Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356 (2017).CAS
Article
Google Scholar
Sloan, S., Locatelli, B., Wooster, M. J. & Gaveau, D. L. A. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Glob. Environ. Change 47, 95–109 (2017).Article
Google Scholar
Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–96 (2019).Article
Google Scholar
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).Ward, D. S., Shevliakova, E., Malyshev, S. & Rabin, S. Trends and variability of global fire emissions due to historical anthropogenic activities. Glob. Biogeochem. Cycles 32, 122–42 (2018).CAS
Article
Google Scholar
Earl, N. & Simmonds, I. Spatial and temporal variability and trends in 2001–2016 global fire activity. J. Geophys. Res. Atmos. 123, 2524–36 (2018).Article
Google Scholar
Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–28 (2013).Article
Google Scholar
Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).Article
Google Scholar
van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecol. Manag. 352, 78–88 (2015).Article
Google Scholar
Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).Article
Google Scholar
Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–95 (2014).Article
Google Scholar
Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–35 (2010).Article
CAS
Google Scholar
Balch, J. K. et al. Negative fire feedback in a transitional forest of southeastern Amazonia. Glob. Change Biol. 14, 2276–87 (2008).Article
Google Scholar
Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. Ambio 37, 522–27 (2008).Article
Google Scholar
Gaveau, D. L. A. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci. Rep. 4, 6112 (2014).Vadrevu, K. P. et al. Trends in vegetation fires in South and Southeast Asian countries. Sci. Rep. 9, 7422 (2019).Article
CAS
Google Scholar
Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: recent successes and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Change 26, Article 32 (2021).Article
Google Scholar
Gaveau, D. L. A., Descales, A., Salim, M. A., Shields, D. & Sloan, S. Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning. Earth Syst. Sci. Data, https://doi.org/10.5194/essd-2021-113, (2021).Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).Article
CAS
Google Scholar
Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–88 (2009).CAS
Article
Google Scholar
Huijnen, V. et al. Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).CAS
Article
Google Scholar
Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Change 6, 640–43 (2016).Article
Google Scholar
Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).Article
Google Scholar
Kiely, L. et al. Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environ. Res. Lett.15, 094054 (2020).Article
Google Scholar
Crippa, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 6, 37074 (2016).CAS
Article
Google Scholar
Glauber, A. J. & Gunawan, I. The Cost of Fire: An Economic Analysis of Indonesia’s 2015 Fire Crisis. (The World Bank, Washington, D.C., (2016).Tan, Z. D., Carrasco, L. R. & Taylor, D. Spatial correlates of forest and land fires in Indonesia. Int. J. Wildland Fire 29, 1088–99 (2020).Article
Google Scholar
Marlier, M. E. et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environ. Res. Lett. 10, 085005 (2015).Article
CAS
Google Scholar
Vetrita, Y. & Cochrane, M. A. Fire frequency and related land-use and land-cover changes in Indonesia’s peatlands. Remote Sens. 12, 5 (2020).Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 65 (2020).Article
Google Scholar
Field, R. Biomass burning in Indonesia: Signs of Progress in 2019?, http://www.columbia.edu/~rf2426/index_files/20200128.Field.GSFC.NoOz.pdf, January, NASA Goddard Space Flight Center, (2019).Watts, J. et al. Incentivising compliance: evaluating the effectiveness of targeted village incentives for reducing forest and peat fires. Forest Policy Econ. 108, 101956 (2019).Wijedasa, L. et al. Carbon emissions from peat forests will continue to increase despite emission-reduction schemes. Glob. Change Biol. 24, 4598–613 (2018).Article
Google Scholar
Sloan, S., Meyfroidt, P., Rudel, T. K. & Bongers, F. & Chazdon Robin, L. The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Change 59, 101988 (2019).Article
Google Scholar
Albar, I., Jaya, I. N. S., Saharjo, B. H., Kuncahyo, B. & Vadrevu, K. P. Spatio-temporal analysis of land and forest fires in Indonesia using MODIS active fire dataset, in Land-Atmospheric Research Applications in South and Southeast Asia (eds K P Vadrevu et al.), p. 105-27 (Springer International Publishing, 2018).Miettinen, J., Shi, C. & Liew, S. C. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires. Environ. Manage. 60, 747–57 (2017).Article
Google Scholar
Fanin, T. & van der Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).Article
Google Scholar
Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl. Acad. Sci. USA 115, 12419 (2018).CAS
Article
Google Scholar
Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).CAS
Article
Google Scholar
Lohberger, S., Stängel, M., Atwood, E. C. & Siegert, F. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob. Change Biol. 24, 644–54 (2018).Article
Google Scholar
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article
Google Scholar
Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA 113, 9204–09 (2016).CAS
Article
Google Scholar
Austin, K. G. et al. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69, 41–48 (2017).Article
Google Scholar
Pan, X., Chin, M., Ichoku, C. & Field, R. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016. J. Geophys. Res. Atmos. 123, (2018).van der Werf, G. R. et al. Climate regulation of fire emissions and deforestation in Equatorial Asia. Proc. Natl Acad. Sci. USA 105, 20350–55 (2008).Article
Google Scholar
Wooster, M. J., Roberts, G., Perry, G. L. W. & Kaufman, Y. J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Rese. Atmos. 110, (2005).Spessa, A. et al. Seasonal forecasting of fires over Kalimantan, Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–42 (2015).Article
Google Scholar
Siegert, F., Ruecker, G., Hinrichs, A. & Hoffmann, A. A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414, 437–40 (2001).CAS
Article
Google Scholar
Fernandes, K. et al. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environ. Res. Lett. 12, 054002 (2017).Article
Google Scholar
Herawati, H. & Santoso, H. Tropical forest susceptibility to and risk of fire under changing climate: a review of fire nature, policy and institutions in Indonesia. Forest Policy Econ. 13, 227–33 (2011).Article
Google Scholar
Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–23 (2014).CAS
Article
Google Scholar
Dennis, R. A Review of Fire Projects In Indonesia, 1982-1998. (CIFOR, Bogor, Indonesia, 1999).de Groot, W. J., Field, R. D., Brady, M. A., Roswintiarti, O. & Mohamad, M. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strateg. Glob. Change 12, 165 (2006).Article
Google Scholar
Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).CAS
Article
Google Scholar
Bissonnette, J.-F. & De Koninck, R. The return of the plantation? Historical and contemporary trends in the relation between plantations and smallholdings in Southeast Asia. J. Peasant Stud. 44, 918–38 (2017).Article
Google Scholar
Gaveau, D. L. A. et al. Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLOS ONE 17, e0266178 (2022).Svatoňová, T., Herák, D. & Kabutey, A. Financial profitability and sensitivity analysis of palm oil plantation in Indonesia. Acta Univ. Agric. Silvic. Mendelianae Brunensis 63, 1365–73 (2015).Article
Google Scholar
Gaveau, D. L. A. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Scientific Reports 6, (2016).Simamora, A. P. Govt says no to converting peatland into plantations, The Jakarta Post. August (2010).Satriastanti, F. E. Jokowi bans new oil palm and mining concessions, Mongabay.com April (2016).Sloan, S., Edwards, D. P. & Laurance, W. F. Does Indonesia’s REDD+ moratorium on new concessions spare imminently-threatened forests? Conserv. Lett. 5, 222–31 (2012).Article
Google Scholar
Busch, J. et al. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions. Proc. Natl Acad Sci USA 112, 1328–33 (2015).CAS
Article
Google Scholar
Forsyth, T. Public concerns about transboundary haze: a comparison of Indonesia, Singapore, and Malaysia. Glob. Environ. Change 25, 76–86 (2014).Article
Google Scholar
Carbon Conservation. Fire Free Village Program – Review 2017. (Carbon Conservation, Singapore, (2017).Gaveau, D. L. A. et al. Overlapping land claims limit the use of satellites to monitor no-deforestation committments and no-burning compliance. Conserv. Lett. 10, 257–64 (2017).Article
Google Scholar
EarthData. MODIS Collection 6 Active-Fire Detections standard scientific data (MCD14ML), NASA EarthData, https://earthdata.nasa.gov/firms (2019).Giglio, L., Schroeder, W. & Justice, C. O. The Collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).Article
Google Scholar
Sloan, S., Cattau, M.E. Discrete Fire Events, their Severity, and their Ignitions, as Derived from MODIS MCD 14ML Active-Fire Detection Data for Indonesia, 2002-2019. Sean Sloan and Megan E. Cattau, Datadryad.org. (2022).Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Change 39, 205–19 (2016).Article
Google Scholar
Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo during the pre-MODIS era (1980–2000). Biogeosciences 9, 317–40 (2012).Article
Google Scholar
Tansey, K., Beston, J., Hoscilo, A., Page, S. E. & Paredes Hernández, C. U. Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. J. Geophys. Res. 113, (2008).Oom, D., Silva, P. C., Bistinas, I. & Pereira, J. M. C. Highlighting biome-specific sensitivity of fire size distributions to time-gap parameter using a new algorithm for fire event individuation. Remote Sens. 8, 663 (2016).Schroeder, W. et al. Validation of GOES and MODIS active fire detection products using ASTER and ETM plus data. Remote Sens. Environ. 112, 2711–26 (2008).Article
Google Scholar
Hantson, S., Padilla, M., Corti, D. & Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 131, 152–59 (2013).Article
Google Scholar
Tanpipat, V., Honda, K. & Nuchaiya, P. MODIS hotspot validation over Thailand. Remote Sens. 1, 1043–54 (2009).Article
Google Scholar
Liew, S. C., Shen, C., Low, J., Lim, A. & Kwoh, L. K. The 24th Asian Conference on Remote Sensing and 2003 International Symposium on Remote Sensing (ACRS2003). p. 671-73 (Asian Association on Remote Sensing), November 3–7.Fornacca, D., Ren, G. & Xiao, W. Performance of three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of northwest Yunnan, China, characterized by frequent small fires. Remote Sens. 9, 1131 (2017).Article
Google Scholar
Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).Article
Google Scholar
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).Article
Google Scholar
Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The Collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–707 (2008).Article
Google Scholar
Miettinen, J., Langner, A. & Siegert, F. Burnt area estimation for the year 2005 in Borneo using multi-resolution satellite imagery. Int. J. Wildland Fire 16, 45–53 (2007).Luo, R., Hui, D., Miao, N., Liang, C. & Wells, N. Global relationship of fire occurrence and fire intensity: a test of intermediate fire occurrence-intensity hypothesis. J. Geophys. Res. Biogeosci. 122, 1123–36 (2017).Article
Google Scholar
Andela, N. et al. The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth Syst. Sci. Data 11, 529–52 (2019).Article
Google Scholar
Andela, N., Morton, D. C., Giglio, L. & Randerson, J. T. Global Fire Atlas with Characteristics of Individual Fires, 2003-2016, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1642, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1642 (2019).Field, R. D. & Shen, S. S. P. Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. J. Geophys. Res. Biogeosci. 113, G04024 (2008).Article
CAS
Google Scholar
Fuller, D. O. & Murphy, K. The ENSO-fire dynamic in insular Southeast Asia. Clim. Change 74, 435–55 (2006).Article
Google Scholar
Field, R. D. et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 15, 1407–23 (2015).Article
Google Scholar
Huffman, G. J. GPM IMERG Final Precipitation gridded data, L3 1 month 0.1 degree x 0.1 degree, version 06B. NASA Precipitation Processing System, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://storm-pps.gsfc.nasa.gov/storm/; https://pmm.nasa.gov/data-access/downloads/gpm (2019).Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).Article
Google Scholar
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).Article
Google Scholar
Hsu, J., Huang, W.-R., Liu, P.-Y. & Li, X. Validation of CHIRPS precipitation estimates over taiwan at multiple timescales. Remote Sens. 13, 254 (2021).Rozante, J. R., Vila, D. A., Barboza Chiquetto, J., Fernandes, A. D. A. & Souza Alvim, D. Evaluation of TRMM/GPM blended daily products over Brazil. Remote Sens. 10, 882 (2018).Prakash, S., Mitra, A. K., Pai, D. S. & AghaKouchak, A. From TRMM to GPM: how well can heavy rainfall be detected from space? Adv. Water Resour. 88, 1–7 (2016).Article
Google Scholar
Ma, Q. et al. Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmos. Res. 249, 105304 (2021).Article
Google Scholar
Nwachukwu, P. N., Satge, F., Yacoubi, S. E., Pinel, S. & Bonnet, M.-P. From TRMM to GPM: how reliable are satellite-based precipitation data across Nigeria? Remote Sens. 12, 3964 (2020).Popovych, V. F. & Dunaieva, I. A. Assessment of the GPM IMERG and CHIRPS precipitation estimations for the steppe part of the Crimea. Meteorol. Hydrol. Water Manage 9, (2021).Navarro, A. et al. Assessment of IMERG precipitation estimates over Europe. Remote Sens. 11, 2470 (2019).Dezfuli, A. K. et al. Validation of IMERG precipitation in Africa. J. Hydrometeorol. 18, 2817–25 (2017).Article
Google Scholar
Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap. (Chapman and Hall, Boca Raton, FL, USA, 1993).Pérez-Hoyos, A., Rembold, F., Kerdiles, H. & Gallego, J. Comparison of global land cover datasets for cropland monitoring. Remote Sens. 9, 1118 (2017).ESA. Annual land-cover product, 1992 to 2019/present, based on MERIS 300-m and ancillary SPOT, AVHRR, Sentinel-3 and PROB-V satellite data. European Space Agency (ESA) European Centre for Medium-Range Weather Forecasts (ECMFW) Copernicus Climate Change Service (C3S) Climate Change Initiative (CCI), https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview; http://maps.elie.ucl.ac.be/CCI/viewer/download.php; http://www.esa-landcover-cci.org/ (2020).Defourny, P. Product User Guide and Specification: ICDR Land Cover 2016 to 2019 (Version 2.1.1 of ESA Coperninus Climate Change Intitiative Annual 300-m Land-Cover Classifications). (Universitie Catholique du Lovain, Louvain, Belgium, (2020).Vetrita, Y. & Cochrane, M. A. Annual Burned Area from Landsat, Mawas, Central Kalimantan, Indonesia, 1997-2015, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1708, https://daac.ornl.gov/CMS/guides/Annual_Burned_Area_Maps.html; https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=33 (2019). More