More stories

  • in

    Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana

    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell W, Mitchell R. Chemotactic and growth response of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev. 2017;41:880–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Windler M, Bova D, Kryvenda A, Straile D, Gruber A, Kroth PG. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycol Res. 2014;62:269–81.Article 

    Google Scholar 
    Buhmann MT, Schulze B, Forderer A, Schleheck D, Kroth PG. Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. J Phycol. 2016;52:463–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Tol HM, Amin SA, Armbrust EV. Ubiquitous marine bacterium inhibits diatom cell division. ISME J. 2017;11:31–42.PubMed 
    Article 
    CAS 

    Google Scholar 
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grossart H-P, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Crenn K, Duffieux D, Jeanthon C. Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Front Microbiol. 2018;9:2879.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:659.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schäfer H, Abbas B, Witte H, Muyzer G. Genetic diversity of ‘satellite’ bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 2002;42:25–35.PubMed 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci. 2020;117:3656–3662.Stock W, Blommaert L, De Troch M, Mangelinckx S, Willems A, Vyverman W, et al. Host specificity in diatom-bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol. 2019;95:fiz171.Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife. 2016;5:e17473.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77.PubMed 
    Article 
    CAS 

    Google Scholar 
    Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, et al. Plasmid curing and the loss of grip – the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol. 2015;38:120–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Paul C, Pohnert G. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One. 2011;6:e21032.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stock F, Bilcke G, De Decker S, Osuna-Cruz CM, Van den Berge K, Vancaester E, et al. distinctive growth and transcriptional changes of the diatom Seminavis robusta in response to quorum sensing related compounds. Front Microbiol. 2020;11:1240.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guillard RRL Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals: proceedings — 1st conference on culture of marine invertebrate animals greenport. Boston, MA: Springer US; 1975. p. 29–60.Rasband WS (2016). ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA. Available at: http://imagej.nih.gov/ij/, 1997–2015.DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.CAS 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.Article 
    CAS 

    Google Scholar 
    Alexa A, Rahnenfuhrer J (2021). topGO: Enrichment analysis for gene ontology. R package version 2.46.0.Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” InterJournal, Complex Systems, 1695. https://igraph.org.Wei Q, Khan IK, Ding Z, Yerneni S, Kihara D. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinform. 2017;18:177.Article 
    CAS 

    Google Scholar 
    Shapiro HM (2003). Physical parameters and their uses. In: Shapiro HM (ed). Practical Flow Cytometry. John Wiley & Sons, Inc.: New York, NY, USA, pp. 273-85.Clercq AD, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol. 2006;41:293–313.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environ Microbiol Rep. 2018;10:412–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Whalen KE, Kirby C, Nicholson RM, O’Reilly M, Moore BS, Harvey EL. The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Sci Rep. 2018;8:15498.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 2016;10:1742–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkel ZV, Irwin AJ, Schofield O. Resource limitation alters the ¾ size scaling of metabolic rates in phytoplankton. Mar Ecol Prog Ser. 2004;273:269–80.Article 

    Google Scholar 
    De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Ólafsson E. Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol. 2006;332:1–11.Article 

    Google Scholar 
    Finkel ZV. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr. 2001;46:86–94.CAS 
    Article 

    Google Scholar 
    Wilhelm T, Said M, Naim V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes. 2020;11:642.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Gelot C, Magdalou I, Lopez BS. Replication stress in mammalian cells and its consequences for mitosis. Genes. 2015;6:267–98.Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. – Genet. Toxicol. Environ. Mutagen. 2008;651:14–29.CAS 

    Google Scholar 
    Van de Meene AML, Pickett-Heaps JD. Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications. Eur J Phycol. 2004;39:93–104.Article 

    Google Scholar 
    Pollara SB, Becker JW, Nunn BL, Boiteau R, Repeta D, Mudge MC, et al. Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality. mSphere. 2021;6:e00009–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Von Dassow P, Petersen TW, Chepurnov VA, Virginia Armbrust E. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J Phycol. 2008;44:335–49.Article 
    CAS 

    Google Scholar 
    Pokrzywinski KL, Tilney CL, Warner ME, Coyne KJ. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Sci Rep. 2017;7:45102.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durkin CA, Mock T, Armbrust EV. Chitin in diatoms and its association with the cell wall. Eukaryot Cell. 2009;8:1038.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wildermuth MC. Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol. 2010;13:449–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cho J-C, Giovannoni SJ. Croceibacter atlanticus gen. nov., sp. nov., A Novel Marine Bacterium in the Family Flavobacteriaceae. Syst Appl Microbiol. 2003;26:76–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ndhlovu A, Durand PM, Ramsey G. Programmed cell death as a black queen in microbial communities. Mol Ecol. 2021;30:1110–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 2017;543:555–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy SF, Ziv N, Siegal ML. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 2012;10:e1001325.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blair PM, Land ML, Piatek MJ, Jacobson DA, Lu T-YS, Doktycz MJ, et al. Exploration of the biosynthetic potential of the populus microbiome. mSystems. 2018;3:e00045–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helfrich EJN, Vogel CM, Ueoka R, Schäfer M, Ryffel F, Müller DB, et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol. 2018;3:909–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Long RA, Qureshi A, Faulkner DJ, Azam F. 2-n-Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol. 2003;69:568–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calabrese EJ. Hormesis: from mainstream to therapy. Cell Commun Signal. 2014;8:289–91.Article 

    Google Scholar 
    Chen WM, Sheu FS, Sheu SY. Novel l-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzym Microb Technol. 2011;49:372–9.CAS 
    Article 

    Google Scholar 
    El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, et al. Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Front Cell Infect Microbiol. 2017;7:364.Ricci V, Giannouli M, Romano M, Zarrilli R. Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J Gastroenterol. 2014;20:630–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Teeling H, Fuchs Bernhard M, Becher D, Klockow C, Gardebrecht A, Bennke Christin M, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Growth model analysis of wild hyacinth macaw (Anodorhynchus hyacinthinus) nestlings based on long-term monitoring in the Brazilian Pantanal

    BirdLife International. Red List Update: Parrots of the Americas in Peril. https://www.birdlife.org/news/2021/02/08/red-list-update-parrots-of-the-americas-in-peril/ (2020).Berkunsky, I. et al. Current threats faced by Neotropical parrot populations. Biol. Cons. 214, 278–287. https://doi.org/10.1016/j.biocon.2017.08.016 (2017).Article 

    Google Scholar 
    ICMBIO—Instituto Chico Mendes de Conservação da Biodiversidade (Org.). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume III-Aves 709. https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol3.pdf (Ministério do Meio Ambiente, 2018).CBRO—Comitê Brasileiro de Registros Ornitológicos. Listas das Aves do Brasil. 11th ed. http://www.cbro.org.br/wp-content/uploads/2020/06/avesbrasil_2014jan1.pdf (CBRO, 2014).Pacheco, J. F. et al. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee—second edition. Ornithol. Res. 29(2), 94–105. https://doi.org/10.1007/s43388-021-00058-x (2021).Article 

    Google Scholar 
    IUCN—International Union for Conservation of Nature. The IUCN Red List of Threatened Species www.iucnredlist.org (2018).Guedes, N. M. R. Biologia reprodutiva da arara azul (Anodorhynchus hyacinthinus) no Pantanal—MS, Brasil. (Dissertação de Mestrado Universidade de São Paulo, São Paulo (1993).Guedes, N. M. R. et al. Technical Report Assessing the Impact of Fire on Blue Macaws, Pantanal, Mato Grosso do Sul, Brazil, p 13, Campo Grande, Instituto Arara Azul (2019).Guedes, N. M. R. Araras azuis: 15 anos de estudos no Pantanal. In Paper presented at IV Simpósio Sobre Recursos Naturais e Sócio-Econômicos do Pantanal, Corumbá: Embrapa Pantanal (2004).Guedes, N. M. R. Sucesso reprodutivo, mortalidade e crescimento de filhotes de araras azuis Anodorhynchus hyacinthinus (Aves, Psittacidae), no Pantanal, Brasil (Tese de doutorado Universidade Estadual Paulista, Botucatu, 2009)Guedes, N. M. R. & Harper, L. H. Hyacinth macaws in the Pantanal. In The Large Macaws (eds Abramson, J. et al.) 394–421 (Raintree Publications, 1995).
    Google Scholar 
    Vicente, E. C. & Guedes, N. M. Organophosphate poisoning of Hyacinth Macaws in the Southern Pantanal, Brazil. Sci. Rep. 11, 1–6. https://doi.org/10.1038/s41598-021-84228-3 (2021).CAS 
    Article 

    Google Scholar 
    Guedes, N. M. R. et al. Assessment of fire impact on Hyacinth Macaws in Perigara, Pantanal—MT, Brazil, p 35, Campo Grande, Instituto Arara Azul (2020).Guedes, N. M. R. et al. Macaws survive fires and provide hope for resilience—Stubborn survivors. Pantanal Sci. Mag. 6, 36–41 (2021).
    Google Scholar 
    Oliveira, M. D. R. et al. Lack of protected areas and future habitat loss threaten the Hyacinth Macaw Anodorhynchus hyacinthinus and its main food and nesting resources. Ibis 163, 1217–1234 (2021).Article 

    Google Scholar 
    Ricklefs, R. E. Patterns of growth in birds. Ibis 110, 419–451. https://doi.org/10.1111/j.1474-919X.1968.tb00058.x (1968).Article 

    Google Scholar 
    Gebhardt-Henrich, S. & Richner, H. Causes of growth variation and its consequences for fitness. Oxford Ornithol. Ser. 8, 324–339 (1998).
    Google Scholar 
    Masello, J. F. & Quillfeldt, P. Body size, body condition and ornamental feathers of Burrowing Parrots: Variation between years and sexes, assortative mating and influences on breeding success. Emu Austral Ornithol. 103, 149–161. https://doi.org/10.1071/MU02036 (2003).Article 

    Google Scholar 
    Renton, K. Influence of environmental variability on the growth of Lilac-crowned Parrot nestlings. Ibis 144, 331–339. https://doi.org/10.1046/j.1474-919X.2002.00015.x (2002).Article 

    Google Scholar 
    Masello, J. F. & Quillfeldt, P. Chick growth and breeding success of the Burrowing Parrot. Condor 104, 574–586. https://doi.org/10.1650/0010-5422 (2002).Article 

    Google Scholar 
    Pacheco, M. A., Beissinger, S. R. & Bosque, C. Why grow slowly in a dangerous place? Postnatal growth, thermoregulation, and energetics of nestling green-rumped parrotlets (Forpus passerinus). Auk 127, 558–570. https://doi.org/10.1525/auk.2009.09190 (2010).Article 

    Google Scholar 
    Vigo, G., Williams, M. & Brightsmith, D. J. Growth of Scarlet Macaw (Ara macao) chicks in southeastern Peru. Neotrop. Ornithol. 22, 143–153 (2011).
    Google Scholar 
    Lyon, J. P. et al. Reintroduction success of threatened Australian trout cod (Maccullochella macquariensis) based on growth and reproduction. Mar. Freshw. Res. 63, 598–605. https://doi.org/10.1071/MF12034 (2012).Article 

    Google Scholar 
    Vigo-Trauco, G., Garcia-Anleu, R. & Brightsmith, D. J. Increasing survival of wild macaw chicks using foster parents and supplemental feeding. Diversity 13, 121. https://doi.org/10.3390/d13030121 (2021).Article 

    Google Scholar 
    Tellería, J. L., De La Hera, I. & Perez-Tris, J. Morphological variation as a tool for monitoring bird populations: A review. Ardeola 60, 191–224. https://doi.org/10.13157/arla.60.2.2013.191 (2013).Article 

    Google Scholar 
    Silva, J. S. V. Elementos fisiográficos para delimitação do ecossistema Pantanal: Discussão e proposta. Oecol. Brasil. 1, 349–458. https://doi.org/10.4257/OECO.1995.0101.22 (1995).Article 

    Google Scholar 
    Silva, J. S. V. & Abdon, M. M. Delimitação do Pantanal Brasileiro e suas Sub-Regiões. Pesq. Agropec. Bras. 33, 1703–1711 (1998).
    Google Scholar 
    Keuroghlian, A., Eaton, D. & Desbiez, A. L. J. The response of a landscape species, white-lipped peccaries, to seasonal resource fluctuations in a tropical wetland, the Brazilian Pantanal. Int. J. Biodivers. Conserv. 1, 87–97 (2009).
    Google Scholar 
    Donatelli, R. J., Posso, S. R. & Toledo, M. C. B. D. Distribution, composition and seasonality of aquatic birds in the Nhecolândia sub-region of South Pantanal, Brazil. Braz. J. Biol. 74, 844–853 (2014).CAS 
    Article 

    Google Scholar 
    Donatelli, R. J. et al. Temporal and spatial variation of richness and abundance of the community of birds in the Pantanal wetlands of Nhecolândia (Mato Grosso do Sul, Brazil). Rev. Biol. Trop. 65, 1358–1380 (2017).Article 

    Google Scholar 
    Tomas, W. M. et al. Sustainability agenda for the Pantanal Wetland: Perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30. https://doi.org/10.1177/1940082919872634 (2019).ADS 
    Article 

    Google Scholar 
    Harris, M. B. et al. Safeguarding the Pantanal wetlands: Threats and conservation initiatives. Conserv. Biol. 19, 714–720. https://doi.org/10.1111/j.1523-1739.2005.00708.x (2005).Article 

    Google Scholar 
    Santos Júnior, A. D., Aspectos populacionais de Sterculia apetala (Jacq.) Karst (Sterculiaceae) como subsídios ao plano de conservação da arara-azul no Sul do Pantanal, Mato Grosso do Sul, Brasil. (2006). https://repositorio.ufms.br/handle/123456789/521.Ricklefs, R. E. The optimization of growth rate in altricial birds. Ecology 65, 1602–1616 (1984).Article 

    Google Scholar 
    Bruford, M. W., Hanotte, O., Brookfield, J. F. Y. & Burke, T. Single-locus and multilocus DNA fingerprinting. In Molecular Genetic Analysis of Populations: A Practical Approach (ed. Hoelzel, A. R.) 225–269 (Oxford University Press, 1992).
    Google Scholar 
    Miyaki, C. Y. et al. Sex identification of parrots, toucans, and curassows by PCR: Perspectives for wild and captive population studies. Zoo Biol. 17(5), 415–423 (1998).Article 

    Google Scholar 
    Cavanaugh, J. E. & Neath, A. A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat. 11, 1460. https://doi.org/10.1002/wics.1460 (2019).MathSciNet 
    Article 

    Google Scholar 
    Motulsky H. J. GraphPad curve fitting guide. 2021. http://www.graphpad.com/guides/prism/7/curve-fitting/index.htm. Accessed 18 September.Saunders, D. A., Smith, G. T. & Rowley, I. The availability and dimensions of tree hollows that provide nest sites for cockatoos (Psittaciformes) in Western Australia. Wildl. Res. 9, 541–556. https://doi.org/10.1071/WR9820541 (1982).Article 

    Google Scholar 
    Navarro, J. L. & Bucher, E. H. Growth of monk parakeets. Wilson Bull. 102, 520–525 (1990).
    Google Scholar 
    Murtaugh, P. A. Performance of several variable-selection methods applied to real ecological data. Ecol. Lett. 12, 1061–1068 (2009).Article 

    Google Scholar 
    Waltman, J. R. & Beissinger, S. R. Breeding behavior of the Green-rumped Parrotlet. Wilson Bull. 104, 65–84 (1992).
    Google Scholar 
    Enkerlin-Hoeflich, E. C., Packard, J. M. & González-Elizondo, J. J. Safe field techniques for nest inspections and nestling crop sampling of parrots. J. Field Ornithol. 70, 8–17 (1999).
    Google Scholar 
    Barros, Y. de M. Biologia comportamental de Propyrrhura maracana (Aves, Psittacidae): Fundamentos para conservação in situ de Cyanopsitta spixii (Aves, Psittacidae) na Caatinga. (Tese de Doutorado Universidade Estadual de São Paulo, Rio Claro, 2001).Seixas, G. H. F. & Mourão, G. M. Growth of nestlings of the BlueFronted Amazon (Amazona aestiva) raised in the wild or in captivity. Ornitol. Neotrop. 14, 295–305 (2003).
    Google Scholar 
    Vigo-Trauco, G. Crecimiento de pichones de Guacamayo Escarlata, Ara macao (Linneus: 1758) en la Reserva Nacional Tambopata-Madre de Dios-Peru (Tese Universidad Nacional Agraria La Molina, 2007).
    Google Scholar 
    Tjørve, K. M. & Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS One https://doi.org/10.1371/journal.pone.0178691 (2017).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Reed, J. M. The role of behavior in recent avian extinctions and endangerments. Conserv. Biol. 13, 232–241. https://doi.org/10.1046/j.1523-1739.1999.013002232.x (1999).Article 

    Google Scholar 
    Tjørve, K. M., Underhill, L. G. & Visser, G. H. Energetics of growth in semi-precocial shorebird chicks in a warm environment: The African black oystercatcher, Haematopus moquini. Zoology 110, 176–188. https://doi.org/10.1016/j.zool.2007.01.002 (2007).Article 
    PubMed 

    Google Scholar 
    Tjørve, K. M., Underhill, L. G. & Visser, G. H. The energetic implications of precocial development for three shorebird species breeding in a warm environment. Ibis 150, 125–138 (2008).Article 

    Google Scholar 
    Ricklefs, R. E. Weight recession in nestling birds. Auk 85, 30–35. https://doi.org/10.2307/4083621 (1968).Article 

    Google Scholar 
    Huin, N. & Prince, P. A. Chick growth in albatrosses: Curve fitting with a twist. J. Avian Biol. 31, 418–425. https://doi.org/10.1034/j.1600-048X.2000.310318.x (2000).Article 

    Google Scholar 
    Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69–84. https://doi.org/10.1111/eva.13081 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, L. T. Avaliação do sucesso reprodutivo da arara-canindé (Ara ararauna—Psittacidae) e o desenvolvimento urbano de Campo Grande, Mato Grosso do Sul (Dissertação de mestrado Universidade Anhanguera Uniderp, Campo Grande, 2015).Giraldo-Deck, L. M. et al. Development of intraspecific size variation in black coucals, white-browed coucals and ruffs from hatching to fledging. J. Avian Biol. 51, e02440. https://doi.org/10.1111/jav.02440 (2020).Article 

    Google Scholar 
    Guedes et al. Annual Technical Report from the Instituto Arara Azul., Pantanal-MS, Brazil. 35p, Campo Grande, Instituto Arara Azul (2022). More

  • in

    Collecting critically endangered cliff plants using a drone-based sampling manipulator

    Cliffs present a unique flora that has been little studied until now mainly because of the inherent difficulties to access this unique environment, as shown in Fig. 2. The techniques currently used to access plants on steep slopes and cliffs (e.g., abseiling, helicopter) are generally dangerous, costly and time consuming. Using a small aerial manipulator to sample plants on the cliffs can represent many advantages, including safety and portability, as well as the capability of reaching otherwise inaccessible locations easily, quickly and at low cost.Figure 2Examples of the cliff habitats of some critically endangered species on the Kauaʻi Island along with the count of known individuals as of February 2022.Full size imageHowever, several technical challenges make it difficult to develop suitable aerial manipulators for this task. Indeed, the sampling of plants on cliffs necessarily leads to significant collision risks, as well as contact forces and moments during sampling that can destabilize the drone. The samples collected would also need to be accessed from the side of the aerial platform22. Any weight (e.g., sampling tool, collected samples) located horizontally away from the center of mass of the drone creates large additional demands on the propulsion system of most drones. To collect specific plant parts in windy conditions (e.g., scion, flowers, seeds, etc.), precise and fast motion is required even in degraded Global Navigation Satellite System (GNSS) coverage near the cliffs. The great diversity of plant species and morphology found on cliffs, as well as the variety of targeted sections of plant, also represent a major design challenge. Finally, to maximize the adoption of this tool, it is also desirable that scientists with minimal training could use this platform. The next sections describe how these challenges were addressed through the development of the Mamba.Suspended sampling platformThere are a multitude of configurations that could have been explored to sample plants on cliffs. Some drones have manipulators rigidly attached to their structure20,23. However, these manipulators tend to have a limited reach to keep the center of mass within the propeller footprint and to minimize the inertia of the system. This could result in a high collision risk with the propellers in the uneven terrain found on cliffs. The contact forces created during the sampling operation also generate destabilizing moments through manipulators rigidly attached to the drone. To address these challenges, concepts involving a compliant manipulator operated from specialized drones were also explored10. Alternatively, some aerial manipulators were also passively suspended under the drone through a long rod21,24. This keeps the drone above potential obstacles within the environment, significantly reducing the operator’s mental demand and stress while also reducing the disturbances transmitted to the drone to a downward force aligned with the rod and yaw torque. To maintain these advantages while providing better precision, some projects have developed cable suspended platforms equipped with thrusters25,26. As these platforms do not have to counter gravity, the thrusters can be positioned to fight external disturbances more efficiently (e.g., wind, contact forces, drone movements). Existing systems however only stabilize the suspended platform close to its equilibrium point.The chosen concept for the Mamba, illustrated at Fig. 3, consists of a suspended platform that can stabilize itself far from its natural equilibrium to provide a large workspace. The lifting drone in this system stays safely away and above from steep cliff faces, while supporting the platform and providing rough positioning in space through better GNSS coverage. The platform is suspended 10 m below the lifting drone using four attachment points to prevent pitch and roll motions. The cable also acts as a low pass filter, isolating the platform from the fast drone movements required to fight wind disturbances. The suspended platform design can then focus on fast and precise positioning, while also being tolerant to contacts during sampling. To do so, four pairs of bidirectional actuators are used to control the motion in the plane of the pendulum (i.e., x and y translation, as well as yaw). Two pairs of actuators are installed in the x-direction to provide sufficient force to reach plants as far as 4 m from the equilibrium position. This corresponds to roughly 3.3 m from the tip of the lifting drone’s propellers.Figure 3(a) General concept of the Mamba and lifting drone during transit and sampling on cliffs. (b) Side view of the Mamba showing the components and cable installations. (c) Top view showing the antagonist thrusters configuration. (d) Close-up of the sampling tool and 2 degrees of freedom (DOF) wrist specifically designed to sample small fragile plants.Full size imageSince the Mamba is self-powered and has its own communication system, the lifting drone function is simply to lift the platform and hold it in place. This made it possible to select amongst the many commercially available products to accelerate the development of the Mamba. The DJI M300 was chosen as it comes equipped with a 360° optical obstacle avoidance vision system, an IP45 rating, and a flight time of 20 min with the Mamba attached (3.3 kg). It also advertised a four constellation GNSS receiver for better coverage around buildings, structures, and cliffs.Precise control in windsWinds under 20 km/h represent a gentle breeze on the Beaufort scale. At this level, the wind only moves the leaves, and not the branches, which allows for ideal sampling conditions. According to historical weather data from 2020, daily maximum winds are less than 20 km/h for 40 to 70% of the year, depending on the exact location on Kauaʻi Island (i.e., Lihuʻe International airport, as reported by the National Oceanic and Atmospheric Administration, and the Makaha Ridge Weather Station, as reported in the MesoWest database). This also implies that Kauaʻi experiences stronger winds on certain days which would make precise sampling difficult. Wind conditions are also more challenging near cliff faces, with increased turbulence and vertical airflow along the cliff.To allow operations on most days, while providing precise positioning and fast rejection of wind disturbances, the actuators of the Mamba are oriented in the horizontal plane. This allows the actuator forces to directly affect the motion of the suspended platform. Each actuator of the Mamba consists of a pair of brushless DC motors and 23 cm propellers capable of producing 7 N of force. The motors are installed in opposite directions, are always idling at their minimum rotation speed, and are commanded to only create force in their preferred direction. This antagonistic configuration avoids the low-velocity dead zone of a brushless motor during thrust reversal. This makes it possible to quickly revert the direction of the thrust and nearly triples the bandwidth of the actuators to approximately 2.5 Hz27. This configuration, however, comes at the expense of added mass and components.The Mamba is equipped with a flight controller that includes a control system, and a state estimator. To avoid degraded GNSS coverage issues, the state estimator only uses data from a high accuracy inertial measurement unit (IMU) to estimate the attitude of the platform. This provides the relative position of the platform with respect to the drone and is sufficient for teleoperation. Three separated proportional-derivative controllers are used for each of the DOF controlled by the actuators. This control system also provides attitude-hold assistance (i.e., pitch and roll, which correspond to x and y displacements, as well as yaw). This implies that if the user does not send any commands, the suspended platform maintains its current state.Figure 4 illustrates the stabilization accuracy of the Mamba when moving along a representative trajectory when suspended indoors from a 5.7 m cable (limited by ceiling height). This experiment confirmed that the sampling tool can maintain a position at a horizontal reach of 2.25 m with a precision of about 5 cm for 30 s. As the horizontal reach and precision are limited by the cable angular displacements (e.g., component of weight acting on the pendulum, IMU angular resolution), the resulting workspace when operating with a 10 m long cable would reach a radius of 4 m with a positioning accuracy of about 9 cm. To account for potential external disturbances like wind, the sampling tool was designed with an opening of 15 cm. This creates some margin for the pilot to align the target with the sampling mechanism. Field trials detailed below demonstrated that the Mamba actuators and controller could maintain a sufficiently stable position to sample plants in winds During the sampling phase, wind speed averaged 15.7 km/h with a standard deviation of 6.8 km/h, while wind gusts reached an average of 20.1 km/h with a standard deviation of 6.5 km/h. The maximum average wind speed recorded during sampling was 28 km/h with gusts up to 37 km/h. This represents a lower bound of the system performance, as no failure resulted from the wind conditions experienced during the trials. The a ttached Supplementary Video also demonstrates the stability of the system.Figure 4Representative motion of the sampling tool within its workspace based only on feedback from a high accuracy IMU and recorded using a motion capture system. The natural equilibrium point is at (0,0). The experiment starts with a 90° rotation around the z axis, followed by a forward movement along the x-axis of the Mamba and a lateral movement along its y-axis. The system then maintains this position for 30 s without any user inputs. Produced in MATLAB R2021a.Full size imageTeleoperated sampling of cliffs habitatsPlants growing on Kauaʻi cliffs exhibit a wide morphological variety. For this project, targets ranged from small herbaceous plants such as Euphorbia eleanoriae (plants  More

  • in

    Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus)

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).Article 

    Google Scholar 
    Dahl, P. H., de Jong, C. A. & Popper, A. N. The underwater sound field from impact pile driving and its potential effects on marine life. Acoust. Today. 11, 18–25 (2015).
    Google Scholar 
    Mooney, T. A., Andersson, M. H. & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 33, 82–95 (2020).Article 

    Google Scholar 
    Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, A. P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).PubMed 
    Article 

    Google Scholar 
    Jones, I. T., Stanley, J. A. & Mooney, T. A. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Mar. Pollut. Bull. 150, 110792 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, L. & Elliott, M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci. Total. Environ. 595, 255–268 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hawkins, A. D., Hazelwood, R. A., Popper, A. N. & Macey, P. C. Substrate vibrations and their potential effects upon fishes and invertebrates. J. Acoust. Soc. Am. 149, 2782–2790 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Popper, A. N. et al. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. J. Acoust. Soc. Am. 151, 205–215 (2022).PubMed 
    Article 

    Google Scholar 
    Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean. Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    Roberts, L., Cheesman, S., Breithaupt, T. & Elliott, M. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar. Ecol. Prog. Ser. 538, 185–195 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proc. Natl. Acad. Sci. 114, E8537–E8546 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Wijsman, J.W.M., Troost, K., Fang, J. & Roncarati, A. Global production of marine bivalves. Trends and challenges. Goods and services of marine bivalves, (Eds. Small, A.D., Ferrerira, J.G., Grant, J., Petersen, J.K., Strand, O.) 7–26 (Springer, Cham, 2019).Perveen, R., Kishor, N. & Mohanty, S. R. Off-shore wind farm development: Present status and challenges. Renew. Sust. Energ. Rev. 29, 780–792 (2014).Article 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Mar. Policy. 48, 172–183 (2014).Article 

    Google Scholar 
    Musial, W.D., Beiter, P.C., Spitsen, P., Nunemaker, J. & Gevorgian, V. 2018 offshore wind technologies market report. US Department of Energy (2019).Lacroix, D. & Pioch, S. The multi-use in wind farm projects: more conflicts or a win-win opportunity?. Aquat. Living. Resour. 24, 129–135 (2011).Article 

    Google Scholar 
    FishstatJ. FishStatJ-Software for Fishery and Aquaculture Statistical Time Series. FAO Fisheries Division [online], Rome. Accessed April 10, 2022. (2020).Flanders Marine Institute. Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at https://www.marineregions.org/ (2019).Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C. & Mikkelsen, K. K. Optimization of monopiles for offshore wind turbines. Philos. Trans. R. Soc. A 373, 20140100 (2015).ADS 
    Article 

    Google Scholar 
    Bruns, B., Stein, P., Kuhn, C., Sychla, H. & Gattermann, J. Hydro sound measurements during the installation of large diameter offshore piles using combinations of independent noise mitigation systems. Proceedings of the Inter-noise Conference 1–10 (Melbourne, Australia, 2014).Hunt, H. L. & Scheibling, R. E. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155, 269–301 (1997).ADS 
    Article 

    Google Scholar 
    Pilditch, C. A. & Grant, J. Effect of variations in flow velocity and phytoplankton concentration on sea scallop (Placopecten magellanicus) grazing rates. J. Exp. Mar. Biol. Ecol. 240, 111–136 (1999).Article 

    Google Scholar 
    Chauvaud, L., Thouzeau, G. & Paulet, Y. M. Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J. Exp. Mar. Biol. Ecol. 227, 83–111 (1998).Article 

    Google Scholar 
    Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic Sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13, e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hawkins, A. D., Pembroke, A. E. & Popper, A. N. Information gaps in understanding the effects of noise on fishes and invertebrates. Rev. Fish. Biol. Fish. 25, 39–64 (2015).Article 

    Google Scholar 
    Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article 

    Google Scholar 
    Sabet, S. S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article 

    Google Scholar 
    Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change. Biol. 22, 3349–3360 (2016).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Hubert, J., Booms, E., Witbaard, R. & Slabbekoorn, H. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. J. Exp. Mar. Biol. Ecol. 547, 151668 (2022).Article 

    Google Scholar 
    Robson, A. A., Chauvaud, L., Wilson, R. P. & Halsey, L. G. Small actions, big costs: the behavioural energetics of a commercially important invertebrate. J. R. Soc. Interface. 9, 1486–1498 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, G. E. & Gruffydd, L. D. The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar. Biol. 10, 87–93 (1971).Article 

    Google Scholar 
    Livingstone, D. R., Dezwaan, A. & Thompson, R. J. Aerobic metabolism octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 70, 35–44 (1981).Article 

    Google Scholar 
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa Spain. Aquac. Rep. 9, 68–73 (2018).Article 

    Google Scholar 
    Wilson, R., Reuter, P. & Wahl, M. Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar. Biol. 147, 1165–1172 (2005).Article 

    Google Scholar 
    Comeau, L. A. & Babarro, J. M. Narrow valve gaping in the invasive mussel Limnoperna securis: implications for competition with the indigenous mussel Mytilus galloprovincialis in NW Spain. Aquac. Int. 22, 1215–1227 (2014).CAS 
    Article 

    Google Scholar 
    Comeau, L. A., Mayrand, E. & Mallet, A. Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar. Biol. 159, 2269–2279 (2012).Article 

    Google Scholar 
    Palmer, B. A. et al. The image-forming mirror in the eye of the scallop. Science 358, 1172–1175 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chappell, D. R., Horan, T. M. & Speiser, D. I. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc. R. Soc. B. 288, 20211730 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mat, A. M., Massabuau, J. C., Ciret, P. & Tran, D. Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol. Int. 29, 857–867 (2012).PubMed 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods. Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Dickie, L. M. & Medcof, J. C. Causes of mass mortalities of scallops (Placopecten magellanicus) in the southwestern Gulf of St Lawrence. J. Fish. Res. Board. Can. 20, 451–482 (1963).Article 

    Google Scholar 
    Coleman, S., Cleaver, C., Morse, D., Brady, D. C. & Kiffney, T. The coupled effects of stocking density and temperature on Sea Scallop (Placopecten magellanicus) growth in suspended culture. Aquac. Rep. 20, 100684 (2021).Article 

    Google Scholar 
    Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES. J. Mar. Sci. 77, 890–900 (2020).Article 

    Google Scholar 
    ISO, 18406. Underwater acoustics measurement of radiated underwater sound from percussive pile driving. International Organization for Standardization (Geneva, Switzerland), 1–33 (2017).Madsen, P. T. Marine mammals and noise: Problems with root mean square sound pressure levels for transients. J. Acoust. Soc. Am. 117, 3952–3957 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R.V. emmeans: Estimated marginal means, aka least squares means. R package version 1.3.5.1. Retrieved from http://CRAN.R-project.org/package=emmeans (2019).Kragh, I. M. et al. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 222, jeb216606 (2019).PubMed 
    Article 

    Google Scholar 
    Warner, R. M. Spectral Analysis of Time-Series Data (Guilford Press, 1998).
    Google Scholar 
    Fisher, R. A. Tests of significance in harmonic analysis. Proc. Math. Phys. Eng. Sci. 125, 54–59 (1929).MATH 

    Google Scholar  More

  • in

    A georeferenced rRNA amplicon database of aquatic microbiomes from South America

    Cole, J., Findlay, S. & Pace, M. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).ADS 
    Article 

    Google Scholar 
    Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Cotner, J. B. & Biddanda, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5, 105–121 (2002).CAS 
    Article 

    Google Scholar 
    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, C., Fuhrman, J., Horner-Devine, M. & Martiny, J. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).ADS 
    Article 

    Google Scholar 
    White, W. R. World water: resources, usage and the role of man-made reservoirs. Report No. FR/R0012. Fundation for Water Research, (2010).Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B. & Lettenmaier, D. P. Continental runoff into the oceans (1950–2008). J. Hydrometeorol. 16, 1502–1520 (2015).ADS 
    Article 

    Google Scholar 
    Stevaux, J. C., Paes, R. J., Franco, A. A., Mário, M. L. & Fujita, R. H. Morphodynamics in the confluence of large regulated rivers: The case of Paraná and Paranapanema Rivers. Lat. Am. J. Sedimentol. Basin Anal. 16, 101–109 (2009).
    Google Scholar 
    Brêda, J. P. L. F. et al. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522 (2020).ADS 
    Article 

    Google Scholar 
    Llames, M. E. & Zagarese, H. E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters vol.2 (ed. Linkens, G. E.). (Oxford: Elsevier, 2009).Cabrera, A. L. & Willink, A. Biogeografia De America Latina 2da edn (Organización de los Estados Americanos, 1980).Morrone, J. J. Biogeografía de América Latina y el Caribe 1st edn. (Nature, 2001).Morrone, J. J. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1–110 (2014).PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sarmento, H. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686, 1–14 (2012).Article 

    Google Scholar 
    Meerhoff, M. et al. Environmental Warming in Shallow Lakes. A Review of Potential Changes in Community Structure as Evidenced from Space-for-Time Substitution Approaches. Adv. Ecol. Res. 46, 259–349 (2012).Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metz, S. & Huber, P. et al. A georeferenced rRNA amplicon database of aquatic microbiomes from South America (Dataset), Zenodo, https://doi.org/10.5281/zenodo.6802178 (2022).Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000 Research 5, 1492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/10.1101/081257v1 (2016).Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffith, G. E., Omernik, J. M. & Azevedo, S. H. Ecological classification of the Western Hemisphere http://ecologicalregions.info/htm/ecoregions.htm (1998).Salcedo, J. C. R. South America: Argentina, Bolivia, and Peru https://www.worldwildlife.org/ecoregions/nt1002 Accessed (2018).Vidal, J. Geografía del Perú: las ocho regiones naturales, la regionalización transversal, la microregionalización 9th edn (PEISA, 1987).Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Austral 8, 85–101 (1998).
    Google Scholar 
    Iriondo, M. Quaternary lakes of Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 81–88 (1989).Article 

    Google Scholar 
    Soto, D. & Campos, H. in Ecología de los bosques templados de Chile vol. 1 (eds. Khalin, J. M. & Villagrán, C.) (Editorial Universitaria, 1995).Modenutti, B. et al. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: Organic matter, light and nutrient relationships. Ecol. Austral 20, 95–114 (2010).
    Google Scholar 
    Modenutti, B. E. et al. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag. 3, 179–186 (1998).Article 

    Google Scholar 
    Quirós, R. & Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 4, 55–64 (1999).Article 

    Google Scholar 
    Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Balseiro, E. & Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 68, 528–541 (2014).PubMed 
    Article 

    Google Scholar 
    Modenutti, B. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371 (2013).CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816, 39–48 (2018).CAS 
    Article 

    Google Scholar 
    Sioli, H. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana 1, 267–277 (1968).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Salati, E. & Vose, P. B. Amazon Basin: A system in equilibrium. Science. 225, 129–138 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Melack, J. M. & Forsberg, B. R. In The Biogeochemistry of the Amazon Basin Vol. 1 (eds. MacCLain, M. E., Victoria, R. & Richey, J. E.). (Oxford Scholarship Online, 2001).Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).
    Google Scholar 
    Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot. 80, 223–230 (1997).Article 

    Google Scholar 
    Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).Article 

    Google Scholar 
    Vasconcelos, V., de Carvalho Júnior, O. A., de Souza Martins, É. & Couto Júnior, A. F. in World Geomorphological Landscapes. Vol. 1 (eds. Vieira, B., Salgado, A. & Santos, L.) (Springer, 2015).Bichsel, D. et al. Water quality of rural ponds in the extensive agricultural landscape of the Cerrado (Brazil). Limnology 17, 239–246 (2016).CAS 
    Article 

    Google Scholar 
    Cunha, D. G. F., Calijuri, M., do, C. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).Article 

    Google Scholar 
    Morellato, L. P. C. & Haddad, C. F. B. Introduction: The Brazilian atlantic forest. Biotropica 32, 786–792 (2000).Article 

    Google Scholar 
    Galindo-Leal, C. & Câmara, I. de G. The Atlantic Forest of South America: Biodiversity status, threats, and outlook 1st edn (Island Press, 2003).Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist 204, 459–473 (2014).PubMed 
    Article 

    Google Scholar 
    Caliman, A. et al. Temporal coherence among tropical coastal lagoons: A search for patterns and mechanisms. Brazilian J. Biol. 70, 803–814 (2010).CAS 
    Article 

    Google Scholar 
    Junger, P. C. et al. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons. Microb. Ecol. 75, 52–63 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Depetris, P. J., Probst, J. L., Pasquini, A. I. & Gaiero, D. M. The geochemical characteristics of the Paraná River suspended sediment load: An initial assessment. Hydrol. Process. 17, 1267–1277 (2003).ADS 
    Article 

    Google Scholar 
    Orfeo, O. & Stevaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).ADS 
    Article 

    Google Scholar 
    Neiff, J. J. Large rivers of South America: toward the new approach. Verh. Internat. Verein. Limnol 26, 167–180 (1996).
    Google Scholar 
    Unrein, F. Changes in phytoplankton community along a transversal section of the Lower Paraná floodplain, Argentina. Hydrobiologia 468, 123–134 (2002).Article 

    Google Scholar 
    Devercelli, M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639, 5–19 (2010).CAS 
    Article 

    Google Scholar 
    Huber, P. et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 14, 2951–2966 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS 
    Article 

    Google Scholar 
    Conde, D., Arocena, R. & Recursos, R.-G. L. acuáticos superficiales de Uruguay: ambientes, algunas problemáticas y desafios para la gestión. Ambios 10, 1–7 (2003).
    Google Scholar 
    Martin, L. & Suguio, K. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 119–140 (1992).Article 

    Google Scholar 
    Alonso, C. et al. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon. Front. Microbiol. 4, 1664–302X (2013).Article 
    CAS 

    Google Scholar 
    Amaral, V., Graeber, D., Calliari, D. & Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918 (2016).ADS 
    Article 

    Google Scholar 
    Rennella, A. M. M., Quiro, R. & Quirós, R. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556, 181–191 (2006).Article 

    Google Scholar 
    Diaz, M., Pedrozo, F. & Baccala, N. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv. Res. Manag. 5, 213–229 (2000).Article 

    Google Scholar 
    Izaguirre, I. et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob. Ecol. Conserv. 14, e00391 (2018).Article 

    Google Scholar 
    Porcel, S., Saad, J. F., Sabio y García, C. A. & Izaguirre, I. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81, 51 (2019).Article 
    CAS 

    Google Scholar 
    Bernal, M. C. et al. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J. Limnol. 80, 84–99 (2021).
    Google Scholar 
    Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, 44–47 (2011).Article 
    CAS 

    Google Scholar 
    ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA217932 (2013).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA302313 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA294718 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA309832 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA326475 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48609 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA289691 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA414894 (2018).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA323673 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA356055 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA390178 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA725228 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA292014 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA316315 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA406945 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA515842 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA321235 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998328 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998330 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB36116 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB29989 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA788397 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48353 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB37379 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB46122 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40710 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40864 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40854 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA268541 (2015). More

  • in

    Carbon farming: integrate biodiversity metrics

    Incentivizing farmers to shift from conventional to regenerative practices could help fulfil the United Nations Food Systems commitments to transform food supply chains — as well as reducing carbon emissions (see L. A. Schulte et al. Nature Sustain. 5, 384–388; 2022).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Ecological resilience of restored peatlands to climate change

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).
    Google Scholar 
    Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    Bonn, A. et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 9, 54–65 (2014).Article 

    Google Scholar 
    Martin-Ortega, J., Allott, T. E., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).Article 

    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article 

    Google Scholar 
    Chimner, R. A., Cooper, D. J., Wurster, F. C. & Rochefort, L. An overview of peatland restoration in North America: where are we after 25 years? Restor. Ecol. 25, 283–292 (2017).Article 

    Google Scholar 
    Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article 

    Google Scholar 
    Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).Article 

    Google Scholar 
    Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd6034 (2020).Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1–7 (2018).CAS 
    Article 

    Google Scholar 
    Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).Article 

    Google Scholar 
    Scheffer, M. Critical transitions in nature and society (Princeton University, 2009).Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).CAS 
    Article 

    Google Scholar 
    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Rydin, H., Jeglum, J. K. & Bennett, K. D. The biology of peatlands, 2nd edition (Oxford University Press, 2013).Kim, J. et al. Water table fluctuation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition. Front. Earth Sci. 8, 717 (2021).
    Google Scholar 
    IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge University Press, In Press).Belyea, L. R. Non-linear dynamics of peatlands and potential feedbackson the climate system, in Northern Peatlands and Carbon Cycling (A, Baird. et al. eds), pp 5–18 (American Geophysical Union Monograph Series, 2009).Holden, J. et al. Overland flow velocity and roughness properties in peatlands. Water Resour. Res. 44, https://doi.org/10.1029/2007WR006052 (2008).Holden, J., Wallage, Z. E., Lane, S. N. & McDonald, A. T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 402, 103–114 (2011).Article 

    Google Scholar 
    Glaser, P. H. et al. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Glob. Biogeochem. Cycles 18, GB1003 (2004).Article 
    CAS 

    Google Scholar 
    Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross‐scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).Article 

    Google Scholar 
    Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology 8, 113–127 (2015).Article 

    Google Scholar 
    Holden, J., Evans, M. G., Burt, T. P. & Horton, M. Impact of land drainage on peatland hydrology. J. Environ. Qual. 35, 1764–1778 (2006).CAS 
    Article 

    Google Scholar 
    Liu, H. & Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient—a meta study. Hydrol. Process. 33, 101–114 (2019).Article 

    Google Scholar 
    Gałka, M., Tobolski, K., Górska, A. & Lamentowicz, M. Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: implications for ecological restoration. Holocene 27, 130–141 (2017).Article 

    Google Scholar 
    Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol. Lett. 15, https://doi.org/10.1098/rsbl.2019.0043 (2019).van der Velde, Y. Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.210174211 (2021).Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    Article 

    Google Scholar 
    Minayeva, T. Y. & Sirin, A. A. Peatland biodiversity and climate change. Biol. Bull. Rev. 2, 164–175 (2012).Article 

    Google Scholar 
    Minayeva, T. Y., Bragg, O. & Sirin, A. A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 19, 1–36 (2017).
    Google Scholar 
    Andersen, R., Chapman, S. J. & Artz, R. R. Microbial communities in natural and disturbed peatlands: a review. Soil Biol. Biochem. 1, 979–994 (2013).Article 
    CAS 

    Google Scholar 
    van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).Article 

    Google Scholar 
    Hugron, S. & Rochefort, L. Sphagnum mosses cultivated in outdoor nurseries yield efficient plant material for peatland restoration. Mires Peat 20, 1–6 (2018).
    Google Scholar 
    Vitt, D. H. Peatlands: ecosystems dominated by bryophytes. In: Shaw A. J. & Goffinet B. (eds) Bryophyte biology, pp 312–343 (Cambridge University Press, 2002).Yu, Z. et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. Holocene 13, 801–808 (2003).Article 

    Google Scholar 
    Chiapusio, G. et al. Sphagnum species module their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J. Chem. Ecol. 44, 1146–1157 (2018).CAS 
    Article 

    Google Scholar 
    Sherwood, J. H. et al. Effect of drainage and wildfire on peat hydrophysical properties. Hydrol. Process. 27, 1866–1874 (2013).Article 

    Google Scholar 
    Tanneberger, F., Flade, M., Preiksa, Z. & Schröder, B. Habitat selection of the globally threatened aquatic warbler Acrocephalus paludicola at the western margin of its breeding range and implications for management. Ibis 152, 347–358 (2010).Article 

    Google Scholar 
    Kreyling, J. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 1–8 (2021).Article 
    CAS 

    Google Scholar 
    Ritson, J. P. et al. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning–a research agenda. Sci. Total Environ. 759, https://doi.org/10.1016/j.scitotenv.2020.143467 (2021).Secco, E. D., Haapalehto, T., Haimi, J., Meissner, K. & Tahvanainen, T. Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands? Mires Peat 18, https://doi.org/10.19189/MaP.2016.OMB.231 (2016).Basiliko, N. et al. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front. Microbiol. 31, https://doi.org/10.3389/fmicb.2013.00215 (2013).Barber, K. E. Peat stratigraphy and climatic change. vol 219, (AA Balkema, 1981).Quinton, W. L. & Roulet, N. T. Spring and summer runoff hydrology of a subarctic patterned wetland. Arctic Alpine Res. 30, 285–294 (1998).Article 

    Google Scholar 
    Eppinga, M. B., Rietkerk, M., Wassen, M. J. & De Ruiter, P. C. Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecol. 200, 53–68 (2009).Article 

    Google Scholar 
    Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant– soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).CAS 
    Article 

    Google Scholar 
    Fenton, N. J. Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory. Botany 94, 1009–1014 (2016).Article 

    Google Scholar 
    Xu, L. X. et al. Maintain spatial heterogeneity, maintain biodiversity—a seed bank study in a grazed alpine fen meadow. Land Degrad. Dev. 28, 1376–1385 (2017).Article 

    Google Scholar 
    Laine, J., Vasander, H. & Laiho, R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 1, 785–802 (1995).
    Google Scholar 
    Gatis, N. et al. The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea‐dominated peatland. Ecohydrology 9, 407–420 (2016).CAS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog. Journal of Ecology 104, 621–636 (2016).Article 

    Google Scholar 
    Liu, H., Gao, C. & Wang, G. Understand the resilience and regime shift of the wetland ecosystem after human disturbances. Sci. Total Environ. 643, 1031–1040 (2018).CAS 
    Article 

    Google Scholar 
    Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).CAS 
    Article 

    Google Scholar 
    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).Article 

    Google Scholar 
    Strack, M. et al. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites? Mires Peat 17, 1–18 (2016).
    Google Scholar 
    Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Global Change Biol. 24, 5751–5768 (2018).Article 

    Google Scholar 
    Hambley, G. et al. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat 23, https://doi.org/10.19189/MaP.2018.DW.346 (2019).Schwieger, S. et al. Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks in a dry year. Ecosystems 24, 1093–1109 (2021).CAS 
    Article 

    Google Scholar 
    Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor. Ecol. 21, 363–371 (2013).Article 

    Google Scholar 
    Gonzalez, E. & Rochefort, L. Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol. Eng. 68, 279–290 (2014).Article 

    Google Scholar 
    Karofeld, E., Müür, M. & Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ. Sci. Pollut. Res. 23, 13706–13717 (2016).Article 

    Google Scholar 
    Karofeld, E., Kaasik, A. & Vellak, K. Growth characteristics of three Sphagnum species in restored extracted peatland. Restor. Ecol. 28, 1574–1583 (2020).Article 

    Google Scholar 
    Purre, A. H., Ilomets, M., Truus, L., Pajula, R. & Sepp, K. The effect of different treatments of moss layer transfer technique on plant functional types biomass in revegetated milled peatlands. Restor. Ecol. 28, 1584–1595 (2020).Article 

    Google Scholar 
    Beyer, F. et al. Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18, 917–935 (2021).CAS 
    Article 

    Google Scholar 
    Ketcheson, S. J. & Price, J. S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 31, 1263–1274 (2011).Article 

    Google Scholar 
    McCarter, C. P. R. & Price, J. S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 55, 73–81 (2013).Article 

    Google Scholar 
    Koebsch, F. et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philos. Transac. R. Soc. B 375, https://doi.org/10.1098/rstb.2019.0685 (2020).Blier‐Langdeau, A., Guêné‐Nanchen, M., Hugron, S. & Rochefort, L. The resistance and short‐term resilience of a restored extracted peatland ecosystems post‐fire: an opportunistic study after a wildfire. Restor. Ecol. 30, https://doi.org/10.1111/rec.13545 (2022).Rochefort, L., Quinty, F., Campeau, S., Johnson, K. & Malterer, T. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecol. Manage. 11, 3–20 (2003).CAS 
    Article 

    Google Scholar 
    Lavoie, C., St-Louis, A. & Lachance, D. Vegetation dynamics on an abandoned vacuum-mined peatland: Five years of monitoring. Wetlands Ecol. Manage. 13, 621–633 (2005).Article 

    Google Scholar 
    Poulin, M., Rochefort, L., Quinty, F. & Lavoie, C. Spontaneous revegetation of mined peatlands in eastern Canada. Can. J. Botany 83, 539–557 (2005).Article 

    Google Scholar 
    Quinty, F., LeBlanc, M.-C. & Rochefort, L. Peatland Restoration Guide—PERG, CSPMA and APTHQ (Université Laval, 2020).Wagner, D. J. & Titus, J. E. Comparative desiccation tolerance of two Sphagnum mosses. Oecologia 62, 182–187 (1984).Article 

    Google Scholar 
    Gonzalez, E. & Rochefort, L. Declaring success in Sphagnum peatland restoration: identifying outcomes from readily measurable vegetation descriptors. Mires Peat 24, 1–16 (2019).
    Google Scholar 
    Scotland National Peatland Plan. Working for our future. https://www.nature.scot/doc/scotlands-national-peatland-plan-working-our-future#:~:text=The%202020%20Challenge%20for%20Scotland’s,more%20resilient%20to%20climate%20change (2020).Wilkie, N. M. & Mayhew, P. W. The management and restoration of damaged blanket bog in the north of Scotland. Bot. J. Scotl. 55, 125–133 (2003).Article 

    Google Scholar 
    Hancock, M. H., Klein, D., Andersen, R. & Cowie, N. R. Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Appl. Veg. Sci. 21, 167–178 (2018).Article 

    Google Scholar 
    Harris, A. & Baird, A. J. Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22, 1035–1054 (2019).Article 

    Google Scholar 
    Bradley, A. V., Andersen, R., Marshall, C., Sowter, A. & Large, D. J. Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dyn. 10, 261–277 (2022).Article 

    Google Scholar 
    Gaffney, P. P., Hancock, M. H., Taggart, M. A. & Andersen, R. Measuring restoration progress using pore-and surface-water chemistry across a chronosequence of formerly afforested blanket bogs. J. Environ. Manage. 219, 239–251 (2018).CAS 
    Article 

    Google Scholar 
    Hermans, R. et al. Climate benefits of forest-to-bog restoration on deep peat–Policy briefing. Climate X Change 1–5, https://www.climatexchange.org.uk/media/3654/climate-benefits-of-forest-to-bog-restoration-on-deep-peat.pdf (2019).Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 1–28 (2016).
    Google Scholar 
    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1–5 (2020).Article 
    CAS 

    Google Scholar 
    Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 1–8 (2019).Article 
    CAS 

    Google Scholar 
    Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).CAS 
    Article 

    Google Scholar 
    Klimkowska, A. et al. Are we restoring functional fens? The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS One 14, https://doi.org/10.1371/journal.pone.0215645 (2019).Huth, V. et al. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor. Ecol. 30, https://doi.org/10.1111/rec.13490 (2022).Schimelpfenig, D., Cooper, D. J. & Chimner, R. A. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor. Ecol. 22, 257–265 (2014).Article 

    Google Scholar 
    Laine, A. M., Tolvanen, A., Mehtätalo, L. & Tuittila, E. S. Vegetation structure and photosynthesis respond rapidly to restoration in young coastal fens. Ecol. Evol. 6, 6880–6891 (2016).Article 

    Google Scholar 
    Gallego-Sala, A. V. & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).Article 

    Google Scholar 
    Schneider, R. R., Devito, K., Kettridge, N. & Bayne, E. Moving beyond bioclimatic envelope models:50 integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the51 western Canadian boreal plain: Western boreal ecosystem transitions under climate change. Ecohydrology 9, 899–908 (2016).Article 

    Google Scholar 
    Blundell, A. & Holden, J. Using palaeoecology to support blanket peatland management. Ecol. Indic. 49, 110–120 (2005).Article 

    Google Scholar 
    Newman, S. et al. Drivers of landscape evolution: multiple regimes and their influence on carbon sequestration in a sub‐tropical peatland. Ecol. Monogr. 87, 578–599 (2017).Article 

    Google Scholar 
    Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M. & Waddington, J. M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 13, https://doi.org/10.1088/1748-9326/aaa136 (2018).Hokanson, K. J. et al. A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots. Ecohydrology 11, https://doi.org/10.1002/eco.1942 (2018).IPCC. Global warming of 1.5 °C (IPCC, 2018).Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C. & Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Change 70, https://doi.org/10.1016/j.gloenvcha.2021.102323 (2021).Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, https://doi.org/10.1002/adsu.202000146 (2021).Loisel, J. & Walenta, J. Carbon parks could secure essential ecosystems for climate stabilization. Nat. Ecol. Evol. 6, 486–488 (2022).Article 

    Google Scholar 
    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).Terzano, D. Community‐led peatland restoration in Southeast Asia: 5Rs approach. Restor. Ecol. 3, https://doi.org/10.1111/rec.13642 (2022). More

  • in

    N addition alters growth, non-structural carbohydrates, and C:N:P stoichiometry of Reaumuria soongorica seedlings in Northwest China

    Galloway, J. N., Townsend, W. H., Erisman, J. W., Bekunda, M. & Cai, Z. Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science 320, 889–892 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Phoenix, G. K. et al. Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. 18, 1197–1215 (2012).ADS 
    Article 

    Google Scholar 
    Pons, T. L., van der, Werf, A. & Lambers, H. Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: Possible explanations for observed differences. In A Whole Plant Perspective on Carbon-Nitrogen Interactions (eds Roy, J., Garnier, E.) 61–77 (SPB Academic Publishing, The Hague, 1994).Ai, Z. M., Xue, S., Wang, G. L. & Liu, G. B. Responses of Non-structural carbohydrates and C:N: P stoichiometry of Bothriochloa ischaemum to nitrogen addition on the Loess Plateau, China. J. Plant Growth Regul. 36, 714–722 (2017).CAS 
    Article 

    Google Scholar 
    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dietze, M. C. et al. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 65, 667–687 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees -from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Q. P. et al. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees 30, 1863–1871 (2016).CAS 
    Article 

    Google Scholar 
    Peng, Z. T. et al. Non-structural carbohydrates regulated by nitrogen and phosphorus fertilization varied with organs and fertilizer levels in Moringa oleifera Seedlings. J. Plant Growth Regul. 40, 1777–1786 (2021).CAS 
    Article 

    Google Scholar 
    Nardini, A. et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms deferentially affected by an extreme summer drought. Plant Cell Environ. 39, 618–627 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, F. C. et al. Effects of experimental nitrogen addition on nutrients and nonstructural carbohydrates of dominant understory plants in a Chinese Fir plantation. Forests 10, 155 (2019).Article 

    Google Scholar 
    Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).Article 

    Google Scholar 
    Jinm, X. M. et al. Ecological stoichiometry and biomass response of Agropyron michnoi under simulated N deposition in a sandy grassland, China. J. Arid Land. 12, 741–751 (2020).Article 

    Google Scholar 
    Jing, H. et al. Nitrogen addition changes the stoichiometry and growth rate of different organsin pinus tabuliformis seedlings. Front. Plant Sci. 8, 1922 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhan, S. X., Wang, Y., Zhu, Z. C., Li, W. H. & Bai, Y. F. Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environ. Exp. Bot. 134, 21–32 (2017).CAS 
    Article 

    Google Scholar 
    Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2 -mediated changes on plant chemistry and herbivore performance. Glob. Change Biol. 13, 1823–1842 (2007).ADS 
    Article 

    Google Scholar 
    Wang, X. G. et al. Responses of C:N: P stoichiometry of plants from a Hulunbuir grassland to salt stress, drought and nitrogen addition. Phyton-Int. J. Exp. Bot. 87, 123–132 (2018).
    Google Scholar 
    Liu, X. J. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, W. J., Houlton, B. Z., Marklein, A. R., Liu, J. X. & Zhou, G. Y. Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: Evidence from a global-scale meta-analysis. Sci. Rep. 5, 18225 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. Effects of nutrient addition on nitrogen, phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chin. J. Ecol. 33, 1795–1802 (2014).
    Google Scholar 
    Yang, D. X., Song, L. & Jin, G. Z. The soil C:N: P stoichiometry is more sensitive than the leaf C:N: P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 442, 183–198 (2019).CAS 
    Article 

    Google Scholar 
    Chong, P. F., Zhan, J., Li, Y. & Jia, X. Y. Carbon dioxide and precipitation alter Reaumuria soongorica root morphology by regulating the levels of soluble sugars and phytohormones. Acta Physiol. Plant 41, 184 (2019).Article 
    CAS 

    Google Scholar 
    Ma, X. Z. & Wang, X. P. Biomass partitioning and allometric relations of the Reaumuria soongorica shrub in Alxa steppe desert in NW China. For. Ecol. Manag. 468, 118–178 (2020).Article 

    Google Scholar 
    He, F. L., Bao, A. K., Wang, S. M. & Jin, H. X. NaCl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environ. Exp. Bot. 162, 433–443 (2019).CAS 
    Article 

    Google Scholar 
    Xu, D. H. et al. Photosynthetic parameters and carbon reserves of a resurrection plant Reaumuria soongorica during dehydration and rehydration. Plant Growth Regul. 60, 183–190 (2010).CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. miRNA–mRNA integrated analysis reveals roles for miRNAs in a typical halophyte, Reaumuria soongorica, during seed germination under salt stress. Plants 9, 351 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bai, Y. M., Li, Y., Shan, L. S., Su, M. & Zhang, W. T. Effects of precipitation change and nitrogen addition on root morphological characteristics of Reaumuria soongorica. Arid Zone Res. 37, 1284–1292 (2020).
    Google Scholar 
    Hedwall, P. O., Nordin, A., Strengbom, J., Brunet, J. & Olsson, B. Does background nitrogen deposition affect the response of boreal vegetation to fertilization?. Oecologia 173, 615–624 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, G., Fahey, T. J., Xue, S. & Liu, F. Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia 171, 583–590 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Grechi, I. et al. Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine. Environ. Exp. Bot. 59, 139–149 (2007).CAS 
    Article 

    Google Scholar 
    Xiao, L., Liu, G., Li, P. & Xue, S. Nitrogen addition has a stronger effect on stoichiometries of non-structural carbohydrates, nitrogen and phosphorus in Bothriochloa ischaemum than elevated CO2. Plant Growth Regul. 83, 325–334 (2017).CAS 
    Article 

    Google Scholar 
    Quentin, A. G. et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 35, 1146–1165 (2015).CAS 
    PubMed 

    Google Scholar 
    White, L. M. Carbohydrate reserves of grasses: A review. J. Range Manag. 26, 13–18 (1973).CAS 
    Article 

    Google Scholar 
    Millard, P., Sommerkorn, M. & Grelet, G. A. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytol. 175, 11–28 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, T., Cao, Y., Chen, Y. M. & Liu, G. B. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under three levels of continuous drought stress. Trees 29, 1837–1849 (2015).CAS 
    Article 

    Google Scholar 
    Chapin, F. S., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447 (1990).Article 

    Google Scholar 
    Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The C:N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evolut. Syst. 14, 33–47 (2012).Article 

    Google Scholar 
    Xia, J. Y. & Wan, S. Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 179, 428–439 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Y. H., Luo, Y. Q., Lu, M., Schädel, C. & Han, W. X. Terrestrial C: N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant Soil 343, 393–400 (2011).CAS 
    Article 

    Google Scholar 
    Mayor, J. R., Wright, S. J. & Turner, B. L. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. J. Ecol. 102, 36–44 (2014).CAS 
    Article 

    Google Scholar 
    Koerselman, A. & Meuleman, A. F. The vegetation ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Gusewell, S. N: P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).PubMed 
    Article 

    Google Scholar 
    Wang, S., Shan, L. S., Li, Y., Zhang, Z. Z. & Ma, J. Effect of Precipitation on the Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus of Reaumuria soongarica and Salsola passerina. Acta Bot. Boreal. Occident. Sin. 40, 0335–0344 (2020).ADS 

    Google Scholar 
    Niu, D. C., Li, Q., Jiang, S. G., Chang, P. J. & Fu, H. Seasonal variations of leaf C:N: P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chin. J. Plant Ecol. 37, 317–325 (2013).Article 

    Google Scholar 
    Kleyer, M. & Minden, V. Why functional ecology should consider all plant organs: An allocation-based perspective. Basic Appl. Ecol. 16, 1–9 (2015).Article 

    Google Scholar 
    Yemm, E. & Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508–514 (1954).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bao, S. D. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agriculture Press, Beijing, 2000).
    Google Scholar  More