More stories

  • in

    Impacts of climate change and human activities on different degraded grassland based on NDVI

    Bi, X. et al. Response of grassland productivity to climate change and anthropogenic activities in arid regions of Central Asia. Peer J. 8, e9797–e9797 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W. et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 83, 303–313 (2017).
    Google Scholar 
    Liu, Y. Y. et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 106, 105504–105504 (2019).
    Google Scholar 
    Zhang, Y. et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 563–564, 210–220 (2016).ADS 
    PubMed 

    Google Scholar 
    Wang, Z. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, China. Ecol. Inf. 33, 32–44 (2016).CAS 

    Google Scholar 
    He, C. Y., Tian, J., Gao, B. & Zhao, Y. Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 187(1), 4199 (2015).PubMed 

    Google Scholar 
    Liu, Y. Y. et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 690, 27–39 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jiang, L. L., Jiapaer, G., Bao, A. M., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).ADS 
    PubMed 

    Google Scholar 
    Chen, T. et al. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 653, 1311–1325 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gang, C. et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Sci. Total Environ. 645, 827–836 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guo, D. & Wang, H. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos. 118, 5216–5230 (2013).ADS 

    Google Scholar 
    Yang, Y. et al. Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. J. Arid Environ. 135, 164–172 (2016).ADS 

    Google Scholar 
    Li, C. X., Jong, R., Schmid, B., Wulf, H. & Michael, E. S. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecol. Indic. 119, 106641 (2020).
    Google Scholar 
    Li, F., Chen, W., Zeng, Y., Zhao, Q. J. & Wu, B. F. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sens. 6, 4705–4722 (2014).ADS 

    Google Scholar 
    Wang, J., Brown, D. G. & Chen, J. Q. Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian plateau. Landsc. Ecol. 28(4), 725–739 (2014).
    Google Scholar 
    Han, D. M. et al. Evaluation of semiarid grassland degradation in north China from multiple perspectives. Ecol. Eng. 112, 41–50 (2018).
    Google Scholar 
    Liu, H. X. et al. Response of vegetation productivity to climate change and human activities in the Shaanxi–Gansu–Ningxia region, China. J. Indian Soc. Remote Sens. 46(7), 1081–1092 (2018).
    Google Scholar 
    Zheng, K. et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 660, 236–244 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yan, Y. C., Liu, X. P., Wen, Y. Y. & Ou, J. P. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 103, 542–553 (2019).
    Google Scholar 
    Wang, H. et al. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chin. Geogra. Sci. 26, 35–47 (2016).CAS 

    Google Scholar 
    Thomas, M. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6(6), 5717–5731 (2014).
    Google Scholar 
    Becerril-Pina, R., Mastachi-Loza, C. A., Gonzalez-Sosa, E., Diaz-Delgado, C. & Ba, K. M. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid Environ. 120, 4–13 (2015).ADS 

    Google Scholar 
    Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57(4), 535–554 (2004).ADS 

    Google Scholar 
    Meng, M. et al. Vegetation change in response to climate factors and human activities on the Mongolian Plateau. Peer J. 7, e7735 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens Environ. 197, 43–57 (2017).ADS 

    Google Scholar 
    Gedefaw, M. G., Geli, H. M. E. & Abera, T. A. Assessment of rangeland degradation in New Mexico using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. 13(9), 1618–1618 (2021).ADS 

    Google Scholar 
    Zhang, F. Changes of Grassland Net Primary Productivity in the Qinghai Tibet Plateau During the Past 34 Years and Analysis of Its Local Degradation Characteristics (Lanzhou University, 2021).
    Google Scholar 
    Li, L. H. et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecol. Evol. 8(11), 5949–5963 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, Z. C. et al. Greening of the earth and its drivers. Nat. Clim. Change. 6, 791–795 (2016).ADS 
    CAS 

    Google Scholar 
    Song, L. C., Ma, W. W., Li, G., Liu, S. N. & Lu, G. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland. Acta Pratacul. Sin. 30(09), 27–37 (2021).
    Google Scholar 
    Dai, L. C. et al. Effect of grazing management strategies on alpine grassland on the northeastern Qinghai-Tibet Plateau. Ecol. Eng. 173, 106418 (2021).
    Google Scholar 
    Liu, Y. Y. et al. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Glob. Ecol. Conserv. 28, e01574 (2021).
    Google Scholar 
    Bestelmeyer, B. T., Duniway, M. C., James, D. K., Burkett, L. M. & Havstad, K. M. A test of critical thresholds and their indicators in a desertification-prone ecosystem: More resilience than we thought. Ecol. Lett. 16, 339–345 (2013).PubMed 

    Google Scholar 
    Kéfi, S. et al. Early warning signals of ecological transitions: Methods for spatial patterns. PLoS ONE 9(3), e92097 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. Z. et al. IKONOS image-based extraction of the distribution area of Stellera chamaejasme L. in Qilian County of Qinghai Province, China. Remote Sens. 8(2), 148 (2016).ADS 

    Google Scholar 
    Liu, Y. Q. & Lu, C. H. Quantifying grass coverage trends to identify the hot plots of grassland degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health. 18(2), 416 (2021).MathSciNet 
    PubMed Central 

    Google Scholar 
    Kendall, M. G. Rank Correlation Methods (Griffin, 1948).MATH 

    Google Scholar 
    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).MathSciNet 
    MATH 

    Google Scholar 
    Zhang, Z. M. & Lu, C. H. Clustering analysis of soybean production to understand its spatiotemporal dynamics in the North China Plain. Sustainability. 12(15), 6178 (2020).
    Google Scholar 
    Pei, T. T. et al. The sensitivity of vegetation phenology to extreme climate indices in the Loess Plateau, China. Sustainability. 13(14), 7623–7623 (2021).
    Google Scholar 
    Lu, B. B., Charlton, M., Harris, P. & Fotheringham, A. S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 28(4), 660–681 (2014).
    Google Scholar 
    Sun, L. Q., Zhang, F. H., Yang, S. W., Qiu, A. G. & Zhang, X. L. The method of selecting geographically and temporally weight regression variable based on stepwise regression. Sci. Surv. Mapp. 44(01), 73–78+97 (2019).
    Google Scholar 
    Jiang, W. G. et al. Spatio-temporal analysis of vegetation variation in the Yellow River basin. Ecol. Indic. 51, 117–126 (2015).
    Google Scholar 
    Ndayisaba, F. et al. Understanding the spatial temporal vegetation dynamics in Rwanda. Remote Sens. 8(2), 129 (2016).ADS 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449(7159), 213–217 (2007).ADS 
    PubMed 

    Google Scholar 
    Chen, J. J., Yi, S. H. & Qin, Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma 297, 1–9 (2017).ADS 
    CAS 

    Google Scholar 
    Cai, H. Y., Yang, X. H. & Xu, X. L. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecol. Eng. 83, 112–119 (2015).
    Google Scholar 
    Wang, P., Lassoie, J. P., Morreale, S. J. & Dong, S. K. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau. China. Rangel. J. 37(1), 1–9 (2015).
    Google Scholar 
    Lu, C. B. & Hou, L. F. Cause analysis and Control Countermeasures of grassland degradation in Qilian County, Qinghai Province. Today Anim. Husb. Vet. Med. 34(02), 62 (2018).
    Google Scholar 
    Guo, X. W. et al. Light grazing significantly reduces soil water storage in Alpine Grasslands on the Qinghai-Tibet Plateau. Sustainability. 12(6), 2523–2523 (2020).
    Google Scholar 
    Bai, Y. F. et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 742, 140574–140574 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, T. et al. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 743, 140649 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, A., Wu, J. G. & Huang, J. H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 27(7), 969–982 (2012).CAS 

    Google Scholar 
    Wu, J. S. et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manag. 281, 111875–111875 (2020).
    Google Scholar 
    Gang, C. et al. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop Sci. 201(1), 57–68 (2015).
    Google Scholar 
    Gang, C. C. et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72(11), 4273–4282 (2014).
    Google Scholar 
    Chen, Y. Z. et al. Grassland carbon sequestration ability in China: A new perspective from terrestrial aridity zones. Rangeland Ecol. Manag. 69(1), 84–94 (2016).
    Google Scholar 
    Mowll, W. et al. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia 177(4), 959–969 (2015).ADS 
    PubMed 

    Google Scholar 
    Zhou, Y. et al. Climate contributions to vegetation variations in central Asian Drylands: Pre- and post-USSR collapse. Remote Sens. 7(3), 2449–2470 (2015).ADS 

    Google Scholar 
    Ji, Y. et al. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 7(1), 1–11 (2020).CAS 

    Google Scholar 
    Zeng, B. & Yang, T. B. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003. Environ. Monit. Assess. 144(1–3), 403–417 (2008).PubMed 

    Google Scholar 
    Duan, A. M. & Xiao, Z. X. Does the climate warming hiatus exist over the Tibetan Plateau?. Sci. Rep. 5(1), 13711 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fang, J. Y. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32(21), L21411 (2005).ADS 

    Google Scholar 
    Zhao, X., Tan, K., Zhao, S. & Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ. 75(10), 946–952 (2011).ADS 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change. 6(1), 75–78 (2016).ADS 

    Google Scholar 
    Dong, S. K., Shang, Z. H., Gao, J. X. & Boone, R. B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 287(C), 106684 (2019).
    Google Scholar 
    Xu, H. P. et al. Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels. Environ Monit Assess. 191(11), 678 (2019).CAS 
    PubMed 

    Google Scholar 
    Wen, W. Y. et al. Research on soil net nitrogen mineralization in Stipa grandis grassland with different stages of degradation. Geosci J. 20(4), 485–494 (2016).ADS 
    CAS 

    Google Scholar 
    She, Y. et al. Vegetation attributes and soil properties of alpine grassland in different degradation stages on the Qinghai-Tibet Plateau, China: A meta-analysis. Arab J Geosci. 15, 193 (2022).
    Google Scholar 
    Xu, G. P. Study on the Change of Vegetation and Soil Nutrients of Alpine Meadow Under Different Degradation Degrees in Eastern Qilian Mountains (Gansu Agricultural University, 2006).
    Google Scholar 
    Anderson, K. et al. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang. Biol. 26(3), 1608–1625 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. X. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 189–190, 11–18 (2014).ADS 

    Google Scholar 
    Zhang, X. W., Li, G., Dong, K. H. & Zhao, X. Effects of grazing and enclosure on community characteristics and biodiversity in Leymus chinensis grassland. J. Grassl. Forage Sci. 4, 22–27 (2019).
    Google Scholar 
    Huang, K. et al. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 8(10), 876 (2016).ADS 

    Google Scholar 
    Duan, Q. T., Luo, L. H., Zhao, W. Z., Zhuang, Y. L. & Liu, F. Mapping and evaluating human pressure changes in the Qilian mountains. Remote Sens. 13(12), 2400–2400 (2021).ADS 

    Google Scholar 
    Wang, Y. et al. Performance and obstacle tracking to natural forest resource protection project: A rangers’ case of Qilian mountain, China. Int. J. Environ. Res. Public Health. 17(16), 5672 (2020).PubMed Central 

    Google Scholar 
    Li, Z. Y. et al. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 735, 139370 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, C. X., de Jong, R., Schmid, B., Wulf, H. & Schaepman, M. E. Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Sci. Total Environ. 665, 678–689 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. L. et al. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degrad. Dev. 24, 72–80 (2011).
    Google Scholar 
    Li, C. B. et al. Regional vegetation dynamics and its response to climate change—a case study in the Tao River Basin in Northwestern China. Environ. Res. Lett. 9(12), 125003–125003 (2014).ADS 

    Google Scholar 
    Liu, Y. Y. et al. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 32(17), 4974–4987 (2021).
    Google Scholar 
    Hou, X. Chinese Grassland Science (Science Press, 2013) (In Chinese).
    Google Scholar  More

  • in

    Rethinking the complexity and uncertainty of spatial networks applied to forest ecology

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. https://doi.org/10.1126/science.1155121 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Le Quere, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649. https://doi.org/10.5194/essd-8-605-2016 (2016).ADS 
    Article 

    Google Scholar 
    DavidMorales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77. https://doi.org/10.1016/j.foreco.2015.06.011 (2015).Article 

    Google Scholar 
    Kauppi, P. E., Sandstrom, V. & Lipponen, A. Forest resources of nations in relation to human well-being. PLoS One 13, e0196248. https://doi.org/10.1371/journal.pone.0196248 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).CAS 
    Article 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 31, 219–227. https://doi.org/10.1007/s10980-015-0312-3 (2016).Article 

    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.1500052 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Audino, L. D., Murphy, S. J., Zambaldi, L., Louzada, J. & Comita, L. S. Drivers of community assembly in tropical forest restoration sites: Role of local environment, landscape, and space. Ecol. Appl. 27, 1731–1745. https://doi.org/10.1002/eap.1562 (2017).Article 
    PubMed 

    Google Scholar 
    Temperton, V. M., Hobbs, R. J., Nuttle, T. & Halle, S. in Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice [Science and Practice of Ecological Restoration]. i–xv, 1–439 (2004).Young, T. P., Chase, J. M. & Huddleston, R. T. Community succession and assembly: Comparing, contrasting and combining paradigms in the context of ecological restoration. Ecol. Restor. 19, 5–18 (2001).Article 

    Google Scholar 
    Vellend, M. The Theory of Ecological Communities (Princeton University Press, 2016).
    Google Scholar 
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43(43), 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411 (2012).Article 

    Google Scholar 
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) (Centre for Agricultural Publishing and Documentation, 1971).
    Google Scholar 
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501. https://doi.org/10.1086/282687 (1970).Article 

    Google Scholar 
    Schmid, J. S., Taubert, F., Wiegand, T., Sun, I. F. & Huth, A. Network science applied to forest megaplots: Tropical tree species coexist in small-world networks. Sci. Rep. https://doi.org/10.1038/s41598-020-70052-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. X. et al. Prevalence of inter-tree competition and its role in shaping the community structure of a natural Mongolian scots pine (Pinus sylvestris var. mongolica) forest. Forests https://doi.org/10.3390/f8030084 (2017).Article 

    Google Scholar 
    Hubbell, S. P. et al. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557. https://doi.org/10.1126/science.283.5401.554 (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Janik, D. et al. Breaking through beech: A three-decade rise of sycamore in old-growth European forest. Forest Ecol. Manag. 366, 106–117. https://doi.org/10.1016/j.foreco.2016.02.003 (2016).Article 

    Google Scholar 
    Svatek, M., Rejzek, M., Kvasnica, J., Repka, R. & Matula, R. Frequent fires control tree spatial pattern, mortality and regeneration in argentine open woodlands. Forest Ecol. Manag. 408, 129–136. https://doi.org/10.1016/j.foreco.2017.10.048 (2018).Article 

    Google Scholar 
    Giammarchi, F. et al. Effects of the lack of forest management on spatiotemporal dynamics of a subalpine Pinus cembra forest. Scand. J. Forest Res. 32, 142–153. https://doi.org/10.1080/02827581.2016.1207802 (2017).Article 

    Google Scholar 
    Janik, D. et al. Patterns of Fraxinus angustifolia in an alluvial old-growth forest after declines in flooding events. Eur. J. Forest Res. 135, 215–228. https://doi.org/10.1007/s10342-015-0925-8 (2016).Article 

    Google Scholar 
    Bagchi, R. et al. Defaunation increases the spatial clustering of lowland western amazonian tree communities. J. Ecol. 106, 1470–1482. https://doi.org/10.1111/1365-2745.12929 (2018).Article 

    Google Scholar 
    Zhang, L. Y., Dong, L. B., Liu, Q. & Liu, Z. G. Spatial patterns and interspecific associations during natural regeneration in three types of secondary forest in the central part of the greater Khingan mountains, Heilongjiang province, China. Forests https://doi.org/10.3390/f11020152 (2020).Article 

    Google Scholar 
    Obiang, N. L. E. et al. Determinants of spatial patterns of canopy tree species in a tropical evergreen forest in Gabon. J. Veg. Sci. 30, 929–939. https://doi.org/10.1111/jvs.12778 (2019).Article 

    Google Scholar 
    Wiegand, T. et al. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annu. Rev. Ecol. Evol. Syst. 48(48), 329–351. https://doi.org/10.1146/annurev-ecolsys-110316-022936 (2017).Article 

    Google Scholar 
    Gabriel, E. Spatial point patterns: Methodology and applications with R. Math. Geosci. 49, 815–817. https://doi.org/10.1007/s11004-016-9670-x (2017).CAS 
    Article 
    MATH 

    Google Scholar 
    Baddeley, A., Rubak, R. & Turner, R. Spatial Point Patterns, Methodology and Applications with R (CRC Press, 2016).MATH 

    Google Scholar 
    Wiegand, T. & Moloney, K. A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x (2004).Article 

    Google Scholar 
    Plotkin, J. B., Chave, J. M. & Ashton, P. S. Cluster analysis of spatial patterns in Malaysian tree species. Am. Nat. 160, 629–644. https://doi.org/10.1086/342823 (2002).Article 
    PubMed 

    Google Scholar 
    Ripley, B. D. Modeling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977).
    Google Scholar 
    He, F. L. & Gaston, K. J. Estimating species abundance from occurrence. Am. Nat. 156, 553–559. https://doi.org/10.1086/303403 (2000).Article 
    PubMed 

    Google Scholar 
    Diggle, P. Statistical Analysis of Spatial Point Patterns (Academic Press, 1983).MATH 

    Google Scholar 
    Pielou, E. C. The use of point-to-plant distances in the study of the pattern of plant-populations. J. Ecol. 47, 607–613. https://doi.org/10.2307/2257293 (1959).Article 

    Google Scholar 
    Losapio, G., Montesinos-Navarro, A. & Saiz, H. Perspectives for ecological networks in plant ecology. Plant Ecol. Divers. 12, 87–102. https://doi.org/10.1080/17550874.2019.1626509 (2019).Article 

    Google Scholar 
    Fuller, M. M., Wagner, A. & Enquist, B. J. Using network analysis to characterize forest structure. Nat. Resour. Model. 21, 225–247. https://doi.org/10.1111/j.1939-7445.2008.00004.x (2008).MathSciNet 
    Article 

    Google Scholar 
    Montoya, J. M., Pimm, S. L. & Sole, R. V. Ecological networks and their fragility. Nature 442, 259–264. https://doi.org/10.1038/nature04927 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353. https://doi.org/10.1016/j.tree.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    Nakagawa, Y., Yokozaw, M. & Hara, T. Complex network analysis reveals novel essential properties of competition among individuals in an even-aged plant population. Ecol. Complex 26, 95–116. https://doi.org/10.1016/j.ecocom.2016.03.005 (2016).Article 

    Google Scholar 
    Wiegand, T. & Moloney, K. A. Handbook of Spatial Point Pattern Analysis in Ecology (CRC Press, 2013).Book 

    Google Scholar 
    Barthelemy, M. Spatial networks. Phys. Rep. Rev. Sect. Phys. Lett. 499, 1–101. https://doi.org/10.1016/j.physrep.2010.11.002 (2011).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Keren, S. Modeling tree species count data in the understory and canopy layer of two mixed old-growth forests in the Dinaric region. Forests https://doi.org/10.3390/f11050531 (2020).Article 

    Google Scholar 
    Podlaski, R. Models of the fine-scale spatial distributions of trees in managed and unmanaged forest patches with Abies alba Mill. and Fagus sylvatica L. Forest Ecol. Manag. 439, 1–8 (2019).Article 

    Google Scholar 
    Levin, S. A. Theoretical ecology—Principles and applications, 3rd edition. Science 316, 1699–1700. https://doi.org/10.1126/science.1141870 (2007).CAS 
    Article 

    Google Scholar 
    Martinez-Lopez, V., Garcia, C., Zapata, V., Robledano, F. & De la Rua, P. Intercontinental long-distance seed dispersal across the Mediterranean basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420. https://doi.org/10.1111/mec.15413 (2020).Article 
    PubMed 

    Google Scholar 
    Dale, M. R. T. & Fortin, M. J. From graphs to spatial graphs. Annu. Rev. Ecol. Evol. Syst. 41, 21–38. https://doi.org/10.1146/annurev-ecolsys-102209-144718 (2010).Article 

    Google Scholar 
    Silva, C. A. et al. Treetop: A shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists. Methods Ecol. Evol. 13, 1164–1176. https://doi.org/10.1111/2041-210x.13830 (2022).Article 

    Google Scholar 
    Tatsumi, S., Yamaguchi, K. & Furuya, N. Forestscanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13900 (2022).Article 

    Google Scholar 
    Ferraz, A., Saatchi, S. S., Longo, M. & Clark, D. B. Tropical tree size-frequency distributions from airborne LiDAR. Ecol. Appl. 30, e02154. https://doi.org/10.1002/eap.2154 (2020).Article 
    PubMed 

    Google Scholar 
    Bianchi, E., Bugmann, H., Hobi, M. L. & Bigler, C. Spatial patterns of living and dead small trees in subalpine Norway spruce forest reserves in Switzerland. Forest Ecol. Manag. 494, 119315. https://doi.org/10.1016/j.foreco.2021.119315 (2021).Article 

    Google Scholar 
    Tatsumi, S., Owari, T., Yin, M. F. & Ning, L. Z. Neighborhood analysis of underplanted Korean pine demography in larch plantations: Implications for uneven-aged management in northeast china. Forest Ecol. Manag. 322, 10–18. https://doi.org/10.1016/j.foreco.2014.03.022 (2014).Article 

    Google Scholar 
    Cornett, M. W., Reich, P. B. & Puettmann, K. J. Canopy feedbacks and microtopography regulate conifer seedling distribution in two Minnesota conifer-deciduous forests. Ecoscience 4, 353–364. https://doi.org/10.1080/11956860.1997.11682414 (1997).Article 

    Google Scholar 
    Wang, X. F., Zheng, G., Yun, Z. X. & Moskal, L. M. Characterizing tree spatial distribution patterns using discrete aerial LiDAR data. Remote Sens. Basel 12, 712. https://doi.org/10.3390/rs12040712 (2020).ADS 
    Article 

    Google Scholar 
    Matérn, B. Spatial variation: Stochastic models and their application to some problems in forest surveys and other sampling investigations. Meddelanden från Statens Skogsforskningsinstitut 49, 1–144 (1960).MathSciNet 

    Google Scholar 
    Matérn, B. Spatial Variation. Lecture Notes in Statistics Vol. 36 (Springer, 1986).Book 

    Google Scholar 
    Thomas, M. A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36, 18–25 (1949).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Lotwick, H. W. Simulation of some spatial hard core models, and the complete packing problem. J. Stat. Comput. Simul. 15, 295–314 (1982).MathSciNet 
    Article 

    Google Scholar 
    Strauss, D. J. A model for clustering. Biometrika 62, 467–475 (1975).MathSciNet 
    Article 

    Google Scholar 
    Cressie Noel, A. C. Statistics for Spatial Data (Wiley-Interscience, 1993).Book 

    Google Scholar 
    Besag, J. E. Contribution to the discussion of the paper by Ripley. J. R. Stat. Soc. 39, 193–195 (1977).MathSciNet 

    Google Scholar  More

  • in

    Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate

    Royse DJ. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Singh M, editor. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products. New Delhi; 2014. p. 1–6.Vos AM, Heijboer A, Boschker HTS, Bonnet B, Lugones LG, Wosten HAB. Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express. 2017; 7:12.Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS ONE. 2015;10:e0138909.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beyer DM. Basic procedures for Agaricus mushroom growing PennState Extension: the Pennsylvania State University. 2003. https://extension.psu.edu/basic-procedures-for-agaricus-mushroom-growing.Wang L, Mao J, Zhao H, Li M, Wei Q, Zhou Y, et al. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. J Ind Microbiol Biotechnol. 2016;43:1249–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams JDW, Frostick LE. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresour Technol. 2008;99:1097–102.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu L, Wang S, Guo X, Zhao T, Zhang B. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Manage. 2018;73:101–12.CAS 
    Article 

    Google Scholar 
    Reyes-Torres M, Oviedo-Ocana ER, Dominguez I, Komilis D, Sanchez A. A systematic review on the composting of green waste: feedstock quality and optimization strategies. Waste Manage. 2018;77:486–99.CAS 
    Article 

    Google Scholar 
    Pardo‐Giménez A, González JEP, Zied DC. Casing materials and techniques in Agaricus bisporus cultivation. In: Zied DC, Pardo‐Giménez A, editors. Edible and medicinal mushrooms technology and applications. Chichester, UK: Wiley; 2017. p. 149–74.Baars JJP, Scholtmeijer K, Sonnenberg ASM, van Peer A. Critical factors involved in primordia building in Agaricus bisporus: a review. Molecules. 2020;25:2984.Vieira FR, Pecchia JA. Bacterial community patterns in the Agaricus bisporus cultivation system, from compost raw materials to mushroom caps. Microb Ecol. 2021;84:20–32.PubMed 
    Article 

    Google Scholar 
    Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels. 2008;1:1–9.Article 

    Google Scholar 
    Jurak E, Patyshakuliyeva A, de Vries RP, Gruppen H, Kabel MA. Compost grown Agaricus bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PLoS ONE. 2015;10:e0134169.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, et al. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol. 2003;53:349–410.
    Google Scholar 
    Kutzner HJ. Microbiology of composting. In: Rehm H-J, Reed G, editors. Biotechnology. 11c. 2nd ed. Verlag: Wiley-VCH; 2000. p. 35–100.Carrasco J, Garcia-Delgado C, Lavega R, Tello ML, De Toro M, Barba-Vicente V, et al. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Microb Biotechnol. 2020;13:1933–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vieira FR, Pecchia JA. Bacterial community patterns in the Agaricus bisporus cultivation system, from compost raw materials to mushroom caps. Microb Ecol. 2021;82. https://doi.org/10.1007/s00248-021-1833-5.Vieira FR, Pecchia JA. An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting–Phase II) for Agaricus bisporus cultivation. Microb Ecol. 2018;75:318–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao GT, Song TT, Shen YY, Jin QL, Feng WL, Fan LJ, et al. Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. Hortscience. 2019;54:100–9.CAS 
    Article 

    Google Scholar 
    Wiegant WM. Growth characteristics of the thermophilic fungus Scytalidium thermophilum in relation to production of mushroom compost. Appl Environ Microbiol. 1992;58:1301–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fermor T, Randle P, Smith J. Compost as a substrate and its preparation. In: Flegg PB, Spencer DM, Wood D, editors. The biology and technology of the cultivated mushroom. Chichester, UK: John Wiley & Sons, Ltd; 1985. p. 81–109.Straatsma G, Samson RA, Olijnsma TW, Op den Camp HJM, Gerrits JPG, Griensven LJLDV. Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol. 1994;60:454–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross RC, Harris PJ. An investigation into the selective nature of mushroom compost. Sci Hortic. 1983;19:55–64.Article 

    Google Scholar 
    Coello-Castillo MM, Sanchez JE, Royse DJ. Production of Agaricus bisporus on substrates pre-colonized by Scytalidium thermophilum and supplemented at casing with protein-rich supplements. Bioresour Technol. 2009;100:4488–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Szekely A, Sipos R, Berta B, Vajna B, Hajdu C, Marialigeti K. DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb Ecol. 2009;57:522–33.PubMed 
    Article 

    Google Scholar 
    Kertesz M, Safianowicz K, Bell TL. New insights into the microbial communities and biological activities that define mushroom compost. Sci Cultiv Edible Fungi. 2016;19:161–5.
    Google Scholar 
    McGee CF, Byrne H, Irvine A, Wilson J. Diversity and dynamics of the DNA and cDNA-derived bacterial compost communities throughout the Agaricus bisporus mushroom cropping process. Ann Microbiol. 2017;67:751–61.CAS 
    Article 

    Google Scholar 
    McGee CF, Byrne H, Irvine A, Wilson J. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. Mycologia. 2017;109:475–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yeates C, Gillings MR. Rapid purification of DNA from soil for molecular biodiversity analysis. Lett Appl Microbiol. 1998;27:49–53.CAS 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22.
    Google Scholar 
    Lever MA, Torti A, Eickenbusch P, Michaud AB, Santl-Temkiv T, Jorgensen BB. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol. 2015;6:476.Muyzer G, Waal ECD, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation For Statistical Computing; 2019.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina aplicon data. Nat Meth. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2010;27:592–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Veget Sci. 2003;14:927–30.Article 

    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.Sharma HS, Kilpatrick M. Mushroom (Agaricus bisporus) compost quality factors for predicting potential yield of fruiting bodies. Can J Microbiol. 2000;46:515–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seaby DA. Mushroom (Agaricus bisporus) yield modelling for the bag method of mushroom production using commercial yields and from micro plots. Sci Cultiv Edible Fungi. 1995;14:409–16.
    Google Scholar 
    O’Donoghue DC. Relationship between some compost factors and their effects on yield of Agaricus. Mushroom Sci. 1965;6:245–54.
    Google Scholar 
    Andersen B, Sorensen JL, Nielsen KF, van den Ende BG, de Hoog S. A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genet Biol. 2009;46:642–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers. 2012;52:197–207.Article 

    Google Scholar 
    Souza TP, Marques SC, Santos D, Dias ES. Analysis of thermophilic fungal populations during phase II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol. 2014;30:2419–25.PubMed 
    Article 

    Google Scholar 
    Vajna B, Szili D, Nagy A, Márialigeti K. An improved sequence-aided T-RFLP analysis of bacterial succession during oyster mushroom substrate preparation. Microb Ecol. 2012;64:702–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Du R, Yan J, Li S, Zhang L, Zhang S, Li J, et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol Biofuels. 2015;8:10.Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol. 2005;71:7099–106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol. 2002;59:529–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vajna B, Adrienn N, Sajben-Nagy E, Manczinger L, Szijártó N, Kádár Z, et al. Microbial community structure changes during oyster mushroom substrate preparation. Appl Microbiol Biotechnol. 2010;86:367–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Karadag D, Özkaya B, Ölmez E, Nissilä ME, Çakmakçı M, Yıldız Ş, et al. Profiling of bacterial community in a full-scale aerobic composting plant. Int Biodeter Biodeg. 2013;77:85–90.CAS 
    Article 

    Google Scholar 
    Rathinam NK, Gorky, Bibra M, Salem DR, Sani RK. Bioelectrochemical approach for enhancing lignocellulose degradation and biofilm formation in Geobacillus strain WSUCF1. Bioresour Technol. 2020;295:122271.Song TT, Shen YY, Jin QL, Feng WL, Fan LJ, Cao GT, et al. Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. PeerJ. 2021;9:e10452.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang X, Zhong Y, Yang S, Zhang W, Xu M, Ma A, et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresour Technol. 2014;170:183–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodfellow M, Maldonado LA, Quintana ET. Reclassification of Nonomuraea flexuosa (Meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int J Syst Evol Microbiol. 2005;55:1979–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin SB, Stutzenberger FJ. Purification and characterization of the major beta-1,4-endoglucanase from Thermomonospora curvata. J Appl Bacteriol. 1995;79:447–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kukolya J, Nagy I, Láday M, Tóth E, Oravecz O, Márialigeti K, et al. Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. Int J Syst Evol Microbiol. 2002;52:1193–9.CAS 
    PubMed 

    Google Scholar 
    Weon H-Y, Lee S-Y, Kim B-Y, Noh H-J, Schumann P, Kim J-S, et al. Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int J Syst Evol Microbiol. 2007;57:2908–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B. Geobacillus galactosidasius sp. nov., a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol. 2011;34:419–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavande PV, Basak A, Sen S, Lepcha K, Murmu N, Rai V, et al. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci Rep. 2021;11:3032.Xu JQ, Lu YY, Shan GC, He XS, Huang JH, Li QL. Inoculation with compost-born thermophilic complex microbial consortium induced organic matters degradation while reduced nitrogen loss during co-composting of dairy manure and sugarcane leaves. Waste Biomass Valor. 2019;10:2467–77.CAS 
    Article 

    Google Scholar 
    Yoon JH, Kang SJ, Im WT, Lee ST, Oh TK. Chelatococcus daeguensis sp nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int J Syst Evol Microbiol. 2008;58:2224–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou C, Liu Z, Huang Z-L, Dong M, Yu X-L, Ning P. A new strategy for co-composting dairy manure with rice straw: addition of different inocula at three stages of composting. Waste Manage. 2015;40:38–43.CAS 
    Article 

    Google Scholar 
    Gómez A. New technology in Agaricus bisporus cultivation. In: Zied DC, Pardo-Giménez A, editors. Edible and medicinal mushrooms. Chichester, UK: John Wiley & Sons; 2017. p. 211–20.von Minnigerode HF, editor. Method for controlling and regulating the composting process. Proceedings of the Eleventh International Scientific Congress on the Cultivation of Edible Fungi. Sydney, Australia: The International Society for Mushroom Science; 1981.Jurak E, Gruppen H, Kabel MA, Eggink G, Meyer AS, van der Maarel MJEC, et al. How mushrooms feed on compost: conversion of carbohydrates and lignin in industrial wheat straw based compost enabling the growth of Agaricus bisporus. Wageningen University—Graduate School VLAG; 2015.Miller FC, Macauley BJ, Harper ER. Investigation of various gases, pH and redox potential in mushroom composting Phase-I stacks. Aust J Exper Agric. 1991;31:415–25.Article 

    Google Scholar 
    Miller FC, Harper ER, Macauley BJ, Gulliver A. Composting based on moderately thermophilic and aerobic conditions for the production of commercial growing compost. Aust J Exper Agric. 1990;30:287–96.Article 

    Google Scholar 
    Carrasco J, Preston GM. Growing edible mushrooms: a conversation between bacteria and fungi. Environ Microbiol. 2020;22:858–72.PubMed 
    Article 

    Google Scholar  More

  • in

    Pervasive exposure of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes

    Occurrence of pesticides in small mammals: general patternsA total of 112 different compounds were detected over the 140 parent pesticides and metabolites screened in hair samples (80% of the compounds screened). The full lists of compounds with their acronyms, the details of their full names and chemical families are provided in Tables 1 and 2.Table 1 Concentrations of banned and restricted pesticides (BRPs) in small mammal hair samples, classified by decreasing number of detection.Full size tableTable 2 Concentrations of currently used pesticides (CUPs) in small mammal hair samples, ordered by decreasing number of detection.Full size tableAs a whole, 51 BRPs over 67 analyzed (76%) were detected in small mammal hair, with 27 parent chemicals detected out of 39 screened (67%) and 25 metabolites detected out of 28 (89%) (Table 1). Thirteen compounds were present in more than 75% of individuals: DMP, PNP, 1-(3,4-dichlorophenyl)urea, DEP, PCP, 3Me4NP, 1-(3,4-dichlorophenyl)-3-methylurea, DETP, fipronil, fipronil sulfone, trifluralin, DMTP and HCB. Most of them are transformation products of organochlorine, organophosphorous, urea and phenylpyrazole pesticides. Then, the proportion of detection rapidly dropped under 25% of the samples. Only three compounds were detected in 50–75% of the individuals (Table 1: lindane γ-HCH (organochlorine insecticide), terbutryn (triazine/triazinone herbicide) and fenuron (urea herbicide). Five substances were found in 25–50% of the animals: DMST (metabolite of tolylfluanide, an amide fungicide), flusilazole (azole fungicide), α-endosulfan (organochlorine insecticide), DMDTP (organophosphorous insecticide metabolite) and diuron (urea herbicide). The 10 highest measured concentrations ranged between 30 and 118 ng/g, and were mostly represented by DMP (seven of the 10 values) together with PNP and 1-(3,4-dichlorophenyl)urea. Seven compounds exhibited concentrations higher than 10 ng/g, which were the same as the most frequent: DMP, PNP, 1-(3,4-dichlorophenyl)urea, DEP, PCP, 3Me4NP, plus DEDTP (organophosphorous metabolite, 6% of individuals). Considering the 16 BRPs that have never been detected, 13 were parent pesticides and three were metabolites, distributed in one fungicide, three herbicides, and 12 insecticides/biocides. The non-detected compounds belong to several chemical families including organochlorines, organophosphorous, carbamate, and urea pesticides.A total of 61 CUPs out of 73 analyzed were detected in small mammal hair, with 54 parent pesticides out of 66 tested (82%) and seven metabolites detected out of seven screened (100%) (Table 2). Many of the detected CUPs were found in a large proportion of individuals: 25 compounds were detected in more than 75% of the individuals, which means that 41% of the 61 detected CUPs were present in 75–100% of individuals. These 25 most frequently detected compounds belonged to various chemical families and all uses of CUPs (Table 2). The herbicides belonged to the families of organochlorines (metolachlor and metazachlor), acid herbicides (MCPA, 2,4-d,dichlorprop and mecoprop), thiocarbamates (prosulfocarb), amide pesticides (dimethachlor), uracils (lenacil), and dinitroaniline (pendimethalin). The fungicides were of the main families strobilurines (azoxystrobin and pyraclostrobin), azoles (tebuconazole, epoxiconazole, thiabendazole, prochloraz, and propiconazole; cyproconazole in 73% of individuals), carbamates (carbendazim) and carboxamides (boscalid). The most frequently detected insecticides were mainly metabolites of pyrethroids (3-PBA, Cl2CA, and ClCF3CA), as well as neonicotinoids (thiacloprid and imidacloprid) and the specific metabolite of chlorpyrifos TCPy (3,5,6-trichloro-2-pyridinol; organophosphorous pesticide). Noticeably, the five herbicides isoproturon (urea), propyzamide (benzamide), chlortoluron (urea), oxadiazon (oxadiazin) and diflufenican (carboxamide), as well as the fungicide trifloxystrobin (strobilurin) and the insecticide cypermethrine (pyrethroid), were detected in at least 50% of the samples (Table 2). Five more compounds were detected in 25–50% of animals: zoxamide (benzamide), difenoconazole (azole), cyhalothrin and Br2CA (pyrethroids), and 2,4-DB (acid herbicide). The 10 highest measured concentrations ranged from 200 to 500 ng/g, which were far higher than for BRPs. These high concentrations were found for the fungicides boscalid, carbendazim, and prochloraz and the herbicides dichlorprop, MCPA, and propyzamide. A greater number of compounds exhibited higher concentrations than observed for BRPs, since 29 compounds presented concentrations higher than 10 ng/g. Moreover, 16 compounds were quantified at higher levels than 50 ng/g, and 10 compounds at higher levels than 100 ng/g (Table 2). The 10 compounds that had the highest concentrations were the herbicides propyzamide, MCPA, dichlorprop, diflufenican, mecoprop, and metolachlor, and the fungicides boscalid, epoxiconazole, carbendazim, and prochloraz. They were not all among the most detected compounds (Table 2). Six compounds exhibited concentrations ranging from 50 to 100 ng/g: the insecticide imidacloprid, the herbicides aclonifen and isoproturon, and the fungicides cyproconazole, propiconazole and tebuconazole. Various chemical families are represented among the CUPs exhibiting high concentrations in small mammals, including carbamates, carboxamids and benzamids, acid and urea herbicids, azoles and neonicotinoids (Table 2). The insecticides showed concentrations overall lower than herbicides and fungicides, since no value above 50 ng/g was measured within insecticides except for imidacloprid. Besides the neonicotinoid imidacloprid, the insecticides showing the highest values ( > 10 ppb) were all pyrethroids, either parents or their metabolites (cyfluthrine, cyhalothrine, permethrine, 3-PBA, Br2CA, Cl2CA). Among the 12 CUPs that have never been detected, only parent compounds were present, with six fungicides, two herbicides and four insecticides belonging to various chemical families such as azole, carbamate, organophosphorous, triazine, neonicotinoid, strobilurine, oxadiazine and urea pesticides.A significant positive relationship was found between detections of CUPs in small mammal hair samples and the quantities of pesticides sold in 2016 in the Region were the ZAPVS is located (i.e. Deux-Sèvre, where most of small mammals in this study were captured and analyzed) (Spearman’s rho = 0.66, p-value More

  • in

    Effects of salinization on the occurrence of a long-lived vertebrate in a desert river

    Yuan, F. & Miyamoto, S. Dominant processes controlling water chemistry of the Pecos River in American Southwest. Geophys. Res. Lett. 32(17), L17406. https://doi.org/10.1029/2005GL023359 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Yuan, F., Miyamoto, S. & Anand, S. Changes in major element hydrochemistry of the Pecos River in the American Southwest since 1935. Appl. Geochem. 22(8), 1798–1813. https://doi.org/10.1016/j.apgeochem.2007.03.036 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Harley, G. L. & Maxwell, J. T. Current declines of Pecos River (New Mexico, USA) streamflow in a 700-year context. Holocene 28(5), 766–777. https://doi.org/10.1177/0959683617744263 (2018).ADS 
    Article 

    Google Scholar 
    Jensen, R., Hatler, W., Mecke, M. & Hart, C. The Influences of Human Activities on the Water of the Pecos River Basin of Texas: A Brief Overview. Technical Report. SR-2006-03. Texas Water Resources Institute (2006).Hoagstrom, C. W. Causes and impacts of salinization in the lower Pecos River. Gt. Plains Res. 19(1), 27–44 (2009).
    Google Scholar 
    Williams, A. P., Cook, B. I. & Smerdon, J. E. Rapid intensification of the emerging North American megadrought in 2020–2021. Nat. Clim. Change 12(3), 232–234. https://doi.org/10.1038/s41558-022-01290-z (2022).ADS 
    Article 

    Google Scholar 
    Cheek, C. A. & Taylor, C. M. Salinity and geomorphology drive long-term changes to local and regional fish assemblage attributes in the lower Pecos River, Texas. Ecol. Freshw. Fish 25(3), 340–351. https://doi.org/10.1111/eff.12214 (2015).Article 

    Google Scholar 
    Pease, A. A. & Delaune, K. D. Dried and salted: cumulative impacts of diminished flows and salinization on the lower Pecos River food webs. In Proceedings of the Desert Fishes Council Special Publication. Vol. 2021, 2–19. https://doi.org/10.26153/tsw/12364 (2021)Linam, G. W. & Kleinsasser, L. J. Relationships Between Fishes and Water Quality in the Pecos River, Texas. River Studies Report. No. 9. Texas Parks and Wildlife Department (1996).Hoagstrom, C. W., Zymonas, N. D., Davenport, S. R., Propst, D. L. & Brooks, J. E. Rapid species replacements between fishes of the North American plains: A case history from the Pecos River. Aquat. Invasions 5(2), 141–153. https://doi.org/10.3391/ai.2010.5.2.03 (2010).Article 

    Google Scholar 
    Randklev, C. R. et al. A semi-arid river in distress: Contributing factors and recovery solutions for three imperiled freshwater mussels (Family Unionidae) endemic to the Rio Grande Basin in North America. Sci. Total Environ. 631–632, 733–744. https://doi.org/10.1016/j.scitotenv.2018.03.032 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kimmons, J. B. & Moll, D. Seed dispersal by Red-eared sliders (Trachemys scripta elegans) and Common snapping turtles (Chelydra serpentina). Chelonian Conserv. Biol. 9(2), 289–294. https://doi.org/10.2744/CCB-0797.1 (2010).Article 

    Google Scholar 
    Lazar, B. et al. Loggerhead sea turtles (Caretta caretta) as bioturbators in neritic habitats: An insight through the analysis of benthic molluscs in the diet. Mar. Ecol. 32(1), 65–74. https://doi.org/10.1111/j.1439-0485.2010.00402.x (2011).ADS 
    Article 

    Google Scholar 
    Lovich, J. E., Ennen, J. R., Agha, M. & Gibbons, J. W. Where have all the turtles gone, and why does it matter?. Bioscience 68(10), 771–781. https://doi.org/10.1093/biosci/biy095 (2018).Article 

    Google Scholar 
    de Solla, S. R., Fernie, K. J. & Ashpole, S. Snapping turtles (Chelydra serpentina) as bioindicators in Canadian areas of concern in the Great Lakes Basin. II. Changes in hatching success and hatchling deformities in relation to persistent organic pollutants. Environ. Pollut. 153(3), 529–536. https://doi.org/10.1016/j.envpol.2007.09.017 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Adams, C. I. M., Baker, J. E. & Kjellerup, B. V. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States. Chemosphere 154, 148–154. https://doi.org/10.1016/j.chemosphere.2016.03.102 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Beau, F., Bustamante, P., Michaud, B. & Brischoux, F. Environmental causes and reproductive correlates of mercury contamination in European pond turtles (Emys orbicularis). Environ. Res. 172(4), 338–344. https://doi.org/10.1016/j.envres.2019.01.043 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    van Dijk, P. P. Pseudemys gorzugi (errata version published in 2016). The IUCN Red List of Threatened Species Vol. 2011, e.T18459A97. (2011).NMDGF [New Mexico Department of Game and Fish]. Threatened and Endangered Species of New Mexico, 2020 Biennial Review. Management and Fisheries Management Divisions (2020).SEMARNAT [Secretaríade Medio Ambiente y Recursos Naturales]. NORMA Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental–Especies nativas de México de flora y fauna silvestres–Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio–Lista de especies en riesgo. Diario Oficial de la Federación Vol. 2 (2010).TPWD [Texas Parks & Wildlife Department]. Species Account: the Rio Grande River Cooter (Pseudemys gorzugi). In Texas Comprehensive Wildlife Conservation Strategy 2005–2010 (eds Bender, S., Shelton, S., Bender, K. & Kalmbach, A.). Nongame Division, 1075–7076 (2012).Pierce, L. J. S., Stuart, J. N., Ward, J. P. & Painter, C. W. Pseudemys gorzugi Ward 1984–Rio Grande Cooter, Western River Cooter, Tortuga de Oreja Amarilla, Jicotéa del Rio Bravo In Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group (eds. Rhodin, A. G. J. et al.). Chelonian Res. Monog. Vol. 5, No. 9, 100.1–100.12. https://doi.org/10.3854/crm.5.100.gorzugi.v1.2016 (2016).Endangered and Threatened Wildlife and Plants. Endangered and Threatened Wildlife and Plants; three species not warranted for listing as endangered or threatened species. Fed. Reg. 87(49), 14227–14228 (2022).
    Google Scholar 
    Bailey, L. A., Forstner, M. R. J., Dixon, J. R. & Hudson, R. Contemporary status of the Rio Grande Cooter (Testudines: Emydidae: Pseudemys gorzugi) in Texas: phylogenetic, ecological and conservation consideration. In Proceedings of the Sixth Symposium on the Natural Resources of the Chihuahuan Desert Region (eds. Hoyt, C. A. & Karges, J.) 320–324. (Chihuahuan Desert Research Institute, 2014).Suriyamongkol, T., Waldon, K. J. & Mali, I. Trachemys scripta (Red-eared Slider) and Pseudemys gorzugi (Rio Grande Cooter). Fish hook ingestion and shooting. Herpetol. Rev. 50(4), 776–777 (2019).
    Google Scholar 
    Degenhardt, W. G., Painter, C. W. & Price, A. H. Amphibians and Reptiles of New Mexico (University of New Mexico Press, 1996).
    Google Scholar 
    Ernst, C. H. Turtles of the United States and Canada 2nd edn. (Johns Hopkins University Press, 2009).
    Google Scholar 
    Dixon, J. R. Amphibians and Reptiles of Texas: With Keys, Taxonomic Synopses, Bibliography, and Distribution Maps 3rd edn. (Texas A&M University Press, 2013).
    Google Scholar 
    Suriyamongkol, T. et al. Geographic distribution. Pseudemys gorzugi (Rio Grande Cooter). Herpetol. Rev. 51(3), 536–537 (2020).
    Google Scholar 
    Christman, B. L. & Kamees, L. K. Current Distribution of the Blotched Watersnake (Nerodia erythrogaster) and the Rio Grande Cooter (Pseudemys gorzugi) in the Lower Pecos River System Eddy County, New Mexico 2006–2007. Final Report. New Mexico Department of Game and Fish (2007).Bogolin, A. P., Davis, D. R., Ruppert, K. M., Kline, R. J. & Rahmann, A. F. Geographic distribution. Pseudemys gorzugi (Rio Grande Cooter). Herpetol. Rev. 50(4), 745 (2019).
    Google Scholar 
    Congdon, J. D., Dunham, A. E. & Van Loben Sels, R. C. Demographics of common snapping turtles (Chelydra serpentina): Implications for conservation and management of long-lived organisms. Am. Zool. 34, 397–408. https://doi.org/10.1093/icb/34.3.397 (1994).Article 

    Google Scholar 
    Brooks, R. J., Brown, G. P. & Galbraith, D. A. Effects of a sudden increase in natural mortality of adults on a population of the common snapping turtle (Chelydra serpentina). Can. J. Zool. 69, 1314–1320. https://doi.org/10.1139/z91-185 (1991).Article 

    Google Scholar 
    Congdon, J. D., Dunham, A. E. & Van Loben Sels, R. C. Delayed sexual maturity and demographics of Blanding’s turtles (Emydoidea blandingii): Implications for conservation and management of long-lived organisms. Conserv. Biol. 7(4), 826–833. https://doi.org/10.1046/j.1523-1739.1993.740826.x (1993).Article 

    Google Scholar 
    Suriyamongkol, M. & Mali, I. Aspects of the reproductive biology of the Rio Grande Cooter (Pseudemys gorzugi) on the Black River, New Mexico. Chelonian Conserv. Biol. https://doi.org/10.2744/CCB-1385.1 (2019).Article 

    Google Scholar 
    Bailey, L. A., Dixon, J. R., Hudson, R. & Forstner, M. R. J. Minimal genetic structure of the Rio Grande Cooter (Pseudemys gorzugi). Southwest. Nat. 53(3), 406–411. https://doi.org/10.1894/GC-179.1 (2008).Article 

    Google Scholar 
    Mali, I., Duarte, A. & Forstner, M. R. J. Comparison of hoop-net trapping and visual surveys to monitor abundance of the Rio Grande Cooter (Pseudemys gorzugi). PeerJ 6, e4677:1-16. https://doi.org/10.7717/peerj.4677 (2018).Article 

    Google Scholar 
    Hart, C. R., McDonald, A. & Hatler, W. Pecos River Ecosystem Monitoring Project. Technical Report. Texas Cooperative Extension: The Texas A&M University System. (2005).Hong, M., Zhang, K., Shu, C., Xie, D. & Shi, H. Effect of salinity on the survival, ions, and urea modulation in Red-eared Slider (Trachemys scripta elegans). Asian Herpetol. Res. 5(2), 128–136. https://doi.org/10.3724/SP.J.1245.2014.00128 (2014).Article 

    Google Scholar 
    Hintz, W. D. et al. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol. Appl. 27(3), 833–844. https://doi.org/10.1002/eap.1487 (2017).Article 
    PubMed 

    Google Scholar 
    Letter, A. W., Waldon, K. J., Pollock, D. A. & Mali, I. Dietary habits of Rio Grande Cooters (Pseudemys gorzugi) from two sites within the Black River, Eddy County, New Mexico, USA. J. Herpetol. 53(3), 204–208. https://doi.org/10.1670/18-057 (2019).Article 

    Google Scholar 
    Suriyamongkol, T., Ortega-Berno, V., Mahan, L. B. & Mali, I. Using stable isotopes to study resource partitioning between Red-eared Slider and Rio Grande Cooter in the Pecos River watershed. Ichthyol. Herpetol. 110(1), 96–105. https://doi.org/10.1643/h2021023 (2022).Article 

    Google Scholar 
    Bassett, L. G., Mali, I., Nowlin, W. H., Foley, D. H. & Forstner, M. R. J. Diet and isotopic niche of the Rio Grande Cooter (Pseudemys gorzugi) and syntopic Red-eared Slider (Trachemys scripta elegans) in San Felipe Creek, Texas, USA. Chelonian Conserv. Biol. (in Press).Bárcenas-García, A. et al. Impacts of dams on freshwater turtles: A global review to identify conservation solutions. Trop. Conserv. Sci. 15(4), 1–21. https://doi.org/10.1177/194008292211037098 (2021).Article 

    Google Scholar 
    Smith, M. J. et al. Association between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshw. Biol. 52(1), 75–84. https://doi.org/10.1111/j.1365-2427.2006.01672.x (2007).Article 

    Google Scholar 
    Wohner, P. J. et al. Integrating monitoring and optimization modeling to inform flow decisions for Chinook salmon smolts. Ecol. Model. 471(2022), 110058. https://doi.org/10.1016/j.ecolmodel.2022.110058 (2022).Article 

    Google Scholar 
    Suriyamongkol, T., Tian, W. & Mali, I. Monitoring the basking behavior of Rio Grande Cooter (Pseudemys gorzugi) through game camerias in southeastern New Mexico, USA. West. N. Am. Nat. 81(3), 361–371. https://doi.org/10.3398/064.081.0305 (2021).Article 

    Google Scholar 
    Painter, C. W. Preliminary Investigations of the Distribution and Natural History of the Rio Grande River Cooter (Pseudemys gorzugi) in New Mexico. Preliminary Report. (United States Department of the Interior–Bureau of Land Management, 1993).Hak, J. C. & Comer, P. J. Modeling landscape condition for biodiversity assessment—Application in temperate North America. Ecol. Indic. 82, 206–216. https://doi.org/10.1016/j.ecolind.2017.06.049 (2017).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop. Ver. 10.8 (Environmental System Research Institute, 2020).MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255. https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 (2002).Article 

    Google Scholar 
    Tyre, A. J. et al. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13(6), 1790–1801. https://doi.org/10.1890/02-5078 (2003).Article 

    Google Scholar 
    Mackenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Dynamics of Species Occurrence 2nd edn. (Elsevier, 2017).
    Google Scholar 
    Duarte, A., Whitlock, S. L. & Peterson, J. T. Species distribution modeling. In Encyclopedia of Ecology 2nd edn (ed. Fath, B. D.) (Elsevier, 2019).
    Google Scholar 
    MacLaren, A. R., Foley, D. H., Sirsi, S. & Forstner, M. R. J. Updating methods of satellite transmitter attachment for long-term monitoring of the Rio Grande Cooter (Pseudemys gorzugi). Herpetol. Rev. 48(1), 48–52 (2017).
    Google Scholar 
    MacLaren, A. R., Sirsi, S., Foley, D. H. & Forstner, M. R. J. Pseudemys gorzugi (Rio Grande Cooter). Long distance dispersal. Herpetol. Rev. 48(1), 180–181 (2017).
    Google Scholar 
    Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43(10), 1–23. https://doi.org/10.18637/jss.v043.i10 (2011).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (Foundation For Statistical Computing, 2021).
    Google Scholar 
    Morin, D. J. et al. Is your ad hoc model selection strategy affecting your multimodel inference?. Ecosphere 11(1), e02997. https://doi.org/10.1002/ecs2.2997 (2020).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach 1st edn. (Springer, XXX, 1998).Book 

    Google Scholar 
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression 3rd edn. (Wiley, 2013).Book 

    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. G. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 31(29), 3821–3839. https://doi.org/10.1002/sim.5471 (2012).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, D., White, I. R. & Riley, R. D. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom. J. 55(2), 231–245. https://doi.org/10.1002/bimj.201200152 (2013).MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar  More

  • in

    Positive geographic correlation between soldiers’ weapon size and defensive prowess in a eusocial aphid, Ceratovacuna japonica

    Predator abundanceThe number of predators on the aphid colonies varied spatiotemporally (Fig. 2). In particular, the number of predators in population A was significantly larger than that in population B in August but not in September (August, t20 = 3.93, P  0.05). In population A, we found predators on the aphid colonies in August and September, but not in June and July. In August, the only predators found were A. ignipicta larvae (0.76 ± 0.19 individuals per aphid colony), whereas in September the predators comprised both A. ignipicta larvae (0.033 ± 0.033 individuals per aphid colony) and T. hamada larvae (0.033 ± 0.033 individuals per aphid colony). In population B, we found no predators in any of the months.Figure 2Temporal and between-population variation in the number of predators per aphid colony. The number of predators represents the sum of the numbers of A. ignipicta and T. hamada larvae. Error bars denote s.e. Asterisks indicate a significant difference between populations (***P  More

  • in

    In vitro larval rearing method of eusocial bumblebee Bombus terrestris for toxicity test

    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. P. R. Soc. B 274, 303–313 (2007).
    Google Scholar 
    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 

    Google Scholar 
    Gallai, N., Salles, J. M., Settele, J. & Vaissiere, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Google Scholar 
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kosior, A. et al. The decline of the bumble bees and cuckoo bees (Hymenoptera : Apidae : Bombini) of Western and Central Europe. Oryx 41, 79–88 (2007).
    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. U. S. A. 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cameron, S. A., Lim, H. C., Lozier, J. D., Duennes, M. A. & Thorp, R. Test of the invasive pathogen hypothesis of bumble bee decline in North America. Proc. Natl. Acad. Sci. U. S. A. 113, 4386–4391 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baron, G. L., Raine, N. E. & Brown, M. J. F. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. P. R. Soc. B 284, 20170123 (2017).
    Google Scholar 
    Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proc. Biol. Sci. 287, 20200935 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blacquière, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, L. L. et al. Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc. Biol. Sci. 282, 20142471 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    McAulay, M. K. & Forrest, J. R. K. How do sunflower pollen mixtures affect survival of queenless microcolonies of bumblebees (Bombus impatiens)?. Arthropod Plant Interact. 13, 517–529 (2019).
    Google Scholar 
    European Food Safety Authority. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2013).Besard, L. et al. Compatibility of traditional and novel acaricides with bumblebees (Bombus terrestris): a first laboratory assessment of toxicity and sublethal effects. Pest Manag. Sci. 66, 786–793 (2010).CAS 
    PubMed 

    Google Scholar 
    Elston, C., Thompson, H. M. & Walters, K. F. A. Sub-lethal effects of thiamethoxam, a neonicotinoid pesticide, and propiconazole, a DMI fungicide, on colony initiation in bumblebee (Bombus terrestris) micro-colonies. Apidologie 44, 563–574 (2013).CAS 

    Google Scholar 
    Barbosa, W. F., De Meyer, L., Guedes, R. N. C. & Smagghe, G. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae). Ecotoxicology 24, 130–142 (2015).CAS 
    PubMed 

    Google Scholar 
    Dance, C., Botías, C. & Goulson, D. The combined effects of a monotonous diet and exposure to thiamethoxam on the performance of bumblebee micro-colonies. Ecotoxicol. Environ. Saf. 139, 194–201 (2017).CAS 
    PubMed 

    Google Scholar 
    Schmehl, D. R., Tome, H. V. V., Mortensen, A. N., Martins, G. F. & Ellis, J. D. Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers. J. Apic. Res. 55, 113–129 (2016).Pereboom, J. J. M., Velthuis, H. H. W. & Duchateau, M. J. The organisation of larval feeding in bumblebees (Hymenoptera, Apidae) and its significance to caste differentiation. Insectes Soc. 50, 127–133 (2003).
    Google Scholar 
    Dorigo, A. S., Rosa-Fontana, A. D., Soares-Lima, H. M., Galaschi-Teixeira, J. S., Nocelli, R. C. F. & Malaspina, O. In Vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS One 14. https://doi.org/10.1371/journal.pone.0213109 (2019).Botina, L. L. et al. Toxicological assessments of agrochemical effects on stingless bees (Apidae, Meliponini). MethodsX 7, 100906 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Black, B. C., Hollingworth, R. M., Ahammadsahib, K. I., Kukel, C. D. & Donovan, S. Insecticidal Action and Mitochondrial Uncoupling Activity of AC-303,630 and Related Halogenated Pyrroles. Pestic. Biochem. Physiol. 50, 115–128 (1994).CAS 

    Google Scholar 
    Wakita, T. et al. The discovery of dinotefuran: a novel neonicotinoid. Pest Manag. Sci. 59, 1016–1022 (2003).CAS 
    PubMed 

    Google Scholar 
    Shafiei, M., Moczek, A. P. & Nijhout, H. F. Food availability controls the onset of metamorphosis in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). Physiol. Entomol. 26, 173–180 (2001).
    Google Scholar 
    Stieper, B. C., Kupershtok, M., Driscoll, M. V. & Shingleton, A. W. Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev. Biol. 321, 18–26 (2008).CAS 
    PubMed 

    Google Scholar 
    Nijhout, H. F. & Williams, C. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 61, 481–491 (1974).Cnaani, J., Robinson, G. E. & Hefetz, A. The critical period for caste determination in Bombus terrestris and its juvenile hormone correlates. J. Comp. Physiol. A 186, 1089–1094 (2000).CAS 
    PubMed 

    Google Scholar 
    Goulson, D. et al. Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency?. Anim. Behav. 64, 123–130 (2002).
    Google Scholar 
    Syromyatnikov, M., Nesterova, E., Smirnova, T. & Popov, V. Methylene blue can act as an antidote to pesticide poisoning of bumble bee mitochondria. Sci. Rep. 11, 14710 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raghavendra, K. et al. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malar. J. 10, 16 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Cao, Y. et al. HPLC/UV analysis of chlorfenapyr residues in cabbage and soil to study the dynamics of different formulations. Sci. Total Environ. 350, 38–46 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Costa, E. M. et al. Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie 45, 34–44 (2014).CAS 

    Google Scholar 
    Cresswell, J. E., Robert, F.-X.L., Florance, H. & Smirnoff, N. Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Pest Manag. Sci. 70, 332–337 (2014).CAS 
    PubMed 

    Google Scholar 
    Czerwinski, M. A. & Sadd, B. M. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. J Exp Zool A Ecol Integr Physiol 327, 273–283 (2017).CAS 
    PubMed 

    Google Scholar 
    Mobley, M. W. & Gegear, R. J. One size does not fit all: Caste and sex differences in the response of bumblebees (Bombus impatiens) to chronic oral neonicotinoid exposure. PLoS ONE 13, e0200041 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Simmons, W. R. & Angelini, D. R. Chronic exposure to a neonicotinoid increases expression of antimicrobial peptide genes in the bumblebee Bombus impatiens. Sci. Rep. 7, 44773 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. A. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983 (2015).CAS 
    PubMed 

    Google Scholar 
    Eiri, D. M., Suwannapong, G., Endler, M. & Nieh, J. C. Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLoS One 10, (2015).Dai, P., Jack, C. J., Mortensen, A. N. & Ellis, J. D. Acute toxicity of five pesticides to Apis mellifera larvae reared in vitro. Pest Manag. Sci. 73, 2282–2286 (2017).CAS 
    PubMed 

    Google Scholar 
    du Rand, E. E. et al. Proteomic and metabolomic analysis reveals rapid and extensive nicotine detoxification ability in honey bee larvae. Insect Biochem. Mol. Biol. 82, 41–51 (2017).PubMed 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021). R Core Team (2021). URL https://www.R-project.org/. More

  • in

    Stable ocean redox during the main phase of the Great Ordovician Biodiversification Event

    Stigall, A. L., Edwards, C. T., Freeman, R. L. & Rasmussen, C. M. Ø. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 249–270 (2019).
    Google Scholar 
    Alroy, J. Colloquium paper: dynamics of origination and extinction in the marine fossil record. Proc. Natl. Acad. Sci. USA 105, 11536–11542 (2008). Suppl 1.CAS 

    Google Scholar 
    Servais, T., Cascales-Miñana, B. & Harper, D. A. T. The Great Ordovician Biodiversification Event (GOBE) is not a single event. Paleontological Res. 25, 315–328 (2021).Miller, A. I. & Foote, M. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22, 304–309 (1996).CAS 

    Google Scholar 
    Sepkoski, J. J. A compendium of marine fossil genera. vol. 2002 (Paleontological Research Institution, 2002).Zhan, R. & Harper, D. A. T. Biotic diachroneity during the Ordovician Radiation: evidence from South China. Lethaia 39, 211–226 (2006).
    Google Scholar 
    Fan, J. et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272–277 (2020).CAS 

    Google Scholar 
    Deng, Y. et al. Timing and patterns of the Great Ordovician Biodiversification Event and Late Ordovician mass extinction: Perspectives from South China. Earth-Sci. Rev. 220, 103743 (2021).
    Google Scholar 
    Kröger, B., Franeck, F. & Rasmussen, C. M. Ø. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proc. R. Soc. B: Biol. Sci. 286, 3–8 (2019).
    Google Scholar 
    Rasmussen, C. M. Ø., Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl. Acad. Sci. USA 116, 7207–7213 (2019).CAS 

    Google Scholar 
    Sepkoski, J. J. A factor analytic description of the phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).
    Google Scholar 
    Sepkoski, J. J. & Sheehan, P. M. Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations. in Biotic interactions in recent and fossil benthic communities (eds. Tevesz, M. J. S. & McCall, P. L.) 673–717 (Plenum Press, 1983).Harper, D. A. T. The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 148–166 (2006).
    Google Scholar 
    Stigall, A. L., Bauer, J. E., Lam, A. R. & Wright, D. F. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Global Planet. Change 148, 242–257 (2017).
    Google Scholar 
    Copper, P. Coral Reefs Reports Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3–11 (1994).
    Google Scholar 
    Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science 321, 550–554 (2008).CAS 

    Google Scholar 
    Lindström, M. The Ordovician climate based on the study of carbonate rocks. in Aspects of the Ordovician System, Paleontological Contribution of the University of Oslo (ed. Bruton, D. L.) vol. 295 81–88 (Universitetsforlaget, 1984).Rasmussen, C. M. Ø., Nielsen, A. T. & Harper, D. A. T. Ecostratigraphical interpretation of lower Middle Ordovician East Baltic sections based on brachiopods. Geological Mag. 146, 717–731 (2009).
    Google Scholar 
    Dabard, M. P. et al. Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): Icehouse third-order glacio-eustatic cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 436, 96–111 (2015).
    Google Scholar 
    Rasmussen, C. M. Ø. et al. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).CAS 

    Google Scholar 
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
    Google Scholar 
    Saltzman, M. R., Edwards, C. T., Adrain, J. M. & Westrop, S. R. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43, 807–811 (2015).CAS 

    Google Scholar 
    Edwards, C. T., Saltzman, M. R., Royer, D. L. & Fike, D. A. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience 10, 925–929 (2017).CAS 

    Google Scholar 
    Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of earth’s second oxygen revolution. Ann. Rev. Ecol. Evolut. Syst. 46, 215–235 (2015).
    Google Scholar 
    Dahl, T. W. et al. Reorganisation of Earth’s biogeochemical cycles briefly oxygenated the oceans 520 Myr ago. Geochem. Perspect. Lett. 210–220 (2017).Dahl, T. W. et al. Atmosphere-ocean oxygen and productivity dynamics during early animal radiations. Proc. Natl. Acad. Sci. 116, 19352–19361 (2019).CAS 

    Google Scholar 
    Nursall, J. R. Oxygen as a prerequisite to the origin of the metazoa. Nature 183, 1170–1172 (1959).Knoll, A. H. Biological and Biogeochemical Preludes to the Ediacaran Radiation. In Origin and Early Evolution of the Metazoa (eds. Lipps, J. H. & Signor, P. W.) 53–84 (Springer US, 1992).Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl. Acad. Sci. 108, 17631–17634 (2011).CAS 

    Google Scholar 
    Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl. Acad. Sci. USA 113, 2360–2365 (2016).CAS 

    Google Scholar 
    Zhang, F. et al. Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: Confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).CAS 

    Google Scholar 
    Andersen, M. B., Stirling, C. H. & Weyer, S. Uranium isotope fractionation. Rev. Mineral. Geochem. 82, 799–850 (2017).CAS 

    Google Scholar 
    Chen, X. et al. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochimica et Cosmochimica Acta 237, 294–311 (2018).CAS 

    Google Scholar 
    Zhang, F. et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: A critical review. Geochimica et Cosmochimica Acta 287, 27–49 (2020).CAS 

    Google Scholar 
    Stylo, M. et al. Uranium isotopes fingerprint biotic reduction. Proc. Natl. Acad. Sci. 112, 5619–5624 (2015).CAS 

    Google Scholar 
    Basu, A. et al. Microbial U isotope fractionation depends on the U(VI) reduction rate. Environ. Sci. Technol. 54, 2295–2303 (2020).CAS 

    Google Scholar 
    Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).CAS 

    Google Scholar 
    Dahl, T. W. et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet. Sci. Lett. 401, 313–326 (2014).CAS 

    Google Scholar 
    Tissot, F. L. H. & Dauphas, N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochimica et Cosmochimica Acta 167, 113–143 (2015).CAS 

    Google Scholar 
    Romaniello, S. J., Herrmann, A. D. & Anbar, A. D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy. Chem. Geology 362, 305–316 (2013).CAS 

    Google Scholar 
    Chen, X., Romaniello, S. J., Herrmann, A. D., Samankassou, E. & Anbar, A. D. Biological effects on uranium isotope fractionation (238U/235U) in primary biogenic carbonates. Geochimica et Cosmochimica Acta 240, 1–10 (2018).CAS 

    Google Scholar 
    Tissot, F. L. H. et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. Geochimica et Cosmochimica Acta 242, 233–265 (2018).CAS 

    Google Scholar 
    Lindskog, A. & Eriksson, M. E. Megascopic processes reflected in the microscopic realm: sedimentary and biotic dynamics of the Middle Ordovician “orthoceratite limestone” at Kinnekulle, Sweden. Gff 139, 163–183 (2017).
    Google Scholar 
    Jaanusson, V. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6, 11–34 (1973).
    Google Scholar 
    Bergström, S. M., Chen, X., Gutiérrez-marco, J. C. & Dronov, A. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42, 97–107 (2008).
    Google Scholar 
    Lindskog, A., Lindskog, A. M., Johansson, J. V., Ahlberg, P. & Eriksson, M. E. The Cambrian–Ordovician succession at Lanna, Sweden: stratigraphy and depositional environments. Estonian J. Earth Sci 67, 133 (2018).
    Google Scholar 
    Bábek, O. et al. Redox geochemistry of the red ‘orthoceratite limestone’ of Baltoscandia: Possible linkage to mid-Ordovician palaeoceanographic changes. Sedimentary Geology 420, 105934 (2021).
    Google Scholar 
    Azmy, K. et al. Carbon-isotope stratigraphy of the Lower Ordovician succession in Northeast Greenland: Implications for correlations with St. George Group in western Newfoundland (Canada) and beyond. Sedimentary Geology 225, 67–81 (2010).CAS 

    Google Scholar 
    Bartlett, R. et al. Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proc Natl Acad Sci USA 115, 5896–5901 (2018).CAS 

    Google Scholar 
    Dahl, T. W., Hammarlund, E. U., Rasmussen, C. M. Ø., Bond, D. P. G. & Canfield, D. E. Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions – insights from molybdenum and uranium isotopic global redox proxies. Earth-Sci. Rev. 220, 103748 (2021).CAS 

    Google Scholar 
    Del Rey, Á., Havsteen, J., Bizzarro, M., Connelly, J. & Dahl, T. W. Untangling the diagenetic history of Uranium isotopes in marine carbonates: a case study tracing d238U of late Silurian oceans using calcitic brachiopod shells. Geochimica et Cosmochimica Acta 2020, 93–110.Rasmussen, J. A., Thibault, N. & Mac Ørum Rasmussen, C. Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations.Nat Commun12, 6430 (2021).CAS 

    Google Scholar 
    Ainsaar, L. et al. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 189–201 (2010).
    Google Scholar 
    Wu, R., Calner, M. & Lehnert, O. Integrated conodont biostratigraphy and carbon isotope chemostratigraphy in the Lower-Middle Ordovician of southern Sweden reveals a complete record of the MDICE. Geological Mag. 154, 334–353 (2017).CAS 

    Google Scholar 
    Lindskog, A., Eriksson, M. E., Bergström, S. M. & Young, S. A. Lower–Middle Ordovician carbon and oxygen isotope chemostratigraphy at Hällekis, Sweden: implications for regional to global correlation and palaeoenvironmental development. Lethaia 52, 204–219 (2019).
    Google Scholar 
    Rasmussen, C. M. Ø., Hansen, J. & Harper, D. A. T. Baltica: A mid Ordovivian diversity hotspot. Historical Biology 19, 255–261 (2007).
    Google Scholar 
    Zhang, J. Lithofacies and stratigraphy of the Ordovician Guniutan Formation in its type area, China. Geol. J. 31, 201–215 (1996).
    Google Scholar 
    Eriksson, M. E. et al. Biotic dynamics and carbonate microfacies of the conspicuous Darriwilian (Middle Ordovician) ‘Täljsten’ interval, south-central Sweden. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367–368, 89–103 (2012).
    Google Scholar 
    Lindström, M., Jun-Yuan, C. & Jun-Ming, Z. Section at Daping reveals Sino-Baltoscandian parallelism of facies in the Ordovician. Geologiska Föreningen i Stockholm Förhandlingar 113, 189–205 (1991).
    Google Scholar 
    Edward, O. et al. A Baltic perspective on the early to early late ordovician δ13 C and δ18 O Records and its paleoenvironmental significance. Paleoceanog and Paleoclimatol 37, e2021PA004309 (2022).Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    Google Scholar 
    Gueguen, B. et al. The chromium isotope composition of reducing and oxic marine sediments. Geochimica et Cosmochimica Acta 184, 1–19 (2016).CAS 

    Google Scholar 
    Weyer, S. et al. Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta 72, 345–359 (2008).CAS 

    Google Scholar 
    Condon, D. J., McLean, N., Noble, S. R. & Bowring, S. A. Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochimica et Cosmochimica Acta 74, 7127–7143 (2010).CAS 

    Google Scholar 
    Wang, X., Planavsky, N. J., Reinhard, C. T., Hein, J. R. & Johnson, T. M. A cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts. Am. J. Sci. 315, 64–83 (2016).
    Google Scholar 
    Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).
    Google Scholar 
    Scotese, C. R. Atlas of Silurian and Middle-Late Ordovician Paleogeographic Maps (Mollweide Projection), Maps 73-80, Volumes 5, The Early Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL. (2014). More