More stories

  • in

    Bryozoan–cnidarian mutualism triggered a new strategy for greater resource exploitation as early as the Late Silurian

    Pushkin, V. I., Nehkorosheva, L. V., Kopaevich, G. V. & Yaroshinskaya, A. M. Přídolian Bryozoa of the USSR 1–125 (Nauka, 1990) (in Russian).
    Google Scholar 
    Kopaevich, G. V. Silurian Bryozoa of Estonia and Podolia (Cryptostomata and Rhabdomesonata). Trudy Paleontol. Inst Akad. Nauk SSSR 151, 5–153 (1975) (in Russian).
    Google Scholar 
    Tuckey, M. E. Biogeography of Ordovician bryozoans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 91–126 (1990).Article 

    Google Scholar 
    McCoy, V. E. & Anstey, R. L. Biogeographic associations of Silurian bryozoan genera in North America, Baltica and Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 420–427 (2010).Article 

    Google Scholar 
    Bassler, R. S. The early Paleozoic Bryozoa of the Baltic provinces. Bull. U. S. Natl. Museum 77, 1–382 (1911).
    Google Scholar 
    Vinn, O. & Wilson, M. A. Symbiotic interactions in the Silurian of Baltica. Lethaia 49, 413–420 (2016).Article 

    Google Scholar 
    Vinn, O. Symbiotic interactions in the Silurian of North America. Hist. Biol. 29, 341–347 (2017).Article 

    Google Scholar 
    Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Symbiosis of cornulitids with the cystoporate bryozoan Fistulipora in the Přídolí of Saaremaa, Estonia. Lethaia 54, 90–95 (2021).Article 

    Google Scholar 
    Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Intergrowth of bryozoans with other invertebrates in the late Přídolí of Saaremaa, Estonia. Ann. Soc. Geol. Poloniae 91, 101–111 (2021).
    Google Scholar 
    Jackson, J. B. C. & Buss, L. Allelopathy and spatial competition among coral reef invertebrates. Proc. Natl. Acad. Sci. USA 72, 5160–5163 (1975).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Osman, R. W. & Haugsness, J. A. Mutualism among sessile invertebrates: A mediator of competition and predation. Science 211(4484), 846–848 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pawlik, J. R. Marine invertebrate chemical defenses. Chem. Rev. 93, 1911–1922 (1993).CAS 
    Article 

    Google Scholar 
    Figuerola, B., Núñez-Pons, L., Moles, J. & Avila, C. Feeding repellence in Antarctic bryozoans. Naturwissenschaften 100, 1069–1081 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Puce, S., Bavestrello, G., Di Camillo, C. G. & Boero, F. Symbiotic relationships between hydroids and bryozoans. Symbiosis 44, 137–143 (2007).
    Google Scholar 
    López-Gappa, J. & Liuzzi, M. G. An unusual symbiotic relationship between a cyclostome bryozoan and a thecate hydroid. Symbiosis 85, 217–223 (2021).Article 
    CAS 

    Google Scholar 
    McKinney, F. K., Broadhead, T. W. & Gibson, M. A. Coral-bryozoan mutualism: Structural innovation and greater resource exploitation. Science 248(4954), 466–468 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    McKinney, F. K. Bryozoan-hydroid symbiosis and a new ichnogenus, Caupokeras. Ichnos 16, 193–201 (2009).Article 

    Google Scholar 
    Suárez-Andrés, J. L., Sendino, C. & Wilson, M. A. Life in a living substrate: Modular endosymbionts of bryozoan hosts from the Devonian of Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109897 (2020).Article 

    Google Scholar 
    Okamura, B. The influence of neighbors on the feeding of an epifaunal bryozoan. J. Exp. Mar. Biol. Ecol. 120, 105–123 (1988).Article 

    Google Scholar 
    Sendino, C., Suárez-Andrés, J. L. S. & Wilson, M. A. A rugose coral–bryozoan association from the Lower Devonian of NW Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 271–280 (2019).Article 

    Google Scholar 
    Suárez-Andrés, J., Sendino, C. & Wilson, M. A. Caupokeras badalloi, a new ichnospecies of impedichnia from the Lower Devonian of Spain. Palaeoecological significance. Hist. Biol. 34, 62–66 (2021).Article 

    Google Scholar 
    Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Symbiosis of conulariids with trepostome bryozoans in the Upper Ordovician of Estonia (Baltica). Palaeogeogr. Palaeoclimatol. Palaeoecol. 518, 89–96 (2019).Article 

    Google Scholar 
    Melchin, M. J., Cooper, R. A. & Sadler, P. M. The Silurian period. In A Geologic Time Scale 2004 (eds Gradstein, F. M. et al.) 188–201 (Cambridge University Press, 2004).
    Google Scholar 
    Torsvik, T. H. & Cocks, L. R. M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geol. Soc. Lond. Memoirs 38, 5–24 (2013).Article 

    Google Scholar 
    Hints, O. The Silurian system in Estonia. in The Seventh Baltic Stratigraphical Conference. Abstracts and Field Guide (Hints, O. Ainsaar, L. Männik, P. & Meidla, T. eds.). 1–46. (Geological Society of Estonia, 2008).Nestor, H. & Einasto, R. Facies-sedimentary model of the Silurian Paleobaltic pericontinental basin. in (Kaljo, D. ed.) Facies and Fauna of the Baltic Silurian. 89–121 (Academy of Sciences of the Estonian S. S. R. Institute of Geology, 1977) (in Russian, English summary).Nestor, H. & Einasto, R. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (eds Raukas, A. & Teedumäe, A.) 192–205 (Estonian Academy Publishers, 1997).
    Google Scholar 
    Nestor, H. Locality 7: 4 Ohesaare cliff. in Field Meeting, Estonia 1990. An Excursion Guidebook (Kaljo, D. & Nestor, H. eds.). 175–178. (Institute of Geology, Estonian Academy of Sciences, 1990).Klaamann, E. R. Tabulate corals of the Upper Silurian of Estonia. Trudy Inst. Gieol. AN Estonskoi SSR 9, 25–74 (1962) (in Russian).
    Google Scholar 
    Hill, D. Tabulata. in Treatise on Invertebrate Paleontology, Part F, Coelenterate, Supplement 1, Rugosa and Tabulata (Teichert, C. ed.). F430–F762 (The Geological Society of America, Inc./The University of Kansas, 1981).Zapalski, M. K. Tabulate corals from the Givetian and Frasnian of the southern region of the Holy Cross Mountains (Poland). Spec. Pap. Palaeontol. 87, 1–100 (2012).
    Google Scholar 
    Stasińska, A. Colony structure and systematic assignment of Cladochonus tenuicollis McCoy, 1847 (Hydroidea). Acta Palaeontol. Pol. 27, 59–64 (1982).
    Google Scholar 
    Król, J., Zapalski, M. K. & Berkowski, B. Emsian tabulate corals of Hamar Laghdad (Morocco): Taxonomy and ecological interpretation. Neues Jahrbuch Geol. Palaontol.-Abhandlungen 290, 75–102 (2018).Article 

    Google Scholar 
    Coronado, I. Biomineral analysis of the enigmatic fossil Cladochonus Mccoy, 1847: A representative of calcifiying hydrozoa? In New Perspectives on the Evolution of Phanerozoic Biotas and Ecosystems (Manzanares, E. et al. eds.). Vol. 24.Bouillon, J., Gravili, C., Gili, J. M. & Boero, F. An Introduction to Hydrozoa (ResearchGate, 2006).
    Google Scholar 
    Tassia, M. G. et al. The global diversity of Hemichordata. PLoS ONE 11(10), e0162564 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zapalski, M. K. & Clarkson, E. N. Enigmatic fossils from the Lower Carboniferous shrimp bed, Granton, Scotland. PLoS ONE 10(12), e0144220 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sato, A. Seasonal reproductive activity in the pterobranch hemichordate Rhabdopleura compacta. J. Mar. Biol. Assoc. UK 88, 1033–1041 (2008).Article 

    Google Scholar 
    Underwood, C. J. Graptolite preservation and deformation. Palaios 7, 178–186 (1992).ADS 
    Article 

    Google Scholar 
    Maletz, J. Hemichordata (Enteropneusta & Pterobranchia, incl. Graptolithina): A review of their fossil preservation as organic material. Bull. Geosci. 95(1), 41–80 (2020).Article 

    Google Scholar 
    Tapanila, L. Direct evidence of ancient symbiosis using trace fossils. Paleontol. Soc. Pap. 14, 271–287 (2008).Article 

    Google Scholar 
    Zapalski, M. K. Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 484–488 (2011).Article 

    Google Scholar 
    Mathis, K. A. & Bronstein, J. L. Our current understanding of commensalism. Annu. Rev. Ecol. Evol. Syst. 51, 167–189 (2020).Article 

    Google Scholar 
    Zapalski, M. K., Berkowski, B. & Klug, C. Subepidermal Emsian” auloporids” on crinoids from Hamar Laghdad (Anti-Atlas, Morocco). N. Jb. Geol. Paläont. 290, 103–110 (2018).Article 

    Google Scholar 
    Winston, J. E. Feeding in marine bryozoans. In Biology of Bryozoans (eds Wollacott, W. S. & Zimmer, R. L.) 233–271 (Academic Press, 1977).Chapter 

    Google Scholar 
    Okamura, B. & Partridge, J. C. Suspension feeding adaptations to extreme flow environments in a marine bryozoan. Biol. Bull. 196, 205–215 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ernst, A. Fossil Record and Evolution of Bryozoa. Handbook of Zoology. Bryozoa 11–55 (De Gruyter, 2020).
    Google Scholar 
    Riisgård, H. U. & Manríquez, P. Filter-feeding in fifteen marine ectoprocts (Bryozoa): Particle capture and water pumping. Mar. Ecol. Prog. Ser. 154, 223–239 (1997).ADS 
    Article 

    Google Scholar 
    Boero, F. & Hewitt, C. L. A hydrozoan, Zanclella bryozoophila n. gen, n.sp. (Zancleidae) symbiotic with a bryozoan, and a discussion of the Zancleidae. Can. J. Zool. 70, 1645–1651 (1992).Article 

    Google Scholar 
    Piraino, S., Bouillon, J. & Boero, F. Halocoryne epizoica (Cnidaria, Hydrozoa), a hydroid that “bites”. Sci. Mar. 56(2), 141–147 (1992).
    Google Scholar 
    Maggioni, D. et al. Evolution and biogeography of the Zanclea-Scleractinia symbiosis. Coral Reefs 12, 1–17 (2020).
    Google Scholar 
    Taylor, P. D. Competition between encrusters on marine hard substrates and its fossil record. Palaeontology 59, 481–497 (2016).Article 

    Google Scholar 
    Taylor, P. D. & Wilson, M. A. Palaeoecology and evolution of marine hard substrate communities. Earth Sci. Rev. 62, 1–103 (2003).ADS 
    Article 

    Google Scholar 
    Gordon, D. P. Biological relationships of an intertidal bryozoan population. J. Nat. Hist. 6, 503–514 (1972).Article 

    Google Scholar 
    Jackson, J. B. C. & Winston, J. E. Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J. Exp. Mar. Biol. Ecol. 57, 135–147 (1982).Article 

    Google Scholar 
    McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution 238 (Unwin Hyman, 1989).
    Google Scholar 
    Wicander, R. & Playford, G. Acritarchs and prasinophytes from the Lower Devonian (Lochkovian) Ross Formation, Tennessee, USA: Stratigraphic and paleogeographic distribution. Palynology 46(2), 1–50 (2022).Article 

    Google Scholar 
    Ristedt, H. & Schuhmacher, H. The bryozoan Rhynchozoon larreyi (Audouin, 1826)—A successful competitor in coral reef communities of the Red Sea. Mar. Ecol. 6, 167–179 (1985).ADS 
    Article 

    Google Scholar 
    Puce, S., Cerrano, C., Di Camillo, C. & Bavestrello, G. Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J. Mar. Biol. Assoc. U.K. 88(8), 1715–1721 (2008).Article 

    Google Scholar 
    Winston, J. E. & Migotto, A. E. Behavior. In Phylum Bryozoa (ed. Schwaha, T.) 143–187 (De Gruyter, 2020).Chapter 

    Google Scholar 
    Cadée, G. C. & McKinney, F. K. A coral-bryozoan association from the Neogene of northwestern Europe. Lethaia 27, 59–66 (1994).Article 

    Google Scholar 
    Jackson, P. N. W. & Key, M. M. Jr. Borings in trepostome bryozoans from the Ordovician of Estonia: Two ichnogenera produced by a single maker, a case of host morphology control. Lethaia 40, 237–252 (2007).Article 

    Google Scholar 
    Jackson, P. N. W. & Key, M. M. Epizoan and endoskeletozoan distribution across reassembled ramose stenolaemate bryozoan zoaria from the Upper Ordovician (Katian) of the Cincinnati Arch region, USA. Aust. Palaeontol. Memoirs 52, 169–178 (2019).
    Google Scholar 
    Ma, J., Taylor, P. D. & Buttler, C. J. Sclerobionts associated with Orbiramus from the Early Ordovician of Hubei, China, the oldest known trepostome bryozoan. Lethaia 54, 443–456 (2020).
    Google Scholar 
    Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology 50, 1–22 (2007).Article 

    Google Scholar 
    Vinn, O., Ernst, A. & Toom, U. Symbiosis of cornulitids and bryozoans in the Late Ordovician of Estonia (Baltica). Palaios 33, 290–295 (2018).ADS 
    Article 

    Google Scholar 
    Palmer, T. J. & Wilson, M. A. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31, 939–949 (1988).
    Google Scholar 
    Ernst, A. Trepostome and cryptostome bryozoans from the Koněprusy Limestone (Lower Devonia, Pragian) of Zlatý Kůň (Czech republic). Riv. Ital. Paleontol. Stratigr. 114(3), 329–348 (2008).
    Google Scholar 
    Morozova, I. P. Devonskie mshanki Minusinskikh i Kuznetskoy kotlovin. Trudy Paleontol. Inst. Akad. Nauk SSSR 86, 1–207 (1961) (in Russian).
    Google Scholar  More

  • in

    Putting pesticides on the map for pollinator research and conservation

    Overall strategyThe aim of this project was to synthesize publicly available data on land use, pesticide use, and toxicity to generate a ‘toolkit’ of data resources enabling improved landscape-scale research on pesticide-pollinator interactions. The main outcomes are several novel datasets covering ten major crops or crop groups in each of the 48 contiguous U.S. states:

    I)

    Average application rate (kg/ha/yr) of >500 common pesticide active ingredients (1997–2017),

    II)

    Aggregate bee toxic load (honey bee lethal doses/ha/yr) of all insecticides combined (1997–2014), (Note that this dataset ends in 2014 because after that year, data on seed-applied pesticides were excluded29, and these contribute significantly to bee toxic load21)

    III)

    Reclass tables relating these pesticide-use indicators to land use/land cover classes to enable the creation of maps predicting annual pesticide loading at 30–56 m resolution.

    An overview of the steps, inputs, and outcomes are provided in Fig. 1.Fig. 1Overview of the data synthesis workflow described in this paper.Full size imageData inputsA summary of input datasets is provided in Table 1.Table 1 Data inputs used in this study.Full size tablePesticide dataPesticide use data were last downloaded from the USGS National Pesticide Synthesis Project30,31 in June 2020. This dataset reports total kg applied of 508 common pesticide active ingredients by combinations of state, crop group, and year for the contiguous U.S. from 1992–2017 (crop groups explained in Table 2). The data are derived primarily from farmer surveys conducted by a private firm (Kynetec). For California, USGS obtains data from the state’s pesticide use reporting program32. USGS then aggregates and standardizes both data sources into a common national dataset that is released to the public and was used in this effort. The USGS dataset includes both a ‘high’ and a ‘low’ estimate of pesticide use, varying based on the treatment of missing values in the source data31. Because previous work on this dataset suggested that the ‘low’ estimate more closely matches independent pesticide estimates33, we used the ‘low’ estimate throughout, but assess the influence of this choice on the resulting estimates (see Technical Validation). While we focus on the ‘low’ estimate for the data and outputs presented in this manuscript, the workflow we developed can accommodate both the low and high estimates.Table 2 USGS crop categories in pesticide source data, based on metadata from USGS30,31 and personal communication with USGS staff scientists.Full size tableCrop area dataTo translate pesticide use estimates into average application rates, it was necessary to divide total kg of pesticide applied by the land area to which it was potentially applied. Crop area data were last downloaded from the Quick Stats Database of the USDA34 in May 2020, using data files downloaded from the ‘developer’ page. This USDA dataset contains crop acreage estimates generated from two sources: the Census of Agriculture (Census), which is comprehensive but conducted only once every five years35 and the crop survey conducted by the National Agricultural Statistics Service (NASS), which is an annual survey based on a representative sample of farmers in major production regions for a more limited subset of crops36.Honey bee toxicity dataTranslating insecticide application rates into estimates of bee toxic load (honey bee lethal doses/ha/yr) required toxicity values for each insecticide active ingredient in the USGS dataset. We used LD50 values for the honey bee (Apis mellifera) because this is the standard terrestrial insect species used in regulatory procedures, and so has the most comprehensive data available. This species is also of particular concern as an important provider of pollination services to agriculture. As previously reported21, the LD50 values were derived from two sources, the ECOTOX database37 of the U.S. Environmental Protection Agency (US-EPA), and the Pesticide Properties Database (PPDB)038. ECOTOX was queried in July 2017, by searching for all LD50 values for the honey bee (Apis mellifera) that were generated under laboratory conditions. Acute contact and oral LD50 values for the honey bee were recorded manually from the PPDB in June 2018.Land cover dataMapping pesticides to the landscape requires land use/land cover data indicating where crops are grown. We used the USDA Cropland Data Layer (CDL)39, a land cover dataset at 30–56 m resolution produced through remote sensing. This dataset is available starting in 2008 for states in the contiguous U.S., with some states (primarily in the Midwest and Mid-South) available back to the early 2000s.Data preparationRelating datasetsA major challenge in this data synthesis effort was relating the various data sources to each other, given that each dataset has unique nomenclature and organization. We created the following keys (summarized in Table 3) to facilitate joining datasets:

    I)

    USGS-USDA crop keys – Using documentation and metadata associated with the USGS pesticide dataset31,33,40, we created keys relating the USGS surveyed crop names (‘ePest’ crops) and the ten USGS crop categories to the large number of corresponding crop acreage data items in the Census and NASS datasets. For annual crops and hay crops we used ‘harvested acres,’ and for tree crops we used ‘acres bearing & non-bearing.’ These choices were made to maximize data availability and to correspond as closely as possible to the crop acreage from which the pesticide data were derived31. A separate key was developed for California because California pesticide data derives from different source data and covers a larger range of crops.

    II)

    USGS-CASRN compound key – Using USGS documentation as well as background information on pesticide active ingredients38,41, we generated keys relating USGS active ingredient names to chemical abstracts service (CAS) registry numbers to facilitate matching compounds to the ECOTOX and PPDB databases.

    III)

    USGS compound-category key – In this key we classified active ingredients into major groups (insecticides, fungicides, nematicides, etc.) and into mode-of-action classes on the basis of information from pesticide databases and resistance action committees38,41,42,43,44.

    IV)

    USGS-USDA compound key – To facilitate our data validation effort, we generated a key relating USGS compound names to USDA compound names, on the basis of information from several pesticide databases38,41.

    V)

    USGS-CDL land use-land cover keys – Using documentation from the USGS pesticide dataset describing the crop composition of each of the ten crop categories31, we created a key that matches these categories to land cover classes in the CDL. A separate key was developed for California given the differences in surveyed crops in this state, noted above.

    Table 3 Keys generated to relate datasets.Full size tableProcessing crop area dataBecause of differences in the crops included in pesticide use estimates, crop acreage data were processed separately for California and for all other states, and then re-joined, as follows: Acreage data were first filtered to include only data at the state level, reporting total annual acreage for states in the contiguous U.S. after 1996. Acreage data were joined to the appropriate USGS-USDA crop key and only those crops represented in the pesticide dataset were retained. We then generated an acreage dataset with single rows for each combination of crop, state, and year using data from the Census when available (1997, 2002, 2007, 2012, 2017), data from NASS in non-Census years, and temporal interpolation to fill in remaining missing values (i.e. linear interpolation between values in the same state and crop in the nearest surrounding years). This process was repeated for California, using acreage data for only that state in combination with the CA crop key. Finally, acreage data in the two datasets were recombined, converted to hectares, and summed by USGS crop group.Processing honey bee toxicity dataProcessing for the honey bee toxicity data has been described in detail elsewhere21. Briefly, toxicity values were categorized as contact, oral, or other and standardized where possible into µg/bee. Records were retained if they represented acute exposure (4 days or less) for adult bees representing contact or oral LD50 values in µg/bee. To generate a consensus list of contact and oral LD50 values for all insecticides reported in the USGS dataset, we gave preference to point estimates and estimates generated through U.S. or E.U. regulatory procedures, taking a geometric mean if multiple such estimates were available. Unbounded estimates (“greater than” or “less than” some value) were only used when point estimates were unavailable, using the minimum (for “less than”) or the maximum (for “greater than”). If values for a compound were unavailable in both datasets, we used the median toxicity value for the insecticide mode-of-action group. And finally, in rare cases (n = 1/148 compounds for contact toxicity and 8/148 compounds for oral toxicity) we were still left without a toxicity estimate for a particular insecticide. In those cases, we used the median value for all insecticides.Data synthesisCompound-specific application rates for state-crop-year combinationsUSGS data on pesticide application were joined to data on crop area. Average pesticide application rates were calculated by dividing kg applied by crop area (ha) for each combination of compound, crop group, state, and year.Aggregate insecticide application rates for state-crop-year combinationsThe dataset from the previous step was filtered to include only insecticides, and then joined to LD50 data by compound name. Bee toxic load associated with each insecticide active ingredient was calculated by dividing the application rate by the contact or oral LD50 value (µg/bee) to generate a number of lethal doses applied per unit area. These values were then summed across compounds to generate estimates of kg and bee toxic load per ha for combinations of crop group, state, and year.Missing values were estimated using temporal interpolation, where possible (i.e. linear interpolation between values in the same state and crop group in the nearest surrounding years). This dataset ends in 2014 because after that year seed-applied pesticides were excluded from the source data29, and they constitute a major contribution to bee toxic load21.We focused bee toxic load on insecticides for three reasons. First, quality of LD50 data is highest for insecticides and uneven for fungicides and herbicides. Point estimates make up the majority of LD50 values for insecticides, whereas  100 µg/bee”, increasing the uncertainty of downstream estimates). Second, insecticides tend to have greater acute toxicity toward insects than fungicides and herbicides (median [IQR] LD50 = 100 [44–129] µg/bee for fungicides, 100 [75–112] µg/bee for herbicides, and 1.36 [0.16–12] µg/bee for insecticides). As a result, insecticides account for > 95% of bee toxic load nationally, even when herbicides and fungicides are included (and even though insecticides make up only 6.5% of pesticides applied on a weight basis). Third, focusing these values on insecticides increases their interpretability, reflecting efforts directed toward insect pest management, rather than a mix of insect, weed, and fungal pest management (which often have distinct dynamics and constraints for farmers).While we chose to include only insecticides in this aggregate value, users are welcome to adjust the workflow to include fungicides and herbicides if desired. To this end, we provide our best estimates for LD50 values for fungicides and herbicides in the USGS dataset (Table 4).Table 4 Data outputs generated by this study.Full size tableReclassification tablesTo generate reclassification tables for the CDL, the pesticide datasets described above were joined by crop group to CDL land use categories. The output of these processes was a set of reclassification tables for combinations of compound, state, and year. Also generated was a set of reclassification tables for aggregate insecticide use for combinations of state and year.Of the 131 land use categories in the CDL, 16 represent two crops grown sequentially in the same year (double crops, found on ~2% of U.S. cropland in 201245), which required a modified accounting in our workflow. Pesticide use practices on double crops are not well described, but one study suggested that pesticide expenditures on soybean grown after wheat were similar to pesticide expenditures in soybean grown alone46. Therefore, we assumed that pesticide use on double crops would be additive (e.g. for a wheat-soybean double crop, the annual pesticide use estimate was generated by summing pesticide use associated with wheat and soybean).Missing values in the reclassification tables resulted from several distinct issues. Some values were missing because a particular crop was not included in the underlying pesticide use survey (e.g. oats was not included in the Kynetec survey), or because the land use category was not a crop at all (e.g. deciduous forest). These two issues were indicated with values of ‘1’ in columns called ‘unsurveyed’ and ‘noncrop,’ respectively. For double crops, a value of 0.5 in the ‘unsurveyed’ column indicates that one of the crops was surveyed and the other was not. For compound-specific datasets, missing values may reflect that a given compound was not used in a state-crop group-year combination. For the aggregate insecticide dataset, even after interpolation there were some missing values, usually when a state had very little area of a particular crop or crop group.Finally, missing data for double crops were treated slightly differently in the aggregate vs. compound-specific reclassification tables. For the aggregate insecticide dataset, estimates for double crops were only included if estimates were available for both crops; otherwise the value was reported as missing. For the compound-specific datasets, estimates for double crops were included if there was an estimate for at least one of the crops, since specific compounds may be used in one crop but not another. More

  • in

    Genic distribution modelling predicts adaptation of the bank vole to climate change

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).Article 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189 (2018).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).Article 

    Google Scholar 
    Bradshaw, A. D. & McNeilly, T. Evolutionary response to global climatic change. Ann. Bot. 67, 5–14 (1991).Article 

    Google Scholar 
    Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).Article 

    Google Scholar 
    Veron, S., Haevermans, T., Govaerts, R., Mouchet, M. & Pellens, R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 9, 1–12 (2019).Article 
    CAS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).PubMed 
    Article 

    Google Scholar 
    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, K. J. & Whitlock, M. C. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30, 591–602 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2015).Article 
    CAS 

    Google Scholar 
    Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 

    Google Scholar 
    Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).Article 

    Google Scholar 
    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).PubMed 
    Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 18, 18–31 (2018).PubMed 
    Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Proc. R. Soc. B 286, 20190486 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, S. J. G. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160 (1979).Article 

    Google Scholar 
    Kotlík, P. et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B 281, 20140021 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Searle, J. B. et al. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Escalante, M. A., Horníková, M., Marková, S. & Kotlík, P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 11, 8054–8070 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reischl, E., Dafre, A. L., Franco, J. L. & Wilhelm Filho, D. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 146, 22–53 (2007).Article 
    CAS 

    Google Scholar 
    Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, R. et al. Different metabolizing ability of thiol reactants in human and rat blood. Biochemical and pharmacological implications. J. Biol. Chem. 276, 7004–7010 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitturi, D. A. et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 55, 119–129 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petersen, A. G. et al. Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle Trachemys scripta: Implications for antioxidant defense and O2 transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R84–R93 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paital, B. et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 7, 110–127 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jacobs, P. J., Oosthuizen, M. K., Mitchell, C., Blount, J. D. & Bennett, N. C. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 15, e0242279 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kotlík, P., Marková, S., Horníková, M., Escalante, M. A. & Searle, J. B. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 10, 866605 (2022).Article 

    Google Scholar 
    Strážnická, M., Marková, S., Searle, J. B. & Kotlík, P. Playing hide-and-seek in beta-globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene guplicates. Genes 9, 492 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stocker, T. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).Article 

    Google Scholar 
    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213, 63–72 (2008).Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).Article 

    Google Scholar 
    Mayes, J. & Wheeler, D. Regional weather and climates of the British Isles—part 1: introduction. Weather 68, 3–8 (2013).Article 

    Google Scholar 
    Kotlík, P., Marková, S., Konczal, M., Babik, W. & Searle, J. B. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B 285, 20172624 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. N. Phytol. 222, 1757–1765 (2019).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Twenty-first International Conference on Machine Learning – ICML ’04 9, 83 (ACM Press, 2004).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Zeng, Y., Low, B. W. & Yeo, D. C. J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 341, 5–13 (2016).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).Article 

    Google Scholar 
    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).Article 

    Google Scholar 
    Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 

    Google Scholar 
    Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).Article 

    Google Scholar 
    Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).Article 

    Google Scholar  More

  • in

    Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China

    Galindo, I. & Alonso, C. African swine fever virus: A review. Viruses 9, 103 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blome, S., Franzke, K. & Beer, M. African swine fever: A review of current knowledge. Virus Res. 2020, 198099 (2020).Article 
    CAS 

    Google Scholar 
    Li, X. & Tian, K. African swine fever in China. Vet. Rec. 183, 300 (2018).PubMed 
    Article 

    Google Scholar 
    Wang, T., Sun, Y. & Qiu, H. J. African swine fever: An unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 66–70 (2018).Article 

    Google Scholar 
    Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D. & Richt, J. A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 7, 215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, S. et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 1, 221–228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woonwong, Y., Do, T. D. & Thanawongnuwech, R. The future of the pig industry after the introduction of African swine fever into Asia. Anim. Front. 10, 30–37 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mulieri, P. R. & Patitucci, L. D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 118, 1077–1086 (2019).PubMed 
    Article 

    Google Scholar 
    Escobar, L. E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Wen, X. et al. Prediction of the potential distribution pattern of the great gerbil (Rhombomys opimus) under climate change based on ensemble modelling. Pest Manag. Sci. 78, 3128–3134 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, Y. et al. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 17, 1–14 (2018).Article 

    Google Scholar 
    Naimi, B. & Araújo, M. B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    Georges, D. & Thuiller, W. An example of species distribution modeling with biomod2. https://r-forge.r-project.org/…/inst/doc/Simple_species_modelling.pdf?root=biomod (2013).Thuiller, W. BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Thuiller, W. Editorial commentary on “BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change”. Glob. Change Biol. 20, 3591–3592 (2014).ADS 
    Article 

    Google Scholar 
    Navarro-Cerrillo, R. M., Duque-Lazo, J., Manzanedo, R. D., Sánchez-Salguero, R. & Palacios-Rodriguez, G. Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: An ensemble niche-based approach. iForest Biogeosci. For. 11, 396–405 (2018).Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A., Dagnachew, A. & Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 12, 1748 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2020).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Xiao-Ge, X. et al. Introduction of BCC models and its participation in CMIP6. Clim. Change Res. 5, 533–539 (2019).
    Google Scholar 
    Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A. & Yimana, M. Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Transbound Emerg. Dis. 68, 3601–3610 (2021).PubMed 
    Article 

    Google Scholar 
    Jori, F. & Bastos, A. D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).PubMed 
    Article 

    Google Scholar 
    Teklue, T., Sun, Y., Abid, M., Luo, Y. & Qiu, H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg. Dis. 67, 529–542 (2020).PubMed 
    Article 

    Google Scholar 
    Arias, M. et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chenais, E. et al. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag. 5, 1–10 (2019).Article 

    Google Scholar 
    Quembo, C. J., Jori, F., Vosloo, W. & Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 65, 420–431 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. R. et al. Chikungunya fever: Atypical and lethal cases in the Western hemisphere: A Venezuelan experience. IDCases 2, 6–10 (2015).PubMed 
    Article 

    Google Scholar 
    Nuanualsuwan, S. et al. Persistence of African swine fever virus on porous and non-porous fomites at environmental temperatures. Porc. Health Manag. 8, 34 (2022).Article 

    Google Scholar 
    Davies, K. et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg. Dis. 64, 425–431 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Salari, L. S., Vatandoost, H., Telmadarraiy, Z., Entezar, M. R. & Kia, E. Seasonal activity of ticks and their importance in tick-borne infectious diseases in West Azerbaijan, Iran. J. Arthropod. Borne Dis. 2, 28–34 (2008).
    Google Scholar 
    Vial, L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jian, L. et al. WANG potential adaptability of soft tick vectors of African swine fever to China. Chin. J. Vect. Biol. Control 21, 317–320 (2010).
    Google Scholar 
    Cwynar, P., Stojkov, J. & Wlazlak, K. African swine fever status in Europe. Viruses 11, 310 (2019).PubMed Central 
    Article 

    Google Scholar 
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).Article 

    Google Scholar  More

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Recapping and mite removal behaviour in Cuba: home to the world’s largest population of Varroa-resistant European honeybees

    We confirm that Cuba is home to the world’s largest European honeybee population that has naturally become Varroa-resistant, with an estimated 220,000 colonies being maintained without any form of chemical treatment for over two decades19 although some drone-trapping occurred during the early years of the transition period This is despite the presence of the K-haplotype of the mite20 and the widespread occurrence of DWV19 throughout Cuba. Hence, the Cuban honeybee population is the first major case of Varroa-resistant European bees occupying an entire country of a large size (109,884 km2). In Europe the proportion of varroa-resistant honeybee populations in each country is highly variable21,22, but they still consist of small, isolated populations within any country. For example, the second largest known area of European Varroa-resistant honeybees is in North Wales, UK where 104 beekeepers have managed around 500 honey bee colonies over an area of 2500 km2 without treatment for over a decade23.It has long been established that sub-Sharan African and Africanised honeybees are Varroa-resistant and both populations cover much larger areas than Cuba, but these honeybee races are not capable of thriving in temperate regions or are rejected by beekeepers in Northern hemispheres. However, previous studies on African/Africanised and European honeybees4,5,6,9 all appear to have evolved with the same resistance mechanism7 and Cuban honeybees follow this pattern showing high recapping behaviour, high mite removal behaviour and low mite reproduction (Figs. 1, 4, Table 1).The strongest evidence that increased recapping behaviour is a direct response to the presence of Varroa, is the very low recapping rates in Varroa-naïve colonies. This is evidenced by the recapping baseline data that has now been collected from four different Varroa-naïve (Varroa free) honeybee populations (Australia, UK [two populations] and Hawaii [this study]) all producing similar results (Fig. 1). Across the four populations, a total of 9542 worker cells from 15 colonies have been studied with an average recapping rate of 2.0% (+ SD 3.2). Interestingly, only two of the colonies had atypical recapping rates of 8.5% and 10.7%, from Australia and Kauai respectively. This may suggest increased sensitivity in these colonies as no obvious causes e.g., wax moth or dead pupa, were detected in either colony. The data summary in Fig. 1 indicates that even in Varroa-treated populations the workers are still able to detect mite infested cells, but the average consistently falls significantly below that found in resistant populations. That is, in non-infested worker cells recapping rates are significantly higher in resistant populations in comparison to susceptible populations (Fig. 1) t4, 5 = − 4.185, p = 0.0023 as well as for infested cells t4, 5 = − 6.905, p = 0.00007.The ability of Cuban honeybees to detect infested cells causes not only high recapping levels but also high removal rates of artificially mite-infested cells. A mean removal rate of 81% is among one of the highest recorded in Apis mellifera7. The average control rate of 45% is driven by three colonies that all removed more than 75% of the controls, while the average of the remaining seven colonies was 28%. During the mite-removal studies in March 2022 natural Varroa infestation was 23%, whereas in December 2021 it was only 13%. This is due to decreasing worker brood rearing, caused by a shortage of nectar during the annual dry season. During this time there is an increase in hygienic behaviour in the colonies24, which could help explain the higher-than-expected removal of control cells.The reproductive ability of Varroa to produce viable i.e., mated, female offspring (r) in infested worker cells in resistant colonies in South Africa4 (r = 0.9), Brazil4 (r = 0.8), Mexico18 (r = 0.73), Europe3 (r = 0.84) is similar to the 0.87 found in Cuba (this study). In Cuba ‘r’ reduces to 0.77 when both single and multiple infested cells are considered. This reduction in mite reproduction, relative to susceptible colonies that have values of r greater than one, is directly linked to the increased ability of resistant workers to both detect and remove, by cannibalisation, the infested pupa. Hence, this ensures the invading mite fails to reproduce7 or reduces mite fertility due to the recapping process4. Although, in this study no significant difference was found in the reproduction of Varroa in recapped or non-recapped cells, supporting the findings of two previous studies5,9. Therefore, recapping may be playing a minor role in resistance. However, recapping remains the best indicator or ‘proxy’ of resistance within the vast majority of honeybee populations since it’s easier, quicker, and it requires less skill to measure recapping rates than mite removal rates. However, recapping is a highly variable trait7, hence both many cells (200–300) per colony and many colonies ( > 10) per population ideally need to be studied to help reduce the variablity, also in temperate countries measuring recapping when mite-infestation rates peak in autumn maximises detecting infested cells since the recapping of cells is spatially associated with infested cells11.Despite the current focus on what is happening in worker cells, studies focusing on the role of recapping in drone brood are still in their infancy with. Currently, data is only available from South Africa9 (Fig. 1) and now Cuba (this study). Interestingly, both studies indicate no significant difference in recapping rates between infested and non-infested brood. This is caused by some colonies performing no recapping of drone brood, while some colonies do recap cells but in a non-targeted manner. Whereas there is a significant increase in the size of the recapped area between infested (3.1 mm) and non-infested (2.3 mm) worker cells (Fig. 3), this does not occur in drone brood, as it appears that the holes are entirely exploratory. However, the lack of removal of infested drone brood may be playing an important role in mite-resistance (see below).The mite infestation of worker cells currently varies between 23 and 13% in Cuba (this study), roughly 25 years after it was first detected (1996). Whereas, in Mexico and Brazil, infestation rates of worker brood have fallen from around 20% in 1996/1999 down to 4% in 2018/197. Although, Varroa was first detected in Brazil much earlier, in 197225 and the Africanised honeybees adapted to the mite and spread northward replacing the susceptible European colonies. Therefore, we predict that the worker infestation rate in Cuba will continue to fall over the next 20 years, especially if high mite-removal rates persist. Correspondingly, we would expect to see the infestation rates of the drone brood (currently at 40%) to remain high as mites potentially avoid reproduction in worker cells. This potentially is a key, but currently overlooked part, of the resistance mechanism. Since an empirical model26 indicated that negative mite population growth occurs in (resistant) Africanised honeybee colonies only when the initial drone cells are present. This is thought to arise because mites also show a tenfold preference to reproduce in drone cells (which comprises only 1–5% of all the honeybee brood) and they soon become overcrowded as the mite population increases. This leads to inter-mite competition for the limited food and space, causing an increase in mite mortality27, resulting in negative reproductive success for mites entering these overcrowded drone cells. Thus, mite population growth in drone brood cells is limited by a density-dependent mechanism. In Cuba it has been observed that strong colonies typically with drone brood do not weaken during the drought season, whereas colonies without drone brood are weak and often die during the drought (APP personal comm).Although Cuban beekeepers have been aware of their mite-resistant honeybees for 15 to 20 years’, Cuba’s situation has only recently come to light16,18. The main reason for Varroa-resistance in Cuba is due to the centralised decision to allow natural resistance to evolve, as also was done successfully in South Africa3, rather than becoming locked into using miticides, as has happened throughout the Northern hemisphere. The CIAPI and Veterinarian Services central decision to ‘not treat’ was greatly assisted by all Cuban beekeepers being professional, registered and embedded within a strong locally based beekeeping community where colony movement and exchange of queens is within each province.There is also a large feral population and due to Cuba’s sub-tropical climate, queens are replaced annually in managed colonies because of almost continuous egg-laying, similar to honeybees in Hawaii. This rapid queen turnover speeds up natural selection relative to honeybee populations in more temperate climates. Finally, Cuba’s 60-year ban on honeybee importation has helped isolate the country from been invaded by Africanised bees which has occurred in many nearby regions (eg. Mexico, Southern USA, Puerto Rico, neighbouring Dominican Republic13 and Haiti (D. Macdonald, Apiary Inspector, Min. of Agi BC, Canada, pers. Comm.). Cuba has many managed European colonies coupled with many queen rearing stations. These colonies are productive and mild mannered. Thus, Cuba is an excellent example of the power of natural selection in honeybees when they are allowed to adapt naturally to Varroa with minimal human interference. More

  • in

    Synthesis of optically active through-space conjugated polymers consisting of planar chiral pseudo-meta-disubstituted [2.2]paracyclophane

    Vögtle, F. Cyclophane Chemistry: Synthesis, Structures and Reactions. John Wiley & Sons: Chichester; 1993.Gleiter, R, Hopf H. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004.Hopf H. [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angew Chem Int Ed. 2008;47:9808–12.CAS 

    Google Scholar 
    Brown CJ, Farthing AC. Preparation and structure of Di-p-Xylylene. Nature. 1949;164:915–6.CAS 

    Google Scholar 
    Cram DJ, Steinberg H. Macro Rings. I. Preparation and spectra of the paracyclophanes. J Am Chem Soc. 1951;73:5691–704.CAS 

    Google Scholar 
    Wang S, Bazan GC, Tretiak S, Mukamel S. Oligophenylenevinylene Phane Dimers: probing the effect of contact site on the optical properties of bichromophoric pairs. J Am Chem Soc. 2000;122:1289–97.CAS 

    Google Scholar 
    Bartholomew GP, Bazan GC. Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res. 2001;34:30–9.CAS 
    PubMed 

    Google Scholar 
    Bartholomew GP, Bazan GC. Strategies for the Synthesis of ‘Through-space’ Chromophore Dimers Based on [2.2]Paracyclophane. Synthesis. 2002;1245–55.Hong JW, Woo HY, Bazan GC. Solvatochromism of distyrylbenzene pairs bound together by [2.2]Paracyclophane: evidence for a polarizable “Through-space” delocalized state. J Am Chem Soc. 2005;127:7435–43.CAS 
    PubMed 

    Google Scholar 
    Bazan GC. Novel organic materials through control of multichromophore interactions. J Org Chem. 2007;72:8615–35.CAS 
    PubMed 

    Google Scholar 
    Cram DJ, Allinger NL. Macro Rings. XII stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc. 1955;77:6289–94.CAS 

    Google Scholar 
    Rozenberg V, Sergeeva E, Hopf H. Cyclophanes as templates in stereoselective synthesis. In Gleiter R, Hopf H, editors. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004, p. 435–62.Rowlands GJ. The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem. 2008;6:1527–34.CAS 
    PubMed 

    Google Scholar 
    Gibson SE, Knight JD. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem. 2003;1:1256–69.CAS 
    PubMed 

    Google Scholar 
    Aly AA, Brown AB. Asymmetric and fused heterocycles based on [2.2]Paracyclophane. Tetrahedron. 2009;65:8055–89.CAS 

    Google Scholar 
    Paradies J. [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis. 2011;3749–66.Delcourt M-L, Felder S, Turcaud S, Pollok CH, Merten C, Micouin L, et al. Highly enantioselective asymmetric transfer hydrogenation: a practical and scalable method to efficiently access planar chiral [2.2]paracyclophanes. J Org Chem. 2019;84:5369–82.CAS 
    PubMed 

    Google Scholar 
    Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, et al. Symmetrically tetrasubstituted [2.2]Paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J. 2008;14:4600–17.CAS 
    PubMed 

    Google Scholar 
    David ORP. Syntheses and applications of disubstituted [2.2]Paracyclophanes. Tetrahedron. 2012;68:8977–93.CAS 

    Google Scholar 
    Hassan Z, Spluling E, Knoll DM, Lahann J, Bräse S. Planar Chiral [2.2]Paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem Soc Rev. 2018;47:6947–63.CAS 
    PubMed 

    Google Scholar 
    Hassan Z, Spuling E, Knoll DM, Bräse S. Regioselective functionalization of [2.2]Paracyclophanes: recent synthetic progress and perspectives. Angew Chem Int Ed. 2020;59:2156–70.CAS 

    Google Scholar 
    Felder S, Wu S, Brom J, Micouin L, Benedetti E. Enantiopure Planar Chiral [2.2]Paracyclophanes: synthesis and applications in asymmetric organocatalysis. Chirality. 2021;33:506–27.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y. Circularly Polarized Luminescence from Planar Chiral Compounds Based on [2.2]Paracyclophane. In: Mori T, editor. Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer: Singapore; 2020, p. 31–52.Morisaki, Y. Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane. In: Ooyama Y, Yagi S, editors. Progress in the Science of Functional Dyes. Springer: Singapore; 2021, p. 343–74.Morisaki Y, Chujo Y. Planar Chiral [2.2]Paracyclophanes: optical resolution and transformation to optically active π-stacked molecules. Bull Chem Soc Jpn. 2019;92:265–74.CAS 

    Google Scholar 
    Maeda H, Kameda M, Hatakeyama T, Morisaki Y. π-Stacked polymer consisting of a Pseudo-meta-[2.2]Paracyclophane skeleton. Polymers. 2018;10:1140. https://doi.org/10.3390/polym10101140.PubMed Central 

    Google Scholar 
    Gon M, Sawada R, Morisaki Y, Chujo Y. Enhancement and controlling the signal of circularly polarized luminescence based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. Macromolecules. 2017;50:1790–802.CAS 

    Google Scholar 
    Gon M, Morisaki Y, Sawada R, Chujo Y. Synthesis of optically active X-shaped conjugated compounds and dendrimers based on Planar Chiral [2.2]Paracyclophane, leading to highly emissive circularly Polarized Luminescence. Chem Eur J. 2016;22:2291–8.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Shibata S, Chujo Y. Synthesis of optically active through-space conjugated polymers consisting of Planar Chiral [2.2]Paracyclophane and Quaterthiophene. Polym J. 2015;47:278–81.CAS 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Through-space conjugated polymers consisting of Planar Chiral Pseudo-ortho-linked [2.2]Paracyclophane. Polym Chem. 2012;3:2727–30.CAS 

    Google Scholar 
    Liao C, Zhang Y, Ye S-H, Zheng W-H. Planar Chiral [2.2]Paracyclophane-based thermally activated delayed fluorescent materials for circularly polarized electroluminescence. ACS Appl Mater Int. 2021;13:25186–92.CAS 

    Google Scholar 
    Zhang M-Y, Li Z-Y, Lu B, Wang Y, Ma Y-D, Zhao C-H. Solid-state emissive triarylborane-based [2.2]Paracyclophanes displaying circularly polarized luminescence and thermally activated delayed fluorescence. Org Lett. 2018;20:6868–71.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Practical optical resolution of Planar Chiral Pseudo-ortho-disubstituted [2.2]Paracyclophane. Chem Lett. 2012;41:990–2.CAS 

    Google Scholar 
    Tsuchiya M, Maeda H, Inoue R, Morisaki Y. Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: fusing helical and planar chiralities. Chem Commun. 2021;57:9256–9.CAS 

    Google Scholar 
    Kikuchi K, Nakamura J, Nagata Y, Tsuchida H, Kakuta T, Ogoshi T, et al. Control of circularly polarized luminescence by orientation of stacked π-Electron Systems. Chem Asian J. 2019;14:1681–5.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Sawada R, Gon M, Chujo Y. New Type of Planar Chiral [2.2]Paracyclophanes and construction of one-handed double Helices. Chem Asian J. 2016;11:2524–7.CAS 
    PubMed 

    Google Scholar 
    Sawada R, Gon M, Nakamura J, Morisaki Y, Chujo Y. Synthesis of Enantiopure Planar Chiral Bis-(para)-Pseudo-meta-Type [2.2]Paracyclophanes. Chirality. 2018;30:1109–14.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y. Planar Chiral Tetrasubstituted [2.2]Paracyclophane: optical resolution and functionalization. J Am Chem Soc. 2014;136:3350–3.CAS 
    PubMed 

    Google Scholar 
    Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16:4467–70.
    Google Scholar 
    Sonogashira K. Palladium-Catalyzed Alkynylation: Sonogashira Alkyne Synthesis. In: Negishi E, editor. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience: New York; 2002, p. 493–529.Meyer-Epler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A. Synthesis, Chiral Resolution, and absolute configuration of dissymmetric 4,15-Difunctionalized [2.2]Paracyclophanes. J Org Chem. 2014;79:6679–87.
    Google Scholar 
    Miki N, Maeda H, Inoue R, Morisaki Y. Syntheses and Chiroptical properties of optically active V-shaped molecules based on Planar Chiral [2.2]Paracyclophane. ChemistrySelect. 2021;6:12970–4.CAS 

    Google Scholar 
    Bondarenko L, Dix I, Hinrichs H, Hopf H. Cyclophanes. Part LII: Ethynyl[2.2]paracyclophanes – New Building Blocks for Molecular Scaffolding. Synthesis. 2004;2751–9.Tanaka Y, Ozawa T, Inagaki A, Akita M. Redox-active Polyiron Complexes with Tetra(ethynylphenyl)ethene and [2,2]Paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire. Dalton Trans. 2007;928–33.Morisaki Y, Ueno S, Saeki A, Asano A, Seki S, Chujo Y. π-Electron-system-layered Polymer: through-space conjugation and properties as a single molecular wire. Chem Eur J. 2012;18:4216–24.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Chujo Y. Planar Chiral through-space conjugated oligomers: synthesis and characterization of Chiroptical Properties. Chem Eur J. 2014;20:8386–90.CAS 
    PubMed 

    Google Scholar 
    Saeki A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with Data Science. Polym J. 2020;52:1307–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miki N, Inoue R, Morisaki Y. Synthesis of optically active V-shaped molecules: studies on the orientation of the Stacked π-Electron Systems and Their Chiroptical Properties. Bull Chem Soc Jpn. 2021;94:451–3.CAS 

    Google Scholar 
    Tabata D, Inoue R, Sasai Y, Morisaki Y. Synthesis of optically active V(120°)- and (60°)-shaped molecules comprising different π-electron systems. Bull Chem Soc Jpn. 2022;95:595–601.CAS 

    Google Scholar 
    Asakawa R, Tabata D, Miki N, Tsuchiya M, Inoue R, Morisaki Y. Syntheses of optically active V-shaped molecules: relationship between their Chiroptical Properties and the Orientation of the Stacked π-Electron System. Eur J Org Chem. 2021;2021:5725–31.Berova N, Nakanishi K, Woody RW. Circular Dichroism 2nd ed. Wiley-VCH: Toronto; 2000.Riehl JP, Richardson FS. Circularly polarized luminescence spectroscopy. Chem Rev. 1986;86:1–16.CAS 

    Google Scholar 
    Riehl JP, Muller F. Comprehensive Chiroptical Spectroscopy. Wiley and Sons: New York; 2012. More

  • in

    Tailored pathways toward revived farmland biodiversity can inspire agroecological action and policy to transform agriculture

    Benton, T. G. & Bailey, R. The paradox of productivity: agricultural productivity promotes food system inefficiency. Glob. Sustain. 2, (2019).IPBES Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Diaz, et al. (eds.). IPBES secretariat, Bonn, Germany, 56 p, (2019).Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).Article 

    Google Scholar 
    Jones, S. K. et al. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2, 712–723 (2021).Article 

    Google Scholar 
    Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).CAS 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 

    Google Scholar 
    Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Nat. Acad. Sci. 119, e2109217118 (2022).CAS 
    Article 

    Google Scholar 
    Diaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).CAS 
    Article 

    Google Scholar 
    Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).Article 

    Google Scholar 
    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol .4, 1150–1152 (2020).Article 

    Google Scholar 
    Altieri, M. A. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93, 1–24 (2002).Article 

    Google Scholar 
    HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition, Food and Agriculture Organization (FAO). (2019).Barrios, E. et al. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 16, 230–247 (2020).Article 

    Google Scholar 
    FAO. Catalysing dialogue and cooperation to scale up agroecology: outcomes of the FAO regional seminars on agroecology. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/3/I8992EN/i8992en.pdf (2018).Wezel, A. et al. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 40, 40 (2020).Article 

    Google Scholar 
    FAO. Building a common vision for sustainable food and agriculture, Principles, and approaches. Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/i3940e/i3940e.pdf, (2014).Kleijn, D., Rundlof, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26, 474–481 (2011).Article 

    Google Scholar 
    Seppelt, R. et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. BioScience 66, 890–896 (2016).Article 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    EEA High nature value farmland Characteristics, trends, and policy challenges. EEA report No 1/2004, European Environment Agency, Luxembourg, Office for Official Publications of the European Communities, 32 pp (2004).Ichikawa, K. & Toth, G. G. The Satoyama Landscape of Japan: The Future of an Indigenous Agricultural System in an Industrialized Society. In: Nair, P., Garrity, D. (eds) Agroforestry-The Future of Global Land Use. Advances in Agroforestry, 9. Springer, Dordrecht. 341–358. (2012).Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystem 15, 900–912 (2012).Article 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2021).Article 

    Google Scholar 
    Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).CAS 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).Article 

    Google Scholar 
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).Article 

    Google Scholar 
    Sietz, D., Fleskens, L. & Stringer, L. C. Learning from non-linear ecosystem dynamics is vital for achieving Land Degradation Neutrality. Land Degrad. Dev. 28, 2308–2314 (2017).Article 

    Google Scholar 
    Van den Elsen, E. et al. Advances in understanding and managing catastrophic shifts in Mediterranean ecosystems. Front. Ecol. Evol. 8:561101, Section Conservation, https://doi.org/10.3389/fevo.2020.561101. (2020).Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2, 34–42 (2010).Article 

    Google Scholar 
    Tougiani, A., Guero, C. & Rinaudo, T. Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74, 377 (2009).Article 

    Google Scholar 
    Baumhardt, R. L. Dust Bowl Era. Encyclopedia of Water Science, pp. 187 – 191, New York, USA. (2003).Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS 
    Article 

    Google Scholar 
    SER The SER International Primer on Ecological Restoration, Society for Ecological Restoration International Science & Policy Working Group, www.ser.org & Tucson, Society for Ecological Restoration International (2004).Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).Article 

    Google Scholar 
    Lomba, A. et al. Back to the future: rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).Article 

    Google Scholar 
    Teixeira, H. M. et al. Understanding farm diversity to promote agroecological transitions. Sustainability 10, 4337 (2018).Article 

    Google Scholar 
    Fraser, M. D., Moorby, J. M., Vale, J. E. & Evans, D. M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLOS ONE 9, e89054 (2014).Article 
    CAS 

    Google Scholar 
    Reganold, J. & Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).Article 

    Google Scholar 
    Niggli, U., Slabe, A., Schmid, O., Halberg, N. & Schlüter, M. Vision for an Organic Food and Farming Research Agenda 2025. Organic Knowledge for the Future. Technology Platform Organics. IFOAM Regional Group European Union (IFOAM EU Group), Brussels and International Society of Organic Agriculture Research (ISOFAR), Bonn, Germany (2008).Badgley, C. et al. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007).Article 

    Google Scholar 
    Boddey, R. M., de Moraes, J. C., Alves, B. J. R. & Urquiaga, S. The contribution of biological nitrogen fixation for sustainable agriculture in the tropics. Soil Biol. Biochem. 29, 787–799 (1997).CAS 
    Article 

    Google Scholar 
    Sharifi, O. et al. Barriers to conversion to organic farming: a case study in Babol County in Iran. Afr. J. Agr. Res. 5, 2260–2267 (2010).
    Google Scholar 
    Peetsmann, E. et al. Organic marketing in Estonia. Agron. Res. 7, 706–711 (2009).
    Google Scholar 
    Palsova, L., Schwarczova, L., Schwarcz, P. & Bandlerova, A. The support of implementation of organic farming in the Slovak Republic in the context of sustainable development. Procedia—Soc. Behav. Sci. 110, 520–529 (2014).Article 

    Google Scholar 
    Konstantinidis, C. Capitalism in green disguise: the political economy of organic farming in the European Union. Rev. Radic. Polit. Econ. 50, 830–852 (2018).Article 

    Google Scholar 
    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B. 282, 20141396 (2015).Article 

    Google Scholar 
    Willer, H., Trávníček, J., Meier, C. & Schlatter, B. (Eds.) The World of Organic Agriculture: Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick and IFOAM Organics International, Bonn, Germany (2021).Rosset, P. M., Sosa, B. M., Roque Jaime, A. M. & Ávila Lozano, D. A. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J. Peasant Stud. 38, 161–191 (2011).Article 

    Google Scholar 
    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol. 27, 4697–4710 (2021).CAS 
    Article 

    Google Scholar 
    Pywell, R. F. et al. Wildlife‐friendly farming increases crop yield: Evidence for ecological intensification. Proc. Royal Soc. B Biol. Sci. 282, 20151740 (2015).Article 

    Google Scholar 
    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science 341, 33–34 (2013).CAS 
    Article 

    Google Scholar 
    Daum, T. Farm robots: ecological utopia or dystopia? Trends Ecol. Evol. 36, 774–777 (2021).Article 

    Google Scholar 
    Neethirajan, S. & Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 32, 100408 (2021).Article 

    Google Scholar 
    Mota, J. F., Peñas, J., Castro, H., Cabelllo, J. & Guirado, J. S. Agricultural development vs. biodiversity conservation: The Mediterranean semiarid vegetation in El Ejido (Almería, Southeastern Spain). Biodivers. Conserv. 5, 1597–1616 (1996).Article 

    Google Scholar 
    Giagnocavo, C. et al. Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture 12, 137 (2022).Article 

    Google Scholar 
    Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).Article 

    Google Scholar 
    Shaffer, M. L. Minimum Viable Populations: coping with uncertainty. In: Soulé M. E., editor. Viable populations for conservation. Cambridge: Cambridge University Press. pp. 69-86. (1987).Sendzimir, J., Reij, C. P. & Magnuszewski, P. Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol. Soc. 16, 1 (2011).Article 

    Google Scholar 
    Weston, P., Hong, R., Kaboré, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manage. 55, 1402–1417 (2015).Article 

    Google Scholar 
    De Souza, H. N. et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 146, 179–196 (2012).Article 

    Google Scholar 
    WWF (2021) Plowprint report. World Wildlife Fund, Washington, DC, USA.Senapathi, D. et al. Pollinator conservation—The difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 12, 93–101 (2015).Article 

    Google Scholar 
    Sietz, D. & Feola, G. Resilience in the rural Andes: critical dynamics, constraints and emerging opportunities. Reg. Environ. Change 16, 2163–2169 (2016).Article 

    Google Scholar 
    Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. Biol. Sci. Royal Soc. 276, 903–909 (2009).CAS 

    Google Scholar 
    Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric Syst 184, 102862 (2020).Article 

    Google Scholar 
    Jia, G. et al. Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M., Belkacemi, J. Malley, (eds.)]. Intergovernmental Panel on Climate Change. (2019).Tittonell, P. et al. Ecological Intensification: Local Innovation to Address Global Challenges. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_1. (2016).Beyer, R. M. et al. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).Article 

    Google Scholar 
    Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).Article 

    Google Scholar 
    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Glob. Food Secur. 24, 100346 (2020).Article 

    Google Scholar 
    Grassini, P., Eskridge, K. & Cassman, K. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).Article 
    CAS 

    Google Scholar 
    U. N. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York (2015).EC Farm to Fork strategy for a fair, healthy, and environmentally-friendly food system, European Commission, Brussels, https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_de (2020).UNCBD First draft of the post-2020 global biodiversity framework. CBD/WG2020/3/3, https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021)Lacoste, M. et al. On-Farm Experimentation to transform global agriculture. Nat. Food 3, 11–18 (2022).Article 

    Google Scholar 
    Runhaar, H. Governing the transformation towards ‘nature-inclusive’ agriculture: insights from the Netherlands. Int. J. Agric. Sustain. 15, 340–349 (2017).Article 

    Google Scholar 
    Ferguson, R. S. & Lovell, S. T. Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron. Sustain. Dev. 34, 251–274 (2014).Article 

    Google Scholar 
    Oberlack, C. et al. Archetype analysis in sustainability research: Meanings, motivations, and evidence-based policy making. Special feature: archetype analysis in sustainability research. Ecology and Society 24, 26 (2019).Article 

    Google Scholar 
    Sietz, D. et al. Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers. Special Feature: Archetype Analysis in Sustainability Research. Ecol. Soc. 24, 34 (2019).Article 

    Google Scholar 
    Piemontese, L. et al. Validity and validation in archetype analysis: Practical assessment framework and guidelines. Environ. Res. Lett. 17, 025010 (2022).Article 

    Google Scholar 
    Sietz, D. et al. Nested archetypes of vulnerability in African drylands: Where lies potential for sustainable agricultural intensification? Environ. Res. Lett. 12, 095006 (2017).Article 

    Google Scholar 
    Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecological Applications. Accepted Author Manuscript e2696. https://doi.org/10.1002/eap.2696. (2022).Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).Article 

    Google Scholar 
    Jack, B. K., Kousky, C. & Sims, K. R. E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl Acad Sci. 105, 9465–9470 (2008).CAS 
    Article 

    Google Scholar  More