More stories

  • in

    Estimating long-term spatial distribution of Plodia interpunctella in various food facilities at Rajshahi Municipality, Bangladesh, through pheromone-baited traps

    Nansen, C., Phillips, T. W., Parajuleeb, M. N. & Franqui, R. A. Comparison of direct and indirect sampling procedures for Plodia interpunctella in a maize storage facility. J. Stored Prod. Res. 40, 151–168 (2004).Article 

    Google Scholar 
    Gerken, A. R. & Campbell, J. F. Using long-term capture data to predict Trogoderma variabile Ballion and Plodia interpunctella (Hübner) population patterns. Insects 10, 93. https://doi.org/10.3390/insects10040093 (2019).Article 
    PubMed Central 

    Google Scholar 
    Athanassiou, C. G. & Buchelos, C. T. Grain properties and insect distribution trends in silos of wheat. J. Stored Prod Res. 88, 101632 (2020).Article 

    Google Scholar 
    Campbell, J., Mullen, M. & Dowdy, A. Monitoring stored-product pests in food processing plants with pheromone trapping, contour mapping, and mark-recapture. J. Econ. Entomol. 95, 1089–1101 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arbogast, R. T., Weaver, D. K., Kendra, P. E. & Brenner, R. J. Implications of spatial distribution of insect populations in storage ecosystems. Environ. Entomol. 27, 202–216 (1998).Article 

    Google Scholar 
    Brenner, R. J., Focks, D. A., Arbogast, R. T., Weaver, D. K. & Shuman, D. Practical use of spatial analysis in precision targeting for integrated pest management. Am. Entomol. 44, 79–102 (1998).Article 

    Google Scholar 
    Arbogast, R. T., Kendra, P. E., Mankin, R. W. & McGovern, J. E. Monitoring insect pests in retail stores by trapping and spatial analysis. J. Econ. Entomol. 93, 1531–1542 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthur, F. & Phillips, T.W. Stored-product insect pest management and control. In Food Plant Sanitation; Hui, Y.H., Bruinsma, B.L., Gorham, J.R., Nip, W.-K., Tong, P.S., Ventresca, P., Eds.; Marcel Dekker, Inc, pp. 341–348(2003).Campbell, J. F., Toews, M. D., Arthur, F. H. & Arbogast, R. T. Long-term monitoring of Tribolium castaneum in two flour mills: Seasonal patterns and impact of fumigation. J. Econ. Entomol. 103, 991–1001 (2010).PubMed 
    Article 

    Google Scholar 
    Doud, C. W. & Phillips, T. W. Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills. J. Econ. Entomol. 93, 1842–1847 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, J. & Mullen, M. Distribution and dispersal behavior of Trogoderma variabile and Plodia interpunctella outside a food processing plant. J. Econ. Entomol. 97, 1455–1464 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larson, Z., Subramanyam, B. & Herrman, T. Stored-product insects associated with eight feed mills in the Midwestern United States. J. Econ. Entomol. 101, 998–1005 (2008).PubMed 
    Article 

    Google Scholar 
    Trematerra, P., Paula, M. C., Sciarretta, A. & Lazzari, S. Spatio-temporal analysis of insect pests infesting a paddy rice storage facility. Neotrop. Entomol. 33, 469–479 (2004).Article 

    Google Scholar 
    Arthur, F. H., Campbell, J. F. & Toews, M. D. Distribution, abundance, and seasonal patterns of Plodia interpunctella (Hübner) in a commercial food storage facility. J. Stored Prod. Res. 53, 7–14 (2013).Article 

    Google Scholar 
    McKay, T., White, A. L., Starkus, L. A., Arthur, F. H. & Campbell, J. F. Seasonal patterns of stored-product insects at a rice mill. J. Econ. Entomol. 110, 1366–1376 (2017).PubMed 
    Article 

    Google Scholar 
    Roesli, R., Subramanyam, B., Fairchild, F. J. & Behnke, K. C. Trap catches of stored-product insects before and after heat treatment in a pilot feed mill. J. Stored Prod. Res. 39, 521–540 (2003).Article 

    Google Scholar 
    Campbell, J., Ching’oma, G.M., Toews, M.D. & Ramaswamy, S. Spatial distribution and movement patterns of stored-product insects. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paulo, Brazil, 15–18 October 2006; Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., Santos, J.P.D., Biagi, J.D., Celaro, J.C., Faroni, L.R.D., Bortolini, L.D.F., Eds.; Brazilian Post-harvest Association—ABRAPOS: Passo Fundo, RS, Brazil, p. 18 (2006).Trematerra, P., Gentile, P., Brunetti, A., Collins, L. & Chambers, J. Spatio-temporal analysis of trap catches of Tribolium confusum du Val in a semolina-mill, with a comparison of female and male distributions. J. Stored Prod. Res. 43, 315–322 (2007).Article 

    Google Scholar 
    Semeao, A. A., Campbell, J. F., Whitworth, R. J. & Sloderbeck, P. E. Influence of environmental and physical factors on capture of Tribolium castaneum (Coleoptera: Tenebrionidae) in a flour mill. J. Econ. Entomol. 105, 686–702 (2012).PubMed 
    Article 

    Google Scholar 
    Campbell, J.F., Perez-Mendoza, J. &Weier, J. Insect Pest Management Decisions in Food Processing Facilities. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University, pp. 219–232 (2012).Mohandass, S., Arthur, F. H., Zhu, K. & Throne, J. E. Biology and management of Plodia interpunctella (Lepidoptera:Pyralidae) in stored products. J. Stored Prod. Res. 43, 302–311 (2007).Article 

    Google Scholar 
    Hamlin, J.C., Reed, W.D. & Phillips, M.E. Biology of the Indianmeal Moth on Dried Fruits in California. USDA Technical Bulletin No. 242, (1931)Hagstrum, D.W. & Subramanyam, B. Review of Stored-Product Insect Resource. AACC International (2009).Soderstrom, T., Stoica, P. & Trulsson, E. Instrumental variable methods for closed loop systems. IFAC 10th Triennial World Congress, Munich, FRG. pp. 363–368(1987).Johnson, J. A., Valero, K. A., Hannel, M. M. & Gill, R. F. Seasonal occurrence of post harvest dried fruit insects and their parasitoids in a culled fig warehouse. J. Econ. Entomol. 93, 1380–1390 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nansen, C., Subramanyam, B. & Roesli, R. Characterizing spatial distribution of trap captures of beetles in retail pet stores using SADIE® software. J. Stored Prod. Res. 40, 471–483 (2004).Article 

    Google Scholar 
    Phillips, T.W., Berbert, R.C. &Cuperus, G.W. Post-harvest integrated pest management. In: Francis, F.J. (Ed.), Encyclopedia of Food Science and Technology. 2nd ed. Wiley Inc., pp. 2690–2701(2000).Phillips,T.W., Cogan, P.M. & Fadamiro, H.Y. Pheromones. In: Subramanyam, B., Hagstrum, D.W. (Eds.), Alternatives to Pesticides in Stored-product IPM. Kluwer Academic Publishers, pp. 273–302 (2000).Mullen, M. A. & Dowdy, A. K. A pheromone-baited trap for monitoring the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 37, 231–235 (2001).PubMed 
    Article 

    Google Scholar 
    Nansen, C. & Phillips, T. W. Ovipositional responses of the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to oils. Ann. Entomol. Soc. Am. 96, 524–531 (2003).Article 

    Google Scholar 
    Hagstrum, D. W. Using five sampling methods to measure insect distribution and abundance in bins storing wheat. J. Stored Prod. Res. 36, 253–262 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Athanassiou, C. G., Kavallieratos, N. G., Sciarretta, A. & Trematerra, P. Mating disruption of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in a storage facility: spatio-temporal distribution changed after long-term application. J. Stored Prod. Res. 67, 1–12 (2016).Article 

    Google Scholar 
    Lee, W. H., Jung, J. M., Kim, J., Lee, H. & Jung, S. Analysis of the spatial distribution and dispersion of Plodia interpunctella (Lepidoptera: Pyralidae) in South Korea. J. Stored Prod. Res. 86, 101577 (2020).Article 

    Google Scholar 
    Gerken, A.R. & Campbell, J.F. Spatial and temporal variation in stored-product insect pest distributions and implications for pest management in processing and storage facilities. Ann. Entomol. Soc. Am. saab049(2021).Athanassiou, C. G. & Buchelos, CTh. Detection of stored-wheat beetle species and estimation of population density using unbaited probe traps and grain trier samples. Ent. Exp. et Applic. 98, 67–78 (2001).Article 

    Google Scholar 
    Subramanyam, B. & Hagstrum, D.W. Sampling. In: Subramanyam B. & Hagstrum D.W. (eds), Integrated Management of Insects in Stored Products. Marcel Dekker Inc., pp. 135–193 (1995).Morrison, W. R. et al. Aeration to manage insects in wheat stored in the Balkan peninsula: Computer simulations using historical weather data. Agronomy 10, 1927 (2020).Article 

    Google Scholar 
    Toews, M. D., Campbell, J. F. & Arthur, F. H. Temporal dynamics and response to fogging or fumigation of stored-product Coleoptera in a grain processing facility. J. Stored Prod. Res. 42, 480–498 (2006).Article 

    Google Scholar 
    Buckman, K. A., Campbell, J. F. & Subramanyam, B. Tribolium castaneum (Coleoptera: Tenebrionidae) associated with rice mills: Fumigation efficacy and population rebound. J. Econ. Entomol. 106, 499–512 (2013).PubMed 
    Article 

    Google Scholar 
    Campbell, J. F., Buckman, K. A., Fields, P. G. & Subramanyam, Bh. Evaluation of structural treatment efficacy against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) using meta-analysis of multiple studies conducted in food facilities. J. Econ. Entomol. 108, 2125–2140 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levene, H. Robust tests for equality of variances. In Ingram Olkin; Harold Hotelling; et al. (eds.). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press. pp. 278–292(1960).SAS Institute. SAS/STAT 9.2 User’s guide. SAS Institute (2008).Taylor, L. R. Aggregation, variance and mean. Nature 189, 732–735 (1961).ADS 
    Article 

    Google Scholar 
    Iwao, S. A new method of sequential sampling to classify populations according to a critical density. Res. Popln. Ecol. 16, 281–288 (1975).
    Google Scholar 
    Green, R. H. Measurement of non-randomness in spatial distribution. Res. Popln. Ecol. 8, 1–17 (1966).
    Google Scholar 
    Hillhouse, T. L. & Pitre, H. N. Comparison of sampling techniques to obtain measurements of insect populations on soybeans. J. Econ. Entomol. 67, 411–414 (1974).Article 

    Google Scholar 
    Cassie, R. M. Frequency distribution models in the ecology of plankton and other organisms. J. Anim. Ecol. 31, 65–92 (1962).Article 

    Google Scholar 
    Southwood, T. R. E. Ecological Methods, with Particular Reference to the Study of Insect Population (Chapman and Hall, 1995).
    Google Scholar 
    Costa, M. G., Barbosa, J. C., Yamamoto, P. T. & Leal, R. M. Spatial distribution of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in citrus orchards. Scientia Agric 67, 546–554 (2010).Article 

    Google Scholar 
    Patil, G. P. & Stiteler, W. M. Concepts of aggregation and their quantification: A critical review with some new result and applications. Pop. Ecol. 15, 238–254 (1974).Article 

    Google Scholar 
    David, F. N. & Moor, P. G. Notes on contagious distribution in plant populations. Ann. Bot. 18, 47–53 (1954).Article 

    Google Scholar 
    Lloyd, M. Mean crowding. J. Anim. Ecol. 36, 1–30 (1967).Article 

    Google Scholar 
    Southwood, T. R. E. & Henderson, P. A. Ecological Methods 3rd edn. (Blackwell Sciences, 2000).
    Google Scholar 
    Feng, M. G. & Nowierski, R. M. Spatial distribution and sampling plans for four species of cereal aphids (Homoptera: Aphididae) infesting spring wheat in southwestern Idaho. J. Econ. Entomol. 85, 830–837 (1992).Article 

    Google Scholar  More

  • in

    Troubled biodiversity plan gets billion-dollar funding boost

    Countries have yet to agree to protect at least 30% of land, a crucial target proposed in the global biodiversity deal.Credit: Roberto Schmidt/AFP via Getty

    A beleaguered global deal to save the environment got a financial boost last week when Germany announced that it was upping its funding for international biodiversity conservation to €1.5 billion (US$1.49 billion) a year — an increase of €0.87 billion — making it the largest national financial pledge yet to save nature. The announcement came at a 20 September meeting in New York City, where political leaders, businesses and conservation and Indigenous-rights groups came together to rally momentum and support ahead of the United Nations biodiversity summit in Montreal, Canada, in December.Conservationists welcomed the extra funding, but warned that other wealthy countries must also reach deeper into their pockets to ensure that nations agree on a new biodiversity agreement, called the Post-2020 Global Biodiversity Framework. Estimates suggest that an additional US$700 billion annually is needed to protect the environment.Concerns over insufficient financing for global biodiversity conservation have stalled negotiations and threaten to derail attempts to finalize a deal in Montreal. The forthcoming summit will be the 15th meeting of the Conference of the Parties (COP15) to the UN’s Convention on Biological Diversity.Announcing the new funds, German Chancellor Olaf Scholz said: “With this contribution, we want to send a strong signal for an ambitious outcome of the biodiversity COP-15.”Claire Blanchard, head of global advocacy at WWF, a conservation group, told Nature that the extra funding “is highly significant” and sends an important signal that rich countries are prepared to step up.But she adds: “More signals of this kind will be needed to create the environment conducive to constructive dialogue in the negotiation room.”Andrew Deutz, a specialist in biodiversity law and finance at the Nature Conservancy, a conservation group in Arlington, Virginia, says he expects further funding announcements to come in the run up to and at the COP15.Other pledgesSeveral key political leaders, including Justin Trudeau, Canada’s prime minister, echoed calls for rich nations to make urgent progress to secure the biodiversity deal. Trudeau urged countries to agree on two crucial targets proposed in the biodiversity framework, both to be met by 2030: to halt and reverse biodiversity loss, and to protect at least 30% of land and seas.The new funding was bolstered by other pledges and developments, including a promise from a partnership of some of the world’s wealthiest private philanthropic foundations and charities to add to the $5 billion they have already committed to conservation, if other countries promise more funds.The partnership — which includes the Bezos Earth Fund, an environmental fund financed by entrepreneur Jeff Bezos — has already spent around $1 billion of its promised financing over the past two years, says Cristián Samper, head of the Wildlife Conservation Society, a not-for-profit group. Samper was speaking on behalf of the partnership at the meeting in New York City.Frans Timmermans, vice-president of the European Commission, reaffirmed that Europe would double its international biodiversity funding to $1.13 billion annually — a promise originally announced in September last year. Timmermans told the meeting that the European Union would set out more details about the funding soon.Funding shortfallAlso at the meeting, a group of four countries comprising Ecuador, Gabon, the Maldives and the United Kingdom launched a joint 10-point plan to bridge the biodiversity finance gap, which is estimated at $700 billion annually.The plan sets out the financial commitments and policy reforms needed to finance biodiversity on the required scale. For example, it encourages wealthy and lower-income nations to allocate new funds for biodiversity and to quickly deliver on their existing financial pledges. It requires donor countries to ensure that funds for overseas development do no harm to biodiversity. And it asks countries to dedicate a portion of their national funding for climate change to activities that also protect and conserve nature.The plan also commits countries to ensuring that public finance is invested in ways that benefit biodiversity, and to reviewing national subsidies and redirecting those that are harmful to nature. It calls on businesses to assess and disclose commercial risks associated with biodiversity decline, and to set quantitative targets to reduce their impact on the natural world. And it encourages multilateral development banks — such as the World Bank in Washington DC — and international financial institutions to ensure that their investments benefit biodiversity, and asks that they report on their biodiversity funding in time for COP-15.So far, 15 countries, including Canada, Germany and Norway, as well as the EU have endorsed the plan.“The plan provides a clear pathway for bridging the global biodiversity finance gap. Its significance lies in the political signal it sends,” says Blanchard.António Guterres, secretary-general of the UN, urged political leaders to “act now and at scale” to secure biodiversity financing and ensure agreement on the framework. “If negotiations continue at their slow pace, we are headed to failure,” he told the meeting. More

  • in

    Waste slag benefits for correction of soil acidity

    Structural characterization of slag samplesThe FTIR spectra of granulated blast furnace slag (Sample 1), waste slag dumped in landfill (Sample 2) and combination of both 50% granulated blast furnace slag + 50% waste slag dumped in landfill (Sample 3) are presented in Fig. 1.Figure 1FTIR spectra of slag samples.Full size imageBy analysing the spectrum (detailed figure) in the range of 700–1100 cm−1, it can be found that there are obvious absorption peaks in the spectrum of all the slag samples. The granulated blast furnace slag shows the characteristic absorption bands at 3640, 1418, 980, 944, 861, 753 and 710 cm−1. The band at 3640 cm−1 is assigned to the stretching vibration of the hydroxyl group originated from the weakly absorbed water molecules on the slag surface24. The characteristic absorption bands at 1418, 861 and 710 cm−1 are ascribed to the asymmetric stretching mode and bending mode of carbonate group, respectively and the band at 980 cm−1 are attributable to the stretching vibrations of Si–O25. The band at 944 and 752 cm−1 represent the internal vibration of [SiO4]4− and [AlO4]5− tetrahedral and comes from Si (Al)–O-antisymmetric stretching vibration26.The different vibration modes for the sample of waste slag can be observed in the FTIR spectrum. The absorption bands shown are at 1418, 873, 712, 667 and 419 cm−1. The peak at 1418 cm−1 is assigned to the asymmetric stretching mode and bending mode of carbonate group. Calcite phase is confirmed by characteristic peaks at 712 cm−1 (ʋ2 out of plane bending vibration of the CO3−2 ion) and 873 cm−1 peak (ʋ2 split in-plane bending vibrations of the CO3−2 ion27. Calcium aluminate phase is identified by characteristic peak at 419 cm−128. Peak around 667 cm−1 is described as absorption band for different M–O (metal oxide) such as Al–O, Fe–O, Mg–O etc.29.In the case of combination of both 50% granulated blast furnace slag and 50% waste slag dumped in landfill the intensity of absorption peaks is smaller in comparison with Sample 1 and Sample 2 of slag. The characteristic absorption peaks (978 and 753 cm−1) which correspond with characteristic peaks of Sample 1 are shifted compared to the Sample 1, assigned to the stretching vibrations of Si–O and to the Si (Al)–O-antisymmetric stretching vibration, respectively, can provide important evidence of chemical interaction between Sample 1 and Sample 2. The decrease of the intensity of the bands appearing at 875 and 709 cm−1 cans be attributed to overlapping the vibrations of the CO3−2 ion from calcite phase.Figure 2 presents the SEM micrographs of the slag samples (Sample 1–3). One can see the characteristic morphology- the sizes and the forms of the slag samples.Figure 2SEM images of slag samples.Full size imageAt larger magnifications it can be observed that the surface is rough and uneven, and one can notice rounded grain-like rugged formations. The slag samples display aggregated particles with average diameter of a few microns. Also, in these rounded formations it can be seen different morphologies like spheres, rods, boards specific each compound/phase from metallurgical slags.Figure 3 illustrates the EDX elemental analysis of granulated blast furnace slag (Sample 1), waste slag dumped in landfill (Sample 2) and combination of both 50% granulated blast furnace slag + 50% waste slag dumped in landfill (Sample 3).Figure 3EDX elemental map of slag samples.Full size imageOne can observe that the predominant elements in the examined area are constated in carbon, oxygen, calcium, and iron, confirming the FTIR spectra.Figure 4 shows EDX spectra of slag samples recorded on different selected punctual area, to obtain more information about the elemental composition of specific areas. For all the tested slag samples have similar elements content.Figure 4EDX spectra analysis of slag samples.Full size imageThe selected punctual areas are highlighted thus: the spheric structure are with yellow line and the structure like boards are with green line for all the analysed slag samples. In the case of Sample 1 for both structures the values of chemical elements present are similar and the silicon has a higher value at spheric structure which can be correlated with the presence of silica (SiO2). The higher content of calcium reveals that the Sample 1 is blast furnace slag dominated by calcium and silicon compositions. In the case of slag dumped in landfill (Sample 2) the content of carbon increase for both structures and some chemical elements like titanium, barium, manganese doesn`t appear in EDX spectra and the explanation for this phenomenon is that the slag was dumped in landfill for more than 30 years. One can observe for combination of both 50% granulated blast furnace slag + 50% waste slag dumped in landfill (Sample 3) that the values of all the chemical elements for both spheric and board-like structure are between the first two samples, confirming the FTIR spectra regarding chemical interaction between Sample 1.XRD patterns of the slag samples with the phases identified are shown in Fig. 5. Sample 1 show minor peaks of free CaO and MgO, which may be deleterious and cause reduction in strength. The phases and amorphous contents of the Sample 1 granulated blast furnace slag are broadly consistent with literature30. Sample 3 of slag consists of crystalline phase – Ca2Mg2SiO7, Ca2Fe2AlO5, CaCO3 and CaO as observed by the XRD analysis. In terms of the relations of phase thermal equilibrium, the compounds identified form an isomorphic series of melilites that is specific to basic metallurgical slags.Figure 5X-ray diffraction patterns of slag samples.Full size imageIn Table 1 are presented the values expressed as ppm of chemical element detected in slag samples (Sample 1, 2 and 3).Table 1 XRF analysis of the slag samples.Full size tableThe results show a large quantity of calcium in all three samples of slag. Also, the elements detected such as Fe, Al, Mg and Si are in accordance with XRD spectra.Physical–chemical characterization of soil-slag mixturesThe chemical composition of the major elements that compound the soil, soil- slag and slag samples was determined by XRF. The values expressed as ppm of chemical elements are presented in Table 2. In the case of soil sample the content of the main constituents is iron, titanium, manganese, and potentially toxic elements (PTE) such as arsenic, zinc, copper, and cobalt. For soil-slag 1 with weight ratio soil: slag (1:1) it can be observed the disappearance of the potentially toxic elements (PTE) founded in soil sample and the decrease of concentration value of zinc. When the weight ratio of slag increases at 3 (soil-slag 2 sample) the values of main component increased in accordance with values of slag sample, but in the case of soil-slag 3 sample where the weight ratio of soil is bigger (3) it can be observed the cobalt presence. Based on these XRF results we can say that take place an elimination of potentially toxic elements in contaminated soil by applying slag in a bigger proportion.Table 2 XRF analysis of the soil-slag samples.Full size tableWith the aid of a pH meter, CONSORT C 533 the important parameters of soil and slag solutions were measured as: the pH, conductivity, and the salinity, as shown in Table 3. The data presented in Table 3 suggest that the soil sampled has the pH = 5.2 corresponding to a medium acid soil, which does not sustain a high fertility and is not able to offer proper conditions for crops. Also, the pH of soil has important influence on soil fertility, decreases the availability of essential elements and the activity of soil microorganisms which can determine calcium and magnesium deficiency in plants and decreases phosphorous availability. The pH value of slag solution (12.5) corresponds as strongly basic character which is beneficial in amelioration process of acidic soils and the presence of this type of slag sustain the improving of soil characteristics, too. For the soil-slag samples the pH value increase with the increasing of the weight ratio of slag and the mixtures soil-slag obtained can be framed into the category of weakly alkaline soils.Table 3 The physical–chemical characteristics of soil and slag solutions.Full size tableThe data given in Table 4 show that the humidity of soil is bigger and decreases in soil-slag samples with adding of slag content. The values of total soil-slag porosity are between 40 and 50% and depends on the density and apparent density of the soil being influenced by the mineralogical composition, the content of organic matter and the degree of compaction and loosening of the soil, the crystalline structure of soil minerals.Table 4 The physical–chemical characteristics of soil-slag samples.Full size tableConsidering the structural and morphological characterization of the investigated slag samples we propose a recipe of blast furnace slag and of waste slag dumped in landfill in accordance with the waste directive 2008/98/EC regarding the strategic goal of EU to a complete elimination of the disposal of wastes. The slag dump of Steel Plant of Galati has an enormous quantity of unused waste slag which may be mixed with granulated blast furnace slag, to save the natural resources used as raw materials in the metallurgical technological process.The presence of Ca2+ in the composition of the slag can maintain high alkalinity in the soil for a long time in the natural environment. The alkaline pH of the soil may contribute to a decrease the available concentration of heavy metals by reducing metal mobility and bonding metals into more stable fractions. One of the objectives of this research is improving the quality of the environment by using the mixture between two different slags on agricultural lands and reintroducing them in the agricultural centre, especially in acid soils. Acidic soils are characterized by an acidic pH that has spread in recent years due to excessive fertilizers or far too aggressive work31. The production is significantly influenced, and the treatment of acid soils is usually done using a series of natural materials (lime, dolomite), the consumption being approx. 20 t/hectare depending on the acidity of the soil and the nature of the plants grown on the respective surfaces.Our research consists in improving the characteristics and qualities of the acidic soils and helping to reintroduce it into the agricultural circuit by transforming a waste into a new material friendly-environmental, the mixture of blast furnace slag and waste slag dumped in landfill. More

  • in

    Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons

    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).Article 

    Google Scholar 
    Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. The forms and fitness cost of senescence: Age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. Am. Nat. 179, E15–E27 (2011).Article 

    Google Scholar 
    Lemaître, J.-F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. Biol. Sci. 282, 20150209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Millon, A., Petty, S. J. & Lambin, X. Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls. J. Anim. Ecol. 79, 426–435 (2010).CAS 
    Article 

    Google Scholar 
    Newton, I. & Rothery, P. Senescence and reproductive value in Sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    Boonekamp, J. J., Salomons, M., Bouwhuis, S., Dijkstra, C. & Verhulst, S. Reproductive effort accelerates actuarial senescence in wild birds: An experimental study. Ecol. Lett. 17, 599–605 (2014).Article 

    Google Scholar 
    Péron, G., Gimenez, O., Charmantier, A., Gaillard, J.-M. & Crochet, P.-A. Age at the onset of senescence in birds and mammals is predicted by early-life performance. Proc. R. Soc. B Biol. Sci. 277, 2849–2856 (2010).Article 

    Google Scholar 
    Pyle, P., Nur, N., Sydeman, W. J. & Emslie, S. D. Cost of reproduction and the evolution of deferred breeding in the western gull. Behav. Ecol. 8, 140–147 (1997).Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Age specific reproductive performance in red-billed chough Pyrrhocorax pyrrhocorax: Patterns and processes in a natural population. J. Anim. Ecol. 72, 765–776 (2003).Article 

    Google Scholar 
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).ADS 
    Article 

    Google Scholar 
    Nussey, D. H. et al. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1–18 (2007).Article 

    Google Scholar 
    Cam, E. & Monnat, J. Y. Apparent inferiority of first-time breeders in the kittiwake: The role of heterogeneity among age classes. J. Anim. Ecol. 69, 380–394 (2000).Article 

    Google Scholar 
    Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis (Lond. 1859). 158, 227–248 (2016).Clutton-Brock, T. H. Reproductive success: Studies of individual variation in contrasting breeding systems. (The university of Chicago Press, 1988).Ringsby, T. H., Sæther, B. & Solberg, E. J. Factors affecting juvenile survival in house sparrow passer domesticus. J. Avian Biol. 29, 241–247 (1998).Article 

    Google Scholar 
    Verhulst, S. & Nilsson, J.-A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 399–410 (2008).Article 

    Google Scholar 
    Crawley, M. J. The R Book. (John Wiley & Sons, Ltd, 2007). https://doi.org/10.1002/9780470515075Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).Article 

    Google Scholar 
    Forslund, P. & Pärt, T. Age and reproduction in birds–hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    Article 

    Google Scholar 
    Millon, A., Petty, S. J., Little, B. & Lambin, X. Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. J. Anim. Ecol. 80, 968–975 (2011).Article 

    Google Scholar 
    Sergio, F. et al. Variation in age-structured vital rates of a long-lived raptor: Implications for population growth. Basic Appl. Ecol. 12, 107–115 (2010).Article 

    Google Scholar 
    Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).Article 

    Google Scholar 
    Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. 50, 1–14 (2019).Article 

    Google Scholar 
    Nielsen, J. T. & Drachmann, J. Age-dependent reproductive performance in Northern Goshawks Accipiter gentilis. Ibis (Lond. 1859). 145, 1–8 (2003).Zuberogoitia, I. et al. Population trends of Peregrine Falcon in Northern Spain–results of a long-term monitoring project. Ornis Hungarica 26, 51–68 (2018).Article 

    Google Scholar 
    Macdonald, D. W. The ecology of carnivore social behaviour. Nature 301, 379–384 (1983).ADS 
    Article 

    Google Scholar 
    Sergio, F. & Boto, A. Nest dispersion, diet, and breeding success of Black Kites (Milvus migrans) in the Italian pre-Alps. J. Raptor Res. 33, 207–217 (1999).
    Google Scholar 
    Sergio, F. & Newton, I. Occupancy as a measure of habitat quality. J. Anim. Ecol. 72, 857–865 (2003).Article 

    Google Scholar 
    Millon, A. et al. Dampening prey cycle overrides the impact of climate change on predator population dynamics: A long-term demographic study on tawny owls. Glob. Chang. Biol. 20, 1770–1781 (2014).ADS 
    Article 

    Google Scholar 
    Krüger, O. Long-term demographic analysis in goshawk accipiter gentilis: The role of density dependence and stochasticity. Oecologia 152, 459–471 (2007).ADS 
    Article 

    Google Scholar 
    Oro, D., Hernández, N., Jover, L. & Genovart, M. From recruitment to senescence: Food shapes the age-dependent pattern of breeding performance in a long-lived bird. Ecology 95, 446–457 (2014).Article 

    Google Scholar 
    Froy, H., Phillips, R. A., Wood, A. G., Nussey, D. H. & Lewis, S. Age-related variation in reproductive traits in the wandering albatross: Evidence for terminal improvement following senescence. Ecol. Lett. 16, 642–649 (2013).Article 

    Google Scholar 
    McCleery, R. H., Perrins, C. M., Sheldon, B. C. & Charmantier, A. Age-specific reproduction in a long-lived species- the combined effects of senescence and individual quality. Proc. R. Soc. B 275, 963–970 (2008).CAS 
    Article 

    Google Scholar 
    Dixon, A. et al. Seasonal variation in gonad physiology indicates juvenile breeding in the Saker Falcon (Falco cherrug). Avian Biol. Res. 14, 39–47 (2021).Article 

    Google Scholar 
    Newton, I. & Mearns, R. Population ecology of peregrines in South Scotland. in Peregrine falcon populations. Their management and recovery. (eds. Cade, T. J., Enbderson, J. H., Thelander, C. G. & White, C. M.) 651–665 (The Peregrine Fund Inc., 1988).Brommer, J. E., Pietiäinen, H. & Kolunen, H. The effect of age at first breeding on Ural owl lifetime reproductive success and fitness under cyclic food conditions. J. Anim. Ecol. 67, 359–369 (1998).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E., González-Oreja, J. A., Calvo, J. F. & Zabala, J. The relationship between brood size and prey selection in a Peregrine Falcon population located in a strategic region on the Western European Flyway. J. Ornithol. 154, 73–82 (2013).Article 

    Google Scholar 
    Zuberogoitia, I., Martínez, J. E. & Zabala, J. Individual recognition of territorial peregrine falcons Falco peregrinus : A key for long-term monitoring programmes. Munibe Ciencias Nat. 61, 117–127 (2013).
    Google Scholar 
    Zabala, J. & Zuberogoitia, I. Individual quality explains variation in reproductive success better than territory quality in a long-lived territorial raptor. PLoS ONE 9, e90254 (2014).ADS 
    Article 

    Google Scholar 
    Zuberogoitia, I., Zabala, J. & Martínez, J. E. Moult in birds of prey: A review of current knowledge and future challenges for research. Ardeola 65, 183–207 (2018).Article 

    Google Scholar 
    McDonald, T. L. & White, G. C. A comparison of regression models for small counts. J. Wildl. Manage. 74, 514–521 (2010).Article 

    Google Scholar 
    Zabala, J. et al. Accounting for food availability reveals contaminant-induced breeding impairment, food-modulated contaminant effects, and endpoint-specificity of exposure indicators in free ranging avian populations. Sci. Total Environ. 791, 148322 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. (Springer-Verlag, 2002).Toms, J. D. & Lesperance, M. L. Piecewise regresion: A tool for identifying ecological tresholds. Ecology 84, 2034–2041 (2003).Article 

    Google Scholar 
    Van De Pol, M. & Verhulst, S. Age–dependent traits: A new statistical model to separate within–and between–individual effects. Am. Nat. 167, 766–773 (2006).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer New York, 2009). https://doi.org/10.1007/978-0-387-87458-6Therneau, T. A Package for Survival Analysis in S. (2014). More

  • in

    Calibrating the zenith of dinosaur diversity in the Campanian of the Western Interior Basin by CA-ID-TIMS U–Pb geochronology

    Sloan, R. E. in Essays on palaeontology in honour of Loris Shano Russell (ed C. S. Churcher) 134–155 (Royal Ontario Museum, 1976).Dodson, P. J. A faunal review of the Judith River (Oldman) Formation, Dinosaur Provincial Park, Alberta. Mosasaur 1, 89–118 (1983).
    Google Scholar 
    Clemens, W. A. in Dynamics of extinction (ed D. K. Elliott) 63–85 (John Wiley & Sons, 1986).Dodson, P. J. & Tatarinov, L. P. in The Dinosauria (eds D. B. Weishampel, P. J. Dodson, & H. Osmólska) 55–62 (University of California Press, 1990).Lehman, T. M. in Dinofest International (eds D. L. Wolberg, E. Stump, & G. D. Rosenberg) 223–240 (Philadelphia Academy of Natural Sciences, 1997).Lehman, T. M. in Mesozoic Vertebrate Life (eds D. H. Tanke & K. Carpenter) 310–328 (Indiana University Press, 2001).Sampson, S. D. et al. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS ONE 5, e12292. https://doi.org/10.1371/journal.pone.0012292 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mannion, P. D., Upchurch, P., Carrano, M. T. & Barrett, P. M. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol. Rev. 86, 157–181. https://doi.org/10.1111/j.1469-185X.2010.00139.x (2011).Article 
    PubMed 

    Google Scholar 
    Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J. & Carrano, M. T. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geol. Soc. Spec. Publ 358, 209–240. https://doi.org/10.1144/SP358.14 (2011).Article 

    Google Scholar 
    Haq, B. U. Cretaceous eustasy revisited. Glob. Planet. Change 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007 (2014).ADS 
    Article 

    Google Scholar 
    Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J. & Savin, S. M. Does ice drive early Maastrichtian eustasy?. Geology 27, 783. https://doi.org/10.1130/0091-7613(1999)027%3c0783:dideme%3e2.3.co;2 (1999).ADS 
    Article 

    Google Scholar 
    Catuneanu, O., Sweet, A. R. & Miall, A. D. Reciprocal stratigraphy of the Campanian-Paleocene Western Interior of North America. Sediment. Geol. 134, 235–255. https://doi.org/10.1016/S0037-0738(00)00045-2 (2000).ADS 
    Article 

    Google Scholar 
    Smith, R. L. Ash flows. Geol. Soc. Am. Bull. 71, 795–841. https://doi.org/10.1130/0016-7606(1960)71[795:af]2.0.co;2 (1960).ADS 
    Article 

    Google Scholar 
    Smedes, H. W. Geology and igneous petrology of the northern Elkhorn mountains. 116 (United States Geological Survey Professional Paper 510 1966).Rutland, C., Smedes, H. W., Tilling, R. I. & Greenwood, W. R. in Cordilleran volcanism, plutonism, and magma generation at various crustal levels, Montana and Idaho. 28th International Geological Congress, Field Trip Guidebook T337 (ed D. W. Hyndman) 16–31 (American Geophysical Union, 1989).Harlan, S. S. et al. 40Ar/39Ar and K-Ar Geochronology and Tectonic Significance of the Upper Cretaceous Adel Mountain Volcanics and Spatially Associated Tertiary Igneous Rocks, Northwestern Montana. 29 (United States Geological Survey Professional Paper 1696, 2005).Breyer, J. A. et al. Evidence for late cretaceous volcanism in Trans-Pecos Texas. J. Geol. 115, 243–251. https://doi.org/10.1086/510640 (2007).ADS 
    Article 

    Google Scholar 
    Jennings, G. R., Lawton, T. E. & Clinkscales, C. A. Late cretaceous U-Pb tuff ages from the, Skunk Ranch Formation and their implications for age of Laramide deformation, Little Hatchet Mountains, southwestern New Mexico, USA. Cretac. Res. 43, 18–25. https://doi.org/10.1016/j.cretres.2013.02.001 (2013).Article 

    Google Scholar 
    Roberts, E. M. & Hendrix, M. S. Taphonomy of a petrified forest in the Two Medicine Formation (Campanian), northwest Montana: implications for palinspastic restoration of the Boulder batholith and Elkhorn Mountains Volcanics. Palaios 15, 476–482. https://doi.org/10.2307/3515516 (2000).ADS 
    Article 

    Google Scholar 
    Sewall, J. O. et al. Climate model boundary conditions for four Cretaceous time slices. Clim. Past. 3, 647–657. https://doi.org/10.5194/cp-3-647-2007 (2007).Article 

    Google Scholar 
    Bertog, J. Stratigraphy of the lower Pierre Shale (Campanian): implications for the tectonic and eustatic controls on facies distributions. J. Geol. Res. 2010, 910243. https://doi.org/10.1155/2010/910243 (2010).ADS 
    Article 

    Google Scholar 
    Fricke, H. C., Foreman, B. Z. & Sewall, J. O. Integrated climate model-oxygen isotope evidence for a North American monsoon during the Late Cretaceous. Earth Planet. Sci. Lett. 289, 11–21. https://doi.org/10.1016/j.epsl.2009.10.018 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Obradovich, J. D. in Evolution of the Western Interior Basin (eds W. G. E. Caldwell & E. G. Kaufman) 379–396 (Geological Association of Canada Special Paper 39, 1993).Cobban, W. A., Walaszczyk, I., Obradovich, J. D. & McKinney, K. C. A USGS Zonal Table for the Upper Cretaceous Middle Cenomanian–Maastrichtian of the Western Interior of the United States Based on Ammonites, Inoceramids, and Radiometric Ages. (United States Geological Survey Open-File Report 2006–1250, 2006).Rogers, R. R., Swisher, C. C. & Horner, J. R. 40Ar/39Ar age and correlation of the nonmarine Two Medicine Formation (Upper Cretaceous), northwestern Montana, U.S.A. Can J Earth Sci 30, 1066–1075. https://doi.org/10.1139/e93-090 (1993).CAS 
    Article 

    Google Scholar 
    Goodwin, M. B. & Deino, A. L. The first radiometric ages from the Judith River Formation (Upper Cretaceous), Hill County, Montana. Can. J. Earth Sci. 26, 1384–1391. https://doi.org/10.1139/e89-118 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Thomas, R. G., Eberth, D. A., Deino, A. L. & Robinson, D. Composition, radioisotopic ages, and potential significance of an altered volcanic ash (bentonite) from the Upper Cretaceous Judith River Formation, Dinosaur Provincial Park, southern Alberta, Canada. Cretac. Res. 11, 125–162. https://doi.org/10.1016/s0195-6671(05)80030-8 (1990).CAS 
    Article 

    Google Scholar 
    Roberts, E. M., Deino, A. L. & Chan, M. A. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretac. Res. 26, 307–318. https://doi.org/10.1016/j.cretres.2005.01.002 (2005).Article 

    Google Scholar 
    Fassett, J. E. & Steiner, M. B. in Mesozoic Geology and Paleontology of the Four Corners Region (eds O. Anderson, B. S. Kues, & S. G. Lucas) 239–247 (New Mexico Geological Society 48th Field Conference Guidebook, 1997).Sprain, C. J., Renne, P. R., Wilson, G. P. & Clemens, W. A. High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana. Geol. Soc. Am. Bull. 127, 393–409. https://doi.org/10.1130/B31076.1 (2015).ADS 
    Article 

    Google Scholar 
    Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A. & Jones, M. M. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth Planet. Sci. Lett. 452, 272–280. https://doi.org/10.1016/j.epsl.2016.07.041 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, T. T. et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China. Earth Planet. Sci. Lett. 446, 37–44. https://doi.org/10.1016/j.epsl.2016.04.007 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Blakey, R. C. Paleogeography and Paleotectonics of the Western Interior Seaway, Jurassic-Cretaceous of North America. (American Association of Petroleum Geologists Search and Discovery Article 30392, 2014).Archibald, J. D. Dinosaur Extinction and the End of an Era: What the Fossils Say 240 (Columbia University Press, London, 1996).
    Google Scholar 
    Currie, P. J. & Russell, D. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 537–569 (Indiana University Press, 2005).Eberth, D. A. & Hamblin, A. P. Tectonic, stratigraphic, and sedimentologic significance of a regional discontinuity in the upper Judith River Group (Belly River Wedge) of southern Alberta, Saskatchewan, and northern Montana. Can. J. Earth Sci. 30, 174–200. https://doi.org/10.1139/e93-016 (1993).ADS 
    Article 

    Google Scholar 
    Eberth, D. A. in Dinosaur Provincial Park: A spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) Ch. 3, 54–82 (Indiana University Press, 2005).Eberth, D. A. Origin and significance of mud-filled incised valleys (Upper Cretaceous) in southern Alberta, Canada. Sedimentology 43, 459–477. https://doi.org/10.1046/j.1365-3091.1996.d01-15.x (1996).ADS 
    Article 

    Google Scholar 
    Russell, D. A. A new specimen of Stenonychosaurus from the Oldman Formation (Cretaceous) of Alberta. Can. J. Earth Sci. 6, 595–612. https://doi.org/10.1139/e69-059 (1969).ADS 
    Article 

    Google Scholar 
    Dodson, P. Sedimentology and taphonomy of Oldman formation (Campanian), Dinosaur-Provincial-Park, Alberta (Canada). Palaeogeogr. Palaeocl. 10, 21–000. https://doi.org/10.1016/0031-0182(71)90044-7 (1971).Article 

    Google Scholar 
    Farlow, J. O. Consideration of trophic dynamics of a late cretaceous large dinosaur community (Oldman formation). Ecology 57, 841–857. https://doi.org/10.2307/1941052 (1976).Article 

    Google Scholar 
    Beland, P. & Russell, D. A. Paleoecology of Dinosaur-Provincial-Park (Cretaceous), Alberta, interpreted from distribution of articulated vertebrate remains. Can. J. Earth Sci. 15, 1012–1024. https://doi.org/10.1139/e78-109 (1978).ADS 
    Article 

    Google Scholar 
    MacDonald, M., Currie, P. J. & Spencer, W. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 478–485 (Indiana University Press, 2005).Eberth, D. A., Brinkman, D. B. & Barkas, V. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 495–508 (Indiana University Press, 2010).Mallon, J. C., Evans, D. C., Ryan, M. J. & Anderson, J. S. Megaherbivorous dinosaur turnover in the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeogr. Palaeocl. 350, 124–138. https://doi.org/10.1016/j.palaeo.2012.06.024 (2012).Article 

    Google Scholar 
    Brown, C. M., Evans, D. C., Campione, N. E., O’Brien, L. J. & Eberth, D. A. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr Palaeocl 372, 108–122. https://doi.org/10.1016/j.palaeo.2012.06.027 (2013).Article 

    Google Scholar 
    Eberth, D. A. & Getty, M. A. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 501–536 (Indiana University Press, 2005).Brown, C. M., Herridge-Berry, S., Chiba, K., Vitkus, A. & Eberth, D. A. High-resolution (centimetre-scale) GPS/GIS-based 3D mapping and spatial analysis of in situ fossils in two horned-dinosaur bonebeds in the Dinosaur Park Formation (Upper Cretaceous) at Dinosaur Provincial Park, Alberta, Canada. Can. J. Earth Sci. 58, 225–246. https://doi.org/10.1139/cjes-2019-0183 (2021).ADS 
    Article 

    Google Scholar 
    Eberth, D. A., Braman, D. R. & Tokaryk, T. T. Stratigraphy, Sedimentology and vertebrate paleontology of the Judith River Formation (Campanian) near Muddy Lake, West-Central Saskatchewan. Bull. Can. Petrol. Geol. 38, 387–406 (1990).
    Google Scholar 
    Rogers, R. R. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River formations, Montana; nonmarine response to the Claggett and Bearpaw marine cycles. J. Sediment. Res. 68, 615–631. https://doi.org/10.2110/jsr.68.604 (1998).ADS 
    Article 

    Google Scholar 
    Rogers, R. R. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of Northwestern Montana: evidence for drought-related mortality. Palaios 5, 394–413. https://doi.org/10.2307/3514834 (1990).ADS 
    Article 

    Google Scholar 
    Falcon-Lang, H. J. Growth interruptions in silicified conifer woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: implications for palaeoclimate and dinosaur palaeoecology. Palaeogeogr. Palaeocl. 199, 299–314. https://doi.org/10.1016/S0031-0182(03)00539-X (2003).Article 

    Google Scholar 
    Horner, J. R. & Makela, R. Nest of juveniles provides evidence of family-structure among dinosaurs. Nature 282, 296–298. https://doi.org/10.1038/282296a0 (1979).ADS 
    Article 

    Google Scholar 
    Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61. https://doi.org/10.1038/358059a0 (1992).ADS 
    Article 

    Google Scholar 
    Sampson, S. D. Two new horned dinosaurs from the Upper Cretaceous Two Medicine Formation of Montana; With a phylogenetic analysis of the Centrosaurinae (Ornithischia:Ceratopsidae). J. Vertebr. Paleontol. 15, 743–760. https://doi.org/10.1080/02724634.1995.10011259 (1995).Article 

    Google Scholar 
    Carr, T. D., Varricchio, D. J., Sedlmayr, J. C., Roberts, E. M. & Moore, J. R. A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system. Sci. Rep. 7, 44942. https://doi.org/10.1038/srep44942 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, J. P., Ryan, M. J. & Evans, D. C. A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the “Styracosaurus-line” dinosaurs. R. Soc. Open Sci. 7, 200284. https://doi.org/10.1098/rsos.200284 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foreman, B. Z., Rogers, R. R., Deino, A. L., Wirth, K. R. & Thole, J. T. Geochemical characterization of bentonite beds in the Two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretac. Res. 29, 373–385. https://doi.org/10.1016/j.cretres.2007.07.001 (2008).Article 

    Google Scholar 
    Varricchio, D. J. et al. in Large Meteorite Impacts and Planetary Evolution IV Vol. 465 (eds R. L. Gibson & W. U. Reimold) 269–299 (Geological Society of America Special Paper 465, 2010).Meek, F. B. & Hayden, F. V. Descriptions of new species of acephala and gasteropoda, from the tertiary formations of Nebraska Territory, with some general remarks on the geology of the country about the sources of the Missouri River. Ceratites Americanus. Proc. Acad. Nat. Sci. Phila. 8, 111–126 (1856).
    Google Scholar 
    Hayden, F. V. Notes explanatory of a map and section illustrating the geologic structure of the country bordering the Missouri River from the mouth of the Platte River to Fort Benton. Proc. Acad. Natl. Sci. Phila. 9, 109–148 (1857).
    Google Scholar 
    Hayden, F. V. in [Fourth Annual] Preliminary Report of the United States Geological Survey of Wyoming and portions of contiguous Territories 85–98 (U.S. Geological Survey, 1871).Dawson, G. M. in Report on the Geology and Resources of the Region in the Vicinity of the Forty-Ninth Parallel, from the Lake of the Woods to the Rocky Mountains 1–18 (British North American Boundary Commission, 1875).Stanton, T. W., Hatcher, J. B. & Knowlton, F. H. Geology and Paleontology of the Judith River Beds (United States Geological Survey Bulletin No. 257, 1905).Bowen, C. F. in Shorter Contributions to General Geology 1914 95–153 (United States Geological Survey Professional Paper 90, 1915).Waage, K. M. in The Cretaceous System in the Western Interior of North America: The Proceedings of an International Symposium Organized by the Geological Association of Canada, Saskatoon, Saskatchewan, May 23–26, 1973 (ed W. G. E. Caldwell) 55–81 (Geological Association of Canada Special paper 13, 1975).Leidy, J. Notice of remains of extinct reptiles and fishes, discovered by Dr. FV Hayden in the Bad Lands of the Judith River, Nebraska Territory. Proc. Acad. Nat. Sci. Phila. 8, 72–73. https://doi.org/10.5281/zenodo.1038128 (1856).Article 

    Google Scholar 
    Leidy, J. Extinct vertebrata from the Judith River and Great Lignite formations of Nebraska. Trans. Am. Philos. Soc. 11, 139–154. https://doi.org/10.2307/3231936 (1860).Article 

    Google Scholar 
    Cope, E. D. On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana. Proc. Acad. Natl. Sci. Phila. 28, 340–359 (1876).
    Google Scholar 
    Sternberg, C. H. Notes on the fossil vertebrates collected on the Cope expedition to the Judith River and Cow Island beds, Montana, in 1876. Science 40, 134–135. https://doi.org/10.1126/science.40.1021.134 (1914).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sahni, A. The vertebrate fauna of the Judith River Formation, Montana. Bull. Am. Mus. Nat. Hist. 147, 325–412 (1972).
    Google Scholar 
    Tschudy, B. D. Palynology of the upper Campanian (Cretaceous) Judith River Formation, north-central Montana. 42 (United States Geological Survey Professional Paper 770, 1973).Case, G. R. A new Selachian Fauna from the Judith River formation (Campanian) of Montana. Palaeontogr. Abt. A Band A 160, 176–205 (1978).
    Google Scholar 
    Horner, J. R. A new hadrosaur (Reptilia, Ornithischia) from the Upper Cretaceous Judith River Formation of Montana. J. Vertebr. Paleontol. 8, 314–321. https://doi.org/10.1080/02724634.1988.10011714 (1988).Article 

    Google Scholar 
    Fiorillo, A. R. & Currie, P. J. Theropod teeth from the Judith River formation (Upper Cretaceous) of south-central Montana. J. Vertebr. Paleontol. 14, 74–80. https://doi.org/10.1080/02724634.1994.10011539 (1994).Article 

    Google Scholar 
    Prieto-Marquez, A. New information on the cranium of Brachylophosaurus canadensis (Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. J. Vertebr. Paleontol. 25, 144–156. https://doi.org/10.1671/0272-4634(2005)025[0144:Niotco]2.0.Co;2 (2005).Article 

    Google Scholar 
    Fricke, H. C., Rogers, R. R., Backlund, R., Dwyer, C. N. & Echt, S. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Palaeogeogr. Palaeocl. 266, 13–27. https://doi.org/10.1016/j.palaeo.2008.03.030 (2008).Article 

    Google Scholar 
    Fricke, H. C., Rogers, R. R. & Gates, T. A. Hadrosaurid migration: inferences based on stable isotope comparisons among Late Cretaceous dinosaur localities. Paleobiology 35, 270–288. https://doi.org/10.1666/08025.1 (2009).Article 

    Google Scholar 
    Tweet, J. S., Chin, K., Braman, D. R. & Murphy, N. L. Probable gut contents within a specimen of Brachylophosaurus canadensis (Dinosauria: Hadrosauridae) from the Upper Cretaceous Judith River formation of Montana. Palaios 23, 624–635. https://doi.org/10.2110/palo.2007.p07-044r (2008).ADS 
    Article 

    Google Scholar 
    Ryan, M. J., Evans, D. C., Currie, P. J. & Loewen, M. A. A new chasmosaurine from northern Laramidia expands frill disparity in ceratopsid dinosaurs. Naturwissenschaften 101, 505–512. https://doi.org/10.1007/s00114-014-1183-1 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086. https://doi.org/10.1098/rsos.161086 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chiba, K., Ryan, M. J., Fanti, F., Loewen, M. A. & Evans, D. C. New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River formation (Campanian, Montana). J. Paleontol. 92, 272–288. https://doi.org/10.1017/jpa.2017.62 (2017).Article 

    Google Scholar 
    Rogers, R. R. et al. Age, correlation, and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River formation in its type area (north-central Montana), with a comparison of low- and high-accommodation alluvial records. J. Geol. 124, 99–135. https://doi.org/10.1086/684289 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawton, T. F., Pollock, S. L. & Robinson, R. A. J. Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the late cretaceous fluvial systems of southwestern Utah, USA. J. Sediment. Res. 73, 389–406. https://doi.org/10.1306/100702730389 (2003).ADS 
    Article 

    Google Scholar 
    Jinnah, Z. A. et al. New 40Ar/39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits formations on the Kaiparowits Plateau, Utah: implications for regional correlation, provenance, and biostratigraphy. Cretac. Res. 30, 287–299. https://doi.org/10.1016/j.cretres.2008.07.012 (2009).Article 

    Google Scholar 
    Beveridge, T. L. et al. Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 591, 110876. https://doi.org/10.1016/j.palaeo.2022.110876 (2022).Article 

    Google Scholar 
    Jinnah, Z. A. & Roberts, E. M. Facies associations, paleoenvironment, and base-level changes in the Upper Cretaceous Wahweap Formation, Utah, USA. J. Sediment. Res. 81, 266–283. https://doi.org/10.2110/jsr.2011.22 (2011).ADS 
    Article 

    Google Scholar 
    Gregory, H. E. & Moore, R. C. The Kaiparowits region, a geographic and geologic reconnaissance of parts of Utah and Arizona. Report No. 164, 161 (United States Geological Survey Professional Paper 164, 1931).Lohrengel, C. F. II. Palynology of Kaiparowits Formation, Garfield County, Utah. AAPG Bull. 53, 729–729. https://doi.org/10.1306/5d25c75f-16c1-11d7-8645000102c1865d (1969).Article 

    Google Scholar 
    Roberts, E. M. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sediment. Geol. 197, 207–233. https://doi.org/10.1016/j.sedgeo.2006.10.001 (2007).ADS 
    Article 

    Google Scholar 
    Lawton, T. F. & Bradford, B. A. Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, USA, from Zircon U-Pb geochronology and petrography. J. Sediment. Res. 81, 495–512. https://doi.org/10.2110/jsr.2011.45 (2011).ADS 
    Article 

    Google Scholar 
    Beveridge, T. L., Roberts, E. M. & Titus, A. L. Volcaniclastic member of the richly fossiliferous Kaiparowits Formation reveals new insights for regional correlation and tectonics in southern Utah during the latest Campanian. Cretac. Res. https://doi.org/10.1016/j.cretres.2020.104527 (2020).Article 

    Google Scholar 
    Titus, A. L. et al. in Interior Western United States (ed C. M. Dehler) 1–28 (Geological Society of America Field Guide 6, 2005).Titus, A. L. & Loewen, M. A. At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Indiana University Press, 2013).Cifelli, R. L. Cretaceous mammals of southern Utah. I. Marsupials from the Kaiparowits Formation (Judithian). J. Vertebr. Paleontol. 10, 295–319. https://doi.org/10.1080/02724634.1990.10011816 (1990).Article 

    Google Scholar 
    Eaton, J., Cifelli, R., Hutchison, J. H., Kirkland, J. & Parrish, J. in Vertebrate Paleontology in Utah (ed D. D. Gillette) 345–353 (Utah Geological Survey Miscellaneous Publication 99–1, 1999).Zanno, L. E. & Sampson, S. D. A new oviraptorosaur (Theropoda, Maniraptora) from the Late Cretaceous (Campanian) of Utah. J. Vertebr. Paleontol. 25, 897–904. https://doi.org/10.1671/0272-4634(2005)025[0897:Anotmf]2.0.Co;2 (2005).Article 

    Google Scholar 
    Gates, T. A. & Sampson, S. D. A new species of Gryposaurus (Dinosauria : Hadrosauridae) from the late Campanian Kaiparowits Formation, southern Utah, USA. Zool J Linn Soc-Lond 151, 351–376. https://doi.org/10.1111/j.1096-3642.2007.00349.x (2007).Article 

    Google Scholar 
    Sampson, S. D., Lund, E. K., Loewen, M. A., Farke, A. A. & Clayton, K. E. A remarkable short-snouted horned dinosaur from the Late Cretaceous (late Campanian) of southern Laramidia. Proc. Biol. Sci. 280, 20131186. https://doi.org/10.1098/rspb.2013.1186 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carr, T. D., Williamson, T. E., Britt, B. B. & Stadtman, K. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah. Naturwissenschaften 98, 241–246. https://doi.org/10.1007/s00114-011-0762-7 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zanno, L. E., Varricchio, D. J., O’Connor, P. M., Titus, A. L. & Knell, M. J. A new troodontid theropod, Talos sampsoni gen. et sp. Nov., from the Upper Cretaceous Western Interior Basin of North America. PLoS ONE 6, e24487. https://doi.org/10.1371/journal.pone.0024487 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loewen, M. A., Irmis, R. B., Sertich, J. J., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans. PLoS ONE 8, e79420. https://doi.org/10.1371/journal.pone.0079420 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiersma, J. P. & Irmis, R. B. A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. Nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA. Peerj 6, e5016. https://doi.org/10.7717/peerj.5016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Titus, A. L. et al. Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness. PeerJ 9, e11013. https://doi.org/10.7717/peerj.11013 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, E., Sampson, S., Deino, A., Bowring, S. & Buchwaldt, R. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 85–106 (Indiana University Press, 2013).Fassett, J. E. & Hinds, J. S. Geology and fuel resources of the Fruitland Formation and Kirtland Shale of the San Juan Basin, New Mexico and Colorado. Report No. 676, 76 (United States Geological Survey Professional Paper 676, 1971).Fassett, J. E. in Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah (eds M. A. Kirschbaum, L. N. R. Roberts, & L. Biewick) Q1-Q132 (U.S. Geological Survey Professional Paper 1625–B, 2000).Flynn, A. G. et al. Early Paleocene magnetostratigraphy and revised biostratigraphy of the Ojo Alamo Sandstone and Lower Nacimiento Formation, San Juan Basin, New Mexico, USA. GSA Bull. 132, 2154–2174. https://doi.org/10.1130/b35481.1 (2020).Article 

    Google Scholar 
    Hay, O. P. On the habits and the pose of the Sauropodous dinosaurs, especially of Diplodocus. Am. Nat. 42, 672–681. https://doi.org/10.1086/278992 (1908).Article 

    Google Scholar 
    Gilmore, C. W. in Shorter Contributions to General Geology 1916 279–308 (United States Geological Survey Professional Paper 98-Q, 1916).Gilmore, C. W. On the Replilia of the Kirtland formation of New Mexico, with descriptions of new species of fossil turtles. Proc. U.S. Natl. Mus. 83, 159–188 (1935).Article 

    Google Scholar 
    Hunt, A. P. Integrated vertebrate, invertebrate and plant taphonomy of the Fossil Forest area (Fruitland and Kirtland formations: Late Cretaceous), San-Juan-County, New-Mexico, USA. Palaeogeogr. Palaeocl. 88, 85–107. https://doi.org/10.1016/0031-0182(91)90016-K (1991).Article 

    Google Scholar 
    Hunt, A. P. & Lucas, S. G. in New Mexico Geological Society 43rd Field Conference Guidebook Vol. 43 (eds S. G. Lucas, B. S. Kues, T. E. Williamson, & A. P. Hunt) 217–239 (New Mexico Geological Society, 1992).Fassett, J. E. & Heizler, M. T. in The Geology of the Ouray-Silverton Area (eds K. E. Karlstrom et al.) 115–121 (68th New Mexico Geological Society Field Conference Guidebook, 2017).Folinsbee, R., Lipson, J. & Baadsgaard, H. Potassium-argon dates of upper cretaceous ash falls, Alberta, Canada. Ann. N. Y. Acad. Sci. 91, 352. https://doi.org/10.1111/j.1749-6632.1961.tb35475.x (1961).ADS 
    Article 

    Google Scholar 
    Lerbekmo, J. F. Petrology of the belly river formation, southern Alberta foothills. Sedimentology 2, 54–86. https://doi.org/10.1111/j.1365-3091.1963.tb01200.x (1963).ADS 
    Article 

    Google Scholar 
    Min, K. W., Renne, P. R. & Huff, W. D. 40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia. Earth Planet. Sci. Lett. 185, 121–134. https://doi.org/10.1016/S0012-821x(00)00365-4 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Steiger, R. H. & Jäger, E. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362. https://doi.org/10.1016/0012-821x(77)90060-7 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Samson, S. D. & Alexander, E. C. Calibration of the interlaboratory 40Ar-39Ar dating standard, Mmhb-1. Chem. Geol. 66, 27–34. https://doi.org/10.1016/0168-9622(87)90025-X (1987).CAS 
    Article 

    Google Scholar 
    Deino, A. & Potts, R. Single-crystal 40Ar/39Ar dating of the Olorgesailie formation, Southern Kenya Rift. J. Geophys. Res. 95, 8453. https://doi.org/10.1029/JB095iB06p08453 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Renne, P. R. et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145, 117–152. https://doi.org/10.1016/s0009-2541(97)00159-9 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504. https://doi.org/10.1126/science.1154339 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fowler, D. W. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. PLoS ONE 12, e0188426. https://doi.org/10.1371/journal.pone.0188426 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turrin, B. D. et al. in American Geophysical Union, Fall Meeting Vol. 2016 V23A–2969 (San Francisco, California, 2016).Phillips, D., Matchan, E. L., Dalton, H. & Kuiper, K. F. Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine—closing the interlaboratory gap. Chem. Geol. 597, 120815. https://doi.org/10.1016/j.chemgeo.2022.120815 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Eberth, D. A. & Kamo, S. L. High-precision U-Pb CA-ID-TIMS dating and chronostratigraphy of the dinosaur-rich Horseshoe Canyon Formation (Upper Cretaceous, Campanian-Maastrichtian), Red Deer River valley, Alberta, Canada. Can. J. Earth Sci. 57, 1220–1237. https://doi.org/10.1139/cjes-2019-0019 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Gale, A. S. et al. in Geologic Time Scale 2020 (eds F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg) 1023–1086 (Elsevier, 2020).Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480. https://doi.org/10.1016/j.gca.2015.05.026 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattinson, J. M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501. https://doi.org/10.1016/j.gca.2015.02.040 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Lu, J. et al. Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic). Proc. Natl. Acad. Sci. U.S.A. 118, e2109895118. https://doi.org/10.1073/pnas.2109895118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, B., Harlow, G. E., Wohletz, K., Zhou, Z. & Meng, J. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota. Nat. Commun. 5, 3151. https://doi.org/10.1038/ncomms4151 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gates, T. A. et al. Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America. Palaeogeogr. Palaeocl. 291, 371–387. https://doi.org/10.1016/j.palaeo.2010.03.008 (2010).Article 

    Google Scholar 
    Eaton, J. G. in Stratigraphy, depositional environments; and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway (eds J. Dale Nations & J. G. Eaton) 47–63 (Geological Society of America Special Paper 260, 1991).Sankey, J. T. Late Campanian southern dinosaurs, Aguja Formation, Big Bend, Texas. J. Paleontol. 75, 208–215. https://doi.org/10.1666/0022-3360(2001)075%3c0208:Lcsdaf%3e2.0.Co;2 (2001).Article 

    Google Scholar 
    Sullivan, R. & Lucas, S. G. Vertebrate faunal succession in the Upper Cretaceous, San Juan Basin, New Mexico, with implications for correlations within the north American western interior. J. Vertebr. Paleontol. 23, 102a–102a (2003).
    Google Scholar 
    Currie, P. J. in Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed (eds P. J. Currie & E. B. Koppelhus) 3–33 (Indiana University Press, 2005).Kirkland, J. I. & Deblieux, D. D. in New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds M. J. Ryan, B. J. Chinnery-Allgeier, & D. A. Eberth) 117–140 (Indiana University Press, 2010).Miller, I. M., Johnson, K., Kline, D. E., Nichols, D. J. & Barclay, R. in At the Top of the Grand Staircase: The Late Cretaceous of southern Utah (eds A. Titus & M. Loewen) 107–131 (Indiana University Press, 2013).Tapanila, L. & Roberts, E. in At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (eds A. L. Titus & M. A. Loewen) 132–152 (Indiana University Press, 2013).Schmitt, J. & Varricchio, D. J. Volcano-tectonic partitioning of Laramidia: Influence on Campanian terrestrial environments and ecosystems. Program and Abstracts. J. Vertebr. Paleontol. 31, 188. https://doi.org/10.1080/02724634.2011.10635174 (2011).Article 

    Google Scholar 
    Burgener, L. et al. An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America. GSA Bull. https://doi.org/10.1130/b35904.1 (2021).Article 

    Google Scholar 
    Sullivan, R. M. Revision of the dinosaur Stegoceras Lambe (Ornithischia, Pachycephalosauridae). J. Vertebr. Paleontol. 23, 181–207. https://doi.org/10.1671/0272-4634(2003)23[181:ROTDSL]2.0.CO;2 (2003).Article 

    Google Scholar 
    Sullivan, R. & Lucas, S. The Kirtlandian land-vertebrate “age”-faunal composition, temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of western North America. N. M. Mus. Nat. Hist. Sci. Bull. 35, 7–29 (2006).
    Google Scholar 
    Lucas, S. G., Sullivan, R. M., Lichtig, A., Dalman, S. & Jasinski, S. E. in Cretaceous Period: Biotic Diversity and Biogeography Vol. New Mexico Museum of Natural History and Science Bulletin 71 (eds S. G. Lucas & A. Khosla) 195–213 (2016).Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901. https://doi.org/10.1111/pala.12492 (2020).Article 

    Google Scholar 
    Maidment, S. C. R., Dean, C. D., Mansergh, R. I. & Butler, R. J. Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America. Proc. Biol. Sci. 288, 20210692. https://doi.org/10.1098/rspb.2021.0692 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loughney, K. M. & Badgley, C. The influence of depositional environment and basin history on the taphonomy of mammalian assemblages from the Barstow Formation (middle Miocene), California. Palaios 35, 175–190. https://doi.org/10.2110/palo.2019.067 (2020).ADS 
    Article 

    Google Scholar 
    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl. Acad. Sci. 113, 5036–5040. https://doi.org/10.1073/pnas.1521478113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833. https://doi.org/10.1038/s41467-021-23754-0 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Therrien, F. O. & Fastovsky, D. E. Paleoenvironments of early theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15, 194–211. https://doi.org/10.1669/0883-1351(2000)015%3c0194:poetcf%3e2.0.co;2 (2000).ADS 
    Article 

    Google Scholar 
    Hoke, G. D., Schmitz, M. D. & Bowring, S. A. An ultrasonic method for isolating nonclay components from clay-rich material. Geochem. Geophys. Geosyst. 15, 492–498. https://doi.org/10.1002/2013GC005125 (2014).ADS 
    Article 

    Google Scholar 
    Ramezani, J. et al. High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): temporal constraints on the early evolution of dinosaurs. Geol. Soc. Am. Bull. 123, 2142–2159. https://doi.org/10.1130/b30433.1 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Widmann, P., Davies, J. H. F. L. & Schaltegger, U. Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and U-Pb age. Chem. Geol. 511, 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Krogh, T. E. Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494. https://doi.org/10.1016/0016-7037(73)90213-5 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Bowring, J. F., McLean, N. M. & Bowring, S. A. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003479 (2011).Article 

    Google Scholar 
    McLean, N. M., Bowring, J. F. & Bowring, S. A. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003478 (2011).Article 

    Google Scholar 
    Machlus, M. L. et al. A strategy for cross-calibrating U-Pb chronology and astrochronology of sedimentary sequences: an example from the Green River Formation, Wyoming, USA. Earth Planet. Sci. Lett. 413, 70–78. https://doi.org/10.1016/j.epsl.2014.12.009 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614. https://doi.org/10.1126/science.1215507 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D. & Bowring, S. A. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta 70, 426–445. https://doi.org/10.1016/j.gca.2005.09.007 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Mattinson, J. M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–198. https://doi.org/10.1016/j.chemgeo.2010.05.007 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889 (1971).ADS 
    Article 

    Google Scholar 
    Nasdala, L. et al. GZ7 and GZ8—two zircon reference materials for SIMS U-Pb geochronology. Geostand. Geoanal. Res. 42, 431–457. https://doi.org/10.1111/ggr.12239 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. C Appl. Stat. 57, 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x (2008).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Parnell, A. C., Haslett, J., Allen, J. R. M., Buck, C. E. & Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 27, 1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009 (2008).ADS 
    Article 

    Google Scholar  More

  • in

    Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods

    Experimental designA 2-year field experiment was conducted at the Modern Agricultural Research and Development Base of Henan Province (113° 35′–114° 15′ E, 34° 53′–35° 11′ N). In order to enhance the diversity of LAI data, a split-plot design with a variety of field management measures and three replications was selected for the experiment (Fig. 1). The size of each experiment plot was 40 m2, the soil texture was predominantly sandy loam and sandy clay loam, as determined by textural analysis of soil samples collected before planting. Maize cultivar Dedan-5 was used in the experiment, which was planted on June 12, 2019, and June 20, 2020, with a row spacing of 42 cm and a planting density of 7 seedlings·m−2. The soil and cultivar in field experiments were representatives of those in the region. The irrigation, pesticide, and herbicide control practices followed local management for maize production.Figure 1The experimental design.Full size imageLAI measurements and UAV-based image acquisitionThe measurements of LAI were conducted at four growth stages including the tasseling stage (TS), flowering stage (FS), grain-filling stage (GS), and milk-ripe stage (MS) of maize in 2019 and 2020, a total of 264 LAI data of maize were collected during the 2-year field trial (Table 1). In order to reduce the impact of plant variability, the random sampling method was used to collect LAI samples. For each plot, three plants were randomly selected to measure the total green leaf area with the non-destructive portable leaf area meter (Laser Area Meter CI-203; CID Inc.). And the average leaf area of selected plants represented the single plant leaf area in each experiment plot. The LAI of each plot wasTable 1 Description of samplings.Full size table$$mathrm{LAI}=mathrm{LA}*mathrm{D}$$
    (1)
    where (mathrm{LA}) is the leaf area of a single plant in each plot; (mathrm{D}) is the planting density in one square meter.PHANTOM 4 PRO (DJI-Innovations Inc., Shenzhen, China) is a multi-rotor UAV equipped with a 20-megapixel visible-light camera that was employed to capture digital images. Aerial observations were conducted on the same dates as the LAI measurements, which was between 10:30 a.m. and 2:00 p.m. local time when the solar zenith angle was minimal. The UAV was flown automatically based on preset flight parameters and waypoints, with a forward overlap of 80% and a side overlap of 60%. A three-axis gimbal integrated with the inertial navigation system stabilized the camera, the automatic camera mode with fixed ISO (100) and a fixed exposure was used during the flight. Altogether, 4192 images were taken in eight flights from a flight height of 29.36 m above ground, with a spatial resolution of 0.008 m.The measurements of maize LAI were carried out with permission from the Modern Agricultural Research and Development Base of Henan Province. All experiments were carried out in accordance with relevant institutional, national, and international guidelines and legislation.Image pre-processingDJI Terra (version 2.3.3) was used to generate ortho-rectified images based on the structure from motion algorithms and a mosaic blending model. The main procedures are as follows: (1) extract feature points and match features according to the longitude, latitude, elevation, roll angle, pitch angle, and heading angle of each image; (2) build dense 3D point clouds by using dense multi-view stereo matching algorithm; (3) build a 3D polygonal mesh based on the vector relationship between each point in the dense cloud; (4) establish a 3D model with both external image and internal structure by merging the mosaic image into the 3D model; (5) generate digital orthophoto map (DOM).Vegetation indices (VIs) derived from the UAV-based digital imageryDigital imagery records the intensity of visible red (R), green (G), and blue (B) bands in individual pixels24. In order to enhance the vegetation parameters contained in the digital image, fourteen commonly used RGB-based VIs were collected, and their correlation with the LAI of maize at different growth stages was evaluated. Table 2 shows the detailed information of the selected RGB-based VIs.Table 2 RGB-based VIs for LAI estimation.Full size tableCentered on the point where LAI was measured, regions of interests (ROIs) with a size of 100*100 were clipped from the digital image. Python 3.7.3 was used for extracting the R, G, B information of maize and computing the RGB-based VIs from ROIs. In order to reduce the effects of light and shadow, the R, G, B color space of the image was normalized according to the followings:$$mathrm{r}=frac{R}{R+G+B}$$
    (2)
    $$g=frac{G}{R+G+B}$$
    (3)
    $$b=frac{B}{R+G+B}$$
    (4)
    where r, g, and b are the normalized values. R, G, B are the pixel values from the digital images based on each band.Pearson correlation analysisBefore regression analysis, the Pearson correlation analysis was performed to determine the relationship between maize LAI and different RGB-based VIs extracted from the digital image. Pearson correlation coefficient ((mathrm{r})) reflects the degree of linear correlation between two variables, which is between − 1 and 1. The calculation formula of Pearson correlation coefficient was expressed as follows:$$mathrm{r}= frac{sum_{i=1}^{n}left({X}_{i}-overline{X }right)left({Y}_{i}-overline{Y }right)}{sqrt{sum_{i=1}^{n}{left({X}_{i}-overline{X }right)}^{2}}sqrt{sum_{i=1}^{n}{left({Y}_{i}-overline{Y }right)}^{2}}}$$
    (5)
    where (X), (mathrm{Y}) are variables, (n) is the number of variables.Regression methodsLinear regression (LR)Linear regression is an approach for modelling the relationship between dependent and independent variables. The case of one independent variable is called unary linear regression (ULR), the expressions can be expressed as follows:$$mathrm{y}={beta }_{0}+{beta }_{1}x+varepsilon $$
    (6)
    where (varepsilon ) is deviation, which satisfies the normal distribution. (x), (mathrm{y}) are variables. ({beta }_{0}), ({beta }_{1}) are the intercept and slope of the regression line, respectively.For more than one independent variable, the regression process is called multiple linear regression (MLR), the expressions can be expressed as:$$mathrm{y}={beta }_{0}+{beta }_{1}{x}_{1}+{beta }_{2}{x}_{2}+dots +{beta }_{n}{x}_{n}$$
    (7)
    where ({x}_{1}),( {x}_{2}), …, ({x}_{n}), (mathrm{y}) are variables, ({beta }_{0}), ({beta }_{1}), ({beta }_{2}), …, ({beta }_{n}) are coefficients that determined by least square method and gradient descent method38.The RGB-based VIs with the highest Pearson correlation coefficient was used to establish the ULR model, and VIs with a correlation coefficient higher than 0.7 were used to establish the MLR model. In each growth stage, 70% of observation data were randomly selected for establishing models, and the remaining 30% of data were used as the testing dataset to assess the model performance.Back propagation neural networks (BPNN)In this study, a three-layer BPNN model was established for LAI estimation (Fig. 2). RGB-based VIs with a correlation coefficient higher than 0.7 were selected as the input variables. Tan-Sigmoid activation function was used in the hidden layer, and the Levenberg–Marquardt algorithm was selected as the training function. The maximum epoch of BPNN training was set to 1000, the learning rate was set to 0.005, and the MSE was set to 0.001. The observation data set was split into the training set and the testing dataset with a ratio of 7:3. The training dataset was used to fit the weights and bias of the BPNN model, the testing dataset was used to evaluate the model performance. Before training, data normalization was conducted for the input and output variables, and the denormalization was required to convent the output variable back into the original units after training.Figure 2Three-layer BPNN model.Full size imageRandom forest (RF)RF is a non-parametric ensemble ML method that operates by constructing a multitude of decision trees at training time and outputting the average prediction of the individual trees (Fig. 3). The bootstrapping approach was used to collect different sub-training data from the input training dataset to construct individual decision trees.Figure 3Random forest model.Full size imageThe construction process of RF regression model is as follows:

    (1)

    The value of (mathrm{n}_mathrm{estimators}) was tested from 50 to 1000 in increments of 50, and the value of 500 was finally selected according to higher R2 and lower RMSE.

    (2)

    At each node per tree, (mathrm{m}_mathrm{try}) RGB-based VIs was randomly selected from all 14 vegetation indices, and the best split was chosen according the lowest Gini Index. (mathrm{m}_mathrm{try}) was tested from 3 to 10, and the final value was 6.

    (3)

    The other parameters in the RF model were kept as default values according to the (mathrm{RandomForestRegressor}) function in (mathrm{Scikit}-mathrm{learn library}).

    (4)

    For each tree, the data splitting process in each internal node was repeated from the root node until a pre-defined stop condition was reached.

    (5)

    Similar with LR and BPNN model, the RGB-based VIs with a correlation coefficient higher than 0.7 were selected as the input variables, and the output variable is LAI.

    Data analysis and performance evaluationThe repeated random sampling validation method was used to evaluate the generalization performance of different models. The training and testing dataset were randomly split 500 times. For each split, the LR, BPNN, and RF models were fitted to the training dataset, and the estimation accuracy was evaluated using the testing dataset. The coefficient of determination (R2), root mean square error (RMSE), and Akaike information criterion (AIC) of the training dataset were used for the assessment of models39, and the estimation accuracy was evaluated by R2 and RMSE of the testing dataset. Mathematically, a higher R2 corresponds to a smaller RMSE, and thus represents better model performance. The procedures of LAI inversion using UAV-based digital imagery and ML methods were shown in Fig. 4.Figure 4Flowchart of LAI inversion using UAV-based remote sensing and ML methods.Full size imageThe construction and evaluation of models was performed using Python 3.7.3 in Windows 10 operating system with Intel Core i7-9700 processor, 3.00 GHz CPU, and 32 GB RAM. The processing software is Spyder. The statistical analysis and figure plotting were performed in R × 64 4.0.3. More

  • in

    Gastric acid and escape to systemic circulation represent major bottlenecks to host infection by Citrobacter rodentium

    Woodward SE, Krekhno Z, Finlay BB. Here, There, and Everywhere: How Pathogenic Escherichia coli Sense and Respond to Gastrointestinal Biogeography. Cell Microbiol. 2019;21:e13107.CAS 
    Article 

    Google Scholar 
    Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA, Finlay BB, et al. Citrobacter rodentium: Infection, Inflammation and the Microbiota. Nat Rev Microbiol. 2014;12:612–23.CAS 
    Article 

    Google Scholar 
    Mowat AM, Agace WW. Regional Specialization Within the Intestinal Immune System. Nat Rev Immunol. 2014;14:nri3738.Article 

    Google Scholar 
    Population Dynamics – Latest Research and News | Nature [Internet]. [cited 2017 Nov 5]. Available from: https://www.nature.com/subjects/population-dynamicsAbel S, Abel zur Wiesch P, Davis BM, Waldor MK. Analysis of Bottlenecks in Experimental Models of Infection. PLoS Pathog. 2015;11:e1004823.Global Burden of Disease Study. 2013 Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 301 Acute and Chronic Diseases and Injuries in 188 Countries, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet Lond Engl 2015;386:743–800.Article 

    Google Scholar 
    WHO | Diarrhoeal Disease [Internet]. WHO. [cited 2017 Oct 22]. Available from: http://www.who.int/mediacentre/factsheets/fs330/en/.Crepin VF, Collins JW, Habibzay M, Frankel G. Citrobacter rodentium Mouse Model of Bacterial Infection. Nat Protoc. 2016;11:1851–76.CAS 
    Article 

    Google Scholar 
    Bhinder G, Sham HP, Chan JM, Morampudi V, Jacobson K, Vallance BA. The Citrobacter rodentium Mouse Model: Studying Pathogen and Host Contributions to Infectious Colitis. J Vis Exp. 2013;19:e50222.
    Google Scholar 
    Barthold SW, Coleman GL, Bhatt PN, Osbaldiston GW, Jonas AM. The Etiology of Transmissible Murine Colonic Hyperplasia. Lab Anim Sci. 1976;26:889–94.CAS 
    PubMed 

    Google Scholar 
    Deng W, Vallance BA, Li Y, Puente JL, Finlay BB. Citrobacter rodentium Translocated Intimin Receptor (Tir) is an Essential Virulence Factor Needed for Actin Condensation, Intestinal Colonization and Colonic Hyperplasia in Mice. Mol Microbiol. 2003;48:95–115.CAS 
    Article 

    Google Scholar 
    Schauer DB, Falkow S. Attaching and Effacing Locus of a Citrobacter freundii Biotype That Causes Transmissible Murine Colonic Hyperplasia. Infect Immun. 1993;61:2486–92.CAS 
    Article 

    Google Scholar 
    Elliott SJ, Yu J, Kaper JB. The Cloned Locus of Enterocyte Effacement From Enterohemorrhagic Escherichia coli O157:H7 is Unable to Confer the Attaching and Effacing Phenotype Upon E. coli K-12. Infect Immun. 1999;67:4260–3.CAS 
    Article 

    Google Scholar 
    Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. The Per Regulon of Enteropathogenic Escherichia coli: Identification of a Regulatory Cascade and a Novel Transcriptional Activator, the Locus of Enterocyte Effacement (LEE)-Encoded Regulator (Ler). Mol Microbiol. 1999;33:296–306.CAS 
    Article 

    Google Scholar 
    Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli Contains a Putative Type III Secretion System Necessary for the Export of Proteins Involved in Attaching and Effacing Lesion Formation. Proc Natl Acad Sci. 1995;92:7996–8000.CAS 
    Article 

    Google Scholar 
    Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. Attaching and Effacing Activities of Rabbit and Human Enteropathogenic Escherichia coli in Pig and Rabbit Intestines. Infect Immun. 1983;41:1340–51.CAS 
    Article 

    Google Scholar 
    Abel S, Abel zur Wiesch P, Chang HH, Davis BM, Lipsitch M, Waldor MK. Sequence Tag–based Analysis of Microbial Population Dynamics. Nat Methods. 2015;12:223–6.CAS 
    Article 

    Google Scholar 
    Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and Estimation Procedures. Am J Hum Genet. 1967;19:233–57. 3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang T, Abel S, Abel Zur Wiesch P, Sasabe J, Davis BM, Higgins DE, et al. Deciphering the Landscape of Host Barriers to Listeria monocytogenes Infection. Proc Natl Acad Sci . 2017;114:6334–9.CAS 
    Article 

    Google Scholar 
    Hullahalli K, Waldor MK. Pathogen Clonal Expansion Underlies Multiorgan Dissemination and Organ-Specific Outcomes During Murine Systemic Infection. eLife 2021;10:e70910.CAS 
    Article 

    Google Scholar 
    Petty NK, Feltwell T, Pickard D, Clare S, Toribio AL, Fookes M, et al. Citrobacter rodentium is an Unstable Pathogen Showing Evidence of Significant Genomic Flux. PLOS Pathog. 2011;7:e1002018.CAS 
    Article 

    Google Scholar 
    Yasutomi E, Hoshi N, Adachi S, Otsuka T, Kong L, Ku Y, et al. Proton Pump Inhibitors Increase the Susceptibility of Mice to Oral Infection with Enteropathogenic Bacteria. Dig Dis Sci. 2018;63:881–9.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-Resolution Sample Inference From Illumina Amplicon Data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Krimbas CB, Tsakas S. The Genetics of Dacus Oleae. v. Changes of Esterase Polymorphism in a Natural Population Following Insecticide Control-Selection or Drift? Evol Int J Org Evol. 1971;25:454–60.Article 

    Google Scholar 
    Peter BM, Slatkin M. Detecting Range Expansions From Genetic Data. Evol Int J Org Evol. 2013;67:3274–89.Article 

    Google Scholar 
    Schwarz R, Kaspar A, Seelig J, Künnecke B. Gastrointestinal Transit Times in Mice and Humans Measured with 27Al and 19F Nuclear Magnetic Resonance. Magn Reson Med. 2002;48:255–61.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS One. 2013;8:e61217.CAS 
    Article 

    Google Scholar 
    Petty NK, Bulgin R, Crepin VF, Cerdeño-Tárraga AM, Schroeder GN, Quail MA, et al. The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli. J Bacteriol. 2010;192:525–38.CAS 
    Article 

    Google Scholar 
    Mundy R, Pickard D, Wilson RK, Simmons CP, Dougan G, Frankel G. Identification of a Novel Type IV Pilus Gene Cluster Required for Gastrointestinal Colonization of Citrobacter rodentium. Mol Microbiol. 2003;48:795–809.CAS 
    Article 

    Google Scholar 
    Darwin AJ, Miller VL. Identification of Yersinia enterocolitica Genes Affecting Survival in an Animal Host Using Signature-Tagged Transposon Mutagenesis. Mol Microbiol. 1999;32:51–62.CAS 
    Article 

    Google Scholar 
    Maroncle N, Balestrino D, Rich C, Forestier C. Identification of Klebsiella pneumoniae Genes Involved in Intestinal Colonization and Adhesion Using Signature-Tagged Mutagenesis. Infect Immun. 2002;70:4729–34.CAS 
    Article 

    Google Scholar 
    Wiles S, Dougan G, Frankel G. Emergence of a ‘Hyperinfectious’ Bacterial State After Passage of Citrobacter rodentium Through the Host Gastrointestinal Tract. Cell Microbiol. 2005;7:1163–72.CAS 
    Article 

    Google Scholar 
    Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G, et al. Organ Specificity, Colonization and Clearance Dynamics In Vivo Following Oral Challenges with the Murine Pathogen Citrobacter rodentium. Cell Microbiol. 2004;6:963–72.CAS 
    Article 

    Google Scholar 
    Kitamoto S, Nagao-Kitamoto H, Kuffa P, Kamada N. Regulation of Virulence: The Rise and Fall of Gastrointestinal Pathogens. J Gastroenterol. 2016;51:195–205.Article 

    Google Scholar 
    Takumi K, de Jonge R, Havelaar A. Modelling Inactivation of Escherichia coli by Low pH: Application to Passage Through the Stomach of Young and Elderly People. J Appl Microbiol. 2000;89:935–43.CAS 
    Article 

    Google Scholar 
    Pienaar JA, Singh A, Barnard TG. Acid-Happy: Survival and Recovery of Enteropathogenic Escherichia coli (EPEC) in Simulated Gastric Fluid. Micro Pathog. 2019;128:396–404.CAS 
    Article 

    Google Scholar 
    McConnell EL, Basit AW, Murdan S. Measurements of Rat and Mouse Gastrointestinal pH, Fluid and Lymphoid Tissue, and Implications for In-Vivo Experiments. J Pharm Pharm. 2008;60:63–70.CAS 
    Article 

    Google Scholar 
    Tan A, Petty NK, Hocking D, Bennett-Wood V, Wakefield M, Praszkier J, et al. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species. Infect Immun. 2015;83:1384–95.CAS 
    Article 

    Google Scholar 
    Sanchez KK, Chen GY, Schieber AMP, Redford SE, Shokhirev MN, Leblanc M, et al. Cooperative Metabolic Adaptations in the Host Can Favor Asymptomatic Infection and Select for Attenuated Virulence in an Enteric Pathogen. Cell 2018;175:146–.e15.CAS 
    Article 

    Google Scholar 
    Cunningham R, Jones L, Enki DG, Tischhauser R. Proton Pump Inhibitor Use as a Risk Factor for Enterobacteriaceal Infection: A Case-Control Study. J Hosp Infect. 2018;100:60–4.CAS 
    Article 

    Google Scholar 
    Kelly OB, Dillane C, Patchett SE, Harewood GC, Murray FE. The Inappropriate Prescription of Oral Proton Pump Inhibitors in the Hospital Setting: A Prospective Cross-Sectional Study. Dig Dis Sci. 2015;60:2280–6.CAS 
    Article 

    Google Scholar 
    Federici S, Suez J, Elinav E. Our Microbiome: On the Challenges, Promises, and Hype. Results Probl Cell Differ. 2020;69:539–57.CAS 
    Article 

    Google Scholar  More

  • in

    Antifouling coatings can reduce algal growth while preserving coral settlement

    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De’Ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. U. S. A. 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bindoff, N. L. et al. Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).Richmond, R. H. Reproduction and recruitment in corals: Critical links in the persistence of reefs. In Life and Death of Coral Reefs (ed. Birkeland, C. E.) 175–197 (Springer, 1997).Chapter 

    Google Scholar 
    Trapon, M. L., Pratchett, M. S., Hoey, A. S. & Baird, A. H. Influence of fish grazing and sedimentation on the early post-settlement survival of the tabular coral Acropora cytherea. Coral Reefs 32, 1051–1059 (2013).ADS 
    Article 

    Google Scholar 
    Gallagher, C. & Doropoulos, C. Spatial refugia mediate juvenile coral survival during coral–predator interactions. Coral Reefs 36, 51–61 (2017).ADS 
    Article 

    Google Scholar 
    Vermeij, M. J. A. & Sandin, S. A. Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89, 1994–2004 (2008).PubMed 
    Article 

    Google Scholar 
    Vermeij, M. J. A., Smith, J. E., Smith, C. M., Vega Thurber, R. & Sandin, S. A. Survival and settlement success of coral planulae: Independent and synergistic effects of macroalgae and microbes. Oecologia 159, 325–336 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Ricardo, G. F., Jones, R. J., Nordborg, M. & Negri, A. P. Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci. Total Environ. 609, 277–288 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, C. A., Uthicke, S., Ricardo, G. F., Hoogenboom, M. O. & Negri, A. P. Climate change doubles sedimentation-induced coral recruit mortality. Sci. Total Environ. 768, 143897 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. In Oceanography and Marine Biology: An Annual Review 25–63 (CRC Press, 2008).Chapter 

    Google Scholar 
    Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020, 1–25 (2020).
    Google Scholar 
    Kirschner, C. M. & Brennan, A. B. Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211–229 (2012).ADS 
    Article 

    Google Scholar 
    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).ADS 
    Article 

    Google Scholar 
    Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, 1–8 (2011).Article 

    Google Scholar 
    Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
    Google Scholar 
    Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 1–11 (2015).Article 

    Google Scholar 
    Carpenter, R. C. & Edmunds, P. J. Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol. Lett. 9, 268–277 (2006).Article 

    Google Scholar 
    Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).ADS 
    Article 

    Google Scholar 
    Linares, C., Cebrian, E. & Coma, R. Effects of turf algae on recruitment and juvenile survival of gorgonian corals. Mar. Ecol. Prog. Ser. 452, 81–88 (2012).ADS 
    Article 

    Google Scholar 
    McCook, L. J., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: A review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).ADS 
    Article 

    Google Scholar 
    Nugues, M. M., Smith, G. W., Van Hooidonk, R. J., Seabra, M. I. & Bak, R. P. M. Algal contact as a trigger for coral disease. Ecol. Lett. 7, 919–923 (2004).Article 

    Google Scholar 
    Fong, J. et al. Allelopathic effects of macroalgae on Pocillopora acuta coral larvae. Mar. Environ. Res. 151, 104745. https://doi.org/10.1016/j.marenvres.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Hauri, C., Fabricius, K. E., Schaffelke, B. & Humphrey, C. Chemical and physical environmental conditions underneath mat- and canopy-forming macroalgae, and their effects on understorey corals. PLoS ONE 5, 1–9 (2010).Article 

    Google Scholar 
    Bay, L. K. et al. Reef Restoration and Adaptation Program : Intervention Technical Summary. A report provided to the Australian Government by the Reef Restoration and Adaptation Program. (2019).Anthony, K. R. N. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, 1–14 (2020).Article 

    Google Scholar 
    Vardi, T. et al. Six priorities to advance the science and practice of coral reef restoration worldwide. Restor. Ecol. 29, 1–7 (2021).Article 

    Google Scholar 
    Heyward, A. J., Rees, M. & Smith, L. D. Coral spawning slicks harnessed for large-scale coral culture. Progr. Abstr. Int. Conf. Sci. Asp. Coral Reef Assess. Monit. Restor. 104, 188–189 (1999).
    Google Scholar 
    Harrison, P., Villanueva, R. & De la Cruz, D. Coral Reef Restoration using Mass Coral Larval Reseeding (Southern Cross University, 2016).
    Google Scholar 
    de la Cruz, D. W. & Harrison, P. L. Enhancing coral recruitment through assisted mass settlement of cultured coral larvae. PLoS ONE 15, e0242847. https://doi.org/10.1371/journal.pone.0242847 (2020).Article 

    Google Scholar 
    Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94 (2017).ADS 
    Article 

    Google Scholar 
    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    Miller, M. W. et al. Settlement yields in large-scale in situ culture of Caribbean coral larvae for restoration. Restor. Ecol. https://doi.org/10.1111/rec.13512 (2021).Article 

    Google Scholar 
    Baria-Rodriguez, M. V., de la Cruz, D. W., Dizon, R. M., Yap, H. T. & Villanueva, R. D. Performance and cost-effectiveness of sexually produced Acropora granulosa juveniles compared with asexually generated coral fragments in restoring degraded reef areas. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 891–900 (2019).Article 

    Google Scholar 
    Doropoulos, C., Elzinga, J., ter Hofstede, R., van Koningsveld, M. & Babcock, R. C. Optimizing industrial-scale coral reef restoration: Comparing harvesting wild coral spawn slicks and transplanting gravid adult colonies. Restor. Ecol. 27, 758–767 (2019).Article 

    Google Scholar 
    Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & MacKenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114–117 (2008).ADS 
    Article 

    Google Scholar 
    Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob. Change Biol. 19, 303–315 (2013).ADS 
    Article 

    Google Scholar 
    Randall, C. J., Giuliano, C., Heyward, A. J. & Negri, A. P. Enhancing coral survival on deployment devices with microrefugia. Front. Mar. Sci. 8, 662263. https://doi.org/10.3389/fmars.2021.662263 (2021).Article 

    Google Scholar 
    Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).ADS 
    Article 

    Google Scholar 
    Arnold, S. N., Steneck, R. S. & Mumby, P. J. Running the gauntlet: Inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).ADS 
    Article 

    Google Scholar 
    Speare, K. E., Duran, A., Miller, M. W. & Burkepile, D. E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar. Pollut. Bull. 144, 189–195 (2019).PubMed 
    Article 

    Google Scholar 
    Tebben, J., Guest, J. R., Sin, T. M., Steinberg, P. D. & Harder, T. Corals like it waxed: Paraffin-based antifouling technology enhances coral spat survival. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Almeida, E., Diamantino, T. C. & de Sousa, O. Marine paints: The particular case of antifouling paints. Prog. Org. Coat. 59, 2–20 (2007).Article 

    Google Scholar 
    Negri, A. P., Smith, L. D., Webster, N. S. & Heyward, A. J. Understanding ship-grounding impacts on a coral reef: Potential effects of anti-foulant paint contamination on coral recruitment. Mar. Pollut. Bull. 44, 111–117 (2002).PubMed 
    Article 

    Google Scholar 
    Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).Article 

    Google Scholar 
    Jacobson, A. H. & Willingham, G. L. Sea-nine antifoulant: An environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 258, 103–110 (2000).ADS 
    PubMed 
    Article 

    Google Scholar 
    Silva, V. et al. Isothiazolinone biocides: Chemistry, biological, and toxicity profiles. Molecules 25, 991. https://doi.org/10.3390/molecules25040991 (2020).Article 
    PubMed Central 

    Google Scholar 
    da Silva, A. R., da Guerreiro, A. S., Martins, S. E. & Sandrini, J. Z. DCOIT unbalances the antioxidant defense system in juvenile and adults of the marine bivalve Amarilladesma mactroides (Mollusca: Bivalvia). Comp. Biochem. Physiol. Part C 250, 109169 (2021).
    Google Scholar 
    Cima, F. et al. Preliminary evaluation of the toxic effects of the antifouling biocide Sea-Nine 211TM in the soft coral Sarcophyton cf. glaucum (Octocorallia, Alcyonacea) based on PAM fluorometry and biomarkers. Mar. Environ. Res. 83, 16–22 (2013).PubMed 
    Article 

    Google Scholar 
    Wendt, I., Backhaus, T., Blanck, H. & Arrhenius, Å. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Ecotoxicology 25, 871–879 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, L. et al. Identification of molecular targets for 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in teleosts: New insight into mechanism of toxicity. Environ. Sci. Technol. 51, 1840–1847 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martins, S. E., Fillmann, G., Lillicrap, A. & Thomas, K. V. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 34, 34–52 (2018).PubMed 
    Article 

    Google Scholar 
    Moon, Y. S., Kim, M., Hong, C. P., Kang, J. H. & Jung, J. H. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051 ®, Sea-Nine 211 ® ) on non-target marine fish. Ecotoxicol. Environ. Saf. 180, 23–32 (2019).PubMed 
    Article 

    Google Scholar 
    Su, Y. et al. Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei. Environ. Pollut. 251, 708–716 (2019).PubMed 
    Article 

    Google Scholar 
    Fonseca, V. B., da Guerreiro, A. S., Vargas, M. A. & Sandrini, J. Z. Effects of DCOIT (4,5-dichloro-2-octyl-4-isothiazolin-3-one) to the haemocytes of mussels Perna perna. Comp. Biochem. Physiol Part C 232, 108737. https://doi.org/10.1016/j.cbpc.2020.108737 (2020).Article 

    Google Scholar 
    Ferreira, V. et al. Effects of nanostructure antifouling biocides towards a coral species in the context of global changes. Sci. Total Environ. 799, 149324 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    de Campos, B. G. et al. A preliminary study on multi-level biomarkers response of the tropical oyster Crassostrea brasiliana to exposure to the antifouling biocide DCOIT. Mar. Pollut. Bull. 174, 112141 (2022).Article 

    Google Scholar 
    Maia, F. et al. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 270, 150–157 (2015).Article 

    Google Scholar 
    Santos, J. V. N. et al. Can encapsulation of the biocide DCOIT affect the anti-fouling efficacy and toxicity on tropical bivalves?. Appl. Sci. 10, 1–12 (2020).Article 

    Google Scholar 
    Detty, M. R., Ciriminna, R., Bright, F. V. & Pagliaro, M. Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc. Chem. Res. 47, 678–687 (2014).PubMed 
    Article 

    Google Scholar 
    Korschelt, K., Tahir, M. N. & Tremel, W. A Step into the future: Applications of nanoparticle enzyme mimics. Chemistry 24, 9703–9713 (2018).PubMed 
    Article 

    Google Scholar 
    Herget, K. et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 29, 1–8 (2017).Article 

    Google Scholar 
    Korschelt, K. et al. CeO2-: X nanorods with intrinsic urease-like activity. Nanoscale 10, 13074–13082 (2018).PubMed 
    Article 

    Google Scholar 
    Herget, K., Frerichs, H., Pfitzner, F., Tahir, M. N. & Tremel, W. Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation. Adv. Mater. 30, 1–28 (2018).Article 

    Google Scholar 
    Doropoulos, C., Ward, S., Marshell, A., Diaz-Pulido, G. & Mumby, P. J. Interactions among chronic and acute impacts on coral recruits: The importance of size-escape thresholds. Ecology 93, 2131–2138 (2012).PubMed 
    Article 

    Google Scholar 
    Ji, Z. et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6, 5366–5380 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herget, K. et al. Supporting Information: Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 29, 1603823 (2017).Article 

    Google Scholar 
    Sokolova, A. et al. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. Biofouling 28, 143–157 (2012).PubMed 
    Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    ImageJ Release Notes. https://imagej.nih.gov/ij/notes.html.Arganda-Carreras, I. et al. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).PubMed 
    Article 

    Google Scholar 
    Arganda-Carreras, I. et al. Supplementary Data: Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification: Trainable Weka Segmentation User Manualhttps://doi.org/10.1093/bioinformatics/btx180 (2017).Vyas, N., Sammons, R. L., Addison, O., Dehghani, H. & Walmsley, A. D. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci. Rep. 6, 2–11 (2016).Article 

    Google Scholar 
    Carbone, D. A., Gargano, I., Pinto, G., De Natale, A. & Pollio, A. Evaluating microalgae attachment to surfaces: A first approach towards a laboratory integrated assessment. Chem. Eng. Trans. 57, 73–78 (2017).
    Google Scholar 
    Moreno Osorio, J. H. et al. Early colonization stages of fabric carriers by two Chlorella strains. J. Appl. Phycol. 32, 3631–3644 (2020).Article 

    Google Scholar 
    Ricardo, G. F. et al. Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Sci. Total Environ. 777, 146079. https://doi.org/10.1016/j.scitotenv.2021.146079 (2021).ADS 
    Article 
    PubMed 

    Google Scholar 
    Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).Article 

    Google Scholar 
    Negri, A. P. & Heyward, A. J. Inhibition of Fertilization and Larval Metamorphosis of the Coral Acropora millepora (Ehrenberg, 1834) by Petroleum Products. Mar. Pollut. Bull. 41, 420–427 (2000).Article 

    Google Scholar 
    Nordborg, F. M., Flores, F., Brinkman, D. L., Agustí, S. & Negri, A. P. Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis. Sci. Rep. 8, 1–12 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R Core Team. Linear and nonlinear mixed effects models contact. Linear nonlinear Mix. Eff. Model. 3, 103–135 (2021).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2019).
    Google Scholar 
    Lenth, R. V. Emmeans: Estimated Marginal Means. https://cran.r-project.org/package=emmeans (2021).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Dafforn, K. A., Lewis, J. A. & Johnston, E. L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 62, 453–465 (2011).PubMed 
    Article 

    Google Scholar 
    Wu, R. et al. Room temperature synthesis of defective cerium oxide for efficient marine anti-biofouling. Adv. Compos. Hybrid Mater. https://doi.org/10.1007/s42114-021-00256-7 (2021).Article 

    Google Scholar 
    Hu, M. et al. Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl. Mater. Interfaces 10, 44722–44730 (2018).PubMed 
    Article 

    Google Scholar 
    He, X. et al. Haloperoxidase mimicry by CeO2-x nanorods of different aspect ratios for antibacterial performance. ACS Sustain. Chem. Eng. 8, 6744–6752 (2020).Article 

    Google Scholar 
    Saxena, P. & Harish,. Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr. Pollut. Rep. 4, 128–142 (2018).Article 

    Google Scholar 
    Xu, Y. et al. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: Induction of biofilm formation and stress response. Environ. Sci. Pollut. Res. 26, 9293–9304 (2019).Article 

    Google Scholar 
    Xu, Y. et al. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. Environ. Sci. Pollut. Res. 25, 34765–34776 (2018).Article 

    Google Scholar 
    Tang, Y. et al. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 21, 59–71 (2005).PubMed 
    Article 

    Google Scholar 
    Gunari, N. et al. The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling 27, 137–149 (2011).PubMed 
    Article 

    Google Scholar 
    Maia, F. et al. Silica nanocontainers for active corrosion protection. Nanoscale 4, 1287–1298 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martins, R. et al. Effects of a novel anticorrosion engineered nanomaterial on the bivalve: Ruditapes philippinarum. Environ. Sci. Nano 4, 1064–1076 (2017).Article 

    Google Scholar 
    Gutner-Hoch, E. et al. Antimacrofouling efficacy of innovative inorganic nanomaterials loaded with booster biocides. J. Mar. Sci. Eng. 6, 15. https://doi.org/10.3390/jmse6010006 (2018).Article 

    Google Scholar 
    Negri, A. P. & Heyward, A. J. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper. Mar. Environ. Res. 51, 17–27 (2001).PubMed 
    Article 

    Google Scholar 
    Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    Jorissen, H., Baumgartner, C., Steneck, R. S. & Nugues, M. M. Contrasting effects of crustose coralline algae from exposed and subcryptic habitats on coral recruits. Coral Reefs 39, 1767–1778 (2020).Article 

    Google Scholar 
    Figueiredo, J. et al. Toxicity of innovative anti-fouling nano-based solutions to marine species. Environ. Sci. Nano 6, 1418–1429 (2019).Article 

    Google Scholar 
    Shafir, S., Abady, S. & Rinkevich, B. Improved sustainable maintenance for mid-water coral nursery by the application of an anti-fouling agent. J. Exp. Mar. Biol. Ecol. 368, 124–128 (2009).Article 

    Google Scholar  More