More stories

  • in

    Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains

    1.Ramírez-Llodrà, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Hein, J. R. & Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. in Treatise on Geochemistry (eds. Holland, H. & Turekian, K.) vol. 13 273–291 (Elsevier Ltd., 2014).3.Hein, J. R. Manganese nodules. Encyclop. Mar. Geosci. 1, 408–412 (2016).
    Google Scholar 
    4.Kuhn, T., Wegorzewski, A. V., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. in Deep-Sea Mining (ed. Sharma, R.) 23–63 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.5.Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion–Clipperton Zone. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    6.Purser, A. et al. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr. Biol. 26, R1268–R1269 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vanreusel, A., Hilário, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).ADS 
    Article 

    Google Scholar 
    9.Aberle, N. & Witte, U. Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: In situ pulse-chase experiments using 13C-labelled phytodetritus. Mar. Ecol. Prog. Ser. 251, 37–47 (2003).ADS 
    Article 

    Google Scholar 
    10.Sweetman, A. K. & Witte, U. Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar. Ecol. Prog. Ser. 355, 73–84 (2008).ADS 
    Article 

    Google Scholar 
    11.van Oevelen, D., Soetaert, K. & Heip, C. H. R. Carbon flows in the benthic food web of the Porcupine Abyssal Plain: The (un)importance of labile detritus in supporting microbial and faunal carbon demands. Limnol. Oceanogr. 57, 645–664 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Dunlop, K. M. et al. Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input. Limnol. Oceanogr. 61, 1956–1968 (2016).ADS 
    Article 

    Google Scholar 
    13.de Jonge, D. S. W. et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446 (2020).Article 

    Google Scholar 
    14.Smith, C. R., De Léo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.van der Zee, E. M. et al. How habitat-modifying organisms structure the food web of two coastal ecosystems. Proc. R. Soc. B Biol. Sci. 283, 20152326 (2016).Article 
    CAS 

    Google Scholar 
    17.Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediment (Springer, 2009).
    Google Scholar 
    18.Hall, S. J. & Raffaelli, D. G. Food webs: Theory and reality. Adv. Ecol. Res. 24, 187–239 (1993).Article 

    Google Scholar 
    19.Mahatma, R. Meiofauna communities of the Pacific nodule province: Abundance, diversity and community structure. PhD-Thesis (Carl von Ossietzky Universität Oldenburg, 2009).20.McIntyre, A. Ecoloy of marine meiobenthos. Biol. Rev. 44, 245–288 (1969).Article 

    Google Scholar 
    21.Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, Southeast Pacific, revisited 7 years after the experimental impact. Deep. Res. II(48), 3809–3839 (2001).ADS 

    Google Scholar 
    22.Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Roberts, D. & Moore, H. M. Tentacular diversity in deep-sea deposit-feeding holothurians: Implications for biodiversity in the deep sea. Biodivers. Conserv. 6, 1487–1505 (1997).Article 

    Google Scholar 
    24.Buhl-Mortensen, L. et al. Habitat complexity and bottom fauna composition at different scales on the continental shelf and slope of northern Norway. Hydrobiologia 685, 191–219 (2012).Article 

    Google Scholar 
    25.Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Hasemann, C. et al. Effects of dropstone-induced habitat heterogeneity on Arctic deep-sea benthos with special reference to nematode communities. Mar. Biol. Res. 9, 229–245 (2013).Article 

    Google Scholar 
    27.Riehl, T., Wölfl, A. C., Augustin, N., Devey, C. W. & Brandt, A. Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proc. Natl. Acad. Sci. USA. 117, 15450–15459 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Kidd, R. B., Huggett, J. & Huggett, Q. J. Rock debris on abyssal plains in the northeast Atlantic: A comparison of epibenthic sledge hauls and photographic surveys. Oceanol. Acta 4, 99–104 (1981).
    Google Scholar 
    29.Gooday, A. J., Goineau, A. & Voltski, I. Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion-Clipperton Fracture Zone: A preliminary description and comparison with North Atlantic dropstone assemblages. Mar. Biodivers. 45, 391–412 (2015).Article 

    Google Scholar 
    30.Ziegler, A. F., Smith, C. R., Edwards, K. F. & Vernet, M. Glacial dropstones: Islands enhancing seafloor species richness of benthic megafauna in West Antarctic Peninsula fjords. Mar. Ecol. Prog. Ser. 583, 1–14 (2017).ADS 
    Article 

    Google Scholar 
    31.Schulz, M., Bergmann, M., von Juterzenka, K. & Soltwedel, T. Colonisation of hard substrata along a channel system in the deep Greenland Sea. Polar Biol. 33, 1359–1369 (2010).Article 

    Google Scholar 
    32.Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    33.Ilan, M., Ben-Eliahu, M. N. & Galil, B. Three deep water sponges from the eastern Mediterranean and their associated Fauna. Ophelia 39, 45–54 (1994).Article 

    Google Scholar 
    34.Beaulieu, S. E. Colonization of habitat islands in the deep sea: Recruitment to glass sponge stalks. Deep. Res. I(48), 1121–1137 (2001).Article 

    Google Scholar 
    35.Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).ADS 
    Article 

    Google Scholar 
    36.Huston, M. A. Introduction. in Biological Diversity. The coexistence of species on changing landscapes 1–11 (Cambridge University Press, 1994).37.Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article 

    Google Scholar 
    38.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    39.Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. B Biol. Sci. 268, 2039–2045 (2001).CAS 
    Article 

    Google Scholar 
    40.Warren, P. H. Spatial and temporal variation in the structure of a freshwater food web. Oikos 55, 299–311 (1989).Article 

    Google Scholar 
    41.Van Dover, C. L. et al. Biodiversity loss from deep-sea mining. Nat. Geosci. 10, 464–465 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    42.Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 00195 (2018).Article 

    Google Scholar 
    43.Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).Article 

    Google Scholar 
    44.Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909-3912.e3 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Ramírez-Llodrà, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).ADS 
    Article 

    Google Scholar 
    47.International Seabed Authority. Regulations on prospecting and exploration for polymetallic nodules in the Area. (2000).48.Stratmann, T. et al. Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences 15, 4131–4145 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Soetaert, K. & van Oevelen, D. Modeling food web interactions in benthic deep-sea ecosystems: A practical guide. Oceanography 22, 128–143 (2009).Article 

    Google Scholar 
    50.van Oevelen, D. et al. Quantifying food web flows using linear inverse models. Ecosystems 13, 32–45 (2010).Article 

    Google Scholar 
    51.International Seabed Authority. Draft environmental management plan for the Clarion-Clipperton Zone I. 1–18 (International Seabed Authority, 2011).52.Jung, H.-S., Lee, C.-B., Jeong, K.-S. & Kang, J.-K. Geochemical and mineralogical characteristics in two-color core sediments from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific. Mar. Geol. 144, 295–309 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Wedding, L. M. et al. From principles to practice: A spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).CAS 
    Article 

    Google Scholar 
    54.Hannides, A. K. & Smith, C. R. The Northeast Pacific abyssal plain. in Biogeochemistry of Marine Systems (eds. Black, K. D. & Shimmield, G. B.) 208–237 (Blackwell Publishing, 2003).55.International Seabed Authority. A geological model of polymetallic nodule deposits in the Clarion Clipperton Fracture Zone. ISA technical study No. 6. (2010).56.Schoening, T., Jones, D. O. B. & Greinert, J. Compact-morphology-based polymetallic nodule delineation. Sci. Rep. 7, 13338 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Anonymous. Google Earth. https://www.google.com/earth/ (2018).58.Klein, H. Near-bottom currents in the deep Peru Basin, DISCOL experimental area. Dtsch. Hydrogr. Z. 45, 31–42 (1993).Article 

    Google Scholar 
    59.Bharatdwaj, K. Reliefs of the ocean basins. in Physical Geography (Oceanography) 1–53 (Discovery Publishing House, 2006).60.Glasby, G. P. Manganese: Predominant role of nodules and crusts. in Marine Geochemistry (eds. Schulz, H. D. & Zabel, M.) 371–427 (Springer-Verlag, 2006). https://doi.org/10.1007/3-540-32144-6_11.61.Haeckel, M., König, I., Riech, V., Weber, M. E. & Suess, E. Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep. Res. I(48), 3713–3736 (2001).ADS 

    Google Scholar 
    62.Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Thiel, H. Use and protection of the deep sea: An introduction. Deep. Res. II(48), 3427–3431 (2001).ADS 

    Google Scholar 
    64.Anthropogenic disturbances in the deep sea. (Frontiers Media SA, 2019). https://doi.org/10.3389/978-2-88963-288-6.65.Assessing environmental impacts of deep-sea mining – revisiting decade-old benthic disturbances in Pacific nodule areas. Biogeosciences (2018).66.Martínez Arbizu, P. & Haeckel, M. RV SONNE Fahrtbericht/Cruise Report SO239. EcoResponse assessing the ecology, connectivity and resilience of polymetallic nodule field systems. vol. 25 (2015).67.Boetius, A. RV SONNE SO242/2. Cruise Report/Fahrtbericht. DISCOL revisited. Guayaquil: 28 August 2015: Guayaquil: 1 October 2015. SO242/2: JPI Oceans Ecological Aspects of Deep-Sea Mining. (2015).68.Horton, T. et al. World Register of Marine Species (WoRMS). http://www.marinespecies.org (2018). https://doi.org/10.14284/170.69.Ahnert, A. & Schriever, G. Response of abyssal copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep. Res. II 48, 3779–3794 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Radziejewska, T. Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. Int. Rev. Hydrobiol. 87, 457–477 (2002).Article 

    Google Scholar 
    71.Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep. Res. II 45, 55–81 (1998).ADS 
    Article 

    Google Scholar 
    72.Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).ADS 
    Article 

    Google Scholar  More

  • in

    Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment

    Our analysis suggests that, over 465 ha of mangrove area, almost 83% of aboveground tree biomass were harvested annually for commercial timber purposes, using a keyhole harvest pattern (Fig. S3b). Yet after 25 years of natural and human-induced regeneration, both field- and satellite-based assessments reveal that biomass carbon stocks and canopy cover had fully recovered. Our approach using space-for-time substitution indicates that manual selective logging did not significantly affect soil carbon stocks and rates of annual carbon burial. While the differences in soil carbon stock between sites may be due to the diverse hydro-geomorphic settings8,14 the mangrove root mass in the top 1-m were not disturbed by manual logging activities. Similar situation was found in Tampa Bay, Florida where peat formation from root mass has enhance carbon sequestration15. These findings reduce uncertainty around the effects of mangrove forest management on the long-term functional capacity of blue carbon storage and provide evidence that managed mangrove ecosystems may deliver nature-based climate solutions.Recovery of forest structure, canopy cover and species diversityAlong carbon stocks, forest structure and species diversity also demonstrated recovery (Fig. 2, Table S1). Seedling densities were significantly higher in 5 year-old mangrove plots than in plots at any other stage (F(5,13) = 28.321, p  More

  • in

    Characterization of metapopulation of Ellobium chinense through Pleistocene expansions and four covariate COI guanine-hotspots linked to G-quadruplex conformation

    Genetic diversity of E. chinense based on COIThe partial fragment of COI, 595 bp in length, was sequenced from 113 E. chinense individuals collected from the eleven sites in South Korea (Table 1). The resultant COI sequences were aligned together with 27 COI individual sequences12,13,14 retrieved from the NCBI GenBank (Table 1). The latter consists of 26 from six collection sites in South Korea and one from a Japanese site. Hence, 140 COI sequences of E. chinense were analyzed, representing 18 collection sites at the nine populations in South Korea and Japan (Table 1). Based on the alignment set (no indels) of these 140 COI sequences (Data S1), we obtained a total of 58 COI haplotypes, of which 43 were singleton, appeared in only a single site. The novel 41 out of 58 COI haplotypes obtained were registered under the GenBank accession nos. MW265437–MW265477 (Table S2). According to the sequence alignment of the 58 COI haplotypes (Fig. S2; Data S2), there were 71 polymorphic sites and 31 parsimoniously informative sites (Fig. 1C), among which four adenine/guanine hotspots at 207, 282, 354, and 420 were ascertained to articulately divide the haplotypes of E. chinense into four meaningful phylogenetic groups: (a) A(207)–A(282)–A(354)–A(420), (b) A–A–G–A, (c) G–A–G–A, and (d) G–G–G–G.Table 1 List of collection sites and the number of individuals of Ellobium chinense with genetic markers applied to each of the nine populations in South Korea and Japan.Full size tableBased on the COI haplotype sequence alignment (Fig. S2; Data S2), we reconstructed a ML tree using Ellobium aurisjudae as an outgroup. In the resultant tree topology (Fig. S3), it was confirmed that E. chinense appeared as a monophyletic group, but no distinction between the haplotypes from each geographical population was observed. To define detailed relationships among the COI haplotypes, the outgroup was removed and then an unrooted ML tree (Fig. 1D) was reconstructed. The resultant tree showed two distinctive phylogenetic groups, namely A–A–A–A and the other groups (including at least one G or more in the four positions), regardless of collection localities. The A–A–A–A group included 35 of the 58 COI haplotypes. The others could be divided into the A–A–G–A group (N = 12: ECH11, 12, 15, 16, 18, 23, 27, 28, 32, 33, 36, and 49), the G–A–G–A group (N = 1: ECH35), and the G–G–G–G group (N = 8: ECH01, 07, 19, 29, 41, 45, 48, and 54).As shown in Table S2 and Fig. S3, ECH01 was a dominant member of the G–G–G–G group with the most individuals (27), which appeared across all the South Korean populations examined here. As shown in Fig. 1D, the A–A–A–A group is likely to be an ancestral type because it was most frequently found in the other species within Ellobiidae (unpublished data) and its haplotype diversity was the highest among the four genetic groups. Given that the G–G–G–G group exhibited much lower haplotype diversity than the A–A–A–A group, and was not observed in any other ellobiid species (unpublished data), it is reasonable to suggest that the G–G–G–G group is a derived rather than an ancestral type. Thus, as shown in Fig. 1D, it is conceivable that unidirectional and stepwise A → G transition events from A–A–A–A to G–G–G–G may have been occurred in E. chinense. Within the A–A–A–A and A–A–G–A groups, parsimoniously informative A → G transition events were found at the sites 120 (ECH12, 15, 16, 18, 23, 38, 40, 44, and 49) and 183 (ECH3, 9, 10, 20, 43, 50, and 55), with a few exceptional cases of G → A at the sites 216 (ECH12, 15, 16, 18, and 23), 372 (ECH12, 15, and 23), and 429 (ECH37, 38, 46, and 47; ECH19 found in the G–G–G–G group).As indicated in Table 2, the nucleotide diversity (π) is relatively low among the nine populations of E. chinense, ranging from 0.00749 (population BG) to 0.01042 (SC) with an average of 0.00865, whereas the haplotype diversity was very high across these populations, ranging from 0.924 (YG) to 1.000 (SC and JB) with an average of 0.939). All values of Tajima’s D and Fu’s FS were congruently negative, with averages of − 1.87100 (P  More

  • in

    Vertical and seasonal changes in soil carbon pools to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau

    1.Hemes, K. S. et al. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric. For. Meteorol. 268, 202–214 (2019).ADS 
    Article 

    Google Scholar 
    2.Sun, L. et al. Wetland-atmosphere methane exchange in Northeast China: A comparison of permafrost peatland and freshwater wetlands. Agric. For. Meteorol. 249, 239–249 (2018).ADS 
    Article 

    Google Scholar 
    3.Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65(10), 934–941 (2014).Article 

    Google Scholar 
    4.Havril, T., Tóth, Á., Molson, J. W., Galsa, A. & Mádl-Szőnyi, J. Impacts of predicted climate change on groundwater flow systems: Can wetlands disappear due to recharge reduction?. J. Hydrol. 563, 1169–1180 (2018).ADS 
    Article 

    Google Scholar 
    5.Ye, X. C., Meng, Y. K., Xu, L. G. & Xu, C. Y. Net primary productivity dynamics and associated hydrological driving factors in the floodplain wetland of China’s largest freshwater lake. Sci. Total Environ. 659, 302–313 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Shen, G., Yang, X., Jin, Y., Xu, B. & Zhou, Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Ind. 104, 48–58 (2019).Article 

    Google Scholar 
    7.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    8.Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).CAS 
    Article 

    Google Scholar 
    9.Fujisaki, K. et al. From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Glob. Change Biol. 21(7), 2773–2786 (2015).ADS 
    Article 

    Google Scholar 
    10.Gregorich, E. G., Beare, M. H., Mckim, U. F. & Skjemstad, J. O. Chemical and biological characteristics of physically uncomplexed organic matter. Soil. Sci. Soc. Am. J. 70, 975–985 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).CAS 
    Article 

    Google Scholar 
    12.Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109–126 (2016).CAS 
    Article 

    Google Scholar 
    13.Yuan, G. et al. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. Soil Tillage Res. 209, 104958 (2021).Article 

    Google Scholar 
    14.Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).Article 

    Google Scholar 
    15.Wang, Y., Fu, B., Lü, Y. & Chen, L. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. CATENA 85(1), 58–66 (2011).CAS 
    Article 

    Google Scholar 
    16.Wang, G. X., Li, Y. S., Wang, Y. B. & Wu, Q. B. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143(1–2), 143–152 (2008).CAS 

    Google Scholar 
    17.Guo, J., Wang, B., Wang, G., Wu, Y. & Cao, F. Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China. CATENA 171, 450–459 (2018).CAS 
    Article 

    Google Scholar 
    18.Cheng, X. et al. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 145(3–4), 177–184 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Zhou, L. et al. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China. Clean-Soil Air Water 43(4), 569–576 (2015).CAS 
    Article 

    Google Scholar 
    20.Yang, W., Zhao, H. & Cheng, X. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of eastern China. Ecol. Eng. 61(12), 50–57 (2013).Article 

    Google Scholar 
    21.Shao, X. X., Yang, W. Y. & Wu, M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay Tidal Flat Wetland. PLoS ONE 10(11), e0142677 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Zhu, J. et al. Multicriteria decision analysis for monitoring ecosystem service function of the Three-River Headwaters region of the Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 187(6), 355 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Li, Z. et al. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau, China. Sci. Rep. 9(1), 1–14 (2019).ADS 

    Google Scholar 
    24.Wang, G., Wang, Y., Li, Y. & Cheng, H. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. CATENA 70(3), 506–514 (2007).Article 

    Google Scholar 
    25.Wu, P. et al. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 7(1), 837 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Li, B., Dong, S. C., Jiang, X. B. & Li, Z. H. Analysis on the driving factors of grassland desertification in Zoige wetland. J. Soil Water Conserv. 15, 112–115 (2008).
    Google Scholar 
    27.Peng, F., You, Q., Xue, X., Guo, J. & Wang, T. Effects of rodent-induced land degradation on ecosytem carbon fluxes in alpine meadow in the qinghai-tibet plateau, china. Solid Earth 6(1), 303–310 (2015).ADS 
    Article 

    Google Scholar 
    28.Bai, J. et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Soil Res. 48(8), 730–736 (2010).CAS 
    Article 

    Google Scholar 
    29.Jia, B., Niu, Z., Wu, Y., Kuzyakov, Y. & Li, X. G. Waterlogging increases organic carbon decomposition in grassland soils. Soil Biol. Biochem. 148, 107927 (2020).CAS 
    Article 

    Google Scholar 
    30.Liu, W. et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 7(3), 035401 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    31.Wu, X. et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet plateau, China. Permafrost Periglac. Process. 23(2), 162–169 (2012).Article 

    Google Scholar 
    32.Rui, Y. et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China. J. Soils Sediments 11(6), 903 (2011).CAS 
    Article 

    Google Scholar 
    33.Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    34.Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Alhassan, A. R. M., Ma, W. W., Li, G., Wu, J. Q. & Chen, G. P. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau. Ecol. Evol. 8(23), 11999–12010 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Wu, J. Q. et al. Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland. Ecol. Eng. 145, 105666 (2020).Article 

    Google Scholar 
    37.Butenschoen, O., Scheu, S. & Eisenhauer, N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol. Biochem. 43(9), 1902–1907 (2011).CAS 
    Article 

    Google Scholar 
    38.Fan, J., Cao, Y., Yan, Y., Lu, X. & Wang, X. Freezingthawing cycles effect on the water soluble organic carbon, nitrogen and microbial biomass of alpine grassland soil in Northern Tibet. Afr. J. Microbiol. Res. 6(3), 562–567 (2012).CAS 

    Google Scholar 
    39.Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. CATENA 96, 83–89 (2012).CAS 
    Article 

    Google Scholar 
    40.Wu, J. et al. Responses of CH4 flux and microbial diversity to changes in rainfall amount and frequencies in a wet meadow in the Tibetan Plateau. CATENA 202, 105253 (2021).CAS 
    Article 

    Google Scholar 
    41.Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total Environ. 625, 782–791 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    43.Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Dekker, S. C. The influence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Beljkaš, B. et al. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accred. Qual. Assur. 15(10), 555–561 (2010).Article 
    CAS 

    Google Scholar 
    45.McKie, V. A. & MccleAry, B. V. A novel and rapid colorimetric method for measuring TP and phytic acid in foods and animal feeds. J. AOAC Int. 99(3), 738–743 (2016).CAS 
    Article 

    Google Scholar 
    46.Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10, 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Li, S. et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Tillage Res. 155, 289–297 (2016).Article 

    Google Scholar 
    48.Nie, X. J., Zhang, J. H., Cheng, J. X., Gao, H. & Guan, Z. M. Effect of soil redistribution on various organic carbons in a water-and tillage-eroded soil. Soil Tillage Res. 155, 1–8 (2016).Article 

    Google Scholar 
    49.Xu, C. Y. et al. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Sci. Rep. 11(1), 1–12 (2021).Article 
    CAS 

    Google Scholar 
    50.dos Reis Ferreira, C. et al. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Tillage Res. 198, 104533 (2020).Article 

    Google Scholar 
    51.Luan, J. et al. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet Plateau. Ecol. Eng. 64, 262–268 (2014).Article 

    Google Scholar 
    52.Li, J. et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 175, 281–290 (2018).Article 

    Google Scholar 
    53.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165–173 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Wang, J., Bai, J., Zhao, Q., Lu, Q. & Xia, Z. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Sci. Rep. 6(1), 1–8 (2016).Article 
    CAS 

    Google Scholar 
    55.Huo, L. et al. Effect of wetland reclamation on soil organic carbon stability in peat mire soil around Xingkai Lake in Northeast China. Chin. Geogr. Sci. 28(2), 325–336 (2018).Article 

    Google Scholar 
    56.Norton, J. B., Olsen, H. R., Jungst, L. J., Legg, D. E. & Horwath, W. R. Soil carbon and nitrogen storage in alluvial wet meadows of the Southern Sierra Nevada Mountains, USA. J. Soils Sediments 14(1), 34–43 (2014).CAS 
    Article 

    Google Scholar 
    57.Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).CAS 

    Google Scholar 
    58.Enriquez, A. S., Chimner, R. A., Cremona, M. V., Diehl, P. & Bonvissuto, G. L. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetlands Ecol. Manage. 23(3), 439–451 (2015).CAS 
    Article 

    Google Scholar 
    59.Li, X. G., Rengel, Z. & Mapfumo, E. Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290(1), 269–282 (2007).CAS 
    Article 

    Google Scholar 
    60.Kemmitt, S. J., Wright, D., Goulding, K. W. & Jones, D. L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38(5), 898–911 (2006).CAS 
    Article 

    Google Scholar 
    61.Sihi, D., Inglett, P. W., Gerber, S. & Inglett, K. S. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Glob. Change Biol. 24(1), e259–e274 (2018).ADS 
    Article 

    Google Scholar 
    62.Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17(2), 798–818 (2011).ADS 
    Article 

    Google Scholar 
    63.Sun, Z. et al. Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis. Plant Soil 443(1–2), 463–471 (2019).CAS 
    Article 

    Google Scholar 
    64.Wang, H. et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition. Sci. Rep. 6, 27097 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3(4), 395–398 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    67.Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu, Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ. 647, 1230–1238 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Meier, I. C., Finzi, A. C. & Phillips, R. P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 106, 119–128 (2017).CAS 
    Article 

    Google Scholar 
    69.Strand, L. T., Abrahamsen, G. & Stuanes, A. O. Leaching from organic matter-rich soils by rain of different qualities: I Concentrations. J. Environ. Qual. 31(2), 547–556 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Liu, S. et al. The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover. Soil Biol. Biochem. 77, 197–202 (2014).CAS 
    Article 

    Google Scholar 
    71.Liu, C. P. & Sheu, B. H. Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. For. Ecol. Manage. 172(2–3), 315–325 (2003).Article 

    Google Scholar 
    72.Biederbeck, V. O., Janzen, H. H., Campbell, C. A. & Zentner, R. P. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biol. Biochem. 26(12), 1647–1656 (1994).CAS 
    Article 

    Google Scholar 
    73.García-Díaz, A., Marqués, M. J., Sastre, B. & Bienes, R. Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from central Spain. Sci. Total Environ. 621, 387–397 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Yuan, Y., Zhao, Z., Li, X., Wang, Y. & Bai, Z. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 613, 1196–1206 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Yang, X. et al. Labile organic carbon fractions and carbon pool management index in a 3-year field study with biochar amendment. J. Soils Sediments 18(4), 1569–1578 (2018).CAS 
    Article 

    Google Scholar 
    76.Soucémarianadin, L. N. et al. Environmental factors controlling soil organic carbon stability in French forest soils. Plant Soil 426(1–2), 267–286 (2018).Article 
    CAS 

    Google Scholar 
    77.Mueller, T., Jensen, L. S., Nielsen, N. E. & Magid, J. Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol. Biochem. 30(5), 561–571 (1998).CAS 
    Article 

    Google Scholar 
    78.Oades, J. M., Vassallo, A. M., Waters, A. G. & Wilson, M. A. Characterization of organic matter in particle size and density fractions from a red-brown earth by solid state 13C NMR. Soil Res. 25(1), 71–82 (1987).CAS 
    Article 

    Google Scholar 
    79.Li, Q. et al. Consistent temperature sensitivity of labile soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. Appl. Soil Ecol. 117, 32–37 (2017).ADS 
    Article 

    Google Scholar 
    80.Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Change Biol. 23(10), 4430–4439 (2017).ADS 
    Article 

    Google Scholar 
    81.Yang, K. & Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 265, 280–294 (2019).ADS 
    Article 

    Google Scholar 
    82.Oztas, T. & Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. CATENA 52(1), 1–8 (2003).CAS 
    Article 

    Google Scholar 
    83.Yang, Y. et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant Soil 323(1–2), 153–162 (2009).CAS 
    Article 

    Google Scholar 
    84.Kreyling, J., Beierkuhnlein, C. & Jentsch, A. Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic Appl. Ecol. 11(1), 65–75 (2010).Article 

    Google Scholar 
    85.Guglielmin, M., Evans, C. J. E. & Cannone, N. Active layer thermal regime under different vegetation conditions in permafrost areas: A case study at Signy Island (Maritime Antarctica). Geoderma 144(1–2), 73–85 (2008).ADS 
    Article 

    Google Scholar 
    86.Herrmann, A. & Witter, E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biol. Biochem. 34(10), 1495–1505 (2002).CAS 
    Article 

    Google Scholar 
    87.Zhu, E. et al. Leaching of organic carbon from grassland soils under anaerobiosis. Soil Biol. Biochem. 141, 107684 (2020).CAS 
    Article 

    Google Scholar 
    88.Tian, J., Branfireun, B. A. & Lindo, Z. Global change alters peatland carbon cycling through plant biomass allocation. Plant Soil 455, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    89.Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    90.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).Article 
    CAS 

    Google Scholar 
    91.Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Sun, T., Wang, Y., Hui, D., Jing, X. & Feng, W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biol. Biochem. 148, 107905 (2020).CAS 
    Article 

    Google Scholar 
    93.Li, X. G., Li, F. M., Zed, R. & Zhan, Z. Y. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 139(1–2), 98–105 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Singh, A. K., Rai, A. & Singh, N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277, 41–50 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    95.Ghosh, A. et al. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Tillage Res. 177, 134–144 (2018).Article 

    Google Scholar  More

  • in

    Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs

    1.Agrawal, A. A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology 101, e02924 (2020).PubMed 
    Article 

    Google Scholar 
    2.Agrawal, A. A., Conner, J. K. & Rasmann, S. in Evolution After Darwin: The First 150 Years (eds Bell, M. et al.) 243–268 (Sinauer Associates, 2010).3.Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).Article 

    Google Scholar 
    4.Grime, J. P. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems (John Wiley & Sons, 2012).5.Fry, J. D. Detecting ecological trade-offs using selection experiments. Ecology 84, 1672–1678 (2003).Article 

    Google Scholar 
    6.Grubb, P. J. Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecol. Divers. 9, 3–33 (2016).Article 

    Google Scholar 
    7.Kneitel, J. M. & Chase, J. M. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).Article 

    Google Scholar 
    8.Tilman, D. Plant Strategies and the Dynamics and Structure of Plant Communities (Princeton Univ. Press, 1988).9.Lusk, C. H. & Jorgensen, M. A. The whole-plant compensation point as a measure of juvenile tree light requirements. Funct. Ecol. 27, 1286–1294 (2013).Article 

    Google Scholar 
    10.Ho, M. D., Rosas, J. C., Brown, K. M. & Lynch, J. P. Root architectural tradeoffs for water and phosphorus acquisition. Funct. Plant Biol. 32, 737–748 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Forister, M. L. & Jenkins, S. H. A neutral model for the evolution of diet breadth. Am. Nat. 190, E40–E54 (2017).PubMed 
    Article 

    Google Scholar 
    12.Laughlin, D. C., Strahan, R. T., Adler, P. B. & Moore, M. M. Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecol. Lett. 21, 411–421 (2018).PubMed 
    Article 

    Google Scholar 
    13.Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2012).Article 

    Google Scholar 
    14.Mason, N. W. H. et al. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J. Ecol. 100, 678–689 (2012).CAS 
    Article 

    Google Scholar 
    15.Gompert, Z. et al. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol. Ecol. 24, 2777–2793 (2015).PubMed 
    Article 

    Google Scholar 
    16.Laliberté, E. Below-ground frontiers in trait-based plant ecology. New Phytol. 213, 1597–1603 (2017).PubMed 
    Article 

    Google Scholar 
    17.Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).PubMed 
    Article 

    Google Scholar 
    20.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).Article 

    Google Scholar 
    23.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    25.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Kytöviita, M.-M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25, 13–24 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).Article 

    Google Scholar 
    30.Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases below-ground niche breadth in grass communities. Plant Ecol. 218, 385–394 (2017).Article 

    Google Scholar 
    31.Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).Article 

    Google Scholar 
    32.Guerrero-Ramírez, N. R. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2021).Article 

    Google Scholar 
    33.Valverde-Barrantes, O. J., Freschet, G. T., Roumet, C. & Blackwood, C. B. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562–1573 (2017).PubMed 
    Article 

    Google Scholar 
    34.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Fort, F. & Freschet, G. T.Plant ecological indicator values as predictors of fine-root trait variations. J. Ecol. 108, 1565–1577 (2020).Article 

    Google Scholar 
    36.Purcell, A. S. T., Lee, W. G., Tanentzap, A. J. & Laughlin, D. C. Fine root traits are correlated with flooding duration while aboveground traits are related to grazing in an ephemeral wetland. Wetlands 39, 291–302 (2019).Article 

    Google Scholar 
    37.Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).Article 

    Google Scholar 
    38.Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).Article 

    Google Scholar 
    39.Chen, W., Zeng, H., Eissenstat, D. M. & Guo, D. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob. Ecol. Biogeogr. 22, 846–856 (2013).Article 

    Google Scholar 
    40.Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 105, 1182–1196 (2017).Article 

    Google Scholar 
    41.Ostonen, I. et al. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 215, 977–991 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Wang, R. et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits. Funct. Ecol. 32, 29–39 (2018).Article 

    Google Scholar 
    43.Craine, J. M. & Lee, W. G. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134, 471–478 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).Article 

    Google Scholar 
    45.Zadworny, M. et al. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob. Change Biol. 23, 1218–1231 (2017).Article 

    Google Scholar 
    46.Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bennett, A. E., Grussu, D., Kam, J., Caul, S. & Halpin, C. Plant lignin content altered by soil microbial community. New Phytol. 206, 166–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Moore, B. D. & Johnson, S. N. Get tough, get toxic, or get a bodyguard: identifying candidate traits conferring belowground resistance to herbivores in grasses. Front. Plant Sci. 7, 1925 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).Article 

    Google Scholar 
    50.De la Riva, E. G. et al. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant Soil 424, 35–48 (2018).CAS 
    Article 

    Google Scholar 
    51.Hacke, U. G., Sperry, J. S. & Pittermann, J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl. Ecol. 1, 31–41 (2000).Article 

    Google Scholar 
    52.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    53.Wang, B. et al. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186, 514–525 (2010).PubMed 
    Article 

    Google Scholar 
    54.Grubb, P. in Handbook of Vegetation Science Vol. 3 (ed. White, J.) 595–621 (Dr. W. Junk Publishers, 1985).55.Laughlin, D. C. et al. Quantifying multimodal trait distributions improves trait-based predictions of species abundances and functional diversity. J. Veg. Sci. 26, 46–57 (2015).Article 

    Google Scholar 
    56.Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).Article 

    Google Scholar 
    57.Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    58.Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    59.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    60.Kumordzi, B. B. et al. Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct. Ecol. 33, 1771–1784 (2019).Article 

    Google Scholar 
    61.Velázquez, E., Paine, C. E. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).Article 

    Google Scholar 
    62.Butterfield, B. J. Environmental filtering increases in intensity at both ends of climatic gradients, though driven by different factors, across woody vegetation types of the southwest USA. Oikos 124, 1374–1382 (2015).Article 

    Google Scholar 
    63.Iversen, C. M. et al. A global fine-root ecology database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).PubMed 
    Article 

    Google Scholar 
    64.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    65.Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: what proportion of the species need to be measured? Appl. Veg. Sci. 10, 91–96 (2007).Article 

    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    68.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    69.Jamil, T., Ozinga, W. A., Kleyer, M. & Ber Braak, C. J. F. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000 (2013).Article 

    Google Scholar 
    70.Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: a comparison among community-weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2018).
    Google Scholar 
    71.R Development Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).73.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    74.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    75.Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of regression models performance. R package version 0.4.2 (2019).76.Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001 (2020).77.Roberts, D. W. labdsv: Ordination and multivariate analysis for ecology. R package version 1.8.0 https://CRAN.R-project.org/package=labdsv (2016).78.Anderson, D. R. Model Based Inference in the Life Sciences: a Primer on Evidence (Springer Science & Business Media, 2008). More

  • in

    Protected area networks do not represent unseen biodiversity

    1.Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv. Lett. https://doi.org/10.1111/conl.12627 (2019).Article 

    Google Scholar 
    3.IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Advance Unedited Version. (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).4.Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73. https://doi.org/10.1038/nature13947 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Convention on Biological Diversity. Strategic plan for biodiversity 2011–2020 and the Aichi targets, (2010).6.UNEP-WCMC, IUCN & NGS. (eds UNEP-WCMC, IUCN, & NGS) (Cambridge UK; Gland, Switzerland; and Washington, D.C., USA, 2018).7.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244. https://doi.org/10.1126/science.1257484 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337. https://doi.org/10.1111/conl.12158 (2015).Article 

    Google Scholar 
    9.Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241. https://doi.org/10.1126/science.aav6886 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Erdelen, W. R. Shaping the fate of life on earth: The post-2020 global biodiversity framework. Global Pol. 11, 347–359. https://doi.org/10.1111/1758-5899.12773 (2020).Article 

    Google Scholar 
    11.Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. in Principles of Conservation Biology (eds M. J. Groom, G. K. Meffe, & C. R. Carroll) Ch. 14, 507 – 549 (2006).12.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–252 (2000).CAS 
    Article 

    Google Scholar 
    13.Thomassen, H. A. et al. Mapping evolutionary process: A multi-taxa approach to conservation prioritization. Evol. Appl. 4, 397–413. https://doi.org/10.1111/j.1752-4571.2010.00172.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Kalamandeen, M. & Gillson, L. Demything, “wilderness”: implications for protected area designation and management. Biodivers. Conserv. 16, 165–182. https://doi.org/10.1007/s10531-006-9122-x (2006).Article 

    Google Scholar 
    15.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, 1–6. https://doi.org/10.1371/journal.pone.0008273 (2009).CAS 
    Article 

    Google Scholar 
    16.Jenkins, C. N., Houtan, K. S. V., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. U.S.A. 112, 5081–5086. https://doi.org/10.1073/pnas.1418034112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Fajardo, J., Lessmann, J., Bonaccorso, E., Devenish, C. & Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 9, e114367. https://doi.org/10.1371/journal.pone.0114367 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737. https://doi.org/10.1146/annurev.ecolsys.38.091206.095737 (2007).Article 

    Google Scholar 
    19.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 987. https://doi.org/10.1126/science.1246752 (2014).CAS 
    Article 

    Google Scholar 
    20.Allen, C. R., Pearlstine, L. G., Wojcik, D. P. & Kitchens, W. M. The spatial distribution of diversity between disparate taxa: Spatial correspondence between mammals and ants across South Florida, USA. Landsc. Ecol. 16, 453–464 (2001).Article 

    Google Scholar 
    21.Shokri, M. R., Gladstone, W. & Kepert, A. Annelids, arthropods or molluscs are suitable as surrogate taxa for selecting conservation reserves in estuaries. Biodivers. Conserv. 18, 1117–1130 (2009).Article 

    Google Scholar 
    22.Kremen, C. et al. Terrestrial arthropod assemblages: Their use in conservation planning. Conserv. Biol. 7, 796–808 (1993).Article 

    Google Scholar 
    23.Kohlmann, B., Solís, Á., Elle, O., Soto, X. & Russo, R. Biodiversity, conservation, and hotspot atlas of Costa Rica: A dung beetle perspective (Coleoptera: Scarabaeidae: Scarabaeinae). Zootaxa 1457, 1–34. https://doi.org/10.11646/zootaxa.1457.1.1 (2007).Article 

    Google Scholar 
    24.Chefaoui, R. M., Hortal, J. & Lobo, J. M. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol. Conserv. 122, 327–338. https://doi.org/10.1016/j.biocon.2004.08.005 (2005).Article 

    Google Scholar 
    25.Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50. https://doi.org/10.1038/s41467-018-07916-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Mckinney, M. L. High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 13, 1273–1281. https://doi.org/10.2307/2641951 (1999).Article 

    Google Scholar 
    27.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conservation 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    28.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2 (2006).Article 

    Google Scholar 
    30.Hein, L. The economic value of the Pollination service, a review across scales. Open Ecol. J. 2, 74–82 (2009).Article 

    Google Scholar 
    31.Briones, M. J. I. Soil fauna and soil functions: A jigsaw puzzle. Front. Environ. Sci. 2, 7. https://doi.org/10.3389/fenvs.2014.00007 (2014).Article 

    Google Scholar 
    32.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655. https://doi.org/10.1016/j.biocon.2011.07.024 (2011).Article 

    Google Scholar 
    33.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    34.Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B Biol. Sci. 287, 20202166. https://doi.org/10.1098/rspb.2020.2166 (2020).Article 

    Google Scholar 
    35.D’Amen, M. et al. Protected areas and insect conservation: Questioning the effectiveness of Natura 2000 network for saproxylic beetles in Italy. Anim. Conserv. 16, 370–378. https://doi.org/10.1111/acv.12016 (2013).Article 

    Google Scholar 
    36.Martín-Piera, F. Area networks for conserving Iberian insects: A case study of dung beetles (col., Scarabaeoidea). J. Insect Conserv. 5, 233–252 (2001).Article 

    Google Scholar 
    37.Gonzalez-Maya, J. F., Viquez, R. L., Belant, J. L. & Ceballos, G. Effectiveness of protected areas for representing species and populations of terrestrial mammals in Costa Rica. PLoS ONE 10, e0124480. https://doi.org/10.1371/journal.pone.0124480 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Ceballos, G. Conservation priorities for mammals in megadiverse Mexico: The efficiency of reserve networks. Ecol. Appl. 17, 569–578 (2007).Article 

    Google Scholar 
    39.Linke, S., Turak, E. & Nel, J. Freshwater conservation planning: The case for systematic approaches. Freshw. Biol. 56, 6–20. https://doi.org/10.1111/j.1365-2427.2010.02456.x (2011).Article 

    Google Scholar 
    40.Escalante, T. et al. Evaluation of five taxa as surrogates for conservation prioritization in the Transmexican Volcanic Belt Mexico. J. Nat. Conserv. 54, 125800. https://doi.org/10.1016/j.jnc.2020.125800 (2020).Article 

    Google Scholar 
    41.Mateo, R. G. et al. The mossy north: An inverse latitudinal diversity gradient in European bryophytes. Sci. Rep. 6, 25546. https://doi.org/10.1038/srep25546 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lessmann, J. et al. Freshwater vertebrate and invertebrate diversity patterns in an Andean-Amazon basin: Implications for conservation efforts. Neotrop. Biodivers. 2, 99–114. https://doi.org/10.1080/23766808.2016.1222189 (2016).Article 

    Google Scholar 
    43.Similä, M., Kouki, J., Mönkkönen, M., Sippola, A.-L. & Huhta, E. Co-variation and indicators of species diversity: Can richness of forest-dwelling species be predicted in northern boreal forests?. Ecol. Ind. 6, 686–700. https://doi.org/10.1016/j.ecolind.2005.08.028 (2006).Article 

    Google Scholar 
    44.Báldi, A. Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl. Ecol. 4, 589–593. https://doi.org/10.1078/1439-1791-00193 (2003).Article 

    Google Scholar 
    45.Lessmann, J., Fajardo, J., Bonaccorso, E. & Bruner, A. Cost-effective protection of biodiversity in the western Amazon. Biol. Conserv. 235, 250–259. https://doi.org/10.1016/j.biocon.2019.04.022 (2019).Article 

    Google Scholar 
    46.Rodrigues, A. S. L. & Gaston, K. J. How large do reserve networks need to be?. Ecol. Lett. 4, 602–609 (2001).Article 

    Google Scholar 
    47.Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manag. 232, 387–396. https://doi.org/10.1016/j.jenvman.2018.11.086 (2018).Article 

    Google Scholar 
    48.Cuesta, F. et al. Priority areas for biodiversity conservation in mainland Ecuador. Neotrop. Biodivers. 3, 93–106. https://doi.org/10.1080/23766808.2017.1295705 (2017).Article 

    Google Scholar 
    49.Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B: Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2006).Article 

    Google Scholar 
    50.Bauer, D. M. & Wing, I. S. Economic consequences of pollinator declines: A synthesis. Agric. Resour. Econ. Rev. 39, 368–383. https://doi.org/10.1017/S1068280500007371 (2010).Article 

    Google Scholar 
    51.Kevan, P. G. & Phillips, T. P. The economic impacts of pollinator declines: An approach to assessing the consequences. Conserv. Ecol. 5, 8. https://doi.org/10.5751/ES-00272-050108 (2001).Article 

    Google Scholar 
    52.Hérivaux, C. & Grémont, M. Valuing a diversity of ecosystem services: The way forward to protect strategic groundwater resources for the future?. Ecosyst. Serv. 35, 184–193. https://doi.org/10.1016/j.ecoser.2018.12.011 (2019).Article 

    Google Scholar 
    53.Haefele, M., Loomis, J. & Bilmes, L. J. in Valuing U.S. National Parks and Programs. America’s Best Investment (eds Linda J. Bilmes & John B. Loomis) 16–44 (Earthscan from Routledge, 2019).54.Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379. https://doi.org/10.1111/ddi.12096 (2013).Article 

    Google Scholar 
    55.Cayuela, L. et al. Species distribution modeling in the tropics: Problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).Article 

    Google Scholar 
    56.Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x (2005).Article 

    Google Scholar 
    57.Thornhill, A. H. et al. Spatial phylogenetics of the native California flora. BMC Biol. 15, 96. https://doi.org/10.1186/s12915-017-0435-x (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U.S.A. 112, 7519–7523. https://doi.org/10.1073/pnas.1502408112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.SINAC. IV Informe de Pais al Convenio sobre la Diversidad Biológica. Vol. 4 (GEF-PNUD, 2009).60.Llorente Bousquets, J. & Ocegueda, S. in Conocimiento actual de la biodiversidad Vol. 1 (eds Jorge Llorente Bousquets & Susana Ocegueda) Ch. 11, 283–322 (CONABIO, 2008).61.Sabrosky, C. W. in The Yearbook of Agriculture Vol. 2 Ch. 1, 1–37 (United States Department of Agriculture, 1952).62.Hanson, P. Los insectos invasores de Costa Rica. Revista Biocenosis 22, 51–60 (2009).
    Google Scholar 
    63.March, I. J. & Martínez, M. (eds Instituto Mexicano de Tecnología del Agua et al.) 1–73 (México, Jiutepec, Morelos, 2007).64.van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate Species Distribution Models. Ecography 39, 542–552. https://doi.org/10.1111/ecog.01509 (2016).Article 

    Google Scholar 
    65.Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).Article 

    Google Scholar 
    66.Velazco, S. J. E., Svenning, J. C., Ribeiro, B. R. & Laureto, L. M. O. On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Divers. Distrib. 27, 512–523. https://doi.org/10.1111/ddi.13215 (2020).Article 

    Google Scholar 
    67.Frederico, R. G., Zuanon, J. & De Marco, P. Amazon protected areas and its ability to protect stream-dwelling fish fauna. Biol. Conserv. 219, 12–19. https://doi.org/10.1016/j.biocon.2017.12.032 (2018).Article 

    Google Scholar 
    68.Rosser, N., Phillimore, A. B., Huertas, B., Willmott, K. R. & Mallet, J. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Lin. Soc. 105, 479–497 (2012).Article 

    Google Scholar 
    69.Camero, E. R. & Lobo, J. M. The distribution of the species of Eurysternus Dalman, 1824 (Coleoptera: Scarabaeidae) in America: potential distributions and the locations of areas to be surveyed. Trop. Conserv. Sci. 5, 225–244 (2012).Article 

    Google Scholar 
    70.Soberón, J. & Peterson, A. T. Biodiversity informatics: Managing and applying primary biodiversity data. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 689–698 (2004).Article 

    Google Scholar 
    71.Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751. https://doi.org/10.1111/2041-210X.13152 (2019).Article 

    Google Scholar 
    72.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).73.Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modeling. Version 3.3–7, (2016).74.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models. With applications in R. (Cambridge University Press, 2017).75.Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).MathSciNet 
    Article 

    Google Scholar 
    76.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    77.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    78.Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010 (2007).Article 
    PubMed 

    Google Scholar 
    79.Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    80.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021. https://doi.org/10.1029/2011JG001708 (2011).ADS 
    Article 

    Google Scholar 
    81.Lin, D., Foster, D. P. & Ungar, L. H. VIF regression: A fast regression algorithm for large data. J. Am. Stat. Assoc. 106, 232–247. https://doi.org/10.1198/jasa.2011.tm10113 (2011).MathSciNet 
    CAS 
    Article 
    MATH 

    Google Scholar 
    82.Phillips, S. J. et al. Sample selection bias and presence-only species distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).Article 

    Google Scholar 
    83.Collevatti, R. G. et al. A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol. Ecol. Notes 21, 5845–5863. https://doi.org/10.1111/mec.12071 (2012).Article 

    Google Scholar 
    84.Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in the representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    85.IUCN. The IUCN Red List of Threatened Species. Version 2019.2, (2019).86.Ardron, J. A., Possingham, H. P. & Klein, C. J. Marxan Good Practices Handbook. 155 (Pacific Marine Analysis and Research Association, 2008).87.Prioritizr: Systematic Conservation Prioritization in R. Version 4.1.1. Available at https://github.com/prioritizr/prioritizr (2019).88.gurobi: Gurobi Optimizer 8.0 interface. R package version 80–1 v. 8.1 (2018). More

  • in

    Irradiation-induced sterility in an egg parasitoid and possible implications for the use of biological control in insect eradication

    1.DeBach, P. & Rosen, D. Biological Control by Natural Enemies (Cambridge University Press, 1991).
    Google Scholar 
    2.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.Walker, J. T. S., Suckling, D. M. & Wearing, C. H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annu. Rev. Entomol. 62, 231–248 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T. & Loomans, A. J. M. Assessing risks of releasing exotic biological control agents of arthropod pests. Annu. Rev. Entomol. 51, 609–634 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Bale, J. S., van Lenteren, J. C. & Bigler, F. Biological control and sustainable food production. Phil. Trans. R. Soc. Lond. B 363, 761–776 (2008).Article 
    CAS 

    Google Scholar 
    6.Sheppard, A. W. et al. A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: A crisis in the making?. Biocontrol News Inf. 24, 91N-108N (2003).
    Google Scholar 
    7.Barratt, B. I. P., Blossey, B. & Hokkanen, H. M. Post-release evaluation of non-target effects of biological control agents. In Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment (eds Bigler, F. et al.) 166–186 (CABI Publishing, 2006).Chapter 

    Google Scholar 
    8.Barratt, B. I. P., Moeed, A. & Malone, L. A. Biosafety assessment protocols for new organisms in New Zealand: Can they apply internationally to emerging technologies?. Environ. Impact Assess. Rev. 26, 339–358 (2006).Article 

    Google Scholar 
    9.Klassen, W. & Curtis, C. F. History of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 3–38 (Springer, 2021).
    Google Scholar 
    10.Hendrichs, J., Kenmore, P., Robinson, A. S. & Vreyson, M. J. B. Area-wide integrated pest management (AW-IPM): principles, practice and prospects. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 3–34 (Springer, 2007).
    Google Scholar 
    11.Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).Article 

    Google Scholar 
    12.Brockerhoff, E. G., Liebhold, A. M., Richardson, B. & Suckling, D. M. Eradication of invasive forest insects: Concepts, methods, costs and benefits. NZ J. For. Sci. 40, S117–S135 (2010).
    Google Scholar 
    13.Suckling, D. M., Tobin, P. C., McCullough, D. G. & Herms, D. A. Combining tactics to exploit Allee effects for eradication of alien insect populations. J. Econ. Entomol. 105, 1–13 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hendrichs, J., Enkerlin, W. R. & Pereira, R. Invasive insect pests: challenges and the role of the sterile insect technique in their prevention, containment, and eradication. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management 885–922 (Springer, 2021).Chapter 

    Google Scholar 
    15.Nagel, P. & Peveling, R. Environment and the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 499–519 (Springer, 2021).
    Google Scholar 
    16.Knipling, E. F. The Basic Principles of Insect Population Suppression and Management (U.S. Department of Agriculture, 1979).
    Google Scholar 
    17.Barclay, H. J. Models for pest control: Complementary effects of periodic releases of sterile pests and parasitoids. Theor. Popul. Biol. 32, 76–89 (1987).Article 

    Google Scholar 
    18.Soller, M. & Lanzrein, B. Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). J. Insect Physiol. 42, 471–481 (1996).Article 
    CAS 

    Google Scholar 
    19.Tillinger, N. A., Hoch, G. & Schopf, A. Effects of parasitoid associated factors of the endoparasitoid Glyptapanteles liparidis (Hymenoptera: Braconidae). Eur. J. Entomol. 101, 243–249 (2004).Article 

    Google Scholar 
    20.Tunçbilek, A. S., Canpolat, U. & Ayvaz, A. Effects of gamma radiation on suitability of stored cereal pest eggs and the reproductive capability of the egg parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera). Biocontrol Sci. Techn. 19, 179–191 (2009).Article 

    Google Scholar 
    21.Lynch, L. D. et al. Insect biological control and non-target effects: a European perspective. In Evaluating Indirect Ecological Effects of Biological Control (eds Wajnberg, E. et al.) 99–126 (Springer, 2001).
    Google Scholar 
    22.van Lenteren, J. C. V. et al. Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48, 3–38 (2003).Article 

    Google Scholar 
    23.Horrocks, K. J., Avila, G. A., Holwell, G. I. & Suckling, D. M. Integrating sterile insect technique with the release of sterile classical biocontrol agents for eradication: Is the Kamikaze Wasp Technique feasible?. Biocontrol 65, 257–271 (2020).Article 

    Google Scholar 
    24.Welsh, T. J., Stringer, L. D., Caldwell, R., Carpenter, J. E. & Suckling, D. M. Irradiation biology of male brown marmorated stink bugs: Is there scope for the sterile insect technique?. Int. J. Radiat. Biol. 93, 1357–1363 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    25.Suckling, D. M. et al. The competitive mating of irradiated brown marmorated stink bugs, Halyomorpha halys, for the sterile insect technique. Insects 10, 411 (2019).PubMed Central 
    Article 

    Google Scholar 
    26.Larivière, M.-C. Fauna of New Zealand (Manaaki Whenua Press, 1995).
    Google Scholar 
    27.Martin, N. A. Green vegetable bug – Nezara viridula. Interesting insects and other invertebrates. New Zealand arthropod factsheet number 47 https://nzacfactsheets.landcareresearch.co.nz/factsheet/InterestingInsects/Green-vegetable-bug—Nezara-viridula.html (2018). Accessed 16 Sept 2020.28.Powell, J. E. & Shepard, M. Biology of Australian and United States strains of Trissolcus basalis, a parasitoid of the green vegetable bug Nezara viridula. Austr. Ecol. 7, 181–186 (1982).Article 

    Google Scholar 
    29.Cantón-Ramos, J. M. & Callejón-Ferre, Á. J. Raising Trissolcus basalis for the biological control of Nezara viridula in greenhouses of Almería (Spain). Afr. J. Agric. Res. 5, 3207–3212 (2010).
    Google Scholar 
    30.Loch, A. D. & Walter, G. H. Mating behavior of Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae): Potential for outbreeding in a predominantly inbreeding species. J. Insect Behav. 11, 2 (2002).
    Google Scholar 
    31.Johns, H. F. & Cunningham, J. R. The interaction of single beams of x and gamma rays with a scattering medium. In The Physics of Radiology 349–350 (Charles C Thomas, 1983).
    Google Scholar 
    32.Bin, F., Vinson, S. B., Strand, M. R., Colazza, S. & Jones, W. A. Source of an egg kairomone for Trissolcus basalis, a parasitoid of Nezara viridula. Physiol. Entomol. 18, 7–15 (1993).Article 

    Google Scholar 
    33.Mahmoud, A. M. A. & Lim, U. T. Evaluation of cold-stored eggs of Dolycoris baccarum (Hemiptera: Pentatomidae) for parasitization by Trissolcus nigripedius (Hymenoptera: Scelionidae). Biol. Control 43, 287–293 (2007).Article 

    Google Scholar 
    34.Haye, T. et al. Fundamental host range of Trissolcus japonicus in Europe. J. Pest Sci. 93, 171–182 (2020).Article 

    Google Scholar 
    35.Cusumano, A. et al. First extensive characterization of the venom gland from an egg parasitoid: Structure, transcriptome and functional role. J. Insect Physiol. 107, 68–80 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    36.Bundy, C. S. & McPherson, R. M. Morphological examination of stink bug (Heteroptera: Pentatomidae) eggs on cotton and soybeans, with a key to genera. Ann. Entomol. Soc. Am. 93, 616–624 (2000).Article 

    Google Scholar 
    37.Favetti, B. M., Butnariu, A. R. & Doetzer, A. K. Storage of Euschistus heros eggs (Fabricius) (Hemiptera: Pentatomidae) in liquid nitrogen for parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop. Entomol. 43, 291–293 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412–425 (1995).Article 

    Google Scholar 
    39.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    40.Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    41.Chapman, T., Miyatake, T., Smith, H. K. & Partridge, L. Interactions of mating, egg production and death rates in females of the Mediterranean fruit fly, Ceratitis capitata. Proc. R. Soc. Lond. B 265, 1879–1894 (1998).Article 
    CAS 

    Google Scholar 
    42.Grosch, D. S. & Sullivan, R. L. The quantitative aspects of permanent and temporary sterility induced in female Habrobracon by x-rays and β radiation. Radiat. Res. 1, 294–320 (1954).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.Colazza, S. & Wajnberg, E. Effects of host egg mass size on sex ratio and oviposition sequence of Trissolcus basalis (Hymenoptera: Scelionidae). Environ. Entomol. 27, 329–336 (1998).Article 

    Google Scholar 
    44.Rosi, M. C., Isidoro, N., Colazza, S. & Bin, F. Source of the host marking pheromone in the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). J. Insect Physiol. 47, 989–995 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article 

    Google Scholar 
    46.Kuske, S. et al. Dispersal and persistence of mass released Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in non-target habitats. Biol. Control 27, 181–193 (2003).Article 

    Google Scholar 
    47.Draz, K. A., Tabikha, R. M., El-Aw, M. A. & Darwish, H. F. Impact of gamma radiation doses on sperm competitiveness, fecundity and morphometric characters of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephiritidae). J. Radiat. Res. Appl. Sci. 9, 352–362 (2016).Article 
    CAS 

    Google Scholar 
    48.Ali, A., Rashid, M. A., Huang, Q. Y. & Lei, C.-L. Effect of UV-A radiation as an environmental stress on the development, longevity, and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 23, 17002–17007 (2016).Article 
    CAS 

    Google Scholar 
    49.Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions 16, 401–414 (2014).Article 

    Google Scholar 
    51.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species?. PLoS ONE 7, e48157 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Colunga-Garcia, M., Magarey, R. A., Haack, R. A., Gage, S. H. & Qi, J. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework. Ecol. Appl. 20, 303–310 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Myers, J. H., Savoie, A. & van Randen, E. Eradication and pest management. Annu. Rev. Entomol. 43, 471–491 (1998).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Lance, D. R. & McInnis, D. O. Biological basis of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 69–94 (Springer, 2021).
    Google Scholar 
    55.Godfray, H. C. J. Oviposition behaviour. In Parasitoids: Behavioural and Evolutionary Ecology Vol. 67 83–150 (Princeton University Press, 1994).Chapter 

    Google Scholar 
    56.Ravuiwasa, K. T., Lu, K.-H., Shen, T.-C. & Hwang, S.-Y. Effects of irradiation on Planococcus minor (Hemiptera: Pseudococcidae). J. Econ. Entomol. 102, 1774–1780 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Bloem, S., Bloem, K. A. & Knight, A. L. Oviposition by sterile codling moths, Cydia pomonella (Lepidoptera: Tortricidae) and control of wild populations with combined releases of sterile moths and egg parasitoids. J. Entomol. Soc. 95, 99–109 (1998).
    Google Scholar 
    58.Hasaballah, A. I. Impact of gamma irradiation on the development and reproduction of Culex pipiens (Diptera; Culicidae). Int. J. Radiat. Biol. 94, 844–849 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Sagarra, L. A., Vincent, C. & Stewart, R. K. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bull. Entomol. Res. 91, 363–367 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Bertin, A., Pavinato, V. A. C. & Parra, J. R. P. Effects of intraspecific hybridization on the fitness of the egg parasitoid Trichogramma galloi. Biocontrol 63, 555–563 (2018).Article 

    Google Scholar 
    61.Bloem, S., Bloem, K. A., Carpenter, J. E. & Calkins, C. O. Inherited sterility in codling moth (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on insect fecundity, fertility, and control. Ann. Entomol. Soc. Am. 92, 222–229 (1999).Article 

    Google Scholar 
    62.Bloem, S., Carpenter, J. E. & Hofmeyr, J. H. Radiation biology and inherited sterility in false codling moth (Lepidoptera:Tortricidae). J. Econ. Entomol. 96, 1724–1731 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.El-Kholy, E. M. S. Biological and biochemical effects of vitamin ‘c’ on the normal and irradiated mediterranean fruit fly, Ceratitis capitata (wied). J. Radiat. Res. Appl. Sci. 2, 197–212 (2009).
    Google Scholar 
    64.Rempoulakis, P., Castro, R., Nemny-Lavy, E. & Nestel, D. Effects of radiation on the fertility of the Ethiopian fruit fly, Dacus ciliatus. Entomol. Exp. Appl. 155, 117–122 (2015).Article 

    Google Scholar 
    65.Würgler, F. E. & Lütolf, H.-U. Radiosensitivity of oocytes of Drosophila I. sensitivity of class-a oocytes of triploid and diploid females. Int. J. Radiat. Biol. 21, 455–463 (1972).
    Google Scholar 
    66.Field, S. A. Patch exploitation, patch-leaving and pre-emptive patch defence in the parasitoid wasp Trissolcus basalis (Insecta: Scelionidae). Ethology 104, 323–338 (1998).Article 

    Google Scholar 
    67.Sked, S. L. & Calvin, D. D. Temporal synchrony between Macrocentrus cingulum (Hymenoptera: Braconidae) with its preferred host, Ostrinia nubilalis (Lepidoptera: Crambidae). Environ. Entomol. 34, 344–352 (2005).Article 

    Google Scholar 
    68.Jiang, N., Zhou, G., Overholt, W. A., Muchugu, E. & Schulthess, F. The temporal correlation and spatial synchrony in the stemborer and parasitoid system of Coast Kenya with climate effects. Ann. Soc. Entomol. Fr. 42, 381–387 (2006).Article 

    Google Scholar 
    69.Whitten, M. & Mahon, R. Misconceptions and constraints. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 601–626 (Springer, 2021).
    Google Scholar 
    70.Lee, Y. J. & Ducoff, H. S. Radiation-enhanced resistance to oxygen: A possible relationship to radiation-enhanced longevity. Mech. Ageing Dev. 27, 101–109 (1984).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Suckling, D. M., Wee, S. L. & Pedley, R. Assessing competitive fitness of irradiated painted apple moth Teia anartoides (Lepidoptera: Lymantriidae). N.Z. Plant Prot. 57, 171–176 (2004).
    Google Scholar 
    72.Wee, S. L. et al. Effects of substerilizing doses of gamma radiation on adult longevity and level of inherited sterility in Teia anartoides (Lepidoptera: Lymantriidae). J. Econ. Entomol. 98, 732–738 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    73.Vilca Mallqui, K. S., Vieira, J. L., Guedes, R. N. C. & Gontijo, L. M. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). J. Econ. Entomol. 107, 860–866 (2014).Article 

    Google Scholar 
    74.Monroy Kuhn, J. M. & Korb, J. Editorial overview: Social insects: Aging and the re-shaping of the fecundity/longevity trade-off with sociality. Curr. Opin. Insect Sci. 16, 7–10 (2016).
    Google Scholar 
    75.Blacher, P., Huggins, T. J. & Bourke, A. F. G. Evolution of ageing, costs of reproduction and the fecundity–longevity trade-off in eusocial insects. Proc. R. Soc. B-Biol. Sci. 284, 20170380 (2017).Article 

    Google Scholar 
    76.Flatt, T. Survival costs of reproduction in Drosophila. Exp. Gerontol. 46, 369–375 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt, E. & Nechols, J. R. The influence of host deprivation and host source on the reproductive biology and longevity of the squash bug egg parasitoid Gryon penssylvanicum (Ashmead) (Hymenoptera: Scelionidae). Biol. Control 3, 148–154 (1993).Article 

    Google Scholar 
    78.Ramesh, B. & Manickavasagam, S. Tradeoff between longevity and fecundity in relation to host availability in a thelytokous oophagous parasitoid, Trichogramma brasiliensis Ashmead (Trichogrammatidae: Hymenoptera). Int. J. Trop. Insect Sci. 23, 207–210 (2003).Article 

    Google Scholar 
    79.Gurr, G. M. & Kvedaras, O. L. Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control 52, 198–207 (2010).Article 

    Google Scholar 
    80.Knipling, E. F. Principles of Insect Parasitism Analyzed from New Perspectives: Practical Implications for Regulating Insect Populations by Biological Means (United States Department of Agriculture, 1992).
    Google Scholar 
    81.Orozco, D., Domínguez, J., Reyes, J., Villaseñor, A. & Gutiérrez, J. M. SIT and biological control of Anastrepha fruit flies in Mexico. in Proceedings of the 6th International Fruit Fly Symposium 245–249 (Isteg Scientific Publications, 2002).82.Wong, T. T. Y., Ramadan, M. M., Herr, J. C. & McInnis, D. O. Suppression of a Mediterranean fruit fly (Diptera: Tephritidae) population with concurrent parasitoid and sterile fly releases in Kula, Maui, Hawaii. J. Econ. Entomol. 85, 1671–1681 (1992).Article 

    Google Scholar 
    83.Cossentine, J. E. & Jensen, L. B. M. Releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in apple orchards under a sterile codling moth release program. Biol. Control 18, 179–186 (2000).Article 

    Google Scholar 
    84.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Acceptability and suitability of eggs of false codling moth (Lepidoptera: Tortricidae) from irradiated parents to parasitism by Trichogrammatoidea cryptophlebiae (Hymenoptera: Trichogrammatidae). Biol. Control 30, 351–359 (2004).Article 

    Google Scholar 
    85.Carpenter, J. E., Bloem, S. & Hofmeyr, J. H. Area-wide control tactics for the false codling moth Thaumatotibia leucotreta in South Africa: a potential invasive species. In Area-Wide Control of Insect Pests (eds Vreysen, M. J. B. et al.) 351–359 (Springer, 2007).
    Google Scholar 
    86.Faúndez, E. I. & Rider, D. A. The brown marmorated stink bug Halyomorpha halys (Stål, 1855) (Heteroptera: Pentatomidae) in Chile. Arquivos Entomol. 17, 305–307 (2017).
    Google Scholar 
    87.Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 90, 1033–1043 (2017).Article 

    Google Scholar 
    88.Kiwifruit Vine Health. KVH information sheet: BMSB risk update January 2019 (Kiwifruit Vine Health, 2019).89.Vandervoet, T. F., Bellamy, D. E., Anderson, D. & MacLellan, R. Trapping for early detection of the brown marmorated stink bug, Halyomorpha halys New Zealand. N.Z. Plant Prot. 72, 36–43 (2019).
    Google Scholar 
    90.Laing, K., Belton, D. & Taylor, J. Decision on releasing Trissolcus japonicus from containment. (Environmental Protection Authority, 2018).91.Charles, J. G. et al. Experimental assessment of the biosafety of Trissolcus japonicus in New Zealand, prior to the anticipated arrival of the invasive pest Halyomorpha halys. Biocontrol 64, 367–379 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Population structure and genetic diversity of non-native aoudad populations

    1.Blackburn, T. M. & Duncan, R. P. Establishment patterns of exotic birds are constrained by non-random patterns in introduction. J. Biogeogr. 28, 927–939 (2001).Article 

    Google Scholar 
    2.Long, J. L. Introduced Mammals of the World: Their History, Distribution and Abundance (CABI Publishing, 2003).Book 

    Google Scholar 
    3.Stuwe, M. & Scribner, K. T. Low genetic variability in reintroduced alpine ibex (Capra ibex ibex) populations. J. Mammal. 70, 370–373 (1989).Article 

    Google Scholar 
    4.Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).Article 

    Google Scholar 
    5.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    6.Michael Reed, J. et al. Emerging issues in population viability analysis. Conserv. Biol. 16, 7–19 (2002).Article 

    Google Scholar 
    7.Carpio, A. J. et al. Hunting as a source of alien species: A European review. Biol. Invasions 19, 1197–1211 (2017).Article 

    Google Scholar 
    8.Linnell, J. D. C. & Zachos, F. E. Status and distribution patterns of European ungulates: genetics, population history and conservation. In Ungulate Management in Europe: Problems and Practices (eds Putman, R. et al.) 12–53 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    9.Šprem, N., Gančević, P., Safner, T., Jerina, K. & Cassinello, J. Barbary sheep (Ammotragus lervia, Pallas 1777). In Handbook of the Mammals of Europe (eds Hackländer, K. & Zachos, F. E.) (Springer, 2021).
    Google Scholar 
    10.Cassinello, J. Ammotragus lervia: A review on systematics, biology, ecology and distribution. Ann. Zool. Fennici 35, 149–162 (1998).
    Google Scholar 
    11.Cassinello, J. Ammotragus lervia (aoudad). Invasive species compendium. http://www.cabi.org/isc (2015).12.Bounaceur, F., Benamor, N., Bissaad, F. Z., Abdi, A. & Aulagnier, S. Is there a future for the last populations of aoudad (Ammotragus lervia) in northern Algeria?. Pak. J. Zool. 48, 1727–1731 (2016).
    Google Scholar 
    13.Cassinello, J. et al. Ammotragus lervia. The IUCN Red List of Threatened Species. www.iucnredlist.org (2008).14.Lazarus, M. et al. Barbary sheep tissues as bioindicators of radionuclide and stabile element contamination in Croatia: Exposure assessment for consumers. Environ. Sci. Pollut. Res. 26, 14521–14533 (2019).CAS 
    Article 

    Google Scholar 
    15.Mori, E., Mazza, G., Saggiomo, L., Sommese, A. & Esattore, B. Strangers coming from the Sahara: An update of the worldwide distribution, potential impacts and conservation opportunities of alien aoudad. Ann. Zool. Fennici 54, 373–386 (2017).Article 

    Google Scholar 
    16.Gančević, P., Šprem, N. & Jerina, K. Space use and activity patterns of introduced Barbary sheep (Ammotragus lervia) in Southern Dinarides, Croatia in Abstract book of 6th World Congress on Mountain Ungulates and 5th International Symposium on Mouflon (ed. Hadjisterkotis, E.) 41 (2016).17.Bartoš, L., Kotrba, R. & Pintíř, J. Ungulates and their management in the Czech Republic. In European Ungulates and their Management in the 21st Century (eds Apollonio, M. et al.) 243–261 (Cambridge University Press, 2010).
    Google Scholar 
    18.Cassinello, J., Serrano, E., Calabuig, G. & Pérez, J. M. Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: Ecological and conservation concerns. Biodivers. Conserv. 13, 851–866 (2004).Article 

    Google Scholar 
    19.Anadón, J. D., Pérez-García, J. M., Pérez, I., Royo, J. & Sánchez-Zapata, J. A. Disentangling the effects of habitat, connectivity and interspecific competition in the range expansion of exotic and native ungulates. Landsc. Ecol. 33, 597–608 (2018).Article 

    Google Scholar 
    20.Cassinello, J. Misconception and mismanagement of invasive species: The paradoxical case of an alien ungulate in Spain. Conserv. Lett. 11, e12440. https://doi.org/10.1111/conl.12440 (2018).Article 

    Google Scholar 
    21.Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Derouiche, L. et al. Deep mitochondrial DNA phylogeographic divergence in the threatened aoudad Ammotragus lervia (Bovidae, Caprini). Gene 739, 144510. https://doi.org/10.1016/j.gene.2020.144510 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Fernando, P., Vidya, T. N. C., Rajapakse, C., Dangolla, A. & Melnick, D. J. Reliable noninvasive genotyping: Fantasy or reality?. J. Hered. 94, 115–123 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cassinello, J. Ammotragus free-ranging population in the south-east of Spain: A necessary first account. Biodivers. Conserv. 9, 887–900 (2000).Article 

    Google Scholar 
    26.Moravčíková, N. et al. Identification of genetic families based on mitochondrial D-loop sequence in population of the Tatra chamois (Rupicapra rupicapra tatrica). Biologia 75, 121–128 (2019).Article 
    CAS 

    Google Scholar 
    27.Cassinello, J. Ammotragus lervia Aoudad (Barbary Sheep, Arui). In Mammals of Africa. Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids (eds Kingdon, J. & Hoffmann, M.) 595–599 (Bloomsbury Publishing, 2013).
    Google Scholar 
    28.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Šprem, N. & Buzan, E. The genetic impact of chamois management in the dinarides. J. Wildl. Manag. 80, 783–793 (2016).Article 

    Google Scholar 
    30.Pascual-Rico, R. et al. Ecological niche overlap between co-occurring native and exotic ungulates: Insights for a conservation conflict. Biol. Invasions 22, 2497–2508 (2020).Article 

    Google Scholar 
    31.Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Beja-Pereira, A. et al. Twenty polymorphic microsatellites in two of North Africa’s most threatened ungulates: Gazella dorcas and Ammotragus lervia (Bovidae; Artiodactyla). Mol. Ecol. Notes 4, 452–455 (2004).CAS 
    Article 

    Google Scholar 
    33.Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mereu, P., Palici di Suni, M., Manca, L. & Masala, B. Complete nucleotide mtDNA sequence of Barbary sheep (Ammotragus lervia). DNA Seq. 19, 241–245 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Bandelt, H.-J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).CAS 
    Article 

    Google Scholar 
    38.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    39.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    40.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–22 (1977).MathSciNet 
    MATH 

    Google Scholar 
    41.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Belkhir K, Borsa P, Goudet, J., Chikhi, L. & Bonhomme, F. Genetix 4.05, logiciel sous Windows TM pour la genetique des populations. Available at: http://www.genetix.univ-montp2.fr/genetix/genetix.htm (2004)44.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 

    Google Scholar 
    45.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kalinowski, S. T. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 5, 539–543 (2004).CAS 
    Article 

    Google Scholar 
    47.Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).Article 

    Google Scholar 
    48.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    52.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).Article 

    Google Scholar  More