Role of saltmarsh systems in estuarine trapping of microplastics
Coffaro, G. & Bocci, M. Resources competition between Ulva rigida and Zostera marina: A quantitative approach applied to the Lagoon of Venice. Ecol. Model. 102(1), 81–95 (1997).CAS
Article
Google Scholar
Araújo, C. V. et al. Feeding niche preference of the mudsnail Peringia ulvae. Mar. Freshw. Res. 66(7), 573–581 (2015).Article
Google Scholar
Whitfield, A. K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 27(1), 75–110 (2017).Article
Google Scholar
Su, L. et al. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. J. Hazard. Mater. 365, 716–724 (2019).CAS
PubMed
Article
Google Scholar
Benassai, G. Introduction to Coastal Dynamics and Shoreline Protection (Wit Press, 2006).
Google Scholar
Decho, A. W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 20(10–11), 1257–1273 (2000).ADS
Article
Google Scholar
Thompson, C. E., Amos, C. L. & Umgiesser, G. A comparison between fluid shear stress reduction by halophytic plants in Venice Lagoon, Italy and Rustico Bay, Canada—Analyses of in situ measurements. J. Mar. Syst. 51(1–4), 293–308 (2004).Article
Google Scholar
Neumeier, U. & Amos, C. L. Turbulence reduction by the canopy of coastal Spartina salt-marshes. J. Coast. Res. 53, 433–439 (2006).
Google Scholar
Black, K. S., Tolhurst, T. J., Paterson, D. M. & Hagerthey, S. E. Working with natural cohesive sediments. J. Hydraul. Eng. 128(1), 2–8 (2002).Article
Google Scholar
Paterson, D. M. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. 34(1), 223–234 (1989).ADS
Article
Google Scholar
Tolhurst, T.J., Jesus, B., Brotas, V. & Paterson, D.M. Diatom migration and sediment armouring—An example from the Tagus Estuary, Portugal. in Migrations and Dispersal of Marine Organisms. 183–193. (Springer, 2003).Tinoco, R. O. & Coco, G. Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves. Earth Surf. Dyn. 2(1), 83 (2014).ADS
Article
Google Scholar
Chen, Y. et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology 318, 270–282 (2018).ADS
Article
Google Scholar
Cozzolino, L., Nicastro, K. R., Zardi, G. I. & Carmen, B. Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats. Sci. Total Environ. 723, 138018 (2020).ADS
CAS
PubMed
Article
Google Scholar
Widdows, J., Pope, N. D. & Brinsley, M. D. Effect of Spartina anglica stems on near-bed hydrodynamics, sediment erodability and morphological changes on an intertidal mudflat. Mar. Ecol. Prog. Ser. 362, 45–57 (2008).ADS
Article
Google Scholar
Marion, C., Anthony, E. J. & Trentesaux, A. Short-term (≤ 2 yrs) estuarine mudflat and saltmarsh sedimentation: High-resolution data from ultrasonic altimetery, rod surface-elevation table, and filter traps. Estuar. Coast. Shelf Sci. 83(4), 475–484 (2009).ADS
Article
Google Scholar
Coulombier, T., Neumeier, U. & Bernatchez, P. Sediment transport in a cold climate salt marsh (St. Lawrence Estuary, Canada), the importance of vegetation and waves. Estuar. Coast. Shelf Sci. 101, 64–75 (2012).ADS
Article
Google Scholar
Neumeier, U. & Ciavola, P. Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J. Coast. Res. 20(2), 435–447 (2002).
Google Scholar
Yao, W. et al. Micro-and macroplastic accumulation in a newly formed Spartina alterniflora colonized estuarine saltmarsh in southeast China. Mar. Pollut. Bull. 149, 110636 (2019).CAS
Article
Google Scholar
Fok, L. & Cheung, P. K. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution. Mar. Pollut. Bull. 99(1–2), 112–118 (2015).CAS
PubMed
Article
Google Scholar
Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35(7), 1632–1640 (2016).CAS
PubMed
Article
Google Scholar
Willis, K. A., Eriksen, R., Wilcox, C. & Hardesty, B. D. Microplastic distribution at different sediment depths in an urban estuary. Front. Mar. Sci. 4, 419 (2017).Article
Google Scholar
Stead, J. L. et al. Identification of tidal trapping of microplastics in a temperate salt marsh system using sea surface microlayer sampling. Sci. Rep. 10(1), 1–10 (2020).Article
CAS
Google Scholar
Friend, P. L., Ciavola, P., Cappucci, S. & Santos, R. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Cont. Shelf Res. 23(17–19), 1899–1917 (2003).ADS
Article
Google Scholar
Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11(4), 251–257 (2018).ADS
CAS
Article
Google Scholar
Ockelford, A., Cundy, A. & Ebdon, J. E. Storm response of fluvial sedimentary microplastics. Sci. Rep. 10(1), 1–10 (2020).Article
CAS
Google Scholar
Wang, J. Q. et al. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh. Ecosystems 13(4), 586–599 (2010).CAS
Article
Google Scholar
Soulsby, R.L.. The bottom boundary layer of shelf seas. in Elsevier Oceanography Series. Vol. 35. 189–266. (Elsevier, 1983).Thompson, C. E., Amos, C. L., Lecouturier, M. & Jones, T. E. R. Flow deceleration as a method of determining drag coefficient over roughened flat beds. J. Geophys. Res. Oceans 109, C3 (2004).
Google Scholar
Chirol, C. et al. The influence of bed roughness on turbulence: Cabras Lagoon, Sardinia, Italy. J. Mar. Sci. Eng. 3(3), 935–956 (2015).Article
Google Scholar
Kassem, H., Sutherland, T. F. & Amos, C. L. Hydrodynamic controls on the particle size of resuspended sediment from sandy and muddy substrates in British Columbia, Canada. J. Coast. Res. 37, 691 (2021).CAS
Article
Google Scholar
Nepf, H. M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123–142 (2012).ADS
MathSciNet
MATH
Article
Google Scholar
Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: A flume study on the intertidal macrophyte Spartina anglica. Oikos 118(2), 260–268 (2009).Article
Google Scholar
Amos, C. L. et al. The stability of tidal flats in Venice Lagoon—The results of in-situ measurements using two benthic, annular flumes. J. Mar. Syst. 51(1–4), 211–241 (2004).Article
Google Scholar
Amos, C. L., Feeney, T., Sutherland, T. F. & Luternauer, J. L. The stability of fine-grained sediments from the Fraser River Delta. Estuar. Coast. Shelf Sci. 45(4), 507–524 (1997).ADS
CAS
Article
Google Scholar
Tolhurst, T.J., Gust, G., & Paterson, D.M. The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability. in Proceedings in Marine Science. Vol. 5. 409–425. (Elsevier, 2002).Brückner, M. Z. et al. Benthic species as mud patrol-modelled effects of bioturbators and biofilms on large-scale estuarine mud and morphology. Earth Surf. Proc. Land. 46(6), 1128–1144 (2021).ADS
Article
Google Scholar
Ferdowsi, B., Ortiz, C. P., Houssais, M. & Jerolmack, D. J. River-bed armouring as a granular segregation phenomenon. Nat. Commun. 8(1), 1–10 (2017).CAS
Article
Google Scholar
Andersen, T. J., Jensen, K. T., Lund-Hansen, L., Mouritsen, K. N. & Pejrup, M. Enhanced erodibility of fine-grained marine sediments by Hydrobia ulvae. J. Sea Res. 48(1), 51–58 (2002).ADS
Article
Google Scholar
Orvain, F., Sauriau, P. G., Sygut, A., Joassard, L. & Le Hir, P. Interacting effects of Hydrobia ulvae bioturbation and microphytobenthos on the erodibility of mudflat sediments. Mar. Ecol. Prog. Ser. 278, 205–223 (2004).ADS
Article
Google Scholar
Orvain, F., Sauriau, P. G., Bacher, C. & Prineau, M. The influence of sediment cohesiveness on bioturbation effects due to Hydrobia ulvae on the initial erosion of intertidal sediments: A study combining flume and model approaches. J. Sea Res. 55(1), 54–73 (2006).ADS
Article
Google Scholar
Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27(8), 1174–1189 (2007).ADS
Article
Google Scholar
Amos, C. L. et al. The stability of a mudflat in the Humber estuary, South Yorkshire, UK. Geol. Soc. Lond. Spec. Publ. 139(1), 25–43 (1998).ADS
Article
Google Scholar
Tolhurst, T. J., Black, K. S. & Paterson, D. M. Muddy sediment erosion: Insights from field studies. J. Hydraul. Eng. 135(2), 73–87 (2009).Article
Google Scholar
Quaresma, V. D. S., Bastos, A. C. & Amos, C. L. Sedimentary processes over an intertidal flat: A field investigation at Hythe flats, Southampton Water (UK). Mar. Geol. 241(1–4), 117–136 (2007).ADS
Article
Google Scholar
Helcoski, R., Yonkos, L. T., Sanchez, A. & Baldwin, A. H. Wetland soil microplastics are negatively related to vegetation cover and stem density. Environ. Pollut. 256, 113391 (2020).CAS
PubMed
Article
Google Scholar
Rochman, C. M. et al. Classify plastic waste as hazardous. Nature 494(7436), 169–171 (2013).ADS
CAS
PubMed
Article
Google Scholar
Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R., Lundebye, A. K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS
PubMed
Article
Google Scholar
de Barros, M. S. F., dos Santos Calado, T. C., Silva, A. S. & dos Santos, E. V. Ingestion of plastic debris affects feeding intensity in the rocky shore crab Pachygrapsus transversus Gibbes 1850 (Brachyura: Grapsidae). Int. J. Biodivers. Conserv. 12(1), 113–117 (2020).
Google Scholar
Villagran, D. M., Truchet, D. M., Buzzi, N. S., Lopez, A. D. F. & Severini, M. D. F. A baseline study of microplastics in the burrowing crab (Neohelice granulata) from a temperate southwestern Atlantic estuary. Mar. Pollut. Bull. 150, 110686 (2020).CAS
PubMed
Article
Google Scholar
Townend, I. A Conceptual Model of Southampton Water. Vol 1. (Tech. Rep.). ABPmer report.. http://www.estuary-guide.net/pdfs/southampton_water_case_study.pdf. Accessed 21 May 2008 (ABP Marine Environmental Research Ltd., 2008).Amos, C. L., Grant, J., Daborn, G. R. & Black, K. Sea carousel—A benthic, annular flume. Estuar. Coast. Shelf Sci. 34(6), 557–577 (1992).ADS
Article
Google Scholar
Thompson, C. E., Amos, C. L., Jones, T. E. R. & Chaplin, J. The manifestation of fluid-transmitted bed shear stress in a smooth annular flume-a comparison of methods. J. Coast. Res. 1, 1094–1103 (2003).
Google Scholar
Buls, T., Anderskouv, K., Friend, P. L., Thompson, C. E. & Stemmerik, L. Physical behaviour of Cretaceous calcareous nannofossil ooze: Insight from flume studies of disaggregated chalk. Sedimentology 64(2), 478–507 (2017).Article
Google Scholar
Tuprakay, S., Usahanunth, N. & Tuprakay, S. R. A study bakelite plastics waste from industrial process in concrete products as aggregate. Int. J. Struct. Civ. Eng. Res. 6(4), 7 (2017).
Google Scholar
Thompson, C. E. L., Couceiro, F., Fones, G. R. & Amos, C. L. Shipboard measurements of sediment stability using a small annular flume—Core mini flume (CMF). Limnol. Oceanogr. Methods 11(11), 604–615 (2013).Article
Google Scholar
Kassem, H., Thompson, C. E., Amos, C. L. & Townend, I. H. Wave-induced coherent turbulence structures and sediment resuspension in the nearshore of a prototype-scale sandy barrier beach. Cont. Shelf Res. 109, 78–94 (2015).ADS
Article
Google Scholar
Kassem, H. et al. Observations of nearbed turbulence over mobile bedforms in combined, collinear wave-current flows. Water 12(12), 3515 (2020).CAS
Article
Google Scholar
Elgar, S., Raubenheimer, B. & Guza, R. T. Quality control of acoustic Doppler velocimeter data in the surfzone. Meas. Sci. Technol. 16(10), 1889 (2005).ADS
CAS
Article
Google Scholar
Goring, D. G. & Nikora, V. I. Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng. 128(1), 117–126 (2002).Article
Google Scholar
Mori, N., Suzuki, T. & Kakuno, S. Noise of acoustic Doppler velocimeter data in bubbly flows. J. Eng. Mech. 133(1), 122–125 (2007).
Google Scholar
Stapleton, K. R. & Huntley, D. A. Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method. Earth Surf. Proc. Land. 20(9), 807–815 (1995).ADS
Article
Google Scholar
Dyer, K. Estuaries, A Physical Introduction. 2nd edn. https://doi.org/10.2307/1797104 (Wiley, 1997). More