More stories

  • in

    Study of cattle microbiota in different regions of Kazakhstan using 16S metabarcoding analysis

    Comparative characteristics of rations for feeding cattle from different regions of the Republic of Kazakhstan and the impact of animal feeding types on the faecal microbiotaDue to the huge differences in the natural and climatic conditions of Kazakhstan, animals from different regions of Kazakhstan were enrolled for this study. The difference in soil and climatic conditions of different zones has a significant impact on the type of feeding (Table 1) and the composition of diets, which has a certain effect on the microbiota of intestinal contents and methanogenic archaea in particular.Table 1 Animal diets in different regions of Kazakhstan.Full size tableIn the course of the research work, regions and specific agricultural formations were identified in the context of these regions.In North Kazakhstan, the fodder base is represented by such fodders as alfalfa hay, herb hay, alfalfa haylage, wheat straw, fodder wheat and sunflower cake. The feed is mainly of 2 quality classes. The live weight of cattle ranged from 375 to 480 kg. Feeding type: hay-concentrate and haylage-hay-concentrate.In the Western region, the animals were on the pasture, represented by the green mass of feather grass, hair, sage and tansy. Beef cattle are represented by the following breeds: Kazakh white-headed, Aberdeen-Angus and Hereford. Average live weight is 350–550 kg.In the Southeast region, the fodder base consists of wheat hay, sainfoin + alfalfa hay, mountain hay, herb haylage, corn silage and crushed corn. The feed is mainly of 2 and 3 classes. Hay-concentrate type of feeding is used, as well as pastures. Livestock of Angus, Kazakh white-headed breeds and animals of the local population are kept. Live weight of young animals is in the range of 360–380 kg.The diets of the Southern Region include natural grass hay, alfalfa hay, wheat straw, alfalfa haylage and concentrates. Hay-concentrate type of livestock feeding is widespread in the region. The average live weight of bulls for fattening of the Kazakh white-headed and Angus breeds—360–420 kg with a daily increase in live weight of 870–920 g.The composition of the fecal microbiota depending on the type of feeding is presented in Table 2.Table 2 The content of methanogenic archaea in feces.Full size tableFrom the data of Table 2 it follows that the largest amount of Bacteria was found in the faeces of animals with silage-concentrated feeding (98.59 ± 13.0%), and the smallest—with pasture-concentrated (93.24 ± 3.73%) and haylage—concentrated (93.8 ± 12.41%) types of feeding. The differences amounted to 5.35 and 4.79 absolute percent, respectively. However, the differences were not significant at P  More

  • in

    Evolutionary implications of new Postopsyllidiidae from mid-Cretaceous amber from Myanmar and sternorrhynchan nymphal conservatism

    Systematic palaeontologyOrder Hemiptera Linnaeus, 1758Suborder Sternorrhyncha Amyot et Audinet-Serville, 1843Superfamily Protopsyllidioidea Carpenter, 1931Family Postopsyllidiidae Hakim, Azar et Huang, 2019Genus Megalophthallidion Drohojowska et Szwedo, gen. nov.LSID urn:lsid:zoobank.org:act:A6F71390-9B8E-4A19-8F30-C2A024B6EFB1Type speciesMegalophthallidion burmapateron Drohojowska et Szwedo, sp. nov.; by present designation and monotypy.EtymologyGeneric name is derived from Classic Greek megas (μέγας)—large, ophthalmos (ὀφθαλμός)—an eye and Greek form of generic name Psyllidium. Gender: masculine.Type localityNorthern Myanmar: state of Kachin, Noije bum 2001 Summit Site amber mine in the Hukawng Valley, SW of Maingkhwan.Type stratumLowermost Cenomanian, Upper Cretaceous (‘mid-Cretaceous’).DiagnosisHead capsule with 12 stiff setae on tubercles (18 setae in Postopsyllidium); fore wing without pterostigma (tiny pterostigma, widening of ScP + RA present in Postopsyllidium); vein CuP not thickened distally (distinctly thickened distally in Postopsyllidium); profemur with a row of ventral (ventrolateral) setae (two rows in Postopsyllidium).Megalophthallidion burmapateron Drohojowska et Szwedo, sp. nov.LSID urn:lsid:zoobank.org:act:F3F971F4-AE04-4F41-98B0-9A0A04470625.(Figs. 1A–F, 2A–I).Figure 1Megalophthallidion burmapteron gen. et sp. nov., holotype (MAIG 6687), imago. (A) Photo of body, ventral side; (B) photo of right antennae and (C) drawing of antenna; (D) drawing of body, dorsal side; (E) drawing of thorax structure with sclerites marked: red—pronotum; orange—mesopraescutum; yellow—mesoscutum; light green—mesoscutellum, dark green—mesopostnotum; light blue—metascutum; dark blue—metascutellum; violet—metapostnotum; (F) photo of thorax dorsal side. Scale bars: 0.5 mm (A), 0.2 mm (B–D), 0.1 mm (F).Full size imageFigure 2Megalophthallidion burmapteron gen. et sp. nov., holotype (MAIG 6687), imago. (A) Photo of right fore wing; (B) photo of right wings; (C) photo of antenna and proleg; (D) photo of proleg and mesoleg, and (E) photo of femur of proleg, and (F) photo of right metatarsus and left mesotarsus in the background, and (G) photo of right mesotarsus of mesoleg, and (H) Photo of tarsi; (I) photo of male genital block. Scale bars: 0.5 mm (A–D), 0.2 mm (B,E,F,H), 0.1 mm (G,I).Full size imageMaterialHolotype, number MAIG 6687 (BUB 96), deposited in Museum of Amber Inclusions (MAIG), University of Gdańsk, Poland. Imago, a complete and well-preserved male. Piece of amber 8 × 6 × 3 mm, cut from larger lump, polished flat on both sides.Type localityNorthern Myanmar: state of Kachin, Noije bum 2001 Summit Site amber mine in the Hukawng Valley, SW of Maingkhwan.Type stratumLowermost Cenomanian, Upper Cretaceous (‘mid-Cretaceous’).DiagnosisAs for the genus with the following additions: three ocelli distinct, antennomere IX the longest, about as long as pedicel, antennomeres III–VII and XI of similar length, antennomere XII the shortest, subconically tapered in apical portion. Paramere lobate, ventral margin with acute, small process, apical and dorsal margins rounded. Aedeagus geniculately bent at base, directed dorsally, tapered apicad.DescriptionMale (Figs. 1A–F, 2A–I). Head with compound eyes distinctly wider than pronotum (Fig. 1D–F). Compound eyes subglobular, protruding laterally. Vertex short in midline, about 2.5 times as wide as posterior margin and as long in middle; trapezoidal, anterior margin slightly arched, lateral margins diverging posteriad, posterior margin shallowly arched, disc of vertex with distinct setae on large tubercles: four setae at posterior margin, two at anterior angles of compound eyes, two medial, over the median ocellus. Three ocelli present, median ocellus distinct, visible from above, lateral ocelli near anterior angles of compound eyes. Frons about as wide as long in midline, two rows of setae on tubercles, upper row at level of median ocellus, lower one, below half of compound eye height. Clypeus, elongate, triangular, in lower portion roof-like; two setae on tubercles near upper margin. Genae very narrow. Rostrum reaching slightly beyond mesocoxae, apical segment slightly shorter than subapical one, darker. Antennae bases placed at lower margin of compound eyes; antennal fovea elevated; scapus shorter than pedicel, cylindrical; pedicel cylindrical; antennomeres IIIrd–VIIth and XIth of similar length, VIIIth slightly longer than VIIth, as long as Xth antennomere, IXth the longest, XIIth the shortest, tapered apically; rhinaria absent.Thorax (Fig. 1D–F): pronotum quadrangular, about as long as mesothorax; pronotum with anterior and posterior margins parallel, merely arcuate, disc with transverse groove in the median portion, lateral margins slightly arcuate, two distinct setae on tubercles in anterolateral angle, two setae on tubercles anterior margin at distance1/3 to median line, three distinct setae on tubercles in posterolateral angles. Mesopraescutum subtriangular, with apex widely rounded, about 0.4 times as wide as pronotum, about 0.4 times as long as wide, delicately separated from mesoscutum. Mesoscutum as wide as pronotum at widest point, distinctly narrowed medially, anterior angles rounded, anterolateral margin sigmoid, lateral angle acute, posterior angles wide, posterior margin V-shape incised, posterolateral areas of mesoscutum disc declivent posteriorly; disc with two setae on tubercles, at 1/3 of mesoscutum width. Mesoscutellum about as long as wide, diamond-shape, anterior and lateral angles acute, posterior angle rounded. Mesopostnotum in form of transverse band, slightly widened in median portion. Metascutum narrower than mesoscutum, anterior angles widely rounded, lateral angles acute, anterolateral margin concave, posterior margin arcuate, with deep median arcuate incision. The suture between metascutum and metascutellum weakly visible, metascutellum subtriangular, longer than wide at base.Parapteron with three distinct setae.Fore wing (Fig. 2A,B) membranous, narrow, elongate, about 3.5 times as long as wide, widest at 2/3 of length. Anterior margin merely arcuate, slightly bent at very base, anteroapical angle widely arcuate, apex rounded, posteroapical angle widely arcuate, tornus arcuate, claval margin straight, with incision between terminals of Pcu (claval apex) and A1. Stem ScP + R + MP + CuA slightly arcuate, very short stalk ScP + R + MP + CuA leaving basal cell, stem ScP + R oblique, straight, forked in basal half of fore wing length, branch ScP + RA, oblique, reaching anterior margin slightly distally of half of fore wing length, slightly distally of ending of CuA2 branch; branch RP slightly arcuate, a little more curved in basal section, reaching margin at anteroapical angle; stalk MP + CuA slightly shorter than basal cell; stem MP almost straight, forked in apical half of fore wing, at about 2/3 of fore wing length, with three terminals reaching margin between apex and posteroapical angle; stem CuA shorter than branches CuA1 and CuA2, about half as long as branch CuA1; claval vein CuP weak at base, not thickened distally; claval vein Pcu straight, claval vein A1 straight. Basal cell present, subtriangular, about twice as long as wide, basal veinlet cua-cup oblique, no other veinlets present; cell r (radial) very long, longer than half of fore wing length; cell m (medial) the shortest, shorter than cell cu (areola postica). Margins of fore wing with fringe of long setae, starting on costal margin near base of fore wing, ending at level of middle of cell cu; longitudinal veins with distinct, scarcely but evenly dispersed, movable setae; terminal section of CuP with two setae; costal margin with row of short, densely distributed setae, apical margin, tornus and claval margin with rows of scaly setae.Hind wing (Fig. 2B) membranous, shorter than fore wing, 3.23 times as long as wide. Costal margin bent at base, then almost straight up to the level of ScP + RA end and wing coupling lobe, then straight to anteroapical angle, anteroapical angle widely arcuate, apex arcuate, posteroapical angle arcuate, tornus straight, claval margin merely arcuate, posteroclaval angle angulate; stem ScP + R + MP bent at base, then straight, stem ScP + R short, branch ScP + RA short, about as long as stem ScP + R, branch RP arcuate basally than straight, reaching apex; stem MP arcuate, forked slightly distad CuA1 terminus level, branch MP1+2 slightly arcuate, reaching margin at posteroapical angle, branch MP3+4 straight, reaching tornus; stem CuA slightly bent at base, then straight, forked slightly distad ScP + R forking, branch CuA1 arcuate, branch CuA2 short, straight, slightly oblique, reaching tornus; claval vein CuP weak, visible only at base, claval vein Pcu slightly arcuate; wing coupling apparatus (fold) with a few short setae.Legs slender, relatively long, profemora armed (Fig. 2C–H). Procoxa as long as profemur, narrow, flattened. Protrochanter scaphoid, elongate, with long apical and subapical setae. Profemur flattened laterally, about as long as protibia, ventrally armed with four large setae on elevated plinths; dorsal margin with row of short, decumbent setae. Protibia narrow, rounded in cross section, covered with short setae, a few longer setae in distal portion. Protarsus—single, long tarsomere, plantar surface with row of semi-erect setae; tarsal claws long, straight, directed ventrally, no arolium nor empodium.Mesocoxa elongate, narrow, slightly flattened. Mesotrochanter scaphoid. Mesofemur slender, flattened laterally, dorsal margin with short setae. Mesotibia subequal to mesofemur, slender, covered with setae, two apical setae slightly thicker and longer. Mesotarsus with three tarsomeres, basimesotarsomere the longest, shorter than cumulative length of mid- and apical mesotarsomere, plantar margins with setae, two apical setae slightly longer and thicker; midmesotarsomere the shortest, 1/3 of basimesotarsomere length, a few setae on plantar surface; apical tarsomere shorter than basimesotarsomere, twice as long as midmesotarsomere, plantar surface with a few, scarcely dispersed setae, tarsal claws long, narrow, directed ventrally, no arolium nor empodium.Metacoxa conical, narrow. Metatrochanter scaphoid, elongate. Metafemur slender, laterally flattened, longer than mesofemur, dorsal margin with row of short setae. Metatibia, long, slender, 1.6 times as long as metafemur, with suberect setae of different size, two larger and longer and two shorter setae subapical setae. Metatarsus slightly less than half of metatibia length, with three tarsomeres, basimetatarsomere the longest, more than twice as long as apical metatarsomere, 1.5 times as long as combined length of mid- and apical metatarsomere, plantar surface with scarce decumbent setae; mid metatarsomere the shortest, 1/4 of basimetatarsomere length, plantar surface with a few setae, two apical ones slightly thicker; apical metatarsomere about 0.4 of basimetatarsomere length, with scarcely dispersed setae on along plantar surface; tarsal claws, long, slender, other pretarsal structures absent.Abdomen (Fig. 1F) narrowly attached to thorax, tergite segment shorter, 2nd tergite distinctly longer, 3rd to 8th tergites of similar length; pygofer narrowing apicad, ventral margin strongly elongated posteriorly; anal tube short, directed posterodorsad, anal style shorter than anal tube. Paramere lobate, ventral margin with acute, small process, apical and dorsal margins rounded. Aedeagus (Fig. 2I) geniculately bent at base, directed dorsad, tapered apicad.Female. Unknown.Megalophthallidion sp. (5th instar nymph)(Figs. 3A–D, 4A–F)Figure 3Megalophthallidion sp. (MAIG 6688), nymph. (A) Photo of body, dorsal side and (B) drawing of body dorsal side; (C) photo of body dorsal side and (D) drawing of body ventral side. Scale bars: 0.5 mm (A–D).Full size imageFigure 4Megalophthallidion sp. (MAIG 6688), nymph. Photo of clypeus and (B) drawing of clypeus; (C) photo of proleg, and (D) photo of mesoleg, and (E) photo of metaleg; (F) photo of posterior part of abdomen ventral side. Scale bars: 0.1 mm (A–F).Full size imageMaterialNymph, 5th instar, MAIG 6688 (BUB 1799), deposited in Museum of Amber Inclusions (MAIG), University of Gdańsk, Poland. Piece of amber 13 × 6 × 2 mm, cut from larger lump, polished flat on one side, more convex on the other.Diagnostic charactersThe nymph of Megalophthallidion gen. nov. is similar in general body shape to the only known fossil protopsyllidioidean nymph described from Lower Cretaceous Lebanese amber—Talaya batraba Drohojowska et Szwedo, 2013. The nymph of Talaya batraba is 2nd or 3rd instar, therefore some features are difficult to compare with this last instar nymph of Megalophthallidion gen. nov. The morphological states observed in those two specimens are: head covered with strongly expanded disc and expanded disc of pronotum, however shapes and ratios of these structures differ; compound eyes on ventral side of head, shifted laterad (ommatidia on cones in T. batraba, while ventroposterior expansions are present in Megalophthallidion gen. nov.); compound eyes visible from above as short, stout cones in fissure between posterior margin of disc (hypertrophied vertex) and anterior margin of pronotum (compound eyes (?) are visible on dorsal side of Permian Aleuronympha bibulla Riek, 1974); in Megalophthallidion gen. nov. rostrum reached mesocoxa, while in Talaya batraba distinctly exceeds length of the body; abdomen with 9 segments; tergites of abdominal segments 5th–9th expanded posterolaterad in form of fan-like expansion; 9th abdominal segment short, placed ventral; anal tube short, cylindrical, epiproct (?) globular.DescriptionNymph, 5th instar (Figs. 3A–D, 4A–F). Body oval shaped, dorso-ventrally flattened, 1.5 times longer than wide with segmentation visible; on the ventral side slightly concave. Length of body c. 1.56 mm long, outline, in dorsal view, maximum width of body 0.94 mm; length of head and pronotum (cephaloprothorax) c. 0.46 mm in midline, width c. 0.83 mm; cumulative length of mesonotum + metanotum c. 0.25 mm; abdomen c. 0.8 mm long. Dorsal side (Fig. 3A,B) with distinct median line (ecdysial line), not reaching anterior or posterior margin of the body, the line distinctly roof-like in abdominal portion. Anterior margin of head (cephaloprothorax) disc arcuate, lateral angles rounded; anterior margin of pronotum arcuate, lateral margins arcuately diverging posteriad, posterior margin distinctly arcuate, anterior angles widely rounded, posterior angles acutely rounded, disc elevated, convex, lateral portions declivitous; the fissure between posterior margin of head disc and anterior margin of pronotum narrow, widened medially, with stalked compound eyes popping out.Head partly separated from prothorax, wide in ventral view. Bases of antennae protruding anterolaterally, wide, anterior margin arcuate, with a small lump extending anteriorly connecting margin with vertex expansion. Suture separating anteclypeus and postclypeus visible in ventral aspect (Fig. 4A,B). Postclypeus about three times as long as wide, oval, slightly swollen, without any setae; weak traces of salivary pump muscle attachments visible. Anteclypeus about as long as postclypeus, widened in upper section below clypeal suture, convex, carinately elevated in lower section, with sides distinctly declivitous, clypellus long, carinately elevated. Lora (mandibulary plates) distinct, separated from anteclypeus by shallow suture, with upper angles at half of postclypeus length, lower angles at half of anteclypeus length, about as wide as half of postclypeus width. Maxillary plates narrow. Genal portion of head enlarged, medial portion arcuately convex; lateral sections narrowing laterally, terminally encircling bases of compound eyes. Antennae short (Fig. 3C,D), placed in front of genal portion. Antennal flagellum indistinctly subdivided into four segments. Rostrum (Fig. 4A,B) three-segmented, 0.2 mm long, with apex reaching apex of mesocoxae; apical segment about 2.5 times as long as subapical one.No lateral sclerites on meso- and metathorax, only one plus one large medial sclerite on both meso- and metathorax. Mesothoracic and metathoracic wing pads distinct, wide, subtriangular, with posterior apices directed posteriorly; lateral portions of mesothoracic wing pads arcuate. Fore wing pad 0.6 mm long, with small, straight humeral lobe, forming a right angle, not protruding anteriorly. Mesothoracic tergites slightly larger than metathoracic segments (respectively c. 0.14 mm and c. 0.12 mm long in midline, 0.26 mm and 0.27 mm in lateral lines); mesothoracic tergum with distinct median elevation (low double crest with ecdysial line in between), slightly wider than long in midline, anterior margin arcuate, lateral margins straight, subparallel, posterior margin concave. Metathoracic wing pad apex slightly exceeding mesothoracic wing pad. Metathoracic tergum wider than long, slightly shorter than mesothoracic tergum, with distinct elevation in the middle.Legs relatively long (Figs. 3C,D, 4C–E). Coxae of legs placed near the median axis of the body. Prolegs: procoxal pit with margins elevated, procoxa conical (c. 0.1 mm long), protrochanter scaphoid, about as long as procoxa, profemur c. 0.13 mm long, slightly flattened laterally, merely thickened, protibia longer than profemur, c. 0.23 mm long; tarsus shorter than protibia, basiprotarsomere about as long as apical protarsomere, the latter with distinct tarsal claws, and wide arolium. Mesoleg similar to proleg, mesocoxa conical (c. 0.1 mm long), mesotrochanter scaphoid, mesofemur (c. 0.13 mm) slightly flattened laterally, mesotibia slightly longer than mesofemur (c. 0.18 mm), mesotarsus slightly shorter than mesotibia, three-segmented, basimesotarsomere the longest (c. 0.07 mm), about as long as combined length of mid- and apical mesotarsomeres (c. 0.04 mm respectively), arolium wide, tarsal claws distinct. Metaleg: metacoxa conical (c. 0.1 mm), metatrochanter scaphoid, about as long as metacoxa (c. 0.12 mm). Metafemur (c. 0.17 mm) slightly more thickened than pro- and mesofemur, metatibia slightly longer (0.19 mm) than pro- and mesotibiae. Metatarsus three-segmented: basimetatarsomere about as long (0.08 mm) as combined length of mid- and apical metatarsomeres (0.04 mm respectively), arolium lobate, wide, tarsal claws distinct, widely spread.Abdomen (Fig. 3A–D) 9-segmented, narrow at base, widening fan-shape posteriorly, 1st segment visible from above, segmentation visible, abdominal terga 5th–9th expanded posterolaterally. Tergites carinately elevated in the middle, separated by ecdysial line. 1st sternite visible in ventral view, sternites 2nd–4th fused medially, sternites 5th–9th separated; 9th abdominal segment short (Fig. 4F), placed ventrally, under tergal expansion; anal tube short, cylindrical, epiproct (?) globular. More

  • in

    Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services

    DeVault, T. L., Rhodes, O. E. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Google Scholar 
    Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Ecoscience 10, 303–311 (2003).
    Google Scholar 
    Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).PubMed 

    Google Scholar 
    Inger, R., Cox, D. T. C., Per, E., Norton, B. A. & Gaston, K. J. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 6, 7015–7023 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Moleón, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A. & Owen-Smith, N. Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biol. Rev. 89, 1042–1054 (2014).PubMed 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. Biogeogr. 26, 1459–1470 (2017).
    Google Scholar 
    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. Condor 88, 318–323 (1986).
    Google Scholar 
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecol. 79, 81–88 (2017).ADS 

    Google Scholar 
    Kane, A. & Kendall, C. J. Understanding how mammalian scavengers use information from avian scavengers: Cue from above. J. Anim. Ecol. 86, 837–846 (2017).PubMed 

    Google Scholar 
    Sebastián-González, E. et al. Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology. https://doi.org/10.1002/ecy.3519 (2021).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, 2015).
    Google Scholar 
    Bassi, E., Battocchio, D., Marcon, A., Stahlberg, S. & Apollonio, M. Scavenging on ungulate carcasses in a mountain forest area in Northern Italy. Mamm. Study 43, 1–11 (2018).
    Google Scholar 
    Enari, H. & Enari, H. S. Not avian but mammalian scavengers efficiently consume carcasses under heavy snowfall conditions: A case from northern Japan. Mamm. Biol. 101, 419–428 (2021).
    Google Scholar 
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. 89, 2156–2167 (2020).PubMed 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Google Scholar 
    Inagaki, A. et al. Vertebrate scavenger guild composition and utilization of carrion in an East Asian temperate forest. Ecol. Evol. 10, 1223–1232 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: Drivers and ecosystem functioning implications. Ecography (Cop.) 43, 1143–1155 (2020).
    Google Scholar 
    Cortés-Avizanda, A., Selva, N., Carrete, M. & Donázar, J. A. Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl. Ecol. 10, 265–272 (2009).
    Google Scholar 
    Sebastián-González, E. et al. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97, 95–105 (2016).PubMed 

    Google Scholar 
    Beasley, J. C., Olson, Z. H. & Devault, T. L. Carrion cycling in food webs: Comparisons among terrestrial and marine ecosystems. Oikos 121, 1021–1026 (2012).
    Google Scholar 
    Ray, R. R., Seibold, H. & Heurich, M. Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim. Biodivers. Conserv. 37, 77–88 (2014).
    Google Scholar 
    Sugiura, S. & Hayashi, M. Functional compensation by insular scavengers: The relative contributions of vertebrates and invertebrates vary among islands. Ecography (Cop.) 41, 1173–1183 (2018).
    Google Scholar 
    Wilmers, C. C., Stahler, D. R., Crabtree, R. L., Smith, D. W. & Getz, W. M. Resource dispersion and consumer dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 6, 996–1003 (2003).
    Google Scholar 
    Putman, A. R. J. Patterns of carbon dioxide evolution from decaying carrion: Decomposition of small mammal carrion in temperate systems, Part 1. Oikos 31, 47–57 (1978).CAS 

    Google Scholar 
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
    Google Scholar 
    Selva, N., Jȩdrzejewska, B., Jȩdrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
    Google Scholar 
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 

    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Moleón, M. et al. Carrion availability in space and time. In Carrion Ecology and Management (eds Pedro, P. O. et al.) 23–44 (Springer, 2019).
    Google Scholar 
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).
    Google Scholar 
    Animal Care and Use Committee. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J. Mamm. 79, 1416–1431 (1998).
    Google Scholar 
    Committee of Reviewing Taxon Names and Specimen Collections. Guidelines for the Procedure of Obtaining Mammal Specimens as Approved by the Mammal Society of Japan (Revised in 2009) (Mammal Society of Japan, 2009).
    Google Scholar 
    Yoshino, M. Microclimate: New Edition (Chijin Shokan, 1986).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).Sokal, R. R. & Rohlf, F. J. Biometry 4th edn. (WH Freeman and Company, 2012).MATH 

    Google Scholar 
    Fisher, R. A. Statistical Methods for Research Workers (Oliver and Boyd, 1934).MATH 

    Google Scholar 
    Therneau, T. A Package for Survival Analysis in S. Version 2.38 (2015).Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
    Google Scholar 
    Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).
    Google Scholar 
    DeVault, T. L., Brisbin, I. L. & Rhodes, O. E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Google Scholar  More

  • in

    Following the niche: the differential impact of the last glacial maximum on four European ungulates

    MaterialsWe collected from the literature and available databases a dataset of radiocarbon dates from Europe (West of 60°E and North of 37°N) either obtained from remains of the four analyzed species or from archaeological layers where they have been observed. However, we only considered observations dated between 7500 and 47,000 cal BP: their scarcity before this period may bias the GAMs, and after it, domesticated cattle, pigs and (later) horses arrived in Europe, making it difficult to differentiate them from their wild forms.We excluded any record fitting one or more of the following conditions: unreliable; not in accord with the expected chronology of their archaeological layer; without a reported standard error; available only as terminus ante/post quem.All dates were calibrated with OxCal5 version 4.4 using the IntCal20 curve51, and we further excluded any record for which calibration resulted in an error, resulting in the number of points presented in Table 1 as “Original dataset” (available at the link https://doi.org/10.6084/m9.figshare.20510364).Table 1 Number of observations for each species.Full size tableSDMs based on GAMs need presence/background data, not frequencies; moreover, multiple observations (i.e., presence in different archaeological layers) from the same site and time slice are likely to introduce stronger sample biases linked to chrono-geographically differential sampling efforts. For this reason, we collapsed our observations by keeping only one point per grid cell per time slice for each species, leaving the number of observations reported in Table 1 as “Collapsed datasets”, used for all the analyses presented in this work.To perform all analyses, we used the R package pastclim v. 1.042 to couple each observation from the collapsed datasets to paleoclimatic reconstructions published in8 by setting dataset = “Beyer2020”. These are based on the Hadley CM3 model, include 14 different bioclimatic variables at a spatial resolution of 0.5°, and are available for the whole world every 1000 years until 22 kya and every 2000 years before that date (referred to in the manuscript as “time slices”). Specifically, each observation was associated with the relevant bioclimatic reconstruction based on its average age and spatial coordinates.As already mentioned, the four species analyzed show different preferences regarding temperature, habitat, and altitude. Therefore, for the Species Distribution Modelling, we choose five environmental variables that should be able to capture such differences: two measures of temperature (BIO5, maximum temperature of the warmest month, and BIO6, minimum temperature of the coldest month); two variables to help capture habitat differentiation (BIO12, total annual precipitation, and Net Primary Productivity, NPP), and one measure of topography (rugosity42).High collinearity can be problematic in SDMs; we confirmed that all our variables had a correlation below 0.7, a threshold commonly adopted for this kind of analysis52,53.Whilst the GAMs predicted all time points; we visualized our results by creating an average estimate for the following periods: pre-LGM (from the beginning of the time range analyzed, i.e., 47 kya to 27 kya), LGM (from 27 to 18 kya), Late Glacial (from 18 to 11.7 kya), Holocene (from 11.7 kya to the end of the time range analyzed, i.e., 7.5 kya).MethodsWe generated 25 sets of background points for each species to adequately represent the existing climatic space in our SDMs. Each set was generated by sampling, for each observation, 50 random locations matched by time. This resulted in n = 25 datasets (“repetitions”) of background points and presences (observations) for each species, which we used to repeat our analyses to account for the stochastic sampling of the background. For each dataset, we used GAMs to fit two possible models: a “constant niche” model, which included only the environmental variables as covariates, and a “changing niche” model, that also included interactions of each environmental variable with time (fitted as tensor products).In GAMs, the effect of a given continuous predictor on the response variable (in our case, the logit transformed probability of a presence) is represented by a smooth function; this smooth function can be linear or non-linear and can become highly complex in shape depending on the number of knots selected by the GAM fitting algorithm. The interaction between two covariates is modelled by tensor products54; this approach is equivalent to an interaction term in a linear model but with the added complexity of the smooth function. In our models, we confine tensor products to the interaction between an environmental variable and time; a simple way to think about such a tensor product is that it allows the smooth representation of the relationship between the variable and the probability of a presence to change progressively over time.GAMs were fitted using the mgcv package in R54 using thin plate regression splines (TPNR; bs = “tp”, default in mgcv) for environmental variables and their tensor products with time in the “niche changing” models. The GAM algorithm automatically selects the complexity of the smooth most appropriate to the data that are being fitted; as GAM can have issues with overfitting, we added an additional penalty against overly complex smooths (gamma = 1.4) and used Restricted Maximum Likelihood (REML = TRUE), as recommended by54. It is possible that even with these settings, the complexity of the smooth is not sufficient; we used mgcv::gam.check() to check this, and increased the basis dimension of the smooth, k, to make sure that k-1 was larger than the estimated degrees of freedom (edf). We found the best maximum thresholds for k to be 16 for bio06 and 10 for all other variables.We checked for non-linear correlation among variables using the mgcv::collinearity function and checked the values of estimated concurvity. All estimates were below the threshold of 0.8 in all models, runs and variables except for a few instances for time (Supplementary Figs. 5–8). We consider this not to be worrying: this is most likely a result of sample bias, and GAM is known to be robust to correlation/concurvity55,56.We verified the model assumptions by inspecting the residuals using the R package DHARMa57. Standard tests for deviations from the expected distribution and dispersion were non-significant for all repetitions for all species, as were the tests for outliers. Furthermore, we tested for spatial autocorrelation among residuals by computing Moran’s I; all tests were either non-significant or, when significance was detected, the estimate of Moran’s I was very close to zero, revealing a trivial deviation from the assumptions which should not impact the results (Supplementary Tables 1–4).We performed model choice (Supplementary Tables 5–8) by comparing the constant- and changing-niche models for each combination of species and repetition using the Akaike Information Criterion (AIC). AIC strongly supported the changing-niche model in all species and repetitions, an inference supported by the higher Nagelkerke R2 and expected deviance for those models than for the constant-niche ones (Supplementary Tables 5–8).The model fit for each of the changing niche GAMs was evaluated with the Boyce Continuous Index25,26, designed to be used with presence-only data58,59. We set a threshold of Pearson’s correlation coefficient  >  0.8 to define acceptable models25 (Supplementary Table 9).The relative importance of each environmental variable was quantified for all the models above the BCI threshold of 0.8 in two different ways. Firstly, we computed the total deviance explained by each variable by simply fitting a GAM with only that variable. We then estimated the unique deviance explained by each variable by comparing the full model with one for which that variable was excluded (i.e., we computed the explained deviance lost by dropping that predictor). The difference between the two values represents the deviance explained by a variable which can also be accounted for by other variables (i.e., the deviance in common with other variables).To achieve more robust predictions60, we averaged in two different ensembles the repetitions for the changing niche GAMs with BCI  > 0.8: by mean and median. This step is intended to reduce the weight of models that are highly sensitive to the random sampling of the background60. Then, for each species, we selected the ensemble (either based on mean or median) with the higher BCI as the most supported and used it to perform all further analyses.The effect of different variables through time was visualized by plotting the interactions of the GAMs. For each model with a BCI  > 0.8, we used the R package gratia27 to generate a surface with time as the x-axis, the environmental variable as the y-axis, and the effect size as the z-axis (visualized as colour shades). We then plotted the mean surface for each species, which captures the signal consistent across all randomized background sets.To visualize the prediction for each species, we then transformed the predicted probabilities of occurrence from the ensemble into binary presence/absences by using the threshold needed to get a minimum predicted area encompassing 99% of our presences (function ecospat.mpa() from the ecospat R package61). The binary predictions were then visualized using the mean over the time steps within each major climatic period.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Assessing a megadiverse but poorly known community of fishes in a tropical mangrove estuary through environmental DNA (eDNA) metabarcoding

    Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451 (2001).CAS 

    Google Scholar 
    Wagner, G. M. & Sallema-Mtui, R. in Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean Estuaries of the World (eds S. Diop, P. Scheren, & J. Machiwa) 183–207 (2016).Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14 (2019).CAS 

    Google Scholar 
    De La Morinière, E. C., Pollux, B., Nagelkerken, I. & Van der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).ADS 

    Google Scholar 
    Branton, M. & Richardson, J. S. Assessing the value of the umbrella-species concept for conservation planning with meta-analysis. Conserv. Biol. 25, 9–20 (2011).PubMed 

    Google Scholar 
    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).PubMed 

    Google Scholar 
    Zainal Abidin, D. H. et al. DNA-based taxonomy of a mangrove-associated community of fishes in Southeast Asia. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598-021-97324-1 (2021).CAS 
    Article 

    Google Scholar 
    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. Roy. Soc. B Biol. Sci. 368, 20120482 (2013).
    Google Scholar 
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).CAS 
    PubMed 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chong, V. C., Lee, P. K. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066. https://doi.org/10.1111/j.1095-8649.2010.02685.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zainal Abidin, D. H. et al. Ichthyofauna of Sungai Merbok Mangrove Forest Reserve, northwest Peninsular Malaysia, and its adjacent marine waters. Check List 17, 601–631. https://doi.org/10.15560/17.2.601 (2021).Article 

    Google Scholar 
    Ong, J. et al. in Hutan paya laut Merbok, Kedah: Pengurusan hutan, persekitaran fizikal dan kepelbagaian flora. Vol. 23 Siri kepelbagaian biologi hutan (ed Ku Aman KA Abd Rahim AR, Abu Hassan MN, Abdullah M, Nor Hazliza MB, Latiff A) 21–33 (Jabatan Perhutanan Semenanjung Malaysia, 2015).Hookham, B., Shau-Hwai, A. T., Dayrat, B. & Hintz, W. A baseline measure of tree and gastropod biodiversity in replanted and natural mangrove stands in Malaysia: Langkawi Island and Sungai Merbok. Trop. Life Sci. Res. 25, 1 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Jamaluddin, J. A. F. et al. DNA barcoding of shrimps from a mangrove biodiversity hotspot. Mitochondrial DNA Part A 30, 618–625. https://doi.org/10.1080/24701394.2019.1597073 (2019).CAS 
    Article 

    Google Scholar 
    Mansor, M., Mohammad-Zafrizal, M., Nur-Fadhilah, M., Khairun, Y. & Wan-Maznah, W. Temporal and spatial variations in fish assemblage structures in relation to the physicochemical parameters of the Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 110–127 (2012).
    Google Scholar 
    Alshari, N. F. M. A. H. et al. Metabarcoding of Fish Larvae in the Merbok River reveals species diversity and distribution along its mangrove environment. Zool. Stud. 60, 60–76. https://doi.org/10.6620/ZS.2021 (2021).Article 

    Google Scholar 
    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Hupało, K. et al. An urban Blitz with a twist: Rapid biodiversity assessment using aquatic environmental DNA. Environ. DNA 3, 200–213 (2020).
    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).CAS 
    PubMed 

    Google Scholar 
    Ahn, H. et al. Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding. PLoS ONE 15, e0231127 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polanco, F. A. et al. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53, 1606–1619 (2021).
    Google Scholar 
    Zhang, H., Yoshizawa, S., Iwasaki, W. & Xian, W. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters. Front. Mar. Sci. 6, 515. https://doi.org/10.3389/fmars.2019.00515 (2019).Article 

    Google Scholar 
    Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 1–11 (2017).ADS 
    CAS 

    Google Scholar 
    West, K. et al. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27, 1942–1957 (2021).
    Google Scholar 
    Hallam, J., Clare, E. L., Jones, J. I. & Day, J. J. Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environ. DNA 3, 1247–1266 (2021).
    Google Scholar 
    Seymour, M. et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 4, 1–12 (2021).
    Google Scholar 
    Aglieri, G. et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 30, 3127–3139 (2021).PubMed 

    Google Scholar 
    Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. PLoS ONE 14, e0210357 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lecaudey, L. A., Schletterer, M., Kuzovlev, V. V., Hahn, C. & Weiss, S. J. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv. Mar. Freshwat. Ecosyst. 29, 1785–1800 (2019).
    Google Scholar 
    Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Klymus, K. E., Marshall, N. T. & Stepien, C. A. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS ONE 12, 24. https://doi.org/10.1371/journal.pone.0177643 (2017).CAS 
    Article 

    Google Scholar 
    Wilson, C. et al. Tracking ghosts: Combined electrofishing and environmental DNA surveillance efforts for Asian carps in Ontario waters of Lake Erie. Manag. Biol. Invasion 5, 225–231. https://doi.org/10.3391/mbi.2014.5.3.05 (2014).Article 

    Google Scholar 
    Alexander, J. B. et al. Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs 39, 159–171. https://doi.org/10.1007/s00338-019-01875-9 (2020).Article 

    Google Scholar 
    Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541. https://doi.org/10.1111/mec.13481 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fritts, A. K. et al. Development of a quantitative PCR method for screening ichthyoplankton samples for bigheaded carps. Biol. Invasions 21, 1143–1153 (2019).
    Google Scholar 
    Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9, e114639 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amberg, J. J., Merkes, C. M., Stott, W., Rees, C. B. & Erickson, R. A. Environmental DNA as a tool to help inform zebra mussel, Dreissena polymorpha, management in inland lakes. Manag. Biol. Invasion 10, 96 (2019).
    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zainal Abidin, D. H. & Noor Adelyna, M. A. Environmental DNA (eDNA) Metabarcoding as a Sustainable Tool of Coastal Biodiversity Assessment in Universities as Living Labs for Sustainable Development 211–225 (Springer, 2020).Sard, N. M. et al. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environ. DNA 1, 368–384 (2019).
    Google Scholar 
    Hoffman, J. C., Kelly, J. R., Trebitz, A. S., Peterson, G. S. & West, C. W. Effort and potential efficiencies for aquatic non-native species early detection. Can. J. Fish. Aquat. Sci. 68, 2064–2079 (2011).
    Google Scholar 
    Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 1–12 (2017).
    Google Scholar 
    Whitfield, A. K. Fish species in estuaries—From partial association to complete dependency. J. Fish Biol. 97, 1262–1264 (2020).PubMed 

    Google Scholar 
    Carpenter, K. & Niem, V. The living marine resources of the Western Central Pacific. Volume 5. Bony Fishes Part 3 (Menidae to Pomacentridae). Vol. 5, 2791–3380 (Food and Agriculture Organization of the United Nations, 2001).Carpenter, K. E. & Niem, V. FAO species identification guide for fishery purposes. The Living Marine Resources of the Western Central Pacific. Volume 6. Bony Fishes Part 4 (Labridae to Latimeriidae), Estuarine Crocodiles, Sea Turtles, Sea Snakes and Marine Mammals. Vol. 6, 3381–4218 (Food and Agriculture Organization of the United Nations, 2001).Carpenter, K. E. & Niem, V. H. The living marine resources of the Western Central Pacific: Batoid fishes, chimaera and bony fishes part 1 (Elopidae to Linophrynidae). Vol. 3, 1397–2068 (Food and Agriculture Organization of the United Nations, 1999).Carpenter, K. E. & Niem, V. H. The living marine resources of the Western Central Pacific. Volume 4. Bony Fishes Part 2 (Mugilidae to Carangidae). Vol. 4, 2069–2790 (Food and Agriculture Organization of the United Nations, 1999).Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).CAS 
    PubMed 

    Google Scholar 
    Pentinsaari, M., Ratnasingham, S., Miller, S. E. & Hebert, P. D. N. BOLD and GenBank revisited—Do identification errors arise in the lab or in the sequence libraries?. PLoS ONE 15, e0231814–e0231814. https://doi.org/10.1371/journal.pone.0231814 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ardura, A., Planes, S. & Garcia-Vazquez, E. Applications of DNA barcoding to fish landings: Authentication and diversity assessment. Zookeys 365, 49–65. https://doi.org/10.3897/zookeys.365.6409 (2013).Article 

    Google Scholar 
    ZainalAbidin, D. H. et al. Population genetics of the black scar oyster, Crassostrea iredalei: Repercussion of anthropogenic interference. Mitochondrial DNA Part A 27, 647–658 (2016).CAS 

    Google Scholar 
    Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 283 (2017).
    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4 (2016).CAS 
    Article 

    Google Scholar 
    Vasconcelos, R. P. et al. Global patterns and predictors of fish species richness in estuaries. J. Anim. Ecol. 84, 1331–1341 (2015).PubMed 

    Google Scholar 
    Shah, A. S. R. M., Hashim, Z. H. & Sah, S. A. M. Freshwater fishes of Gunung Jerai, Kedah Darul Aman: A preliminary study. Trop. Life Sci. Res. 20, 59 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Md. Zain, K. et al. Fish diversity along streams in Ulu Muda Forest Reserve, Kedah, Peninsular Malaysia. Malayan Nat. J. 73, 349–361 (2021).
    Google Scholar 
    Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).CAS 
    PubMed 

    Google Scholar 
    Wang, S. et al. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 755, 142622. https://doi.org/10.1016/j.scitotenv.2020.142622 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Southeast Asian Fisheries Development Centre (SEAFDEC). Status and trends of sharks fisheries in South East Asia in Malaysia Shark Fisheries (Fisheries and Resources Monitoring System (FIRMS), Rome, 2004).Zhang, S., Zhao, J. & Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625 (2020).ADS 

    Google Scholar 
    Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).CAS 

    Google Scholar 
    Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. https://doi.org/10.1038/s42003-018-0192-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morey, K. C., Bartley, T. J. & Hanner, R. H. Validating environmental DNA metabarcoding for marine fishes in diverse ecosystems using a public aquarium. Environ. DNA 2, 330–342 (2020).
    Google Scholar 
    Shaw, J. L. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).
    Google Scholar 
    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220. https://doi.org/10.1111/1755-0998.12956 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoeckle, M. Y., Das Mishu, M. & Charlop-Powers, Z. Improved environmental DNA reference library detects overlooked marine fishes in New Jersey, United States. Front. Mar. Sci. 7, 226 (2020).
    Google Scholar 
    Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).
    Google Scholar 
    Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 270, S96–S99 (2003).CAS 

    Google Scholar 
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Roy. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 

    Google Scholar 
    Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samplers. Curr. Biol. 29, R401–R402 (2019).CAS 
    PubMed 

    Google Scholar 
    Bylemans, J., Gleeson, D. M., Duncan, R. P., Hardy, C. M. & Furlan, E. M. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environ. DNA 1, 402–414 (2019).
    Google Scholar 
    Chin, A. T. et al. Beta diversity changes in estuarine fish communities due to environmental change. Mar. Ecol. Prog. Ser. 603, 161–173 (2018).ADS 

    Google Scholar 
    Sloterdijk, H. et al. Composition and structure of the larval fish community related to environmental parameters in a tropical estuary impacted by climate change. Estuar. Coast. Shelf Sci. 197, 10–26 (2017).ADS 

    Google Scholar 
    Malaysian Meteorological Department. Tinjauan Cuaca bagi Tempoh November 2017 hingga April 2018. National Climate Centre: Ministry of Science, Technology and Innovation. Retrieved on February 1st, 2018, from https://www.met.gov.my/iklim/ramalanbermusim/ (2017).Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 

    Google Scholar 
    Illumina. 16S Metagenomic Sequencing Library Preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf 1–28 (2013).Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (Babraham Bioinformatics (Babraham Institute, 2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of Fishes: Genera, species, references. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names/ (2021).Ebert, D. A. & Fowler, S. Sharks of the World (Princeton University Press, 2013).
    Google Scholar 
    R Core Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com42, 14 (2015).McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’. Commun. Ecol. Pack. 2, 1–295 (2013).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar  More

  • in

    Global decline of pelagic fauna in a warmer ocean

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 

    Google Scholar 
    Choy, C., Wabnitz, C., Weijerman, M., Woodworth-Jefcoats, P. & Polovina, J. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 549, 9–25 (2016).
    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 5239 (2014).CAS 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Curr. Biol. 24, R1074–R1076 (2014).CAS 

    Google Scholar 
    Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS 

    Google Scholar 
    Angel, M. V. & de C. Baker, A. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2, 1–30 (1982).
    Google Scholar 
    Cook, A. B., Sutton, T. T., Galbraith, J. K. & Vecchione, M. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep Sea Res. 2 98, 279–291 (2013).
    Google Scholar 
    Hidaka, K., Kawaguchi, K., Murakami, M. & Takahashi, M. Downward transport of organic carbon by diel migratory micronekton in the western equatorial Pacific: its quantitative and qualitative importance. Deep Sea Res. 1 48, 1923–1939 (2001).Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342 (2015).
    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1639–1664 (2021).CAS 

    Google Scholar 
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 

    Google Scholar 
    Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 
    Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).
    Google Scholar 
    Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).
    Google Scholar 
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 

    Google Scholar 
    Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
    Google Scholar 
    Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).
    Google Scholar 
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Google Scholar 
    Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).
    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. PICES Scientific Report 38 (North Pacific Marine Science Organization, 2010).Kaartvedt, S., Staby, A. & Aksnes, D. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456, 1–6 (2012).
    Google Scholar 
    Gjøsaeter, J. & Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish Fisheries Technical Paper 193 (FAO, 1980).Catul, V., Gauns, M. & Karuppasamy, P. K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 21, 339–354 (2011).
    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).
    Google Scholar 
    Annasawmy, P. et al. Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the south west Indian Ocean: insight from acoustics and stable isotopes. Deep Sea Res. 1 138, 85–97 (2018).CAS 

    Google Scholar 
    Haris, K. et al. Sounding out life in the deep using acoustic data from ships of opportunity. Sci. Data 8, 23 (2021).CAS 

    Google Scholar 
    Irigoien, X. et al. The Simrad EK60 echosounder dataset from the Malaspina circumnavigation. Sci. Data 8, 259 (2021).
    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
    Google Scholar 
    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).CAS 

    Google Scholar 
    Proud, R., Cox, M., Le Guen, C. & Brierley, A. Fine-scale depth structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers. Mar. Ecol. Prog. Ser. 598, 35–48 (2018).
    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119 (2017).CAS 

    Google Scholar 
    Ramsay, J. O. & Silverman, B. W. Functional Data Analysis (Springer, 2005).Moriarty, R. & O’Brien, T. D. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).
    Google Scholar 
    Aksnes, D. L. et al. Light penetration structures the deep acoustic scattering layers in the global ocean. Sci. Adv. 3, e1602468 (2017).
    Google Scholar 
    Bertrand, A., Ballón, M. & Chaigneau, A. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE 5, e10330 (2010).
    Google Scholar 
    Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548 (2013).CAS 

    Google Scholar 
    Godø, O. R., Patel, R. & Pedersen, G. Diel migration and swimbladder resonance of small fish: some implications for analyses of multifrequency echo data. ICES J. Mar. Sci. 66, 1143–1148 (2009).
    Google Scholar 
    Agersted, M. D. et al. Mass estimates of individual gas-bearing mesopelagic fish from in situ wideband acoustic measurements ground-truthed by biological net sampling. ICES J. Mar. Sci. 78, 3658–3673 (2021).
    Google Scholar 
    Backus, R. & Craddock, J. in Oceanic Sound Scattering Prediction (eds Anderson, N. R. & Zahuranec, B. J.) 529–547 (Springer, 1977).Longhurst, A. Ecological Geography of the Sea (Elsevier, 2010).Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: A biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).
    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. 1 126, 85–102 (2017).
    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge Univ. Press, 2010).Cheung, W. W. L., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).CAS 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
    Google Scholar 
    Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J. & Brierley, A. S. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 76, 718–733 (2019).
    Google Scholar 
    Chapman, R. P., Bluy, O. Z., Adlington, R. H. & Robison, A. E. Deep scattering layer spectra in the Atlantic and Pacific oceans and adjacent seas. J. Acoust. Soc. Am. 56, 1722–1734 (1974).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proc. R. Soc. B 286, 20190353 (2019).
    Google Scholar 
    Escobar-Flores, P. C., O’Driscoll, R. L., Montgomery, J. C., Ladroit, Y. & Jendersie, S. Estimates of density of mesopelagic fish in the Southern Ocean derived from bulk acoustic data collected by ships of opportunity. Polar Biol. 43, 43–61 (2020).
    Google Scholar 
    Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Large mesopelagic fish biomass in the Southern Ocean resolved by acoustic properties. Proc. R. Soc. B 289, 20211781 (2022).
    Google Scholar 
    Reygondeau, G. et al. Climate change-induced emergence of novel biogeochemical provinces. Front. Mar. Sci. 7, 657 (2020).
    Google Scholar 
    Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).
    Google Scholar 
    Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J. & DeVries, T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. Sci. Adv. 7, eabd7554 (2021).
    Google Scholar 
    Grimaldo, E. et al. Investigating the potential for a commercial fishery in the northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. 77, 2541–2556 (2020).
    Google Scholar 
    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Sea Res. 2 180, 104722 (2020).CAS 

    Google Scholar 
    De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291 (2007).
    Google Scholar 
    Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493 (2015).
    Google Scholar 
    Perrot, Y. et al. Matecho: an open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
    Google Scholar 
    Stanton, T. Review and recommendations for the modelling of acoustic scattering by fluid-like elongated zooplankton: euphausiids and copepods. ICES J. Mar. Sci. 57, 793–807 (2000).
    Google Scholar 
    GEBCO: A Continuous Terrain Model of the Global Oceans and Land (British Oceanographic Data Centre, 2019).EchoPY v.1.1: Fisheries Acoustic Data Processing in Python (Python, 2020); https://pypi.org/project/echopyde Boor, C. A Practical Guide to Splines (Springer, 1978).Clustering (SciKit Learn, 2021); https://scikit-learn.org/stable/modules/clusteringEyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    Google Scholar 
    Sonnewald, M., Dutkiewicz, S., Hill, C. & Forget, G. Elucidating ecological complexity: unsupervised learning determines global marine eco-provinces. Sci. Adv. 6, eaay4740 (2020).
    Google Scholar 
    Sonnewald, M. & Lguensat, R. Revealing the impact of global heating on North Atlantic circulation using transparent machine learning. J. Adv. Model. Earth Syst. 13, e2021MS002496 (2021).
    Google Scholar 
    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    Google Scholar 
    Locarnini, R. et al. World Ocean Atlas 2018, Volume 1: Temperature NOAA Atlas NESDIS 81 (NOAA, 2018).García, H. et al. World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation NOAA Atlas NESDIS 83 (NOAA, 2018).Sathyendranath, S. et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis, 19 May 2021; http://www.esa-oceancolour-cci.org More

  • in

    The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis

    The overall magnitude of changes in SOC, TN, and C:N in response to chemical nitrogen fertilizers reductionThe results showed that chemical nitrogen fertilizers reduction significantly decreased SOC and TN by 2.76% and 4.19% respectively, while increased C:N by 6.11% across all database (Fig. 1). SOC mainly derives from crop residues and secretions which closely related to crops growths, and crops growths were affected by fertilization, especially nitrogen fertilization20,21. The reduction of chemical nitrogen fertilizer led to poor crop growth, which reduced the amount of crop residues return, and then decreased SOC. Similarly, TN from crops was reduced due to poor crop growth. In addition, the reduction of chemical nitrogen fertilizers directly reduced the input of soil nitrogen. The increase of C:N was the result of the decrease of TN being greater than that of SOC. The responses of C:N to chemical nitrogen fertilizers reduction enhanced the comprehension of the couple relationship between SOC and TN, which was beneficial to the evolution of the C-N coupling models. Moreover, the accuracy of C-N coupling models depends on the precise quantification of the responses of SOC and TN to nitrogen fertilization. And our results accurately quantified the difference responses of SOC and TN to different nitrogen fertilization regimes, thus optimizing the C-N coupling models.Figure 1The weighted response ratio (RR++) for the responses to chemical nitrogen fertilizers of soil organic carbon (SOC, a), total nitrogen (TN, b), and their ratios (C:N, c). Bars denote the overall mean response ratio RR++ and 95% confidence intervals (CI). The star (*) indicates significance when the 95% CI that do not go across the zero line. The vertical lines are drawn at lnRR = 0. The value represents independent sample size.Full size imageResponses of SOC, TN and C:N to chemical nitrogen fertilizers reduction magnitudeWhen grouped by chemical nitrogen fertilizers reduction magnitude, SOC showed a significant increase by 6.9% in medium magnitude, while SOC was significantly decreased by 3.10% and 7.26% in high and total magnitude respectively (Fig. 1a). Liu and Greaver22 also stated the reduction of medium nitrogen fertilizer increased the average microbial biomass from 15 to 20%, thereby increasing the SOC content. Previous studies had reported that there were strong positive correlations between soil organic matter and soil microbial biomass in both the agricultural ecosystem and natural ecosystem23,24. Numerous researchers have demonstrated the significance of nitrogen availability in soil for the plant biomass across most ecosystems25,26. Moreover, nitrogen deficient would inhibit the activity of extracellular enzymes and root activities27. Generally, soil degradation caused by continuous rising chemical nitrogen fertilizers application may inhibit the growth of crops and ultimately reduce the SOC28.TN showed no significant difference in low and medium chemical nitrogen fertilizers reduction magnitude (p  > 0.05), while TN in high magnitude and total chemical nitrogen fertilizers reduction magnitude exhibited a decrease with 3.10% and 9.37% respectively (Fig. 1b). Numerous studies described that the amount of nitrogen fertilizers used in China was higher than the demand of N for crop, which caused serious N leaching and runoff29,30. Chemical nitrogen fertilizers in low and medium magnitude would not decrease the TN of soil by reducing N leaching and runoff. However, the residual nitrogen in soil cannot meet the requirement for the sustainable growth of plant with litter or without exogenous nitrogen supplement, which resulted in the decrease of TN in high and total chemical nitrogen fertilizers magnitude. Consequently, optimal nitrogen fertilizers application rates will take into account crops yield and environment friendliness.Additionally, C:N had a significant increase with ranging from 1.82% to 8.98% under the four chemical nitrogen fertilizers reduction magnitude (Fig. 1c), suggesting the relative increase of SOC compared to TN. Previous studies have revealed that C:N had significantly influence on the soil bacterial community structures31. And there were also considerable studies indicated that chemical nitrogen fertilizers have impact on the soil bacterial communities32,33. We may speculate that the change of C:N would bring about the variations of soil bacteria communities under the chemical nitrogen fertilizers regimes.Responses of SOC, TN, and C:N to chemical nitrogen fertilizers reduction durationNegative response of SOC to short-term chemical nitrogen fertilizers reduction was observed in our study, which was consistent with the study of Gong, et al.34 that chemical nitrogen fertilizers reduction decreased SOC by reducing crop-derived carbon by one year. However, SOC was significantly increased by 1.06% and 4.65% at mid-term and long-term chemical nitrogen fertilizers reduction respectively, which was similar with the findings of Ning, et al.11 that SOC was significantly increased under more than 5 years of chemical nitrogen fertilizers reduction treatment. TN was significantly decreased by 1.96% at short-term chemical nitrogen fertilizers reduction duration, while the results converted at mid-term chemical nitrogen fertilizers reduction duration. The effect of long-term chemical nitrogen fertilizers reduction on TN was not significant (p  > 0.05). The divergent response of TN to different chemical nitrogen fertilizers duration was mainly caused by the various treatments. In terms of C:N, a greater positive response was observed at short-term chemical nitrogen fertilizers duration (9.06%) than mid-term and long-term duration (1.99%). Moreover, with the prolongation of the chemical reduction time of nitrogen, the response ratio tends to zero, suggesting that the effect of chemical fertilizers gradually decrease. This may be ascribed to the buffer capacity of soil to resist the changes from external environment, including nutrients, pollutants, and redox substances35.Responses of SOC, TN, and C:N to different chemical nitrogen fertilizers reduction patternsUnder the pattern of chemical nitrogen fertilizers reduction without organic fertilizers supplement, SOC and TN significantly decreased by 3.83% and 11.46% respectively, however, chemical nitrogen fertilizers reduction with organic fertilizers supplement significantly increased SOC and TN by 4.92% and 8.33% respectively. Moreover, C:N significantly increased under the two chemical nitrogen fertilizers patterns (p  0.05), but there was a negative effect on SOC in high and total magnitude (p  0.05). The no significant decrease at mid-term duration might result from the limited information reported in original studies of this meta-analysis36. TN showed no significant response to chemical nitrogen fertilizers without organic fertilizers supplement in the low and medium magnitude (p  > 0.05). However, TN was significantly decreased by 8.62% and 16.7% respectively in the high and total magnitude. When regarding to chemical nitrogen fertilizers reduction duration, TN was significantly reduced at all of the categories, ranging from 3.13% to 13.4% (Fig. 2c). In the pattern of chemical nitrogen fertilizers reduction with organic fertilizers supplement, chemical nitrogen fertilizers reduction at medium, high, and total magnitudes significantly increased SOC by 13.85%, 13.03%, and 5.46%respectively, however, the response of SOC in the low chemical nitrogen fertilizers magnitude was not significant. Chemical nitrogen fertilizers reduction duration significantly increased SOC by 7.01%, 1.71%, and 22.02% in the short-term, mid-term, and long-term respectively. Comparatively, TN showed a significantly increase in most chemical nitrogen fertilizers categories expect for the long-term chemical nitrogen fertilizers duration, with an increasing from 4.90% to 14.69% (Fig. 2d).Figure 2The weighted response ratio (RR++) for the responses to chemical nitrogen fertilizers of soil organic carbon (SOC, a), total nitrogen (TN, b), and their ratios (C:N, c) under the two patterns (with organic fertilizers ; without organic fertilizers). Bars denote the overall mean response ratio RR++ and 95% confidence intervals (CI). The star (*) indicates significance when the 95% CI that do not go across the zero line. The vertical lines are drawn at lnRR = 0. The values represent independent sample size.Full size imageOrganic fertilizers were mainly derived from animal manure or crops straws, which contained large amount of organic matter and nitrogen elements37,38. The application of organic fertilizers increased the input of SOC and TN directly. Moreover, organic fertilizer could promote the growth of crops by releasing phenols, vitamins, enzymes, auxins and other substances during the decomposition process, thus the SOC derived from crops would be increased37,39. In addition, organic fertilizers provide various nutrients for microbial reproduction, which increase the microbial population and organic carbon and total nitrogen content37. More importantly, the application of organic fertilizers could improve organic carbon sequestration and maintain its stability in aggregates, thereby reducing losses of SOC and TN40.C:N showed an increase under all of the chemical nitrogen fertilizers reduction with organic fertilizer supplement. The positive response of C:N to organic fertilizer supplement may be related to the higher C:N of organic fertilizer than soil. The average values of C:N of the commonly used organic fertilizers including animal manure, crop straws and biochar were 14, 60 and 30 respectively, while the C:N of soil was lower than 10 in average according to extensive literature researches41. Therefore, organic fertilizers would be a favorable alternative of chemical fertilizers for the sustainable development of agriculture.The correlation between the response of SOC, TN, and C:N and environmental variablesThe analysis of linear regression was conducted to analyze the environmental variables including mean annual temperature (MAT), mean annual precipitation (MAP), accumulated temperature above 10 °C (MATA), which may exert influence on SOC, TN and C:N. No significant correlation among the lnRR of SOC, TN, C:N and environmental variables were observed among the whole database (p  > 0.05; Fig. S1). Rule out the interference of organic fertilizers supplement, we analyzed the relationship between lnRR of SOC, TN, C:N and environmental variables as the Figures showed in Figs. 3 and 4 respectively. Under chemical nitrogen fertilizers without organic fertilizers supplement, there was a significant negative correlation between lnRR of SOC and MAT (p  More

  • in

    Climate change ‘heard’ in the ocean depths

    Irigoien, X. et al. Nat. Commun. 5, 3271 (2014).Article 

    Google Scholar 
    Ariza, A. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01479-2 (2022).Article 

    Google Scholar 
    Klevjer, T. A. et al. Sci. Rep. 6, 19873 (2016).CAS 
    Article 

    Google Scholar 
    Braun, C. D. et al. Annu. Rev. Mar. Sci. 14, 129–159 (2022).Article 

    Google Scholar 
    Heneghan, R. F. et al. Prog. Oceanogr. 198, 102659 (2021).Article 

    Google Scholar 
    Polovina, J. J., Dunne, J. P., Woodworth, P. A. & Howell, E. A. ICES J. Mar. Sci. 68, 986–995 (2011).Article 

    Google Scholar 
    Cheung, W. W. L. et al. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    Hazen, E. L. et al. Nat. Clim. Change 3, 234–238 (2013).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    Purves, D. et al. Nature 493, 295–297 (2013).CAS 
    Article 

    Google Scholar 
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Fish. Oceanogr. 25, 45–56 (2016).Article 

    Google Scholar 
    Pons, M. et al. Proc. Natl Acad. Sci. USA 119, e2114508119 (2022).Article 

    Google Scholar  More