More stories

  • in

    Giant clam (Tridacna) distribution in the Gulf of Oman in relation to past and future climate

    Neo, M. L., Eckman, W., Vicentuan, K., Teo, S.L.-M. & Todd, P. A. The ecological significance of giant clams in coral reef ecosystems. Biol. Conserv. 181, 111–123 (2015).Article 

    Google Scholar 
    Wolfe, K. et al. Priority species to support the functional integrity of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 58, 179–318 (2020).Article 

    Google Scholar 
    Ip, Y. K. & Chew, S. F. Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Front. Mar. Sci. 8, 627722 (2021).Article 

    Google Scholar 
    Rossbach, S. et al. Flexibility in Red Sea Tridacna maxima-symbiodiniaceae associations supports environmental niche adaption. Ecol. Evol. 11, 3393–3406 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. Oceanogr. Mar. Biol. Annu. Rev. 55, 87–388 (2017).Article 

    Google Scholar 
    Armstrong, E. J., Dubousquet, V., Mills, S. C. & Stillman, J. H. Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima. Mar. Biol. 167, 8 (2020).CAS 
    Article 

    Google Scholar 
    Lokier, S., Al-Suwaidi, A. E. & Steuber, T. Stable isotope sclerochronology of Pleistocene shells of the ‘Giant Clam’ Tridacna from Abu Dhabi. Tribulus 20, 21–23 (2012).
    Google Scholar 
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Biogeography of butterflyfishes: A global model for reef fishes? In Biology of Butterflyfishes (eds Pratchett, M. S. et al.) 70–106 (CRC Press, 2013).Chapter 

    Google Scholar 
    DiBattista, J. D. et al. On the origin of endemic species in the Red Sea. J. Biogeogr. 43, 13–30 (2016).Article 

    Google Scholar 
    Kemp, J. M. Zoogeography of the coral reef fishes of the north-eastern Gulf of Aden, with eight new records of coral reef fishes from Arabia. Fauna Arabia 18, 293–321 (2000).
    Google Scholar 
    Sheppard, C. R. C. & Salm, R. V. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). J. Nat. Hist. 22, 263–279 (1988).Article 

    Google Scholar 
    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).Article 

    Google Scholar 
    Torquato, F. & Møller, P. R. Physical-biological interactions underlying the connectivity patterns of coral-dependent fishes around the Arabian Peninsula. J. Biogeogr. 49, 483–496 (2022).Article 

    Google Scholar 
    Watanabe, T., Suzuki, A., Kawahata, H., Kan, H. & Ogawa, S. A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: Physiological and paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 343–354 (2004).Article 

    Google Scholar 
    Elliot, M. et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimatic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 123–142 (2009).Article 

    Google Scholar 
    Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Hori, M. et al. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep. 5, 8734 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Komagoe, T., Watanabe, T., Shirai, K., Yamazaki, A. & Uematu, M. Geochemical and microstructural signals in giant clam Tridacna maxima recorded typhoon events at Okinotori Island, Japan. J. Geophys. Res. Biogeosci. 123, 1460–1474 (2018).CAS 
    Article 

    Google Scholar 
    Yuan, Y., Kusky, T. M. & Rajendran, S. Tertiary and Quaternary marine terraces and planation surfaces of northern Oman: Interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J. Earth Sci. 27, 955–970 (2016).CAS 
    Article 

    Google Scholar 
    Louis, V., Besseau, L. & Lartaud, F. Step in time: Biomineralisation of bivalve’s shell. Front. Mar. Sci. 9, 906085 (2022).Article 

    Google Scholar 
    Mossadegh, Z. K. et al. Palaeoecology of well-preserved coral communities in a siliciclastic environment from the Late Pleistocene (MIS 7), Kish Island, Persian Gulf (Iran): The development of low-relief reef frameworks (biostromes) in increasingly restricted environments. Int. J. Earth Sci. 102, 545–570 (2013).Article 

    Google Scholar 
    Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the U.S. mid-Atlantic constrain laurentide ice sheet extent during marine isotope stage 3. Nat. Commun. 8, 15612 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, G. et al. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870 (2020).Article 

    Google Scholar 
    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).ADS 
    Article 

    Google Scholar 
    Hoffmann, G., Rupprechter, M., Rahn, M. & Preusser, F. Fluvio-lacustrine deposits reveal precipitation pattern in SE Arabia during early MIS 3. Quat. Int. 382, 145–153 (2015).Article 

    Google Scholar 
    Kobashi, T. & Grossman, E. J. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontol. Res. 7, 343–355 (2003).Article 

    Google Scholar 
    Watanabe, T. K. et al. Past summer upwelling events in the Gulf of Oman derived from a coral geochemical record. Sci. Rep. 7, 4568 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jayaram, C. et al. Analysis of gap-free chlorophyll-α data from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 39, 7506–7522 (2018).Article 

    Google Scholar 
    Warter, V., Erez, J. & Müller, J. Environmental and physiological controls on daily trace element incorporation in Tridacna crocea from combined laboratory culturing and ultra-high resolution LA-ICP-MS analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 32–47 (2018).Article 

    Google Scholar 
    Ayouche, A. et al. Structure and dynamics of the Ras al Hadd oceanic dipole in the Arabian Sea. Oceans 2, 105–125 (2021).Article 

    Google Scholar 
    Sano, Y. et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun. 3, 761 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Santos, G. M. et al. Δ14C and δ13C of seawater DIC as tracers of coastal upwelling: A 5-year time series from Southern California. Radiocarbon 53, 669–677 (2011).CAS 
    Article 

    Google Scholar 
    North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).Article 

    Google Scholar 
    Zhang, X. & Prange, M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability. Quat. Sci. Rev. 242, 106443 (2020).Article 

    Google Scholar 
    Schulte, S. & Müller, P. J. Variations of sea surface temperature and primary productivity during Heinrich and Dansgaard-Oeschger events in the northeastern Arabian Sea. Geo-Mar. Lett. 21, 168–175 (2001).ADS 
    Article 

    Google Scholar 
    Deplazes, G. et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography 29, 99–114 (2014).ADS 
    Article 

    Google Scholar 
    Duprey, N. et al. Calibration of seawater temperature and δ18Oseawater signals in Tridacna maxima’s δ18Oshell record based on in situ data. Coral Reefs 34, 437–450 (2015).ADS 
    Article 

    Google Scholar 
    Govil, P. & Naidu, P. D. Evaporation-precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability. Paleoceanography 25, 1210 (2010).ADS 
    Article 

    Google Scholar 
    Watanabe, T. K. et al. Corals reveal an unprecedented decrease of Arabian Sea upwelling during the current warming era. Geophys. Res. Lett. 48, e2021GL092432 (2021).ADS 
    Article 

    Google Scholar 
    Gaye, B. et al. Glacial−interglacial changes and Holocene variations in Arabian Sea denitrification. Biogeosciences 15, 507–527 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 9658 (2018).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: Where do we draw the line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Abram, N. J., Webster, J. M., Davies, P. J. & Dullo, W. C. Biological response of coral reefs to sea surface temperature variation: Evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands, Japan). Coral Reefs 20, 221–234 (2001).Article 

    Google Scholar 
    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Banakar, V. K., Mahesh, B. S., Burr, G. & Chondankar, A. R. Climatology of the Eastern Arabian Sea during the last glacial cycle reconstructed from paired measurement of foraminiferal δ18O and Mg/Ca. Quat. Res. 73, 535–540 (2010).CAS 
    Article 

    Google Scholar 
    Mattern, F. et al. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). J. Afr. Earth Sci. 138, 192–200 (2018).Article 

    Google Scholar 
    Hoffmann, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).ADS 
    Article 

    Google Scholar 
    van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 1245 (2011).
    Google Scholar 
    Nicholl, J. A. L. et al. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tzedenakis, P. C. et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nat. Commun. 9, 4235 (2018).ADS 
    Article 

    Google Scholar 
    Sandeep, N. et al. South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 54, 3507–3524 (2020).Article 

    Google Scholar 
    Rao, S. A. et al. Why is Indian Ocean warming consistently? Clim. Change 110, 709–719 (2012).ADS 
    Article 

    Google Scholar 
    Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming ocean. Mar. Ecol. Prog. Ser. 416, 47–56 (2010).ADS 
    Article 

    Google Scholar 
    Praveen, V., Ajayamohan, R. S., Valsala, V. & Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 43, 7581–7589 (2016).ADS 
    Article 

    Google Scholar 
    Schulz, K. G., Hartley, S. & Eyre, B. Upwelling amplifies ocean acidification on the East Australian Shelf: Implications for marine ecosystems. Front. Mar. Sci. 6, 636 (2019).Article 

    Google Scholar 
    Southon, J., Kashgarian, M., Fontugne, M., Metivier, B. & Yim, W.W.-S. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44, 167–180 (2002).Article 

    Google Scholar 
    Jochum, K. P., Stoll, B., Herwig, K. & Willbold, M. Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix-matched calibration. J. Anal. At. Spectrom. 22, 112–121 (2007).CAS 
    Article 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. Termite: An R script for fast reduction laser ablation inductivity coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Spectrom. 31, 1079–1087 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. & Herwig, K. Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 29, 285–302 (2005).CAS 
    Article 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newslett. 26, 95–99 (2002).CAS 
    Article 

    Google Scholar 
    Sekimoto, S. et al. Neutron activation analysis of carbonate reference materials: Coral (JCp-1) and giant clam (JCt-1). J. Radioanal. Nucl. Chem. 322, 1579–1583 (2019).CAS 
    Article 

    Google Scholar 
    Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 77, 379 (1996).ADS 
    Article 

    Google Scholar  More

  • in

    Fish community structure and dynamics are insufficient to mediate coral resilience

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatcher, B. G. Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol. Evol. 5, 149–155 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis, S. M. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56, 183–200 (1986).Article 

    Google Scholar 
    Carpenter, R. C. Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345–364 (1986).Article 

    Google Scholar 
    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).Article 

    Google Scholar 
    Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed 
    Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).Article 

    Google Scholar 
    Holbrook, S. J., Schmitt, R. J., Adam, T. C. & Brooks, A. J. Coral reef resilience, tipping points and the strength of herbivory. Sci. Rep. 6, 35817 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, A. L. & Bellwood, D. R. Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience. A Practical Guide for Coral reef Managers in the Asia Pacific Region (IUCN, 2009).Bozec, Y. M., O’Farrell, S., Bruggemann, J. H., Luckhurst, B. E. & Mumby, P. J. Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc. Natl Acad. Sci. USA 113, 4536–4541 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruno, J. F., Cote, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected sreas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Mora, C. A clear human footprint in the coral reefs of the Caribbean. Proc. Biol. Sci. 275, 767–773 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems. Ecol. Monogr. 85, 117–132 (2015).Article 

    Google Scholar 
    Mellin, C., Bradshaw, C. J., Fordham, D. A. & Caley, M. J. Strong but opposing beta-diversity–stability relationships in coral reef fish communities. Proc. Biol. Sci. 281, 20131993 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nash, K. L. et al. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Thibaut, L. M., Connolly, S. R. & Sweatman, H. P. Diversity and stability of herbivorous fishes on coral reefs. Ecology 93, 891–901 (2012).PubMed 
    Article 

    Google Scholar 
    Zhang, S. Y. et al. Is coral richness related to community resistance to and recovery from disturbance? PeerJ 2, e308 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clements, C. S. & Hay, M. E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat. Ecol. Evol. 3, 178–182 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).Article 

    Google Scholar 
    Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).Article 

    Google Scholar 
    Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I. & Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 23, 174–188 (2013).PubMed 
    Article 

    Google Scholar 
    Cheal, A. J. et al. Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steneck, R. S., Mumby, P. J., Macdonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).Article 

    Google Scholar 
    Harvey, C. J. et al. The importance of long-term ecological time series for integrated ecosystem assessment and ecosystem-based management. Prog. Oceanogr. 188, 102418 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627 (2019).PubMed 
    Article 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).Article 

    Google Scholar 
    Adam, T. C. et al. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia 176, 285–296 (2014).PubMed 
    Article 

    Google Scholar 
    Munsterman, K. S., Allgeier, J. E., Peters, J. R. & Burkepile, D. E. A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems 24, 1702–1715 (2021).Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Hoey, A. S. & Wilson, S. K. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).Article 

    Google Scholar 
    Donovan, M. K. et al. Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proc. Natl Acad. Sci. USA 117, 5351–5357 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doropoulos, C. et al. Characterising the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    Russ, G. R., Questel, S. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045 (2015).Article 

    Google Scholar 
    Chung, A. E. et al. Building coral reef resilience through spatial herbivore management. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00098 (2019).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Edwards, A. J. Reef Rehabilitation Manual (Coral Reef Targeted Research & Capacity Building for Management Program, 2010).Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schindler, D. E. & Hilborn, R. Sustainability. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9, 632–636 (2019).Article 

    Google Scholar 
    Cote, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling, E. S. & Cote, I. M. Seeking resilience in marine ecosystems. Science 359, 986–987 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rassweiler, A. et al. Perceptions and responses of Pacific Island fishers to changing coral reefs. Ambio 49, 130–143 (2020).PubMed 
    Article 

    Google Scholar 
    Moorea Coral Reef LTER & Carpenter, R. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Benthic Algae and Other Community Components (Environmental Data Initiative, accessed 2019); https://doi.org/10.6073/pasta/37d9c451a908e4a6f8e7ab914b93f44fBrooks, A. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Fishes (MCR, 2018).de Loma, T. L. et al. A framework for assessing impacts of marine protected areas in Moorea (French Polynesia). Pac. Sci. 62, 431–441 (2008).Article 

    Google Scholar 
    Nicholson, M. D. & Jennings, S. Testing candidate indicators to support ecosystem-based management: the power of monitoring surveys to detect temporal trends in fish community metrics. ICES J. Mar. Sci. 61, 35–42 (2004).Article 

    Google Scholar 
    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). More

  • in

    Safeguarding nutrients from coral reefs under climate change

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resource Institute, 2011).Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).Article 

    Google Scholar 
    Gillett, R. Fisheries in the Economies of the Pacific Island Countries and Territories (Asian Development Bank, 2016).The Regional State of the Coast Report: Western Indian Ocean (UNEP, Nairobi Convention & WIOMSA, 2015).Wabnitz, C. C. C., Cisneros-Montemayor, A. M., Hanich, Q. & Ota, Y. Ecotourism, climate change and reef fish consumption in Palau: benefits, trade-offs and adaptation strategies. Mar. Policy 88, 323–332 (2018).Article 

    Google Scholar 
    Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).Article 

    Google Scholar 
    Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).Article 

    Google Scholar 
    Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. & Hijmans, R. J. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE 12, e0175554 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calder, P. C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta 1851, 469–484 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddad, L. et al. A new global research agenda for food. Nature 540, 30–32 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    MacNeil, M. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crona, B. I., Van Holt, T., Petersson, M., Daw, T. M. & Buchary, E. Using social–ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Glob. Environ. Change 35, 162–175 (2015).Article 

    Google Scholar 
    Okemwa, G. M., Kaunda-Arara, B., Kimani, E. N. & Ogutu, B. Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish. Res. 183, 19–31 (2016).Article 

    Google Scholar 
    Cinner, J. E., Folke, C., Daw, T. & Hicks, C. C. Responding to change: using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Glob. Environ. Change 21, 7–12 (2011).Article 

    Google Scholar 
    Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth 4, 1214–1216 (2021).Article 

    Google Scholar 
    Albert, J. et al. Malnutrition in rural Solomon Islands: an analysis of the problem and its drivers. Matern. Child Nutr. 16, e12921 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Golden, C. D. et al. Social–ecological traps link food systems to nutritional outcomes. Glob. Food Security 30, 100561 (2021).Article 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).Article 

    Google Scholar 
    Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morais, R. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).Article 

    Google Scholar 
    Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).Article 

    Google Scholar 
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).Article 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘protection paradox’. Biol. Conserv. 236, 305–314 (2019).Article 

    Google Scholar 
    Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed 
    Article 

    Google Scholar 
    Soliño, L. & Costa, P. R. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. Environ. Res. 182, 109111 (2020).PubMed 
    Article 

    Google Scholar 
    Rogers, A. et al. Anticipative management for coral reef ecosystem services in the 21st century. Glob. Change Biol. 21, 504–514 (2015).Article 

    Google Scholar 
    Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network & International Coral Reef Initiative, 2021).Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).Article 

    Google Scholar 
    Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehane, L. & Lewis, R. J. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61, 91–125 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fraser, K. M. et al. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc. R. Soc. B Biol. Sci. 287, 20201798 (2020).CAS 
    Article 

    Google Scholar 
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, J. X. Omega-3: a link between global climate change and human health. Biotechnol. Adv. 29, 388–390 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Tan, K., Zhang, H. & Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 86, 101161 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pethybridge, H. R. et al. Spatial patterns and temperature predictions of tuna fatty acids: tracing essential nutrients and changes in primary producers. PLoS ONE 10, e0131598 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hempson, T. N., Graham, N. A. J., MacNeil, M. A., Bodin, N. & Wilson, S. K. Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct. Ecol. 32, 820–830 (2018).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).PubMed 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).Article 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. Habitat loss and range shifts contribute to ecological generalization amongst reef fishes. Nat. Ecol. Evol. 5, 656–662 (2021).PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Du Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W. W. L. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).Article 

    Google Scholar 
    Jones, J. et al. The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish. Front. Microbiol. 9, 2000 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Littman, R., Willis, B. L. & Bourne, D. G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3, 651–660 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth 5, 98–108 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (FishBase, 2021); www.fishbase.orgMacNeil, M. A. NutrientFishbase dataset. GitHub https://github.com/mamacneil/NutrientFishbase (2021).Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Golden, C. et al. Nutrition: fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 

    Google Scholar 
    Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).Article 

    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).Article 

    Google Scholar 
    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).Article 

    Google Scholar 
    Pratchett, M. S. et al. in Oceanography and Marine Biology: An Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (CRC Press, 2008).Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).Article 

    Google Scholar 
    Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).PubMed 
    Article 

    Google Scholar 
    Hempson, T., Graham, N., Macneil, A., Hoey, A. & Wilson, S. Ecosystem regime shifts disrupt trophic structure. Ecol. Appl. 28, 191–200 (2018).PubMed 
    Article 

    Google Scholar 
    Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).Article 

    Google Scholar 
    Nash, K. L., Graham, N. A. J., Jennings, S., Wilson, S. K. & Bellwood, D. R. Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J. Appl. Ecol. 53, 646–655 (2016).Article 

    Google Scholar 
    Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef Life Survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Pauly, D. & Zeller, D. Accurate catches and the sustainability of coral reef fisheries. Curr. Opin. Environ. Sustain. 7, 44–51 (2014).Article 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 

    Google Scholar 
    McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).Article 

    Google Scholar 
    Graham, N. A. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinsky Malin, L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorson, J. T. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251 (2020).Article 

    Google Scholar 
    Ahern, M. B. et al. Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa. Foods 10, 2080 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC, WorldFish Centre, WRI & TNC. Global Distribution of Coral Reefs. Version 4.1. Ocean Data Viewer https://doi.org/10.34892/t2wk-5t34 (UN Environment World Conservation Monitoring Centre, 2021).Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, M. et al. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 23, 797–810 (2011).CAS 
    Article 

    Google Scholar 
    Coleman, M. A. et al. Climate change does not affect the seafood quality of a commonly targeted fish. Glob. Change Biol. 25, 699–707 (2019).Article 

    Google Scholar 
    Sissener, N. H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 221, jeb161521 (2018).PubMed 
    Article 

    Google Scholar 
    Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).PubMed 
    Article 

    Google Scholar 
    McMahon, K., Hamady, L. L. & Thorrold, S. Ocean ecogeochemistry—a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).
    Google Scholar 
    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS 
    Article 

    Google Scholar 
    Bowes, R. E. & Thorp, J. H. Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. Ecosphere 6, 14 (2015).Article 

    Google Scholar 
    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).PubMed 
    Article 

    Google Scholar 
    Kleiber, D., Harris, L. M. & Vincent, A. C. J. Gender and small-scale fisheries: a case for counting women and beyond. Fish Fish. 16, 547–562 (2015).Article 

    Google Scholar  More

  • in

    Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae)

    Moyle, P. B. Inland fishes of California (University of California Press, 2002).
    Google Scholar 
    Moyle, P. B., Brown, L. R., Durand, J. R. & Hobbs, J. A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 14, 1–28 (2016).
    Google Scholar 
    U. S. Fish and Wildlife Service. Endangered and threatened wildlife and plants: Determination of threatened status of the Delta Smelt. Federal Regist. 58, 12854–12864 (1993).
    Google Scholar 
    California Department of Fish and Wildlife. State and federally listed endangered and threatened animals of California. California Department of Fish and Wildlife, (The Natural Resources Agency, North Highlands, 2017).Moyle, P. B. & Bennett, W. A. The future of the Delta ecosystem and its fish, Technical Appendix D. Comparing Futures for the Sacramento-San Joaquin Delta. San Francisco (CA): Public Policy Institute of California (2008).Lund, J. R. et al. Comparing futures for the Sacramento-San Joaquin Delta (Public Policy Institute of California, 2010).Book 

    Google Scholar 
    Moyle, P. B., Bennett, W. A., Fleenor, W. E. & Lund, J. R. Habitat variability and complexity in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 8, 1–24 (2010).
    Google Scholar 
    Feyrer, F., Newman, K., Nobriga, M. & Sommer, T. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish. Estuaries Coast. 34, 120–128 (2011).Article 

    Google Scholar 
    Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco bay. Rev. Geophys. 50, RG4001 (2012).ADS 
    Article 

    Google Scholar 
    Moyle, P. B., Hobbs, J. A. & Durand, J. R. Delta Smelt and water politics in California. Fisheries 43, 42–60 (2018).Article 

    Google Scholar 
    Mahardja, B. et al. Resistance and resilience of pelagic and littoral fishes to drought in the San Francisco estuary. Ecol. Appl. 31, e02243 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Börk, K., Moyle, P., Durand, J., Hung, T.-C. & Rypel, A. L. Small populations in jeopardy: Delta smelt case study. Environ. Law Reporter 50, 10714–10722 (2020).
    Google Scholar 
    Moyle, P. B. 2021. Experimental habitats for hatchery Delta Smelt. California WaterBlog https://californiawaterblog.com/2021/07/25/experimental-habitats-for-hatchery-delta-smelt/ (2021).Jeffries, K. M. et al. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J. Exp. Biol. 219, 1705–1716 (2016).PubMed 
    Article 

    Google Scholar 
    Bashevkin, S. M. & Mahardja, B. Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary. Limnol. Oceanogr. 67, 684–702 (2022).ADS 
    Article 

    Google Scholar 
    Brown, L. R. et al. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish. PLoS ONE 11, e0146724 (2015).Article 

    Google Scholar 
    Kurobe, T. et al. Reproductive strategy of Delta Smelt Hypomesus transpacificus and impacts of drought on reproductive performance. PLoS ONE 17, e0264731 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lewis, L. S. et al. Otolith-based approaches indicate strong effects of environmental variation on growth of a critically endangered estuarine fish. Mar. Ecol. Prog. 676, 37–56 (2021).Article 

    Google Scholar 
    Hammock, B. G. et al. Patterns and predictors of condition indices in a critically endangered fish. Hydrobiologia 849, 675–695 (2021).Article 

    Google Scholar 
    Bennett, W. A. Critical assessment of the delta smelt population in the San Francisco Estuary, California. San Franc. Estuary Watershed Sci. 3(1), (2005).Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, cou008 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moyle, P. B., Herbold, B., Stevens, D. E. & Miller, L. W. Life history of delta smelt in the Sacramento-San Joaquin Estuary California. Trans. Am. Fish. Soc. 121, 67–77 (1992).Article 

    Google Scholar 
    Kimmerer, W. J., MacWilliams, M. L. & Gross, E. S. Variation of fish habitat and extent of the low-salinity zone with freshwater flow in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 11 (2013).Sommer, T. & Meija, F. A place to call home: A synthesis of delta smelt habitats in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 9 (2013).Hammock, B. G. et al. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish. PLoS ONE 12, e0173497 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cox, D. Effects of three heating rates on the critical thermal maximum of Bluegill. In W Gibbons, R Sharitz, eds, Thermal Ecology. National Technical Information Service, 158–163 (Springfield, IL, 1974).Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).Article 

    Google Scholar 
    Davis, B. E. et al. Sensitivities of an endemic, endangered California smelt and two non-native fishes to serial increases in temperature and salinity: Implications for shifting community structure with climate change. Conserv. Physiol. 7, coy076 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swanson, C., Reid, T., Young, P. S. & Cech, J. J. Jr. Comparative environmental tolerances of threatened delta smelt (Hypomesus transpacificus) and introduced wakasagi (H. nipponensis) in an altered California estuary. Oecologia 123, 384–390 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammock, B. G., Hobbs, J. A., Slater, S. B., Acuña, S. & Teh, S. J. Contaminant and food limitation stress in an endangered estuarine fish. Sci. Total Environ. 532, 316–326 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, S. A. & Murphy, D. D. Analysis of limiting factors across the life cycle of delta smelt (Hypomesus transpacificus). Environ. Manage. 62, 365–382 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Nobriga, M. L. & Sommer, T. R. Multidecadal trends for three declining fish species: Habitat patterns and mechanisms in the San Francisco Estuary, California USA. Can. J. Fish. Aquat. Sci. 64, 723–734 (2007).Article 

    Google Scholar 
    Nobriga, M. L., Sommer, T. R., Feyrer, F. & Fleming, K. Long-term trends in summertime habitat suitability for delta smelt (Hypomesus transpacificus). San Franc. Estuary Watershed Sci. 6(1), (2008).Brown, L. R. et al. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento-San Joaquin Delta California. Estuaries Coast. 36, 754–774 (2013).CAS 
    Article 

    Google Scholar 
    Moyle, P., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: A systematic assessment approach. PLoS ONE 8, e63883 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett, W. A. & Burau, J. R. Riders on the storm: Selective tidal movements facilitate the spawning migration of threatened Delta Smelt in the San Francisco Estuary. Estuaries Coast. 38, 826–835 (2015).Article 

    Google Scholar 
    Hirvonen, H., Ranta, E., Piironen, J., Laurila, A. & Peuhkuri, N. Behavioral responses of naive Arctic charr to chemical cues from salmonid and non-salmonid fish. Oikos 88, 191–199 (2000).Article 

    Google Scholar 
    Correia, A. M., Bandeira, N. & Anastacio, P. M. Influence of chemical and visual stimuli in food-search behaviour of Procambarus clarkii under clear conditions. Mar. Freshw. Behav. Physiol. 40, 189–194 (2007).CAS 
    Article 

    Google Scholar 
    Nay, T. J. et al. Habitat complexity influences selection of thermal environment in a common coral reef fish. Conserv. Physiol. 8, coaa070 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horning, W. B. & Weber, C. I. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014, 58–75 (1985).Lindberg, J. et al. Aquaculture methods for a genetically managed population of endangered delta smelt. N. Am. J. Aquac. 75, 186–196 (2013).Article 

    Google Scholar 
    Ferrari, M. C. O. et al. Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environ. Biol. Fishes 97, 79–90 (2014).Article 

    Google Scholar 
    Petersen, M. F. & Steffensen, T. F. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J. Exp. Biol. 206, 359–364 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meager, J. J. & Utne-Palm, A. C. Effect of turbidity on habitat preference of juvenile Atlantic cod Gadus morhua. Environ. Biol. Fishes 81, 149–155 (2008).Article 

    Google Scholar 
    Serrano, X., Grosell, M. & Serafy, J. E. Salinity selection and preference of the grey snapper Lutjanus griseus: Field and laboratory observations. J. Fish Biol. 76, 1592–1608 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stol, J. A., Svendsen, J. C. & Enders, E. C. Determining the thermal preferences of Carmine Shiner (Notropis percobromus) and Lake Sturgeon (Acipenser fulvescens) using an automated shuttlebox. Can. Tech. Rep. Fish. Aquat. Sci. 3038 (2013).Hammock, B. G. et al. The health and condition responses of delta smelt to fasting: A time series experiment. PLoS ONE 15, e0239358 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McElreath, R. Statistical rethinking: A Bayesian course with examples in R and Stan. (CRC Press, 2016.R Core Team. R: A language and environment for statistical computing (2021).Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes (2012).Korner-Nievergelt, F. et al. Bayesian data analysis in ecology using linear models with R (Elsevier, 2015).
    Google Scholar 
    Gilliam, J. F. & Fraser, D. F. Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68, 1856–1862 (1987).PubMed 
    Article 

    Google Scholar 
    Metcalfe, N. B., Fraser, N. H. & Burns, M. D. Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J. Anim. Ecol. 68, 371–381 (1999).Article 

    Google Scholar 
    Walters, C. J. & Juanes, F. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50, 2058–2070 (1993).Article 

    Google Scholar 
    Bull, H. O. Studies on conditioned responses in fishes. Part VII. Temperature perception in teleosts. J. Mar. Biol. Assoc. U. K. 21, 1–27 (1936).Article 

    Google Scholar 
    Steffel, S., Magnuson, J. J., Dizon, A. E. & Neill, W. H. Temperature discrimination by captive free-swimming tuna Euthynnus affinis. Trans. Am. Fish. Soc. 105, 588–591 (1976).Article 

    Google Scholar 
    Dülger, N. et al. Thermal tolerance of European Sea bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. J. Therm. Biol. 37, 79–82 (2012).Article 

    Google Scholar 
    Hung, T.-C. et al. A pilot study of the performance of captive-reared delta smelt Hypomesus transpacificus in a semi-natural environment. J. Fish Biol. 95, 1517–1522 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Navarro, I. & Gutiérrez, J. Fasting and starvation. Biochemistry and molecular biology of fishes. 4: Elsevier. p. 393–434 (1995).Finger, A. J. et al. A conservation hatchery population of Delta Smelt shows evidence of genetic adaptation to captivity after 9 generations. J. Hered. 109, 689–699 (2018).PubMed 
    Article 

    Google Scholar 
    Middaugh, D. P., Davis, W. R. & Yokum, R. L. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19, 13–19 (1975).CAS 

    Google Scholar 
    Stevens, E. D. & Sutterlin, A. M. Heat transfer between fish and ambient water. J. Exp. Biol. 65, 131–145 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beitinger, T. L., Thommes, M. M. & Spigarelli, S. A. Relative roles of conduction and convection in the body temperature change of gizzard shad Dorosoma cepedianum. Comp. Biochem. Physiol. 57A, 275–279 (1977).Article 

    Google Scholar 
    Neill, W. H. & Magnuson, J. J. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona Wisconsin. Trans. Am. Fish. Soc. 103, 663–710 (1974).Article 

    Google Scholar 
    Coutant, C. C. Temperature selection by fish–a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna (1975).Richards, F. P., Reynolds, W. W. & McCauley, R. W. Temperature preference studies in environmental impact assessment: An overview with procedural recommendations. J. Fish. Res. Board Can. 34, 728–761 (1977).Article 

    Google Scholar 
    Swanson, C., Mager, R. C., Doroshov, S. I. & Cech, J. J. Jr. Use of salts, anesthetics, and polymers to minimize handling and transport mortality in delta smelt. Trans. Am. Fish. Soc. 125, 326–329 (1996).CAS 
    Article 

    Google Scholar 
    Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feyrer, F., Sommer, T. & Harrell, W. Importance of flood dynamics versus intrinsic physical habitat in structuring fish communities: Evidence from two adjacent engineered floodplains on the Sacramento river California. N. Am. J. Aquac. 26, 408–417 (2006).
    Google Scholar  More

  • in

    Author Correction: Protect European green agricultural policies for future food security

    Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, SpainManuel B. Morales & Juan TrabaCentro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Madrid, SpainManuel B. Morales, Juan Traba & Elena D. ConcepciónMuseo Nacional de Ciencias Naturales, CSIC, Madrid, SpainMario Díaz & Elena D. ConcepciónConservation Biology Group, Landscape Dynamics and Biodiversity Program, Conservation Biology Group (GBiC), Forest Science and Technology Centre of Catalonia (CTFC), Solsona, SpainDavid Giralt, Francesc Sardà-Palomera & Gerard BotaInstituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, SpainFrançois Mougeot & Beatriz ArroyoEstación Biológica de Doñana, CSIC, Sevilla, SpainDavid SerranoDepartament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, SpainSanti MañosaInstitut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, SpainSanti MañosaUSC 1339 Centre d’Etudes Biologiques de Chizé, INRAE, CNRS & Université de La Rochelle, F-79360, Villiers-en-Bois, FranceSabrina GabaUMR 7372 Centre d’Etudes Biologiques de Chizé, CNRS & Université de La Rochelle, F-79360, Villiers-en-Bois, FranceSabrina GabaCIBIO/InBio–University of Porto and Institute of Agronomy–University of Lisbon, Lisbon, PortugalFrancisco MoreiraSwedish University of Agricultural Sciences, Uppsala, SwedenTomas PärtSustainable Forest Management Research Institute (iuFOR), Universidad de Valladolid & INIA, Valladolid, SpainRocío Tarjuelo More

  • in

    Latitudinal and temporal variation in injury and its impacts in the invasive Asian shore crab Hemigrapsus sanguineus

    Bryant, S. V., Endo, T. & Gardiner, D. M. Vertebrate limb regeneration and the origin of limb stem cells. Int. J. Dev. Biol. 46, 887–896 (2004).
    Google Scholar 
    Fleming, P. A., Muller, D. & Bateman, P. W. Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biol. Rev. 82, 481–510 (2007).PubMed 
    Article 

    Google Scholar 
    Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: Re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010).PubMed 
    Article 

    Google Scholar 
    Lindsay, S. M. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr. Comp. Biol. 50, 479–493 (2010).PubMed 
    Article 

    Google Scholar 
    Wilson, B. S. Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana). Oecologia 92, 145–152 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chapple, D. G. & Swain, R. Inter-populational variation in the cost of autotomy in the metallic skink (Niveoscincus metallicus). J. Zool. 264, 411–418 (2004).Article 

    Google Scholar 
    Tyler, R. K., Winchell, K. M. & Revell, L. J. Tails of the city: Caudal autotomy in the tropical lizard, Anolis cristatellus, in urban and natural areas of Puerto Rico. J. Herpetol. 50, 435–441 (2016).Article 

    Google Scholar 
    Griffen, B. D., Cannizzo, Z. J., Carver, J. & Meidell, M. Reproductive and energetic costs of injury in the mangrove tree crab. Mar. Ecol. Prog. Ser. 640, 127–137 (2020).ADS 
    Article 

    Google Scholar 
    Smith, L. D. & Hines, A. H. Autotomy in blue crab (Callinectes sapidus Rathbun) populations: Geographic, temporal, and ontogenetic variation. Biol. Bull. 180, 416–431 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872 (2006).Article 

    Google Scholar 
    Suma Gupta, N. V., Kurup, K. N. P., Adiyodi, R. G. & Adiyodi, K. G. The antagonism between somatic growth and testicular activity during different phases in intermoult (stage C4) in sexually mature freshwater crab, Paratelphusa hydrodromous. Invertebr. Reprod. Dev. 16, 195–203 (1989).Article 

    Google Scholar 
    Devi, S. & Adiyodi, R. G. Effect of multiple limb autotomy on oogenesis and somatic growth in Paratelphusa hydromous. Trop. Freshw. Biol. 9, 43–56 (2000).
    Google Scholar 
    Juanes, F. & Smith, L. D. The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. J. Exp. Mar. Biol. Ecol. 193, 197–223 (1995).Article 

    Google Scholar 
    Cheng, J. H. & Chang, E. S. Determinants of postmolt size in the American lobster (Homarus americanus). I. D13 is the critical stage. Can. J. Fish. Aquat. Sci. 50, 2106–2111 (1993).Article 

    Google Scholar 
    Kuris, A. M. & Mager, M. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes. J. Exp. Zool. 193, 353–359 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ballinger, R. E. & Tinkle, D. W. On the cost of tail regeneration to body growth in lizards. J. Herpetol. 13, 374–375 (1979).Article 

    Google Scholar 
    Hopkins, P. M. & Das, S. Regeneration in crustaceans. Nat. Hist. Crustacea 4, 168–198 (2015).
    Google Scholar 
    Lai, A. G. & Aboobaker, A. A. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev. Biol. 433, 118–131 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
    Google Scholar 
    Bondad-Reantaso, M. G., Subasinghe, R. P., Josupeit, H., Cai, J. & Zhou, X. The role of crustacean fisheries and aquaculture in global food security: Past, present and future. J. Invertebr. Pathol. 110, 158–165 (2012).PubMed 
    Article 

    Google Scholar 
    Galil, B. S., Clark, P. F. & Carleton, J. T. In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology, and Impacts (Springer, 2011).Book 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS One 13, e0193085 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffen, B. D., van den Akker, D., DiNuzzo, E. R., Anderson, L. & Vernier, A. Comparing methods for predicting the impacts of invasive species. Biol. Invasions 23, 491–505 (2021).Article 

    Google Scholar 
    Williams, A. B. & McDermott, J. J. An eastern United States record for the western Indo-Pacific crab, Hemigrapsus sanguineus (Crustacea: Decapoda: Grapsidae). Proc. Biol. Soc. Wash. 103, 108–109 (1990).
    Google Scholar 
    Blakeslee, A. M. et al. Reconstructing the invasion history of the Asian shorecrab, Hemigrapsus sanguineus (De Haan 1835) in the Western Atlantic. Mar. Biol. 164, 1–19 (2017).
    Google Scholar 
    Griffen, B. D. & Delaney, D. G. Species invasion shifts the importance of predator dependence. Ecology 88, 3012–3021 (2007).PubMed 
    Article 

    Google Scholar 
    Epifanio, C. E. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. J. Exp. Mar. Biol. Ecol. 441, 33–49 (2013).Article 

    Google Scholar 
    Gerard, V. A., Cerrato, R. M. & Larson, A. A. Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol. Invasions 1, 353–361 (1999).Article 

    Google Scholar 
    Kraemer, G. P., Sellberg, M., Gordon, A. & Main, J. Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. Northeast. Nat. 14, 207–224 (2007).Article 

    Google Scholar 
    Davis, J. L. et al. Autotomy in the Asian shore crab (Hemigrapsus sanguineus) in a non-native area of its range. J. Crust. Biol. 25, 655–660 (2005).Article 

    Google Scholar 
    Delaney, D. G., Griffen, B. D. & Leung, B. Does consumer injury modify invasion impact?. Biol. Invasions 13, 2935–2945 (2011).Article 

    Google Scholar 
    Jensen, G. C., McDonald, P. S. & Armstrong, D. A. East meets west: Competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).ADS 
    Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Interactions among aliens: Apparent replacement of one exotic species by another. Ecology 83, 719–732 (2002).Article 

    Google Scholar 
    Griffen, B. D. & Williamson, T. Influence of predator density on nonindependent effects of multiple predator species. Oecologia 155, 151–159 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Vernier, A. & Griffen, B. D. Physiological effects of limb loss on the Asian shore crab Hemigrapsus sanguineus. Northeast. Nat. 26, 761–771 (2019).Article 

    Google Scholar 
    Lohrer, A. M. & Whitlatch, R. B. Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar. Ecol. Prog. Ser. 227, 135–144 (2002).ADS 
    Article 

    Google Scholar 
    Goldstein, J. S. & Carloni, J. T. Assessing the implications of live claw removal on Jonah crab (Cancer borealis), an emerging fishery in the Northwest Atlantic. Fish. Res. 243, 106046 (2021).Article 

    Google Scholar 
    Hines, A. H. Allometric constraints and variables of reproductive effort in brachyuran crabs. Mar. Biol. 69, 309–320 (1982).Article 

    Google Scholar 
    Pörtner, H. O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).PubMed 
    Article 

    Google Scholar 
    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    Prestholdt, T. et al. Tradeoffs associated with autotomy and regeneration and their potential role in the evolution of regenerative abilities. Behav. Ecol. 33, 518–525 (2022).Article 

    Google Scholar 
    McDermott, J. J. The western Pacific brachyuran Hemigrapsus sanguineus (Grapsidae) in its new habitat along the Atlantic coast of the United States: Reproduction. J. Crustac. Biol. 18, 308–316 (1998).Article 

    Google Scholar 
    Depledge, M. H. Hemigrapsus sanguineus (De Haan). Asian Mar. Biol. 1, 115–123 (1984).
    Google Scholar 
    Saigusa, M. & Kawagoye, O. Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: Synchrony with unequal tide height and involvement of a light-response mechanism. Mar. Biol. 129, 87–96 (1997).Article 

    Google Scholar 
    Choy, S. C. A rapid method for removing and counting eggs from fresh and preserved decapod crustaceans. Aquaculture 48, 369–372 (1985).Article 

    Google Scholar 
    Rosa, R., Calado, R., Narciso, L. & Nunes, M. L. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: A fatty acid approach. Mar. Biol. 151, 935–947 (2007).Article 

    Google Scholar 
    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Zero-truncated and zero-inflated models for count data. In Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).MATH 
    Chapter 

    Google Scholar 
    Griffen, B. D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 174, 121–130 (2014).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies

    Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE, Doney SC, et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun. 2014;5:4318.CAS 
    PubMed 
    Article 

    Google Scholar 
    Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 
    Article 

    Google Scholar 
    Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: Phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:1–12.Article 

    Google Scholar 
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil L-A, Thingstad F. The ecological role of water-column microbes in the sea. Marine ecology progress series. 1983;10:257–63.Ratnarajah L, Blain S, Boyd PW, Fourquez M, Obernosterer I, Tagliabue A. Resource colimitation drives competition between phytoplankton and bacteria in the Southern Ocean. Geophys Res Lett. 2021;48:e2020GL088369.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis. 2016;69:131–9.Article 

    Google Scholar 
    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.PubMed 
    Article 

    Google Scholar 
    Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole JJ. Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst. 1982;13:291–314.Article 

    Google Scholar 
    Durham B. Deciphering metabolic currencies that support marine microbial networks. mSystems. 2021;6:e00763-21.Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.Article 

    Google Scholar 
    Baker LJ, Kemp PF. Exploring bacteria–diatom associations using single-cell whole genome amplification. Aquat Microb Ecol. 2014;72:73–88.Article 

    Google Scholar 
    Graff JR, Rines JE, Donaghay PL. Bacterial attachment to phytoplankton in the pelagic marine environment. Mar Ecol Prog Ser. 2011;441:15–24.Article 

    Google Scholar 
    Baker LJ, Alegado RA, Kemp PF. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system. Environ Microbiol Rep. 2016;8:917–27.PubMed 
    Article 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leinweber K, Kroth PG. Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria. PeerJ. 2015;3:e858.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo S, Stevens CA, Vance TDR, Olijve LLC, Graham LA, Campbell RL, et al. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Sci Adv. 2017;3:e1701440.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rao D, Webb JS, Kjelleberg S. Microbial colonization and competition on the Marine Alga Ulva australis. Appl Environ Microbiol. 2006;72:5547–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou J, Chen G-F, Ying K-Z, Jin H, Song J-T, Cai Z-H, et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl Environ Microbiol. 2019;85:e00349–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.Article 

    Google Scholar 
    Strzepek RF, Hunter KA, Frew RD, Harrison PJ, Boyd PW. Iron‐light interactions differ in Southern Ocean phytoplankton. Limnol Oceanogr. 2012;57:1182–200.CAS 
    Article 

    Google Scholar 
    Andrew SM, Strzepek RF, M Whitney S, Chow WS, Ellwood MJ. Divergent physiological and molecular responses of light‐and iron‐limited Southern Ocean phytoplankton. Limnol Oceanogr Lett. 2022;7:150–8.CAS 
    Article 

    Google Scholar 
    Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.CAS 
    Article 

    Google Scholar 
    Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci. 2015;112:9938–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bates SSB, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: new research since 2011. Harmful Algae. 2018;79:3–43.PubMed 
    Article 

    Google Scholar 
    Almandoz GO, Ferreyra GA, Schloss IR, Dogliotti AI, Rupolo V, Paparazzo FE, et al. Distribution and ecology of Pseudo-nitzschia species (Bacillariophyceae) in surface waters of the Weddell Sea (Antarctica). Polar Biol. 2008;31:429–42.Article 

    Google Scholar 
    Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, Spackeen JL, et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci. 2021;118:e2107238118.Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci. 2016;113:E1516–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno CM, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol. 2018;41:679–96.Article 

    Google Scholar 
    Ellis KA, Cohen NR, Moreno C, Marchetti A. Cobalamin-independent methionine synthase distribution and influence on vitamin B12 growth requirements in marine diatoms. Protist. 2017;168:32–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PM, Palenik B, et al. Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr. 1989;6:443–61.Article 

    Google Scholar 
    Hubbard KA, Rocap G, Armbrust EV. Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol. 2008;44:637–49.CAS 
    Article 

    Google Scholar 
    Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brand LE, Guillard RR, Murphy LS. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res. 1981;3:193–201.Article 

    Google Scholar 
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucl Acids Res. 2018;46:W282–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol. 1998;14:113–8.Article 

    Google Scholar 
    Alcamán-Arias ME, Fuentes-Alburquenque S, Vergara-Barros P, Cifuentes-Anticevic J, Verdugo J, Polz M, et al. Coastal bacterial community response to glacier melting in the Western Antarctic Peninsula. Microorganisms. 2021;9:88.PubMed Central 
    Article 

    Google Scholar 
    Bowman JP, Gosink JJ, McCAMMON SA, Lewis TE, Nichols DS, Nichols PD, et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: ω63). Int J Syst Evol Microbiol. 1998;48:1171–80.CAS 

    Google Scholar 
    Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nichols CM, Bowman JP, Guezennec J. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol. 2005;55:1557–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    von Scheibner M, Sommer U, Jürgens K. Tight coupling of Glaciecola spp. and diatoms during cold-water Phytoplankton spring blooms. Front Microbiol. 2017;8:27.Holmstrom C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol. 1999;30:285–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci. 2005;102:10913–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.CAS 
    PubMed 

    Google Scholar 
    Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, et al. Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol. 2015;65:95–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brussaard CPD, Riegman R. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aqua Microb Ecol. 1998;14:271–80.Article 

    Google Scholar 
    Cohen NR, A. Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, et al. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean. Limnol Oceanogr. 2017;62:2076–96.CAS 
    Article 

    Google Scholar 
    Hunken M, Harder J, Kirst G. Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol. 2008;10:519–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes–from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol. 2019;57:72–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci. 2006;103:13186–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol. 2005;43:101–9.CAS 
    PubMed 

    Google Scholar 
    Núñez-Montero K, Barrientos L. Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics. 2018;7:90.Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci. 2021;118:e2101178118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser. 1995;121:217–26.Article 

    Google Scholar 
    Sharpe GC, Gifford SM, Septer AN. A model roseobacter, Ruegeria pomeroyi DSS-3, employs a diffusible killing mechanism to eliminate competitors. Msystems. 2020;5:e00443–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol. 2012;78:4771–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol. 2005;71:8531–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bruhn JB, Gram L, Belas R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol. 2007;73:442–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP, Nyholm SV, et al. Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol. 2016;7:1342.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharifah EN, Eguchi M. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One. 2011;6:e26756.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. MBio. 2019;10:e02376–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tonelli M, Signori CN, Bendia A, Neiva J, Ferrero B, Pellizari V, et al. Climate projections for the southern ocean reveal impacts in the marine microbial communities following increases in sea surface temperature. Front Mar Sci. 2021;8:636226.Andrew SM, Morell HT, Strzepek RF, Boyd PW, Ellwood MJ. Iron availability influences the tolerance of southern ocean phytoplankton to warming and elevated irradiance. Front Mar Sci. 2019;6:681.Andrew SM, Strzepek RF, Branson O, Ellwood MJ. Ocean acidification reduces the growth of two Southern Ocean phytoplankton. Mar Ecol Prog Ser. 2022;682:51–64.CAS 
    Article 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Weezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res. 2021;49:W29–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 

    Google Scholar  More

  • in

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Sampling location and sediment coringSamples were collected during IODP Exp. 382 ‘Iceberg Alley and Subantarctic Ice and Ocean Dynamics’ on-board RV Joides Resolution between 20 March and 20 May 2019. Specifically, we collected samples at Site U1534 (Falkland Plateau, 606 m water depth), U1536 (Dove Basin, Scotia Sea, 3220 m water depth), and Site U1538 (Pirie Basin, Scotia Sea, 3130 m water depth) (Fig. 1). Site U1534 is located at the Subantarctic Front on a contourite drift at the northern limit of the Scotia Sea. This setting is ideal to study the poorly understood role of Antarctic Intermediate Water (AAIC) and its impact on the Atlantic Meridional Overturning Circulation (AMOC) along the so-called ‘cold water route’ that connects to the Pacific Ocean through the Drake Passage, as opposed to the ‘warm water route’ that connects to the Indian Ocean via the Agulhas Current42. Sites U1536 and U1538 are located in the southern and central Scotia Sea, respectively, and were drilled to study the Neogene flux of icebergs through ‘Iceberg Alley’, the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC)23. sedaDNA samples collected at Site U1534 were from Hole C, at Site U1536 from Hole B, and at Site U1538 from Holes C and D (Table 1), and in the following we refer to site names only. IODP Expedition proposals undergo a rigorous environmental protection and safety review, which is approved by the IODP’s Environmental Protection and Safety Panel (EPSP) and/or the Safety Panel. The same procedure was applied to IODP Exp. 382 and approval was provided by the EPSP. Sediment samples for sedaDNA analyses were imported to Australia under Import Permit number 0002658554 provided by the Australian Government Department for Agriculture and Water Resources (date of issue: 19 September 2018), and were stored and extracted at a quarantine approved facility (AA Site No. S1253, Australian Centre for Ancient DNA). No ethical approval was required for this study.Table 1 Sampling location and sample detailsFull size tableSample age determinationAge control for Site U1534 is based on tuning of benthic foraminifera δ18O to the LR04 stack43. Wherever present specimens of Uvigerina bifurcata were picked from samples at 10 cm intervals. During warmer periods when U. bifurcata was not present, Melonis affinis and/or Hoeglundina elegans were analysed. Sedimentation rates over the intervals sampled for sedaDNA typically range between 6 and 30 cm/kyr, with rates exceeding 100 cm/kyr during the Last Glacial Maximum ~20,000 years ago (20 ka). For our deepest sample, U1534C-10H-6_115cm (90.95 mbsf), we only have biostratigraphically assigned ages available (shipboard data), which date this sample as early Pleistocene (~2.5–0.7 million years ago, Ma44).Low-resolution age control for both Sites U1536 and U1538 was established using shipboard magneto- and biostratigraphy21,23. Average sedimentation rates are ~10 cm/kyr for Site U1536, with elevated values (up to 20 cm/kyr) in the upper ~80 mbsf (the last ~400 ka). Site U1538 average sedimentation rates are twice as high, averaging ~20 cm/kyr. Especially in the upper ~430 mbsf (the last 1.8 Ma), rates are up to 40 cm/kyr. Higher resolution age models are based on dust climate couplings, correlating sedimentary dust proxy records such as magnetic susceptibility and sedimentary Ca and Fe records to ice-core dust proxy records over the last 800 ka45 and to a benthic isotopic stack26 before that. These age models were established for Site U1537 (adjacent to Site U1536) and provide orbital to millennial scale resolution. For this study we correlated sedimentary cycles of Sites U1536 and U1538 to U1537 to achieve similar resolution and to be able to determine if a sample originates from a glacial or interglacial period (Table 1).Sampling of sedaDNAA detailed description of sedaDNA sampling methods can be found in ref. 24. In brief, we used advanced piston coring (APC) to acquire sediment cores, which recovers the least disturbed sediments46,47,48 and is thus the preferred technique for sedaDNA sampling. All samples were taken on the ship’s ‘catwalk’, where, once the core was on deck, the core liners were wiped clean twice (3% sodium hypochlorite, ‘bleach’) at each cutting point. Core cutting tools were sterilised before each cut (3% bleach and 80% ethanol) of the core in 1 m sections. The outer ~3 mm of surface material were removed from the bottom of each core section to be sampled, using sterilised scrapers (~4 cm wide; bleach and ethanol treated). A cylindrical sample was taken from the core centre using a sterile (autoclaved) 10 mL cut-tip syringe, providing ~5 cm3 of sediment material. The syringe was placed in a sterile plastic bag (Whirl-Pak) and immediately frozen at −80 °C. The mudline (sediment/seawater interface) was transferred from the core liner into a sterile bucket (3% bleach treated), and 10 mL sample was retained in a sterile 15 mL centrifuge tube (Falcon) and frozen at −80 °C. Samples were collected at various depth intervals depending on the site to span the Holocene up to ~1 million years (Table 1). This lower depth/age limit was determined by switching coring system from APC to the extended core barrel (XCB) system.To test for potential airborne contamination, at least one air control was taken during the sedaDNA sampling process per site. For this, an empty syringe was held for a few seconds in the sampling area and then transferred into a sterile plastic bag and frozen at −80 °C. The air controls were processed, sequenced and analysed alongside the sediment samples.Contamination control using perfluoromethyldecalin tracersAs part of the APC process, drill fluid (basically, seawater) is pumped into the borehole to trigger the hydraulic coring system, therefore, the potential for contamination exists due to drill fluid making contact with the core liner. To assess the latter, we added the non-toxic chemical tracer perfluoromethyldecalin (PFMD) to the drill fluid at a rate of ~0.55 mL min−1 for cores collected at Sites U1534 and U153649. As we found that PFMD concentrations were very low at these sites (Results section), the infusion rate was doubled prior to sedaDNA sampling at Site U1538 to ensure low PFMD concentrations represent low contamination and not delivery failure of PFMD to the core. At each sedaDNA sampling depth, one PFMD sample was taken from the periphery of the core (prior to scraping, to test whether drill fluid reached the core pipe), and one next to the sedaDNA sample in the centre of the core (after scraping, to minimise differences to the sedaDNA sample, and testing if drill fluid had reached the core centre). We transferred ~3 cm3 of sediment using a disposable, autoclaved 5 mL cut-tip syringe into a 20 mL headspace vial with metal caps and Teflon seals. We also collected a sample of the tracer-infused drill fluid at each site, by transferring ~10 mL of the fluid collected at the injection pipe on the rig floor via a sterile plastic bottle into a 15 mL centrifuge tube (inside a sterile plastic bag) and freezing it at −80 °C. These drill fluid controls were processed and analysed in the same way as the sedaDNA samples including sequencing. Samples were analysed using gas chromatography (GC-µECD; Hewlett-Packard 6890).A detailed description of the PFMD GC measurements is provided in ref. 24. Briefly, PFMD measurements were undertaken in batches per site for U1534, U1536 and U1538. This included the analyses of PFMD samples collected at two additional holes at these sites, U1534D and U1536C, from which we also collected sedaDNA samples but that are not part of this study. PFMD is categorised as the stereoisomers of PFMD (C11F20), which add up to 87-88% (and with the remaining 12% being additional perfluoro compounds unable to be separated by the manufacturer). We exclusively refer to the first and measurable PFMD category, calibrating for the 88% in bottle concentrations during concentration calculations. Each GC analysis run included the measurement of duplicate blanks and duplicate PFMD standards. Due to a large sample number, PFMD at Site U1538 was measured in three separate runs, with the first and last run including triplicate blank and triplicate PFMD standards (duplicates in the second run), and the last run also containing a drill-fluid sample. To blank-correct PFMD concentrations, we subtracted the average PFMD concentration of all blanks per run from PFMD measurements in that run. To determine the detection limit of PFMD, we used three times the standard deviation of the average blank PFMD values per run; due to all blank values for the U1538 runs being 0, we used three times the standard deviation of the lowest PFMD standard for this site in this calculation. This provided us with a PFMD detection limit of 0.2338 ng mL−1. Any PFMD measurements of samples below this limit were rejected.
    sedaDNA extractions and metagenomic library preparationsA total of 80 sedaDNA extracts and metagenomic shotgun libraries (Table 1) were prepared following8,10. For the sedaDNA extractions, we randomised our samples and controls and extracted sedaDNA in batches of 16 extracts/libraries at a time, with each batch including at least one air control and one extraction blank control (EBC), and the last batch including mudline and PFMD samples to avoid contamination of the sedaDNA samples. In brief, we used 20 µL sedaDNA extracts in a repair reaction (using T4 DNA polymerase, New England Biolabs, USA; 15 min, 25 °C), then purified the sedaDNA (MinElute Reaction Cleanup Kit, Qiagen, Germany), ligated adaptors (T4 DNA ligase, Fermentas, USA, where truncated Illumina-adaptor sequences containing two unique 7 base-pair (bp) barcodes were attached to the double-stranded DNA; 60 min, 22 °C), purified the sedaDNA again (MinElute Reaction Cleanup Kit, Qiagen), and then added a fill-in reaction with adaptor sequences (Bst DNA polymerase, New England Biolabs, USA; 30 min, 37 °C, with polymerase deactivation for 10 min, 80 °C). We amplified the barcoded libraries using IS7/IS8 primers50 (8 replicates per sample, where each replicate was a 25 µL reaction containing 3 µL DNA template; using 22 cycles), purified (AxyPrep magnetic beads, Axygen Biosciences, USA; 1:1.8 library:beads) and quantified them (Qubit dsDNA HS Assay, Invitrogen, Molecular Probes, USA). We amplified the libraries (8 replicates per sample, 13 amplification cycles) using IS4 and GAII Indexing Primers50, purified (AxyPrep magnetic beads, at a ratio of 1:1.1 library:beads), quantified and quality-checked using Qubit (dsDNA HS Assay, Invitrogen, USA) and TapeStation (Agilent Technologies, USA). We combined the libraries into an equimolar pool (volume of 68 µL in total), diluted this pool with nuclease-free H2O to 100 µL, and performed a ‘reverse’ AxyPrep clean-up to retain only the small DNA fragments typical for ancient DNA (≤ 500 bp; initial library:beads ratio of 1:0.6, followed by 1:1.1, and double-eluted in 30 µL nuclease-free H2O8,51). We added one more AxyPrep clean-up to remove primer-dimer (library:beads ratio of 1:1.05) and checked sedaDNA quantity and quality via TapeStation and qPCR (QuantStudio, Applied Biosystems, USA). The libraries sequenced at the Garvan Institute for Medical Research, Sydney, Australia (Illumina NovaSeq 2 × 100 bp).
    sedaDNA data processingThe sequencing data was processed and filtered as described in detail in refs. 8, 10. Briefly, data filtering involved the removal of sequences More