More stories

  • in

    Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China

    Galindo, I. & Alonso, C. African swine fever virus: A review. Viruses 9, 103 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blome, S., Franzke, K. & Beer, M. African swine fever: A review of current knowledge. Virus Res. 2020, 198099 (2020).Article 
    CAS 

    Google Scholar 
    Li, X. & Tian, K. African swine fever in China. Vet. Rec. 183, 300 (2018).PubMed 
    Article 

    Google Scholar 
    Wang, T., Sun, Y. & Qiu, H. J. African swine fever: An unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 66–70 (2018).Article 

    Google Scholar 
    Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D. & Richt, J. A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 7, 215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, S. et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 1, 221–228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woonwong, Y., Do, T. D. & Thanawongnuwech, R. The future of the pig industry after the introduction of African swine fever into Asia. Anim. Front. 10, 30–37 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mulieri, P. R. & Patitucci, L. D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 118, 1077–1086 (2019).PubMed 
    Article 

    Google Scholar 
    Escobar, L. E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions https://doi.org/10.1007/s10530-022-02838-y (2022).Article 

    Google Scholar 
    Wen, X. et al. Prediction of the potential distribution pattern of the great gerbil (Rhombomys opimus) under climate change based on ensemble modelling. Pest Manag. Sci. 78, 3128–3134 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, Y. et al. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 17, 1–14 (2018).Article 

    Google Scholar 
    Naimi, B. & Araújo, M. B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    Georges, D. & Thuiller, W. An example of species distribution modeling with biomod2. https://r-forge.r-project.org/…/inst/doc/Simple_species_modelling.pdf?root=biomod (2013).Thuiller, W. BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Thuiller, W. Editorial commentary on “BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change”. Glob. Change Biol. 20, 3591–3592 (2014).ADS 
    Article 

    Google Scholar 
    Navarro-Cerrillo, R. M., Duque-Lazo, J., Manzanedo, R. D., Sánchez-Salguero, R. & Palacios-Rodriguez, G. Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: An ensemble niche-based approach. iForest Biogeosci. For. 11, 396–405 (2018).Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A., Dagnachew, A. & Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 12, 1748 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS 
    Article 

    Google Scholar 
    Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2020).Article 

    Google Scholar 
    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Xiao-Ge, X. et al. Introduction of BCC models and its participation in CMIP6. Clim. Change Res. 5, 533–539 (2019).
    Google Scholar 
    Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).ADS 
    Article 

    Google Scholar 
    Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Assefa, A., Tibebu, A., Bihon, A. & Yimana, M. Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Transbound Emerg. Dis. 68, 3601–3610 (2021).PubMed 
    Article 

    Google Scholar 
    Jori, F. & Bastos, A. D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).PubMed 
    Article 

    Google Scholar 
    Teklue, T., Sun, Y., Abid, M., Luo, Y. & Qiu, H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg. Dis. 67, 529–542 (2020).PubMed 
    Article 

    Google Scholar 
    Arias, M. et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chenais, E. et al. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag. 5, 1–10 (2019).Article 

    Google Scholar 
    Quembo, C. J., Jori, F., Vosloo, W. & Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 65, 420–431 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. R. et al. Chikungunya fever: Atypical and lethal cases in the Western hemisphere: A Venezuelan experience. IDCases 2, 6–10 (2015).PubMed 
    Article 

    Google Scholar 
    Nuanualsuwan, S. et al. Persistence of African swine fever virus on porous and non-porous fomites at environmental temperatures. Porc. Health Manag. 8, 34 (2022).Article 

    Google Scholar 
    Davies, K. et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg. Dis. 64, 425–431 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Salari, L. S., Vatandoost, H., Telmadarraiy, Z., Entezar, M. R. & Kia, E. Seasonal activity of ticks and their importance in tick-borne infectious diseases in West Azerbaijan, Iran. J. Arthropod. Borne Dis. 2, 28–34 (2008).
    Google Scholar 
    Vial, L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jian, L. et al. WANG potential adaptability of soft tick vectors of African swine fever to China. Chin. J. Vect. Biol. Control 21, 317–320 (2010).
    Google Scholar 
    Cwynar, P., Stojkov, J. & Wlazlak, K. African swine fever status in Europe. Viruses 11, 310 (2019).PubMed Central 
    Article 

    Google Scholar 
    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).Article 

    Google Scholar  More

  • in

    Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agawin, N. S. R., Duarte, C. M. & Agustí, S. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591–600 (2000).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).Article 

    Google Scholar 
    Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the arctic ocean freshens. Science 326 https://doi.org/10.1126/science.1179798 (2009).Benner, I., Irwin, A. J. & Finkel, Z. V. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean. Limnol. Oceanography Lett. 5, 221–227 (2020).Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).CAS 
    Article 

    Google Scholar 
    Raven, J. A. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. 12, 503–513 (1998).Article 

    Google Scholar 
    Morel, F. M. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, X., Bowler, C. & Kazamia, E. Iron metabolism strategies in diatoms. J. Exp. Bot. 72, 2165–2180 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochemical Cycles 33, 391–419 (2019).CAS 
    Article 

    Google Scholar 
    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Kumar, A. & Bera, S. Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresour. Technol. Rep. 12, 100584 (2020).Article 

    Google Scholar 
    Smith, S. R. et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10, 4552 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berg, G. M., Glibert, P. M., Lomas, M. W. & Burford, M. A. Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar. Biol. 129, 377–387 (1997).CAS 
    Article 

    Google Scholar 
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. P. Ultrastructure and 18s rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).CAS 
    Article 

    Google Scholar 
    Choi, C. J. et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front. Microbiol. 11, 542372 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duerschlag, J. et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J 1–12 https://doi.org/10.1038/s41396-021-01072-z (2021).Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimier, C. é, Brunet, C., Geider, R. & Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 54, 823–836 (2009).CAS 
    Article 

    Google Scholar 
    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang, Y. et al. Transcriptomic responses of four pelagophytes to nutrient (N, P) and light stress. Front. Mar. Sci. 8, 636699 (2021).Huff, J. T., Zilberman, D. & Roy, S. W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 538, 533–536 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nambiar, M. & Smith, G. R. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev. Biol. 54, 188–197 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessia, E. et al. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol. Evol. 4, 675–682 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J., Mahé, F., Loidl, J., Logsdon, J. & Dunthorn, M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31, 660–672 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramesh, M. A., Malik, S.-B. & Logsdon, J. M. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).CAS 
    PubMed 

    Google Scholar 
    Schurko, A. M. & Logsdon, J. M. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays 30, 579–589 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).Article 

    Google Scholar 
    Ward, D. M. & Kaplan, J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys. Acta 1823, 1426–1433 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gobler, C. J., Lonsdale, D. J. & Boyer, G. L. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005).Article 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).Article 

    Google Scholar 
    Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).CAS 
    Article 

    Google Scholar 
    Shi, D., Xu, Y., Hopkinson, B. M. & Morel, F. M. M. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327, 676–679 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnšek, J. et al. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 10, e52770 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urzica, E. I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage[W][OA]. Plant Cell 24, 3921–3948 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mao, X. et al. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. ISME J. 16, 602–605 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ou, L., Cai, Y., Jin, W., Wang, Z. & Lu, S. Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res. 34, 182–190 (2018).Article 

    Google Scholar 
    Shu, C. J., Ulrich, L. E. & Zhulin, I. B. The NIT domain: a predicted nitrate-responsive module in bacterial sensory receptors. Trends Biochem Sci. 28, 121–124 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. Q., Chai, W., Lin, J. T. & Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J. Bacteriol. 181, 7274–7284 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. https://doi.org/10.1101/gr.210641.116 (2016).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R. & Šikić, M. Yet another de novo genome assembler. BioRxiv. https://doi.org/10.1101/656306 (2019).Liu, H. et al. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics Bioinform. 3, lqab034 (2021).Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput Biol. 13, 1028–1040 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker. http://repeatmasker.org/ (2013).Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Niang, G. et al. METdb: A genomic reference database for marine species. F1000Research, https://doi.org/10.7490/f1000research.1118000.1 (2020).Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research, https://doi.org/10.7490/f1000research.1111735.1 (2016).Sibbald, S. J., Lawton, M. & Archibald, J. M. Mitochondrial genome evolution in pelagophyte algae. Genome Biol. Evol. 13, evab018 (2021).Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics 2, 100123 (2022).CAS 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci. Data 2, 150023 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Dev. 8, 2465–2513 (2015).CAS 
    Article 

    Google Scholar 
    Clayton, S. et al. Biogeochemical versus ecological consequences of modeled ocean physics. Biogeosciences 14, 2877–2889 (2017).CAS 
    Article 

    Google Scholar 
    Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Günther, F. & Fritsch, S. neuralnet: training of neural networks. R. J. 2, 30–38 (2010).Article 

    Google Scholar 
    Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc. Natl Acad. Sci. USA 108, 4352–4357 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guo, L. et al. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Armbrust, E. V. et al. The genome of the diatom thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324, 268–272 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705–7710 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreau, H. et al. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol. 13, R74 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209–213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Recapping and mite removal behaviour in Cuba: home to the world’s largest population of Varroa-resistant European honeybees

    We confirm that Cuba is home to the world’s largest European honeybee population that has naturally become Varroa-resistant, with an estimated 220,000 colonies being maintained without any form of chemical treatment for over two decades19 although some drone-trapping occurred during the early years of the transition period This is despite the presence of the K-haplotype of the mite20 and the widespread occurrence of DWV19 throughout Cuba. Hence, the Cuban honeybee population is the first major case of Varroa-resistant European bees occupying an entire country of a large size (109,884 km2). In Europe the proportion of varroa-resistant honeybee populations in each country is highly variable21,22, but they still consist of small, isolated populations within any country. For example, the second largest known area of European Varroa-resistant honeybees is in North Wales, UK where 104 beekeepers have managed around 500 honey bee colonies over an area of 2500 km2 without treatment for over a decade23.It has long been established that sub-Sharan African and Africanised honeybees are Varroa-resistant and both populations cover much larger areas than Cuba, but these honeybee races are not capable of thriving in temperate regions or are rejected by beekeepers in Northern hemispheres. However, previous studies on African/Africanised and European honeybees4,5,6,9 all appear to have evolved with the same resistance mechanism7 and Cuban honeybees follow this pattern showing high recapping behaviour, high mite removal behaviour and low mite reproduction (Figs. 1, 4, Table 1).The strongest evidence that increased recapping behaviour is a direct response to the presence of Varroa, is the very low recapping rates in Varroa-naïve colonies. This is evidenced by the recapping baseline data that has now been collected from four different Varroa-naïve (Varroa free) honeybee populations (Australia, UK [two populations] and Hawaii [this study]) all producing similar results (Fig. 1). Across the four populations, a total of 9542 worker cells from 15 colonies have been studied with an average recapping rate of 2.0% (+ SD 3.2). Interestingly, only two of the colonies had atypical recapping rates of 8.5% and 10.7%, from Australia and Kauai respectively. This may suggest increased sensitivity in these colonies as no obvious causes e.g., wax moth or dead pupa, were detected in either colony. The data summary in Fig. 1 indicates that even in Varroa-treated populations the workers are still able to detect mite infested cells, but the average consistently falls significantly below that found in resistant populations. That is, in non-infested worker cells recapping rates are significantly higher in resistant populations in comparison to susceptible populations (Fig. 1) t4, 5 = − 4.185, p = 0.0023 as well as for infested cells t4, 5 = − 6.905, p = 0.00007.The ability of Cuban honeybees to detect infested cells causes not only high recapping levels but also high removal rates of artificially mite-infested cells. A mean removal rate of 81% is among one of the highest recorded in Apis mellifera7. The average control rate of 45% is driven by three colonies that all removed more than 75% of the controls, while the average of the remaining seven colonies was 28%. During the mite-removal studies in March 2022 natural Varroa infestation was 23%, whereas in December 2021 it was only 13%. This is due to decreasing worker brood rearing, caused by a shortage of nectar during the annual dry season. During this time there is an increase in hygienic behaviour in the colonies24, which could help explain the higher-than-expected removal of control cells.The reproductive ability of Varroa to produce viable i.e., mated, female offspring (r) in infested worker cells in resistant colonies in South Africa4 (r = 0.9), Brazil4 (r = 0.8), Mexico18 (r = 0.73), Europe3 (r = 0.84) is similar to the 0.87 found in Cuba (this study). In Cuba ‘r’ reduces to 0.77 when both single and multiple infested cells are considered. This reduction in mite reproduction, relative to susceptible colonies that have values of r greater than one, is directly linked to the increased ability of resistant workers to both detect and remove, by cannibalisation, the infested pupa. Hence, this ensures the invading mite fails to reproduce7 or reduces mite fertility due to the recapping process4. Although, in this study no significant difference was found in the reproduction of Varroa in recapped or non-recapped cells, supporting the findings of two previous studies5,9. Therefore, recapping may be playing a minor role in resistance. However, recapping remains the best indicator or ‘proxy’ of resistance within the vast majority of honeybee populations since it’s easier, quicker, and it requires less skill to measure recapping rates than mite removal rates. However, recapping is a highly variable trait7, hence both many cells (200–300) per colony and many colonies ( > 10) per population ideally need to be studied to help reduce the variablity, also in temperate countries measuring recapping when mite-infestation rates peak in autumn maximises detecting infested cells since the recapping of cells is spatially associated with infested cells11.Despite the current focus on what is happening in worker cells, studies focusing on the role of recapping in drone brood are still in their infancy with. Currently, data is only available from South Africa9 (Fig. 1) and now Cuba (this study). Interestingly, both studies indicate no significant difference in recapping rates between infested and non-infested brood. This is caused by some colonies performing no recapping of drone brood, while some colonies do recap cells but in a non-targeted manner. Whereas there is a significant increase in the size of the recapped area between infested (3.1 mm) and non-infested (2.3 mm) worker cells (Fig. 3), this does not occur in drone brood, as it appears that the holes are entirely exploratory. However, the lack of removal of infested drone brood may be playing an important role in mite-resistance (see below).The mite infestation of worker cells currently varies between 23 and 13% in Cuba (this study), roughly 25 years after it was first detected (1996). Whereas, in Mexico and Brazil, infestation rates of worker brood have fallen from around 20% in 1996/1999 down to 4% in 2018/197. Although, Varroa was first detected in Brazil much earlier, in 197225 and the Africanised honeybees adapted to the mite and spread northward replacing the susceptible European colonies. Therefore, we predict that the worker infestation rate in Cuba will continue to fall over the next 20 years, especially if high mite-removal rates persist. Correspondingly, we would expect to see the infestation rates of the drone brood (currently at 40%) to remain high as mites potentially avoid reproduction in worker cells. This potentially is a key, but currently overlooked part, of the resistance mechanism. Since an empirical model26 indicated that negative mite population growth occurs in (resistant) Africanised honeybee colonies only when the initial drone cells are present. This is thought to arise because mites also show a tenfold preference to reproduce in drone cells (which comprises only 1–5% of all the honeybee brood) and they soon become overcrowded as the mite population increases. This leads to inter-mite competition for the limited food and space, causing an increase in mite mortality27, resulting in negative reproductive success for mites entering these overcrowded drone cells. Thus, mite population growth in drone brood cells is limited by a density-dependent mechanism. In Cuba it has been observed that strong colonies typically with drone brood do not weaken during the drought season, whereas colonies without drone brood are weak and often die during the drought (APP personal comm).Although Cuban beekeepers have been aware of their mite-resistant honeybees for 15 to 20 years’, Cuba’s situation has only recently come to light16,18. The main reason for Varroa-resistance in Cuba is due to the centralised decision to allow natural resistance to evolve, as also was done successfully in South Africa3, rather than becoming locked into using miticides, as has happened throughout the Northern hemisphere. The CIAPI and Veterinarian Services central decision to ‘not treat’ was greatly assisted by all Cuban beekeepers being professional, registered and embedded within a strong locally based beekeeping community where colony movement and exchange of queens is within each province.There is also a large feral population and due to Cuba’s sub-tropical climate, queens are replaced annually in managed colonies because of almost continuous egg-laying, similar to honeybees in Hawaii. This rapid queen turnover speeds up natural selection relative to honeybee populations in more temperate climates. Finally, Cuba’s 60-year ban on honeybee importation has helped isolate the country from been invaded by Africanised bees which has occurred in many nearby regions (eg. Mexico, Southern USA, Puerto Rico, neighbouring Dominican Republic13 and Haiti (D. Macdonald, Apiary Inspector, Min. of Agi BC, Canada, pers. Comm.). Cuba has many managed European colonies coupled with many queen rearing stations. These colonies are productive and mild mannered. Thus, Cuba is an excellent example of the power of natural selection in honeybees when they are allowed to adapt naturally to Varroa with minimal human interference. More

  • in

    Synthesis of optically active through-space conjugated polymers consisting of planar chiral pseudo-meta-disubstituted [2.2]paracyclophane

    Vögtle, F. Cyclophane Chemistry: Synthesis, Structures and Reactions. John Wiley & Sons: Chichester; 1993.Gleiter, R, Hopf H. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004.Hopf H. [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angew Chem Int Ed. 2008;47:9808–12.CAS 

    Google Scholar 
    Brown CJ, Farthing AC. Preparation and structure of Di-p-Xylylene. Nature. 1949;164:915–6.CAS 

    Google Scholar 
    Cram DJ, Steinberg H. Macro Rings. I. Preparation and spectra of the paracyclophanes. J Am Chem Soc. 1951;73:5691–704.CAS 

    Google Scholar 
    Wang S, Bazan GC, Tretiak S, Mukamel S. Oligophenylenevinylene Phane Dimers: probing the effect of contact site on the optical properties of bichromophoric pairs. J Am Chem Soc. 2000;122:1289–97.CAS 

    Google Scholar 
    Bartholomew GP, Bazan GC. Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res. 2001;34:30–9.CAS 
    PubMed 

    Google Scholar 
    Bartholomew GP, Bazan GC. Strategies for the Synthesis of ‘Through-space’ Chromophore Dimers Based on [2.2]Paracyclophane. Synthesis. 2002;1245–55.Hong JW, Woo HY, Bazan GC. Solvatochromism of distyrylbenzene pairs bound together by [2.2]Paracyclophane: evidence for a polarizable “Through-space” delocalized state. J Am Chem Soc. 2005;127:7435–43.CAS 
    PubMed 

    Google Scholar 
    Bazan GC. Novel organic materials through control of multichromophore interactions. J Org Chem. 2007;72:8615–35.CAS 
    PubMed 

    Google Scholar 
    Cram DJ, Allinger NL. Macro Rings. XII stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc. 1955;77:6289–94.CAS 

    Google Scholar 
    Rozenberg V, Sergeeva E, Hopf H. Cyclophanes as templates in stereoselective synthesis. In Gleiter R, Hopf H, editors. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004, p. 435–62.Rowlands GJ. The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem. 2008;6:1527–34.CAS 
    PubMed 

    Google Scholar 
    Gibson SE, Knight JD. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem. 2003;1:1256–69.CAS 
    PubMed 

    Google Scholar 
    Aly AA, Brown AB. Asymmetric and fused heterocycles based on [2.2]Paracyclophane. Tetrahedron. 2009;65:8055–89.CAS 

    Google Scholar 
    Paradies J. [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis. 2011;3749–66.Delcourt M-L, Felder S, Turcaud S, Pollok CH, Merten C, Micouin L, et al. Highly enantioselective asymmetric transfer hydrogenation: a practical and scalable method to efficiently access planar chiral [2.2]paracyclophanes. J Org Chem. 2019;84:5369–82.CAS 
    PubMed 

    Google Scholar 
    Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, et al. Symmetrically tetrasubstituted [2.2]Paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J. 2008;14:4600–17.CAS 
    PubMed 

    Google Scholar 
    David ORP. Syntheses and applications of disubstituted [2.2]Paracyclophanes. Tetrahedron. 2012;68:8977–93.CAS 

    Google Scholar 
    Hassan Z, Spluling E, Knoll DM, Lahann J, Bräse S. Planar Chiral [2.2]Paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem Soc Rev. 2018;47:6947–63.CAS 
    PubMed 

    Google Scholar 
    Hassan Z, Spuling E, Knoll DM, Bräse S. Regioselective functionalization of [2.2]Paracyclophanes: recent synthetic progress and perspectives. Angew Chem Int Ed. 2020;59:2156–70.CAS 

    Google Scholar 
    Felder S, Wu S, Brom J, Micouin L, Benedetti E. Enantiopure Planar Chiral [2.2]Paracyclophanes: synthesis and applications in asymmetric organocatalysis. Chirality. 2021;33:506–27.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y. Circularly Polarized Luminescence from Planar Chiral Compounds Based on [2.2]Paracyclophane. In: Mori T, editor. Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer: Singapore; 2020, p. 31–52.Morisaki, Y. Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane. In: Ooyama Y, Yagi S, editors. Progress in the Science of Functional Dyes. Springer: Singapore; 2021, p. 343–74.Morisaki Y, Chujo Y. Planar Chiral [2.2]Paracyclophanes: optical resolution and transformation to optically active π-stacked molecules. Bull Chem Soc Jpn. 2019;92:265–74.CAS 

    Google Scholar 
    Maeda H, Kameda M, Hatakeyama T, Morisaki Y. π-Stacked polymer consisting of a Pseudo-meta-[2.2]Paracyclophane skeleton. Polymers. 2018;10:1140. https://doi.org/10.3390/polym10101140.PubMed Central 

    Google Scholar 
    Gon M, Sawada R, Morisaki Y, Chujo Y. Enhancement and controlling the signal of circularly polarized luminescence based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. Macromolecules. 2017;50:1790–802.CAS 

    Google Scholar 
    Gon M, Morisaki Y, Sawada R, Chujo Y. Synthesis of optically active X-shaped conjugated compounds and dendrimers based on Planar Chiral [2.2]Paracyclophane, leading to highly emissive circularly Polarized Luminescence. Chem Eur J. 2016;22:2291–8.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Shibata S, Chujo Y. Synthesis of optically active through-space conjugated polymers consisting of Planar Chiral [2.2]Paracyclophane and Quaterthiophene. Polym J. 2015;47:278–81.CAS 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Through-space conjugated polymers consisting of Planar Chiral Pseudo-ortho-linked [2.2]Paracyclophane. Polym Chem. 2012;3:2727–30.CAS 

    Google Scholar 
    Liao C, Zhang Y, Ye S-H, Zheng W-H. Planar Chiral [2.2]Paracyclophane-based thermally activated delayed fluorescent materials for circularly polarized electroluminescence. ACS Appl Mater Int. 2021;13:25186–92.CAS 

    Google Scholar 
    Zhang M-Y, Li Z-Y, Lu B, Wang Y, Ma Y-D, Zhao C-H. Solid-state emissive triarylborane-based [2.2]Paracyclophanes displaying circularly polarized luminescence and thermally activated delayed fluorescence. Org Lett. 2018;20:6868–71.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Practical optical resolution of Planar Chiral Pseudo-ortho-disubstituted [2.2]Paracyclophane. Chem Lett. 2012;41:990–2.CAS 

    Google Scholar 
    Tsuchiya M, Maeda H, Inoue R, Morisaki Y. Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: fusing helical and planar chiralities. Chem Commun. 2021;57:9256–9.CAS 

    Google Scholar 
    Kikuchi K, Nakamura J, Nagata Y, Tsuchida H, Kakuta T, Ogoshi T, et al. Control of circularly polarized luminescence by orientation of stacked π-Electron Systems. Chem Asian J. 2019;14:1681–5.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Sawada R, Gon M, Chujo Y. New Type of Planar Chiral [2.2]Paracyclophanes and construction of one-handed double Helices. Chem Asian J. 2016;11:2524–7.CAS 
    PubMed 

    Google Scholar 
    Sawada R, Gon M, Nakamura J, Morisaki Y, Chujo Y. Synthesis of Enantiopure Planar Chiral Bis-(para)-Pseudo-meta-Type [2.2]Paracyclophanes. Chirality. 2018;30:1109–14.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y. Planar Chiral Tetrasubstituted [2.2]Paracyclophane: optical resolution and functionalization. J Am Chem Soc. 2014;136:3350–3.CAS 
    PubMed 

    Google Scholar 
    Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16:4467–70.
    Google Scholar 
    Sonogashira K. Palladium-Catalyzed Alkynylation: Sonogashira Alkyne Synthesis. In: Negishi E, editor. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience: New York; 2002, p. 493–529.Meyer-Epler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A. Synthesis, Chiral Resolution, and absolute configuration of dissymmetric 4,15-Difunctionalized [2.2]Paracyclophanes. J Org Chem. 2014;79:6679–87.
    Google Scholar 
    Miki N, Maeda H, Inoue R, Morisaki Y. Syntheses and Chiroptical properties of optically active V-shaped molecules based on Planar Chiral [2.2]Paracyclophane. ChemistrySelect. 2021;6:12970–4.CAS 

    Google Scholar 
    Bondarenko L, Dix I, Hinrichs H, Hopf H. Cyclophanes. Part LII: Ethynyl[2.2]paracyclophanes – New Building Blocks for Molecular Scaffolding. Synthesis. 2004;2751–9.Tanaka Y, Ozawa T, Inagaki A, Akita M. Redox-active Polyiron Complexes with Tetra(ethynylphenyl)ethene and [2,2]Paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire. Dalton Trans. 2007;928–33.Morisaki Y, Ueno S, Saeki A, Asano A, Seki S, Chujo Y. π-Electron-system-layered Polymer: through-space conjugation and properties as a single molecular wire. Chem Eur J. 2012;18:4216–24.CAS 
    PubMed 

    Google Scholar 
    Morisaki Y, Inoshita K, Chujo Y. Planar Chiral through-space conjugated oligomers: synthesis and characterization of Chiroptical Properties. Chem Eur J. 2014;20:8386–90.CAS 
    PubMed 

    Google Scholar 
    Saeki A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with Data Science. Polym J. 2020;52:1307–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miki N, Inoue R, Morisaki Y. Synthesis of optically active V-shaped molecules: studies on the orientation of the Stacked π-Electron Systems and Their Chiroptical Properties. Bull Chem Soc Jpn. 2021;94:451–3.CAS 

    Google Scholar 
    Tabata D, Inoue R, Sasai Y, Morisaki Y. Synthesis of optically active V(120°)- and (60°)-shaped molecules comprising different π-electron systems. Bull Chem Soc Jpn. 2022;95:595–601.CAS 

    Google Scholar 
    Asakawa R, Tabata D, Miki N, Tsuchiya M, Inoue R, Morisaki Y. Syntheses of optically active V-shaped molecules: relationship between their Chiroptical Properties and the Orientation of the Stacked π-Electron System. Eur J Org Chem. 2021;2021:5725–31.Berova N, Nakanishi K, Woody RW. Circular Dichroism 2nd ed. Wiley-VCH: Toronto; 2000.Riehl JP, Richardson FS. Circularly polarized luminescence spectroscopy. Chem Rev. 1986;86:1–16.CAS 

    Google Scholar 
    Riehl JP, Muller F. Comprehensive Chiroptical Spectroscopy. Wiley and Sons: New York; 2012. More

  • in

    Tailored pathways toward revived farmland biodiversity can inspire agroecological action and policy to transform agriculture

    Benton, T. G. & Bailey, R. The paradox of productivity: agricultural productivity promotes food system inefficiency. Glob. Sustain. 2, (2019).IPBES Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Diaz, et al. (eds.). IPBES secretariat, Bonn, Germany, 56 p, (2019).Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).Article 

    Google Scholar 
    Jones, S. K. et al. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2, 712–723 (2021).Article 

    Google Scholar 
    Butler, S. J., Vickery, J. A. & Norris, K. Farmland biodiversity and the footprint of agriculture. Science 315, 381–384 (2007).CAS 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 

    Google Scholar 
    Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Nat. Acad. Sci. 119, e2109217118 (2022).CAS 
    Article 

    Google Scholar 
    Diaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).CAS 
    Article 

    Google Scholar 
    Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).Article 

    Google Scholar 
    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol .4, 1150–1152 (2020).Article 

    Google Scholar 
    Altieri, M. A. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93, 1–24 (2002).Article 

    Google Scholar 
    HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition, Food and Agriculture Organization (FAO). (2019).Barrios, E. et al. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 16, 230–247 (2020).Article 

    Google Scholar 
    FAO. Catalysing dialogue and cooperation to scale up agroecology: outcomes of the FAO regional seminars on agroecology. Food and Agriculture Organization of the United Nations, Rome, Italy, http://www.fao.org/3/I8992EN/i8992en.pdf (2018).Wezel, A. et al. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 40, 40 (2020).Article 

    Google Scholar 
    FAO. Building a common vision for sustainable food and agriculture, Principles, and approaches. Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/i3940e/i3940e.pdf, (2014).Kleijn, D., Rundlof, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26, 474–481 (2011).Article 

    Google Scholar 
    Seppelt, R. et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. BioScience 66, 890–896 (2016).Article 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    EEA High nature value farmland Characteristics, trends, and policy challenges. EEA report No 1/2004, European Environment Agency, Luxembourg, Office for Official Publications of the European Communities, 32 pp (2004).Ichikawa, K. & Toth, G. G. The Satoyama Landscape of Japan: The Future of an Indigenous Agricultural System in an Industrialized Society. In: Nair, P., Garrity, D. (eds) Agroforestry-The Future of Global Land Use. Advances in Agroforestry, 9. Springer, Dordrecht. 341–358. (2012).Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystem 15, 900–912 (2012).Article 

    Google Scholar 
    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2021).Article 

    Google Scholar 
    Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).CAS 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).Article 

    Google Scholar 
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).Article 

    Google Scholar 
    Sietz, D., Fleskens, L. & Stringer, L. C. Learning from non-linear ecosystem dynamics is vital for achieving Land Degradation Neutrality. Land Degrad. Dev. 28, 2308–2314 (2017).Article 

    Google Scholar 
    Van den Elsen, E. et al. Advances in understanding and managing catastrophic shifts in Mediterranean ecosystems. Front. Ecol. Evol. 8:561101, Section Conservation, https://doi.org/10.3389/fevo.2020.561101. (2020).Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sustain. 2, 34–42 (2010).Article 

    Google Scholar 
    Tougiani, A., Guero, C. & Rinaudo, T. Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal 74, 377 (2009).Article 

    Google Scholar 
    Baumhardt, R. L. Dust Bowl Era. Encyclopedia of Water Science, pp. 187 – 191, New York, USA. (2003).Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS 
    Article 

    Google Scholar 
    SER The SER International Primer on Ecological Restoration, Society for Ecological Restoration International Science & Policy Working Group, www.ser.org & Tucson, Society for Ecological Restoration International (2004).Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).Article 

    Google Scholar 
    Lomba, A. et al. Back to the future: rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).Article 

    Google Scholar 
    Teixeira, H. M. et al. Understanding farm diversity to promote agroecological transitions. Sustainability 10, 4337 (2018).Article 

    Google Scholar 
    Fraser, M. D., Moorby, J. M., Vale, J. E. & Evans, D. M. Mixed grazing systems benefit both upland biodiversity and livestock production. PLOS ONE 9, e89054 (2014).Article 
    CAS 

    Google Scholar 
    Reganold, J. & Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).Article 

    Google Scholar 
    Niggli, U., Slabe, A., Schmid, O., Halberg, N. & Schlüter, M. Vision for an Organic Food and Farming Research Agenda 2025. Organic Knowledge for the Future. Technology Platform Organics. IFOAM Regional Group European Union (IFOAM EU Group), Brussels and International Society of Organic Agriculture Research (ISOFAR), Bonn, Germany (2008).Badgley, C. et al. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 22, 86–108 (2007).Article 

    Google Scholar 
    Boddey, R. M., de Moraes, J. C., Alves, B. J. R. & Urquiaga, S. The contribution of biological nitrogen fixation for sustainable agriculture in the tropics. Soil Biol. Biochem. 29, 787–799 (1997).CAS 
    Article 

    Google Scholar 
    Sharifi, O. et al. Barriers to conversion to organic farming: a case study in Babol County in Iran. Afr. J. Agr. Res. 5, 2260–2267 (2010).
    Google Scholar 
    Peetsmann, E. et al. Organic marketing in Estonia. Agron. Res. 7, 706–711 (2009).
    Google Scholar 
    Palsova, L., Schwarczova, L., Schwarcz, P. & Bandlerova, A. The support of implementation of organic farming in the Slovak Republic in the context of sustainable development. Procedia—Soc. Behav. Sci. 110, 520–529 (2014).Article 

    Google Scholar 
    Konstantinidis, C. Capitalism in green disguise: the political economy of organic farming in the European Union. Rev. Radic. Polit. Econ. 50, 830–852 (2018).Article 

    Google Scholar 
    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B. 282, 20141396 (2015).Article 

    Google Scholar 
    Willer, H., Trávníček, J., Meier, C. & Schlatter, B. (Eds.) The World of Organic Agriculture: Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick and IFOAM Organics International, Bonn, Germany (2021).Rosset, P. M., Sosa, B. M., Roque Jaime, A. M. & Ávila Lozano, D. A. The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J. Peasant Stud. 38, 161–191 (2011).Article 

    Google Scholar 
    Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Chang. Biol. 27, 4697–4710 (2021).CAS 
    Article 

    Google Scholar 
    Pywell, R. F. et al. Wildlife‐friendly farming increases crop yield: Evidence for ecological intensification. Proc. Royal Soc. B Biol. Sci. 282, 20151740 (2015).Article 

    Google Scholar 
    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).Article 

    Google Scholar 
    Garnett, T. et al. Sustainable intensification in agriculture: Premises and policies. Science 341, 33–34 (2013).CAS 
    Article 

    Google Scholar 
    Daum, T. Farm robots: ecological utopia or dystopia? Trends Ecol. Evol. 36, 774–777 (2021).Article 

    Google Scholar 
    Neethirajan, S. & Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 32, 100408 (2021).Article 

    Google Scholar 
    Mota, J. F., Peñas, J., Castro, H., Cabelllo, J. & Guirado, J. S. Agricultural development vs. biodiversity conservation: The Mediterranean semiarid vegetation in El Ejido (Almería, Southeastern Spain). Biodivers. Conserv. 5, 1597–1616 (1996).Article 

    Google Scholar 
    Giagnocavo, C. et al. Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture 12, 137 (2022).Article 

    Google Scholar 
    Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).Article 

    Google Scholar 
    Shaffer, M. L. Minimum Viable Populations: coping with uncertainty. In: Soulé M. E., editor. Viable populations for conservation. Cambridge: Cambridge University Press. pp. 69-86. (1987).Sendzimir, J., Reij, C. P. & Magnuszewski, P. Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol. Soc. 16, 1 (2011).Article 

    Google Scholar 
    Weston, P., Hong, R., Kaboré, C. & Kull, C. A. Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa. Environ. Manage. 55, 1402–1417 (2015).Article 

    Google Scholar 
    De Souza, H. N. et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 146, 179–196 (2012).Article 

    Google Scholar 
    WWF (2021) Plowprint report. World Wildlife Fund, Washington, DC, USA.Senapathi, D. et al. Pollinator conservation—The difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 12, 93–101 (2015).Article 

    Google Scholar 
    Sietz, D. & Feola, G. Resilience in the rural Andes: critical dynamics, constraints and emerging opportunities. Reg. Environ. Change 16, 2163–2169 (2016).Article 

    Google Scholar 
    Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. Biol. Sci. Royal Soc. 276, 903–909 (2009).CAS 

    Google Scholar 
    Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric Syst 184, 102862 (2020).Article 

    Google Scholar 
    Jia, G. et al. Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M., Belkacemi, J. Malley, (eds.)]. Intergovernmental Panel on Climate Change. (2019).Tittonell, P. et al. Ecological Intensification: Local Innovation to Address Global Challenges. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_1. (2016).Beyer, R. M. et al. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).Article 

    Google Scholar 
    Jeanneret, P. et al. An increase in food production in Europe could dramatically affect farmland biodiversity. Commun. Earth Environ. 2, 183 (2021).Article 

    Google Scholar 
    Tamburino, L., Bravo, G., Clough, Y. & Nicholas, K. A. From population to production: 50 years of scientific literature on how to feed the world. Glob. Food Secur. 24, 100346 (2020).Article 

    Google Scholar 
    Grassini, P., Eskridge, K. & Cassman, K. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).Article 
    CAS 

    Google Scholar 
    U. N. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, New York (2015).EC Farm to Fork strategy for a fair, healthy, and environmentally-friendly food system, European Commission, Brussels, https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_de (2020).UNCBD First draft of the post-2020 global biodiversity framework. CBD/WG2020/3/3, https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021)Lacoste, M. et al. On-Farm Experimentation to transform global agriculture. Nat. Food 3, 11–18 (2022).Article 

    Google Scholar 
    Runhaar, H. Governing the transformation towards ‘nature-inclusive’ agriculture: insights from the Netherlands. Int. J. Agric. Sustain. 15, 340–349 (2017).Article 

    Google Scholar 
    Ferguson, R. S. & Lovell, S. T. Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron. Sustain. Dev. 34, 251–274 (2014).Article 

    Google Scholar 
    Oberlack, C. et al. Archetype analysis in sustainability research: Meanings, motivations, and evidence-based policy making. Special feature: archetype analysis in sustainability research. Ecology and Society 24, 26 (2019).Article 

    Google Scholar 
    Sietz, D. et al. Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers. Special Feature: Archetype Analysis in Sustainability Research. Ecol. Soc. 24, 34 (2019).Article 

    Google Scholar 
    Piemontese, L. et al. Validity and validation in archetype analysis: Practical assessment framework and guidelines. Environ. Res. Lett. 17, 025010 (2022).Article 

    Google Scholar 
    Sietz, D. et al. Nested archetypes of vulnerability in African drylands: Where lies potential for sustainable agricultural intensification? Environ. Res. Lett. 12, 095006 (2017).Article 

    Google Scholar 
    Alexandridis, N. et al. Archetype models upscale understanding of natural pest control response to land-use change. Ecological Applications. Accepted Author Manuscript e2696. https://doi.org/10.1002/eap.2696. (2022).Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).Article 

    Google Scholar 
    Jack, B. K., Kousky, C. & Sims, K. R. E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl Acad Sci. 105, 9465–9470 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Fungi are more transient than bacteria in caterpillar gut microbiomes

    Futuyma, D. J. & Agrawal, A. A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. 106, 18054–18061 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).PubMed 
    Article 

    Google Scholar 
    Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: It is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giron, D. et al. Chapter seven—influence of microbial symbionts on plant-insect interactions. In Advances in Botanical Research Vol. 81 (eds Sauvion, N. et al.) 225–257 (Academic Press, 2017).
    Google Scholar 
    Chen, B. et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6, 29505 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. Tree endophytes: cryptic drivers of tropical forest diversity. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 63–103 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-89833-9_4.Chapter 

    Google Scholar 
    Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S. & Terradas, J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14, 565–575 (2012).PubMed 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA. 111, 13715–13720 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92, 303–311 (2014).Article 

    Google Scholar 
    Faeth, S. H. & Hammon, K. E. Fungal endophytes in oak trees: Long-term patterns of abundance and associations with leafminers. Ecology 78, 810–819 (1997).Article 

    Google Scholar 
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40, 1111–1122 (2011).PubMed 
    Article 

    Google Scholar 
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, 117 (2019).Article 
    CAS 

    Google Scholar 
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montagna, M. et al. Evidence of a bacterial core in the stored products pest Plodia interpunctella: The influence of different diets. Environ. Microbiol. 18, 4961–4973 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Phalnikar, K., Kunte, K. & Agashe, D. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc. R. Soc. B Biol. Sci. 286, 20192438 (2019).CAS 
    Article 

    Google Scholar 
    Somerville, J., Zhou, L. & Raymond, B. Aseptic rearing and infection with gut bacteria improve the fitness of transgenic diamondback moth, Plutella xylostella. Insects 10, 89 (2019).PubMed Central 
    Article 

    Google Scholar 
    González-Serrano, F. et al. The gut microbiota composition of the moth brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Goharrostami, M. & JalaliSendi, J. Investigation on endosymbionts of Mediterranean flour moth gut and studying their role in physiology and biology. J. Stored Prod. Res. 75, 10–17 (2018).Article 

    Google Scholar 
    Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, 1005 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minard, G., Tikhonov, G., Ovaskainen, O. & Saastamoinen, M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ. Microbiol. 21, 4253–4269 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 
    Article 

    Google Scholar 
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. J. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, T., Pereira, J. A., Benhadi, J., Lino-Neto, T. & Baptista, P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb. Ecol. 76, 668–679 (2018).PubMed 
    Article 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitaker, M. R. L., Salzman, S., Sanders, J., Kaltenpoth, M. & Pierce, N. E. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7, 1920 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, Y. et al. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol. 20, 58 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffin, E. A., Harrison, J. G., McCormick, M. K., Burghardt, K. T. & Parker, J. D. Tree diversity reduces fungal endophyte richness and diversity in a large-scale temperate forest experiment. Diversity 11, 234 (2019).Article 

    Google Scholar 
    Kim, M. et al. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674–681 (2012).PubMed 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: A new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96, fiaa116 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 100, e02758 (2019).PubMed 
    Article 

    Google Scholar 
    Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 193–194, 96–102 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Unterseher, M., Reiher, A., Finstermeier, K., Otto, P. & Morawetz, W. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6, 201–212 (2007).Article 

    Google Scholar 
    Gilbert, G. S., Reynolds, D. R. & Bethancourt, A. The patchiness of epifoliar fungi in tropical forests: Host range, host abundance, and environment. Ecology 88, 575–581 (2007).PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol. Ecol. 95, fiz032 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe Interact. 28, 274–285 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations. Microb. Ecol. https://doi.org/10.1007/s00248-020-01564-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B. & Allende, A. Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiol. 66, 77–85 (2017).PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 
    Article 

    Google Scholar 
    Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sánchez, N. E., Pereyra, P. C. & Luna, M. G. Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Entomol. 38, 365–374 (2009).PubMed 
    Article 

    Google Scholar 
    Santos, A. M. C. & Quicke, D. L. J. Large-scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382 (2011).Article 

    Google Scholar 
    Mereghetti, V., Chouaia, B. & Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 18, 2450 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floater, G. J. Estimating movement of the processionary caterpillar Ochrogaster zunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae) between discrete resource patches. Aust. J. Entomol. 35, 279–283 (1996).Article 

    Google Scholar 
    Turčáni, M. & Patočka, J. Does intraguild predation of Cosmia trapezina L. (Lep.: Noctuidae) influence the abundance of other Lepidoptera forest pests?. J. For. Sci. 57, 472–482 (2011).Article 

    Google Scholar 
    Hikisz, J. & Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 17, 59–71 (2015).
    Google Scholar 
    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    Qian, X. et al. Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci. Rep. 10, 952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller, T., Müller, M., Behrendt, U. & Stadler, B. Diversity of culturable phyllosphere bacteria on beech and oak: The effects of lepidopterous larvae. Microbiol. Res. 158, 291–297 (2003).PubMed 
    Article 

    Google Scholar 
    Hrcek, J., Miller, S. E., Quicke, D. L. J. & Smith, M. A. Molecular detection of trophic links in a complex insect host-parasitoid food web. Mol. Ecol. Resour. 11, 786–794 (2011).PubMed 
    Article 

    Google Scholar 
    Bateman, C., Šigut, M., Skelton, J., Smith, K. E. & Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 45, 883–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science https://peerj.com/preprints/27295 (2018) https://doi.org/10.7287/peerj.preprints.27295v2.Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    UNITE Community. UNITE QIIME Release for Fungi 2. (2019).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Ter Braak, C. J. F. ter & Smilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. (2012).Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    Chrostek, E., Pelz-Stelinski, K., Hurst, G. D. D. & Hughes, G. L. Horizontal transmission of intracellular insect symbionts via plants. Front. Microbiol. 8, 2237 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2019).Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Coral conservation in a warming world must harness evolutionary adaptation

    Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Nat. Clim. Chang. 11, 537–542 (2021).Article 

    Google Scholar 
    Cook, C. N. & Sgrò, C. M. Conserv. Biol. 31, 501–512 (2017).Article 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Phil. Trans. R. Soc. Lond. B 368, 1–8 (2013).
    Google Scholar 
    Kovach, R. P., Gharrett, A. J. & Tallmon, D. A. Proc. R. Soc. Lond. B 279, 3870–3878 (2012).
    Google Scholar 
    Bonnet, T. et al. Science 376, 1012–1016 (2022).CAS 
    Article 

    Google Scholar 
    Norberg, J. et al. Nat. Clim. Chang. 2, 747–751 (2012).Article 

    Google Scholar 
    Torda, G. et al. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. Curr. Biol. 29, R996–R1007 (2019).CAS 
    Article 

    Google Scholar 
    Keppel, G. et al. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Vos, C. C. et al. J. Appl. Ecol. 45, 1722–1731 (2008).Article 

    Google Scholar 
    Isaak, D. J. et al. Glob. Change Biol. 21, 2540–2553 (2015).Article 

    Google Scholar 
    Beyer, H. L. et al. Conserv. Lett. 11, e12587 (2018).Article 

    Google Scholar 
    Tingley, M. W., Estes, L. D. & Wilcove, D. S. Nature 500, 271–272 (2013).CAS 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Cornwell, B. et al. eLife 10, e64790 (2021).CAS 
    Article 

    Google Scholar 
    National Academies. of Sciences Engineering & Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. (The National Academies Press, 2019).Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Science 344, 895–898 (2014).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Glob. Change Biol. 26, 3473–3481 (2020).Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Curr. Biol. 24, 2952–2956 (2014).CAS 
    Article 

    Google Scholar 
    Donovan, M. K. et al. Science 372, 977–980 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. et al. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    Morrison, T. H. et al. Nature 573, 333–336 (2019).CAS 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    DeFilippo, L. B. et al. Ecol. Appl. https://doi.org/10.1002/eap.2650 (2022).Steneck, R. S. et al. Front. Mar. Sci. 6, 265 (2019).Article 

    Google Scholar 
    Dixon, G. B. et al. Science 348, 1460–1462 (2015).CAS 
    Article 

    Google Scholar 
    McManus, L. C. et al. Glob. Change Biol. 27, 4307–4321 (2021).CAS 
    Article 

    Google Scholar 
    Kleypas, J. A. et al. Glob. Change Biol. 22, 3539–3549 (2016).Article 

    Google Scholar 
    McManus, L. C. et al. Ecology 102, e03381 (2021).Article 

    Google Scholar 
    Walsworth, T. E. et al. Nat. Clim. Chang. 9, 632–636 (2019).Article 

    Google Scholar  More

  • in

    Characteristics of urine spraying and scraping the ground with hind paws as scent-marking of captive cheetahs (Acinonyx jubatus)

    Urine spraying and scraping as potential scent-markingThe urine spraying and the scraping were reported in other felids6,20,21. In this study, only half of the other excretion instances were accompanied by sniffing, whereas almost all urine spraying and scraping events were accompanied by sniffing, indicating that these are scent-markings. The sniffing was also often observed immediately before urine spraying and scraping. Given the significant association of sniffing before excretion, especially with regard to the scraping, the presence or absence of a scent on the object was thought to be a trigger.Furthermore, during the scraping, liquid secretions thought to originate from the anal glands, were released. Domestic cats have scent glands in the anal sac22. The presence of secretions from the anal sac has also been confirmed in not only tigers, lions (Panthera leo), and bobcats (Lynx rufus), but also in cheetahs1,6,23; however, this study was the first to investigate their role in excretion. Generally, secretions are considered to be caused by health problems or estrus, but in this study, none of the individuals had health problems, and all secretions were observed only in males. Therefore, it was thought that the secretion was produced by the scent glands and contributed to a stronger smell than only urine and feces.Variations based on sexUrine spraying was observed only in adult males and females, and was more frequent in males, as reported in other felids4,5,6,9,24. In wild cheetahs, although urine spraying and scraping have been observed as scent-making, the frequency of scent-marking is known to be substantially higher in territorial than in non-territorial males and in females15,16,25, and the marking locations are concentrated in the core area of the male territories16. The territories of a single male cheetah or a male group are relatively small and exclusive, whereas the relatively large home ranges of non-territorial males (also known as “floaters”) overlap with each other and with those of females15,16. A male’s home range is also larger than that of a female15,16,26,27. Male cheetahs rarely encounter other males because they communicate via marking posts28. Given these reports, the frequent urine spraying by males may help prevent encounters between males. In addition, observations of captive cheetahs have shown a significantly positive correlation between urinary spraying frequency and fecal estradiol content in female cheetahs19. Therefore, as Cornhill and Kerley24 mentioned, female urine spraying is caused by estrus, and male urine spraying is intended as a home range marker for other males or as a sign for females.The action of scraping using the hind paws has been reported to occur in both males and females in servals, lions, tigers, black-footed cats, etc.2,5,6,7,29; however, this behavior was only observed in adult males in this study. Sunquist and Sunquist3 reported that female cheetahs also perform the scraping. In this study, we only recorded observations when the cheetahs were released in the outdoor enclosures, and not when they were in the indoor facilities. In 43.6% of the scraping events, the males excreted feces. During the observation period, the females defecated in the indoor facilities, and no defecation was observed in the outdoor enclosures. It is possible that no scraping action was observed among the females because defecation was not observed in the outdoor enclosure. In indoor facilities, the cheetahs were in a completely monopolized enclosure; hence, the females defecated in their own spaces. There was a difference in the defecation sites and frequency of scraping between the males and females; this was attributed to the sex difference in scent-marking.Differences in target height for each behaviorUrine spraying was frequently done on objects approximately 170 cm or higher, such as walls or fences, standing trees, and stumps, whereas scraping was observed on low-lying objects on the ground, such as a straw pile approximately 3 cm high and a fallen tree that was 10–50 cm high. In other words, the cheetah engaged in urine spraying and scraping depending on the object nearby. This might indicate the functional role of these behaviors. This is consistent with previous findings of urine spraying by tigers being more frequent in wooded forests than in grasslands, with few prominent objects, and scraping being more common in the latter6. In addition, in a study that investigated the place where the smell of the urine of domestic cats is likely to remain, the smell persisted for a long time on rough surfaces, areas covered with moss, and overhanging slopes30. Even for cheetahs living in the savanna woodlands, where there are comparatively fewer upright objects than in the habitat of felids living in the forest, increasing the chances of transmitting information via not only urine spraying but also by the scraping might be more important. On the other hand, in their natural habitat, there are some large carnivores like lions and leopards (Panthera pardus). Wild cheetahs tend not to visit the sites where such carnivores’ scent-mark is present31, suggesting that they might confine their marking to specific sites devoid of other carnivores’ scent. Further research is needed to determine how wild cheetahs use urine spraying and scraping. In this study, scraping was frequently observed even on tall stumps and rocks if they were within the cheetahs’ reach. Scraping by wild cheetahs has been also observed on trees32. Zoos other than Zoo C had few prominent horizontal objects. Therefore, the presence of straw piles, fallen trees, stumps, and rocks may have elicited the scraping.Differences in housing conditionsIn zoos C and D, where animals shared enclosures, the frequency of both urine spraying and scraping by males was higher than in the males in the monopolized enclosures. They possibly showed a more frequent scent-marking to strengthen their home range claims when sharing the exhibition space15. Regarding the scraping, Zoo C had at least four low and horizontal objects (straw piles, fallen tree, stones, and rocks), and scraping was frequently observed. As mentioned above, the placement of objects might have elicited the scraping.In this study, the frequency of urine spraying decreased when the submissive individual (Male 17) was released in the enclosure where the dominant individual (Male 13) was previously released. Among wild cheetahs, territorial males have been reported to mark their territories more often than non-territorial males17,25. Therefore, the difference in the number of markings is considered to be related to whether or not the target individual is within the territory, and it is highly possible that the dominant/submissive relationship between males at that location has an effect on marking.Function of scraping using hind pawsOther felid studies have reported scraping in tigers, pumas, jaguars, clouded leopards, and small felids6,10,20,21,32,33; however, there are fewer studies on different types of scraping. In certain species, such as jaguars and pumas, scraping using hind paws is more frequent than urine spraying33. From this study, the use of secretions was confirmed in the scraping, and it was considered to be a significant marking of the cheetah.The possible functions of scraping include: (1) dispersing the smell of excrement, (2) placing the smell of excrement on the hindlegs, (3) smearing the objects with excrement, and (4) adding the scent of the hind paws. Domestic cats are known to cover their feces with soil34; however, in this study, the cheetahs did not cover the feces with soil and were not observed to scrap only after excretion. Therefore, scraping using hind paws was not meant for concealing urine and/or feces. The results of this study suggest that the scrapings were mostly performed during and after excretion for any of the aforementioned functions. However, 43.2% of the observed scraping events were performed before excretion, and in these cases, the functions 1–3 did not apply, since we did not observe the feces being crushed by scraping the hind paws. As for function 4, domestic cats have sweat glands on the soles of their feet that are thought to retain their smell35. Therefore, the sweat glands on the soles of the feet of the cheetahs possible retain the smell of the hind paws as well. Schaller36 reported that among tigers, scraping on the grassland was exhibited by scratches in the grass and exposure of the ground, creating a visual effect. In the case of cheetahs, scraping may have the function of creating grooves and ridges on the ground to enhance the visual effect; however, the formation of grooves and ridges were not observed in this study. In certain cases, they scraped against trees and stones. Because trees and stones are not easily deformed, it is hard to say whether the visual effect was enhanced by scraping with their hind paws.Scraping has been reported in other felids; however, the movement of the hindlimbs is not uniform. For example, in the case of bobcats, behaviors such as kicking back on the ground with no surrounding objects and scattering of soil have been observed during scrapings20. The snow leopard slowly moves its hindlimbs on the ground near the rocks, exposing the ground; in fact, Schaller29 observed a tiger scraping its hind paws to create a pile of soil [37; Kinoshita, personal communication: Online Resource 3; Scraping of snow leopard]. The movement of urine spraying also varies among species. For example, bobcats sometimes squat and urinate on the ground20, and snow leopards rub their cheeks against the target object and then spray urine9, but cheetahs do not rub their face before urine spraying. Hence, even in the same behavior of “spraying/scraping,” the actions differ. Because felids are widely distributed in various environments, such differences in movements are possibly related to differences in habitat and behavioral functions.In conclusion, urine spraying and scraping using hind paws were considered scent-markings because they were more strongly associated with sniffing than other excretion. Both behaviors were also observed only in adults; however, urine spraying was confirmed in both sexes and was more frequent in males than in females, whereas scraping was observed only in males. Also, the frequencies of both behaviors were significantly higher in males kept in shared enclosures containing other individuals than in males kept in monopolized enclosures, while there was no difference in the frequencies among females. Hence, there were sex differences in these scent-markings possibly because of the difference in the sociality between the sexes even in captivity; the frequency of scent-markings was affected by the living environment including the number of target objects; urine spraying was frequently done on tall objects such as walls or fences, whereas scraping was more commonly done on low-lying objects near the ground, such as straw piles. To our knowledge, this study is the first to confirm that during the scraping a liquid other than feces and urine was secreted, presumably from the anal glands. Taken together, the results can serve to enhance our knowledge regarding the behavior of cheetahs, help improve management of these animals in captivity as well as breeding and animal welfare ex situ conservation, and help elucidate the kind of habitat that should be preserved for the in situ conservation of cheetahs. More