AbstractThe deep-sea floor encompasses more than half of the surface of our planet, yet the extent and distribution of deep-sea biodiversity and its contribution to large biogeochemical cycles remain poorly understood. This knowledge gap stems from several factors, including sampling issues, the magnitude of the work required for morphological inventories, and the difficulty of integrating results from disparate local studies. The application of meta-omics to environmental DNA now makes it possible to assemble interoperable datasets at different spatial scales to move towards a global assessment of deep-sea biodiversity. We present a large-scale dataset on deep-sea biodiversity, with data and metadata openly accessible at ENA and Zenodo. The resource was generated using standardized protocols developed according to FAIR principles, covering fieldwork through bioinformatic analysis, within “Pourquoi Pas les Abysses?” and eDNAbyss projects. Together with information ensuring reproducibility, this dataset —combining metagenomics, metabarcoding across the Tree of Life and capture-by-hybridization— contributes to the international concerted effort to achieve a holistic view of the biodiversity in the largest biome on Earth.
Similar content being viewed by others
North Atlantic deep-sea benthic biodiversity unveiled through sponge natural sampler DNA
Article
Open access
19 August 2024
Seasonal microbial dynamics in the ocean inferred from assembled and unassembled data: a view on the unknown biosphere
Article
Open access
21 September 2022
Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation
Article
Open access
07 July 2023
Data availability
The global dataset has been deposited in European Nucleotide Archive (ENA) as project PRJEB 39225 (https://www.ebi.ac.uk/ena/browser/view/PRJEB39225), with metadata available on Zenodo (https://zenodo.org/records/6815677).
Code availability
1. Time Analysis software: https://www.illumina.com/search.html?filter=support&q=RTA%20download&p=1.
2. Bcl2fastq Conversion: https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html
3. Cutadapt, https://github.com/marcelm/cutadapt/releases/tag/v1.18
4. Fastx_clean software, http://www.genoscope.cns.fr/fastxtend
5. FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/index.html
6. SortMeRNA v2.1, https://github.com/biocore/sortmerna
7. fastx_estimate_duplicate software, http://www.genoscope.cns.fr/fastxtend
8. fastx_mergepairs software, http://www.genoscope.cns.fr/fastxtend
9. Usearch, https://www.drive5.com/usearch/
10. Trimmomatic: https://github.com/usadellab/Trimmomatic
11. Decontam: https://github.com/benjjneb/decontam
12. Prinseq: https://github.com/uwb-linux/prinseq
13. Qiime2 feature classifier: https://github.com/qiime2/q2-feature-classifier
14. FastQC: https://github.com/s-andrews/FastQC
15. BBTools: https://github.com/kbaseapps/BBTools
16. MultiQC: https://github.com/MultiQC/MultiQC
17. MetaRib: https://github.com/yxxue/MetaRib
18. EMIRGE: https://github.com/csmiller/EMIRGE
19. VSearch: https://github.com/torognes/vsearch
20. 1IDBA_UD: https://github.com/1928d/idba_ud
21. CAP3: https://faculty.sites.iastate.edu/xqhuang/cap3-and-pcap-sequence-and-genome-assemblyprograms
22. eDNAbyss pipeline: https://gitlab.ifremer.fr/abyss-project/
23. MUMU algorithm: https://github.com/frederic-mahe/mumu
24. bbmap: https://sourceforge.net/projects/bbmap/
26. RiboTaxa: https://github.com/oschakoory/RiboTaxa
27. eDNAbyss pipeline(s): https://gitlab.ifremer.fr/abyss-project/),
ReferencesRamirez-Llodra, E. et al. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
Google Scholar
Levin, L. A. et al. Deep-sea impacts of climate interventions. Science 379, 978–981 (2023).
Google Scholar
Paulus, E. Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front. Mar. Sci. 8, 667048 (2021).
Google Scholar
Sanders, H. L., Hessler, R. R. & Hampson, G. R. An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect. Deep Sea Res. Oceanogr. Abstr. 12, 845–848 (1965).
Google Scholar
Hessler, R. R. & Sanders, H. L. Faunal diversity in the deep-sea. Deep Sea Res. Oceanogr. Abstr. 14, 65–70 (1967).
Google Scholar
Grassle, J. F. & Maciolek, N. J. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139, 313–341 (1992).
Google Scholar
WoRMS Editorial Board. World register of marine species. https://www.marinespecies.org (2025).WoRDSS Editorial Board. World register of deep-sea species. https://www.deepseaspecies.org (2025).Gage, J. D. & May, R. M. A dip into the deep seas. Nature 365, 609–610 (1993).
Google Scholar
Levin, L. A. et al. Environmental influences on regional deep-sea species diversity. Annu. Rev. Ecol. Syst. 32, 51–53 (2001).
Google Scholar
Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS One 6, e22588 (2011).
Google Scholar
Bell, K. L. C., Johannes, K. N., Kennedy, B. R. C. & Poulton, S. E. How little we’ve seen: a visual coverage estimate of the deep seafloor. Sci. Adv. 11, eadp8602 (2025).
Google Scholar
Mejía-Saenz, A., Simon-Lledó, E., Partridge, L. S., Xavier, J. R. & Jones, D. O. B. Rock outcrops enhance abyssal benthic biodiversity. Deep Sea Res. I Oceanogr. Res. Pap. 195, 103999 (2023).
Google Scholar
Simon-Lledó, E. et al. Carbonate compensation depth drives abyssal biogeography in the Northeast Pacific. Nat. Ecol. Evol. 7, 1388–1397 (2023).
Google Scholar
Smith, C. R., Clark, M. R., Goetze, E., Glover, A. G. & Howell, K. L. Editorial: biodiversity, connectivity and ecosystem function across the clarion-clipperton zone: a regional synthesis for an area targeted for nodule mining. Front. Mar. Sci. 8, 797516 (2021).
Google Scholar
Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).
Google Scholar
Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).
Google Scholar
Snelgrove, P. et al. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583 (1997).
Google Scholar
McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges in the deep sea. Proc. R. Soc. B Biol. Sci. 277, 3533–3546 (2010).
Google Scholar
Valentine, J. W. & Jablonski, D. A twofold role for global energy gradients in marine biodiversity trends. J. Biogeogr. 42, 997–1005 (2015).
Google Scholar
Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).
Google Scholar
Rex, M. A. & Etter, R. J. Deep-Sea Biodiversity: Pattern and Scale (Harvard Univ. Press, 2010).Gauthier, O., Sarrazin, J. & Desbruyères, D. Measure and mis-measure of species diversity in deep-sea chemosynthetic communities. Mar. Ecol. Prog. Ser. 402, 285–302 (2010).
Google Scholar
Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 11559 (2019).
Google Scholar
Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).
Google Scholar
Laroche, O., Kersten, O., Smith, C. R. & Goetze, E. Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the Western Clarion Clipperton zone. Mol. Ecol. Resour. 29, 4588–4604 (2020).
Google Scholar
Sinniger, F. et al. Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Front. Mar. Sci. 3, 92 (2016).
Google Scholar
Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. 9, e1001177 (2011).
Google Scholar
De Vargas, C. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
Google Scholar
Lima-Mendez, G. et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
Google Scholar
Salazar, G. et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 10, 596–608 (2016).
Google Scholar
Brandt, M. I. et al. Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA. Sci. Rep. 11, 7856 (2021).
Google Scholar
Brandt, M. I. et al. An assessment of environmental metabarcoding protocols aiming at favoring contemporary biodiversity in inventories of deep-sea communities. Front. Mar. Sci. 7, 234 (2020).
Google Scholar
Gunther, B. et al. Capture by hybridization for full-length barcode-based eukaryotic and prokaryotic biodiversity inventories of deep sea ecosystems. Mol. Ecol. Resour. 22, 623–637 (2021).
Google Scholar
Brandt, M. I. et al. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 21, 1904–1921 (2021).
Google Scholar
Cordier, T. et al. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Sci. Adv. 8, eabj9309 (2022).
Google Scholar
ENA European Nucleotide Archive. Project: PRJEB39225. https://identifiers.org/ena.embl:PRJEB39225 (2025).Bett, B. J. et al. Sampler bias in the quantitative study of deep-sea meiobenthos. Mar. Ecol. Prog. Ser. 104, 197–203 (1994).
Google Scholar
Schauberger, C. et al. Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. ISME J. 15, 3455–3467 (2021).
Google Scholar
Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl. Acad. Sci. USA. 118, e2104529118 (2021).
Google Scholar
Armbrecht, L. H. et al. Ancient DNA from marine sediments: precautions and considerations for seafloor coring, sample handling and data generation. Earth Sci. Rev. 196, 102887 (2019).
Google Scholar
Lejzerowicz, F. et al. Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol. Lett. 9, 20130283 (2013).
Google Scholar
Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).
Google Scholar
Trouche, B. et al. Distribution and genomic variation of ammonia-oxidizing archaea in abyssal and hadal surface sediments. ISME Commun. 3, 133 (2023).
Google Scholar
Schauberger, C. et al. Metagenome-assembled genomes of deep-sea sediments: changes in microbial functional potential lag behind redox transitions. ISME Commun. 4, ycad005 (2024).
Google Scholar
Cosson, N., Sibuet, M. & Galeron, J. Community structure and spatial heterogeneity of the deep-sea macrofauna at three contrasting stations in the tropical Northeast Atlantic. Deep Sea Res. I Oceanogr. Res. Pap. 44, 247–269 (1997).
Google Scholar
Vincx, M. et al. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) 1–88 (Academic Press, 1994).Lins, L. et al. Toward a reliable assessment of potential ecological impacts of deep-sea polymetallic nodule mining on abyssal infauna. Limnol. Oceanogr. Methods 19, 626–650 (2021).
Google Scholar
Soto, E. H. et al. Temporal variability in polychaete assemblages of the abyssal NE Atlantic Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 57, 1396–1405 (2010).
Google Scholar
Nomaki, H. et al. Abyssal fauna, benthic microbes, and organic matter quality across a range of trophic conditions in the Western Pacific ocean. Prog. Oceanogr. 195, 102591 (2021).
Google Scholar
Good, E. et al. Detection of community-wide impacts of bottom trawl fishing on deep-sea assemblages using environmental DNA metabarcoding. Mar. Pollut. Bull. 183, 114062 (2022).
Google Scholar
Vanhove, S., Vermeeren, H. & Vanreusel, A. Meiofauna towards the South Sandwich Trench (750–6300m), focus on nematodes. Deep Sea Res. II Top. Stud. Oceanogr. 51, 1665–1687 (2004).
Google Scholar
Narayanaswamy, B. et al. in Biological Sampling in the Deep-Sea (eds. Clark, M. R., Consalvey, M. & Rowden, A. A.) 207–227 (Blackwell Publishing, 2016).Sarrazin, J. & Bignon, L. A new tool to sample hard substratum faunal communities in the deep sea.Cowart, D. A., Matabos, M., Brandt, M. I., Marticorena, J. & Sarrazin, J. Exploring environmental DNA (eDNA) to assess biodiversity of hard substratum faunal communities on the lucky strike vent field (Mid-Atlantic ridge) and investigate recolonization dynamics after an induced disturbance. Front. Mar. Sci. 6, 783 (2020).
Google Scholar
Roussel, E. G. et al. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol. Ecol. 77, 647–665 (2011).
Google Scholar
Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
Google Scholar
Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
Google Scholar
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50, 10456–10464 (2016).
Google Scholar
Andruszkiewicz, E. A., Sassoubre, L. M. & Boehm, A. B. Persistence of marine fish environmental DNA and the influence of sunlight. PLoS One 12, e0185043 (2017).
Google Scholar
Wei, N., Nakajima, F. & Tobino, T. A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. Environ. Sci. Technol. 52, 12428–12435 (2018).
Google Scholar
Mauvisseau, Q. et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ. Sci. Technol. 56, 5322–5333 (2022).
Google Scholar
Corinaldesi, C., Barucca, M., Luna, G. M. & Dell’Anno, A. Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Mol. Ecol. 20, 642–654 (2011).
Google Scholar
Armbrecht, L. et al. An optimized method for the extraction of ancient eukaryote DNA from marine sediments. Mol. Ecol. Resour. 20, 906–919 (2020).
Google Scholar
Siano, R. et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 31, 2682–2689.e7 (2021).
Google Scholar
Kirkpatrick, J. B., Walsh, E. A. & D’Hondt, S. Fossil DNA persistence and decay in marine sediment over hundred-thousand-year to million-year time scales. Geology 44, 615–618 (2016).
Google Scholar
Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. mBio 9, e00637–18 (2018).
Google Scholar
Armbrecht, L. et al. Ancient marine sediment DNA reveals diatom transition in Antarctica. Nat. Commun. 13, 5787 (2022).
Google Scholar
Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8, e56335 (2013).
Google Scholar
Cristescu, M. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).
Google Scholar
Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
Google Scholar
Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 1–20 (2017).
Google Scholar
Belser, C. et al. Integrative omics framework for characterization of coral reef ecosystems from the Tara Pacific expedition. Sci. Data 10, 326 (2023).
Google Scholar
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
Google Scholar
Stoeck, T. et al. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol. 7, 72 (2009).
Google Scholar
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4, e6372 (2009).
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
Google Scholar
Topcuoglu, B. D. et al. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front. Microbiol. 7, 1240 (2016).
Google Scholar
Gasc, C., Peyretaillade, E. & Peyret, P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 44, 4504–4518 (2016).
Google Scholar
Parisot, N., Denonfoux, J., Dugat-Bony, E., Peyret, P. & Peyretaillade, E. KASpOD–a web service for highly specific and explorative oligonucleotide design. Bioinformatics 28, 3161–3162 (2012).
Google Scholar
Marre, S. et al. Revealing microbial species diversity using sequence capture by hybridization. Microb. Genom. 7, 000714 (2021).
Google Scholar
Comtet-Marre, S., Chakoory, O. & Peyret, P. Targeted 16S rRNA gene capture by hybridization and bioinformatic analysis. Methods Mol. Biol. 2605, 187–208 (2023).
Google Scholar
Ribiere, C. et al. Targeted gene capture by hybridization to illuminate ecosystem functioning. Methods Mol. Biol. 1399, 167–182 (2016).
Google Scholar
Jaziri, F. et al. PhylOPDb: a 16S rRNA oligonucleotide probe database for prokaryotic identification. Database (Oxford) 2014, bau036 (2014).
Google Scholar
Militon, C. et al. PhylArray: phylogenetic probe design algorithm for microarray. Bioinformatics 23, 2550–2557 (2007).
Google Scholar
Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 170027 (2017).
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Guillou, L. et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
Google Scholar
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Google Scholar
Jacobsen, A. et al. FAIR principles: interpretations and implementation considerations. Data Intell. 2, 10–29 (2020).
Google Scholar
Pesant, S. et al. eDNAbyss samples provenance and environmental context – version 1 (version 1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6815677 (2022).Callahan, B. J. et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Mahe, F., Rognes, T., Quince, C., De Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).
Google Scholar
Mahé, F. MUMU: post-clustering curation tool for metabarcoding data, version 1.0.2. https://github.com/frederic-mahe/mumu (2023).Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188 (2017).
Google Scholar
Blaxter, M. et al. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. B Biol. Sci. 360, 1935–1943 (2005).
Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
Google Scholar
Antich, A., Palacin, C., Wangensteen, O. S. & Turon, X. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinformatics 22, 177 (2021).
Google Scholar
Harris, J. D. Can you bank on GenBank? Trends Ecol. Evol. 18, 317–319 (2003).
Google Scholar
Viard, F., Roby, C., Turon, X., Bouchemousse, S. & Bishop, J. Cryptic diversity and database errors challenge non-indigenous species surveys: an illustration with Botrylloides spp. in the english channel and Mediterranean sea. Front. Mar. Sci. 6, 615 (2019).
Google Scholar
Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One 8, e66643 (2013).
Google Scholar
Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).
Google Scholar
Köster, J. & Rahmann, S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).
Google Scholar
Shaiber, A. et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biol. 21, 292 (2020).
Google Scholar
Eren, A. M. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).
Google Scholar
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
Google Scholar
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
Google Scholar
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Google Scholar
Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).
Google Scholar
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
Google Scholar
Chakoory, O., Comtet-Marre, S. & Peyret, P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. Nar Genom. Bioinform. 4, lqac070 (2022).
Google Scholar
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
Google Scholar
Xue, Y. X., Lanzén, A. & Jonassen, I. Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data. Bioinformatics 36, 3365–3371 (2020).
Google Scholar
Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12, R44 (2011).
Google Scholar
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Google Scholar
Lu, J. N. & Salzberg, S. L. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 8, 124 (2020).
Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
Google Scholar
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
Google Scholar
Huang, X. Q. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).
Google Scholar
Download referencesAcknowledgementsWe express special gratitude to the scientific direction and scientific committee of the “Pourquoi Pas les Abysses?” project and to the board of the French Oceanographic Fleet for allowing unusual use of boat time (including transits) through the AMIGO series and to the mission chiefs of all the crews who kindly sampled for the project. This work was supported by Ifremer during the development of prototypes and protocols in “Pourquoi Pas les Abysses?” and by Genoscope, the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and France Génomique (ANR-10-INBS-09) for high-throughput sequencing in eDNAbyss (AP2016–228 France Génomique). We also thank the HADES-ERC Advanced grant (#669947) and the EU Atlas project (678760) and benefited from State aid managed by the National Research Agency under France 2030 for the LIFEDEEPER project (ANR-22-POCE-0007) and the ANR Cerberus (ANR-17-CE02-0003) for samples gathered during the associated cruises and the project MarEEE (MUSE, Montpellier, ANR-16-IDEX-0006) for the improvement of the original bioinformatic pipeline. We warmly acknowledge all the crews, mission chiefs and colleagues who contributed gathering this widespread sampling collection: Covadonga Orejas, Martin Ludvigsen and Eva Ramirez-Llodra, Jean-Paul Justiniano, Yves Fouquet and Ewan Pelleter, Ewen Raugel, Wayne Crawford, Cécile Guieu, Sophie Bonnet, Sophie Arnaud-Haond, François Bonhomme, Pierre-Marie Sarradin, Carlos Duarte, Franck Wenzhoefer, Mathilde Cannat, Norbert Franck, Marie-Anne Cambon, Stéphane Hourdez and Didier Jollivet. We would like gratefully acknowledge the entire Genoscope technical team: Julie Batisse, Odette Beluche, Isabelle Bordelais, Elodie Brun, Maria Dubois, Corinne Dumont, Zineb El Hajji, Barbara Estrada, Thomas Guérin, Chadia Hamon, Sandrine Lebled, Patricia Lenoble and Marine Lepretre, Claudine Louesse, Ghislaine Magdelenat, Eric Mahieu, Claire Milani, Sophie Oztas, Emilie Payen, Emmanuelle Petit, Muriel Ronsin and Benoît Vacherie, for their invaluable work in producing the data. We thank the editorial team and the referees for the improvements suggested to previous versions of this manuscript.Author informationAuthor notesBabett GüntherPresent address: GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, GermanyThese authors contributed equally: Julie Poulain, Caroline BelserThe Genoscope technical team members are listed in the Acknowledgements section.Authors and AffiliationsMARBEC, Univ Montpellier, IFREMER, IRD, CNRS, Sète, FranceSophie Arnaud-Haond, Cathy Liautard-Haag, Miriam I. Brandt, Annaëlle Caillarec-Joly, Florence Cornette, Christine Felix, Babett Günther, Adrien Tran Lu Y & Sandrine VazUniv Brest, Ifremer, BEEP, F-29280, Plouzané, FranceBlandine Trouche, Karine Alain, Johanne Aubé, Marie-Anne Cambon, Valérie Cueff-Gauchard, Sandra Fuchs, Françoise Lesongeur, Loïs Maignien, Marjolaine Matabos, Emmanuelle Omnes, Florence Pradillon, Jozée Sarrazin & Daniela ZeppiliISEM, Univ Montpellier, CNRS, IRD, Montpellier, FranceFrançois Bonhomme & Frédérique ViardNORCE, Norwegian Research Centre AS, Climate & Environment department, Bergen, NorwayMiriam I. BrandtIfremer, IRSI, SeBiMER Service de Bioinformatique de l’Ifremer, Plouzané, FrancePatrick DurandSorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144 Adaptation and diversity in the marine environment, Place Georges Teissier, Roscoff, FranceColomban de Vargas, Didier Jollivet & Anne-Sophie Le PortResearch Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, 3 rue Michel-Ange, Paris, 75016, FranceColomban de Vargas & Nicolas HenryCNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, FranceNicolas HenryUMR 8222 LECOB CNRS-Sorbonne Université, Observatoire Océanologique de Banyuls, Avenue du Fontaulé, 66650, Banyuls-sur-mer, FranceStéphane HourdezUniversité Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, FranceSophie Comtet-Marre & Pierre PeyretHadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, DenmarkClemens SchaubergerInstituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, ChileOsvaldo UlloaGénomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, FranceFrédérick Gavory, Jean-Marc Aury, Patrick Wincker, Julie Poulain & Caroline BelserGenoscope, Institut François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, FranceShahinaz Gaz, Julie Guy, E’Krame Jacoby, Pedro H. Oliveira & Gaëlle SamsonEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UKStéphane PesantAuthorsSophie Arnaud-HaondView author publicationsSearch author on:PubMed Google ScholarBlandine TroucheView author publicationsSearch author on:PubMed Google ScholarCathy Liautard-HaagView author publicationsSearch author on:PubMed Google ScholarKarine AlainView author publicationsSearch author on:PubMed Google ScholarJohanne AubéView author publicationsSearch author on:PubMed Google ScholarFrançois BonhommeView author publicationsSearch author on:PubMed Google ScholarMiriam I. BrandtView author publicationsSearch author on:PubMed Google ScholarAnnaëlle Caillarec-JolyView author publicationsSearch author on:PubMed Google ScholarMarie-Anne CambonView author publicationsSearch author on:PubMed Google ScholarFlorence CornetteView author publicationsSearch author on:PubMed Google ScholarValérie Cueff-GauchardView author publicationsSearch author on:PubMed Google ScholarPatrick DurandView author publicationsSearch author on:PubMed Google ScholarColomban de VargasView author publicationsSearch author on:PubMed Google ScholarChristine FelixView author publicationsSearch author on:PubMed Google ScholarSandra FuchsView author publicationsSearch author on:PubMed Google ScholarBabett GüntherView author publicationsSearch author on:PubMed Google ScholarNicolas HenryView author publicationsSearch author on:PubMed Google ScholarStéphane HourdezView author publicationsSearch author on:PubMed Google ScholarDidier JollivetView author publicationsSearch author on:PubMed Google ScholarAnne-Sophie Le PortView author publicationsSearch author on:PubMed Google ScholarFrançoise LesongeurView author publicationsSearch author on:PubMed Google ScholarLoïs MaignienView author publicationsSearch author on:PubMed Google ScholarSophie Comtet-MarreView author publicationsSearch author on:PubMed Google ScholarMarjolaine MatabosView author publicationsSearch author on:PubMed Google ScholarEmmanuelle OmnesView author publicationsSearch author on:PubMed Google ScholarPierre PeyretView author publicationsSearch author on:PubMed Google ScholarFlorence PradillonView author publicationsSearch author on:PubMed Google ScholarJozée SarrazinView author publicationsSearch author on:PubMed Google ScholarClemens SchaubergerView author publicationsSearch author on:PubMed Google ScholarAdrien Tran Lu YView author publicationsSearch author on:PubMed Google ScholarOsvaldo UlloaView author publicationsSearch author on:PubMed Google ScholarSandrine VazView author publicationsSearch author on:PubMed Google ScholarDaniela ZeppiliView author publicationsSearch author on:PubMed Google ScholarFrédérique ViardView author publicationsSearch author on:PubMed Google ScholarFrédérick GavoryView author publicationsSearch author on:PubMed Google ScholarShahinaz GazView author publicationsSearch author on:PubMed Google ScholarJulie GuyView author publicationsSearch author on:PubMed Google ScholarE’Krame JacobyView author publicationsSearch author on:PubMed Google ScholarPedro H. OliveiraView author publicationsSearch author on:PubMed Google ScholarGaëlle SamsonView author publicationsSearch author on:PubMed Google ScholarJean-Marc AuryView author publicationsSearch author on:PubMed Google ScholarPatrick WinckerView author publicationsSearch author on:PubMed Google ScholarStéphane PesantView author publicationsSearch author on:PubMed Google ScholarJulie PoulainView author publicationsSearch author on:PubMed Google ScholarCaroline BelserView author publicationsSearch author on:PubMed Google ScholarConsortiaGenoscope Technical TeamContributionsS.A.H., C.B., J.P., S.C.M. and F.P. wrote the manuscript with the help of F.V., S.H. and M.M. All coauthors reviewed the manuscript. S.A.H., F.P., J.S., C.dV., J.P. and P.W. conceptualized the project. S.A.H. and P.W. obtained funding and administrated the project. B.T., C.L.H., J.A., M.I.B., M.C., S.F., V.C.G., D.J., A.S.L., F.P., J.S., P.M.S., C.S., M.C., A.T.L., S.V., F.B., D.Z., O.U. and J.P., as well as all mission chiefs, contributed to the collection of the environmental samples. B.T., C.L.H., K.A., J.A., M.I.B., F.C., V.C.G., B.G., C.F., S.F., F.L., E.O., G.T.T. and S.A.H. performed the DNA extractions. J.P., C.B., M.I.B. and C.L.H. developed the amplicon sequencing protocol, and S.C.M. and P.P. developed the C.B.H. protocol. J.P., K.L., F.G., P.H.O. and all the Genoscope technical teams were involved in the library preparations and sequencing tasks for metagenomics and metabarcoding, and data curation, S.C.M. and PP for the libraries and sequencing for C.B.H. C.B. and J.M.A. developed Data validation and visualization softwares. S.A.H., B.T., M.V., J.M.A., J.P. and C.B. contributed to Validation. M.I.B., A.C.J., B.G., B.T., L.M., P.D., S.A.H., N.H., K.A., F.V., S.C.M. and P.P. developed the bioinformatics pipelines and/or performed the data analysis. S.P., C.B., S.A.H. and S.V. provided the metadata and data. C.B.H., S.G., J.G., G.S., E.K.J., S.P., S.C.M. and P.D. managed the data to be transmitted to a public repository.Corresponding authorsCorrespondence to
Sophie Arnaud-Haond or Julie Poulain.Ethics declarations
Competing interests
The authors declare no competing interests.
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary informationRights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissionsAbout this articleCite this articleArnaud-Haond, S., Trouche, B., Liautard-Haag, C. et al. Omics exploration of deep-sea biodiversity: data from the “Pourquoi Pas les Abysses?” and eDNAbyss projects.
Sci Data (2025). https://doi.org/10.1038/s41597-025-06009-1Download citationReceived: 17 May 2024Accepted: 22 September 2025Published: 20 December 2025DOI: https://doi.org/10.1038/s41597-025-06009-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy shareable link to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative More