Alexander MA, Eischeid JK (2001) Climate variability in regions of amphibian declines. Conserv Biol 15:930–942Article
Google Scholar
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Article
Google Scholar
Baur B (1986) Patterns of dispersion, density and dispersal in alpine populations of the land snail Arianta arbustorum (L.) (Helicidae). Holarct Ecol 9:117–125
Google Scholar
Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851PubMed
Article
Google Scholar
Berlow EL, Knapp R, Ostoja SM, Williams RJ, McKenny H, Matchett JR et al. (2013) A network extension of species occupancy models in a patchy environment applied to the Yosemite toad (Anaxyrus canorus). PLoS ONE 8:e72200CAS
PubMed
PubMed Central
Article
Google Scholar
Bingaman JW (1968) Pathways: a story of trails and men. End-Kian Publishing Company, Lodi, CABozzuto C, Biebach I, Muff S, Ives AR, Keller LF (2019) Inbreeding reduces long-term growth of Alpine ibex populations. Nat Ecol Evol 3:1359–1364PubMed
Article
Google Scholar
Bradford D, Gordon M (1994) Acidic deposition as an unlikely cause for amphibian population declines in the Sierra Nevada, California. Biol Conserv 69:155–161Article
Google Scholar
Brattstrom BH (1962) Thermal control of aggregation behavior in tadpoles. Herpetologica 18:38–46
Google Scholar
Breiman L (2001) Random forests. Mach Learn 45:5–32Article
Google Scholar
Brown C, Hayes MP, Green GA, Macfarlane DC, Lind AJ (2015) Yosemite toad conservation assessment. USDA Forest Service report. Sonora, CABrown C, Olsen AR (2013) Bioregional monitoring design and occupancy estimation for two Sierra Nevadan amphibian taxa. Freshw Sci 32:675–691Article
Google Scholar
Cal Fire (2022) Fire perimeters. FRAP Mapp. https://frap.fire.ca.gov/mapping/gis-data/Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet 1:171–182CAS
Google Scholar
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140PubMed
PubMed Central
Article
Google Scholar
Chetkiewicz C-LB, St. Clair CC, Boyce MS (2006) Corridors for conservation: integrating pattern and process. Annu Rev Ecol Evol Syst 37:317–342Article
Google Scholar
Corn PS (2003) Amphibian breeding and climate change importance of snow in the mountains. Conserv Biol 17:622–625Article
Google Scholar
Csárdi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9
Google Scholar
Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14:1892–1902Article
Google Scholar
Dileo MF, Siu JC, Rhodes MK, Lõpez-Villalobos A, Redwine A, Ksiazek K et al. (2014) The gravity of pollination: integrating at-site features into spatial analysis of contemporary pollen movement. Mol Ecol 23:3973–3982PubMed
Article
Google Scholar
Dodge C, Cheng T, Vredenburg V (2012) Exploring the evidence of a historical chytrid epidemic in the Yosemite toad by PCR analysis of museum specimensDouglas DH (1994) Least-cost path in GIS using an accumulated cost surface and slopelines. Cartographica 31:37–51Article
Google Scholar
Dozier J, Frew J (2009) Computational provenance in hydrologic science: a snow mapping example. Philos Trans R Soc A Math Phys Eng Sci 367:1021–1033Article
Google Scholar
Dozier J, Painter TH, Rittger K, Frew JE (2008) Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv Water Resour 31:1515–1526Article
Google Scholar
Drost C, Fellers G (1994) Decline of frog species in the Yosemite section of the Sierra Nevada. National Park Service report. Davis, CADrost C, Fellers G (1996) Collapse of a regional frog fauna in the Yosemite area of the California Sierra Nevada, USA. Conserv Biol 10:414–425Article
Google Scholar
Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727PubMed
Article
Google Scholar
Dyer RJ, Nason JD, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759PubMed
Article
Google Scholar
Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724Article
Google Scholar
van Etten J (2017) R Package gdistance: distances and routes on geographical grids. J Stat Softw 76:1–21
Google Scholar
Evans J, Oakleaf J, Cushman S, Theobald D (2014) An ArcGIS toolbox for surface gradient and geomorphometric modelingExcoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491CAS
PubMed
PubMed Central
Article
Google Scholar
Fitzpatrick MC, Keller SR (2015) Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett 18:1–16PubMed
Article
Google Scholar
Flint LE, Flint AL, Thorne JH, Boynton R (2013) Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol Process 2:1–21Article
Google Scholar
Gaggiotti OE (2003) Genetic threats to population persistence. Ann Zool Fennici 40:155–168
Google Scholar
Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630PubMed
PubMed Central
Article
Google Scholar
Gotelli NJ (1991) Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis. Am Nat 138:768–776Article
Google Scholar
Grasso RL, Coleman RM, Davidson C (2010) Palatability and antipredator response of Yosemite toads (Anaxyrus canorus) to nonnative brook trout (Salvelinus fontinalis) in the Sierra Nevada Mountains of California. Copeia 2010:457–462Article
Google Scholar
Graves TA, Beier P, Royle JA (2013) Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 22:3888–3903PubMed
Article
Google Scholar
Gregorutti B, Michel B, Saint-Pierre P (2017) Correlation and variable importance in random forests. Stat Comput 27:659–678Article
Google Scholar
Grinnell J, Storer TI (1924) Animal life in the Yosemite: an account of the mammals, birds, reptiles, and amphibians in a cross-section of the Sierra Nevada. University of California Press, Berkeley, CAHall DK, Riggs GA, Salomonson VV, Digirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194Article
Google Scholar
Hansson L (1991) Dispersal and connectivity in metapopulations. Biol J Linn Soc 42:89–103Article
Google Scholar
Heenkenda MK, Joyce KE, Maier SW, de Bruin S (2015) Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS J Photogramm Remote Sens 108:234–244Article
Google Scholar
Hether TD, Hoffman EA (2012) Machine learning identifies specific habitats associated with genetic connectivity in Hyla squirella. J Evol Biol 25:1039–1052CAS
PubMed
Article
Google Scholar
Houborg R, McCabe MF (2018) A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J Photogramm Remote Sens 135:173–188Article
Google Scholar
Huber N, Bateman P, Wahrhaftig C (2003) Geologic map of Yosemite National Park and Vicinity, California: a digital database. Menlo Park, CAIPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, SwitzerlandJennings M, Hayes M (1994) Amphibian and reptile species of special concern in California. California Department of Fish & Game report. Rancho Cordova, CAKarlstrom EL (1962) The toad genus Bufo in the Sierra Nevada of California: ecological and systematic relationships. Unviersity Calif Publ Zool 62:1–104
Google Scholar
Keeler-Wolf T, Reyes ET, Menke JM, Johnson DN, Karavidas. DL (2012) Yosemite National Park vegetation classification and mapping project report. National Park Service report. Fort Collins, COKittlein MJ, Mora MS, Mapelli FJ, Austrich A, Gaggiotti OE (2022) Deep learning and satellite imagery predict genetic diversity and differentiation. Methods Ecol Evol 13:711–721Article
Google Scholar
Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46:604–632Article
Google Scholar
Knapp RA, Fellers GM, Kleeman PM, Miller DAW, Vredenburg VT, Rosenblum EB et al. (2016) Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proc Natl Acad Sci 113:11889–11894CAS
PubMed
PubMed Central
Article
Google Scholar
Knapp RA, Matthews KR (2000) Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conserv Biol 14:428–438Article
Google Scholar
Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26Article
Google Scholar
Lee SR, Ostoja SM, Maier PA, Matchett JR, McKenny HC, Brooks ML et al. Distribution and spatio-temporal variation of Yosemite toad populations in Sierra Nevada national parks (in preparation)Liang CT (2010) Habitat modeling and movements of the Yosemite toad (Anaxyrus (=Bufo) canorus) in the Sierra Nevada, California. Ph.D. Dissertation. University of California, DavisLiang CT, Grasso RL, Nelson-Paul JJ, Vincent KE, Lind AJ (2017) Fine-scale habitat characteristics related to occupancy of the Yosemite toad, Anaxyrus canorus. Copeia 105:120–127Article
Google Scholar
Liang CT, Stohlgren TJ (2011) Habitat suitability of patch types: a case study of the Yosemite toad. Front Earth Sci 5:217–228CAS
Article
Google Scholar
Lindauer AL, Maier PA, Voyles J (2020) Daily fluctuating temperatures decrease growth and reproduction rate of a lethal amphibian fungal pathogen in culture. BMC Ecol 20:1–9Article
CAS
Google Scholar
Lindauer AL, Voyles J (2019) Out of the frying pan, into the fire? Yosemite toad (Anaxyrus canorus) susceptibility to Batrachochytrium dendrobatidis after development under drying conditions. Herpetol Conserv Biol 14:185–198
Google Scholar
Littlefield CE, Krosby M, Michalak JL, Lawler JJ (2019) Connectivity for species on the move: supporting climate-driven range shifts. Front Ecol Environ 17:270–278Article
Google Scholar
Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051PubMed
Article
Google Scholar
Maher SP, Morelli TL, Hershey M, Flint AL, Flint LE, Moritz C et al. (2017) Erosion of refugia in the Sierra Nevada meadows network with climate change. Ecosphere 8:1–17Article
Google Scholar
Maier PA (2018) Evolutionary past, present, and future of the Yosemite toad (Anaxyrus canorus): a total evidence approach to delineating conservation units. Ph.D. Dissertation. University of California RiversideMaier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ (2019) Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (Anaxyrus canorus). Evolution 73:2476–2496PubMed
Article
Google Scholar
Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ (2022) Gene pool boundaries for the Yosemite toad (Anaxyrus canorus) reveal asymmetrical migration within meadow neighborhoods. Front Conserv Sci 3:1–14Article
Google Scholar
Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621PubMed
Article
Google Scholar
Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197Article
Google Scholar
Martin DL (2008) Decline, movement and habitat utilization of the Yosemite toad (Bufo canorus): an endangered anuran endemic to the Sierra Nevada of California. Ph.D. Dissertation. University of California, Santa BarbaraMasek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF et al. (2006) A landsat surface reflectance dataset, 1990-2000. IEEE Geosci Remote Sens Lett 3:68–72Article
Google Scholar
Matchett JR, Stark PB, Ostoja SM, Knapp RA, McKenny HC, Brooks ML et al. (2015) Detecting the influence of rare stressors on rare species in Yosemite National Park using a novel stratified permutation test. Sci Rep 5:1–12Article
CAS
Google Scholar
Mathieu J, Barot S, Blouin M, Caro G, Decaëns T, Dubs F et al. (2010) Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol Biochem 42:203–209CAS
Article
Google Scholar
Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28:403–416Article
Google Scholar
McRae B (2006) Isolation by resistance. Evolution 60:1551–1561PubMed
Article
Google Scholar
McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890CAS
PubMed
PubMed Central
Article
Google Scholar
Meyer H, Pebesma E (2021) Predicting into unknown space? estimating the area of applicability of spatial prediction models. Methods Ecol Evol 12:1620–1633Article
Google Scholar
Morelli TL, Maher SP, Lim MCW, Kastely C, Eastman LM, Flint LE et al. (2017) Climate change refugia and habitat connectivity promote species persistence. Clim Chang Responses 4:8Article
Google Scholar
Morton M (1981) Seasonal changes in total body lipid and liver weight in the Yosemite toad. Copeia 1981:234–238Article
Google Scholar
Morton M, Pereyra M (2010) Habitat use by Yosemite toads: life history traits and implications for conservation. Herpetol Conserv Biol 5:388–394
Google Scholar
Mullally D (1953) Observations on the ecology of the toad Bufo canorus. Copeia 1953:182–183Article
Google Scholar
Mullally D, Cunningham J (1956) Aspects of the thermal ecology of the Yosemite toad. Herpetologica 12:57–67
Google Scholar
Murphy MA, Dezzani R, Pilliod D, Storfer A (2010a) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649PubMed
Article
Google Scholar
Murphy MA, Evans JS, Storfer A (2010b) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261PubMed
Article
Google Scholar
National Park Service (2022) National park service visitor use statisticsNei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum Genet 47:253–259CAS
PubMed
Article
Google Scholar
Nunney L, Campbell KA (1993) Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8:234–239CAS
PubMed
Article
Google Scholar
Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113:868–879Article
Google Scholar
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669Article
Google Scholar
Peterman WE (2018) Surfaces using genetic algorithms ResistanceGA: an R package for the optimization of resistance. Methods Ecol Evol 9:1638–1647Article
Google Scholar
Peterman WE, Pope NS (2021) The use and misuse of regression models in landscape genetic analyses. Mol Ecol 30:37–47PubMed
Article
Google Scholar
Peterson MA (1997) Host plant phenology and butterfly dispersal: causes and consequences of uphill movement. Ecology 78:167–180Article
Google Scholar
Pflüger FJ, Balkenhol N (2014) A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 23:2146–56PubMed
Article
Google Scholar
Pless E, Saarman NP, Powell JR, Caccone A, Amatulli G (2021) A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc Natl Acad Sci USA 118:1–8Article
CAS
Google Scholar
Pounds J (2001) Climate and amphibian declines. Nature 410:639–640CAS
PubMed
Article
Google Scholar
Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167CAS
PubMed
Article
Google Scholar
Quinlan JR (1992) Learning with continuous classes. Aust Jt Conf Artif Intell 92:343–348
Google Scholar
Quinlan JR (1993) Combining instance-based and model-based learning. Mach Learn Proc 1993 93:236–243Article
Google Scholar
Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262Article
Google Scholar
Ratliff RD (1985) Meadows in the Sierra Nevada of California: state of knowledge. U.S. Forest Service report. Berkeley, CAReich KD, Berg N, Walton DB, Schwartz M, Sun F, Huang X et al. (2018) Climate change in the Sierra Nevada: California’s water future. UCLA Center for Climate Science report. Los Angeles, CAReynolds SJ, Christian KA (2009) Environmental moisture availability and body fluid osmolality in introduced toads. J Herpetol 43:326–331Article
Google Scholar
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G et al. (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57CAS
Article
Google Scholar
Roche LM, Allen-Diaz B, Eastburn DJ, Tate KW (2012a) Cattle grazing and Yosemite toad (Bufo canorus, Camp) breeding habitat in Sierra Nevada meadows. Rangel Ecol Manag 65:56–65Article
Google Scholar
Roche LM, Latimer AM, Eastburn DJ, Tate KW (2012b) Cattle grazing and conservation of a meadow-dependent amphibian species in the Sierra Nevada. PLoS ONE 7:e35734CAS
PubMed
PubMed Central
Article
Google Scholar
Sacchei I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494Article
CAS
Google Scholar
Sadinski W (2004) Amphibian declines: causes. U.S. Geological Survey report. La Crosse, WisconsinSadinski W, Gallant AL, Cleaver JE (2020) Climate’s cascading effects on disease, predation, and hatching success in Anaxyrus canorus, the threatened Yosemite toad. Glob Ecol Conserv 23:e01173Article
Google Scholar
Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48:668–678Article
Google Scholar
Schlaepfer DR, Braschler B, Rusterholz HP, Baur B (2018) Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9 e02488Schmidt G, Jenkerson C, Masek J, Vermote E, Gao F (2013) Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description. U.S. Geological Survey report. Reston, VAShaffer H, Fellers G, Magee A, Voss S (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257CAS
PubMed
Article
Google Scholar
Sherman CK (1980) A comparison of the natural history and mating system of two anurans: Yosemite toads (Bufo canorus) and Black toads (Bufo exsul). Ph.D. Dissertation. University of MichiganSherman CK, Morton ML (1984) The toad that stays on its toes. Nat Hist 93:72–78
Google Scholar
Sherman CK, Morton ML (1993) Population declines of Yosemite toads in the eastern Sierra Nevada of California. J Herpetol 27:186–198Article
Google Scholar
Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619CAS
PubMed
Article
Google Scholar
Smith JB, Tirpak DA (1988) The potential effects of global climate change on the United States: draft: report to Congress. U.S. Environmental Protection Agency, Office of Policy, Planning and Evaluation, Office of Research and DevelSork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H et al. (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19:3806–3823PubMed
Article
Google Scholar
Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591PubMed
Article
Google Scholar
Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564CAS
PubMed
Article
Google Scholar
Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448Article
Google Scholar
Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Process 23:78–94Article
Google Scholar
Storfer A, Murphy M, Evans J, Goldberg C, Robinson S, Spear S et al. (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142CAS
PubMed
Article
Google Scholar
van Strien M (2013) Advances in landscape genetic methods and theory: lessons leart from insects in agricultural landscapes. Ph.D. Dissertation. ETH Zürichvan Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–23Article
Google Scholar
Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8 25Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475PubMed
PubMed Central
Article
Google Scholar
Sylvester EVA, Beiko RG, Bentzen P, Paterson I, Horne JB, Watson B et al. (2018) Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol Ecol 27:4026–4040PubMed
Article
Google Scholar
Toloşi L, Lengauer T (2011) Classification with correlated features: Unreliability of feature ranking and solutions. Bioinformatics 27:1986–1994PubMed
Article
CAS
Google Scholar
Travis JMJ, Murrell DJ, Dytham C (1999) The evolution of density–dependent dispersal. Proc R Soc Lond Ser B Biol Sci 266:1837–1842Article
Google Scholar
Trexler KA (1975) The Tioga road: a history, 1883-1961. Yosemite Natural History Association, El Portal, CAU.S. Fish & Wildlife Service (2014) Endangered and threatened wildlife and plants; endangered status for the Sierra Nevada yellow-legged frog and the northern distinct population segment of the mountain yellow-legged frog, and threatened status for the Yosemite toad: final rule. Fed Regist 79:1–56. https://www.federalregister.gov/documents/2014/04/29/2014-09488/endangered-and-threatened-wildlife-andplants-endangered-species-status-for-sierra-nevadaVandergast AG, Bohonak AJ, Hathaway SA, Boys J, Fisher RN (2008) Are hotspots of evolutionary potential adequately protected in southern California? Biol Conserv 141:1648–1664Article
Google Scholar
Viers JH, Purdy SE, Peek RA, Fryjoff-Hung A, Santos NR, Katz JV et al (2013) Montane meadows in the Sierra Nevada: changing hydroclimatic conditions and concepts for vulnerability assessment. Centre for Watershed Sciences report. Davis, CAVredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci USA 107:9689–9694CAS
PubMed
PubMed Central
Article
Google Scholar
Wang IJ (2012) Environmental and topographic variables shape genetic structure and effective population sizes in the endangered Yosemite toad. Divers Distrib 18:1033–1041Article
Google Scholar
Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland, MAWhitlock MC, Ingvarsson PK, Hatfield T (2000) Local drift load and the heterosis of interconnected populations. Heredity 84:452–457PubMed
Article
Google Scholar
Wood SH (1975) Holocene stratigraphy and chronology of mountain meadows, Sierra Nevada, California. Ph.D. Dissertation. California Institute of TechnologyWright S (1931) Evolution in Mendelian populations. Genetics 16:97–159CAS
PubMed
PubMed Central
Article
Google Scholar
Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797Article
Google Scholar More