More stories

  • in

    Growth model analysis of wild hyacinth macaw (Anodorhynchus hyacinthinus) nestlings based on long-term monitoring in the Brazilian Pantanal

    BirdLife International. Red List Update: Parrots of the Americas in Peril. https://www.birdlife.org/news/2021/02/08/red-list-update-parrots-of-the-americas-in-peril/ (2020).Berkunsky, I. et al. Current threats faced by Neotropical parrot populations. Biol. Cons. 214, 278–287. https://doi.org/10.1016/j.biocon.2017.08.016 (2017).Article 

    Google Scholar 
    ICMBIO—Instituto Chico Mendes de Conservação da Biodiversidade (Org.). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume III-Aves 709. https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol3.pdf (Ministério do Meio Ambiente, 2018).CBRO—Comitê Brasileiro de Registros Ornitológicos. Listas das Aves do Brasil. 11th ed. http://www.cbro.org.br/wp-content/uploads/2020/06/avesbrasil_2014jan1.pdf (CBRO, 2014).Pacheco, J. F. et al. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee—second edition. Ornithol. Res. 29(2), 94–105. https://doi.org/10.1007/s43388-021-00058-x (2021).Article 

    Google Scholar 
    IUCN—International Union for Conservation of Nature. The IUCN Red List of Threatened Species www.iucnredlist.org (2018).Guedes, N. M. R. Biologia reprodutiva da arara azul (Anodorhynchus hyacinthinus) no Pantanal—MS, Brasil. (Dissertação de Mestrado Universidade de São Paulo, São Paulo (1993).Guedes, N. M. R. et al. Technical Report Assessing the Impact of Fire on Blue Macaws, Pantanal, Mato Grosso do Sul, Brazil, p 13, Campo Grande, Instituto Arara Azul (2019).Guedes, N. M. R. Araras azuis: 15 anos de estudos no Pantanal. In Paper presented at IV Simpósio Sobre Recursos Naturais e Sócio-Econômicos do Pantanal, Corumbá: Embrapa Pantanal (2004).Guedes, N. M. R. Sucesso reprodutivo, mortalidade e crescimento de filhotes de araras azuis Anodorhynchus hyacinthinus (Aves, Psittacidae), no Pantanal, Brasil (Tese de doutorado Universidade Estadual Paulista, Botucatu, 2009)Guedes, N. M. R. & Harper, L. H. Hyacinth macaws in the Pantanal. In The Large Macaws (eds Abramson, J. et al.) 394–421 (Raintree Publications, 1995).
    Google Scholar 
    Vicente, E. C. & Guedes, N. M. Organophosphate poisoning of Hyacinth Macaws in the Southern Pantanal, Brazil. Sci. Rep. 11, 1–6. https://doi.org/10.1038/s41598-021-84228-3 (2021).CAS 
    Article 

    Google Scholar 
    Guedes, N. M. R. et al. Assessment of fire impact on Hyacinth Macaws in Perigara, Pantanal—MT, Brazil, p 35, Campo Grande, Instituto Arara Azul (2020).Guedes, N. M. R. et al. Macaws survive fires and provide hope for resilience—Stubborn survivors. Pantanal Sci. Mag. 6, 36–41 (2021).
    Google Scholar 
    Oliveira, M. D. R. et al. Lack of protected areas and future habitat loss threaten the Hyacinth Macaw Anodorhynchus hyacinthinus and its main food and nesting resources. Ibis 163, 1217–1234 (2021).Article 

    Google Scholar 
    Ricklefs, R. E. Patterns of growth in birds. Ibis 110, 419–451. https://doi.org/10.1111/j.1474-919X.1968.tb00058.x (1968).Article 

    Google Scholar 
    Gebhardt-Henrich, S. & Richner, H. Causes of growth variation and its consequences for fitness. Oxford Ornithol. Ser. 8, 324–339 (1998).
    Google Scholar 
    Masello, J. F. & Quillfeldt, P. Body size, body condition and ornamental feathers of Burrowing Parrots: Variation between years and sexes, assortative mating and influences on breeding success. Emu Austral Ornithol. 103, 149–161. https://doi.org/10.1071/MU02036 (2003).Article 

    Google Scholar 
    Renton, K. Influence of environmental variability on the growth of Lilac-crowned Parrot nestlings. Ibis 144, 331–339. https://doi.org/10.1046/j.1474-919X.2002.00015.x (2002).Article 

    Google Scholar 
    Masello, J. F. & Quillfeldt, P. Chick growth and breeding success of the Burrowing Parrot. Condor 104, 574–586. https://doi.org/10.1650/0010-5422 (2002).Article 

    Google Scholar 
    Pacheco, M. A., Beissinger, S. R. & Bosque, C. Why grow slowly in a dangerous place? Postnatal growth, thermoregulation, and energetics of nestling green-rumped parrotlets (Forpus passerinus). Auk 127, 558–570. https://doi.org/10.1525/auk.2009.09190 (2010).Article 

    Google Scholar 
    Vigo, G., Williams, M. & Brightsmith, D. J. Growth of Scarlet Macaw (Ara macao) chicks in southeastern Peru. Neotrop. Ornithol. 22, 143–153 (2011).
    Google Scholar 
    Lyon, J. P. et al. Reintroduction success of threatened Australian trout cod (Maccullochella macquariensis) based on growth and reproduction. Mar. Freshw. Res. 63, 598–605. https://doi.org/10.1071/MF12034 (2012).Article 

    Google Scholar 
    Vigo-Trauco, G., Garcia-Anleu, R. & Brightsmith, D. J. Increasing survival of wild macaw chicks using foster parents and supplemental feeding. Diversity 13, 121. https://doi.org/10.3390/d13030121 (2021).Article 

    Google Scholar 
    Tellería, J. L., De La Hera, I. & Perez-Tris, J. Morphological variation as a tool for monitoring bird populations: A review. Ardeola 60, 191–224. https://doi.org/10.13157/arla.60.2.2013.191 (2013).Article 

    Google Scholar 
    Silva, J. S. V. Elementos fisiográficos para delimitação do ecossistema Pantanal: Discussão e proposta. Oecol. Brasil. 1, 349–458. https://doi.org/10.4257/OECO.1995.0101.22 (1995).Article 

    Google Scholar 
    Silva, J. S. V. & Abdon, M. M. Delimitação do Pantanal Brasileiro e suas Sub-Regiões. Pesq. Agropec. Bras. 33, 1703–1711 (1998).
    Google Scholar 
    Keuroghlian, A., Eaton, D. & Desbiez, A. L. J. The response of a landscape species, white-lipped peccaries, to seasonal resource fluctuations in a tropical wetland, the Brazilian Pantanal. Int. J. Biodivers. Conserv. 1, 87–97 (2009).
    Google Scholar 
    Donatelli, R. J., Posso, S. R. & Toledo, M. C. B. D. Distribution, composition and seasonality of aquatic birds in the Nhecolândia sub-region of South Pantanal, Brazil. Braz. J. Biol. 74, 844–853 (2014).CAS 
    Article 

    Google Scholar 
    Donatelli, R. J. et al. Temporal and spatial variation of richness and abundance of the community of birds in the Pantanal wetlands of Nhecolândia (Mato Grosso do Sul, Brazil). Rev. Biol. Trop. 65, 1358–1380 (2017).Article 

    Google Scholar 
    Tomas, W. M. et al. Sustainability agenda for the Pantanal Wetland: Perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30. https://doi.org/10.1177/1940082919872634 (2019).ADS 
    Article 

    Google Scholar 
    Harris, M. B. et al. Safeguarding the Pantanal wetlands: Threats and conservation initiatives. Conserv. Biol. 19, 714–720. https://doi.org/10.1111/j.1523-1739.2005.00708.x (2005).Article 

    Google Scholar 
    Santos Júnior, A. D., Aspectos populacionais de Sterculia apetala (Jacq.) Karst (Sterculiaceae) como subsídios ao plano de conservação da arara-azul no Sul do Pantanal, Mato Grosso do Sul, Brasil. (2006). https://repositorio.ufms.br/handle/123456789/521.Ricklefs, R. E. The optimization of growth rate in altricial birds. Ecology 65, 1602–1616 (1984).Article 

    Google Scholar 
    Bruford, M. W., Hanotte, O., Brookfield, J. F. Y. & Burke, T. Single-locus and multilocus DNA fingerprinting. In Molecular Genetic Analysis of Populations: A Practical Approach (ed. Hoelzel, A. R.) 225–269 (Oxford University Press, 1992).
    Google Scholar 
    Miyaki, C. Y. et al. Sex identification of parrots, toucans, and curassows by PCR: Perspectives for wild and captive population studies. Zoo Biol. 17(5), 415–423 (1998).Article 

    Google Scholar 
    Cavanaugh, J. E. & Neath, A. A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat. 11, 1460. https://doi.org/10.1002/wics.1460 (2019).MathSciNet 
    Article 

    Google Scholar 
    Motulsky H. J. GraphPad curve fitting guide. 2021. http://www.graphpad.com/guides/prism/7/curve-fitting/index.htm. Accessed 18 September.Saunders, D. A., Smith, G. T. & Rowley, I. The availability and dimensions of tree hollows that provide nest sites for cockatoos (Psittaciformes) in Western Australia. Wildl. Res. 9, 541–556. https://doi.org/10.1071/WR9820541 (1982).Article 

    Google Scholar 
    Navarro, J. L. & Bucher, E. H. Growth of monk parakeets. Wilson Bull. 102, 520–525 (1990).
    Google Scholar 
    Murtaugh, P. A. Performance of several variable-selection methods applied to real ecological data. Ecol. Lett. 12, 1061–1068 (2009).Article 

    Google Scholar 
    Waltman, J. R. & Beissinger, S. R. Breeding behavior of the Green-rumped Parrotlet. Wilson Bull. 104, 65–84 (1992).
    Google Scholar 
    Enkerlin-Hoeflich, E. C., Packard, J. M. & González-Elizondo, J. J. Safe field techniques for nest inspections and nestling crop sampling of parrots. J. Field Ornithol. 70, 8–17 (1999).
    Google Scholar 
    Barros, Y. de M. Biologia comportamental de Propyrrhura maracana (Aves, Psittacidae): Fundamentos para conservação in situ de Cyanopsitta spixii (Aves, Psittacidae) na Caatinga. (Tese de Doutorado Universidade Estadual de São Paulo, Rio Claro, 2001).Seixas, G. H. F. & Mourão, G. M. Growth of nestlings of the BlueFronted Amazon (Amazona aestiva) raised in the wild or in captivity. Ornitol. Neotrop. 14, 295–305 (2003).
    Google Scholar 
    Vigo-Trauco, G. Crecimiento de pichones de Guacamayo Escarlata, Ara macao (Linneus: 1758) en la Reserva Nacional Tambopata-Madre de Dios-Peru (Tese Universidad Nacional Agraria La Molina, 2007).
    Google Scholar 
    Tjørve, K. M. & Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS One https://doi.org/10.1371/journal.pone.0178691 (2017).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Reed, J. M. The role of behavior in recent avian extinctions and endangerments. Conserv. Biol. 13, 232–241. https://doi.org/10.1046/j.1523-1739.1999.013002232.x (1999).Article 

    Google Scholar 
    Tjørve, K. M., Underhill, L. G. & Visser, G. H. Energetics of growth in semi-precocial shorebird chicks in a warm environment: The African black oystercatcher, Haematopus moquini. Zoology 110, 176–188. https://doi.org/10.1016/j.zool.2007.01.002 (2007).Article 
    PubMed 

    Google Scholar 
    Tjørve, K. M., Underhill, L. G. & Visser, G. H. The energetic implications of precocial development for three shorebird species breeding in a warm environment. Ibis 150, 125–138 (2008).Article 

    Google Scholar 
    Ricklefs, R. E. Weight recession in nestling birds. Auk 85, 30–35. https://doi.org/10.2307/4083621 (1968).Article 

    Google Scholar 
    Huin, N. & Prince, P. A. Chick growth in albatrosses: Curve fitting with a twist. J. Avian Biol. 31, 418–425. https://doi.org/10.1034/j.1600-048X.2000.310318.x (2000).Article 

    Google Scholar 
    Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69–84. https://doi.org/10.1111/eva.13081 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, L. T. Avaliação do sucesso reprodutivo da arara-canindé (Ara ararauna—Psittacidae) e o desenvolvimento urbano de Campo Grande, Mato Grosso do Sul (Dissertação de mestrado Universidade Anhanguera Uniderp, Campo Grande, 2015).Giraldo-Deck, L. M. et al. Development of intraspecific size variation in black coucals, white-browed coucals and ruffs from hatching to fledging. J. Avian Biol. 51, e02440. https://doi.org/10.1111/jav.02440 (2020).Article 

    Google Scholar 
    Guedes et al. Annual Technical Report from the Instituto Arara Azul., Pantanal-MS, Brazil. 35p, Campo Grande, Instituto Arara Azul (2022). More

  • in

    Collecting critically endangered cliff plants using a drone-based sampling manipulator

    Cliffs present a unique flora that has been little studied until now mainly because of the inherent difficulties to access this unique environment, as shown in Fig. 2. The techniques currently used to access plants on steep slopes and cliffs (e.g., abseiling, helicopter) are generally dangerous, costly and time consuming. Using a small aerial manipulator to sample plants on the cliffs can represent many advantages, including safety and portability, as well as the capability of reaching otherwise inaccessible locations easily, quickly and at low cost.Figure 2Examples of the cliff habitats of some critically endangered species on the Kauaʻi Island along with the count of known individuals as of February 2022.Full size imageHowever, several technical challenges make it difficult to develop suitable aerial manipulators for this task. Indeed, the sampling of plants on cliffs necessarily leads to significant collision risks, as well as contact forces and moments during sampling that can destabilize the drone. The samples collected would also need to be accessed from the side of the aerial platform22. Any weight (e.g., sampling tool, collected samples) located horizontally away from the center of mass of the drone creates large additional demands on the propulsion system of most drones. To collect specific plant parts in windy conditions (e.g., scion, flowers, seeds, etc.), precise and fast motion is required even in degraded Global Navigation Satellite System (GNSS) coverage near the cliffs. The great diversity of plant species and morphology found on cliffs, as well as the variety of targeted sections of plant, also represent a major design challenge. Finally, to maximize the adoption of this tool, it is also desirable that scientists with minimal training could use this platform. The next sections describe how these challenges were addressed through the development of the Mamba.Suspended sampling platformThere are a multitude of configurations that could have been explored to sample plants on cliffs. Some drones have manipulators rigidly attached to their structure20,23. However, these manipulators tend to have a limited reach to keep the center of mass within the propeller footprint and to minimize the inertia of the system. This could result in a high collision risk with the propellers in the uneven terrain found on cliffs. The contact forces created during the sampling operation also generate destabilizing moments through manipulators rigidly attached to the drone. To address these challenges, concepts involving a compliant manipulator operated from specialized drones were also explored10. Alternatively, some aerial manipulators were also passively suspended under the drone through a long rod21,24. This keeps the drone above potential obstacles within the environment, significantly reducing the operator’s mental demand and stress while also reducing the disturbances transmitted to the drone to a downward force aligned with the rod and yaw torque. To maintain these advantages while providing better precision, some projects have developed cable suspended platforms equipped with thrusters25,26. As these platforms do not have to counter gravity, the thrusters can be positioned to fight external disturbances more efficiently (e.g., wind, contact forces, drone movements). Existing systems however only stabilize the suspended platform close to its equilibrium point.The chosen concept for the Mamba, illustrated at Fig. 3, consists of a suspended platform that can stabilize itself far from its natural equilibrium to provide a large workspace. The lifting drone in this system stays safely away and above from steep cliff faces, while supporting the platform and providing rough positioning in space through better GNSS coverage. The platform is suspended 10 m below the lifting drone using four attachment points to prevent pitch and roll motions. The cable also acts as a low pass filter, isolating the platform from the fast drone movements required to fight wind disturbances. The suspended platform design can then focus on fast and precise positioning, while also being tolerant to contacts during sampling. To do so, four pairs of bidirectional actuators are used to control the motion in the plane of the pendulum (i.e., x and y translation, as well as yaw). Two pairs of actuators are installed in the x-direction to provide sufficient force to reach plants as far as 4 m from the equilibrium position. This corresponds to roughly 3.3 m from the tip of the lifting drone’s propellers.Figure 3(a) General concept of the Mamba and lifting drone during transit and sampling on cliffs. (b) Side view of the Mamba showing the components and cable installations. (c) Top view showing the antagonist thrusters configuration. (d) Close-up of the sampling tool and 2 degrees of freedom (DOF) wrist specifically designed to sample small fragile plants.Full size imageSince the Mamba is self-powered and has its own communication system, the lifting drone function is simply to lift the platform and hold it in place. This made it possible to select amongst the many commercially available products to accelerate the development of the Mamba. The DJI M300 was chosen as it comes equipped with a 360° optical obstacle avoidance vision system, an IP45 rating, and a flight time of 20 min with the Mamba attached (3.3 kg). It also advertised a four constellation GNSS receiver for better coverage around buildings, structures, and cliffs.Precise control in windsWinds under 20 km/h represent a gentle breeze on the Beaufort scale. At this level, the wind only moves the leaves, and not the branches, which allows for ideal sampling conditions. According to historical weather data from 2020, daily maximum winds are less than 20 km/h for 40 to 70% of the year, depending on the exact location on Kauaʻi Island (i.e., Lihuʻe International airport, as reported by the National Oceanic and Atmospheric Administration, and the Makaha Ridge Weather Station, as reported in the MesoWest database). This also implies that Kauaʻi experiences stronger winds on certain days which would make precise sampling difficult. Wind conditions are also more challenging near cliff faces, with increased turbulence and vertical airflow along the cliff.To allow operations on most days, while providing precise positioning and fast rejection of wind disturbances, the actuators of the Mamba are oriented in the horizontal plane. This allows the actuator forces to directly affect the motion of the suspended platform. Each actuator of the Mamba consists of a pair of brushless DC motors and 23 cm propellers capable of producing 7 N of force. The motors are installed in opposite directions, are always idling at their minimum rotation speed, and are commanded to only create force in their preferred direction. This antagonistic configuration avoids the low-velocity dead zone of a brushless motor during thrust reversal. This makes it possible to quickly revert the direction of the thrust and nearly triples the bandwidth of the actuators to approximately 2.5 Hz27. This configuration, however, comes at the expense of added mass and components.The Mamba is equipped with a flight controller that includes a control system, and a state estimator. To avoid degraded GNSS coverage issues, the state estimator only uses data from a high accuracy inertial measurement unit (IMU) to estimate the attitude of the platform. This provides the relative position of the platform with respect to the drone and is sufficient for teleoperation. Three separated proportional-derivative controllers are used for each of the DOF controlled by the actuators. This control system also provides attitude-hold assistance (i.e., pitch and roll, which correspond to x and y displacements, as well as yaw). This implies that if the user does not send any commands, the suspended platform maintains its current state.Figure 4 illustrates the stabilization accuracy of the Mamba when moving along a representative trajectory when suspended indoors from a 5.7 m cable (limited by ceiling height). This experiment confirmed that the sampling tool can maintain a position at a horizontal reach of 2.25 m with a precision of about 5 cm for 30 s. As the horizontal reach and precision are limited by the cable angular displacements (e.g., component of weight acting on the pendulum, IMU angular resolution), the resulting workspace when operating with a 10 m long cable would reach a radius of 4 m with a positioning accuracy of about 9 cm. To account for potential external disturbances like wind, the sampling tool was designed with an opening of 15 cm. This creates some margin for the pilot to align the target with the sampling mechanism. Field trials detailed below demonstrated that the Mamba actuators and controller could maintain a sufficiently stable position to sample plants in winds During the sampling phase, wind speed averaged 15.7 km/h with a standard deviation of 6.8 km/h, while wind gusts reached an average of 20.1 km/h with a standard deviation of 6.5 km/h. The maximum average wind speed recorded during sampling was 28 km/h with gusts up to 37 km/h. This represents a lower bound of the system performance, as no failure resulted from the wind conditions experienced during the trials. The a ttached Supplementary Video also demonstrates the stability of the system.Figure 4Representative motion of the sampling tool within its workspace based only on feedback from a high accuracy IMU and recorded using a motion capture system. The natural equilibrium point is at (0,0). The experiment starts with a 90° rotation around the z axis, followed by a forward movement along the x-axis of the Mamba and a lateral movement along its y-axis. The system then maintains this position for 30 s without any user inputs. Produced in MATLAB R2021a.Full size imageTeleoperated sampling of cliffs habitatsPlants growing on Kauaʻi cliffs exhibit a wide morphological variety. For this project, targets ranged from small herbaceous plants such as Euphorbia eleanoriae (plants  More

  • in

    Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus)

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).Article 

    Google Scholar 
    Dahl, P. H., de Jong, C. A. & Popper, A. N. The underwater sound field from impact pile driving and its potential effects on marine life. Acoust. Today. 11, 18–25 (2015).
    Google Scholar 
    Mooney, T. A., Andersson, M. H. & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 33, 82–95 (2020).Article 

    Google Scholar 
    Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, A. P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).PubMed 
    Article 

    Google Scholar 
    Jones, I. T., Stanley, J. A. & Mooney, T. A. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Mar. Pollut. Bull. 150, 110792 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, L. & Elliott, M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci. Total. Environ. 595, 255–268 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hawkins, A. D., Hazelwood, R. A., Popper, A. N. & Macey, P. C. Substrate vibrations and their potential effects upon fishes and invertebrates. J. Acoust. Soc. Am. 149, 2782–2790 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Popper, A. N. et al. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. J. Acoust. Soc. Am. 151, 205–215 (2022).PubMed 
    Article 

    Google Scholar 
    Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean. Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    Roberts, L., Cheesman, S., Breithaupt, T. & Elliott, M. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar. Ecol. Prog. Ser. 538, 185–195 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proc. Natl. Acad. Sci. 114, E8537–E8546 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Wijsman, J.W.M., Troost, K., Fang, J. & Roncarati, A. Global production of marine bivalves. Trends and challenges. Goods and services of marine bivalves, (Eds. Small, A.D., Ferrerira, J.G., Grant, J., Petersen, J.K., Strand, O.) 7–26 (Springer, Cham, 2019).Perveen, R., Kishor, N. & Mohanty, S. R. Off-shore wind farm development: Present status and challenges. Renew. Sust. Energ. Rev. 29, 780–792 (2014).Article 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Mar. Policy. 48, 172–183 (2014).Article 

    Google Scholar 
    Musial, W.D., Beiter, P.C., Spitsen, P., Nunemaker, J. & Gevorgian, V. 2018 offshore wind technologies market report. US Department of Energy (2019).Lacroix, D. & Pioch, S. The multi-use in wind farm projects: more conflicts or a win-win opportunity?. Aquat. Living. Resour. 24, 129–135 (2011).Article 

    Google Scholar 
    FishstatJ. FishStatJ-Software for Fishery and Aquaculture Statistical Time Series. FAO Fisheries Division [online], Rome. Accessed April 10, 2022. (2020).Flanders Marine Institute. Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at https://www.marineregions.org/ (2019).Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C. & Mikkelsen, K. K. Optimization of monopiles for offshore wind turbines. Philos. Trans. R. Soc. A 373, 20140100 (2015).ADS 
    Article 

    Google Scholar 
    Bruns, B., Stein, P., Kuhn, C., Sychla, H. & Gattermann, J. Hydro sound measurements during the installation of large diameter offshore piles using combinations of independent noise mitigation systems. Proceedings of the Inter-noise Conference 1–10 (Melbourne, Australia, 2014).Hunt, H. L. & Scheibling, R. E. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155, 269–301 (1997).ADS 
    Article 

    Google Scholar 
    Pilditch, C. A. & Grant, J. Effect of variations in flow velocity and phytoplankton concentration on sea scallop (Placopecten magellanicus) grazing rates. J. Exp. Mar. Biol. Ecol. 240, 111–136 (1999).Article 

    Google Scholar 
    Chauvaud, L., Thouzeau, G. & Paulet, Y. M. Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J. Exp. Mar. Biol. Ecol. 227, 83–111 (1998).Article 

    Google Scholar 
    Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic Sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13, e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hawkins, A. D., Pembroke, A. E. & Popper, A. N. Information gaps in understanding the effects of noise on fishes and invertebrates. Rev. Fish. Biol. Fish. 25, 39–64 (2015).Article 

    Google Scholar 
    Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article 

    Google Scholar 
    Sabet, S. S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article 

    Google Scholar 
    Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change. Biol. 22, 3349–3360 (2016).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Hubert, J., Booms, E., Witbaard, R. & Slabbekoorn, H. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. J. Exp. Mar. Biol. Ecol. 547, 151668 (2022).Article 

    Google Scholar 
    Robson, A. A., Chauvaud, L., Wilson, R. P. & Halsey, L. G. Small actions, big costs: the behavioural energetics of a commercially important invertebrate. J. R. Soc. Interface. 9, 1486–1498 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, G. E. & Gruffydd, L. D. The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar. Biol. 10, 87–93 (1971).Article 

    Google Scholar 
    Livingstone, D. R., Dezwaan, A. & Thompson, R. J. Aerobic metabolism octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 70, 35–44 (1981).Article 

    Google Scholar 
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa Spain. Aquac. Rep. 9, 68–73 (2018).Article 

    Google Scholar 
    Wilson, R., Reuter, P. & Wahl, M. Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar. Biol. 147, 1165–1172 (2005).Article 

    Google Scholar 
    Comeau, L. A. & Babarro, J. M. Narrow valve gaping in the invasive mussel Limnoperna securis: implications for competition with the indigenous mussel Mytilus galloprovincialis in NW Spain. Aquac. Int. 22, 1215–1227 (2014).CAS 
    Article 

    Google Scholar 
    Comeau, L. A., Mayrand, E. & Mallet, A. Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar. Biol. 159, 2269–2279 (2012).Article 

    Google Scholar 
    Palmer, B. A. et al. The image-forming mirror in the eye of the scallop. Science 358, 1172–1175 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chappell, D. R., Horan, T. M. & Speiser, D. I. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc. R. Soc. B. 288, 20211730 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mat, A. M., Massabuau, J. C., Ciret, P. & Tran, D. Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol. Int. 29, 857–867 (2012).PubMed 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods. Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Dickie, L. M. & Medcof, J. C. Causes of mass mortalities of scallops (Placopecten magellanicus) in the southwestern Gulf of St Lawrence. J. Fish. Res. Board. Can. 20, 451–482 (1963).Article 

    Google Scholar 
    Coleman, S., Cleaver, C., Morse, D., Brady, D. C. & Kiffney, T. The coupled effects of stocking density and temperature on Sea Scallop (Placopecten magellanicus) growth in suspended culture. Aquac. Rep. 20, 100684 (2021).Article 

    Google Scholar 
    Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES. J. Mar. Sci. 77, 890–900 (2020).Article 

    Google Scholar 
    ISO, 18406. Underwater acoustics measurement of radiated underwater sound from percussive pile driving. International Organization for Standardization (Geneva, Switzerland), 1–33 (2017).Madsen, P. T. Marine mammals and noise: Problems with root mean square sound pressure levels for transients. J. Acoust. Soc. Am. 117, 3952–3957 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R.V. emmeans: Estimated marginal means, aka least squares means. R package version 1.3.5.1. Retrieved from http://CRAN.R-project.org/package=emmeans (2019).Kragh, I. M. et al. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 222, jeb216606 (2019).PubMed 
    Article 

    Google Scholar 
    Warner, R. M. Spectral Analysis of Time-Series Data (Guilford Press, 1998).
    Google Scholar 
    Fisher, R. A. Tests of significance in harmonic analysis. Proc. Math. Phys. Eng. Sci. 125, 54–59 (1929).MATH 

    Google Scholar  More

  • in

    A georeferenced rRNA amplicon database of aquatic microbiomes from South America

    Cole, J., Findlay, S. & Pace, M. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).ADS 
    Article 

    Google Scholar 
    Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Cotner, J. B. & Biddanda, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5, 105–121 (2002).CAS 
    Article 

    Google Scholar 
    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, C., Fuhrman, J., Horner-Devine, M. & Martiny, J. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).ADS 
    Article 

    Google Scholar 
    White, W. R. World water: resources, usage and the role of man-made reservoirs. Report No. FR/R0012. Fundation for Water Research, (2010).Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B. & Lettenmaier, D. P. Continental runoff into the oceans (1950–2008). J. Hydrometeorol. 16, 1502–1520 (2015).ADS 
    Article 

    Google Scholar 
    Stevaux, J. C., Paes, R. J., Franco, A. A., Mário, M. L. & Fujita, R. H. Morphodynamics in the confluence of large regulated rivers: The case of Paraná and Paranapanema Rivers. Lat. Am. J. Sedimentol. Basin Anal. 16, 101–109 (2009).
    Google Scholar 
    Brêda, J. P. L. F. et al. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522 (2020).ADS 
    Article 

    Google Scholar 
    Llames, M. E. & Zagarese, H. E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters vol.2 (ed. Linkens, G. E.). (Oxford: Elsevier, 2009).Cabrera, A. L. & Willink, A. Biogeografia De America Latina 2da edn (Organización de los Estados Americanos, 1980).Morrone, J. J. Biogeografía de América Latina y el Caribe 1st edn. (Nature, 2001).Morrone, J. J. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1–110 (2014).PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sarmento, H. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686, 1–14 (2012).Article 

    Google Scholar 
    Meerhoff, M. et al. Environmental Warming in Shallow Lakes. A Review of Potential Changes in Community Structure as Evidenced from Space-for-Time Substitution Approaches. Adv. Ecol. Res. 46, 259–349 (2012).Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metz, S. & Huber, P. et al. A georeferenced rRNA amplicon database of aquatic microbiomes from South America (Dataset), Zenodo, https://doi.org/10.5281/zenodo.6802178 (2022).Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000 Research 5, 1492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/10.1101/081257v1 (2016).Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffith, G. E., Omernik, J. M. & Azevedo, S. H. Ecological classification of the Western Hemisphere http://ecologicalregions.info/htm/ecoregions.htm (1998).Salcedo, J. C. R. South America: Argentina, Bolivia, and Peru https://www.worldwildlife.org/ecoregions/nt1002 Accessed (2018).Vidal, J. Geografía del Perú: las ocho regiones naturales, la regionalización transversal, la microregionalización 9th edn (PEISA, 1987).Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Austral 8, 85–101 (1998).
    Google Scholar 
    Iriondo, M. Quaternary lakes of Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 81–88 (1989).Article 

    Google Scholar 
    Soto, D. & Campos, H. in Ecología de los bosques templados de Chile vol. 1 (eds. Khalin, J. M. & Villagrán, C.) (Editorial Universitaria, 1995).Modenutti, B. et al. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: Organic matter, light and nutrient relationships. Ecol. Austral 20, 95–114 (2010).
    Google Scholar 
    Modenutti, B. E. et al. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag. 3, 179–186 (1998).Article 

    Google Scholar 
    Quirós, R. & Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 4, 55–64 (1999).Article 

    Google Scholar 
    Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Balseiro, E. & Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 68, 528–541 (2014).PubMed 
    Article 

    Google Scholar 
    Modenutti, B. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371 (2013).CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816, 39–48 (2018).CAS 
    Article 

    Google Scholar 
    Sioli, H. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana 1, 267–277 (1968).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Salati, E. & Vose, P. B. Amazon Basin: A system in equilibrium. Science. 225, 129–138 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Melack, J. M. & Forsberg, B. R. In The Biogeochemistry of the Amazon Basin Vol. 1 (eds. MacCLain, M. E., Victoria, R. & Richey, J. E.). (Oxford Scholarship Online, 2001).Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).
    Google Scholar 
    Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot. 80, 223–230 (1997).Article 

    Google Scholar 
    Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).Article 

    Google Scholar 
    Vasconcelos, V., de Carvalho Júnior, O. A., de Souza Martins, É. & Couto Júnior, A. F. in World Geomorphological Landscapes. Vol. 1 (eds. Vieira, B., Salgado, A. & Santos, L.) (Springer, 2015).Bichsel, D. et al. Water quality of rural ponds in the extensive agricultural landscape of the Cerrado (Brazil). Limnology 17, 239–246 (2016).CAS 
    Article 

    Google Scholar 
    Cunha, D. G. F., Calijuri, M., do, C. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).Article 

    Google Scholar 
    Morellato, L. P. C. & Haddad, C. F. B. Introduction: The Brazilian atlantic forest. Biotropica 32, 786–792 (2000).Article 

    Google Scholar 
    Galindo-Leal, C. & Câmara, I. de G. The Atlantic Forest of South America: Biodiversity status, threats, and outlook 1st edn (Island Press, 2003).Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist 204, 459–473 (2014).PubMed 
    Article 

    Google Scholar 
    Caliman, A. et al. Temporal coherence among tropical coastal lagoons: A search for patterns and mechanisms. Brazilian J. Biol. 70, 803–814 (2010).CAS 
    Article 

    Google Scholar 
    Junger, P. C. et al. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons. Microb. Ecol. 75, 52–63 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Depetris, P. J., Probst, J. L., Pasquini, A. I. & Gaiero, D. M. The geochemical characteristics of the Paraná River suspended sediment load: An initial assessment. Hydrol. Process. 17, 1267–1277 (2003).ADS 
    Article 

    Google Scholar 
    Orfeo, O. & Stevaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).ADS 
    Article 

    Google Scholar 
    Neiff, J. J. Large rivers of South America: toward the new approach. Verh. Internat. Verein. Limnol 26, 167–180 (1996).
    Google Scholar 
    Unrein, F. Changes in phytoplankton community along a transversal section of the Lower Paraná floodplain, Argentina. Hydrobiologia 468, 123–134 (2002).Article 

    Google Scholar 
    Devercelli, M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639, 5–19 (2010).CAS 
    Article 

    Google Scholar 
    Huber, P. et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 14, 2951–2966 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS 
    Article 

    Google Scholar 
    Conde, D., Arocena, R. & Recursos, R.-G. L. acuáticos superficiales de Uruguay: ambientes, algunas problemáticas y desafios para la gestión. Ambios 10, 1–7 (2003).
    Google Scholar 
    Martin, L. & Suguio, K. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 119–140 (1992).Article 

    Google Scholar 
    Alonso, C. et al. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon. Front. Microbiol. 4, 1664–302X (2013).Article 
    CAS 

    Google Scholar 
    Amaral, V., Graeber, D., Calliari, D. & Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918 (2016).ADS 
    Article 

    Google Scholar 
    Rennella, A. M. M., Quiro, R. & Quirós, R. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556, 181–191 (2006).Article 

    Google Scholar 
    Diaz, M., Pedrozo, F. & Baccala, N. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv. Res. Manag. 5, 213–229 (2000).Article 

    Google Scholar 
    Izaguirre, I. et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob. Ecol. Conserv. 14, e00391 (2018).Article 

    Google Scholar 
    Porcel, S., Saad, J. F., Sabio y García, C. A. & Izaguirre, I. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81, 51 (2019).Article 
    CAS 

    Google Scholar 
    Bernal, M. C. et al. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J. Limnol. 80, 84–99 (2021).
    Google Scholar 
    Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, 44–47 (2011).Article 
    CAS 

    Google Scholar 
    ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA217932 (2013).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA302313 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA294718 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA309832 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA326475 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48609 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA289691 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA414894 (2018).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA323673 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA356055 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA390178 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA725228 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA292014 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA316315 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA406945 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA515842 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA321235 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998328 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998330 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB36116 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB29989 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA788397 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48353 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB37379 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB46122 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40710 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40864 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40854 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA268541 (2015). More

  • in

    Carbon farming: integrate biodiversity metrics

    Incentivizing farmers to shift from conventional to regenerative practices could help fulfil the United Nations Food Systems commitments to transform food supply chains — as well as reducing carbon emissions (see L. A. Schulte et al. Nature Sustain. 5, 384–388; 2022).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Ecological resilience of restored peatlands to climate change

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).
    Google Scholar 
    Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    Bonn, A. et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 9, 54–65 (2014).Article 

    Google Scholar 
    Martin-Ortega, J., Allott, T. E., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).Article 

    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article 

    Google Scholar 
    Chimner, R. A., Cooper, D. J., Wurster, F. C. & Rochefort, L. An overview of peatland restoration in North America: where are we after 25 years? Restor. Ecol. 25, 283–292 (2017).Article 

    Google Scholar 
    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article 

    Google Scholar 
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).Article 

    Google Scholar 
    Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd6034 (2020).Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1–7 (2018).CAS 
    Article 

    Google Scholar 
    Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).Article 

    Google Scholar 
    Scheffer, M. Critical transitions in nature and society (Princeton University, 2009).Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).CAS 
    Article 

    Google Scholar 
    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Rydin, H., Jeglum, J. K. & Bennett, K. D. The biology of peatlands, 2nd edition (Oxford University Press, 2013).Kim, J. et al. Water table fluctuation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition. Front. Earth Sci. 8, 717 (2021).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge University Press, In Press).Belyea, L. R. Non-linear dynamics of peatlands and potential feedbackson the climate system, in Northern Peatlands and Carbon Cycling (A, Baird. et al. eds), pp 5–18 (American Geophysical Union Monograph Series, 2009).Holden, J. et al. Overland flow velocity and roughness properties in peatlands. Water Resour. Res. 44, https://doi.org/10.1029/2007WR006052 (2008).Holden, J., Wallage, Z. E., Lane, S. N. & McDonald, A. T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 402, 103–114 (2011).Article 

    Google Scholar 
    Glaser, P. H. et al. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Glob. Biogeochem. Cycles 18, GB1003 (2004).Article 
    CAS 

    Google Scholar 
    Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross‐scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).Article 

    Google Scholar 
    Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology 8, 113–127 (2015).Article 

    Google Scholar 
    Holden, J., Evans, M. G., Burt, T. P. & Horton, M. Impact of land drainage on peatland hydrology. J. Environ. Qual. 35, 1764–1778 (2006).CAS 
    Article 

    Google Scholar 
    Liu, H. & Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient—a meta study. Hydrol. Process. 33, 101–114 (2019).Article 

    Google Scholar 
    Gałka, M., Tobolski, K., Górska, A. & Lamentowicz, M. Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: implications for ecological restoration. Holocene 27, 130–141 (2017).Article 

    Google Scholar 
    Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol. Lett. 15, https://doi.org/10.1098/rsbl.2019.0043 (2019).van der Velde, Y. Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.210174211 (2021).Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    Article 

    Google Scholar 
    Minayeva, T. Y. & Sirin, A. A. Peatland biodiversity and climate change. Biol. Bull. Rev. 2, 164–175 (2012).Article 

    Google Scholar 
    Minayeva, T. Y., Bragg, O. & Sirin, A. A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 19, 1–36 (2017).
    Google Scholar 
    Andersen, R., Chapman, S. J. & Artz, R. R. Microbial communities in natural and disturbed peatlands: a review. Soil Biol. Biochem. 1, 979–994 (2013).Article 
    CAS 

    Google Scholar 
    van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).Article 

    Google Scholar 
    Hugron, S. & Rochefort, L. Sphagnum mosses cultivated in outdoor nurseries yield efficient plant material for peatland restoration. Mires Peat 20, 1–6 (2018).
    Google Scholar 
    Vitt, D. H. Peatlands: ecosystems dominated by bryophytes. In: Shaw A. J. & Goffinet B. (eds) Bryophyte biology, pp 312–343 (Cambridge University Press, 2002).Yu, Z. et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. Holocene 13, 801–808 (2003).Article 

    Google Scholar 
    Chiapusio, G. et al. Sphagnum species module their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J. Chem. Ecol. 44, 1146–1157 (2018).CAS 
    Article 

    Google Scholar 
    Sherwood, J. H. et al. Effect of drainage and wildfire on peat hydrophysical properties. Hydrol. Process. 27, 1866–1874 (2013).Article 

    Google Scholar 
    Tanneberger, F., Flade, M., Preiksa, Z. & Schröder, B. Habitat selection of the globally threatened aquatic warbler Acrocephalus paludicola at the western margin of its breeding range and implications for management. Ibis 152, 347–358 (2010).Article 

    Google Scholar 
    Kreyling, J. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 1–8 (2021).Article 
    CAS 

    Google Scholar 
    Ritson, J. P. et al. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning–a research agenda. Sci. Total Environ. 759, https://doi.org/10.1016/j.scitotenv.2020.143467 (2021).Secco, E. D., Haapalehto, T., Haimi, J., Meissner, K. & Tahvanainen, T. Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands? Mires Peat 18, https://doi.org/10.19189/MaP.2016.OMB.231 (2016).Basiliko, N. et al. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front. Microbiol. 31, https://doi.org/10.3389/fmicb.2013.00215 (2013).Barber, K. E. Peat stratigraphy and climatic change. vol 219, (AA Balkema, 1981).Quinton, W. L. & Roulet, N. T. Spring and summer runoff hydrology of a subarctic patterned wetland. Arctic Alpine Res. 30, 285–294 (1998).Article 

    Google Scholar 
    Eppinga, M. B., Rietkerk, M., Wassen, M. J. & De Ruiter, P. C. Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecol. 200, 53–68 (2009).Article 

    Google Scholar 
    Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant– soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).CAS 
    Article 

    Google Scholar 
    Fenton, N. J. Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory. Botany 94, 1009–1014 (2016).Article 

    Google Scholar 
    Xu, L. X. et al. Maintain spatial heterogeneity, maintain biodiversity—a seed bank study in a grazed alpine fen meadow. Land Degrad. Dev. 28, 1376–1385 (2017).Article 

    Google Scholar 
    Laine, J., Vasander, H. & Laiho, R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 1, 785–802 (1995).
    Google Scholar 
    Gatis, N. et al. The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea‐dominated peatland. Ecohydrology 9, 407–420 (2016).CAS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog. Journal of Ecology 104, 621–636 (2016).Article 

    Google Scholar 
    Liu, H., Gao, C. & Wang, G. Understand the resilience and regime shift of the wetland ecosystem after human disturbances. Sci. Total Environ. 643, 1031–1040 (2018).CAS 
    Article 

    Google Scholar 
    Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).CAS 
    Article 

    Google Scholar 
    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).Article 

    Google Scholar 
    Strack, M. et al. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites? Mires Peat 17, 1–18 (2016).
    Google Scholar 
    Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Global Change Biol. 24, 5751–5768 (2018).Article 

    Google Scholar 
    Hambley, G. et al. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat 23, https://doi.org/10.19189/MaP.2018.DW.346 (2019).Schwieger, S. et al. Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks in a dry year. Ecosystems 24, 1093–1109 (2021).CAS 
    Article 

    Google Scholar 
    Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor. Ecol. 21, 363–371 (2013).Article 

    Google Scholar 
    Gonzalez, E. & Rochefort, L. Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol. Eng. 68, 279–290 (2014).Article 

    Google Scholar 
    Karofeld, E., Müür, M. & Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ. Sci. Pollut. Res. 23, 13706–13717 (2016).Article 

    Google Scholar 
    Karofeld, E., Kaasik, A. & Vellak, K. Growth characteristics of three Sphagnum species in restored extracted peatland. Restor. Ecol. 28, 1574–1583 (2020).Article 

    Google Scholar 
    Purre, A. H., Ilomets, M., Truus, L., Pajula, R. & Sepp, K. The effect of different treatments of moss layer transfer technique on plant functional types biomass in revegetated milled peatlands. Restor. Ecol. 28, 1584–1595 (2020).Article 

    Google Scholar 
    Beyer, F. et al. Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18, 917–935 (2021).CAS 
    Article 

    Google Scholar 
    Ketcheson, S. J. & Price, J. S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 31, 1263–1274 (2011).Article 

    Google Scholar 
    McCarter, C. P. R. & Price, J. S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 55, 73–81 (2013).Article 

    Google Scholar 
    Koebsch, F. et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philos. Transac. R. Soc. B 375, https://doi.org/10.1098/rstb.2019.0685 (2020).Blier‐Langdeau, A., Guêné‐Nanchen, M., Hugron, S. & Rochefort, L. The resistance and short‐term resilience of a restored extracted peatland ecosystems post‐fire: an opportunistic study after a wildfire. Restor. Ecol. 30, https://doi.org/10.1111/rec.13545 (2022).Rochefort, L., Quinty, F., Campeau, S., Johnson, K. & Malterer, T. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecol. Manage. 11, 3–20 (2003).CAS 
    Article 

    Google Scholar 
    Lavoie, C., St-Louis, A. & Lachance, D. Vegetation dynamics on an abandoned vacuum-mined peatland: Five years of monitoring. Wetlands Ecol. Manage. 13, 621–633 (2005).Article 

    Google Scholar 
    Poulin, M., Rochefort, L., Quinty, F. & Lavoie, C. Spontaneous revegetation of mined peatlands in eastern Canada. Can. J. Botany 83, 539–557 (2005).Article 

    Google Scholar 
    Quinty, F., LeBlanc, M.-C. & Rochefort, L. Peatland Restoration Guide—PERG, CSPMA and APTHQ (Université Laval, 2020).Wagner, D. J. & Titus, J. E. Comparative desiccation tolerance of two Sphagnum mosses. Oecologia 62, 182–187 (1984).Article 

    Google Scholar 
    Gonzalez, E. & Rochefort, L. Declaring success in Sphagnum peatland restoration: identifying outcomes from readily measurable vegetation descriptors. Mires Peat 24, 1–16 (2019).
    Google Scholar 
    Scotland National Peatland Plan. Working for our future. https://www.nature.scot/doc/scotlands-national-peatland-plan-working-our-future#:~:text=The%202020%20Challenge%20for%20Scotland’s,more%20resilient%20to%20climate%20change (2020).Wilkie, N. M. & Mayhew, P. W. The management and restoration of damaged blanket bog in the north of Scotland. Bot. J. Scotl. 55, 125–133 (2003).Article 

    Google Scholar 
    Hancock, M. H., Klein, D., Andersen, R. & Cowie, N. R. Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Appl. Veg. Sci. 21, 167–178 (2018).Article 

    Google Scholar 
    Harris, A. & Baird, A. J. Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22, 1035–1054 (2019).Article 

    Google Scholar 
    Bradley, A. V., Andersen, R., Marshall, C., Sowter, A. & Large, D. J. Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dyn. 10, 261–277 (2022).Article 

    Google Scholar 
    Gaffney, P. P., Hancock, M. H., Taggart, M. A. & Andersen, R. Measuring restoration progress using pore-and surface-water chemistry across a chronosequence of formerly afforested blanket bogs. J. Environ. Manage. 219, 239–251 (2018).CAS 
    Article 

    Google Scholar 
    Hermans, R. et al. Climate benefits of forest-to-bog restoration on deep peat–Policy briefing. Climate X Change 1–5, https://www.climatexchange.org.uk/media/3654/climate-benefits-of-forest-to-bog-restoration-on-deep-peat.pdf (2019).Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 1–28 (2016).
    Google Scholar 
    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1–5 (2020).Article 
    CAS 

    Google Scholar 
    Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 1–8 (2019).Article 
    CAS 

    Google Scholar 
    Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).CAS 
    Article 

    Google Scholar 
    Klimkowska, A. et al. Are we restoring functional fens? The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS One 14, https://doi.org/10.1371/journal.pone.0215645 (2019).Huth, V. et al. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor. Ecol. 30, https://doi.org/10.1111/rec.13490 (2022).Schimelpfenig, D., Cooper, D. J. & Chimner, R. A. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor. Ecol. 22, 257–265 (2014).Article 

    Google Scholar 
    Laine, A. M., Tolvanen, A., Mehtätalo, L. & Tuittila, E. S. Vegetation structure and photosynthesis respond rapidly to restoration in young coastal fens. Ecol. Evol. 6, 6880–6891 (2016).Article 

    Google Scholar 
    Gallego-Sala, A. V. & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).Article 

    Google Scholar 
    Schneider, R. R., Devito, K., Kettridge, N. & Bayne, E. Moving beyond bioclimatic envelope models:50 integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the51 western Canadian boreal plain: Western boreal ecosystem transitions under climate change. Ecohydrology 9, 899–908 (2016).Article 

    Google Scholar 
    Blundell, A. & Holden, J. Using palaeoecology to support blanket peatland management. Ecol. Indic. 49, 110–120 (2005).Article 

    Google Scholar 
    Newman, S. et al. Drivers of landscape evolution: multiple regimes and their influence on carbon sequestration in a sub‐tropical peatland. Ecol. Monogr. 87, 578–599 (2017).Article 

    Google Scholar 
    Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M. & Waddington, J. M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 13, https://doi.org/10.1088/1748-9326/aaa136 (2018).Hokanson, K. J. et al. A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots. Ecohydrology 11, https://doi.org/10.1002/eco.1942 (2018).IPCC. Global warming of 1.5 °C (IPCC, 2018).Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C. & Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Change 70, https://doi.org/10.1016/j.gloenvcha.2021.102323 (2021).Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, https://doi.org/10.1002/adsu.202000146 (2021).Loisel, J. & Walenta, J. Carbon parks could secure essential ecosystems for climate stabilization. Nat. Ecol. Evol. 6, 486–488 (2022).Article 

    Google Scholar 
    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).Terzano, D. Community‐led peatland restoration in Southeast Asia: 5Rs approach. Restor. Ecol. 3, https://doi.org/10.1111/rec.13642 (2022). More

  • in

    Effect of temperature on the life cycle of Harmonia axyridis (Pallas), and its predation rate on the Spodoptera litura (Fabricius) eggs

    Ahmad, M., Saleem, M. A. & Sayyed, A. H. Efficacy of insecticide mixtures against pyrethroid-and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest. Manag. Sci. 65, 266–274 (2009).CAS 

    Google Scholar 
    Shekhawat, S. S., Shafiq, A. M. & Basri, M. Effect of host plants on life table parameters of Spodoptera litura. Ind. J. Pure Appl. Biosci. 6, 324–332 (2018).
    Google Scholar 
    Sang, S. et al. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Manag. Sci. 72, 922–928 (2016).CAS 
    PubMed 

    Google Scholar 
    Ortega, D. S., Bacca, T., Silva, A. P. N., Canal, N. A. & Haddi, K. Control failure and insecticides resistance in populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) from Colombia. J. Stored Prod. Res. 92, 101802 (2021).CAS 

    Google Scholar 
    Li, L. Pest biological control: Goals throughout my life. Annu. Rev. Entomol. 67, 1–10 (2022).PubMed 

    Google Scholar 
    Razaq, M., Shah, F. M., Ahmad, S. & Afzal, M. in Pest management for agronomic crops. Agronomic Crops (ed. Hasanuzzaman M.) 365–384 (Springer, 2019).Shah, F. M. & Razaq, M. in From agriculture to sustainable agriculture: Prospects for improving pest management in industrial revolution 4.0. Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 4.0. Cham. (ed. Cham) 1–18 (Springer, 2020).Razaq, M. & Shah, F. M. in Biopesticides for management of arthropod pests and weeds. Biopesticides. Biopesticides Voulme 2: Advances in Bioinoculants 7–18 (Elsevier, 2022).Kishinevsky, M., Keasar, T. & Bar-Massada, A. Parasitoid abundance on plants: Effects of host abundance, plant species, and plant flowering state. Arthropod-Plant Interact. 11, 155–161 (2017).
    Google Scholar 
    Islam, Y. et al. Age-stage, two-sex life table and predation parameters of Harmonia axyridis Pallas (Coleoptera: Coccinellidae), reared on Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), at four different temperatures. Crop Prot. 2, 106029 (2022).
    Google Scholar 
    Furlong, M. J. & Zalucki, M. P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 20, 39–44 (2017).PubMed 

    Google Scholar 
    Islam, Y. et al. Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: The effect of temperature. Sci. Rep. 11, 1–13 (2021).
    Google Scholar 
    Keva, O. et al. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs. Glo. Change Bio. 27, 282–296 (2021).ADS 
    CAS 

    Google Scholar 
    Chi, H. et al. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 40, 103–124 (2020).
    Google Scholar 
    Guedes, C. Preferência alimentar e estratégias de alimentação em Coccinellidae (Coleoptera). Oecol. Aust. 17, 59–80 (2013).
    Google Scholar 
    Hodek, I. & Honêk, A. Ecology of coccinellidae. Vol. 54 464 (Kulver Academic Publisher, 2013).Sutherland, A. M. & Parrella, M. P. Mycophagy in Coccinellidae: Review and synthesis. Biol. Control 51, 284–293 (2009).
    Google Scholar 
    Hagen, K. & Ks, H. The significance of predaceous Coccinellidae in biological and integrated control of insects. Entomophaga 7, 25–44 (1974).
    Google Scholar 
    Jawad, D. S., Rashid, Y. D. & Hamzah, A. G. in IOP Conference Series: Earth and Environmental Science. 012029 (IOP Publishing).Kumari, S., Suroshe, S. S., Kumar, D., Budhlakoti, N. & Yana, V. Foraging behaviour of Scymnus coccivora Ayyar against cotton mealybug Phenacoccus solenopsis Tinsley. Saudi J. Biol. Sci. 28, 3799–3805 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Alloush, A. A. Developmental duration and predation rate of the coccidophagous coccinellid Rhyzobius lophanthae (Blaisdell) (Coleoptera: Coccinellidae) on Aspidiotus nerii Bouche. Bull. Entomol. Res. 109, 612–616 (2019).PubMed 

    Google Scholar 
    Koch, R., Hutchison, W., Venette, R. & Heimpel, G. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 28, 265–270 (2003).
    Google Scholar 
    Islam, Y., Shah, F. M., Güncan, A., DeLong, J. P. & Zhou, X. Functional response of Harmonia axyridis to the larvae of Spodoptera litura: The combined effect of temperatures and prey instars. Front. Plant Sci. 13, 849574 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Dixon, A. F. G. & Dixon, A. E. Insect predator-prey dynamics: ladybird beetles and biological control. (Cambridge University Press, 2000).Thompson, S. Nutrition and culture of entomophagous insects. Annu. Rev. Entomol. 44, 561–592 (1999).CAS 
    PubMed 

    Google Scholar 
    Chaudhary, D. D., Kumar, B. & Mishra, G. Functional response in Coccinellid beetles (Coleoptera: Coccinellidae) is modified by prey-density experience. Can. Entomol. 154, 55068 (2022).
    Google Scholar 
    Castro, C., Almeida, L. & Penteado, S. The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Fla. Entomol. 94, 923–932 (2011).
    Google Scholar 
    Noman, Q. M., Shah, F. M., Mahmood, K. & Razaq, M. Population dynamics of Tephritid fruit flies in citrus and mango orchards of Multan, Southern Punjab, Pakistan. Pakistan J. Zool. 54, 325–330 (2021).
    Google Scholar 
    Eliopoulos, P. & Stathas, G. Life tables of Habrobracon hebetor (Hymenoptera: Braconidae) parasitizing Anagasta kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae): Effect of host density. J. Econ. Entomol. 101, 982–988 (2008).CAS 
    PubMed 

    Google Scholar 
    Yu, J.-Z., Chi, H. & Chen, B.-H. Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biol. Control 64, 1–9 (2013).
    Google Scholar 
    Roy, H. E. & Ten Brown, P. M. years of invasion: Harmonia axyridis (Pallas)(Coleoptera: Coccinellidae) in Britain. Ecol. Entomol. 40, 336–348 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, R. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J. Insect. Sci. 3, 5689 (2003).
    Google Scholar 
    de Castro-Guedes, C. F., de Almeida, L. M., do Rocio, C. P. S. & Moura, M. O. Effect of different diets on biology, reproductive variables and life and fertility tables of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae). Rev. Bras. Entomol. 60, 260–266 (2016).
    Google Scholar 
    Abdel-Salam, A. & Abdel-Baky, N. Life table and biological studies of Harmonia axyridis Pallas (Col., Coccinellidae) reared on the grain moth eggs of Sitotroga cerealella Olivier (Lep., Gelechiidae). J. Appl. Entomol. 125, 455–462 (2001).
    Google Scholar 
    Islam, Y. et al. Temperature-dependent functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae) in laboratory. Insects 11, 583 (2020).PubMed Central 

    Google Scholar 
    Di, N. et al. Predatory ability of Harmonia axyridis (Coleoptera: Coccinellidae) and Orius sauteri (Hemiptera: Anthocoridae) for suppression of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 12, 1063 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Saljoqi, A.-U.-R., Khan, J. & Ali, G. Rearing of Spodoptera litura (Fabricius) on different artificial diets and its parasitization with Trichogramma chilonis (Ishii). Pak. J. Zool. 47, 1104 (2015).
    Google Scholar 
    Brown, P. M. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): Distribution, dispersal and routes of invasion. Biocontrol 56, 623–641 (2011).
    Google Scholar 
    Chi, H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available from http://140.120.197.173/ecology/Download/TWOSEX-MSChart-B100000.rar. (2022).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).
    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24, 225–240 (1985).
    Google Scholar 
    Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 

    Google Scholar 
    Chi, H. & Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10–21 (2006).
    Google Scholar 
    Tuan, S.J., Lee, C.C., Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014a).CAS 
    PubMed 

    Google Scholar 
    Tuan, S.J., Lee, C.C., Chi, H. Erratum: Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 1936 (2014b).CAS 

    Google Scholar 
    Chi, H. & Yang, T.-C. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer)(Homoptera: Aphididae). Environ. Entomol. 32, 327–333 (2003).
    Google Scholar 
    Chi, H. CONSUME-MSChart: a computer program for consumption rate analysis based on the age stage, two-sex life table analysis. http://140.120.197.173/ecology/Download/CONSUME-MSChart.rar. (2022).Akca, I., Ayvaz, T., Yazici, E., Smith, C. L. & Chi, H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015).PubMed 

    Google Scholar 
    Akköprü, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378–387 (2015).
    Google Scholar 
    Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).
    Google Scholar 
    Wei, M. et al. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 113, 2343–2353 (2020).PubMed 

    Google Scholar 
    Huang, H.-W., Chi, H. & Smith, C. L. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 111, 1–9 (2018).PubMed 

    Google Scholar 
    Chi, H.Timing of control based on the stage structure of pest populations: a simulation approach. J. Econ. Entomol. 83,
    1143–1150 (1990).
    Google Scholar 
    Chi, H. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. (http://140.120.197.173/Ecology/Download/TIMING-MSChart.rar). (2022).Mignault, M.-P., Roy, M. & Brodeur, J. Soybean aphid predators in Quebec and the suitability of Aphis glycines as prey for three Coccinellidae. BioControl 51, 89–106 (2006).
    Google Scholar 
    Brown, M. Intraguild responses of aphid predators on apple to the invasion of an exotic species, Harmonia axyridis. BioControl 48, 141–153 (2003).
    Google Scholar 
    Pervez, A., Chandra, S. & Kumar, R. Effect of dietary history on intraguild predation and cannibalism of ladybirds’ eggs. Int. J. Trop. Insect Sci. 41, 2637–2642 (2021).
    Google Scholar 
    Lundgren, J. G. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol. Control 51, 294–305 (2009).
    Google Scholar 
    Yu, J.Z. et al. Demography and mass-rearing Harmonia dimidiata (Coleoptera: Coccinellidae) using Aphis gossypii (Hemiptera: Aphididae) and eggs of Bactrocera dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 111, 595–602 (2018).PubMed 

    Google Scholar 
    De Oliveira, R. T., dos Santos-Cividanes, T. M., Cividanes, F. J. & da Conceic, L. Harmonia axyridis Pallas (Coleoptera: Coccinellidae): Biological aspects and thermal requirements. Adv. Entomol. 2014, 5589 (2014).
    Google Scholar 
    Ali, S. et al. Using a two-sex life table tool to calculate the fitness of Orius strigicollis as a predator of Pectinophora gossypiella. Insects 11, 275 (2020).PubMed Central 

    Google Scholar 
    Merene, Y. Population dynamics and damages of onion thrips (Thripstabaci)(Thysanoptera: Thripidae) on onion in Northeastern Ethiopia. J. Entomol. Nematol. 7, 1–4 (2015).
    Google Scholar 
    Mou, D. F., Lee, C. C., Smith, C. & Chi, H. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). J. Appl. Entomol. 139, 579–591 (2015).
    Google Scholar 
    Farhadi, R., Allahyari, H. & Chi, H. Life table and predation capacity of Hippodamia variegata (Coleoptera: Coccinellidae) feeding on Aphis fabae (Hemiptera: Aphididae). Biol. Control 59, 83–89 (2011).
    Google Scholar 
    Hance, T., van Baaren, J., Vernon, P. & Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu. Rev. Entomol. 52, 107–126 (2007).CAS 
    PubMed 

    Google Scholar 
    Ma, X., Zhu, J., Yan, W. & Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 781, 146777 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Subsurface Archaea associated with rapid geobiological change in a model Yellowstone hot spring

    Acidification of CPHistorical geochemical data suggest that the water chemistry of Cinder Pool (CP) has been relatively stable from the time of first reported geochemical data in 1947 until autumn 2018, followed by pronounced acidification between winter and spring 2019 (Supplementary Data 1, Fig. 1a, b). Images and documentation dating to even earlier (1927) reveal the presence of cinders covering ~50% of the spring surface at that time, a temperature near boiling (91.5 °C), and a description of having high sulfate and chloride levels (although data was not provided), suggesting that its chemistry has been generally stable since its discovery1. Spring pH ranged between ~3.6 and 4.5 in 22 yearly measurements spanning 71 years (1947–2018; multiple measurements in the same year were averaged to represent each year) (Fig. 1b), while the pH has been subsequently measured after 2018 as low as 2.5 (Fig. 1b). A single pH measurement of 2.5 was also recorded in a 2003 publication27, although other measurements in 2003, 2000, and 2001 were more consistent with the long-term average (i.e., pH 4.2–4.3; Supplementary Data 1). Scrutiny of chemical data accompanying the pH 2.5 measurement in 2003 indicates a SO42− concentration (~48 mg L−1) that is considerably lower than would be expected for CP, even when the pH is much higher (SO42− = 80 mg L−1; pH = 4.2–4.3). Considering that sulfuric acid is the predominant buffer of pH in these systems7,28, the pH 2.5 reading in 2003 is considered questionable. Nevertheless, the 2018 shift in pH towards more acidic conditions was accompanied by a notable change in the appearance of CP. Prior to autumn 2018, the spring waters were cloudy gray with the considerable suspension of kaolinite clay particles20 and black cinders10. However, between autumn 2018 and spring 2019, the spring waters visibly turned blue-green and contained colloidal S° particles that were also deposited along the pool shelves, while the pool also lacked its characteristic black cinders (Fig. 1a). The spring has maintained this appearance since spring 2019 until at least July 2022.Fig. 1: Historical geochemistry of Cinder Pool (CP).a Top panel shows the visual change in the appearance of CP in 2016 (left) and 2020 (right). Scale bars in the bottom right are ∼1 m. b Measurements of pH (n = 21; black line) and sulfate (SO42−) concentrations (n = 12; red line) in CP waters between 1947 and 2021. Years with multiple measurements were averaged to represent the entire year. c Paired measurements of SO42− and chloride (Cl−) concentrations (n = 12) between 1947 and 2021 in the context of the same measurements for 488 YNP springs derived from previous studies. Paired points for CP are colored based on the year they were recorded (averaged for multiple measurements/year as described above). End member fluid compositions as described in the manuscript text are indicated based on the abbreviations: MO meteoric only, HO hydrothermal only, MG meteoric plus gas, HB hydrothermal plus boiling, HBG hydrothermal plus boiling plus gas. Points for 2016, 2018, 2019, 2020, and 2021 are indicated by “16”, “18”, “19”, “20”, and “21”, respectively.Full size imageThe source of fluids in YNP hot springs can be broadly defined by concentrations of sulfate (SO42−) and chloride (Cl−)2,7. These indicators have been previously used to define the source of YNP springs as either (1) hydrothermal only (HO) waters that have moderate concentrations of SO42− (~30 mg L−1 depending on the depth of boiling; described below) but high concentrations of Cl− (~300 mg L−1), (2) meteoric-only (MO) waters containing lower concentrations of both solutes, or (3) MO waters infused with gas (MG) that have lower Cl− concentrations and higher SO42− concentrations (Fig. 1c). Subsequent boiling and/or evaporation of HO waters can concentrate Cl− and SO42− to higher concentrations (termed hydrothermal plus boiling; HB), while additional gas input into HO or HB waters can lead to particularly high concentrations of both Cl− and SO42− (hydrothermal + boiling + gas; HBG)7 (Fig. 1c). Geochemical data from surveys spanning 1947 to 2018 suggest that CP was largely sourced by hydrothermal (HO) waters that have undergone boiling and/or evaporation (HB) during this time frame (Fig. 1c).HO and HB waters are typically circumneutral7, while CP (which is also sourced by HB waters) has maintained a moderately acidic pH of ~4 until autumn 2018 (Fig. 1b). Several other low pH HB waters have been previously observed within the NGB7. The moderately acidic pH in CP (prior to 2018) has been attributed to the hydrolysis of molten S° that occurs at depths of >18 m that leads to the formation of S2O32– 11. Oxygen (O2)-dependent oxidation of S2O32−, catalyzed by trace iron sulfide in the cinders, forms SxO62− that can then react with sulfide to yield S2O32− and S° 11. Alternatively, SxO62− can be disproportionated to form S2O32− and SO42− 11. The relative rates of these reactions in CP prior to 2018 are not known although similar concentrations of S2O32− measured between 1995 and 1997 suggest that rates of S° hydrolysis and rates of S2O32− formation have been relatively constant over yearly time scales11. The consumption of O2 by reaction with S2O32− and the consumption of sulfide involving reactions with SxO62− would limit the amount of sulfuric acid that could be formed, thereby maintaining a less acidic pH than other sulfuric acid buffered acidic springs in YNP7.Between November 2018 and March 2019, the pH of CP markedly decreased to 2.8 in 2019, 2.7 in 2020, and 2.6 in 2021. This coincided with a marked increase in SO42− concentrations of ~3–5 fold above historical ranges (Fig. 1b), while Cl− concentrations fluctuated without clear trends during this time (Supplementary Fig. 1c). Thus, CP transitioned from an HB water type to an HBG water type between autumn 2018 and spring 2019 and has remained this way since (Fig. 1c). This is interpreted to reflect a substantial increase in H2S/S° oxidation that results in the formation of SO42− and H+ (sulfuric acid). Several observations suggest a fundamental restructuring of CP’s unique sulfur cycling due to dramatic physical and chemical changes at this time. As described in more detail below, the molten S° layer was detected at a depth of 18 m in 2016. However, in 2020 and 2021 there was no evidence of molten S° at ~18 to 20 m depth as previously documented, and sampling equipment could be freely dropped to a depth of 22 m (length of the cable) without interruption. In the absence of the molten S° at depth, the S° hydrolysis product S2O32−, and the cinders that catalyze SxO62− formation from S2O32− and H2S, it is possible that such reactions that previously competed for H2S or O2 (i.e., those involving S2O32− and SxO62−) are no longer taking place in CP. This in turn would allow for sulfur compounds (H2S and S°) to now be oxidized, thereby contributing to spring acidification.Alternative scenarios underlying the dramatic changes in CP waters also warrant consideration, and the three most logical are presented below. First, it is possible that the waters sourcing CP may have shifted either via replacement of the primary source or by altered mixing of multiple water sources. Water isotope values (δ2H and δ18O) can be used to further deconvolute the sources of hydrothermal waters because distinctive isotope values are associated with distinct water sources and the various influences upon them including meteoric water recharge, boiling (and/or evaporation), and water–rock interactions7,29. The water isotope values measured among the measured depths in CP in 2020 were near the range of water isotope values observed in CP across multiple months in 201613 (depth-resolved water isotope measurements were not made in 2016). The 2020 CP water isotope values were slightly right-shifted relative to those of 2016, suggesting a minor increase in the evaporation and concentration of CP water isotopes between 2016 and 20207 (Supplementary Fig. 2). These data thus do not support the hypothesis that the source of waters in CP dramatically shifted between 2016 and 2020, consistent with the SO42− and Cl− measurements indicating that the primary change to CP waters was increased input or availability of H2S for oxidation.A second alternative explanation is that a change in the water level of CP could potentially alter residence times which could allow for more oxidation of sulfur compounds in the spring and increased acidification. Such a scenario would also likely result in increased evaporation and concentration of solutes. However, the minimal increase in water isotope values (Supplementary Fig. 2) and similar Cl− concentrations (Supplementary Fig. 1c) accompanying a ~3–5 fold increase in SO42− concentration pre- and post-acidification (Fig. 1b) argue that increased residence time was of minimal importance in acidification.A third possible explanation is that a change in the plumbing system of CP is now delivering more vapor phase gas that contributes H2S and acidity when oxidized. Such a scenario could be consistent with increased surface deformation, subsurface gas accumulation, and seismic activity that has been taking place near NGB just prior to these changes21, and the transition from HB-type to HBG-type waters in CP. Sulfur species isotope analyses would help deconvolute the sources of SO42− in CP, but samples for sulfur isotopic analyses were not collected prior to acidification. Thus, it is unclear if this process may also be contributing to the acidification of CP. Regardless, the disappearance of the molten S° cap either by consumption or displacement would in effect make H2S more available for oxidation, similar to increased vapor phase input. The acidification of hot springs involves the oxidation of H2S by O230. More specifically, partial oxidation of H2S at acidic pH (90% amino acid identity to other homologs from UYS MAGs), but that was only present on unbinned contig sequences. Proteins are grouped based on their functionalities and associations in complexes. TetH (tetrathionate hydrolase), SQO sulfide:quinone oxidoreductase, SOR sulfur oxygenase reductase, SoxABCD Sulfolobus oxidase, SoxM Sulfolobus oxidase, CbsAB cytochrome b 558/566, SoxLN cytochrome ba complex, DoxBCE Desulfurolobus oxidase, DoxAD/TQOab Desulfurolobus oxidase/thiosulfate-quinone oxidoreductase, HdrAB1C1B2C2 (heterodisulfide reductase), DsrE3 DsrE3 sulfurtransferase, Dld dihydrolipoamide dehydrogenase, LplA lipoate-protein ligase A, LbpA lipoate binding protein A/glycine cleavage system H protein, TusA tRNA 2-thiouridine synthesizing protein A, SreABC sulfur reductase, SAOR sulfite:acceptor oxidoreductase, HcaLS [NiFe]-hydrogenase group 1 g. SoxEFGHI and FoxABCDEFGH (ferrous iron oxidation) gene sets were also investigated, but not identified in any of the MAGs and not shown here for brevity. A complete description of the enzymes/proteins found in individual UYS MAGs is provided in Supplementary Data 4.Full size imageTo assess the potential role of the UYS in sulfur biogeochemical cycling, the metabolic functional potentials of these populations were evaluated in greater detail based on their reconstructed genomes (Fig. 5, Supplementary Data 3). The UYS encoded the capacity for autotrophy via full complements of enzymes involved in the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP-4HB) (Supplementary Data 4), consistent with the general potential for autotrophy in most other Sulfolobales36. Consistently, the SoxM subunit that has been suggested as a marker for (facultatively) heterotrophic growth of Sulfolobales37 was absent in all UYS MAGs (Fig. 5, Supplementary Data 4). Given that all known Acidilobus and Vulcanisaeta spp. are characterized heterotrophs without known autotrophic capacity38,39, the UYS are likely the sole primary producers in the CP surface and subsurface waters, consistent with their considerable dominance in CP water communities over time.Also consistent with almost all other Sulfolobales36, the UYS universally encode the ability to reduce O2 via terminal cytochrome oxidases, although not via Sulfolobus oxidase (SoxABCD) complexes that are common among many Sulfolobales36 but rather via Desulfurolobus oxidase complexes (DoxBCE) (Fig. 5, Supplementary Data 4). An additional terminal oxidase complex (CbsAB-SoxLN) was encoded in the 2020 CP MAGs along with several other UYS MAGs from other YNP springs, although homologs of CbsAB-SoxLN were not present in the 2016 CP MAGs or several others recovered from sediments of other hot springs (Fig. 5). Thus, a potentially important metabolic difference between the pre- and post-acidification (2016 and 2020, respectively) CP Sulfolobales was the ability to use different terminal cytochrome oxidase compliments for aerobic respiration. The capacity to use multiple terminal oxidases has been suggested as an adaptation to varying oxygen tensions/availabilities37,40 that likely substantively differed between the low ORP 2016 CP waters and the high ORP 2020 CP waters (Fig. 2c). Consequently, these data point to the ecological succession of UYS strains within CP that are, at least in part, related to strain-level differences in aerobic respiration capacities.A defining feature of most cultured Sulfolobales is the ability to grow chemolithoautotrophically by coupling the oxidation of sulfur compounds (e.g., S0) to aerobic respiration37. The slow kinetics associated with abiotic oxidation of S0 with O2 at temperatures More