More stories

  • in

    Soil meso- and micro-fauna community in response to bamboo-fungus agroforestry management

    Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
    Google Scholar 
    Zhao, J., Wang, B., Li, Q., Yang, H. & Xu, K. Analysis of soil degradation causes in Phyllostachys edulis forests with different mulching years. Forests 9(3), 149 (2018).Article 

    Google Scholar 
    Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).Article 

    Google Scholar 
    Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).CAS 
    Article 

    Google Scholar 
    Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).Article 

    Google Scholar 
    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).Article 

    Google Scholar 
    Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S. & Rachmawati, R. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. J. Degrade. Min. Land Manage. 6(3), 1727–1736 (2019).Article 

    Google Scholar 
    Coleman, B. R., Martin, A. R., Thevathasan, N. V., Gordon, A. M. & Isaac, M. E. Leaf trait variation and decomposition in short-rotation woody biomass crops under agroforestry management. Agric. Ecosyst. Environ. 298, 106971 (2020).CAS 
    Article 

    Google Scholar 
    Cai, C. J., Fan, S. H., Liu, G. L., Wang, S. M. & Feng, Y. Research and development advance of compound management of bamboo forests. World Bamboo Rattan 16(5), 47–52 (2018) (in Chinese).
    Google Scholar 
    Song, Z. et al. Characteristics of Se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol. Trace Elem. Res. 113(1), 81–89 (2009).Article 

    Google Scholar 
    Wang, Q. et al. Effects of drying on the structural characteristics and antioxidant activities of polysaccharides from Stropharia rugosoannulata. J. Food Sci. Technol. 58, 3622–3631 (2021).CAS 
    Article 

    Google Scholar 
    Yan, P., Jiang, J. & Cui, W. Characterization of protoplasts prepared from the edible fungus, Stropharia rugoso-annulata. World J. Microbiol. Biotechnol. 20(2), 173–177 (2004).CAS 
    Article 

    Google Scholar 
    Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilition. Geoderma 332, 161–172 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).CAS 
    Article 

    Google Scholar 
    Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).Article 

    Google Scholar 
    Tan, B. et al. Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl. Soil Ecol. 155, 103673 (2020).Article 

    Google Scholar 
    John, K., Zaitsev, A. S. & Wolters, V. Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia 84, 150703 (2021).Article 

    Google Scholar 
    Qin, Z. et al. Changes in the soil meso- and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol. Res. 34(2), 265–276 (2019).Article 

    Google Scholar 
    Chauvat, M., Titsch, D., Zaytesev, A. S. & Wolters, V. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For. Ecol. Manag. 262(3), 317–324 (2011).Article 

    Google Scholar 
    Yan, S. et al. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 47(2), 158–165 (2012).CAS 
    Article 

    Google Scholar 
    Reeve, J. R. et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J. 4, 1099–1107 (2010).Article 

    Google Scholar 
    Lavelle, P., Bignell, D. & Lepage, M. Soil function in a changing world: The role of invertebrate engineers. Eur. J. Soil Biol. 33, 159–193 (1997).CAS 

    Google Scholar 
    Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).Article 

    Google Scholar 
    Zhang, L., Wang, G. & Cao, F. The effect of ginkgo agroforestry patterns on soil fauna diversity. J. Nanjing For. Univ. 39(2), 27–32 (2015) (in Chinese).
    Google Scholar 
    Liu, P. et al. Impact of straw returning on cropland soil mesofauna community in the western part of black soil area. Chin. J. Ecol. 37(1), 139–146 (2018) (in Chinese).
    Google Scholar 
    Liu, M. Study on the model of interplanting edible fungi under bamboo (Phyllostachys edulis) forest and comprehensive benefit comparative. Master’s Thesis, Chinese Academy of Forestry (2021) (in Chinese).Wang, B., Shen, Q., Zhu, W., Shen, X. & Li, Q. Effects of interplanting Dictyophora echinovolvata on physicochemical properties, phospholipid fatty acids characters and enzyme activities in soil of Phyllostachy heterocycla cv. pubescens. For. Environ. Sci. 32(4), 28–32 (2016) (in Chinese).Article 

    Google Scholar 
    Ying, G. H. et al. Effect of cultivation of Dictyophora echinovolvata on shoot yield and soil under Phyllostachy heterocycla cv. pubescens stand. J. Zhejiang For. Sci. Technol. 34(6), 65–67 (2014) (in Chinese).
    Google Scholar 
    Sokol, N. W. et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).CAS 
    Article 

    Google Scholar 
    Fujii, K., Hayakawa, C., Inagaki, Y. & Kosaki, T. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446(1), 425–439 (2020).CAS 
    Article 

    Google Scholar 
    Fujii, K. & Toma, T. Comparison of soil acidification rates under different land uses in Indonesia. Plant Soil 465(1–2), 1–17 (2021).CAS 
    Article 

    Google Scholar 
    Poss, R., Smith, C. J., Dunin, F. X. & Angus, J. F. Rate of soil acidification under wheat in a semi-arid environment. Plant Soil 177, 85–100 (1995).CAS 
    Article 

    Google Scholar 
    Yin, X. et al. Distribution and diversity partterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Appl. Soil Ecol. 123, 375–383 (2018).Article 

    Google Scholar 
    Luo, M. L. et al. Effects of different rice straw returning quantities on soil fauna community structure. J. Zhejiang A&F Univ. 37(1), 85–92 (2020) (in Chinese).
    Google Scholar 
    Peng, C. Y. et al. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantation in the upper reaches of Yangtze River. J. Zhejiang Univ. 45(5), 585–595 (2019) (in Chinese).
    Google Scholar 
    Carmen, M. U., Edmond, R. Z. & Michelle, M. W. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem. 64, 103–113 (2013).Article 

    Google Scholar 
    Kamau, S., Karanja, N. K., Ayuke, F. O. & Lehmann, J. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol. Fertil. Soils 55(7), 661–673 (2019).CAS 
    Article 

    Google Scholar 
    Fu, X., Shao, M., Wei, X. & Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155(1–2), 31–35 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Guan, F., Tang, X., Fan, S., Zhao, J. & Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. Catena 133, 455–460 (2015).CAS 
    Article 

    Google Scholar 
    Liu, Y. et al. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10561 (2019).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Complex effects of chytrid parasites on the growth of the cyanobacterium Planktothrix rubescens across interacting temperature and light gradients

    Díez B, Ininbergs K. Ecological importance of cyanobacteria. In Cyanobacteria (pp. 41–63). John Wiley & Sons, Ltd. (2013) https://doi.org/10.1002/9781118402238.ch3Fristachi A, Sinclair JL, Hall S, Berkman JAH, Boyer G, Burkholder J, et al. Occurrence of cyanobacterial harmful algal blooms workgroup report. Adv Experimental Med Biol. 2008;619:45–103. https://doi.org/10.1007/978-0-387-75865-7_3CAS 
    Article 

    Google Scholar 
    Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–83. https://doi.org/10.1038/s41579-018-0040-1CAS 
    Article 
    PubMed 

    Google Scholar 
    Plaas HE, Paerl HW. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. In Environmental Science and Technology (Vol. 55, Issue 1, pp. 44–64). American Chem Soc. 2021. https://doi.org/10.1021/acs.est.0c06653Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae. 2016;54:69–86. https://doi.org/10.1016/j.hal.2016.01.004CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohrlack T, Christiansen G, Kurmayer R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus planktothrix. Appl Environ Microbiol. 2013;79:2642–7. https://doi.org/10.1128/AEM.03499-12CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Legnani E, Copetti D, Oggioni A, Tartari G, Palumbo MT, Morabito G. Planktothrix rubescens’ seasonal dynamics and vertical distribution. J Limnol. 2005;64:61–73.Article 

    Google Scholar 
    Walsby A, Ng G, Dunn C, Davis PA. Comparison of the depth where Planktothrix rubescens stratifies and the depth where the daily insolation supports its neutral buoyancy. New Phytologist. 2004;162:133–45. https://doi.org/10.1111/j.1469-8137.2004.01020.xArticle 

    Google Scholar 
    Bruning K. Effects of temperature and light on the population dynamics of the Asterionella-Rhizophydium association. J Plankton Res. 1991a;13:707–19. https://doi.org/10.1093/plankt/13.4.707Article 

    Google Scholar 
    Rohrlack T, Haande S, Molversmyr Å, Kyle M. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis. 2015;1–17. https://doi.org/10.1371/journal.pone.0145559Tao Y, Wolinska J, Hölker F, Agha R. Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology. 2020;147:1206–15. https://doi.org/10.1017/S0031182020000931CAS 
    Article 
    PubMed 

    Google Scholar 
    Davis PA, Walsby A. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. New Phytologist. 2002;156:225–39. https://doi.org/10.1046/j.1469-8137.2002.00495.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens 1. J Phycol. 2007;43:1191–9. https://doi.org/10.1111/j.1529-8817.2007.00414.xCAS 
    Article 

    Google Scholar 
    Reynolds CS Growth and replication of phytoplankton. In The Ecology of Phytoplankton (pp. 145–77). Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511542145.005Litchman E, Klausmeier CA . Trait-based community ecology of phytoplankton. Ann Rev Ecol, Evol, Syst. 2008;39:615–39.Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol Oceanography. 2016;61:1232–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Litchman E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Global Ecol Biogeog. 2016;25:75–86. https://doi.org/10.1111/geb.12387Article 

    Google Scholar 
    Bright DI, Walsby A. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytologist. 2000;146:301–16. https://doi.org/10.1046/j.1469-8137.2000.00640.xArticle 
    PubMed 

    Google Scholar 
    Jann-Para G, Schwob I, Feuillade M. Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. Toxicon. 2004;43:279–85.CAS 
    Article 

    Google Scholar 
    Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, et al. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae. 2005;4:651–72.Article 

    Google Scholar 
    Lenard T. Metalimnetic bloom of Planktothrix rubescens in relation to environmental conditions. Oceanological Hydrobiological Studies. 2009;38:45–53.
    Google Scholar 
    Van den Wyngaert S, Salcher MM, Pernthaler J, Zeder M, Posch T. Quantitative dominance of seasonally persistent filamentous cyanobacteria (Planktothrix rubescens) in the microbial assemblages of a temperate lake. Limnol Oceanogr. 2011;56:97–109.Article 

    Google Scholar 
    Walsby A. Stratification by cyanobacteria in lakes: A dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist. 2005;168:365–76. https://doi.org/10.1111/j.1469-8137.2005.01508.xArticle 
    PubMed 

    Google Scholar 
    Conroy JD, Kane DD, Quinlan EL, Edwards WJ, Culver DA. Abiotic and biotic controls of phytoplankton biomass dynamics in a freshwater tributary, estuary, and large lake ecosystem: Sandusky bay (lake erie) chemostat. Inland Waters. 2017;7:473–92. https://doi.org/10.1080/20442041.2017.1395142CAS 
    Article 

    Google Scholar 
    Sommer U, Maciej Gliwics Z, Lampert W, Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie. 1986;106:433–71.
    Google Scholar 
    Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: Mechanisms driving plankton succession. Ann Rev Ecol, Evol, Syst. 2012;43:429–48. https://doi.org/10.1146/annurev-ecolsys-110411-160251Article 

    Google Scholar 
    Hatcher MJ, Dunn AM Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press (2011).Marcogliese DJ. Parasites: Small Players with Crucial Roles in the Ecological Theater. EcoHealth. 2004;1:151–64. https://doi.org/10.1007/s10393-004-0028-3Article 

    Google Scholar 
    Sime-Ngando T, Lafferty KD, Biron DG. Roles and Mechanisms of Parasitism in Aquatic Microbial Communities. 2007. https://doi.org/10.3389/978-2-88919-588-6Frenken T, Alacid E, Berger SA, Bourne EC, Gerphagnon M, Grossart HP, et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology. 2017;19:3802–22. https://doi.org/10.1111/1462-2920.13827Article 
    PubMed 

    Google Scholar 
    Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics: I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74. https://doi.org/10.1016/j.hal.2004.12.015Article 

    Google Scholar 
    Gerphagnon M, Macarthur DJ, Gachon C, Van Ogtrop F, Latour D, et al. The biological factors affecting the dynamics of cyanobacterial blooms. 2009.Gleason FH, Jephcott TG, Küpper FC, Gerphagnon M, Sime-Ngando T, Karpov SA, et al. Potential roles for recently discovered chytrid parasites in the dynamics of harmful algal blooms. Fungal Biol Rev. 2015;29:20–33. https://doi.org/10.1016/j.fbr.2015.03.002Article 

    Google Scholar 
    Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol. 2011;56:754–66. https://doi.org/10.1111/j.1365-2427.2010.02565.xArticle 

    Google Scholar 
    Kagami M, De Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: Their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–29. https://doi.org/10.1007/s10750-006-0438-zArticle 

    Google Scholar 
    Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS. 2005;103:3165–70.Article 

    Google Scholar 
    McKenzie VJ, Peterson AC. Pathogen pollution and the emergence of a deadly amphibian pathogen. Molecular Ecol. 2012;21:5151–4. https://doi.org/10.1111/mec.12013Article 

    Google Scholar 
    Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth. 2007;4:125–34. https://doi.org/10.1007/s10393-007-0093-5Article 

    Google Scholar 
    Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol. 2004;40:437–53.Article 

    Google Scholar 
    Bosch J, Martínez-Solano I, García-París. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conserv. 2001;97:331–7. https://doi.org/10.1016/S0006-3207(00)00132-4Article 

    Google Scholar 
    Bruning K, Lingeman R, Ringelberg J. Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr. 1992;37:252–60. https://doi.org/10.4319/lo.1992.37.2.0252Article 

    Google Scholar 
    Paterson RA. Infestation of Chytridiaceous Fungi on Phytoplankton in Relation to Certain Environmental Factors. Ecology. 1960;41:416–24. https://doi.org/10.2307/1933316Article 

    Google Scholar 
    Ṣen B. Fungal parasitism of planktonic algae in Shearwater. IV: Parasitic occurrence of a new chytrid species on the blue-green alga Microcystis aeruginosa Kuetz. emend. Elenkin. 1998.van Donk E, Ringelberg J. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I. Netherlands Freshwater Biol. 1983;13:241–51. https://doi.org/10.1111/j.1365-2427.1983.tb00674.xArticle 

    Google Scholar 
    Agha R, Saebelfeld M, Manthey C, Rohrlack T, Wolinska J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Scientific Rep. 2016;6. https://doi.org/10.1038/srep35039Frenken T, Wierenga J, van Donk E, Declerck SAJ, de Senerpont Domis LN, Rohrlack T, et al. Fungal parasites of a toxic inedible cyanobacterium provide food to zooplankton. Limnol Oceanogr. 2018;63:2384–93. https://doi.org/10.1002/lno.10945Article 

    Google Scholar 
    Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Biological Sci/ Royal Soc. 2007;274:1561–6. https://doi.org/10.1098/rspb.2007.0425Article 

    Google Scholar 
    Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW. Temperature alters host genotype-specific susceptibility to chytrid infection. PLoS One. 2013;8:e71737. https://doi.org/10.1371/journal.pone.0071737CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. J Plankton Res. 2021a;43:658–72.Article 

    Google Scholar 
    Fallowfield HJ, Daft MJ. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and algae and the interaction with Lysobacter CP-1. Br Phycol J. 1988;1617:317–26. https://doi.org/10.1080/00071618800650351Article 

    Google Scholar 
    Mueller B, den Haan J, Visser PM, Vermeij MJA, van Duyl FC. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae. Scientific Rep. 2016;6:1–9. https://doi.org/10.1038/srep23248CAS 
    Article 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. II. Effects of light on survival and epidemic development of the parasite. J Plankton Res. 1991c;13:119–29. https://doi.org/10.1093/plankt/13.1.119Article 

    Google Scholar 
    Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ Microbiol. 2013;15:837–47. https://doi.org/10.1111/j.1462-2920.2012.02874.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Almocera AES, Hsu SB, Sy PW. Extinction and uniform persistence in a microbial food web with mycoloop: Limiting behavior of a population model with parasitic fungi. Mathematical Biosci Eng. 2019;16:516–37.Article 

    Google Scholar 
    Frenken T, Miki T, Kagami M, Van de Waal DB, Van Donk E, Rohrlack T, et al. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology. 2020;101. https://doi.org/10.1002/ecy.2900Gerla DJ, Gsell AS, Kooi BW, Ibelings BW, Van Donk E, Mooij WM. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts. FMeier, M. H. et al. (2015) Neuropsychological Decline in Schizophrenia from the Premorbid to Post-Onset Period: Evidence from a Population-Representative Longitudinal Study. American J Psychiatry. 2013;58:538–51. https://doi.org/10.1111/fwb.12010Article 

    Google Scholar 
    Miki T, Takimoto G, Kagami M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshwater Biol. 2011;56:1173–83. https://doi.org/10.1111/j.1365-2427.2010.02562.xArticle 

    Google Scholar 
    Guillard RRL, Lorenzen CJ. Yellow-green algae with chlorophyllid C. In Phycology. 1972;8:10–14.CAS 

    Google Scholar 
    McKindles KM, Jorge AN, McKay RM, Davis TW, Bullerjahn GS. Isolation and characterization of Rhizophydiales (Chytridiomycota), obligate parasites of Planktothrix agardhii in a Laurentian Great Lakes embayment. Appl Environ Microbiol. 2021b;87:e02308–20.CAS 
    Article 

    Google Scholar 
    R Core Team. (2021). R: A Language and Environment for Statistical Computing.RStudio Team. (2021). RStudio: Integrated Development Environment for R (1.4.1106).Wickham, H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the {tidyverse}. J Open Source Software. 2019;4:1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar 
    Champely, S (2018). PairedData (1.1.1).Soetaert K, Petzoldt T, Setzer RW. Solving Differential Equations in {R}: Package deSolve. J Statistical Software. 2010;33:1–25. https://doi.org/10.18637/jss.v033.i09Article 

    Google Scholar 
    Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biol. 2016;22:299–309. https://doi.org/10.1111/gcb.13095Article 

    Google Scholar 
    Scholz B, Vyverman W, Küpper FC, Ólafsson HG, Karsten U. Effects of environmental parameters on chytrid infection prevalence of four marine diatoms: A laboratory case study. Botanica Marina. 2017;60:419–31. https://doi.org/10.1515/bot-2016-0105CAS 
    Article 

    Google Scholar 
    Sønstebø JH, Rohrlack T. Possible implications of Chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol. 2011;77:1344–51. https://doi.org/10.1128/AEM.02153-10CAS 
    Article 
    PubMed 

    Google Scholar 
    Bruning K. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J Plankton Res. 1991b;13:103–17. https://doi.org/10.1093/plankt/13.1.103Article 

    Google Scholar 
    Muehlstein LK, Amon JP, Leffler DL. Chemotaxis in the Marine Fungus Rhizophydium littoreum. Appl Environ Microbiol. 1988;54:1668–72. https://doi.org/10.1128/aem.54.7.1668-1672.1988CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esch GW, Fernández JC. Introduction. In A Functional Biology of Parasitism (pp. 1–25). Springer Netherlands (1993). https://doi.org/10.1007/978-94-011-2352-5_1Gerphagnon M, Colombet J, Latour D, Sime-Ngando T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Scientific Rep. 2017;7:6056. https://doi.org/10.1038/s41598-017-06273-1CAS 
    Article 

    Google Scholar 
    Maier MA, Peterson TD. Prevalence of chytrid parasitism among diatom populations in the lower Columbia River (2009–2013). Freshwater Biol. 2017;62:414–28. https://doi.org/10.1111/fwb.12876CAS 
    Article 

    Google Scholar 
    Sime-Ngando T. Phytoplankton chytridiomycosis: Fungal parasites of phytoplankton and their imprints on the food web dynamics. Front Microbiol. 2012;3:361. https://doi.org/10.3389/fmicb.2012.00361Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami M, Urabe J. Mortality of the planktonic desmid, Staurastrum dorsidentiferum, due to interplay of fungal parasitism and low light conditions. SIL Proceed. 2002;28:1001–5. https://doi.org/10.1080/03680770.2001.11901868Article 

    Google Scholar  More

  • in

    Holistic tool for ecosystem services and disservices assessment in the urban forests of the Real Bosco di Capodimonte, Naples

    Berghauser Pont, M. Y., Perg, P. G., Haupt, P. A. & Heyman, A. A systematic review of the scientifically demonstrated effects of densification. IOP Conf. Ser. Earth Environ. Sci. 588, 052031 (2020).
    Google Scholar 
    Cimburova, Z. & Berghauser Pont, M. Location matters: A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecosyst. Serv. 50, 101296 (2021).
    Google Scholar 
    De Valck, J. et al. Valuing urban ecosystem services in sustainable brownfield redevelopment. Ecosyst. Serv. 35, 139–149 (2019).
    Google Scholar 
    Zuzolo, D. et al. Divide et disperda: Thirty years of fragmentation and impacts on the eco-mosaic in the case study of the metropolitan city of Naples. Land 10, 485 (2021).
    Google Scholar 
    Nelson, E. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations , edited by Pushpam Kumar, London, Earthscan Publications, United Nations Environment Programme, 2010, xxxix + 410 pp., US$76.95 (hardback), ISBN 978-1-84971-212-5. J. Nat. Resour. Policy Res. 5, 68–70 (2013).
    Google Scholar 
    Duraiappah, A. K. et al. Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Synthesis. World Resources Institute vol. 5 http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf (2005).Cariñanos, P., Casares-Porcel, M. & Quesada-Rubio, J. M. Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc. Urban Plan. 123, 134–144 (2014).
    Google Scholar 
    Haase, D. et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 43, 413–433 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Mexia, T. et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 160, 469–478 (2018).CAS 
    PubMed 

    Google Scholar 
    Brzoska, P., Grunewald, K. & Bastian, O. A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts. Ecosyst. Serv. 49, 101268 (2021).
    Google Scholar 
    Zulian, G. et al. Practical application of spatial ecosystem service models to aid decision support. Ecosyst. Serv. 29, 465–480 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Balmford, A. et al. Ecology: Economic reasons for conserving wild nature. Science (80-). 297, 950–953 (2002).ADS 
    CAS 

    Google Scholar 
    Koulov, B., Ivanova, E., Borisova, B., Assenov, A. & Ravnachka, A. GIS-based valuation of ecosystem services in mountain regions: A case study of the Karlovo municipality in Bulgaria. One Ecosyst. 2, e14062 (2017).
    Google Scholar 
    Robertson, G. P. & Swinton, S. M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 3, 38–46 (2005).
    Google Scholar 
    Sandhu, H. S., Wratten, S. D., Cullen, R. & Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol. Econ. 64, 835–848 (2008).
    Google Scholar 
    Berglihn, E. C. & Gómez-Baggethun, E. Ecosystem services from urban forests: The case of Oslomarka, Norway. Ecosyst. Serv. 51, 101358 (2021).
    Google Scholar 
    Nowak, D. J. Understanding i-Tree. (2020). https://doi.org/10.2737/NRS-GTR-200.Selvakumaran, S., Plank, S., Geiß, C., Rossi, C. & Middleton, C. Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques. Int. J. Appl. Earth Obs. Geoinf. 73, 463–470 (2018).ADS 

    Google Scholar 
    Gómez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).
    Google Scholar 
    Gren, Å. & Andersson, E. Being efficient and green by rethinking the urban-rural divide—Combining urban expansion and food production by integrating an ecosystem service perspective into urban planning. Sustain. Cities Soc. 40, 75–82 (2018).
    Google Scholar 
    Grêt-Regamey, A., Celio, E., Klein, T. M. & Wissen Hayek, U. Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landsc. Urban Plan. 109, 107–116 (2013).
    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).PubMed 

    Google Scholar 
    Bradford, J. B. & D’Amato, A. W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 10, 210–216 (2012).
    Google Scholar 
    Cueva, J. et al. Synergies and trade-offs in ecosystem services from urban and peri-urban forests and their implication to sustainable city design and planning. Sustain. Cities Soc. 82, 103903 (2022).
    Google Scholar 
    Allocca, V., Coda, S., Calcaterra, D. & De Vita, P. Groundwater rebound and flooding in the Naples’ periurban area (Italy). J. Flood Risk Manag. 15, e12775 (2022).
    Google Scholar 
    Padulano, R. et al. Using the present to estimate the future: A simplified approach for the quantification of climate change effects on urban flooding by scenario analysis. Hydrol. Process. 35, e14436 (2021).
    Google Scholar 
    D’Amato, G. et al. Allergenic pollen and pollen allergy in Europe. Allergy 62, 976–990 (2007).PubMed 

    Google Scholar 
    Prigioniero, A., Zuzolo, D., Sciarrillo, R. & Guarino, C. Assessing pollinosis risk in the Vesuvius National Park: A novel approach for Index of Urban Green Zones Allergenicity. Environ. Res. 197, 111063 (2021).CAS 
    PubMed 

    Google Scholar 
    AgCult 2020 Classifica visitatori 2019: Capodimonte rientra nella classifica dei primi 30 musei d’Italia.La Valva, V., Guarino, C., De Natale, A., Cuozzo, V., Menale, B. La flora del Parco di Capodimonte di Napoli. in 33–34: 143–177. (Delpinoa, 1992).Stevens, P. F. Angiosperm Phylogeny Website. 2001. http://www.mobot.org/MOBOT/research/APweb/. (2017).James Barth, B., Ian FitzGibbon, S. & Stuart Wilson, R. New urban developments that retain more remnant trees have greater bird diversity. Landsc. Urban Plan. 136, 122–129 (2015).
    Google Scholar 
    Heckmann, K. E., Manley, P. N. & Schlesinger, M. D. Ecological integrity of remnant montane forests along an urban gradient in the Sierra Nevada. For. Ecol. Manage. 255, 2453–2466 (2008).
    Google Scholar 
    Prigioniero, A. et al. Role of historic gardens in biodiversity-conservation strategy: the example of the Giardino Inglese of Reggia di Caserta (UNESCO) (Italy). Plant Biosyst. 155, 983–993 (2021).
    Google Scholar 
    Song, Q., Wang, B., Wang, J. & Niu, X. Endangered and endemic species increase forest conservation values of species diversity based on the Shannon-Wiener index. IForest 9, 469–474 (2016).
    Google Scholar 
    Hess, M. C. M., Mesléard, F. & Buisson, E. Priority effects: Emerging principles for invasive plant species management. Ecol. Eng. 127, 48–57 (2019).
    Google Scholar 
    Carli, E. et al. Using vegetation dynamics to face the challenge of the conservation status assessment in semi-natural habitats. Rend. Lincei. Sci. Fis. e Nat. 29, 363–374 (2018).
    Google Scholar 
    Canedoli, C. et al. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 44, 101135 (2020).
    Google Scholar 
    FAO. Global Forest Resources Assessment 2010. Main report. (2010).Lindén, L., Riikonen, A., Setälä, H. & Yli-Pelkonen, V. Quantifying carbon stocks in urban parks under cold climate conditions. Urban For. Urban Green. 49, 126633 (2020).
    Google Scholar 
    Nowak, D. J., Hirabayashi, S., Bodine, A. & Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 193, 119–129 (2014).CAS 
    PubMed 

    Google Scholar 
    Nowak, D. J., Crane, D. E. & Stevens, J. C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 4, 115–123 (2006).
    Google Scholar 
    Nowak, D. J. & Crane, D. E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 116, 381–389 (2002).CAS 
    PubMed 

    Google Scholar 
    Kocić, K., Spasić, T., Urošević, M. A. & Tomašević, M. Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. J. Cult. Herit. 15, 227–233 (2014).
    Google Scholar 
    Yang, J., McBride, J., Zhou, J. & Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 3, 65–78 (2005).
    Google Scholar 
    Zupancic, T., Westmacott, C., Bulthuis, M. The impact of green space on heat and air pollution in urban communities: A meta-narrative systematic review (2015).Cariñanos, P., Adinolfi, C., Díaz de la Guardia, C., De Linares, C. & Casares-Porcel, M. Characterization of Allergen Emission Sources in Urban Areas. J. Environ. Qual. 45, 244–252 (2016).PubMed 

    Google Scholar 
    D’Auria, A., De Toro, P., Fierro, N. & Montone, E. Integration between GIS and multi-criteria analysis for ecosystem services assessment: A methodological proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy). Sustain 10, 3329 (2018).
    Google Scholar 
    Prigioniero, A., Zuzolo, D., Niinemets, Ü. & Guarino, C. Nature-based solutions as tools for air phytoremediation: A review of the current knowledge and gaps. Environ. Pollut. 277, 116817 (2021).CAS 
    PubMed 

    Google Scholar 
    Szkop, Z. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban For. Urban Green. 55, 126859 (2020).
    Google Scholar 
    Tao, J. et al. Elevation-dependent effects of growing season length on carbon sequestration in Xizang Plateau grassland. Ecol. Indic. 110, 105880 (2020).CAS 

    Google Scholar 
    Chen, Y. et al. Grassland carbon sequestration ability in China: A new perspective from Terrestrial Aridity Zones. Rangel. Ecol. Manag. 69, 84–94 (2016).
    Google Scholar 
    Gopalakrishnan, V., Hirabayashi, S., Ziv, G. & Bakshi, B. R. Air quality and human health impacts of grasslands and shrublands in the United States. Atmos. Environ. 182, 193–199 (2018).ADS 
    CAS 

    Google Scholar 
    Pace, R. et al. Comparing i-Tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean Holm Oak Forest. Environ. Sci. Technol. 55, 6613–6622 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Losos, J. B., Walton, B. M. & Bennett, A. F. Trade-offs between sprinting and clinging ability in Kenyan Chameleons. Funct. Ecol. 7, 281 (1993).
    Google Scholar 
    Pretzsch, H., Moser-Reischl, A., Rahman, M. A., Pauleit, S. & Rötzer, T. Towards sustainable management of the stock and ecosystem services of urban trees. From theory to model and application. Trees – Struct. Funct. (2021). https://doi.org/10.1007/s00468-021-02100-3.Grunewald, K. et al. Lessons learned from implementing the ecosystem services concept in urban planning. Ecosyst. Serv. 49, 101273 (2021).
    Google Scholar 
    Baldacchini, C., Sgrigna, G., Clarke, W., Tallis, M. & Calfapietra, C. An ultra-spatially resolved method to quali-quantitative monitor particulate matter in urban environment. Environ. Sci. Pollut. Res. 26, 18719–18729 (2019).CAS 

    Google Scholar 
    De Luca, P., Guarino, C., Gullo, G., La Valva V., 1992. Il Parco di Capodimonte di Napoli: storia ed attualità. in 33–34: 143–177. (Delpinoa, 1992).Pignatti, S. Flora d’Italia vol.2. (2017).Braun-Blanquet, J. Plant Sociology (McGraw-Hill Book Company, 1932).
    Google Scholar 
    Catorci, A. et al. Reproductive traits variation in the herb layer of a submediterranean deciduous forest landscape. Plant Ecol. 214, 737–749 (2013).
    Google Scholar 
    Šumrada, T. et al. Are result-based schemes a superior approach to the conservation of High Nature Value grasslands? Evidence from Slovenia. Land Use Policy 111, 105749 (2021).
    Google Scholar 
    POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Board of Trustees of the Royal Botanic Gardens, Kew http://www.plantsoftheworldonline.org/ (2022).Bímová, K., Mandák, B. & Kašparová, I. How does Reynoutria invasion fit the various theories of invasibility?. J. Veg. Sci. 15, 495–504 (2004).
    Google Scholar 
    Wild, J., Neuhäuslová, Z. & Sofron, J. Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. For. Ecol. Manag. 187, 117–132 (2004).
    Google Scholar 
    Damato, G. & Lobefalo, G. Allergenic pollens in the southern Mediterranean area. J. Allergy Clin. Immunol. 83, 116–122 (1989).CAS 

    Google Scholar 
    Cariñanos, P. et al. Assessing allergenicity in urban parks: A nature-based solution to reduce the impact on public health. Environ. Res. 155, 219–227 (2017).PubMed 

    Google Scholar 
    Cariñanos, P. et al. Estimation of the allergenic potential of urban trees and urban parks: Towards the healthy design of urban green spaces of the future. Int. J. Environ. Res. Public Health 16, 1357 (2019).PubMed Central 

    Google Scholar  More

  • in

    Spatio-temporal dynamics of phytoplankton community in a well-mixed temperate estuary (Sado Estuary, Portugal)

    Physico-chemical characterization of the Sado EstuaryThe seasonal cycle of water temperature in the Sado Estuary in 2018 and 2019, showed the expected pattern, with maxima temperature observed in summer and minima in winter (Fig. 2A). During summer, warmer temperatures were found in the inner regions of the estuary (AC and MC) and lower temperatures near the mouth of the estuary (EM). During winter, there was an inversion of the pattern, with the coolest waters recorded inside the estuary (Fig. 2A). Near the estuary mouth (EM), salinities recorded were always between 35 and 36 (Fig. 2B). In the inner stations, higher salinities ( > 30) were found during summer/early-autumn of 2018 and late-spring/summer of 2019. Maxima salinities ( > 36) were recorded in the summer of 2019 (Fig. 2B). The lowest salinities were always found in the upper region (AC), reaching a minimum of 12 in March 2018 (Fig. 2B).Figure 2Discrete time series of physico-chemical variables obtained in the Sado Estuary during sampling surveys. (A)—Water temperature (°C); (B)—Salinity; (C)—Turbidity (NTU); (D)—Coloured dissolved organic matter at 443 nm (CDOM, m−1); (E)—pH; (F)—Dissolved oxygen (DO, mg L−1); (G)—Dissolved inorganic nitrogen (DIN, µmol L−1); (H)—Phosphate (PO43−, µmol L−1); and (I) –Silicate (Si(OH)4, µmol L−1).Full size imageThe water turbidity was substantially higher in AC, reaching values above 10 NTU in the summer of 2018 and since spring of 2019, with a maximum of 40 NTU recorded in March 2018 (Fig. 2C). The turbidity values and seasonal pattern for stations MC and MR were similar, with a maximum of 10 NTU recorded in MR during spring of 2018 (Fig. 2C). Lower turbidity was observed during winter in stations AC, MC, and MR (Fig. 2C). Water turbidity was always lower than 1.5 NTU at EM (Fig. 2C). The CDOM was higher in the upper region and lower in the downstream area (Fig. 2D). At AC, a CDOM value  10 µmol L−1) (Fig. 2G). Phosphate concentrations were below 1.5 µmol L−1 in the entire estuary, with higher values in the inner stations, and lower ( More

  • in

    The combined impact of low temperatures and shifting phosphorus availability on the competitive ability of cyanobacteria

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).PubMed 
    Article 

    Google Scholar 
    Grzybowski, M. & Glińska-Lewczuk, K. Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodivers. Conserv. 28, 4065–4097 (2019).Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    Paerl, H. W., Fulton, R. S., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 1, 76–113 (2001).CAS 
    Article 

    Google Scholar 
    Krztoń, W., Kosiba, J., Pociecha, A. & Wilk-Woźniak, E. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities. Biodivers. Conserv. 28, 1815–1835 (2019).Article 

    Google Scholar 
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change 165, 1–17 (2021).Article 

    Google Scholar 
    Yan, X. et al. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Res. 125, 449–457 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, D., Glibert, P. & Burkholder, J. Harmful algal blooms and eutrophication: Nutrient sources, compositions, and consequences. Estuaries 25, 704–726 (2002).Article 

    Google Scholar 
    Li, D. et al. Factors associated with blooms of cyanobacteria in a large shallow lake, China. Environ. Sci. Eur. https://doi.org/10.1186/s12302-018-0152-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Ocean. 59, 99–144 (2014).Article 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters 1. Limnol. Oceanogr. 33, 823–843 (1988).ADS 
    CAS 

    Google Scholar 
    Schindler, D. W. et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. 105, 11254–11258 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Förster, W. et al. Phosphorous supply to a eutrophic artificial lake: Sedimentary versus groundwater sources. Water 13, 1–20 (2021).ADS 
    Article 

    Google Scholar 
    Lang, P. et al. Phytoplankton community responses in a shallow lake following lanthanum-bentonite application. Water Res. 97, 55–68 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lürling, M. & van Oosterhout, F. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710, 253–263 (2013).Article 

    Google Scholar 
    Bishop, W. M. & Richardson, R. J. Influence of Phoslock® on legacy phosphorus, nutrient ratios, and algal assemblage composition in hypereutrophic water resources. Environ. Sci. Pollut. Res. 25, 4544–4557 (2018).CAS 
    Article 

    Google Scholar 
    Drugă, B. et al. The impact of cation concentration on Microcystis (cyanobacteria) scum formation. Sci. Rep. 9, 1–11 (2019).ADS 
    Article 

    Google Scholar 
    Stockenreiter, M., Isanta Navarro, J., Buchberger, F. & Stibor, H. Community shifts from eukaryote to cyanobacteria dominated phytoplankton: The role of mixing depth and light quality. Freshw. Biol. 66, 2145–2157 (2021).Article 

    Google Scholar 
    Drugă, B. et al. term acclimation might enhance the growth and competitive ability of Microcystis aeruginosa in warm environments. Freshw. Biol. https://doi.org/10.1111/fwb.13865 (2022).Article 

    Google Scholar 
    Fordham, D. A. Mesocosms reveal ecological surprises from climate change. PLOS Biol. 13, 1–7 (2015).Article 

    Google Scholar 
    Reinl, K. L. et al. Cyanobacterial blooms in oligotrophic lakes: Shifting the high-nutrient paradigm. Freshw. Biol. 66, 1846–1859 (2021).Article 

    Google Scholar 
    Tillich, U. M., Wolter, N., Franke, P., Dühring, U. & Frohme, M. Screening and genetic characterization of thermo-tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol. 14, 1–15 (2014).Article 

    Google Scholar 
    Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).PubMed 
    Article 

    Google Scholar 
    LaPanse, A. J., Krishnan, A. & Posewitz, M. C. Adaptive Laboratory Evolution for algal strain improvement: Methodologies and applications. Algal Res. 53, 102122 (2021).Article 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLOS Pathog. 15, e1007801 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glöckner, F. O. et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. U. S. A. 100, 8298–8303 (2003).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sowell, S. M. et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 3, 93–105 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiriac, M.-C. et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome https://doi.org/10.21203/rs.3.rs-776685/v2 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Von Der Heyden, S., Chao, E. E. & Cavalier-Smith, T. Genetic diversity of goniomonads: An ancient divergence between marine and freshwater species. Eur. J. Phycol. 39, 343–350 (2004).Article 

    Google Scholar 
    Kim, B. R., Nakano, S. I., Kim, B. H. & Han, M. S. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 45, 163–170 (2006).Article 

    Google Scholar 
    Varol, M., Bekleyen, A., Şen, B. & Gökot, B. First record of the order Choanoflagellida in Turkey. Turkish J. Fish. Aquat. Sci. 11, 1–2 (2011).
    Google Scholar 
    Cabrerizo, M. J. et al. Warming and CO2 effects under oligotrophication on temperate phytoplankton communities. Water Res. https://doi.org/10.1016/j.watres.2020.115579 (2020).Article 
    PubMed 

    Google Scholar 
    Maberly, S. C., Pitt, J.-A., Davies, P. S. & Carvalho, L. Nitrogen and phosphorus limitation and the management of small productive lakes. Inl. Waters 10, 159–172 (2020).Article 

    Google Scholar 
    Li, J., Sellner, K., Place, A., Cornwell, J. & Gao, Y. Mitigation of cyanohabs using phoslock® to reduce water column phosphorus and nutrient release from sediment. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph182413360 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nwosu, E. C. et al. Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the southern Baltics. Front. Microbiol. 12, 1–17 (2021).ADS 
    Article 

    Google Scholar 
    Vörös, L., Callieri, C., V-Balogh, K. & Bertoni, R. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370, 117–125 (1998).Article 

    Google Scholar 
    Camacho, A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25, 453–478 (2006).Article 

    Google Scholar 
    Cabello-Yeves, P. J. et al. Novel synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8, 1151 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prihantini, N. B., Addana, F., Sjamsuridzal, W. & Yokota, A. The effect of temperature on the growth of genus Synechococcus isolated from four Indonesian hot springs and Agathis small lake of Universitas Indonesia. AIP Conf. Proc. 1729 (2016).Callieri, C. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 364, 1–8 (2017).Article 

    Google Scholar 
    Acinas, S. G., Haverkamp, T. H. A., Huisman, J. & Stal, L. J. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J. 3, 31–46 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kehoe, D. M. & Gutu, A. Responding to color: The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bell, T. & Kalff, J. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 46, 1243–1248 (2001).ADS 
    Article 

    Google Scholar 
    Jezberová, J. & Komárková, J. Morphological transformation in a freshwater Cyanobium sp. induced by grazers. Environ. Microbiol. 9, 1858–1862 (2007).PubMed 
    Article 

    Google Scholar 
    Chu, Z., Jin, X., Iwami, N. & Inamori, Y. The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China (eds Qin, B. et al.) 217–223 (Springer, 2007).Chapter 

    Google Scholar 
    Ma, J. et al. The persistence of cyanobacterial (Microcystis spp,) blooms throughout winter in Lake Taihu, China. Limnol. Oceanogr. 61, 711–722 (2016).ADS 
    Article 

    Google Scholar 
    Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).CAS 
    Article 

    Google Scholar 
    Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 64, 1347–1370 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, R. M. et al. Episodic decrease in temperature increases mcy gene transcription and cellular microcystin in continuous cultures of Microcystis aeruginosa PCC 7806. Front. Microbiol. 11, 3081 (2020).Article 

    Google Scholar 
    You, J., Mallery, K., Hong, J. & Hondzo, M. Temperature effects on growth and buoyancy of Microcystis aeruginosa. J. Plankton Res. 40, 16–28 (2018).Article 

    Google Scholar 
    Aguilar, P., Acosta, E., Dorador, C. & Sommaruga, R. Large differences in bacterial community composition among three nearby extreme waterbodies of the high Andean plateau. Front. Microbiol. 7, 1–8 (2016).Article 

    Google Scholar 
    Echeverría-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic andean lakes exposed to the same climatic scenario. Front. Microbiol. 9, 1–17 (2018).Article 

    Google Scholar 
    Schmidt, M. L., White, J. D. & Denef, V. J. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 18, 1212–1226 (2016).PubMed 
    Article 

    Google Scholar 
    Kaboré, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: A perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell Infect. Microbiol. 10, 1–19 (2020).Article 

    Google Scholar 
    Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sutcliffe, I. C. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol. 18, 464–470 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Phenotype changes of cyanobacterial and microbial distribution characteristics of surface sediments in different periods of cyanobacterial blooms in Taihu Lake. Aquat. Ecol. 54, 591–607 (2020).CAS 
    Article 

    Google Scholar 
    Waidner, L. A. & Kirchman, D. L. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl. Environ. Microbiol. 74, 4012–4021 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sisson, C., Gulla-Devaney, B., Katz, L. A. & Grattepanche, J. D. Seed bank and seasonal patterns of the eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) clade in a New England vernal pool. J. Plankton Res. 40, 376–390 (2018).Article 

    Google Scholar 
    Moser, M. & Weisse, T. The outcome of competition between the two chrysomonads Ochromonas sp. and Poterioochromonas malhamensis depends on pH. Eur. J. Protistol. 47, 79–85 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pröschold, T. et al. An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea). Sci. Rep. 11, 1–19 (2021).Article 

    Google Scholar 
    Jones, H. A classification of mixotrophic protists based on their behaviour. Freshw. Biol. 37, 35–43 (1997).Article 

    Google Scholar 
    Fischer, R., Giebel, H. A. & Ptacnik, R. Identity of the limiting nutrient (N vs. P) affects the competitive success of mixotrophs. Mar. Ecol. Prog. Ser. 563, 51–63 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Gillette, J. P., Stewart, D. J., Teece, M. A. & Schulz, K. L. Abundance of mixoplanktonic algae in relation to prey, light and nutrient limitation in a dystrophic lake: A mesocosm study. Mar. Freshw. Res. 72, 1760–1772 (2021).CAS 
    Article 

    Google Scholar 
    Harder, C. B. et al. Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J. 10, 2488–2497 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 1–12 (2018).Article 

    Google Scholar 
    Sakharova, E. G. & Korneva, L. G. Phytoplankton in the Littoral and Pelagial zones of the Rybinsk reservoir in years with different temperature and water-level regimes. Inl. Water Biol. 11, 6–12 (2018).Article 

    Google Scholar 
    Cruaud, P. et al. Annual Protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: The saint-Charles River (Canada). Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S. & Huszar, V. L. M. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw. Biol. 58, 552–559 (2013).Article 

    Google Scholar 
    Jensen, J. P., Jeppesen, E., Olrik, K. & Kristensen, P. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. Aquat. Sci. 51, 1692–1699 (1994).Article 

    Google Scholar 
    Dragoș, N. An Introduction to the Algae and the Culture Collection of Algae at the Institute of Biological Research, Cluj-Napoca (Cluj University Press, 1997).
    Google Scholar 
    Frank, J. A. et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. M. & Stanier, R. Y. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 51, 199–202 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. IPCC report Global warming of 1.5°C. Ipcc Sr15 2, 17–20 (2018).Kalendar, R., Khassenov, B., Ramankulov, Y., Samuilova, O. & Ivanov, K. I. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 109, 312–319 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).Article 

    Google Scholar 
    Kimura, S. et al. Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl. Environ. Microbiol. 78, 5805–5811 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, e34983 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9, e87624 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Behaviour dominates impacts

    The impacts of climate change on host–parasite dynamics are particularly complex to predict, as they involve an interplay of both physiological and behavioural factors, from both host and parasite. For example, while warming may increase parasite developmental rates and thus increase transmission, excessive heat may instead exceed thermal limits, leading to higher parasite mortality. Transmission also relates to both the distribution and abundance of host species, which may also shift under changing climates. More

  • in

    Climate change impacts the vertical structure of marine ecosystem thermal ranges

    Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).CAS 
    Article 

    Google Scholar 
    Levitus, S. et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009).
    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    Article 

    Google Scholar 
    Hughes, N. F. & Grand, T. C. Physiological ecology meets the ideal-free distribution: predicting the distribution of size-structured fish populations across temperature gradients. Environ. Biol. Fishes 59, 285–298 (2000).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).Article 

    Google Scholar 
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).Article 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 

    Google Scholar 
    Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).CAS 
    Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).Article 

    Google Scholar 
    Lotterhos, K. E., Láruson, Á. J. & Jiang, L.-Q. Novel and disappearing climates in the global surface ocean from 1800 to 2100. Sci. Rep. 11, 15535 (2021).CAS 
    Article 

    Google Scholar 
    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).CAS 
    Article 

    Google Scholar 
    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).Article 

    Google Scholar 
    Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: role of Earth system processes in present‐day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).Article 

    Google Scholar 
    Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).CAS 
    Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Beszczynska-Möller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69, 852–863 (2012).Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish. Biol. 83, 1508–1527 (2013).CAS 
    Article 

    Google Scholar 
    Richter, I. Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIREs Clim. Change 6, 345–358 (2015).Article 

    Google Scholar 
    Pozo Buil, M. et al. A dynamically downscaled ensemble of future projections for the California Current System. Front. Mar. Sci. 8, 612874 (2021).Article 

    Google Scholar 
    Leonard, M. et al. A compound event framework for understanding extreme impacts. WIREs Clim. Change 5, 113–128 (2014).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).Article 

    Google Scholar 
    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).CAS 
    Article 

    Google Scholar 
    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).Article 

    Google Scholar 
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).CAS 
    Article 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    CAS 

    Google Scholar 
    Silvy, Y., Guilyardi, E., Sallée, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).CAS 
    Article 

    Google Scholar 
    Cheng, L., Zheng, F. & Zhu, J. Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep. 5, 14346 (2015).CAS 
    Article 

    Google Scholar 
    Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).CAS 
    Article 

    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).Article 
    CAS 

    Google Scholar 
    Oliver, E. C. J. et al. Marine Heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).Article 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B280, 20121890 (2013).Article 

    Google Scholar 
    Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577.e2 (2020).CAS 
    Article 

    Google Scholar 
    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    Thatje, S. Climate warming affects the depth distribution of marine ectotherms. Mar. Ecol. Prog. Ser. 660, 233–240 (2021).Article 

    Google Scholar 
    Manuel, S. A., Coates, K. A., Kenworthy, W. J. & Fourqurean, J. W. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Mar. Environ. Res. 89, 63–75 (2013).CAS 
    Article 

    Google Scholar 
    Peck, L. S., Webb, K. E. & Bailey, D. M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18, 625–630 (2004).Article 

    Google Scholar 
    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in Antarctic marine ectotherms. J. Exp. Biol. 217, 16–22 (2014).Article 

    Google Scholar 
    Walsh, J. E. Climate of the Arctic marine environment. Ecol. Appl. 18, S3–S22 (2008).Article 

    Google Scholar 
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H.-O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).Article 

    Google Scholar 
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).Article 

    Google Scholar 
    Pörtner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B 362, 2233–2258 (2007).Article 
    CAS 

    Google Scholar 
    Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).Article 

    Google Scholar 
    Cohen, D.M., Inada, T., Iwamoto, T. and Scialabba, N. FAO Species Catalogue, Vol. 10. Gadiform Fishes of the World (Order Gadiformes) (FAO, 1990).Strand, E. & Huse, G. Vertical migration in adult Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 64, 1747–1760 (2007).Article 

    Google Scholar 
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).CAS 
    Article 

    Google Scholar 
    Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).CAS 
    Article 

    Google Scholar 
    Bijma, J., Pörtner, H.-O., Yesson, C. & Rogers, A. D. Climate change and the oceans—what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).CAS 
    Article 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    Article 

    Google Scholar 
    Rochman, C. M. & Hoellein, T. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).CAS 
    Article 

    Google Scholar 
    Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).CAS 
    Article 

    Google Scholar 
    Madec, G. et al. NEMO ocean engine. Zenodo https://www.earth-prints.org/handle/2122/13309 (2017).Mathiot, P., Jenkins, A., Harris, C. & Madec, G. Explicit representation and parametrised impacts of under ice shelf seas in the z∗- coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10, 2849–2874 (2017).Article 

    Google Scholar 
    Dai, A. & Bloecker, C. E. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306 (2019).Article 

    Google Scholar 
    Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).Article 

    Google Scholar 
    Middag, R. et al. Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Mar. Chem. 177, 476–489 (2015).CAS 
    Article 

    Google Scholar 
    Welch, B. L. The generalization of Student’s’ problem when several different population variances are involved. Biometrika 34, 28 (1947).CAS 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the Tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    Article 

    Google Scholar 
    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).CAS 
    Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).CAS 
    Article 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Spring thaw nitrous oxide

    Agriculture soils are a source of nitrous oxide and account for 60% of total emissions. It is well established that nitrogen addition via fertilizers drives nitrous oxide emissions during crop growing season. However, little is known about the role of melting snow and thawing surface soil layers during the spring. Limited knowledge of this phenomenon reduces our ability to develop accurate nitrous oxide emissions inventories required under the UN Framework Convention on Climate Change (UNFCCC). More