More stories

  • in

    Ecoinformatics for conservation biology

    Bellot, S. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01858-0 (2022).Article 

    Google Scholar 
    Eiserhardt, W. L. et al. Ann. Bot. 108, 1391–1416 (2011).Article 

    Google Scholar 
    Muscarella, R. et al. Glob. Ecol. Biogeogr. 29, 1495–1514 (2020).Article 

    Google Scholar 
    Cámara-Leret, R. et al. Nat. Plants 3, 16220 (2017).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species (IUCN, 2018).BGCI ThreatSearch Online Database (BGCI, 2018).Carlos-Júnior, L. A. et al. Divers. Distrib. 25, 743–757 (2019).Article 

    Google Scholar 
    Pollock, L. J., Thuiller, W. & Jetz, W. Nature 546, 141–144 (2017).CAS 
    Article 

    Google Scholar 
    Rice, J. et al. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas (IPBES, 2018).Coelho de Souza, F. et al. Nat. Ecol. Evol. 3, 1754–1761 (2019).Article 

    Google Scholar  More

  • in

    Nocturnal plant respiration is under strong non-temperature control

    Literature values of R
    To and Q10 of leaf respirationData of RTo were read from texts, tables, and figures in all available literature (18 species; Supplementary Tables 1, 2) when measured more than once within a period of darkness in lab- and field studies where measurement temperature, To, was kept constant. The RTo-initial was defined as the initial measurement of RTo for each study/species, and further values of RTo at later points within the same night of the same study were read as well.Apparent- and inherent temperature sensitivities (Q10, Equation 1; Fig. 2b) were obtained from all available literature (ten species; Supplementary Table 2) where in the same study/species, both nocturnal values of Q10,app and of Q10,inh were obtained in response to long-term natural T-changes in the environment during the night (hours) and nocturnal values were obtained in response to short-term artificial T-changes (max 30 min), respectively.Measurements of R
    To and Q10 of leaf respirationIn the field (United Kingdom, Denmark, Panama, Colombia and Brazil), RTo (µmol CO2 m−2 s−1) in 16 species (Supplementary Tables 1, 3) was measured through nocturnal periods at constant To (controlled either by block-T or leaf-T) with infra-red gas analysers (Li-Cor-6400(XT) or Li-Cor-6800, Lincoln, Nebraska, USA). Mature, attached leaves positioned in the sunlight throughout the day were chosen. Target [CO2] in the leaf cuvette was set to ambient, ranging from 390 to 410 ppm, depending on when measurements were made, and target RH = 65 ± 10%, with a flow rate of 300 µmol s–1. The RTo-initial was defined as RTo at first measurement after darkness 30 min after sunset (to conservatively avoid light-enhanced dark respiration, LEDR50,51. Leak tests were conducted prior to measurements52. The temporal resolution of measurements varied between every three minutes to once per hour for the different species. Data were subsequently binned in hourly bins.Measurements to derive Q10,inh and Q10,app were conducted in two species in a T-controlled growth cabinet and in six species in the field (Supplementary Table 2), where Q10,inh was measured in response to 10–30 min of artificial changes in T and Q10,app was calculated from measurements of RT in response to T of the environment (growth cabinet or field) at the beginning of the night and again at the end of the night (hours apart).Tree level measurements in whole-tree chambersThe night-time respiratory efflux of the entire above-ground portion (crown and bole) in large growing trees of Eucalyptus tereticornis was measured in whole-tree chambers (WTCs) in Richmond, New South Wales (Australia, (33°36ʹ40ʺS, 150°44ʹ26.5ʺE). The WTCs are large cylindrical structures topped with a cone that enclose a single tree rooted in soil (3.25 m in diameter, 9 m in height, volume of ~53 m3) and under natural sunlight, air temperature and humidity conditions. An automated system measured the net exchange of CO2 between the canopy and the atmosphere within each chamber at 15-min resolution. During the night, we used the direct measurements of CO2 evolution (measured with an infra-red gas analyser; Licor 7000, Li-Cor, Inc., Lincoln, NE)53,54 as a measure of respiration.Due to the high noise-to-signal ratio in the CO2-exchange measurements from this system when analysing the high-resolution temporal variation through each night, we chose to only analyse temporal variation in tree-RT for the nights when tree-RT-initial were amongst the top 10% of CO2-exchange signals for the entire data set. The resulting data spanned 62 nights and included hourly average measurements from three replicate chambers.Data analysis of R
    To
    Measurements of nocturnal leaf respiration under constant temperature conditions (RTo) were divided by the initial rate of respiration (RTo-initial) at the onset of each night. Hourly means of RTo/RTo-initial were calculated for each leaf replicate to remove measurement noise and reduce bias due to the measurement of some species at more frequent intervals throughout the night. For species with multiple leaf replicates, these hourly means of RTo/RTo-initial were then combined to create hourly averages of RTo/RTo-initial at the species level. For each species, these values were plotted as a function of time to demonstrate how RTo/RTo-initial decreases with time since the onset of darkness, from sunset until sunrise (Supplementary Fig. 1). For each species, hourly means of RTo/RTo-initial plotted as a function of time were linearised by log-transforming data and the slope of the relationship determined. To test whether the slopes of the lines differed significantly within plant functional groups (woody, non-woody), species originating from the same biome (temperate, tropical) or species measured under the same conditions (lab, field), the slopes of the lines for all species from a given functional group, biome or measurement condition were tested pairwise against each other using the slope, standard error and sample size (number of points on the x-axis) for each line and applying a 0.05 cut-off for p values after Bonferroni correction for multiple testing. 11 out of 701 comparisons came out as being significantly different, which is why within-group slope differences were considered to be overall non-significant for this analysis. t-tests were used to test whether the slopes differed between plant functional groups (tree, non-woody), species originating from different biomes (temperate, tropical) and species measured under different environmental conditions (lab, field). In these tests, the degrees of freedom varied according to the different sample sizes. Since RTo/RTo-initial plotted as a function of time always starts at 1, the intercepts do not differ between species. t-tests were performed on linearised power functions by log-transforming data in order to test potential differences between lab and field, origin of species, between woody and non-woody species and between temperate and tropical biomes. Since these functions were statistically indistinguishable in each pairing, all measurements of nocturnal leaf respiration under constant temperature conditions (n = 967 nights, 31 species) were collated into a single plot. The data were binned hourly since some studies had very few measurements on half-hourly steps. A power function was fitted with a weighting of each hourly binned value using 1/(standard error of the mean). The power function was chosen as it, better than the exponential- or linear function, can capture both sudden steep- as well as slower decrease in RTo/RTo-initial in different species. The 95% confidence interval of the power function, following the new model equation, overlaps with all the 95% confidence intervals of the hourly binned values (Fig. 1a). All data analysis, including statistical analysis and figures were performed using Python version 3.9.4.Evaluation of new equationWe performed four sets of simulations (S1-S4) using different representations of leaf and plant respiration as outlined in Supplementary Table 4. Evaluation of Equation 4 (S2; Equation 3 from Fig. 1a merged with Equation 1) in comparison with Equation 1 (S1) and Equation 5 (S4) in comparison with Equation 2 (S3), respectively, for predictions of nocturnal variation in response to natural variation in temperature, was conducted by use of independent sets of leaf level data and tree scale data. The effect of including variable nocturnal RTo is estimated as the difference between S1 and S2 and between S3 and S4, respectively.The first data set used for the evaluation consists of nine broad-leaf species for which spot measurements of leaf respiration under ambient conditions were taken at sunset and before sunrise in the field (Fig. 1b and Supplementary Fig. 2a). Of these nine species, three species (Fig. 1c) were further measured throughout the night at ambient conditions. Further, whole-tree measurements measured throughout the night at ambient conditions (Supplementary Fig. 3a–d) were also used for evaluation. Finally, comparisons of Q10,inh with Q10,app in another ten species were used to test if RTo appeared constant as assumed in Equation 1 (Supplementary Tables 2, 3 and Fig. 2b).To validate the suitability of Equation 4 and Equation 5 over equations with full temporal control, modelled respiration values were compared against observed measurements for three species at the leaf level (Supplementary Fig. 2b–d) and for Eucalyptus tereticornis at the whole-tree level using three chamber replicates and during 62 nights using hourly measurements (Supplementary Fig. 3a–d). Linear fits were applied, using ordinary least squares regressions, to plots of normalised respiration (({R}_{T}/{R}_{{T}_{0}})) predicted by the four models against the observed values. The first measurements of the night were excluded from the fits, as these were necessarily equal to unity. The standardised residuals (S) in Supplementary Figs. 2c, 3b are calculated using the equation ({S}_{i}=({R}_{{{{{{{rm{modelled}}}}}}}_{i}}/{R}_{{{{{{{rm{Modelled}}}}}}}_{0}}-{R}_{{T}_{i}}/{R}_{{T}_{0}})/sqrt{(mathop{sum }nolimits_{i}^{N}{({R}_{{{{{{{rm{modelled}}}}}}}_{i}}/{R}_{{{{{{{rm{Modelled}}}}}}}_{0}}-{R}_{{T}_{i}}/{R}_{{T}_{0}})}^{2})/{df}}), for the residual of the ith measurement, where the sum is over all measurements, df is the number of degrees of freedom, and Rmodelled are the respiration values modelled by the four equations in Supplementary Table 4.Evaluation is done by comparing observed and simulated RT/RT, initial. We evaluate the nocturnal evolution of RT/RT, initial and use (i) one-to-one line figures that include fitted regression line, R2, p value and RMSE, (ii) Taylor diagrams and (iii) use plots of standardised residuals against temperature and hours since darkness for a qualitative assessment of the simulations, to identify whether there are any model biases at specific times or temperatures. Model evaluation, statistical analysis and figures were done using python version 3.9.4.Global scale modelling of plant R and NPP
    We applied the novel formulation derived in this study (Equation 4 and Equation 5) to quantify the impact of incorporating variable RTo on simulated plant R and NPP globally using the JULES land surface model32,33 following simulations outlined in Supplementary Table 4.Plant respiration in JULES and simulations for this study: The original leaf respiration representation in JULES follows either eqn 1 ({{R}_{T}={R}_{{T}_{0}}{Q}}_{10}^{(T-{T}_{0})/10}) with Q10 = 2 and To = 25 oC or Equation 1 with an additional denominator ({{R}_{T}={R}_{{T}_{0}}{Q}}_{10}^{(T-{T}_{0})/10}/leftlfloor left(1+{e}^{0.3(T-{T}_{{upp}})}right)times left(1+{e}^{0.3({T}_{{low}}-T)}right)rightrfloor) (Equation 6). For the purpose of this application, we have used Equation 1 to represent leaf respiration in standard JULES simulations. The remaining components of maintenance respiration in JULES, i.e. fine root and wood are represented as a function of leaf to root and leaf to wood nitrogen ratios and leaf respiration rates following RT (β + (Nr + Ns)/Nl) (Equation 6) with RT as leaf respiration, Nr, Ns and Nl as root, stem and leaf Nitrogen content respectively and β as a soil water factor (Equation 42 in ref. 32). This implies that any variation in leaf respiration is passed to root and wood respiration as well30,31,35. Growth respiration is estimated as a fraction (25%) of the difference between GPP and maintenance respiration (Rm) expressed as Rg = 0.25 (GPP-Rm).JULES version 5.2 was modified to simulate leaf and plant respiration using the various descriptions (Equations 1–5) outlined in the modelling protocol in Supplementary Table 4. JULES uses standard astronomical equations to calculate the times of sunrise and sunset on a given day at each grid point. We used the model leaf temperature and RT at the timestep at or immediately preceding sunset to represent Tsunset, and RT,sunset and at every timestep through the night, the time since sunset (h) was updated. We performed global simulations for the period 2000–2018 with JULES, using the global physical configuration GL8, which is an update from GL755. We used WFDEI meteorological forcing data56 available at 0.5-degree spatial resolution and 3-h temporal resolution, and disaggregated and run in JULES with a 15 min timestep. Simulations were performed using nine plant functional types (PFTs)33. To isolate the effects of the new formulation on simulated Rp and NPP from possible impacts on leaf area index (LAI) or vegetation dynamics, we prescribed vegetation phenology via seasonal LAI fields and vegetation fractional cover based on the European Space Agency’s Land Cover Climate Change Initiative (ESA LC_CCI) global vegetation distribution57, processed to the JULES nine PFTs and re-gridded to the WFDEI grid. Annual variable fields of CO2 concentrations are based on annual mean observations from Mauna Loa58. JULES was spun up using the three cycles of the 2000–2018 meteorological forcing data to equilibrate the soil moisture stores. The mean annual output of Rp and NPP over the study period (2000–2018) is computed for all simulations and the effect of the new formulation is presented as the difference between the temporal mean of simulations with and without nocturnal variation in whole plant RTo for NPP and vice versa for Rp and as percentage respect to simulations without nocturnal variation in RTo. Results are presented for grid cells where grid level NPP is >50 g m−2 yr −1 in the standard simulations to avoid excessively large % effects at very low NPP. Output from JULES was analysed and plotted using python version 2.7.16.PermitsNo permit was required in Denmark as measurements were taken in private land (of author) and public land and measurements were non-destructive. Data were collected under the Panama Department of the Environment (current name MiAmbiente) research permit under the name of Dr Kaoru Kitajima. Permit number: SE/P-16-12. Data in Brazil were collected under the minister of Environment (Ministério do Meio Ambiente—MMA), Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio, Sistema de Autorização e Informação em Biodiversidade—SISBIO permit number 47080-3. No permit was required in Colombia as measurements were taken on private land, no plant samples were collected, and trees were part of an existing experiment for which one of the co-authors is the lead. No access permits were required in the UK as they were conducted on the campus of own university plus in their own private garden.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Pleistocene climate variability in eastern Africa influenced hominin evolution

    White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742–747 (2003).Article 

    Google Scholar 
    McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733–736 (2005).Article 

    Google Scholar 
    Potts et al. Increased ecological resource variability during a critical transition in hominin evolution. Sci. Adv. 6, eabc8975 (2020).Article 

    Google Scholar 
    Faith, J. T. et al. Rethinking the ecological drivers of hominin evolution. Trends Ecol. Evol. 36, 797–807 (2021).Article 

    Google Scholar 
    Mounier, A. & Lahr, M. M. Deciphering African late Middle Pleistocene hominin diversity and the origin of our species. Nat. Commun. 10, 10–13 (2019).Article 

    Google Scholar 
    Cohen, A. et al. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits. Sci. Drill. 21, 1–16 (2016).Article 

    Google Scholar 
    Foerster, V. et al. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quat. Int. 274, 25–37 (2012).Article 

    Google Scholar 
    Fischer, M. L. et al. Determining the pace and magnitude of lake level changes in southern Ethiopia over the last 20,000 years using lake balance modeling and SEBAL. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00197 (2020).Roberts, H. M. et al. Using multiple chronometers to establish a long, directly-dated lacustrine record: constraining >600,000 years of environmental change at Chew Bahir, Ethiopia. Quat. Sci. Rev. 266, 107025 (2021).Article 

    Google Scholar 
    Galway-Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. https://doi.org/10.1002/jqs.3137 (2019).Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).Article 

    Google Scholar 
    Scerri, E. M. L. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).Article 

    Google Scholar 
    Schaebitz, F. et al. Hydroclimate changes in eastern Africa over the past 200,000 years may have influenced early human dispersal. Commun. Earth Environ. 2, 1–10 (2021).Article 

    Google Scholar 
    Lahr, M. M. & Foley, R. A. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Yearb. Phys. Anthropol. 41, 137–176 (1998).Article 

    Google Scholar 
    Duesing, W. et al. Multiband wavelet age modeling for a 293 m (600 kyr) sediment core from Chew Bahir basin, southern Ethiopian Rift. Front. Earth Sci. 9, 1–15 (2021).Article 

    Google Scholar 
    Foerster, V. et al. Towards an understanding of climate proxy formation in the Chew Bahir basin, Southern Ethiopian Rift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 501, 111–123 (2018).Article 

    Google Scholar 
    Kaboth-Bahr, S. et al. Paleo-ENSO influence on African environments and early modern humans. Proc. Natl Acad. Sci. USA 118, e2018277118 (2021).Article 

    Google Scholar 
    Duesing, W. et al. Changes in the cyclicity and variability of the eastern African paleoclimate over the last 620 kyrs. Quat. Sci. Rev. 273, 107219 (2021).Article 

    Google Scholar 
    Herbert, T., Cleaveland Peterson, L., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).Article 

    Google Scholar 
    Trauth, M. H. et al. High- and low-latitude forcing of Plio–Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).Article 

    Google Scholar 
    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).Article 

    Google Scholar 
    Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. Forcing mechanisms of the Indian Ocean monsoon. Nature 353, 720–725 (1991).Article 

    Google Scholar 
    Owen, R. B. et al. Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc. Natl Acad. Sci. USA 115, 11174–11179 (2018).Article 

    Google Scholar 
    Grant, K. M. et al. A 3 million year index for North African humidity/aridity and the implication of potential pan-African humid periods. Quat. Sci. Rev. 171, 100–118 (2017).Article 

    Google Scholar 
    Trauth, M. H. et al. Recurring types of variability and transitions in the ~620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia. Quat. Sci. Rev. 266, 106777 (2021).Article 

    Google Scholar 
    Wagner, B. et al. Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years. Nature 573, 256–260 (2019).Article 

    Google Scholar 
    Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 6094–6098 (2009).Article 

    Google Scholar 
    Pearson, O. M., Royer, D. F., Grine, F. E. & Fleagle, J. G. A description of the Omo I postcranial skeleton, including newly discovered fossils. J. Hum. Evol. 55, 421–437 (2008).Article 

    Google Scholar 
    Sahle, Y., Morgan, L. E., Braun, D. R., Atnafu, B. & Hutchings, W. K. Chronological and behavioural contexts of the earliest Middle Stone Age in the Gademotta Formation, Main Ethiopian Rift. Quat. Int. 331, 6–19 (2014).Article 

    Google Scholar 
    McBrearty, S. & Tryon, C. in Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age (eds Hovers, E. & Kuhn, S. L.) Ch. 14 (Springer, 2006).Clark, J. D., Beyene, Y. & WoldeGabriel, G. Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747–752 (2003).Article 

    Google Scholar 
    de la Torre, I., Mora, R., Arroyo, A. & Benito-Calvo, A. Acheulean technological behaviour in the Middle Pleistocene landscape of Mieso (East-Central Ethiopia). J. Hum. Evol. 76, 1–25 (2014).Article 

    Google Scholar 
    Vidal, C. et al. Age of the oldest known Homo sapiens from eastern Africa. Nature 601, 579–583 (2022).Article 

    Google Scholar 
    Sahle, Y. et al. in Modern Human Origins and Dispersal (eds. Sahle, Y. et al.) 73–104 (Kerns Verlag, 2019).Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. B 359, 183–195 (2004).Article 

    Google Scholar 
    Brandt, S., Hildebrand, E., Vogelsang, R., Wolfhagen, J. & Wong, H. A new MIS 3 radiocarbon chronology for Mochena Borago Rockshelter, SW Ethiopia: implications for the interpretation of Late Pleistocene chronostratigraphy and human behavior. J. Archaeol. Sci. Rep. 11, 352–369 (2017).
    Google Scholar 
    Creanza, N., Kolodny, O. & Feldman, M. W. Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires. J. R. Soc. Interface 14, 20170171 (2017).Article 

    Google Scholar 
    Derex, M., Perreault, C. & Boyd, R. Divide and conquer: intermediate levels of population fragmentation maximize cultural accumulation. Phil. Trans. R. Soc. B 373, 20170062 (2018).Article 

    Google Scholar 
    Derex, M. & Mesoudi, A. Cumulative cultural evolution within evolving population structures. Trends Cogn. Sci. 24, 654–667 (2020).Article 

    Google Scholar 
    Grove, M. Environmental complexity, life history, and encephalisation in human evolution. Biol. Phil. 32, 395–420 (2017).Article 

    Google Scholar 
    Haidle, M. N. et al. The Nature of Culture: an eight-grade model for the evolution and expansion of cultural capacities in hominins and other animals. J. Anthropol. Sci. 93, 43–70 (2015).
    Google Scholar 
    Brooks, A. S. et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science 360, 90–94 (2018).Article 

    Google Scholar 
    Murren, C. J., Julliard, R., Schichting, C. D., & Clobert, J. in Dispersal (eds Clobert, J. et al.) 261–273 (Oxford Univ. Press, 2001).Grove, M. et al. Climatic variability, plasticity, and dispersal: a case study from Lake Tana, Ethiopia. J. Hum. Evol. 87, 32–47 (2015).Article 

    Google Scholar 
    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).Article 

    Google Scholar 
    Tryon, C. A. The Middle/Later Stone Age transition and cultural dynamics of Late Pleistocene East Africa. Evol. Anthropol. 28, 267–282 (2019).Article 

    Google Scholar 
    Grove, M. & Blinkhorn, J. Neural networks differentiate between Middle and Later Stone Age lithic assemblages in eastern Africa. PLoS ONE 15, e0237528–27 (2020).Article 

    Google Scholar 
    Grove, M. & Blinkhorn, J. Testing the integrity of the Middle and Later Stone Age cultural taxonomic division in eastern Africa. J. Paleolit. Archaeol. 4, 14 (2021).Article 

    Google Scholar 
    Assefa, Z., Lam, Y. M. & Mienis, H. K. Symbolic use of terrestrial gastropod opercula during the Middle Stone Age at Porc-Epic Cave, Ethiopia. Curr. Anthropol. 49, 746–756 (2008).Article 

    Google Scholar 
    Assefa, Z. et al. Engraved ostrich eggshell from the Middle Stone Age contexts of Goda Buticha, Ethiopia. J. Archaeol. Sci. Rep. 17, 723–729 (2018).
    Google Scholar 
    Laskar, J. et al. A long term numerical solution for the insolation quantities of Earth. Astron. Astrophys. 428, 261–285 (2004).Article 

    Google Scholar 
    Campisano, C. et al. The Hominin Sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift System and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology https://doi.org/10.1130/abs/2017am-295426 (2017).Davidson, A. The Omo River Project: Reconnaissance Geology and Geochemistry of Parts of Ilubabor, Kefa, Gemu Gofa and Sidamo (Ethiopian Institute of Geological Surverys, 1983).Noren, A. HSPDP-CHB_public. OSF https://doi.org/10.17605/OSF.IO/M8QU5 (2022).Gebregiorgis, D. et al. Modern sedimentation and authigenic mineral formation in the Chew Bahir basin, southern Ethiopia: implications for interpretation of late Quaternary paleoclimate records. Front. Earth Sci. 9, 244 (2021).Article 

    Google Scholar 
    Folk, R. L. & Ward, W. C. Brazos River bar [Texas]: a study in the significance of grain size parameters. J. Sediment. Res. 27, 3–26 (1957).Article 

    Google Scholar 
    Blott, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).Article 

    Google Scholar 
    Opitz, S. et al. Holocene lake stages and thermokarst dynamics in a discontinuous permafrost affected region, north-eastern Tibetan Plateau. J. Asian Earth Sci. 76, 85–94 (2013).Article 

    Google Scholar 
    Opitz, S. et al. Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes. Catena 137, 203–218 (2016).Article 

    Google Scholar 
    Viehberg, F. A. et al. Environmental change during MIS 4 and MIS 3 opened corridors in the Horn of Africa for Homo sapiens expansion. Quat. Sci. Rev. 202, 139–153 (2018).Article 

    Google Scholar 
    Koerting, F. et al. Drill core mineral analysis by means of the hyper spectral imaging spectrometer HySpex, XRD and ASD in proximity of the Mytina Maar, Czech Republic. Int. Arch. Photogram. Remote Sens. Spatial Inf. XL-1/W5, 417–424 (2015).Giosan, L., Flood, R. D. & Aller, R. C. Paleoceanographic significance of sediment color on western North Atlantic drifts: I. Origin of color. Mar. Geol. 189, 25–41 (2002).Article 

    Google Scholar 
    Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).Löwemark, L. et al. Normalizing XRF-scanner data: a cautionary note on the interpretation of high resolution records from organic-rich lakes. J. Asian Earth Sci. 40, 1250–1256 (2011).Article 

    Google Scholar 
    Lyle, M. et al. Data report: raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning. Proc. Integr. Ocean Drill. Program 320/321, 1–19 (2012).
    Google Scholar 
    Schlolaut, G. et al. An extended and revised Lake Suigetsu varve chronology from ∼50 to ∼10 ka bp based on detailed sediment micro-facies analyses. Quat. Sci. Rev. 200, 351–366 (2018).Article 

    Google Scholar 
    Surdam, R. C. & Eugster, H. P. Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geol. Soc. Am. Bull. 87, 1739–1752 (1976).Article 

    Google Scholar 
    Davies, S. J., Lamb, H. F. & Roberts, S. J. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 189–226 (Springer, 2015).Elbert, E. et al. Late Holocene air temperature variability reconstructed from sediments of Laguna Escondida, Patagonia, Chile (45° 30’ S). Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 482–492 (2013).Article 

    Google Scholar 
    Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio–Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).Article 

    Google Scholar 
    Trauth, M. H. et al. Abrupt or gradual? Change point analysis of the Late Pleistocene–Holocene climate record from Chew Bahir, southern Ethiopia. Quat. Res. 90, 321–330 (2018).Article 

    Google Scholar  More

  • in

    Footprint beds record Holocene decline in large mammal diversity on the Irish Sea coast of Britain

    Jiang, D., Klaus, S., Zhang, Y.-P., Hillis, D. M. & Li, J.-T. Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. Natl Sci. Rev. 6, 739–745 (2019).Article 

    Google Scholar 
    Bailey, G. et al. in The Archaeology of Europe’s Drowned Landscapes (eds Bailey, G. et al.) 189–219 (Springer, 2020).Erlandson, J., Braje, T., Gill, K. & Graham, M. Ecology of the kelp highway: did marine resources facilitate human dispersal from northeast Asia to the Americas? J. Isl. Coast. Archaeol. 10, 392–411 (2015).Article 

    Google Scholar 
    McLaren, D. et al. Terminal Pleistocene epoch human footprints from the Pacific coast of Canada. PLoS ONE 13, e0193522 (2018).Article 

    Google Scholar 
    Woodward, J. C. The Ice Age: A Very Short Introduction (Oxford Univ. Press, 2014).Pettitt, P. & White, M. The British Palaeolithic: Human Societies at the Edge of the Pleistocene World (Routledge, 2012).Bell, M. Prehistoric Coastal Communities: The Mesolithic in Western Britain (Council for British Archaeology, 2007).Gaffney, V., Fitch, S. & Smith, D. Europe’s Lost World: The Rediscovery of Doggerland (Council for British Archaeology, 2009).Gutiérrez–Zugasti, I. et al. Shell midden research in Atlantic Europe: state of the art, research problems and perspectives for the future. Quat. Int. 239, 70–85 (2011).Article 

    Google Scholar 
    Milner, N., Craig, O.E. & Bailey, G. N. Shell Middens in Atlantic Europe (Oxbow Books, 2007).Neto de Carvalho, C. et al. First tracks of newborn straight-tusked elephants (Palaeoloxodon antiquus). Sci. Rep. 11, 17311 (2021).CAS 
    Article 

    Google Scholar 
    Ashton, N. et al. Hominin footprints from Early Pleistocene deposits at Happisburgh, UK. PLoS ONE 9, e88329 (2014).Article 

    Google Scholar 
    Duveau, J., Berillon, G. & Verna, C. in Reading Prehistoric Human Tracks: Methods and Material (eds Pastoors, A. & Tilman, L.) 183–200 (Springer, 2021).Allen, J. R. L. Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: mechanics of formation, preservation and distribution. Philos. Trans. R. Soc. B 352, 481–518 (1997).Article 

    Google Scholar 
    Aldhouse-Green, S. H. R. et al. Prehistoric footprints from the Severn Estuary at Uskmouth and Magor Pill, Gwent, Wales. Archaeol. Cambrensis 141, 14–55 (1992).
    Google Scholar 
    Barr, K. & Bell, M. Neolithic and Bronze Age ungulate footprint-tracks of the Severn Estuary: species, age, identification and the interpretation of husbandry practices. Environ. Archaeol. 22, 1–14 (2016).Article 

    Google Scholar 
    Bennett, M. R. & Morse, S. A. Human Footprints: Fossilised Locomotion? (Springer, 2014).Polton, J. A., Palmer, M. R. & Howarth, M. J. Physical and dynamical oceanography of Liverpool Bay. Ocean Dynam. 91, 1421–1439 (2011).Article 

    Google Scholar 
    Roberts, G. Ephemeral, subfossil mammalian, avian and hominid footprints within Flandrian sediment exposures at Formby Point, Sefton Coast, North West England. Ichnos 16, 33–48 (2009).Article 

    Google Scholar 
    Burns, A. An 8000-Year Record of Prehistoric Footprints in a Dynamic Coastal Landscape, Formby Point, UK. PhD thesis, Univ. Manchester (2019).Tooley, M. J. Sea level changes in Northern England. Proc. Geol. Assoc. 93, 43–51 (1982).Article 

    Google Scholar 
    Pye, K. & Neal, A. in The Dynamics and Environmental context of Aeolian Sedimentary Systems (ed. Pye, K.) 201–217 (Geological Society Special Publication, 1993).Pye, K., Stokes, S. & Neal, A. Optical dating of aeolian sediments from the Sefton Coast, Northwest England. Proc. Geol. Assoc. 106, 281–292 (1995).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Walker, M. et al. Subdividing the Holocene Series/Epoch: formalisation of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. Quat. Sci. 34, 173–186 (2019).Article 

    Google Scholar 
    Tooley, M. J. The peat beds of the southwest Lancashire coast. Nat. Lancs. 1, 19–21 (1970).
    Google Scholar 
    Gonzalez, S., Huddart, D. & Roberts, G. Holocene development of the Sefton coast: a multidisciplinary approach to understanding the archaeology. In Archaeological Sciences 1995 Proc. Conference on the Application of Scientific Techniques to the Study of Archaeology (eds Sinclair, A. et al.) 289–299 (Oxbow Books, 1997).Huddart, D., Roberts, G. & Gonzalez, S. Holocene human and animal footprints and their relationships with coastal environmental change, Formby Point, NW England. Quat. Int. 55, 29–41 (1999).Article 

    Google Scholar 
    Galbraith, H. et al. Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25, 173–183 (2002).Article 

    Google Scholar 
    Bellard, C., Leclerc, C. & Courchamp, F. Sea level rise and insular hotspots. Glob. Ecol. Biogeogr. 23, 203–212 (2014).Article 

    Google Scholar 
    Editorial Why biodiversity matters. Nat. Ecol. Evol. 1, 0042 (2017).Article 

    Google Scholar 
    Hall, J. G. A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography 31, 187–190 (2008).Article 

    Google Scholar 
    Milner, N., Conneller, C. & Taylor, B. Star Carr: A Persistent Place in a Changing World Vol. 1 (White Rose Univ. Press, 2018).Conneller, C. The Mesolithic in Britain: Landscape and Society in Times of Change (Routledge, 2022).Hernandez, L. & Laundre, J. W. Foraging in the ‘landscape of fear’ and its implications for habitat use and diet quality of elk (Cervus elaphus) and bison (Bison bison). Wildl. Biol. 11, 215–220 (2005).Article 

    Google Scholar 
    Overton, N. J. in Multispecies Archaeology (ed. Pilaar-Birch, S.) 295–309 (Routledge, 2018).Moore, E. K., Britton, A. J., Iason, G., Pemberton, J. & Pakeman, R. J. Landscape-scale vegetation patterns influence small-scale grazing impacts. Biol. Conserv. 192, 218–225 (2015).Article 

    Google Scholar 
    Gonzalez, S. & Huddart, D. in The Quaternary of Northern England (eds Huddart, D. & Glasser, N. F.) 582–588 (Joint Nature Conservation Committee, 2002).Cowell, R. W. & Innes, J. The Wetlands of Merseyside (Lancaster Univ. Archaeological Unit, 1994).Leonard, P. B. et al. Landscape connectivity losses due to sea level rise and land use change. Anim. Conserv. 20, 80–90 (2017).Article 

    Google Scholar 
    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    Stuart, A. J. in Island Britain: a Quaternary Perspective (ed. Preece, R. C.) 111–125 (Geological Society Special Publication, 1995).Maroo, S. & Yalden, D. W. The Mesolithic mammal fauna of Great Britain. Mammal. Rev. 30, 243–248 (2000).Article 

    Google Scholar 
    Yalden, D. W. The History of British Mammals (T. & A.D. Poyser, 1999).Barnett, R. The Missing Lynx: The Past and Future of Britain’s Lost Mammals (Bloomsbury, 2019).Crees, J. J., Carbone, C., Sommer, R. S., Benecke, N. & Turvey, S. T. Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene. Proc. R. Soc. B 283, 20152152 (2016).Article 

    Google Scholar 
    Burns, A. in Reading Prehistoric Human Tracks (eds Pastoors, A. & Lenssen-Erz, T.) 295–315 (Springer, 2021).Brown, R., Lawrence, M. & Pope, J. Animals: Tracks, Trails and Signs (Octopus Publishing, 2004).Donovan, S. K. Animal and bird tracks. Ichnos 16, 238–238 (2009).Article 

    Google Scholar 
    Roberts, G., Gonzalez, S. & Huddart, D. Intertidal Holocene footprints and their archaeological significance. Antiquity 70, 647–651 (1996).Article 

    Google Scholar 
    Scales, R. in Prehistoric Coastal Communities: The Mesolithic in Western Britain (ed. Bell, M.) 139–159 (Council for British Archaeology, 2007).Robbins, L. M. Estimating height and weight from size of footprints. J. Forensic Sci. 31, 143–152 (1986).CAS 
    Article 

    Google Scholar 
    Stuiver, M. & Polach, H. A. Reporting of C-14 data—discussion. Radiocarbon 19, 355–363 (1977).Article 

    Google Scholar  More

  • in

    Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods

    Experimental designA 2-year field experiment was conducted at the Modern Agricultural Research and Development Base of Henan Province (113° 35′–114° 15′ E, 34° 53′–35° 11′ N). In order to enhance the diversity of LAI data, a split-plot design with a variety of field management measures and three replications was selected for the experiment (Fig. 1). The size of each experiment plot was 40 m2, the soil texture was predominantly sandy loam and sandy clay loam, as determined by textural analysis of soil samples collected before planting. Maize cultivar Dedan-5 was used in the experiment, which was planted on June 12, 2019, and June 20, 2020, with a row spacing of 42 cm and a planting density of 7 seedlings·m−2. The soil and cultivar in field experiments were representatives of those in the region. The irrigation, pesticide, and herbicide control practices followed local management for maize production.Figure 1The experimental design.Full size imageLAI measurements and UAV-based image acquisitionThe measurements of LAI were conducted at four growth stages including the tasseling stage (TS), flowering stage (FS), grain-filling stage (GS), and milk-ripe stage (MS) of maize in 2019 and 2020, a total of 264 LAI data of maize were collected during the 2-year field trial (Table 1). In order to reduce the impact of plant variability, the random sampling method was used to collect LAI samples. For each plot, three plants were randomly selected to measure the total green leaf area with the non-destructive portable leaf area meter (Laser Area Meter CI-203; CID Inc.). And the average leaf area of selected plants represented the single plant leaf area in each experiment plot. The LAI of each plot wasTable 1 Description of samplings.Full size table$$mathrm{LAI}=mathrm{LA}*mathrm{D}$$
    (1)
    where (mathrm{LA}) is the leaf area of a single plant in each plot; (mathrm{D}) is the planting density in one square meter.PHANTOM 4 PRO (DJI-Innovations Inc., Shenzhen, China) is a multi-rotor UAV equipped with a 20-megapixel visible-light camera that was employed to capture digital images. Aerial observations were conducted on the same dates as the LAI measurements, which was between 10:30 a.m. and 2:00 p.m. local time when the solar zenith angle was minimal. The UAV was flown automatically based on preset flight parameters and waypoints, with a forward overlap of 80% and a side overlap of 60%. A three-axis gimbal integrated with the inertial navigation system stabilized the camera, the automatic camera mode with fixed ISO (100) and a fixed exposure was used during the flight. Altogether, 4192 images were taken in eight flights from a flight height of 29.36 m above ground, with a spatial resolution of 0.008 m.The measurements of maize LAI were carried out with permission from the Modern Agricultural Research and Development Base of Henan Province. All experiments were carried out in accordance with relevant institutional, national, and international guidelines and legislation.Image pre-processingDJI Terra (version 2.3.3) was used to generate ortho-rectified images based on the structure from motion algorithms and a mosaic blending model. The main procedures are as follows: (1) extract feature points and match features according to the longitude, latitude, elevation, roll angle, pitch angle, and heading angle of each image; (2) build dense 3D point clouds by using dense multi-view stereo matching algorithm; (3) build a 3D polygonal mesh based on the vector relationship between each point in the dense cloud; (4) establish a 3D model with both external image and internal structure by merging the mosaic image into the 3D model; (5) generate digital orthophoto map (DOM).Vegetation indices (VIs) derived from the UAV-based digital imageryDigital imagery records the intensity of visible red (R), green (G), and blue (B) bands in individual pixels24. In order to enhance the vegetation parameters contained in the digital image, fourteen commonly used RGB-based VIs were collected, and their correlation with the LAI of maize at different growth stages was evaluated. Table 2 shows the detailed information of the selected RGB-based VIs.Table 2 RGB-based VIs for LAI estimation.Full size tableCentered on the point where LAI was measured, regions of interests (ROIs) with a size of 100*100 were clipped from the digital image. Python 3.7.3 was used for extracting the R, G, B information of maize and computing the RGB-based VIs from ROIs. In order to reduce the effects of light and shadow, the R, G, B color space of the image was normalized according to the followings:$$mathrm{r}=frac{R}{R+G+B}$$
    (2)
    $$g=frac{G}{R+G+B}$$
    (3)
    $$b=frac{B}{R+G+B}$$
    (4)
    where r, g, and b are the normalized values. R, G, B are the pixel values from the digital images based on each band.Pearson correlation analysisBefore regression analysis, the Pearson correlation analysis was performed to determine the relationship between maize LAI and different RGB-based VIs extracted from the digital image. Pearson correlation coefficient ((mathrm{r})) reflects the degree of linear correlation between two variables, which is between − 1 and 1. The calculation formula of Pearson correlation coefficient was expressed as follows:$$mathrm{r}= frac{sum_{i=1}^{n}left({X}_{i}-overline{X }right)left({Y}_{i}-overline{Y }right)}{sqrt{sum_{i=1}^{n}{left({X}_{i}-overline{X }right)}^{2}}sqrt{sum_{i=1}^{n}{left({Y}_{i}-overline{Y }right)}^{2}}}$$
    (5)
    where (X), (mathrm{Y}) are variables, (n) is the number of variables.Regression methodsLinear regression (LR)Linear regression is an approach for modelling the relationship between dependent and independent variables. The case of one independent variable is called unary linear regression (ULR), the expressions can be expressed as follows:$$mathrm{y}={beta }_{0}+{beta }_{1}x+varepsilon $$
    (6)
    where (varepsilon ) is deviation, which satisfies the normal distribution. (x), (mathrm{y}) are variables. ({beta }_{0}), ({beta }_{1}) are the intercept and slope of the regression line, respectively.For more than one independent variable, the regression process is called multiple linear regression (MLR), the expressions can be expressed as:$$mathrm{y}={beta }_{0}+{beta }_{1}{x}_{1}+{beta }_{2}{x}_{2}+dots +{beta }_{n}{x}_{n}$$
    (7)
    where ({x}_{1}),( {x}_{2}), …, ({x}_{n}), (mathrm{y}) are variables, ({beta }_{0}), ({beta }_{1}), ({beta }_{2}), …, ({beta }_{n}) are coefficients that determined by least square method and gradient descent method38.The RGB-based VIs with the highest Pearson correlation coefficient was used to establish the ULR model, and VIs with a correlation coefficient higher than 0.7 were used to establish the MLR model. In each growth stage, 70% of observation data were randomly selected for establishing models, and the remaining 30% of data were used as the testing dataset to assess the model performance.Back propagation neural networks (BPNN)In this study, a three-layer BPNN model was established for LAI estimation (Fig. 2). RGB-based VIs with a correlation coefficient higher than 0.7 were selected as the input variables. Tan-Sigmoid activation function was used in the hidden layer, and the Levenberg–Marquardt algorithm was selected as the training function. The maximum epoch of BPNN training was set to 1000, the learning rate was set to 0.005, and the MSE was set to 0.001. The observation data set was split into the training set and the testing dataset with a ratio of 7:3. The training dataset was used to fit the weights and bias of the BPNN model, the testing dataset was used to evaluate the model performance. Before training, data normalization was conducted for the input and output variables, and the denormalization was required to convent the output variable back into the original units after training.Figure 2Three-layer BPNN model.Full size imageRandom forest (RF)RF is a non-parametric ensemble ML method that operates by constructing a multitude of decision trees at training time and outputting the average prediction of the individual trees (Fig. 3). The bootstrapping approach was used to collect different sub-training data from the input training dataset to construct individual decision trees.Figure 3Random forest model.Full size imageThe construction process of RF regression model is as follows:

    (1)

    The value of (mathrm{n}_mathrm{estimators}) was tested from 50 to 1000 in increments of 50, and the value of 500 was finally selected according to higher R2 and lower RMSE.

    (2)

    At each node per tree, (mathrm{m}_mathrm{try}) RGB-based VIs was randomly selected from all 14 vegetation indices, and the best split was chosen according the lowest Gini Index. (mathrm{m}_mathrm{try}) was tested from 3 to 10, and the final value was 6.

    (3)

    The other parameters in the RF model were kept as default values according to the (mathrm{RandomForestRegressor}) function in (mathrm{Scikit}-mathrm{learn library}).

    (4)

    For each tree, the data splitting process in each internal node was repeated from the root node until a pre-defined stop condition was reached.

    (5)

    Similar with LR and BPNN model, the RGB-based VIs with a correlation coefficient higher than 0.7 were selected as the input variables, and the output variable is LAI.

    Data analysis and performance evaluationThe repeated random sampling validation method was used to evaluate the generalization performance of different models. The training and testing dataset were randomly split 500 times. For each split, the LR, BPNN, and RF models were fitted to the training dataset, and the estimation accuracy was evaluated using the testing dataset. The coefficient of determination (R2), root mean square error (RMSE), and Akaike information criterion (AIC) of the training dataset were used for the assessment of models39, and the estimation accuracy was evaluated by R2 and RMSE of the testing dataset. Mathematically, a higher R2 corresponds to a smaller RMSE, and thus represents better model performance. The procedures of LAI inversion using UAV-based digital imagery and ML methods were shown in Fig. 4.Figure 4Flowchart of LAI inversion using UAV-based remote sensing and ML methods.Full size imageThe construction and evaluation of models was performed using Python 3.7.3 in Windows 10 operating system with Intel Core i7-9700 processor, 3.00 GHz CPU, and 32 GB RAM. The processing software is Spyder. The statistical analysis and figure plotting were performed in R × 64 4.0.3. More

  • in

    Gastric acid and escape to systemic circulation represent major bottlenecks to host infection by Citrobacter rodentium

    Woodward SE, Krekhno Z, Finlay BB. Here, There, and Everywhere: How Pathogenic Escherichia coli Sense and Respond to Gastrointestinal Biogeography. Cell Microbiol. 2019;21:e13107.CAS 
    Article 

    Google Scholar 
    Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA, Finlay BB, et al. Citrobacter rodentium: Infection, Inflammation and the Microbiota. Nat Rev Microbiol. 2014;12:612–23.CAS 
    Article 

    Google Scholar 
    Mowat AM, Agace WW. Regional Specialization Within the Intestinal Immune System. Nat Rev Immunol. 2014;14:nri3738.Article 

    Google Scholar 
    Population Dynamics – Latest Research and News | Nature [Internet]. [cited 2017 Nov 5]. Available from: https://www.nature.com/subjects/population-dynamicsAbel S, Abel zur Wiesch P, Davis BM, Waldor MK. Analysis of Bottlenecks in Experimental Models of Infection. PLoS Pathog. 2015;11:e1004823.Global Burden of Disease Study. 2013 Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 301 Acute and Chronic Diseases and Injuries in 188 Countries, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet Lond Engl 2015;386:743–800.Article 

    Google Scholar 
    WHO | Diarrhoeal Disease [Internet]. WHO. [cited 2017 Oct 22]. Available from: http://www.who.int/mediacentre/factsheets/fs330/en/.Crepin VF, Collins JW, Habibzay M, Frankel G. Citrobacter rodentium Mouse Model of Bacterial Infection. Nat Protoc. 2016;11:1851–76.CAS 
    Article 

    Google Scholar 
    Bhinder G, Sham HP, Chan JM, Morampudi V, Jacobson K, Vallance BA. The Citrobacter rodentium Mouse Model: Studying Pathogen and Host Contributions to Infectious Colitis. J Vis Exp. 2013;19:e50222.
    Google Scholar 
    Barthold SW, Coleman GL, Bhatt PN, Osbaldiston GW, Jonas AM. The Etiology of Transmissible Murine Colonic Hyperplasia. Lab Anim Sci. 1976;26:889–94.CAS 
    PubMed 

    Google Scholar 
    Deng W, Vallance BA, Li Y, Puente JL, Finlay BB. Citrobacter rodentium Translocated Intimin Receptor (Tir) is an Essential Virulence Factor Needed for Actin Condensation, Intestinal Colonization and Colonic Hyperplasia in Mice. Mol Microbiol. 2003;48:95–115.CAS 
    Article 

    Google Scholar 
    Schauer DB, Falkow S. Attaching and Effacing Locus of a Citrobacter freundii Biotype That Causes Transmissible Murine Colonic Hyperplasia. Infect Immun. 1993;61:2486–92.CAS 
    Article 

    Google Scholar 
    Elliott SJ, Yu J, Kaper JB. The Cloned Locus of Enterocyte Effacement From Enterohemorrhagic Escherichia coli O157:H7 is Unable to Confer the Attaching and Effacing Phenotype Upon E. coli K-12. Infect Immun. 1999;67:4260–3.CAS 
    Article 

    Google Scholar 
    Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. The Per Regulon of Enteropathogenic Escherichia coli: Identification of a Regulatory Cascade and a Novel Transcriptional Activator, the Locus of Enterocyte Effacement (LEE)-Encoded Regulator (Ler). Mol Microbiol. 1999;33:296–306.CAS 
    Article 

    Google Scholar 
    Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli Contains a Putative Type III Secretion System Necessary for the Export of Proteins Involved in Attaching and Effacing Lesion Formation. Proc Natl Acad Sci. 1995;92:7996–8000.CAS 
    Article 

    Google Scholar 
    Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. Attaching and Effacing Activities of Rabbit and Human Enteropathogenic Escherichia coli in Pig and Rabbit Intestines. Infect Immun. 1983;41:1340–51.CAS 
    Article 

    Google Scholar 
    Abel S, Abel zur Wiesch P, Chang HH, Davis BM, Lipsitch M, Waldor MK. Sequence Tag–based Analysis of Microbial Population Dynamics. Nat Methods. 2015;12:223–6.CAS 
    Article 

    Google Scholar 
    Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and Estimation Procedures. Am J Hum Genet. 1967;19:233–57. 3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang T, Abel S, Abel Zur Wiesch P, Sasabe J, Davis BM, Higgins DE, et al. Deciphering the Landscape of Host Barriers to Listeria monocytogenes Infection. Proc Natl Acad Sci . 2017;114:6334–9.CAS 
    Article 

    Google Scholar 
    Hullahalli K, Waldor MK. Pathogen Clonal Expansion Underlies Multiorgan Dissemination and Organ-Specific Outcomes During Murine Systemic Infection. eLife 2021;10:e70910.CAS 
    Article 

    Google Scholar 
    Petty NK, Feltwell T, Pickard D, Clare S, Toribio AL, Fookes M, et al. Citrobacter rodentium is an Unstable Pathogen Showing Evidence of Significant Genomic Flux. PLOS Pathog. 2011;7:e1002018.CAS 
    Article 

    Google Scholar 
    Yasutomi E, Hoshi N, Adachi S, Otsuka T, Kong L, Ku Y, et al. Proton Pump Inhibitors Increase the Susceptibility of Mice to Oral Infection with Enteropathogenic Bacteria. Dig Dis Sci. 2018;63:881–9.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-Resolution Sample Inference From Illumina Amplicon Data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Krimbas CB, Tsakas S. The Genetics of Dacus Oleae. v. Changes of Esterase Polymorphism in a Natural Population Following Insecticide Control-Selection or Drift? Evol Int J Org Evol. 1971;25:454–60.Article 

    Google Scholar 
    Peter BM, Slatkin M. Detecting Range Expansions From Genetic Data. Evol Int J Org Evol. 2013;67:3274–89.Article 

    Google Scholar 
    Schwarz R, Kaspar A, Seelig J, Künnecke B. Gastrointestinal Transit Times in Mice and Humans Measured with 27Al and 19F Nuclear Magnetic Resonance. Magn Reson Med. 2002;48:255–61.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS One. 2013;8:e61217.CAS 
    Article 

    Google Scholar 
    Petty NK, Bulgin R, Crepin VF, Cerdeño-Tárraga AM, Schroeder GN, Quail MA, et al. The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli. J Bacteriol. 2010;192:525–38.CAS 
    Article 

    Google Scholar 
    Mundy R, Pickard D, Wilson RK, Simmons CP, Dougan G, Frankel G. Identification of a Novel Type IV Pilus Gene Cluster Required for Gastrointestinal Colonization of Citrobacter rodentium. Mol Microbiol. 2003;48:795–809.CAS 
    Article 

    Google Scholar 
    Darwin AJ, Miller VL. Identification of Yersinia enterocolitica Genes Affecting Survival in an Animal Host Using Signature-Tagged Transposon Mutagenesis. Mol Microbiol. 1999;32:51–62.CAS 
    Article 

    Google Scholar 
    Maroncle N, Balestrino D, Rich C, Forestier C. Identification of Klebsiella pneumoniae Genes Involved in Intestinal Colonization and Adhesion Using Signature-Tagged Mutagenesis. Infect Immun. 2002;70:4729–34.CAS 
    Article 

    Google Scholar 
    Wiles S, Dougan G, Frankel G. Emergence of a ‘Hyperinfectious’ Bacterial State After Passage of Citrobacter rodentium Through the Host Gastrointestinal Tract. Cell Microbiol. 2005;7:1163–72.CAS 
    Article 

    Google Scholar 
    Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G, et al. Organ Specificity, Colonization and Clearance Dynamics In Vivo Following Oral Challenges with the Murine Pathogen Citrobacter rodentium. Cell Microbiol. 2004;6:963–72.CAS 
    Article 

    Google Scholar 
    Kitamoto S, Nagao-Kitamoto H, Kuffa P, Kamada N. Regulation of Virulence: The Rise and Fall of Gastrointestinal Pathogens. J Gastroenterol. 2016;51:195–205.Article 

    Google Scholar 
    Takumi K, de Jonge R, Havelaar A. Modelling Inactivation of Escherichia coli by Low pH: Application to Passage Through the Stomach of Young and Elderly People. J Appl Microbiol. 2000;89:935–43.CAS 
    Article 

    Google Scholar 
    Pienaar JA, Singh A, Barnard TG. Acid-Happy: Survival and Recovery of Enteropathogenic Escherichia coli (EPEC) in Simulated Gastric Fluid. Micro Pathog. 2019;128:396–404.CAS 
    Article 

    Google Scholar 
    McConnell EL, Basit AW, Murdan S. Measurements of Rat and Mouse Gastrointestinal pH, Fluid and Lymphoid Tissue, and Implications for In-Vivo Experiments. J Pharm Pharm. 2008;60:63–70.CAS 
    Article 

    Google Scholar 
    Tan A, Petty NK, Hocking D, Bennett-Wood V, Wakefield M, Praszkier J, et al. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species. Infect Immun. 2015;83:1384–95.CAS 
    Article 

    Google Scholar 
    Sanchez KK, Chen GY, Schieber AMP, Redford SE, Shokhirev MN, Leblanc M, et al. Cooperative Metabolic Adaptations in the Host Can Favor Asymptomatic Infection and Select for Attenuated Virulence in an Enteric Pathogen. Cell 2018;175:146–.e15.CAS 
    Article 

    Google Scholar 
    Cunningham R, Jones L, Enki DG, Tischhauser R. Proton Pump Inhibitor Use as a Risk Factor for Enterobacteriaceal Infection: A Case-Control Study. J Hosp Infect. 2018;100:60–4.CAS 
    Article 

    Google Scholar 
    Kelly OB, Dillane C, Patchett SE, Harewood GC, Murray FE. The Inappropriate Prescription of Oral Proton Pump Inhibitors in the Hospital Setting: A Prospective Cross-Sectional Study. Dig Dis Sci. 2015;60:2280–6.CAS 
    Article 

    Google Scholar 
    Federici S, Suez J, Elinav E. Our Microbiome: On the Challenges, Promises, and Hype. Results Probl Cell Differ. 2020;69:539–57.CAS 
    Article 

    Google Scholar  More

  • in

    Antifouling coatings can reduce algal growth while preserving coral settlement

    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De’Ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. U. S. A. 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bindoff, N. L. et al. Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).Richmond, R. H. Reproduction and recruitment in corals: Critical links in the persistence of reefs. In Life and Death of Coral Reefs (ed. Birkeland, C. E.) 175–197 (Springer, 1997).Chapter 

    Google Scholar 
    Trapon, M. L., Pratchett, M. S., Hoey, A. S. & Baird, A. H. Influence of fish grazing and sedimentation on the early post-settlement survival of the tabular coral Acropora cytherea. Coral Reefs 32, 1051–1059 (2013).ADS 
    Article 

    Google Scholar 
    Gallagher, C. & Doropoulos, C. Spatial refugia mediate juvenile coral survival during coral–predator interactions. Coral Reefs 36, 51–61 (2017).ADS 
    Article 

    Google Scholar 
    Vermeij, M. J. A. & Sandin, S. A. Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89, 1994–2004 (2008).PubMed 
    Article 

    Google Scholar 
    Vermeij, M. J. A., Smith, J. E., Smith, C. M., Vega Thurber, R. & Sandin, S. A. Survival and settlement success of coral planulae: Independent and synergistic effects of macroalgae and microbes. Oecologia 159, 325–336 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Ricardo, G. F., Jones, R. J., Nordborg, M. & Negri, A. P. Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci. Total Environ. 609, 277–288 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, C. A., Uthicke, S., Ricardo, G. F., Hoogenboom, M. O. & Negri, A. P. Climate change doubles sedimentation-induced coral recruit mortality. Sci. Total Environ. 768, 143897 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. In Oceanography and Marine Biology: An Annual Review 25–63 (CRC Press, 2008).Chapter 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020, 1–25 (2020).
    Google Scholar 
    Kirschner, C. M. & Brennan, A. B. Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211–229 (2012).ADS 
    Article 

    Google Scholar 
    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).ADS 
    Article 

    Google Scholar 
    Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, 1–8 (2011).Article 

    Google Scholar 
    Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
    Google Scholar 
    Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 1–11 (2015).Article 

    Google Scholar 
    Carpenter, R. C. & Edmunds, P. J. Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol. Lett. 9, 268–277 (2006).Article 

    Google Scholar 
    Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).ADS 
    Article 

    Google Scholar 
    Linares, C., Cebrian, E. & Coma, R. Effects of turf algae on recruitment and juvenile survival of gorgonian corals. Mar. Ecol. Prog. Ser. 452, 81–88 (2012).ADS 
    Article 

    Google Scholar 
    McCook, L. J., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: A review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).ADS 
    Article 

    Google Scholar 
    Nugues, M. M., Smith, G. W., Van Hooidonk, R. J., Seabra, M. I. & Bak, R. P. M. Algal contact as a trigger for coral disease. Ecol. Lett. 7, 919–923 (2004).Article 

    Google Scholar 
    Fong, J. et al. Allelopathic effects of macroalgae on Pocillopora acuta coral larvae. Mar. Environ. Res. 151, 104745. https://doi.org/10.1016/j.marenvres.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Hauri, C., Fabricius, K. E., Schaffelke, B. & Humphrey, C. Chemical and physical environmental conditions underneath mat- and canopy-forming macroalgae, and their effects on understorey corals. PLoS ONE 5, 1–9 (2010).Article 

    Google Scholar 
    Bay, L. K. et al. Reef Restoration and Adaptation Program : Intervention Technical Summary. A report provided to the Australian Government by the Reef Restoration and Adaptation Program. (2019).Anthony, K. R. N. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, 1–14 (2020).Article 

    Google Scholar 
    Vardi, T. et al. Six priorities to advance the science and practice of coral reef restoration worldwide. Restor. Ecol. 29, 1–7 (2021).Article 

    Google Scholar 
    Heyward, A. J., Rees, M. & Smith, L. D. Coral spawning slicks harnessed for large-scale coral culture. Progr. Abstr. Int. Conf. Sci. Asp. Coral Reef Assess. Monit. Restor. 104, 188–189 (1999).
    Google Scholar 
    Harrison, P., Villanueva, R. & De la Cruz, D. Coral Reef Restoration using Mass Coral Larval Reseeding (Southern Cross University, 2016).
    Google Scholar 
    de la Cruz, D. W. & Harrison, P. L. Enhancing coral recruitment through assisted mass settlement of cultured coral larvae. PLoS ONE 15, e0242847. https://doi.org/10.1371/journal.pone.0242847 (2020).Article 

    Google Scholar 
    Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94 (2017).ADS 
    Article 

    Google Scholar 
    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    Miller, M. W. et al. Settlement yields in large-scale in situ culture of Caribbean coral larvae for restoration. Restor. Ecol. https://doi.org/10.1111/rec.13512 (2021).Article 

    Google Scholar 
    Baria-Rodriguez, M. V., de la Cruz, D. W., Dizon, R. M., Yap, H. T. & Villanueva, R. D. Performance and cost-effectiveness of sexually produced Acropora granulosa juveniles compared with asexually generated coral fragments in restoring degraded reef areas. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 891–900 (2019).Article 

    Google Scholar 
    Doropoulos, C., Elzinga, J., ter Hofstede, R., van Koningsveld, M. & Babcock, R. C. Optimizing industrial-scale coral reef restoration: Comparing harvesting wild coral spawn slicks and transplanting gravid adult colonies. Restor. Ecol. 27, 758–767 (2019).Article 

    Google Scholar 
    Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & MacKenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114–117 (2008).ADS 
    Article 

    Google Scholar 
    Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob. Change Biol. 19, 303–315 (2013).ADS 
    Article 

    Google Scholar 
    Randall, C. J., Giuliano, C., Heyward, A. J. & Negri, A. P. Enhancing coral survival on deployment devices with microrefugia. Front. Mar. Sci. 8, 662263. https://doi.org/10.3389/fmars.2021.662263 (2021).Article 

    Google Scholar 
    Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).ADS 
    Article 

    Google Scholar 
    Arnold, S. N., Steneck, R. S. & Mumby, P. J. Running the gauntlet: Inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).ADS 
    Article 

    Google Scholar 
    Speare, K. E., Duran, A., Miller, M. W. & Burkepile, D. E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar. Pollut. Bull. 144, 189–195 (2019).PubMed 
    Article 

    Google Scholar 
    Tebben, J., Guest, J. R., Sin, T. M., Steinberg, P. D. & Harder, T. Corals like it waxed: Paraffin-based antifouling technology enhances coral spat survival. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Almeida, E., Diamantino, T. C. & de Sousa, O. Marine paints: The particular case of antifouling paints. Prog. Org. Coat. 59, 2–20 (2007).Article 

    Google Scholar 
    Negri, A. P., Smith, L. D., Webster, N. S. & Heyward, A. J. Understanding ship-grounding impacts on a coral reef: Potential effects of anti-foulant paint contamination on coral recruitment. Mar. Pollut. Bull. 44, 111–117 (2002).PubMed 
    Article 

    Google Scholar 
    Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).Article 

    Google Scholar 
    Jacobson, A. H. & Willingham, G. L. Sea-nine antifoulant: An environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 258, 103–110 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    Silva, V. et al. Isothiazolinone biocides: Chemistry, biological, and toxicity profiles. Molecules 25, 991. https://doi.org/10.3390/molecules25040991 (2020).Article 
    PubMed Central 

    Google Scholar 
    da Silva, A. R., da Guerreiro, A. S., Martins, S. E. & Sandrini, J. Z. DCOIT unbalances the antioxidant defense system in juvenile and adults of the marine bivalve Amarilladesma mactroides (Mollusca: Bivalvia). Comp. Biochem. Physiol. Part C 250, 109169 (2021).
    Google Scholar 
    Cima, F. et al. Preliminary evaluation of the toxic effects of the antifouling biocide Sea-Nine 211TM in the soft coral Sarcophyton cf. glaucum (Octocorallia, Alcyonacea) based on PAM fluorometry and biomarkers. Mar. Environ. Res. 83, 16–22 (2013).PubMed 
    Article 

    Google Scholar 
    Wendt, I., Backhaus, T., Blanck, H. & Arrhenius, Å. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Ecotoxicology 25, 871–879 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, L. et al. Identification of molecular targets for 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in teleosts: New insight into mechanism of toxicity. Environ. Sci. Technol. 51, 1840–1847 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martins, S. E., Fillmann, G., Lillicrap, A. & Thomas, K. V. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 34, 34–52 (2018).PubMed 
    Article 

    Google Scholar 
    Moon, Y. S., Kim, M., Hong, C. P., Kang, J. H. & Jung, J. H. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051 ®, Sea-Nine 211 ® ) on non-target marine fish. Ecotoxicol. Environ. Saf. 180, 23–32 (2019).PubMed 
    Article 

    Google Scholar 
    Su, Y. et al. Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei. Environ. Pollut. 251, 708–716 (2019).PubMed 
    Article 

    Google Scholar 
    Fonseca, V. B., da Guerreiro, A. S., Vargas, M. A. & Sandrini, J. Z. Effects of DCOIT (4,5-dichloro-2-octyl-4-isothiazolin-3-one) to the haemocytes of mussels Perna perna. Comp. Biochem. Physiol Part C 232, 108737. https://doi.org/10.1016/j.cbpc.2020.108737 (2020).Article 

    Google Scholar 
    Ferreira, V. et al. Effects of nanostructure antifouling biocides towards a coral species in the context of global changes. Sci. Total Environ. 799, 149324 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    de Campos, B. G. et al. A preliminary study on multi-level biomarkers response of the tropical oyster Crassostrea brasiliana to exposure to the antifouling biocide DCOIT. Mar. Pollut. Bull. 174, 112141 (2022).Article 

    Google Scholar 
    Maia, F. et al. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 270, 150–157 (2015).Article 

    Google Scholar 
    Santos, J. V. N. et al. Can encapsulation of the biocide DCOIT affect the anti-fouling efficacy and toxicity on tropical bivalves?. Appl. Sci. 10, 1–12 (2020).Article 

    Google Scholar 
    Detty, M. R., Ciriminna, R., Bright, F. V. & Pagliaro, M. Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc. Chem. Res. 47, 678–687 (2014).PubMed 
    Article 

    Google Scholar 
    Korschelt, K., Tahir, M. N. & Tremel, W. A Step into the future: Applications of nanoparticle enzyme mimics. Chemistry 24, 9703–9713 (2018).PubMed 
    Article 

    Google Scholar 
    Herget, K. et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 29, 1–8 (2017).Article 

    Google Scholar 
    Korschelt, K. et al. CeO2-: X nanorods with intrinsic urease-like activity. Nanoscale 10, 13074–13082 (2018).PubMed 
    Article 

    Google Scholar 
    Herget, K., Frerichs, H., Pfitzner, F., Tahir, M. N. & Tremel, W. Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation. Adv. Mater. 30, 1–28 (2018).Article 

    Google Scholar 
    Doropoulos, C., Ward, S., Marshell, A., Diaz-Pulido, G. & Mumby, P. J. Interactions among chronic and acute impacts on coral recruits: The importance of size-escape thresholds. Ecology 93, 2131–2138 (2012).PubMed 
    Article 

    Google Scholar 
    Ji, Z. et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6, 5366–5380 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herget, K. et al. Supporting Information: Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 29, 1603823 (2017).Article 

    Google Scholar 
    Sokolova, A. et al. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. Biofouling 28, 143–157 (2012).PubMed 
    Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    ImageJ Release Notes. https://imagej.nih.gov/ij/notes.html.Arganda-Carreras, I. et al. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).PubMed 
    Article 

    Google Scholar 
    Arganda-Carreras, I. et al. Supplementary Data: Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification: Trainable Weka Segmentation User Manualhttps://doi.org/10.1093/bioinformatics/btx180 (2017).Vyas, N., Sammons, R. L., Addison, O., Dehghani, H. & Walmsley, A. D. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci. Rep. 6, 2–11 (2016).Article 

    Google Scholar 
    Carbone, D. A., Gargano, I., Pinto, G., De Natale, A. & Pollio, A. Evaluating microalgae attachment to surfaces: A first approach towards a laboratory integrated assessment. Chem. Eng. Trans. 57, 73–78 (2017).
    Google Scholar 
    Moreno Osorio, J. H. et al. Early colonization stages of fabric carriers by two Chlorella strains. J. Appl. Phycol. 32, 3631–3644 (2020).Article 

    Google Scholar 
    Ricardo, G. F. et al. Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Sci. Total Environ. 777, 146079. https://doi.org/10.1016/j.scitotenv.2021.146079 (2021).ADS 
    Article 
    PubMed 

    Google Scholar 
    Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).Article 

    Google Scholar 
    Negri, A. P. & Heyward, A. J. Inhibition of Fertilization and Larval Metamorphosis of the Coral Acropora millepora (Ehrenberg, 1834) by Petroleum Products. Mar. Pollut. Bull. 41, 420–427 (2000).Article 

    Google Scholar 
    Nordborg, F. M., Flores, F., Brinkman, D. L., Agustí, S. & Negri, A. P. Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis. Sci. Rep. 8, 1–12 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R Core Team. Linear and nonlinear mixed effects models contact. Linear nonlinear Mix. Eff. Model. 3, 103–135 (2021).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2019).
    Google Scholar 
    Lenth, R. V. Emmeans: Estimated Marginal Means. https://cran.r-project.org/package=emmeans (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Dafforn, K. A., Lewis, J. A. & Johnston, E. L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 62, 453–465 (2011).PubMed 
    Article 

    Google Scholar 
    Wu, R. et al. Room temperature synthesis of defective cerium oxide for efficient marine anti-biofouling. Adv. Compos. Hybrid Mater. https://doi.org/10.1007/s42114-021-00256-7 (2021).Article 

    Google Scholar 
    Hu, M. et al. Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl. Mater. Interfaces 10, 44722–44730 (2018).PubMed 
    Article 

    Google Scholar 
    He, X. et al. Haloperoxidase mimicry by CeO2-x nanorods of different aspect ratios for antibacterial performance. ACS Sustain. Chem. Eng. 8, 6744–6752 (2020).Article 

    Google Scholar 
    Saxena, P. & Harish,. Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr. Pollut. Rep. 4, 128–142 (2018).Article 

    Google Scholar 
    Xu, Y. et al. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: Induction of biofilm formation and stress response. Environ. Sci. Pollut. Res. 26, 9293–9304 (2019).Article 

    Google Scholar 
    Xu, Y. et al. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. Environ. Sci. Pollut. Res. 25, 34765–34776 (2018).Article 

    Google Scholar 
    Tang, Y. et al. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 21, 59–71 (2005).PubMed 
    Article 

    Google Scholar 
    Gunari, N. et al. The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling 27, 137–149 (2011).PubMed 
    Article 

    Google Scholar 
    Maia, F. et al. Silica nanocontainers for active corrosion protection. Nanoscale 4, 1287–1298 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martins, R. et al. Effects of a novel anticorrosion engineered nanomaterial on the bivalve: Ruditapes philippinarum. Environ. Sci. Nano 4, 1064–1076 (2017).Article 

    Google Scholar 
    Gutner-Hoch, E. et al. Antimacrofouling efficacy of innovative inorganic nanomaterials loaded with booster biocides. J. Mar. Sci. Eng. 6, 15. https://doi.org/10.3390/jmse6010006 (2018).Article 

    Google Scholar 
    Negri, A. P. & Heyward, A. J. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper. Mar. Environ. Res. 51, 17–27 (2001).PubMed 
    Article 

    Google Scholar 
    Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    Jorissen, H., Baumgartner, C., Steneck, R. S. & Nugues, M. M. Contrasting effects of crustose coralline algae from exposed and subcryptic habitats on coral recruits. Coral Reefs 39, 1767–1778 (2020).Article 

    Google Scholar 
    Figueiredo, J. et al. Toxicity of innovative anti-fouling nano-based solutions to marine species. Environ. Sci. Nano 6, 1418–1429 (2019).Article 

    Google Scholar 
    Shafir, S., Abady, S. & Rinkevich, B. Improved sustainable maintenance for mid-water coral nursery by the application of an anti-fouling agent. J. Exp. Mar. Biol. Ecol. 368, 124–128 (2009).Article 

    Google Scholar  More

  • in

    Experimental evidence for core-Merge in the vocal communication system of a wild passerine

    Study site and animalsWe studied n = 64 flocks of Japanese tits in mixed deciduous-coniferous forests in Nagano and Gumma (36°17-31’N, 138°26-39’E), Japan. Although most of the birds had not been individually colour-ringed, all the experimental trials were conducted at least 400 m apart; previous observations on colour-ringed individuals showed that this distance was enough to ensure the collection of data from different individuals30. In this site, one of the major predators of small birds is the bull-headed shrike, which is often mobbed by small birds including Japanese tits.Playback stimulusTo test whether Japanese tits recognize an alert-recruitment call sequence as a single unit, we prepared four treatments: (i) one-speaker playback of alert-recruitment call sequences, (ii) two-speaker playback of alert-recruitment call sequences with alert and recruitment calls played from different speakers, (iii) one-speaker playback of recruitment-alert call sequences, (iv) two-speaker playback of recruitment-alert call sequences with recruitment and alert calls played from different speakers (Fig. 3). We created sound files for these treatments using the software program Audacity 2.1.3 (http://www.audacityteam.org). For one-speaker treatments, we composed mono sound files where call sequences were repeated onto a single channel, whereas for two-speaker treatments, we composed stereo sound files where either alert or recruitment calls were repeated onto the right or left channels, respectively. All the files contained an equal number of alert calls (30 calls) and recruitment calls (30 calls) at the same rate (one call every 3 s), resulting in 90-s of stimuli (Fig. 3), which corresponds to the range of the natural calling rate of alert-recruitment sequences during mobbing by Japanese tits10. For all stimuli, within-call-sequence intervals between alert and recruitment calls were constant (0.1 s), which is within the range of intervals of these calls in natural call sequences11,17. In contrast, between-call-sequence intervals varied from 1.50 to 1.81 (median = 1.68) due to the difference in call length, but were constant across playback stimuli within the same “block” where the four treatments were created using the same call exemplars (see below). While alert calls are composed of three distinct note types, recruitment calls are strings of the same note type that vary in repetition number. Since the repetition number can vary depending on predator type10, we conducted predator exposure experiments to Japanese tit flocks (n = 12) and recorded call sequences towards a bull-headed shrike life-like specimen. In response to a shrike specimen, tits produced alert-recruitment call sequences with a recruitment note repetition number ranging from 5 to 15. Since the interquartile range of repetition number was 6.75 to 10, we used recruitment calls with 7–10 notes as playback stimuli in this study. In consideration for the possible influence of sound editing procedure, we created all the stimuli in the same manner; we copied alert and recruitment call parts separately from recording files, and pasted them onto background noise files to produce all four types of stimuli. Playback amplitudes were constant across treatments, 70 dB at 1.0 m measured using a sound level meter (SM-325, AS ONE Corporation). Therefore, the differences between treatments only depend on whether these calls are produced as sequences from the same source and how the calls are ordered.We carefully designed experiments to control for the possibility that individual-based acoustic features in alert and recruitment calls might influence tits’ responses. First, we prepared 16 unique sets of alert and recruitment calls using either calls from the same bird (n = 8 source individuals, n = 8 unique call sets) or from two different birds (n = 16 source individuals, n = 8 unique call sets). Then, we created the four types of treatments (i.e., alert-recruitment call sequences from the same speaker, from different speakers, and in reversed order from the same speaker and from different speakers) from each of the alert-recruitment call sets, resulting in 16 blocks of playback stimuli (Supplementary Table 3). This allows us to test the possible influence of individual-based acoustic variation on receivers’ responses.We were also careful to avoid the possible influence of population-level signatures of acoustic features: we only used Japanese tits’ call sequences that had been previously recorded from the same study population. We saved the sound files in .wav format (16-bit accuracy, 48-kHz sampling rate) onto a playback device (iPhone 8, Apple Inc.). We used the default Music app (Apple Inc.) to playback the sound files.ExperimentWe (TNS and YKM) conducted experimental trials from 26 October to 4 December 2020 and during the period of 0800 and 1600 h (Japan Standard Time). We did not conduct trials under wet and windy weather conditions, since these may influence behavioural patterns of forest birds31. First, we searched for and located a flock of Japanese tits. Upon finding a flock, we fixed a taxidermic specimen of bull-headed shrike in a perching posture on the branch at 1.8 ± 0.2 m (mean ± s.d., n = 64) above the ground. Then, we placed either one or two Bluetooth speakers (SoundLink Micro, BOSE) on tree branches at 1.6 ± 0.2 m (mean ± s.d., n = 96) above the ground, and oriented them upwards to control for the possible influence of directionality. We set the distance between the shrike specimen and the speaker(s) at 5 m. For trials with two speakers, we set the distance between speakers at 10 m, mimicking the situation in which two birds are calling (Fig. 3). The shrike specimen was first covered with a black cloth and was exposed by removing the cloth just before each trial.We began playbacks when at least two Japanese tits were present within 15 m from the shrike specimen. During 90-s of playbacks, we recorded (i) whether birds approached within 2-m of the shrike specimen during the playback and (ii) whether birds exhibited wing flicking displays12,13. We counted the number of individuals within 15 m from the shrike during 90-s of playbacks and considered it as flock size. During trials, we sat on the ground at ca. 10 m from the shrike specimen to decrease the influence of the observers’ presence on bird behaviour. To account for the inter-observer reliability32, we calculated intra-class correlation coefficient (ICC; icc function in the R package irr) between us. The lowest ICC was 0.998, indicating high degree of inter-observer reliability for the two behavioural measurements. We also video-recorded the responses of tits using a digital video camera (FDR-AX60, SONY). After completion of each trial, we checked the video recording and made an on-the-spot confirmation of the exact location at which each bird made the closest approach to the shrike specimen during the 90-s of playbacks. Then, using a tape measure, we recorded the minimum approach distance of birds to the shrike specimen. Thus, our final data set consisted of the most reliable observations confirmed by two experimenters and video evidence.The order of trials was randomized within each block (n = 16 blocks), each of which is composed of a unique alert-recruitment call set but includes four treatments differing in the number of speakers and call order. Therefore, responses to all four treatments were observed under largely similar conditions. In a few trials, the first bird to approach the shrike specimen was from a heterospecific species, such as a varied tit (n = 1) or a long-tailed tit (n = 1). To account for the possibility that these birds evoke mobbing behaviour in Japanese tits, we only used the data from instances where the first individual to approach the shrike was a Japanese tit. Otherwise, we repeated the same treatment at a different site.We used 64 unique playbacks created from 16 unique sets of alert-recruitment calls for 64 trials in order to avoid pseudoreplication33. We prepared two specimens of male bull-headed shrikes and used each of them for the equal number of trials. We did not use specimens of female shrikes since females migrate from the study site in late summer and only males were observed during the study period.Statistical analysisWe analyzed the effect of playback treatments on the mobbing behaviours of Japanese tits using generalized linear mixed models in R34,35. We used the proportions of Japanese tits in flocks that (i) approached within 2-m of the shrike specimen and (ii) exhibited wing flicking displays. For the analysis of predator approach, we prepared two vectors (i.e., the number of Japanese tits that approached the shrike specimen and the number of Japanese tits that did not approach the shrike specimen). Then, we created a single response variable by binding together these two vectors using cbind function. Similarly, for the analysis of wing flicking displays, we created a single response variable by binding two vectors (i.e., the number of tits that exhibit wing flicking and the number of tits that did not exhibit wing flicking). We fitted playback treatments as a fixed term, and flock size (maximum number of Japanese tits observed during 90-s of playback) and the way of creating playback stimuli (whether the two call types were recorded from a single individual or two individuals) as covariates. We also included identity of alert-recruitment call sets that were used for creating playback stimuli (i.e., call sets from either one or two source individuals) and identity of shrike specimens as random terms. We used a binomial error distribution and logit-link function (glmer in the R package lme4) for these models. Statistical significance was calculated by log-likelihood ratio tests using anova in the R package stats. We further conducted post-hoc pairwise comparisons between treatments by using estimated marginal means (emmeans in the R package emmeans). When making pairwise comparisons, we adjusted p-values by applying a false discovery rate control for multiple testing36. All tests were two-sided and the significance level was set at α = 0.05. Exact p-values are reported when p ≥ 0.0001.Ethics statementAll protocols were approved by the ethics committee of Kyoto University, the Ministry of the Environment, and the Forestry Agency of Japan, and adhered to Guidelines for the Use of Animals of the Association for the Study of Animal Behaviour/Animal Behavior Society37.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More