acquisition of funding: JO-N, PVO.Corresponding authorCorrespondence to
    Judicaël Obame-Nkoghe.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleObame-Nkoghe, J., Moudoumi Kondji, F., Niangui, B.G. et al. Physicochemical and typological insights into Aedes albopictus and Aedes aegypti larval habitats in a sub-Saharan African urban gradient setting.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-32398-9Download citationReceived: 17 June 2025Accepted: 10 December 2025Published: 19 December 2025DOI: https://doi.org/10.1038/s41598-025-32398-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    Keywords
    Aedes
    Larval habitatsPhysicochemical featuresAfrican urban settingGabonArbovirus transmission More

  • in

    Contrasting pathways to tree longevity in gymnosperms and angiosperms

    AbstractTree longevity is thought to increase in growth-limiting, adverse environments, but a quantitative assessment of drivers of global variation in tree longevity is lacking. We assemble a global database of maximum longevity for 739 tree species and analyse associations between longevity and climate, soil, and species’ functional traits. Our results show two primary pathways towards long lifespans. The first is slow growth in resource-limited environments, consistent with the “adversity begets longevity” paradigm. The second pathway is through relief from abiotic constraints in productive environments. Despite notable exceptions, long-lived gymnosperms tend to follow the first path through slow growth in cold environments, whereas long-lived angiosperms tend to follow the second (“productivity”) path reaching maximum longevity generally in humid environments. For angiosperms, we identify two mechanisms for increased longevity under humid conditions. First, higher water availability increases species’ maximum tree height which is associated with greater longevities. Secondly, greater water availability increases stand density and inter-tree competition, limiting growth which may increase tree lifespan. The documented differences between gymnosperm and angiosperm longevity are likely rooted in intrinsic differences in hydraulic architecture that provide fitness advantages for gymnosperms under high abiotic stress, and for angiosperms under increased productivity or competition.

    Data availability

    Data on species’ maximum longevity, traits, and climate that support the findings of this study are available from https://doi.org/10.6084/m9.figshare.29876984. Original raw tree ring data from the ITRDB can be downloaded from https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring, and tropical tree ring data compilations from https://figshare.com/articles/dataset/Locoselli_et_al_2020_Global_tree-ring_analysis_reveals_rapid_decrease_in_tropical_tree_longevity_with_temperature_PNAS/13119842?file=25178405. Individual longevity records from following oldlists http://www.rmtrr.org/oldlist.htm, https://www.ldeo.columbia.edu/~adk/oldlisteast/, http://www.nativetreesociety.org/dendro/ents_maximum_ages.htm, https://www.oldgrowth.ca/oldtrees/. Tree height data can be downloaded from https://zenodo.org/record/6637599, and maximum height measurements were obtained from https://www.conifers.org and https://Monumentaltrees.com. Wood density data can be obtained from https://zenodo.org/records/13322441, and from https://doi.org/10.18167/DVN1/KRVF0E. Conduit density from https://doi.org/10.5061/dryad.1138, and conduit density, P50 and HSM from https://doi.org/10.5061/dryad.1138, and from https://doi.org/10.1126/sciadv.aav1332. Leaf traits from https://www.nature.com/articles/nature02403#Sec15, and seedmass data from https://www.try-db.org/TryWeb/dp.php, database request No 30569. Mean climate and soil data for a species were obtained from the TreeGOER database https://zenodo.org/records/10008994, and gridded climate and elevation data from https://www.worldclim.org/data/worldclim21.html, growing season length and site level Net Primary Productivity (NPP) from https://chelsa-climate.org/. Species occurrence data from https://doi.org/10.15468/dl.77gcvq.
    Code availability

    Code to reproduce the Figs. 1–3 and Supplementary Figs. 3–6, 8, 9 and statistics are available from https://doi.org/10.6084/m9.figshare.29876984.
    ReferencesPiovesan, G. & Biondi, F. On tree longevity. N. Phytologist 231, 1318–1337 (2021).
    Google Scholar 
    Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).
    Google Scholar 
    Reich, P. B. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
    Google Scholar 
    Salguero-Gómez, R. Applications of the fast–slow continuum and reproductive strategy framework of plant life histories. N. Phytologist 213, 1618–1624 (2017).
    Google Scholar 
    Bialic-Murphy, L. et al. The pace of life for forest trees. Science 386, 92–98 (2024).
    Google Scholar 
    Morris, W. F. et al. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89, 19–25 (2008).
    Google Scholar 
    Chondol, T. et al. Habitat preferences and functional traits drive longevity in Himalayan high-mountain plants. Oikos 2023, e010073 (2023).
    Google Scholar 
    Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. USA 111, 3280–3285 (2014).
    Google Scholar 
    Galbraith, D. et al. Residence times of woody biomass in tropical forests. Plant Ecol. Diversity 6, 139–157 (2013).
    Google Scholar 
    Liu, J. et al. Age and spatial distribution of the world’s oldest trees. Conserv. Biol. 36, e13907 (2022).
    Google Scholar 
    Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl. Acad. Sci. 117, 33358–33364 (2020).
    Google Scholar 
    Schulman, E. Longevity under Adversity in Conifers. Science 119, 396–399 (1954).
    Google Scholar 
    Stahle, D. et al. Longevity, climate sensitivity, and conservation status of wetland trees at Black River, North Carolina. Environ. Res. Commun. 1, 041002 (2019).
    Google Scholar 
    Patrut, A. et al. Radiocarbon dating of a very large African baobab. Tree Physiol. 27, 1569–1574 (2007).
    Google Scholar 
    Condit, R., Hubbel, S. P. & Foster, R. B. Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Ecol. Manag. 62, 123–143 (1993).
    Google Scholar 
    Kurokawa, H., Yoshida, T., Nakamura, T., Lai, J. & Nakashizuka, T. The age of tropical rain-forest canopy species, Borneo ironwood (Eusideroxylon zwageri), determined by 14 C dating. J. Trop. Ecol. 19, 1–7 (2003).
    Google Scholar 
    Vieira, S. et al. Slow growth rates of Amazonian trees: Consequences for carbon cycling. Proc. Natl. Acad. Sci. USA 102, 18502–18507 (2005).
    Google Scholar 
    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
    Google Scholar 
    Stephenson, N. L. et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 81, 527–555 (2011).
    Google Scholar 
    Brienen, R. J. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).
    Google Scholar 
    Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).
    Google Scholar 
    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. 111, 740–745 (2014).
    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2011).
    Google Scholar 
    Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89, 1908–1920 (2008).
    Google Scholar 
    Loehle, C. Tree Life-History Strategies – the Role of Defenses. Can. J. For. Res. 18, 209–222 (1988).
    Google Scholar 
    Lu, R. et al. The U-shaped pattern of size-dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. J. Ecol. 109, 2421–2433 (2021).
    Google Scholar 
    Xu, C. & Liu, H. Hydraulic adaptability promotes tree life spans under climate dryness. Glob. Ecol. Biogeogr. 31, 51–61 (2022).
    Google Scholar 
    Liu, L. et al. Tropical tall forests are more sensitive and vulnerable to drought than short forests. Glob. Chang Biol. 28, 1583–1595 (2022).
    Google Scholar 
    Bond, W. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).
    Google Scholar 
    Lusk, C. H., Wright, I. & Reich, P. B. Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. N. Phytologist 160, 329–336 (2003).
    Google Scholar 
    Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).
    Google Scholar 
    Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?. Plant Sci. 195, 48–53 (2012).
    Google Scholar 
    Sperry, J. S., Hacke, U. G. & Pittermann, J. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot. 93, 1490–1500 (2006).
    Google Scholar 
    Gao, J. et al. Climate-driven patterns of global tree longevity. Commun. Earth Environ. 6, 610 (2025).
    Google Scholar 
    Willis, K. J. & McElwain, J. C. The Evolution of Plants (Oxford University Press, USA, 2014).Ma, H. et al. The global biogeography of tree leaf form and habit. Nat. Plants, 9, 1795–1809 (2023).Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evolution 6, 36–50 (2022).
    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. evolution 6, 397–404 (2022).
    Google Scholar 
    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. 101, 11001–11006 (2004).
    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).
    Google Scholar 
    Björklund, J., Fonti, M. V., Fonti, P., Van den Bulcke, J. & von Arx, G. Cell wall dimensions reign supreme: cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine. Dendrochronologia 65, 125785 (2021).
    Google Scholar 
    Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31, 491–543 (1980).
    Google Scholar 
    Reich, P. B., Walters, M. & Ellsworth, D. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).
    Google Scholar 
    Reich, P. B., Rich, R. L., Lu, X., Wang, Y.-P. & Oleksyn, J. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. Natl. Acad. Sci. 111, 13703–13708 (2014).
    Google Scholar 
    Issartel, J. & Coiffard, C. Extreme longevity in trees: live slow, die old?. Oecologia 165, 1–5 (2011).
    Google Scholar 
    Sillett, S. C. et al. Comparative development of the four tallest conifer species. Ecol. Manag. 480, 118688 (2021).
    Google Scholar 
    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. N. Phytol. 167, 353–376 (2005).
    Google Scholar 
    Sillett, S. C. et al. How do tree structure and old age affect growth potential of California redwoods?. Ecol. Monogr. 85, 181–212 (2015).
    Google Scholar 
    Scheffer, M. et al. A global climate niche for giant trees. Glob. Change Biol. 24, 2875–2883 (2018).
    Google Scholar 
    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Google Scholar 
    Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 5, eaav1332 (2019).
    Google Scholar 
    Klein, T., Randin, C. & Körner, C. Water availability predicts forest canopy height at the global scale. Ecol. Lett. 18, 1311–1320 (2015).
    Google Scholar 
    Madrigal-González, J. et al. Global patterns of tree density are contingent upon local determinants in the world’s natural forests. Commun. Biol. 6, 47 (2023).
    Google Scholar 
    Crowther, T. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
    Google Scholar 
    Brienen, R. et al. Paired analysis of tree ring width and carbon isotopes indicates when controls on tropical tree growth change from light to water limitations. Tree Physiol. 42, 1131–1148 (2022).
    Google Scholar 
    Canham, C. D. Suppression and release during canopy recruitment in Acer saccharum. Bull. Torre. Bot. Club 112, 145 (1985).
    Google Scholar 
    Brienen, R. J. W. & Zuidema, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J. Ecol. 94, 481–493 (2006).
    Google Scholar 
    Di Filippo, A. et al. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front. Ecol. Evol. 3, 46 (2015).
    Google Scholar 
    Pavlin, J. et al. Disturbance history is a key driver of tree life span in temperate primary forests. J. Vegetation Sci. 32, e13069 (2021).
    Google Scholar 
    Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).
    Google Scholar 
    Lusk, C. H. & Reich, P. B. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia 123, 318–329 (2000).
    Google Scholar 
    Reich, P. B., Uhl, C., Walters, M. B., Prugh, L. & Ellsworth, D. S. Leaf demography and phenology in Amazonian rain forest: a census of 40 000 leaves of 23 tree species. Ecol. Monogr. 74, 3–23 (2004).
    Google Scholar 
    Sanchez-Martinez, P. et al. Increased hydraulic risk in assemblages of woody plant species predicts spatial patterns of drought-induced mortality. Nat. Ecol. Evol. 7, 1620–1632 (2023).
    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752 (2012).
    Google Scholar 
    Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).
    Google Scholar 
    McCulloh, K. et al. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. N. Phytol. 186, 439–450 (2010).
    Google Scholar 
    Brodribb, T. J., Feild, T. S. & Jordan, G. J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144, 1890–1898 (2007).
    Google Scholar 
    Carlquist, S. J. Ecological Strategies of Xylem Evolution (Univ of California Press, 1975).Brodribb, T. & Hill, R. The importance of xylem constraints in the distribution of conifer species. N. Phytologist 143, 365–372 (1999).
    Google Scholar 
    Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012).
    Google Scholar 
    Morris, H., Brodersen, C., Schwarze, F. W. & Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 7, 1665 (2016).
    Google Scholar 
    Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).
    Google Scholar 
    Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283–335 (1992).
    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    Google Scholar 
    Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461 (2001).
    Google Scholar 
    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
    Google Scholar 
    Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 3185 (2022).
    Google Scholar 
    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
    Google Scholar 
    Canham, C. D., Papaik, M. J. & Latty, E. F. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can. J. For. Res. 31, 1–10 (2001).
    Google Scholar 
    Rich, R. L., Frelich, L. E. & Reich, P. B. Wind-throw mortality in the southern boreal forest: Effects of species, diameter and stand age. J. Ecol. 95, 1261–1273 (2007).
    Google Scholar 
    Lee, C. A., Voelker, S., Holdo, R. M. & Muzika, R.-M. Tree architecture as a predictor of growth and mortality after an episode of red oak decline in the Ozark Highlands of Missouri, USA. Can. J. For. Res. 44, 1005–1012 (2014).
    Google Scholar 
    Gora, E. M. et al. A mechanistic and empirically supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).
    Google Scholar 
    Ishii, H. & Ford, E. D. Persistence of Pseudotsuga menziesii (Douglas-fir) in temperate coniferous forests of the Pacific Northwest Coast, USA. Folia Geobotanica 37, 63–69 (2002).
    Google Scholar 
    Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).
    Google Scholar 
    Bigler, C. Trade-offs between growth rate, tree size and lifespan of mountain pine (Pinus montana) in the Swiss National Park. PloS One 11, e0150402 (2016).
    Google Scholar 
    Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).
    Google Scholar 
    Hecking, M. J., Zukswert, J. M., Drake, J. E., Dovciak, M. & Burton, J. I. Montane temperate-boreal forests retain the leaf economic spectrum despite intraspecific variability. Front. For. Glob. Change 4, 754063 (2022).
    Google Scholar 
    Sperry, J. S. Evolution of water transport and xylem structure. Int. J. Plant Sci. 164, S115–S127 (2003).
    Google Scholar 
    Baker, T. R. et al. Fast demographic traits promote high diversification rates of Amazonian trees. Ecol. Lett. 17, 527–536 (2014).
    Google Scholar 
    Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Naturalist 111, 1169–1194 (1977).
    Google Scholar 
    Pavlin, J. et al. Pathways and drivers of canopy accession across primary temperate forests of Europe. Sci. Total Environ. 906, 167593 (2024).
    Google Scholar 
    Kindt, R. WorldFlora: an R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Appl. Plant Sci. 8, e11388 (2020).
    Google Scholar 
    Beech, E., Rivers, M., Oldfield, S. & Smith, P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. Forestry 36, 454–489 (2017).
    Google Scholar 
    Biondi, F., Meko, D. M. & Piovesan, G. Maximum tree lifespans derived from public-domain dendrochronological data. Iscience 26, 106138 (2023).Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
    Google Scholar 
    Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl. Acad. Sci. 119, e2115329119 (2022).
    Google Scholar 
    Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 39, 135–136 (1998).
    Google Scholar 
    Worbes, M. & Junk, W. J. How old are tropical trees? The persistence of a myth. IAWA J. 20, 255–260 (1999).
    Google Scholar 
    Martinez-Ramos, M. & Alvarez-Buylla, E. R. How old are tropical rain forest trees?. Trends Plant Sci. 3, 400–405 (1998).
    Google Scholar 
    Kindt, R. TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Glob. Change Biol. 29, 6303–6318 (2023).
    Google Scholar 
    Gbif.org. GBIF occurrence download https://doi.org/10.15468/dl.77gcvq (2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Professional Geographer 44, 84–88 (1992).
    Google Scholar 
    Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).
    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
    Google Scholar 
    Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).
    Google Scholar 
    Jucker, T. et al. Tallo: A global tree allometry and crown architecture database. Glob. Change Biol. 28, 5254–5268 (2022).
    Google Scholar 
    Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repos. https://doi.org/10.5061/dryad.234 (2009).
    Google Scholar 
    Vieilledent, G. et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am. J. Bot. 105, 1653–1661 (2018).
    Google Scholar 
    Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2009).
    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang Biol. 26, 119–188 (2020).
    Google Scholar 
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2007).
    Google Scholar 
    Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).
    Google Scholar 
    Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).
    Google Scholar 
    Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).
    Google Scholar 
    Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999).
    Google Scholar 
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    R_Core_Team. R: A Language and Environment for Statistical Computing (R_Core_Team, 2023).Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
    Google Scholar 
    Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).
    Google Scholar 
    Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 48 (2015).Download referencesAcknowledgementsWe acknowledge the contributors to International Tree-Ring Data Bank for making available raw tree-ring data, and we thank staff at the Direction des Inventaires Forestiers of the Ministère des Ressources naturelles et des Forêts du Québec for sharing tree-ring and sample plot data from the forest inventory program in Quebec, Canada. We further thank Ailene Ettinger, Gregory Peterson, Janneke Hille Ris Lambers, Jeremy Little, Jill Harvey, and Jordi Axelsons for contributing original data. This study was supported by the following grants; National Environmental Research Council grants NE/S008659/1 (R.B.), NE/N012542/1 (E.G.), and NE/R005079/1 (E.G., R.S.); FAPESP grants 12/50457-4, 2019/08783-0 (G.L., G.C.) and 17/5008-3 (G.L., G.C.); Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, grants 478503/2009 (G.L., G.C.), 311247/2021-0 (J.S.) and 441811/2020-5 (J.S.); CNPq/ FAPEAM, Fundação de Amparo à Pesquisa do Estado do Amazonas, grant number 01.02.016301.02630/2022-76 (J.S.); Czech Science Foundation research grants 24-12210 K (J.P. and M.S.) and 23-05272S (J.A., J.D., K.K., N.A., P.F., V.B.); Mobility Plus between the Czech Republic and Taiwan, NSTC-24-08 (J.A., J.D., K.K., N.A., P.F., V.B.); Czech Academy of Sciences long-term research development project No. RVO 67985939 (J.A., J.D., K.K., N.A., P.F., V.B.); Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 9803 (R.J.D.); Academy of Finland, #339788 (S.H.); European Union, NextGenerationEU, Italian Ministry of University and Research under PNRR – M4C2-I1.4 Project code: CN00000033, Title: NBFC – National Biodiversity Future Center, CUP: J83C22000860007 (G.P.); Ministry of University and Research (MUR) via the Agritech National Research Centre, European Union Next-GenerationEU PNRR M4C2-I1.4 Project Code: CN00000022 (A.D.); Departments of Excellence (Law 232/2016) Project 2023-27 “Digital, Intelligent, Green and Sustainable (D.I.Ver.So)” (A.D.); National Science Foundation, Division of Environmental Biology, award #1945910 (N.P.); Directorate for Biological Sciences, Emerging Frontiers, award #1241870 (N.P.); Redes Federales de Alto Impacto, Bosque-Clima CN32 (L.L., R.V.); MSMT INTER-EXCELLENCE, # LUAUS24258 (J.D.), Estonian Research Council, grant PSG1044 (J.A.).Author informationAuthors and AffiliationsSchool of Geography, University of Leeds, Leeds, UKRoel J. W. Brienen & Emanuel GloorCenter of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, BrazilGiuliano Maselli LocosselliPhysical Geography, University of Passau, Passau, GermanyStefan KrottenthalerSchool of Earth and Environment, University of Leeds, Leeds, UKRobyn WrigleyCollege of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USASteven L. VoelkerInstitute of Botany of the Czech Academy of Sciences, Třeboň, Czech RepublicJan Altman, Nela Altmanova, Jiri Dolezal, Pavel Fibich & Kirill KorznikovFaculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech RepublicJan Altman, Vaclav Bazant, Jakob Pavlin & Miroslav SvobodaDepartment of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, EstoniaJan AltmanFaculty of Science, University of South Bohemia, České Budějovice, Czech RepublicNela Altmanova, Jiri Dolezal & Pavel FibichDepartment of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USALeander D. L. Anderegg & Gianluca PiovesanDepartment of ecological and biological science (DEB), Università della Tuscia, Viterbo, ItalyMichele BalivaDepartment of Biology, Indian Institute of Science Education and Research, Pune, IndiaDeepak BaruaLaboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USABryan BlackRocky Mountain Tree-Ring Research, Fort Collins, CO, USAPeter M. BrownDepartment of Botany, University of São Paulo, Institute of Biosciences, São Paulo, SP, BrazilGregorio CeccantiniDepartment of Wildland Resources and Ecology Center, Logan, UT, USAR. Justin DeRoseLaboratorio de Dendrocronologia, Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Gomez Palacio, MexicoJose Villanueva DiazDepartment of Agriculture and Forest Science (DAFNE), Università della Tuscia, Viterbo, ItalyAlfredo Di FilippoMinistère des Ressources naturelles et des Forêts, Direction de la recherche forestière, Quebec city, QC, CanadaLouis DuchesneGymnosperm Database, Olympia, WA, USAChristopher EarleBritish Columbia Ministry of Forests, Prince George, BC, CanadaHardy GriesbauerNatural Resources Institute Finland, Rovaniemi, FinlandSamuli HelamaForest and Soil Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, SwitzerlandStefan KlesseFenner School of Environment and Society, The Australian National University, Canberra, ACT, AustraliaDavid LindenmayerResearch Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, ChinaShuhui Liu & Chunyu ZhangLaboratorio de Dendrocronología e Historia Ambiental IANIGLA/CONICET, Mendoza, ArgentinaLidio Lopez & Ricardo VillalbaCREAF, Bellaterra, SpainMaurizio MencucciniICREA, Barcelona, SpainMaurizio MencucciniDepartment of forestry and renewable forest resources, University of Ljubljana, Ljubljana, SloveniaThomas A. NagelIndependent Scholar, Maynard, MA, USANeil PedersonHarvard Forest, Harvard University, Petersham, MA, USANeil PedersonUniversity of Nevada, Reno, Reno, NV, USAChristina RestainoInstitute for Global Change Biology, University of Michigan, Ann Arbor, MI, USAPeter B. ReichDepartment of Forest Resources, University of Minnesota, St. Paul, MN, USAPeter B. ReichPrairie Adaptation Research Collaborative, Geography and Environmental Studies, University of Regina, Regina, CanadaDavid SauchynInstituto Nacional de Pesquisas da Amazônia (INPA), Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas (MAUA), Manaus, AM, BrazilJochen SchöngartRocky Mountain Research Station, USDA Forest Service, Ogden, UT, USAJohn D. ShawDepartment of Geography, University of Victoria, Victoria, BC, CanadaDan SmithDepartment of Botany, St Joseph’s College (Autonomous), Devagiri, Calicut, Kerala, IndiaRon SunnyUniversity of Northern British Columbia, Faculty of Environment, Prince George, BC, CanadaLisa J. WoodAuthorsRoel J. W. BrienenView author publicationsSearch author on:PubMed Google ScholarGiuliano Maselli LocosselliView author publicationsSearch author on:PubMed Google ScholarStefan KrottenthalerView author publicationsSearch author on:PubMed Google ScholarEmanuel GloorView author publicationsSearch author on:PubMed Google ScholarRobyn WrigleyView author publicationsSearch author on:PubMed Google ScholarSteven L. VoelkerView author publicationsSearch author on:PubMed Google ScholarJan AltmanView author publicationsSearch author on:PubMed Google ScholarNela AltmanovaView author publicationsSearch author on:PubMed Google ScholarLeander D. L. AndereggView author publicationsSearch author on:PubMed Google ScholarMichele BalivaView author publicationsSearch author on:PubMed Google ScholarDeepak BaruaView author publicationsSearch author on:PubMed Google ScholarVaclav BazantView author publicationsSearch author on:PubMed Google ScholarBryan BlackView author publicationsSearch author on:PubMed Google ScholarPeter M. BrownView author publicationsSearch author on:PubMed Google ScholarGregorio CeccantiniView author publicationsSearch author on:PubMed Google ScholarR. Justin DeRoseView author publicationsSearch author on:PubMed Google ScholarJose Villanueva DiazView author publicationsSearch author on:PubMed Google ScholarAlfredo Di FilippoView author publicationsSearch author on:PubMed Google ScholarJiri DolezalView author publicationsSearch author on:PubMed Google ScholarLouis DuchesneView author publicationsSearch author on:PubMed Google ScholarChristopher EarleView author publicationsSearch author on:PubMed Google ScholarPavel FibichView author publicationsSearch author on:PubMed Google ScholarHardy GriesbauerView author publicationsSearch author on:PubMed Google ScholarSamuli HelamaView author publicationsSearch author on:PubMed Google ScholarStefan KlesseView author publicationsSearch author on:PubMed Google ScholarKirill KorznikovView author publicationsSearch author on:PubMed Google ScholarDavid LindenmayerView author publicationsSearch author on:PubMed Google ScholarShuhui LiuView author publicationsSearch author on:PubMed Google ScholarLidio LopezView author publicationsSearch author on:PubMed Google ScholarMaurizio MencucciniView author publicationsSearch author on:PubMed Google ScholarThomas A. NagelView author publicationsSearch author on:PubMed Google ScholarJakob PavlinView author publicationsSearch author on:PubMed Google ScholarNeil PedersonView author publicationsSearch author on:PubMed Google ScholarGianluca PiovesanView author publicationsSearch author on:PubMed Google ScholarChristina RestainoView author publicationsSearch author on:PubMed Google ScholarPeter B. ReichView author publicationsSearch author on:PubMed Google ScholarDavid SauchynView author publicationsSearch author on:PubMed Google ScholarJochen SchöngartView author publicationsSearch author on:PubMed Google ScholarJohn D. ShawView author publicationsSearch author on:PubMed Google ScholarDan SmithView author publicationsSearch author on:PubMed Google ScholarRon SunnyView author publicationsSearch author on:PubMed Google ScholarMiroslav SvobodaView author publicationsSearch author on:PubMed Google ScholarRicardo VillalbaView author publicationsSearch author on:PubMed Google ScholarLisa J. WoodView author publicationsSearch author on:PubMed Google ScholarChunyu ZhangView author publicationsSearch author on:PubMed Google ScholarContributionsR.B., G.L., S.K., E.G., and R.W. designed the study, R.B., R.W. and S.K. downloaded and compiled functional traits and ITRDB datasets, R.B., R.W. and S.K. analysed data, G.L. and S.K. compiled the tropical longevity datasets, M.M., D.B., R.S. and P.R. provided functional traits data, R.B., G.L., S.K., S.V., C.E., G.P. and N.P. revised and improved the longevity database, R.B., G.L., S.V., J.A., N.A., L.A., M.B., V.B., B.B., P.B., G.C., J.dR., J.V.D., A.D., J.D., L.D., C.E., P.F., H.G., S.H., S.K.l., K.K., D.L., S.L., L.L., T.N., J.P., N.P., G.P., C.R., D.S., J.S., J.D.S., D.S., M.S., R.V., L.W., and C.Z. contributed original longevity data, R.B. wrote the first draft of the manuscript and all authors revised the manuscript.Corresponding authorCorrespondence to
    Roel J. W. Brienen.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Peer review

    Peer review information
    Nature Communications thanks Christian Korner, Ricardo Segovia, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

    Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryTransparent Peer Review fileRights and permissions
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    Reprints and permissionsAbout this articleCite this articleBrienen, R.J.W., Locosselli, G.M., Krottenthaler, S. et al. Contrasting pathways to tree longevity in gymnosperms and angiosperms.
    Nat Commun (2025). https://doi.org/10.1038/s41467-025-67619-2Download citationReceived: 10 December 2024Accepted: 04 December 2025Published: 19 December 2025DOI: https://doi.org/10.1038/s41467-025-67619-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Enhancing demarcation in regionalization in the eastern Qinghai-Xizang Plateau through geographically weighted

    AbstractThe eastern margin of the Qinghai-Xizang Plateau, as a critical transition zone between the plateau and the Sichuan Basin, poses substantial challenges for geographic regionalization, primarily due to its intricate terrain and climatic heterogeneity. Traditional spatial clustering methods often struggle to balance spatial continuity and attribute similarity, suffering from subjectivity and inadequate representation of topographic complexity. This study proposes a novel mountainous geographic regionalization framework that integrates topographic and climatic characteristics, using Kangding county as a typical case. Principal Component Analysis (PCA) was employed to perform dimensionality reduction on multiple environmental variables and assign relative weights. A Gaussian-weighted function was further applied to adjust attribute distances to capture spatial non-stationarity, while the geographic distance weight was systematically optimized. The partitioning outcomes were evaluated using clustering quality indicators (Davies-Bouldin index, Silhouette index, Calinski-Harabasz index) and spatial autocorrelation indicators (Moran’s I index, Moran’s Z-score). Results indicated that when the number of clusters was set to five and the geographic distance weight was 0.5, the clustering algorithm optimized the trade-off between spatial continuity and attribute similarity (Davies-Bouldin index = 1.14, Silhouette index = 0.30, Calinski-Harabasz index = 25150.91, Moran’s I = 0.97, Moran’s Z-score = 292.28). Compared to the traditional K-means clustering, this approach enhanced intra-cluster similarity (Sil) by 259% and improved spatial continuity (Moran’s I, Moran’s Z-score) by approximately 44%. This method effectively addresses the challenge of coordinating spatial constraints with attribute heterogeneity in mountainous environmental zoning, in a county scale, providing an automated, data-driven approach for geographic partitioning in complex terrains. The findings offer valuable insights for mountain ecosystem management and regional geographic studies. Our study provides a set of effective methods of demarcation of regional boundaries based on raster data, offering important insights for ecological zoning management and regional studies in mountainous environments at a small scale.

    Data availability

    The datasets analyzed in this study are publicly available. Climate data were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn). The DEM was acquired from the Shuttle Radar Topography Mission (SRTM, https://srtm.csi.cgiar.org/).
    ReferencesYi, J. et al. Mapping human’s digital footprints on the Tibetan plateau from multi-source Geospatial big data. Sci. Total Environ. 711, 134540 (2020).He, K., Chen, X., Liu, J. & Zhao, D. A multiple-step scheme for the improvement of satellite precipitation products over the Tibetan plateau from multisource information. Sci. Total Environ. 873, 162378 (2023).Hu, X. & Yuan, W. Evaluation of ERA5 precipitation over the Eastern periphery of the Tibetan plateau from the perspective of regional rainfall events. Int. J. Climatol. 41, 2625–2637 (2021).
    Google Scholar 
    Zhao, R., Chen, B., Zhang, W., Yang, S. & Xu, X. Formation mechanisms of persistent extreme precipitation events over the Eastern periphery of the Tibetan plateau: synoptic conditions, moisture transport and the effect of steep terrain. Atmos. Res. 304, 107341 (2024).Zhou, Y., Li, Y., Zhang, L., Su, Q. & Huang, X. Spatial–temporal characteristics of geological disaster resilience in poverty and disaster-prone areas in china: a case study of Ganzi Prefecture. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-023-28049-z (2023).
    Google Scholar 
    Perdinan & Winkler, J. A. Selection of climate information for regional climate change assessments using regionalization techniques: an example for the upper great lakes Region, USA. Int. J. Climatol. 35, 1027–1040 (2015).
    Google Scholar 
    Gao, Y., Gao, J., Chen, J., Xu, Y. & Zhao, J. Regionalizing aquatic ecosystems based on the river subbasin taxonomy concept and Spatial clustering techniques. Int. J. Environ. Res. Public. Health. 8, 4367–4385 (2011).
    Google Scholar 
    Wang, H., Song, C., Wang, J. & Gao, P. A raster-based Spatial clustering method with robustness to Spatial outliers. Sci. Rep. 14, 1–14 (2024).
    Google Scholar 
    Wolf, L. J. Spatially–encouraged spectral clustering: a technique for blending map typologies and regionalization. Int. J. Geogr. Inf. Sci. 35, 2356–2373 (2021).
    Google Scholar 
    Zhao, W. et al. Comparison and application of SOFM, fuzzy c-means and k-means clustering algorithms for natural soil environment regionalization in China. Environ. Res. 216, 114519 (2023).
    Google Scholar 
    Chauhan, N., Paliwal, R., kumar, V., Kumar, S. & Kumar, R. Watershed prioritization in lower shivaliks region of India using integrated principal component and hierarchical cluster analysis techniques: a case of upper Ghaggar watershed. J. Indian Soc. Remote Sens. 50, 1051–1070 (2022).
    Google Scholar 
    Schmidt, G. & Schröder, W. Regionalisation of climate variability used for modelling the dispersal of genetically modified oil seed rape in Northern Germany. Ecol. Indic. 11, 951–963 (2011).
    Google Scholar 
    Gao, P. & Kupfer, J. A. Capitalizing on a wealth of Spatial information: improving biogeographic regionalization through the use of Spatial clustering. Appl. Geogr. 99, 98–108 (2018).
    Google Scholar 
    Guo, D. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 22, 801–823 (2008).
    Google Scholar 
    Williams, C. L., Hargrove, W. W., Liebman, M. & James, D. E. Agro-ecoregionalization of Iowa using multivariate geographical clustering. Agric. Ecosyst. Environ. 123, 161–174 (2008).
    Google Scholar 
    Liu, Q., Deng, M., Shi, Y. & Wang, J. A density-based Spatial clustering algorithm considering both Spatial proximity and attribute similarity. Comput. Geosci. 46, 296–309 (2012).
    Google Scholar 
    Rosbergen, M. T. et al. Cluster-based white matter signatures and the risk of dementia, stroke, and mortality in community-dwelling adults. Neurology. 103, e209864 (2024).Dupas, M. C. et al. Spatial distribution of poultry farms using point pattern modelling: A method to address livestock environmental impacts and disease transmission risks. PLoS Comput. Biol. 20, e1011980 (2024).
    Google Scholar 
    Aho, K., Parsons, S., Castro, A. J. & Lohse, K. A. Mapping socio-ecological systems in idaho: Spatial patterns and analytical considerations. Ecosphere 13, e4242 (2022).Li, Z., Zhong, J., Yang, J., Zhang, D. & He, S. Assessment framework and empirical analysis of the ecological protection importance for key town agglomerations in China. J. Clean. Prod. 372, 133682 (2022).Chai, H., Zhou, C., Chen, X. & Cheng, W. Digital regionalization of geomorphology in Xinjiang. J. Geog. Sci. 19, 600–614 (2009).
    Google Scholar 
    Fang, W. & Zhang, H. Zonation and scaling of tropical cyclone hazards based on Spatial clustering for coastal China. Nat. Hazards. 109, 1271–1295 (2021).
    Google Scholar 
    Chormanski, J. et al. Flood mapping with remote sensing and hydrochemistry: A new method to distinguish the origin of flood water during floods. Ecol. Eng. 37, 1334–1349 (2011).
    Google Scholar 
    Aydin, O., Janikas, M. V., Assunção, R. M. & Lee, T. H. A quantitative comparison of regionalization methods. Int. J. Geogr. Inf. Sci. 35, 2287–2315 (2021).
    Google Scholar 
    Duque, J. C., Anselin, L. & Rey, S. J. The max-p-regions problem. J. Reg. Sci. 52, 397–419 (2012).
    Google Scholar 
    Kisilevich, S., Mansmann, F., Nanni, M. & Rinzivillo, S. in In Data Mining and Knowledge Discovery Handbook. 855–874 (eds Maimon, O. & Rokach, L.) (Springer US, 2010). https://doi.org/10.1007/978-0-387-09823-4_44Ansari, M. Y., Ahmad, A., Khan, S. S. & Bhushan, G. Mainuddin. Spatiotemporal clustering: a review. Artif. Intell. Rev. 53, 2381–2423 (2020).
    Google Scholar 
    Zhang, T., fan, Li, Z., Yuan, Q. & Wang, Y. ning. A Spatial distance-based Spatial clustering algorithm for sparse image data. Alexandria Eng. J. 61, 12609–12622 (2022).
    Google Scholar 
    Prasetyo, S. Y., Zain Nabiilah, G., Nabila Izdihar, Z., Prabowo, A. S. & Ash Shiddiqi, H. K-Nearest Neighbor Algorithm for Heart Disease Detection: A Comparative Evaluation of Minkowski and Manhattan Distances. in 2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) 237–241IEEE, (2023). https://doi.org/10.1109/ISRITI60336.2023.10467899Temple, J. T. Characteristics of distance matrices based on Euclidean, Manhattan and hausdorff coefficients. J. Classif. 40, 214–232 (2023).
    Google Scholar 
    Murray, A. T. Integrating attribute and space characteristics in choropleth display and Spatial data mining and TUNG-KAI SHYY. Int. j. Geographical Inform. Sci. 14, 649-667 (2000).Xulu, S., Peerbhay, K., Gebreslasie, M. & Ismail, R. Unsupervised clustering of forest response to drought stress in Zululand region, South Africa. Forests 10, (2019).Whigham, P. A., De Graaf, B., Srivastava, R. & Glue, P. Managing distance and covariate information with point-based clustering. BMC Med. Res. Methodol. 16, 115 (2016).Ohana-Levi, N. et al. A weighted multivariate Spatial clustering model to determine irrigation management zones. Comput. Electron. Agric. 162, 719–731 (2019).
    Google Scholar 
    Dehghan, Z., Eslamian, S. S. & Modarres, R. Spatial clustering of maximum 24-h rainfall over urmia lake basin by new weighting approaches. Int. J. Climatol. 38, 2298–2313 (2018).
    Google Scholar 
    Peng, S. 1-km monthly mean temperature dataset for China (1901–2024). Natl. Tibetan Plateau / Third Pole Environ. Data Cent. https://doi.org/10.11888/Meteoro.tpdc.270961 (2019).
    Google Scholar 
    Peng, S. 1-km monthly precipitation dataset for China (1901–2024). National Tibetan Plateau / Third Pole Environment Data Center doi:https://doi.org/10.5281/zenodo.3114194 (2020).Zhang, Q., feng, Wu, F., qi, Wang, L., Yuan, L. & Zhao, L. shan. Application of PCA integrated with CA and GIS in eco-economic regionalization of Chinese loess plateau. Ecol. Econ. 70, 1051–1056 (2011).
    Google Scholar 
    Dong, J. et al. Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the 2 + 26 cities of Northern China. Environ. Pollut. 315, 120392 (2022).Xiong, H. & Li, Z. Clustering Validation Measures. in Data Clustering: Algorithms and Applications. Available at: https://api.semanticscholar.org/CorpusID:34792999 (2018).Córdoba, M., Bruno, C., Costa, J. & Balzarini, M. Subfield management class delineation using cluster analysis from Spatial principal components of soil variables. Comput. Electron. Agric. 97, 6–14 (2013).
    Google Scholar 
    Zhang, Y., Moges, S. & Block, P. Optimal cluster analysis for objective regionalization of seasonal precipitation in regions of high spatial-temporal variability: application to Western Ethiopia. J. Clim. 29, 3697–3717 (2016).
    Google Scholar 
    Rodrigues, P., Figueira, R., Vaz Pinto, P., Araújo, M. B. & Beja, P. A biogeographical regionalization of Angolan mammals. Mamm Rev 45, 103–116 Preprint at (2015). https://doi.org/10.1111/mam.12036Yao, X. et al. Affinity zone identification approach for joint control of PM2.5 pollution over China. Environ. Pollut. 265, 115086 (2020).Rueda, M., Rodríguez, M. Á. & Hawkins, B. A. Towards a biogeographic regionalization of the European biota. J. Biogeogr. 37, 2067–2076 (2010).
    Google Scholar 
    Kang, Y. et al. STICC: A multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity. (2022). https://doi.org/10.1080/13658816.2022.2053980Kupfer, J. A., Gao, P. & Guo, D. Regionalization of forest pattern metrics for the continental united States using contiguity constrained clustering and partitioning. Ecol. Inf. 9, 11–18 (2012).
    Google Scholar 
    Zhang, Y. et al. Vegetation change and its relationship with climate factors and elevation on the Tibetan plateau. Int. J. Environ. Res. Public. Health 16, 4709 (2019).Sun, R. & Zhang, B. Topographic effects on Spatial pattern of surface air temperature in complex mountain environment. Environ. Earth Sci. 75, 621 (2016).Wei, D. et al. Elevation-dependent pattern of net CO2 uptake across China. Nat. Commun. 15, 2489 (2024).Zhao, J., Yang, W., Tian, L., Qu, G. & Wu, G. L. Warming differentially affects above- and belowground ecosystem functioning of the semi-arid alpine grasslands. Sci. Total Environ. 914, 170061 (2024).Download referencesFundingThis study was supported by the National Natural Science Foundation of China (42171067),and the National Key Research and Development Program of China (2023YFD1901204).Author informationAuthors and AffiliationsKey Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR ChinaXianglong Liu, Desheng Hong, Hangtao Du, Xiaoguo Wang & Bo ZhuUniversity of Chinese Academy of Sciences, Beijing, 100049, PR ChinaXianglong Liu, Desheng Hong & Hangtao DuYantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR ChinaHongyang DongAuthorsXianglong LiuView author publicationsSearch author on:PubMed Google ScholarDesheng HongView author publicationsSearch author on:PubMed Google ScholarHongyang DongView author publicationsSearch author on:PubMed Google ScholarHangtao DuView author publicationsSearch author on:PubMed Google ScholarXiaoguo WangView author publicationsSearch author on:PubMed Google ScholarBo ZhuView author publicationsSearch author on:PubMed Google ScholarContributionsDeveloping the methodology, supervision, validating the results and reviewing were done by Xiaoguo Wang and Bo Zhu. applying the methodology, preparing codes, software, analyzing the data, writing the original draft were done by Xianglong Liu, Desheng Hong, Hongyang Dong and Hangtao Du. All authors reviewed the manuscript.Corresponding authorCorrespondence to
    Xiaoguo Wang.Ethics declarations

    Competing interests
    The authors declare no competing interests.

    Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions
    Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
    Reprints and permissionsAbout this articleCite this articleLiu, X., Hong, D., Dong, H. et al. Enhancing demarcation in regionalization in the eastern Qinghai-Xizang Plateau through geographically weighted.
    Sci Rep (2025). https://doi.org/10.1038/s41598-025-32098-4Download citationReceived: 31 August 2025Accepted: 08 December 2025Published: 19 December 2025DOI: https://doi.org/10.1038/s41598-025-32098-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative
    KeywordsRegionalizationSpatial clusterGaussian-weightedEuclidean distanceEastern Qinghai-Xizang plateau More