More stories

  • in

    Fungi are more transient than bacteria in caterpillar gut microbiomes

    Futuyma, D. J. & Agrawal, A. A. Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. 106, 18054–18061 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frago, E., Dicke, M. & Godfray, H. C. J. Insect symbionts as hidden players in insect–plant interactions. Trends Ecol. Evol. 27, 705–711 (2012).PubMed 
    Article 

    Google Scholar 
    Gurung, K., Wertheim, B. & Salles, J. F. The microbiome of pest insects: It is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).Article 

    Google Scholar 
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giron, D. et al. Chapter seven—influence of microbial symbionts on plant-insect interactions. In Advances in Botanical Research Vol. 81 (eds Sauvion, N. et al.) 225–257 (Academic Press, 2017).
    Google Scholar 
    Chen, B. et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6, 29505 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vacher, C. et al. The phyllosphere: Microbial jungle at the plant–climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–24 (2016).Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. Tree endophytes: cryptic drivers of tropical forest diversity. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 63–103 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-89833-9_4.Chapter 

    Google Scholar 
    Peñuelas, J., Rico, L., Ogaya, R., Jump, A. S. & Terradas, J. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol. 14, 565–575 (2012).PubMed 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA. 111, 13715–13720 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kembel, S. W. & Mueller, R. C. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92, 303–311 (2014).Article 

    Google Scholar 
    Faeth, S. H. & Hammon, K. E. Fungal endophytes in oak trees: Long-term patterns of abundance and associations with leafminers. Ecology 78, 810–819 (1997).Article 

    Google Scholar 
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40, 1111–1122 (2011).PubMed 
    Article 

    Google Scholar 
    Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).Article 

    Google Scholar 
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, 117 (2019).Article 
    CAS 

    Google Scholar 
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Montagna, M. et al. Evidence of a bacterial core in the stored products pest Plodia interpunctella: The influence of different diets. Environ. Microbiol. 18, 4961–4973 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Phalnikar, K., Kunte, K. & Agashe, D. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc. R. Soc. B Biol. Sci. 286, 20192438 (2019).CAS 
    Article 

    Google Scholar 
    Somerville, J., Zhou, L. & Raymond, B. Aseptic rearing and infection with gut bacteria improve the fitness of transgenic diamondback moth, Plutella xylostella. Insects 10, 89 (2019).PubMed Central 
    Article 

    Google Scholar 
    González-Serrano, F. et al. The gut microbiota composition of the moth brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Goharrostami, M. & JalaliSendi, J. Investigation on endosymbionts of Mediterranean flour moth gut and studying their role in physiology and biology. J. Stored Prod. Res. 75, 10–17 (2018).Article 

    Google Scholar 
    Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, 1005 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minard, G., Tikhonov, G., Ovaskainen, O. & Saastamoinen, M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ. Microbiol. 21, 4253–4269 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).PubMed 
    Article 

    Google Scholar 
    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).PubMed 
    Article 

    Google Scholar 
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer, K. M. & Leveau, J. H. J. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168, 621–629 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, T., Pereira, J. A., Benhadi, J., Lino-Neto, T. & Baptista, P. Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb. Ecol. 76, 668–679 (2018).PubMed 
    Article 

    Google Scholar 
    Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitaker, M. R. L., Salzman, S., Sanders, J., Kaltenpoth, M. & Pierce, N. E. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 7, 1920 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, Y. et al. Midgut microbiota diversity of potato tuber moth associated with potato tissue consumed. BMC Microbiol. 20, 58 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffin, E. A., Harrison, J. G., McCormick, M. K., Burghardt, K. T. & Parker, J. D. Tree diversity reduces fungal endophyte richness and diversity in a large-scale temperate forest experiment. Diversity 11, 234 (2019).Article 

    Google Scholar 
    Kim, M. et al. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674–681 (2012).PubMed 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: A new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96, fiaa116 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pochon, X., Zaiko, A., Fletcher, L. M., Laroche, O. & Wood, S. A. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS ONE 12, e0187636 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schlechter, R. O., Miebach, M. & Remus-Emsermann, M. N. P. Driving factors of epiphytic bacterial communities: A review. J. Adv. Res. 19, 57–65 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seabloom, E. W. et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 100, e02758 (2019).PubMed 
    Article 

    Google Scholar 
    Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 193–194, 96–102 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Unterseher, M., Reiher, A., Finstermeier, K., Otto, P. & Morawetz, W. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6, 201–212 (2007).Article 

    Google Scholar 
    Gilbert, G. S., Reynolds, D. R. & Bethancourt, A. The patchiness of epifoliar fungi in tropical forests: Host range, host abundance, and environment. Ecology 88, 575–581 (2007).PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol. Ecol. 95, fiz032 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant. Microbe Interact. 28, 274–285 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stone, B. W. G. & Jackson, C. R. Seasonal patterns contribute more towards phyllosphere bacterial community structure than short-term perturbations. Microb. Ecol. https://doi.org/10.1007/s00248-020-01564-z (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B. & Allende, A. Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiol. 66, 77–85 (2017).PubMed 
    Article 

    Google Scholar 
    Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. Mol. Ecol. 20, 853–868 (2011).PubMed 
    Article 

    Google Scholar 
    Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sánchez, N. E., Pereyra, P. C. & Luna, M. G. Spatial patterns of parasitism of the solitary parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Entomol. 38, 365–374 (2009).PubMed 
    Article 

    Google Scholar 
    Santos, A. M. C. & Quicke, D. L. J. Large-scale diversity patterns of parasitoid insects. Entomol. Sci. 14, 371–382 (2011).Article 

    Google Scholar 
    Mereghetti, V., Chouaia, B. & Montagna, M. New insights into the microbiota of moth pests. Int. J. Mol. Sci. 18, 2450 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Floater, G. J. Estimating movement of the processionary caterpillar Ochrogaster zunifer Herrich-Schäffer (Lepidoptera: Thaumetopoeidae) between discrete resource patches. Aust. J. Entomol. 35, 279–283 (1996).Article 

    Google Scholar 
    Turčáni, M. & Patočka, J. Does intraguild predation of Cosmia trapezina L. (Lep.: Noctuidae) influence the abundance of other Lepidoptera forest pests?. J. For. Sci. 57, 472–482 (2011).Article 

    Google Scholar 
    Hikisz, J. & Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 17, 59–71 (2015).
    Google Scholar 
    Bell, J. R., Bohan, D. A., Shaw, E. M. & Weyman, G. S. Ballooning dispersal using silk: World fauna, phylogenies, genetics and models. Bull. Entomol. Res. 95, 69–114 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    Qian, X. et al. Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci. Rep. 10, 952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).PubMed 
    Article 

    Google Scholar 
    Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Müller, T., Müller, M., Behrendt, U. & Stadler, B. Diversity of culturable phyllosphere bacteria on beech and oak: The effects of lepidopterous larvae. Microbiol. Res. 158, 291–297 (2003).PubMed 
    Article 

    Google Scholar 
    Hrcek, J., Miller, S. E., Quicke, D. L. J. & Smith, M. A. Molecular detection of trophic links in a complex insect host-parasitoid food web. Mol. Ecol. Resour. 11, 786–794 (2011).PubMed 
    Article 

    Google Scholar 
    Bateman, C., Šigut, M., Skelton, J., Smith, K. E. & Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 45, 883–890 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, Interactive, Scalable, and Extensible Microbiome Data Science https://peerj.com/preprints/27295 (2018) https://doi.org/10.7287/peerj.preprints.27295v2.Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    UNITE Community. UNITE QIIME Release for Fungi 2. (2019).Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Ter Braak, C. J. F. ter & Smilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. (2012).Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    Chrostek, E., Pelz-Stelinski, K., Hurst, G. D. D. & Hughes, G. L. Horizontal transmission of intracellular insect symbionts via plants. Front. Microbiol. 8, 2237 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology (2019).Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Coral conservation in a warming world must harness evolutionary adaptation

    Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L. & Donner, S. D. Nat. Clim. Chang. 11, 537–542 (2021).Article 

    Google Scholar 
    Cook, C. N. & Sgrò, C. M. Conserv. Biol. 31, 501–512 (2017).Article 

    Google Scholar 
    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. Phil. Trans. R. Soc. Lond. B 368, 1–8 (2013).
    Google Scholar 
    Kovach, R. P., Gharrett, A. J. & Tallmon, D. A. Proc. R. Soc. Lond. B 279, 3870–3878 (2012).
    Google Scholar 
    Bonnet, T. et al. Science 376, 1012–1016 (2022).CAS 
    Article 

    Google Scholar 
    Norberg, J. et al. Nat. Clim. Chang. 2, 747–751 (2012).Article 

    Google Scholar 
    Torda, G. et al. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. Curr. Biol. 29, R996–R1007 (2019).CAS 
    Article 

    Google Scholar 
    Keppel, G. et al. Glob. Ecol. Biogeogr. 21, 393–404 (2012).Article 

    Google Scholar 
    Vos, C. C. et al. J. Appl. Ecol. 45, 1722–1731 (2008).Article 

    Google Scholar 
    Isaak, D. J. et al. Glob. Change Biol. 21, 2540–2553 (2015).Article 

    Google Scholar 
    Beyer, H. L. et al. Conserv. Lett. 11, e12587 (2018).Article 

    Google Scholar 
    Tingley, M. W., Estes, L. D. & Wilcove, D. S. Nature 500, 271–272 (2013).CAS 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Cornwell, B. et al. eLife 10, e64790 (2021).CAS 
    Article 

    Google Scholar 
    National Academies. of Sciences Engineering & Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs. (The National Academies Press, 2019).Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Science 344, 895–898 (2014).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Treml, E. A. & Haller, B. C. Glob. Change Biol. 26, 3473–3481 (2020).Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Curr. Biol. 24, 2952–2956 (2014).CAS 
    Article 

    Google Scholar 
    Donovan, M. K. et al. Science 372, 977–980 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. et al. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    Morrison, T. H. et al. Nature 573, 333–336 (2019).CAS 
    Article 

    Google Scholar 
    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    DeFilippo, L. B. et al. Ecol. Appl. https://doi.org/10.1002/eap.2650 (2022).Steneck, R. S. et al. Front. Mar. Sci. 6, 265 (2019).Article 

    Google Scholar 
    Dixon, G. B. et al. Science 348, 1460–1462 (2015).CAS 
    Article 

    Google Scholar 
    McManus, L. C. et al. Glob. Change Biol. 27, 4307–4321 (2021).CAS 
    Article 

    Google Scholar 
    Kleypas, J. A. et al. Glob. Change Biol. 22, 3539–3549 (2016).Article 

    Google Scholar 
    McManus, L. C. et al. Ecology 102, e03381 (2021).Article 

    Google Scholar 
    Walsworth, T. E. et al. Nat. Clim. Chang. 9, 632–636 (2019).Article 

    Google Scholar  More

  • in

    Characteristics of urine spraying and scraping the ground with hind paws as scent-marking of captive cheetahs (Acinonyx jubatus)

    Urine spraying and scraping as potential scent-markingThe urine spraying and the scraping were reported in other felids6,20,21. In this study, only half of the other excretion instances were accompanied by sniffing, whereas almost all urine spraying and scraping events were accompanied by sniffing, indicating that these are scent-markings. The sniffing was also often observed immediately before urine spraying and scraping. Given the significant association of sniffing before excretion, especially with regard to the scraping, the presence or absence of a scent on the object was thought to be a trigger.Furthermore, during the scraping, liquid secretions thought to originate from the anal glands, were released. Domestic cats have scent glands in the anal sac22. The presence of secretions from the anal sac has also been confirmed in not only tigers, lions (Panthera leo), and bobcats (Lynx rufus), but also in cheetahs1,6,23; however, this study was the first to investigate their role in excretion. Generally, secretions are considered to be caused by health problems or estrus, but in this study, none of the individuals had health problems, and all secretions were observed only in males. Therefore, it was thought that the secretion was produced by the scent glands and contributed to a stronger smell than only urine and feces.Variations based on sexUrine spraying was observed only in adult males and females, and was more frequent in males, as reported in other felids4,5,6,9,24. In wild cheetahs, although urine spraying and scraping have been observed as scent-making, the frequency of scent-marking is known to be substantially higher in territorial than in non-territorial males and in females15,16,25, and the marking locations are concentrated in the core area of the male territories16. The territories of a single male cheetah or a male group are relatively small and exclusive, whereas the relatively large home ranges of non-territorial males (also known as “floaters”) overlap with each other and with those of females15,16. A male’s home range is also larger than that of a female15,16,26,27. Male cheetahs rarely encounter other males because they communicate via marking posts28. Given these reports, the frequent urine spraying by males may help prevent encounters between males. In addition, observations of captive cheetahs have shown a significantly positive correlation between urinary spraying frequency and fecal estradiol content in female cheetahs19. Therefore, as Cornhill and Kerley24 mentioned, female urine spraying is caused by estrus, and male urine spraying is intended as a home range marker for other males or as a sign for females.The action of scraping using the hind paws has been reported to occur in both males and females in servals, lions, tigers, black-footed cats, etc.2,5,6,7,29; however, this behavior was only observed in adult males in this study. Sunquist and Sunquist3 reported that female cheetahs also perform the scraping. In this study, we only recorded observations when the cheetahs were released in the outdoor enclosures, and not when they were in the indoor facilities. In 43.6% of the scraping events, the males excreted feces. During the observation period, the females defecated in the indoor facilities, and no defecation was observed in the outdoor enclosures. It is possible that no scraping action was observed among the females because defecation was not observed in the outdoor enclosure. In indoor facilities, the cheetahs were in a completely monopolized enclosure; hence, the females defecated in their own spaces. There was a difference in the defecation sites and frequency of scraping between the males and females; this was attributed to the sex difference in scent-marking.Differences in target height for each behaviorUrine spraying was frequently done on objects approximately 170 cm or higher, such as walls or fences, standing trees, and stumps, whereas scraping was observed on low-lying objects on the ground, such as a straw pile approximately 3 cm high and a fallen tree that was 10–50 cm high. In other words, the cheetah engaged in urine spraying and scraping depending on the object nearby. This might indicate the functional role of these behaviors. This is consistent with previous findings of urine spraying by tigers being more frequent in wooded forests than in grasslands, with few prominent objects, and scraping being more common in the latter6. In addition, in a study that investigated the place where the smell of the urine of domestic cats is likely to remain, the smell persisted for a long time on rough surfaces, areas covered with moss, and overhanging slopes30. Even for cheetahs living in the savanna woodlands, where there are comparatively fewer upright objects than in the habitat of felids living in the forest, increasing the chances of transmitting information via not only urine spraying but also by the scraping might be more important. On the other hand, in their natural habitat, there are some large carnivores like lions and leopards (Panthera pardus). Wild cheetahs tend not to visit the sites where such carnivores’ scent-mark is present31, suggesting that they might confine their marking to specific sites devoid of other carnivores’ scent. Further research is needed to determine how wild cheetahs use urine spraying and scraping. In this study, scraping was frequently observed even on tall stumps and rocks if they were within the cheetahs’ reach. Scraping by wild cheetahs has been also observed on trees32. Zoos other than Zoo C had few prominent horizontal objects. Therefore, the presence of straw piles, fallen trees, stumps, and rocks may have elicited the scraping.Differences in housing conditionsIn zoos C and D, where animals shared enclosures, the frequency of both urine spraying and scraping by males was higher than in the males in the monopolized enclosures. They possibly showed a more frequent scent-marking to strengthen their home range claims when sharing the exhibition space15. Regarding the scraping, Zoo C had at least four low and horizontal objects (straw piles, fallen tree, stones, and rocks), and scraping was frequently observed. As mentioned above, the placement of objects might have elicited the scraping.In this study, the frequency of urine spraying decreased when the submissive individual (Male 17) was released in the enclosure where the dominant individual (Male 13) was previously released. Among wild cheetahs, territorial males have been reported to mark their territories more often than non-territorial males17,25. Therefore, the difference in the number of markings is considered to be related to whether or not the target individual is within the territory, and it is highly possible that the dominant/submissive relationship between males at that location has an effect on marking.Function of scraping using hind pawsOther felid studies have reported scraping in tigers, pumas, jaguars, clouded leopards, and small felids6,10,20,21,32,33; however, there are fewer studies on different types of scraping. In certain species, such as jaguars and pumas, scraping using hind paws is more frequent than urine spraying33. From this study, the use of secretions was confirmed in the scraping, and it was considered to be a significant marking of the cheetah.The possible functions of scraping include: (1) dispersing the smell of excrement, (2) placing the smell of excrement on the hindlegs, (3) smearing the objects with excrement, and (4) adding the scent of the hind paws. Domestic cats are known to cover their feces with soil34; however, in this study, the cheetahs did not cover the feces with soil and were not observed to scrap only after excretion. Therefore, scraping using hind paws was not meant for concealing urine and/or feces. The results of this study suggest that the scrapings were mostly performed during and after excretion for any of the aforementioned functions. However, 43.2% of the observed scraping events were performed before excretion, and in these cases, the functions 1–3 did not apply, since we did not observe the feces being crushed by scraping the hind paws. As for function 4, domestic cats have sweat glands on the soles of their feet that are thought to retain their smell35. Therefore, the sweat glands on the soles of the feet of the cheetahs possible retain the smell of the hind paws as well. Schaller36 reported that among tigers, scraping on the grassland was exhibited by scratches in the grass and exposure of the ground, creating a visual effect. In the case of cheetahs, scraping may have the function of creating grooves and ridges on the ground to enhance the visual effect; however, the formation of grooves and ridges were not observed in this study. In certain cases, they scraped against trees and stones. Because trees and stones are not easily deformed, it is hard to say whether the visual effect was enhanced by scraping with their hind paws.Scraping has been reported in other felids; however, the movement of the hindlimbs is not uniform. For example, in the case of bobcats, behaviors such as kicking back on the ground with no surrounding objects and scattering of soil have been observed during scrapings20. The snow leopard slowly moves its hindlimbs on the ground near the rocks, exposing the ground; in fact, Schaller29 observed a tiger scraping its hind paws to create a pile of soil [37; Kinoshita, personal communication: Online Resource 3; Scraping of snow leopard]. The movement of urine spraying also varies among species. For example, bobcats sometimes squat and urinate on the ground20, and snow leopards rub their cheeks against the target object and then spray urine9, but cheetahs do not rub their face before urine spraying. Hence, even in the same behavior of “spraying/scraping,” the actions differ. Because felids are widely distributed in various environments, such differences in movements are possibly related to differences in habitat and behavioral functions.In conclusion, urine spraying and scraping using hind paws were considered scent-markings because they were more strongly associated with sniffing than other excretion. Both behaviors were also observed only in adults; however, urine spraying was confirmed in both sexes and was more frequent in males than in females, whereas scraping was observed only in males. Also, the frequencies of both behaviors were significantly higher in males kept in shared enclosures containing other individuals than in males kept in monopolized enclosures, while there was no difference in the frequencies among females. Hence, there were sex differences in these scent-markings possibly because of the difference in the sociality between the sexes even in captivity; the frequency of scent-markings was affected by the living environment including the number of target objects; urine spraying was frequently done on tall objects such as walls or fences, whereas scraping was more commonly done on low-lying objects near the ground, such as straw piles. To our knowledge, this study is the first to confirm that during the scraping a liquid other than feces and urine was secreted, presumably from the anal glands. Taken together, the results can serve to enhance our knowledge regarding the behavior of cheetahs, help improve management of these animals in captivity as well as breeding and animal welfare ex situ conservation, and help elucidate the kind of habitat that should be preserved for the in situ conservation of cheetahs. More

  • in

    Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system

    Iron and carbon dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms a synthetic phototrophic communityThe synthetic microalgal-bacterial community based on the active exchange of iron and carbon was developed by screening multiple siderophore producer bacteria and dye decolorizer algae (Fig. 1; refer to Supplementary Data S1 for detailed results). Out of seven bacterial isolates obtained from untreated textile wastewater, five showed relatively high siderophore production in CAS agar plates and broth (Fig. S1). In broth, Serratia plymuthica PW1, Serratia liquefaciens PW71, and Ralstonia pickettii PW2 produced siderophores in decreasing order of concentration, i.e., 15.26 ± 1.3  > 13.28 ± 0.9  > 10.85 ± 0.7 µMmL−1 (Table 1). Arnow’s assay confirmed that S. plymuthica PW1 (81.10 ± 9.8 µMmL−1), R. pickettii PW2 (97.43 ± 16.8 µMmL−1), and S. liquefaciens PW71 (103.1 ± 8.3 µMmL−1) produced catecholate-type siderophores. On the other hand, Csaky’s assay confirmed that Stenotrophomonas maltophilia PW5 (37.86 ± 0.4 µMmL−1) and Stenotrophomonas maltophilia PW6 (17.73 ± 0.2 µMmL−1) produced hydroxamate-type of siderophores. Out of the five algal species, only freshwater microalgae Chlorella sorokiniana and Scenedesmus sp. showed the highest dye degradation potential; therefore, they were selected for further experiments (Data S1).Fig. 1: The study design explains different stages of experiments to develop a phototrophic community of previously non-associated algae and bacteria.The stages include (A) isolation of bacterial strains from textile wastewater collected from Panipat Industrial area, Haryana (India); B cultivation of freshwater and marine algal strains; C assessment of siderophore production in bacterial strains using Schwyn and Neilands’s universal Chrome Azurol S (CAS) assay; D assessment of dye degradation potential of algae strains using Acid Black 1 (AB1) dye; E interaction study between siderophore producing bacteria and dye degrader microalgae to identify bacterial strains that could sustain on algae-derived DOM secreted in algal exudates; F algal-bacterial co-culturability assessment to study different types of microbial interactions viz. antagonism, mutualism, or no interaction between the two organisms, and G identification of algal-bacterial model phototrophic community based on the active exchange of iron and DOM (refer to Data S1 for detailed results).Full size imageTable 1 Characterization of siderophore production in bacterial strains isolated from textile wastewater.Full size tableAfter that, the sterile exudates from C. sorokiniana and Scenedesmus sp. were used as the sole source of dissolved organic matter for bacterial growth and selection of appropriate microalgal-bacterial partners comprising the phototrophic community (Fig. 1E; Data S2). All five bacterial isolates grew well on the exudate of C. sorokiniana as a sole source of carbon. On the contrary, on exudates of Scenedesmus sp., S. plymuthica PW1 showed moderate growth in 20 h, while the growth of R. pickettii PW2 and S. liquefaciens PW71 remained insignificant. S. maltophilia PW5 and PW6 failed to grow in the exudate of Scenedesmus sp. (Fig. S2B).Finally, the compatibility between the phototrophic community of selected microalgae (C. sorokiniana/ Scenedesmus sp.) and siderophore-producer bacteria (S. plymuthica PW1/ R. pickettii PW2/ S. liquefaciens PW71) was tested by co-culturing them in iron limiting BBM media (BBM-Fe; without EDTA) (Fig. 1F). In the absence of EDTA, Fe precipitates rapidly as iron oxyhydroxides and becomes unavailable to microbes. Microalgal growth curves in co-culture assays were used to measure and compare population characteristics such as carrying capacity ‘k’, growth rate ‘r’, etc., in axenic and consortium setups. Algal growth parameters in co-culture with a bacterial partner were used to categorize their interaction as putative mutualistic, antagonistic, and neutral (Data S1, Tables S1 and S2) [42]. Under iron-limiting conditions, axenic C. sorokiniana experienced iron stress as the cell growth was 4.2 ± 0.4 × 106 cells mL−1 after 200 h incubation. On the other hand, axenic Scenedesmus sp. showed a significantly higher growth (11.3 ± 1.2 × 106 cells mL−1) than C. sorokiniana suggesting an effective iron uptake mechanism under iron-limiting conditions (k; t-test, p = 0.001) (Table S1). In contrast to the axenic microalgal culture, C. sorokiniana in co-culture with R. pickettii PW2 showed a significant increase in cell count at 200 h (6.2 ± 0.85 × 106 cells mL−1) (auc; p = 0.000). However, S. plymuthica PW1 exerted a negative effect on C. sorokiniana (Fig. 2A), as indicated by its significant increase in doubling time (p = 0.009) and reduction in auc (p = 0.001) (Fig. 3A). While S. liquefaciens PW71 remained neutral to C. sorokiniana (auc; p = 0.430) (Fig. 2A, Table 2). On the other hand, the interaction of Scenedesmus sp. with both R. pickettii PW2 and S. liquefaciens PW71 was neutral, while S. plymuthica PW1 showed a negative effect (Figs. 2A and 3A).Fig. 2: Assessment of algal and bacterial growth in co-culture experiments.A The growth curves represent the difference in the growth of C. sorokiniana when grown axenically or in co-culture with S. plymuthica PW1, R. pickettii PW2, and S. liquefaciens PW71 under iron limiting conditions. Whereas, the effect of bacteria on the growth of Scenedesmus sp. was less prominent. The difference in the CFUs of bacterial strains in axenic culture and co-culture suggests the growth-promoting effect of C. sorokiniana on S. plymuthica PW1 and R. pickettii PW2. B Anion-exchange chromatography suggests a difference in the glycosyl composition in the EPS of C. sorokiniana and Scenedesmus sp. C The area under curve (auc) of S. plymuthica PW1 and R. pickettii PW2 obtained after growth curves in different sugars. Here, ‘a’, ‘b’, etc., represent grouping after Tukey’s post hoc test.Full size imageFig. 3: Assessment of algal growth parameters in the algal-bacterial phototrophic community under iron-limiting conditions.A The confidence interval plots represent the significant difference in the growth parameters i.e., growth rate ‘r’, carrying capacity ‘k’, doubling time ‘Dt’, and area under curve ‘auc’, of C. sorokiniana (left panel) and Scenedesmus sp. (right panel) in algal-bacterial co-cultures w.r.t. to axenic culture (horizontal blue dashed line). The symbols ‘*’ and ‘**’ represent p values with statistical significance of ‘p  More

  • in

    Maladaptive evolution or how a beneficial mutation may get lost due to nepotism

    Our model results indicate that in species with a strict social dominance hierarchy where social rank is determined by nepotism, a beneficial mutation occurring in a low-ranking female is not very likely to get established. This outcome emerged despite the immense advantage of the modeled mutation, which doubled its carrier’s survival probability. Moreover, the reproductive skew in our model (see Supplementary Fig. 1) was less radical than the skew reported for the spotted hyena females21, which means that in the model, low-ranking females had a relatively higher reproductive success potential than in reality. In other words, our model may be underestimating the severity of the negative selection a low rank induces.It is reasonable to assume that a low-ranking mutant female in a female dominant society would produce very few surviving offspring due to her low rank and ensuing lack of access to resources. Thus, this female would have only a slight chance to transmit the mutation to the next generation. If this female does reproduce successfully and produces a female which also inherits the mutation, chances of this daughter to pass on the mutation are also slim, as her rank would be even lower than that of her mother. However, if the young produced is a male and has inherited the mutation, chances of transmitting the mutation may increase depending on the male’s reproduction odds. As demonstrated by the four scenarios, the reduction in mutation establishment with decreasing mutant female’s rank became more and more prominent with increasing restrictions on male reproduction. In all four scenarios, the mutation establishment rate median was zero for the lowest ranking mutants, and in all cases but Scenario I, it was 41. Although female dominance hierarchy exists in a few of these species (e.g., Peruvian squirrel monkey41, ring-tailed lemur (Lemur catta)39,42, Verreaux’s sifaka (Propithecus verreauxi))13,25, we did not find any studies indicating female reproductive skew in any of them. Holekamp and Engh25, who reviewed the more classical female dominant species, also reported no evidence for female reproductive skew.This seemingly lack of female reproductive skew among most female dominant species is quite surprising in light of the rather common correlation between social rank and female reproductive success in male dominant species. To mention a few, considerable female reproductive skew is found in baboons (Papio spp), macaques (macaca spp.), feral horses (Equus caballus) and plains zebras (Equus burchelli)8,15,19.Holekamp and Smale28 state that “reproductive skew among female spotted hyenas appears to be greater than that documented among females of male-dominated species characterized by plural breeding”. They suggest that the key determinant of reproductive success among females in this species is rank-related priority of access to food resources. This high priority is reinforced by female dominance over males and is particularly important as this species resides in an environment in which prey availability is seasonal and scarce at times21. Our study suggests that this extreme difference in reproductive success, which, unlike in male-dominated species, is determined by nepotism rather than by physical characters, may induce a handicap on the entire population preventing the establishment of beneficial mutations. This may also hinder adaptation to a changing environment. However, our study results indicate that male equal access to females may, at least partially, counter the inhibition effect on a beneficial mutation establishment. More research is necessary in order to investigate female reproductive skew in species with a social structure similar to that of the spotted hyena, which is characterized by female dominance over males, plural breeding, and a strict female linear social hierarchy determined by nepotism.One intriguing possibility for testing this model’s validity would be an empirical study, provided that the value of some adaptive trait can be measured. In the case of the spotted hyena such a trait may refer to hunting success or physical capabilities. It is well established that adult female spotted hyenas are larger and more aggressive than adult males21, but little attention has been allocated to the study of individual physical differences among females of different ranks. Smith et al.43 studied within clan aggression in the context of the fission-fusion behavior characterizing the spotted hyena clans. Their results indicate more frequent aggression and resulting fissions occurring during times of food shortage. Rank was found to be the major correlate of an aggressive incident result. If it is possible to identify low-ranking females with some beneficial trait (independent of rank), it would be interesting to follow such females’ inclusive reproductive success along time, and even more so, the reproductive success of their sons.Another possible path around the conflict this model suggests would be through the selection of male admission into new clans. Male admission into clans is often constrained by severe aggression of resident immigrant males which may prevent or delay male admission21,26. Such behavior may in fact promote mutant male chances, at least in the case of a mutation that improves physical capabilities.One last, though not very likely possible detour around this difficulty is the occurrence of dominance rank exchanges. Such rank improvements are not very common among female dominated societies, except for in the case of aging females who may clear the way for their daughters44. However, Straus and Holekamp44 found that individuals who repeatedly form coalitions with their top allies are likely to improve their position, and, according to Strauss and Holekamp44, “facilitate revolutionary social change”. It should be kept in mind that not only are such incidents rather rare, but they are unlikely to turn a very low-ranking female into a high-ranking one, especially not when group size is large.More empirical and theoretical research should shed more light on this intriguing question of possible maladaptive evolution. Our model, in line with a few other models such as that of Holman31, suggests that evolution may not always lead to the best solution. As in every process, a local optimum may get evolution trapped and prevent further advance to better optima. More

  • in

    Social Support and Network Formation in a Small-Scale Horticulturalist Population

    Human evolutionary research has historically conceptualised social support as a purely dyadic phenomenon (e.g., see Refs. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16). That is, given some trait pertaining to two persons i and j — e.g., their genetic relatedness, history of helping each other, physical proximity, or difference in wealth — does i help j? Both elegant and tractable, this dyad-centric view of social support evokes classic theoretical models of cooperation as a “Prisoner’s Dilemma” within a void consisting only of ego (i) and alter (j)17. Yet it also belies the fact that aid relationships (i.e., who helps who) constitute complex networks of supportive social bonds that emanate throughout entire human communities.Members of such networks may, in principle, unilaterally help whomever they wish. And their decisions to help — or to not help — specific others comprise a dynamic, supra-dyadic relational context that shapes one’s plausible set of aid targets at the micro level18,19,20,21,22. Put simply, in social support networks, aid is targeted and interdependent across dyads such that the patterning of cooperation among multiple alters jointly affects whom any one network member helps. This sociocentric (i.e., whole network) view of social support is distinct from the perspective taken by evolutionary graph theorists who study the emergence of cooperation on network structure and other spatial substrates (e.g., square grids) that may be fixed or dynamic (e.g., see Refs. 23,24,25). And it is distinct from the perspective taken by analysts of egocentric (i.e., personal) networks who study how the arrangement of intimate relationships exclusively between one’s closest contacts (e.g., the extent to which one’s friends are also friends) eases access to help (e.g., see Martí, Bolíbar, and Lozares26).Differences between the dyad-centric and the sociocentric perspectives on social support are not merely cosmetic. Indeed, the dyad-centric stance of human evolutionary research has led to a situation wherein the relational context of helping behaviour is underexplored. And this has, in turn, impaired understanding of the relative importance of fundamental evolutionary mechanisms to the structuring of cooperative relationships in human communities.Specifically, human evolutionary research on helping behaviour generally takes the theories of kin selection and reciprocal altruism as lodestars. In so doing, sociometric data from subsistence societies across the globe have been used to investigate whether consanguinity (i.e., genetic kinship) and reciprocity govern aid unconditionally and in relation to multiple social and demographic factors. These include affinity (i.e., marriage-based kinship), physical proximity, relative need, homophily (e.g., based on age and gender), social closeness, friendship, religiosity, reputation, conflict, status, and anthropometric measurements such as size, height, and strength. And, on balance, evidence1,2,3,4,5,6,7,8,9,10,13,14,16,27,28,29,30,31,32,33 suggests that helping family and responding in kind when helped are the primary mechanisms by which humans informally distribute resources vital to day-to-day survival (e.g., advice, information, food, money, durables, and physical assistance).However, despite laudable exceptions2,7,15,28,29,30,31,32,33,34 and perhaps due to the influence of methodological trends in the wider behavioural ecology literature on relationships between animals (see Refs. 35,36,37), human evolutionary studies of real helping behaviour have typically relied on non-network methods — namely, monadic regression, dyadic regression, and permutation tests (e.g., see Refs. 1,2,3,5,6,8,9,10,11,12,13,14,16,27). Respectively, these techniques treat the supra-dyadic structure of social support networks as ignorable, reducible to dyads, or a nuisance to be corrected for38. Yet, sociocentric research by sociologists39,40,41,42,43,44,45,46,47,48,49 firmly establishes that humans create and maintain relationships in accordance with factors intrinsic to the supra-dyadic arrangement of network structure itself (e.g., processes of degree-reinforcement and group formation involving at least three persons). And this sociological research makes clear that network-structure-related dynamics can operate simultaneously and independently of non-network factors (e.g., age and kinship).Ultimately, reliance on methods that disregard complex interdependences between aid obscures the extent to which helping family and responding in kind when helped outrank the dynamics of the cooperative system within which decisions to assist specific individuals take place. This uncertainty represents a substantial gap in our scientific understanding of altruism. Accordingly, here I tackle a major point of interest in evolutionary anthropology and human behavioural ecology50 specifically through the lens of the sociology of social networks18,21,51, asking:RQ: How important is helping family and responding in kind when helped relative to supra-dyadic, network-structure-related constraints on the provision of aid?The Current StudyTo answer my research question, I use Koster’s27 recently-released cross-sectional data on genetic relatedness and the habitual provision of tangible aid (e.g., firewood, food, valuable items, and/or physical assistance). Re-analysed here due to their exceptional detail and measurement quality in addition to their broad relevance to the scientific community (see Methods), these data were collected in 2013 and concern a complete population. Specifically, they cover all 108 adult (18+) residents (11,556 ordered dyads) of the 32 households of Arang Dak — a remote village of 279 indigenous Mayangna and Miskito swidden (i.e., “slash-and-burn”) horticulturalists. Arang Dak sits on the Lakus River in Nicaragua’s Bosawás Biosphere Reserve, a neotropical forest in the Department of Jinotega.In total, the tangible aid network that I analyse — i.e., x(t2013)— consists of 1,485 asymmetric aid relationships between the adult residents of Arang Dak. Of the 1,485 aid relationships, 1,422 are verified by the source and the recipient of help. That is, xij(t2013) = 1 if villager i reported in 2013 that they give tangible aid to villager j at least once per month and villager j reported in 2013 that they receive tangible aid from villager i at least once per month. Still, note that Koster’s27 data document self-reported resource flows as opposed to observed transfers. Named sources and targets of aid are based on the village roster — not freely recalled from memory. See Methods for a summary of the data and details on the measurement of the network and kinship.Modelling StrategyTo analyse tangible aid in relation to supra-dyadic network structure (Fig. 1), I use generative network models following Redhead and von Rueden32 and von Rueden et al.33, amongst other human evolutionary scientists2,7,15,28,29,30,31,32,33,34. Specially, I rely on Stochastic Actor-Oriented Models (SAOMs) which are used for observational (i.e., non-causal) analyses of the temporal evolution of networks.Put simply, SAOMs are akin to multinomial logistic regression. More formally, SAOMs are simulations of individual network members’ choices between outgoing relationships with different rewards and costs. These simulations are calibrated or “tuned” to the observed network data. That is, conditional on x (i.e., the observed states of a dynamic network), SAOMs simulate network evolution between successive observations or “snapshots” of the network at (M) discrete time points — i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right)) — as a continuous-time, Markovian process of repeated, asynchronous, and sequential tie changes. The Markovian process is defined on the space of all possible directed graphs for a set of N = {1, …, n} network members40,42,44,52,53,54,55.SAOMs decompose change between successive network observations into its smallest possible unit. Specifically, “change” means creating one outgoing tie if it does not exist, dropping one outgoing tie if it does, or doing nothing (i.e., maintaining the status quo network). More formally, during a SAOM simulation, focal actors i (ego) myopically modify just one of their outgoing relationships with some alter j in the set of network members N (i.e., j ∈ N, j ≠ i). The change made by i is the change that maximises a utility or “evaluation” function. In this respect, the evaluation function captures the “attractiveness”44 of tie changes — where “attraction” means “…something like ‘sending a tie to [an actor j] with a higher probability if all other circumstances are equal.’” (Snijders and Lomi56, p. 5).The evaluation function itself is a weighted sum of parameter estimates (widehat{beta }) and their associated covariates k (i.e., SAOM “effects”44) plus a Gumbel-distributed variable used to capture random influences55. The simulated tie changes or “ministeps”44 made by i shift the network between adjacent (unobserved) states. These states differ, at most, by the presence/absence of a single tie40,42. And the probabilities of the ministeps — a large number of which are required to bring one observation of the network to the next (i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right))) — are given by a multinomial logit which uses the evaluation function as the linear predictor.Each covariate k used to specify the evaluation function summarises some structural (i.e., purely network-related) feature or non-structural feature of i’s immediate (i.e., local) network — e.g., the sum of the in-degrees of i’s alters, the number of reciprocated dyads that i is embedded in, or i’s number of outgoing ties weighted by genetic relatedness. These features correspond to theoretical mechanisms of interest (e.g., preferential attachment, reciprocal altruism, or kin selection) and generally take the form of unstandardised sums.SAOM parameter estimates (widehat{beta }) (log odds ratios) summarise the association between the covariates and the simulated tie changes or “ministeps”. Specifically, should a focal actor i have the opportunity to make a ministep in departure from some current (i.e., status-quo) network state x in transit to a new network state x±ij — i.e., the adjacent network defined by i’s addition/subtraction of the tie xij to/from x — ({widehat{beta }}_{k}) is the log odds of choosing between two different versions of x±ij in relation to some covariate k. For example, ({widehat{beta }}_{{rm{Reciprocity}}}=1.7) would indicate that the log odds of i creating and maintaining the supportive relation xij is, conditional on the other covariates k, larger by 1.7 when xij reciprocates a tie (i.e., xji) compared to when xij does not reciprocate a tie (i.e., reciprocated ties are more “attractive”). In contrast, ({widehat{beta }}_{{rm{Reciprocity}}}=-1.7) would indicate that the log odds of xij is, conditional on the other effects, smaller by −1.7 when xij reciprocates a tie compared to when xij does not reciprocate a tie (i.e., reciprocated ties are less “attractive”).Given the longitudinal nature of the model, the gain in the evaluation function for a ministep is determined by the difference Δ in the value of the statistic s for a covariate k — i.e., Δk,ij(x, x±ij) = sk,i(x±ij) − sk,i(x) — incurred through the addition/subtraction of xij to/from x (see Block et al.42 and Ripley et al.44 on “change statistics”). Accordingly, ({widehat{beta }}_{{rm{Reciprocity}}}=1.7), for example, is the value that xij positively contributes to the evaluation function when xij increases the network statistic sk,i(x) underlying the Reciprocity effect by the value of one (i.e., ΔReciprocity,ij (x, x±ij) = sReciprocity,i(x±ij) − sReciprocity,i (x) = 1 − 0 = 1).The probabilities of network members being selected for a ministep is governed by a separate “rate” function. And the baseline rate parameter λ is a kind of intercept for the amount of network change between successive observations of the analysed network. Larger baseline rates indicate that, on average, more simulated tie changes were made to bring one observation of the network to the next (i.e., (xleft({t}_{m}right)to xleft({t}_{m+1}right))).However, as the data from Nicaragua are from a single point in time (i.e., 2013), I use the cross-sectional or stationary Stochastic Actor-Oriented Model (cf. von Rueden et al.33). Accordingly, Arang Dak’s tangible aid network is assumed to be in “short-term dynamic equilibrium.” As Snijders and Steglich40 (p. 265) discuss in detail, “this ‘short-term equilibrium’ specification of the SAOM is achieved by requiring that the observed network is both the centre and the starting value of a longitudinal network evolution process in which the number of change opportunities per actor [i.e., λ] is fixed to some high (but not too high) value.”Practically speaking, this means that the cross-sectionally observed network is used as the beginning and the target state for a SAOM simulation — i.e., (xleft({t}_{2013}right)to xleft({t}_{2013}right)) — during which actors are allowed to make, on average, very many changes (i.e., λ) to their portfolio of outgoing ties. These simulated tie changes produce a distribution of synthetic networks with properties that are, on average, similar to those of the cross-sectionally observed network in a converged SAOM — where the target properties correspond to the researcher-chosen SAOM effects k. Put simply, “[cross-sectional] SAOMs assume that the network structure, although changing, is in a stochastically stable state.” (Krause, Huisman, and Snijders57, p. 36–37). Thus, the estimated parameters (widehat{beta }) continue to summarise the rules by which ministeps unfold. However, the asynchronous, sequential, simulated tie changes, in a sense, “cancel out” and thus hold the network in “short-term dynamic equilibrium”40,42. Formally, the cross-sectional SAOM is defined as a stationary distribution of a Markov Chain with transition probabilities given by the multinomial logit used to model change between adjacent network states40,42.The rate parameter λ is fixed at 36 for my analysis. The value of 36 is the maximum observed out-degree in the source-recipient-verified tangible aid network x(t2013). Accordingly, under λ = 36, all members of the tangible aid network have, on average, at least one opportunity to modify their entire portfolio of outgoing ties during the simulations. Nevertheless, to ensure the robustness of my results, I also fit a second set of models for which λ was fixed to 108 (i.e., thrice the maximum out-degree).Model SpecificationTo assess the importance of kinship and reciprocity to hypothetical decisions to help others (i.e., ministeps), I use four archetypal specifications of the SAOM’s evaluation function. These model specifications feature nested sets of covariates (i.e., the SAOM “effects”44). And, using language found in prior evolutionary studies3,5, I refer to these archetypal specifications as the “Conventional Model” (Model 1) of aid, the “Extended Model” (Model 2) of aid, the “Networked Aid Model (Limited)” (Model 3), and the “Networked Aid Model (Comprehensive)” (Model 4).The first specification (i.e., Model 1) comes from Hackman et al.3 and Kasper and Borgerhoff Mulder5 who respectively label it the “Human Behavioural Ecology” and “Conventional” model. This specification is comprised of just four dyadic covariates — one each for consanguinity (i.e., Wright’s coefficient of genetic relatedness), affinity (i.e., Wright’s coefficient of genetic relatedness between i’s spouse s and his/her blood relative j), the receipt of aid, and geographic distance. The first three covariates are used to test long-standing predictions of helping in order to reap indirect and direct fitness benefits in line with the theories of kin selection and reciprocal altruism (see Refs. 1,5,27,58,59 for primers). And the fourth covariate is used to adjust for tolerated scrounging — i.e., what Jaeggi and Gurven4 (p. 2) define as aid resulting from one’s inability to monopolise resources due to costs imposed by the resource-poor — where a covariate for distance operationalises pressure to help imposed by those who are spatially close4.The second specification (i.e., Model 2) reflects Kasper and Borgerhoff Mulder’s5 and Thomas et al.’s9 extensions to the conventional model (see also Page et al.16). Specifically, and following important work by Allen-Arave, Gurven, and Hill1, Hooper et al.14, and Nolin7, it is distinguished by nuanced tests of kin selection and reciprocal altruism via interactions between: (i) consanguinity and the receipt of aid; (ii) consanguinity and relative need; and (iii) consanguinity and geographic distance. Furthermore, Kasper and Borgerhoff Mulder’s5 and Thomas et al.’s9 extended model includes covariates for the non-network-related attributes of individuals (e.g., gender, wealth, and physical size), thus adjusting for homophily, trait-based popularity, trait-based activity, and local context (e.g., results from a gift-giving game9 or, in the present case, infidelity and discrimination based on skin-tone27).The third specification (i.e., Model 4) is my revision of the second. It is geared to make the relational context of aid explicit. This is done using nine covariates that account for the breadth of sociologists’ contemporary understanding of supra-dyadic interdependence between positive-valence (i.e., not based on disliking or aggression), asymmetric social relationships39,40,41,42,43,44,45,46,47,48,49. In keeping with the nature of the SAOM, each of these covariates summarises some structural feature of a villager’s immediate (i.e., local) network (e.g., the number of transitive triads that she is embedded in). Accordingly, each structural covariate is used to capture a form of self-organisation — i.e., network formation driven by an individual’s selection of alters in response to network structure itself (Lusher et al.49, p. 10–11 and 23–27).Specifically, the covariates added in the third specification reflect predictions derived from three fundamental sociological theories of the emergence of non-romantic relationships. The first is structural balance theory which posits that individuals create and maintain ties that move groups of three people from an intransitive to a transitive state (i.e., transitive closure), the latter of which is understood to be more psychologically harmonious or “balanced” (see Refs. 39,43,47,48,60,61,62 for primers). The second is Simmelian tie theory which posits that, once formed, individuals will maintain relationships embedded in maximally-cohesive groups of three people such that 3-cliques (i.e., fully-reciprocated triads) are resistant to dissolution (see Refs. 43,48,63 for primers). The third is social exchange theory (as it relates to structured reciprocity) which posits that individuals will unilaterally give benefits to others in response to benefits received such that indirect reciprocity (i.e., returns to generosity) and generalised reciprocity (i.e. paying-it-forward) in groups of three people encourage cyclic closure — i.e., the simplest form of chain-generalised exchange (see Refs. 19,20,43 for primers). Furthermore, the third specification reflects the broad prediction that individuals vary in their propensity to send and receive relationships based on their structural position alone (e.g., popularity-biased attachment) leading to dispersion in the distribution of in-degrees and out-degrees (see Refs. 39,44,49 for primers) — especially for ties with an inherent cost to their maintenance39,42.Last, I consider a fourth specification (i.e., Model 3) that uses a subset of the nine network-structure-related covariates included in Model 4. This limited set of structural effects typifies the specifications used in prior human evolutionary studies of empirical help that present generative models of entire networks2,7,15,28,29,30,31,32,33,34. Specifically, the fourth specification features just three network-structure-related covariates to account for structural balance theory, self-reinforcing in-degree (i.e., popularity-bias), and the interplay between in-degree and out-degree.Descriptive statistics for the relevant attributes of the 108 residents of Arang Dak appear in Table 1. Formulae used to calculate the network statistics sk,i(x) underlying each effect k used to specify my SAOMs, alongside verbal descriptions to aid reader interpretation, appear in Online-Only Table 1. See Methods for additional rationale behind the third specification.Table 1 Descriptive statistics for the monadic and dyadic attributes of the residents of Arang Dak.Full size tableModel ComparisonCompared to prior human evolutionary research on social support networks, I take two novel approaches to gauging the importance of kinship and reciprocity to help. First, I use a technique41 specifically designed to measure the relative importance of individual effects in SAOMs (see Methods). And second, I evaluate each specification’s ability to produce synthetic graphs with topologies representative of the structure of the analysed tangible aid network64.Judging model specifications using topological properties reflects one of the core purposes of methods such as the SAOM and the Exponential Random Graph Model (ERGM) — i.e., to explain the emergence of global network structure (see Refs. 40,42,46,47,49 also Refs. 18,48), not simply the state of individual dyads (i.e., is aid given or not?). Admittedly, explaining global network structure is not a stated primary aim of dyadic-centric or sociocentric studies of help by human evolutionary scientists, including those wherein authors rely on SAOMs or ERGMs2,7,15,28,29,30,31,32,33,34. Still, topological reproduction is an important, strong test of the relative quality of the four archetypal specifications as each encodes the set of rules presumed to govern network members’ decisions about whom to help.To clarify, recall that here it is assumed, a priori, that network members can, in principle, cooperate with whomever they wish, that their cooperative decisions are intertwined across multiple scales, and that their micro-level decisions ultimately give rise to macro-level patterns of supportive social bonds (see Refs. 18,19,20,21,22). The macro-level patterns generated by SAOMs and ERGMs can differ dramatically based on specification40,46,47,49,64,65. Thus, the empirical relevance of a candidate model rests with its ability to produce synthetic graphs similar to the observed structure40,42,46,47,48,49,64. Ultimately, divergence between the real and simulated graphs suggests that a candidate specification is suspect as it does not describe how some network of interest could have formed. More

  • in

    Dust mitigation by the application of treated sewage effluent (TSE) in Iran

    Sewage and TSE quantity characteristicsThe WWT facilities have been implemented for Zabol with a capacity of 39,000 m3/day. Table 1 shows the volume of water consumption and sewage production based on the sewage coefficient in urban communities of the study area.Table 1 Water consumption, TSE volume and receiving resources in the study area—2019.Full size tableAs shown in Table 1, the total water consumption in the study area is 22.538 mcm/year while based on the development conditions. Afterward, the sewage volume was calculated to 16.194 mcm/year, considering the sewage coefficient and water consumption.Continuously, the sewage data obtained from the Water and Wastewater Organization of Zabol city, Iran, showed that the sewage entrance to the treatment plants of the study area is about 19,000 m3/day and 137 working days. Therefore, the TSE volume of the WWT plant was calculated based on the following scenarios of (1) data obtained from the Water and Wastewater Organization, Iran, and (2) based on the capacity of WWT plant. Note that the working days for both scenarios will be 137. The calculation is based on Eq. (1). The total TSE volume for scenarios 1 and 2 is 2.8 and 5.1 mcm/year, respectively.The difference between the calculation based on capacity and the existing data is due to the removal of raw sewage before entering the treatment plant, which has caused health and environmental problems in the region. Data obtained from Iran Department of Environment34 showed that 1.68 mcm/y of sewage were extracted for the farms. Previous studies in the same study area also reported the significant (P  5. Note that typical abundance of total and fecal coliforms (FC) in raw sewage are 107–109 and 106–108 100/mL, respectively, and were reduced by 1–5 orders of magnitude in treated TSE, depending on the type of treatment39,40. Classical treatments, which do not include any specific disinfection step, reduce fecal micro-organisms densities by 1–3 orders of magnitude40, but because of their high abundance in raw sewage, they are still discharged in large numbers with treated TSEs in the environment.Figure 6The results of the abundance of total coliforms (TC) and fecal coliforms (FC).Full size imageAdditionally, the results of yearly values of physicochemical factors of Zabol TSE (mg/L) including BOD5, COD, TDS, TH, and EC in the period of 2017–2019, showed in Fig. 7. The yearly results suggested that the values through the years of investigation did not show significant changes. In the following parts, the possibility of TSE evaluated considering various standards.Figure 7The results of yearly values of physicochemical factors of Zabol TSE.Full size imagePotential application of TSEComparing the quality of the TSE and sewage are based on various regulations showed in Table 3. It includes the food and agriculture organization (FAO), US environmental protection agency (USEPA), the Canadian water quality index (CWQI), and Iran’s national standards (INS), considering the irrigation and recreational application.Table 3 Guidelines for interpretations of water quality of sewage and TSE of Zabol WWT plants (average in the period of 2017–2019) compared to the standards of regulations.Full size tableAccording to the FAO Guide41 for Classifying Agricultural Water Quality, as shown in Table 3, the most crucial parameters for the application of TSE in irrigation include electrical conductivity (EC), sodium uptake ratio (SAR), chlorine, BOD, COD, and FC. However, three out of seven parameters namely BOD, COD, and FC in the TSE are largely erratic with the limits recommended in the standards.Based on USEPA42, the value of total suspended solids in TSE of Zabol WWT plant largely inconsistent with the limits recommended in the standards for TSE reuse. However, TDS, EC, and pH, met the criteria. Moreover, except TSS and pH, the other chemical parameters of sewage also meet the criteria. It is worth mentioning that EPA does not require or restrict any types of water reuse. Generally, states maintain primary regulatory authority (i.e., primacy) in allocating and developing water resources. Some US states have established programs to specifically address reuse, and some have incorporated water reuse into their existing programs. EPA, states, tribes, and local governments implement programs under the Safe Drinking Water Act and the Clean Water Act to protect the quality of drinking water source waters, community drinking water, and waterbodies like rivers and lakes.According to INS regulations for irrigation and recreation reuse of TSE33, the value parameters tested for the TSE of the Zabol WWT plant are following the limits recommended in the standards for consumption as irrigation (except chlorine) and recreation projects.Finally, the CWQI is a means to provide consistent procedures for Canadian jurisdictions to report water quality information to both management and the public. The CWQI value ranges between 1 and 100, and the result is further simplified by assigning it to a descriptive category in Table 4.Table 4 The CWQI value and descriptive.Full size tableThe results of CWQI software for analyzing the TSE of the WWT plant in the study area, as shown in Table 5 and Fig. 8, indicated its poor quality for drinking, and aquatic. While it is fair for livestock and marginal for irrigation. However, considering the purpose of this study for irrigation of the native plants, it met the criteria. Note that the input data set is based on the period of 2017–2019.Table 5 The results of TSE in various applications assessed by CWQI.Full size tableFigure 8CWQI tets results for TSE of WWT plant in the study area.Full size imageThe results of this section indicated the consideration of various parameters due to various regulations and demonstrated that the treatment technology upgrade was significantly better than those of urban miscellaneous water and agriculture water standards, indicating this system can be widely used for urban landscape hydration. Moreover, squeezing the sewage treatment process for being cost effective could be recommended considering the measurements of FC, BOD, and COD.Optimal area suggestion for project executionConsidering three steps of wind erosion which are detachment, transportation, and deposition, the sand fixation methods have to be done in the detachment area to be more effective. Hence, the most advantageous regions for project execution were selected based on the factors of (a) discovering the dust origins, and (b) vegetation cover. Regarding the first concern, it was shown that the dry sediments of the Farah river43, and the presence of dunes between the two sand movements corridors in Sistan, namely Jazinak (near Zabol city) and Tasuki corridors (shown in Fig. 9), was increased the dust concentration in Zabol city37,44 while the agricultural lands, and other infrastructures such as roads, and irrigation canals developed in the area between Zahedan and Zabol city.Figure 9Locations and names of Hamuns lake and sand movement corridors in the study area © 2022 by Springer Nature Limited is licensed under Attribution 4.0 International (created by ArcMap 10.5).Full size imageSubsequently, based on a guide that 30% of vegetation cover has a significant effect on the process of soil detachment45,46, and soil protection in the desert areas47, the regions with less than 30% vegetation cover in the study area based on field observation was investigated and showed in Fig. 10. Field observation demonstrated that most areas along with the Jazinak sand corridor and Zabol city have 1–15% and 15–30%36, which are in the priority for stabilization.Figure 10The critical dust hotspot and dust origins in the study area © 2022 by Springer Nature Limited is licensed under Attribution 4.0 International (created by ArcMap 10.5).Full size imageThe results are consistent with Abbasi et al.37, reported that the Hamun Baringak Lake plays a crucial role in the aeolian mobilization of sediments in the Sistan region because of the hydrological droughts that led to the gradual decline of the wetland vegetation cover. Notably, Jahantigh48, in the same study area, reported that the average forage yield of Aeluropus lagopoides in Hamun Hirmand lake in the condition of the water inflow and during drought, was estimated to be 8869 and 173 kg/ha, respectively. It can be explained by the effect of water presence on plant production and cover. However, the average of bare soil of Hamun lake was estimated to be 7.5% and 84.2% in the two periods of water inflow and drought, respectively48. It indicated the impact of dusty days. Therefore, the mentioned areas with the vegetation cover below 30% prioritized for stabilization techniques to dust reduction or mitigation.The detailed field investigation of the land use and vegetation cover, as shown in Fig. 12, indicated the presence of native plants such as A. lagopoides and Tamarix spp. Based on Fig. 11, among the Tamarix genus, the three species of T. aphylla, T. stricta, and T.hispida were observed in the study area. T. stricta is a native species to Iran with benefits including, traditional therapeutic uses in Persian Medicine49,50. Also, the soil EC in the habitat of T. aphylla (15.70 mhos/cm) is almost the same as the control area (15.80 mhos/cm) in the depth of 0–30 cm; while the available potassium in T. aphylla habitat (460 mg/l) was also more than the control area (180 mg/l)51. Hence, the afforestation of Tamarix spp. has caused the addition of soil amendments and increased the clods.Figure 11The most land use/cover in the study area.Full size imageConsequently, the water requirement of the plants in the desert area consisting of T.aphylla, is reported in Table 6. The water requirement of T. stricta was estimated based on Table 6 to be 580 m3/ha for 500 plants no./ha with a vegetation cover of 10–30%.Table 6 Annual water requirement of the T. aphylla for irrigation in the early stages of establishment in terms of planting density (Rad, 2018).Full size tableMoreover, Fig. 12 shows the vast (50% more) soil coverage of T. stricta in the collar area compared to T. aphylla. Therefore, it is more appropriate to cultivate T. stricta than T. aphylla for the biological restoration of the region. Note that the introduced dust mitigation technique using TSE of Zabol WWT can play a specific role in the rehabilitation of soil cover in the mentioned area due to the low water need of native plants. Consequently, it has a significant impact on dust reduction in Zabol city.Figure 12The picture of (a) T. stricta and (b) T. aphylla in the study area.Full size imageHence, based on the hotspots of dust origins in the study area, the most appropriate sites for the project executions of TSE were selected, as shown in Fig. 13. Investigations indicated that a total of 27,500 ha are suitable for the project excision. Hence, considering the water requirement of 500 m3/ha/year, TSE volume of 5.1 mcm/year, vegetation cover of below 30%, and other observations such as the soil coverage in the collar area, the native plant of T. stricta selected for the afforestation of 10,000 ha on the west part of Zabol. This region has the priority in stabilization due to companionship to the corridors with a vegetation cover of 16–30%.Figure 13Area suggested for the dust mitigation project execution by the application of TSE © 2022 by Springer Nature Limited is licensed under Attribution 4.0 International (created by ArcMap 10.5).Full size imageCost analysisFinally, due to the vast area of TSE application, the total of 27,500 ha, with the puprose of dust mitigation, the project execution costs must have been addressed. Hence, Fig. 13 shows the distance of Zabol city to Hamun Hirmand and Baringak lake for transportation calculation. Accordingly, the distance from Zabol to Hamun Hirmand and Baringak lake is 14 and 33 km, respectively. The whole area around Zabol city to Hammon Hirmand lake is cultivated lands; hence, the existing roads reduced construction costs.The two main modes of transportation are trucks and pipelines. There are various pros and cons to both methods. Truck transportation is favored for low volume and short distances, while its costs rapidly increase for large-scale transportation. On the other hand, pipeline transportation is appropriate for large volumes, and long travel distances as it has a positive impact on reducing greenhouse gas emissions. Using pipelines also reduces noise, reduces highway traffic, and improves highway safety.Based on the literature, the variable and fixed transportation cost components depend on the type of product shipped, design requirements, and other decisions related to facility planning. For the sewage sludge with a pH level of 7.0 ± 0.1; hence, a low-cost PVC pipe suggested. Moreover, for cost optimization, as the WWT facilities in the study area do not generate enough volume daily, it makes economical sense to store sewage for a few days to increase the shipped volume. However, reducing the storage to a single day condenses these investment costs drastically52.It was estimated that the total costs for a facility-owned and rented single trailer truck with a capacity of 30 m3 to be $5.6/m3 and 7.4/m3/km, respectively53. Hence, the variable unit transportation cost along a pipeline with a capacity of 480 m3/day is estimated to be $0.144/m3/km. In despite of previous studies mentioning that it is more economical to use a pipeline rather than a rented single trailer truck if the volume shipped is greater than 700 m3/day, in the study area, it is more economical to use a facility-owned single trailer truck, while the shipped volume is 1200 m3/day due to the low cost of petroleum and very close distance of the suggested area. More

  • in

    No evidence for long-range male sex pheromones in two malaria mosquitoes

    Alexander, R. D., Marshall, D. C. & Cooley, J. R. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. C. & Crespi, B. J.) 4–31 (Cambridge Univ. Press, 1997).Clements, A. N. The Biology of Mosquitoes. Volume 2: Sensory, Reception and Behaviour (CABI Publishing, 1999).Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–298 (1969).Article 

    Google Scholar 
    Gibson, N. H. E. On the mating swarms of certain Chironomidae (Diptera). Trans. R. Entomol. Soc. Lond. 95, 263–294 (1945).Article 

    Google Scholar 
    Sivinski, J. M. & Petersson, E. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 294–309 (Cambridge Univ. Press, 1997).Shelly, T. E. & Whittier, T. S. in The Evolution of Mating Systems in Insects and Arachnids (eds. Choe, J. A. & Crespi, J. B.) 273–293 (Cambridge Univ. Press, 1997).Savolainen, E. Swarming in Ephemeroptera: the mechanism of swarming and the effects of illumination and weather. Ann. Zool. Fennici 15, 17–52 (1978).
    Google Scholar 
    Howell, P. I. & Knols, B. G. J. J. Male mating biology. Malar. J. 8, S8 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. II. Swarming behaviour. Physiol. Entomol. 5, 315–320 (1980).Article 

    Google Scholar 
    Marchand, R. P. Field observations on swarming and mating in Anopheles gambiae mosquitoes in Tanzania. Neth. J. Zool. 34, 367–387 (1984).Article 

    Google Scholar 
    Charlwood, J. D. et al. The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from São Tomé Island. J. Vector Ecol. 27, 178–183 (2002).CAS 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Natural swarming behaviour of the molecular M form of Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 97, 713–716 (2003).Article 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc. R. Soc. B Biol. Sci. 276, 4215–4222 (2009).Article 

    Google Scholar 
    Sawadogo, P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Trop. 130, 24–34 (2014).Article 

    Google Scholar 
    della Torre, A. et al. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol. Biol. 10, 9–18 (2001).Article 
    PubMed 

    Google Scholar 
    della Torre, A., Tu, Z. & Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 35, 755–769 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tripet, F. et al. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol. Ecol. 10, 1725–1732 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Diabaté, A. et al. Mixed swarms of the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in sympatric area from Burkina Faso. J. Med. Entomol. 43, 480–483 (2006).Article 
    PubMed 

    Google Scholar 
    Costantini, C. et al. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol. 9, 16 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sawadogo, P. S. et al. Differences in timing of mating swarms in sympatric populations of Anopheles coluzzii and Anopheles gambiae s.s. (formerly An. gambiae M and S molecular forms) in Burkina Faso, West Africa. Parasit. Vectors 6, 275 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Persiani, A., Dideco, M. A. & Petrangeli, G. Osservzioni di laboratorio su polimorfismi da inversione originati da incroci tra popolazioni diverse di Anopheles gambiae s.s. Ann. Dell’Istituto Super. Di Sanita 22, 221–224 (1986).CAS 

    Google Scholar 
    Diabaté, A. et al. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J. Med. Entomol. 42, 548–553 (2005).Article 
    PubMed 

    Google Scholar 
    Diabaté, A., Dabiré, K. R., Millogo, N. & Lehmann, T. Evaluating the effect of postmating isolation between molecular forms of Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 44, 60–64 (2007).Article 
    PubMed 

    Google Scholar 
    Hahn, M. W., White, B. J., Muir, C. D. & Besansky, N. J. No evidence for biased co-transmission of speciation Islands in Anopheles gambiae. Philos. Trans. R. Soc. B Biol. Sci. 367, 374–384 (2012).Article 

    Google Scholar 
    Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 00, 1–19 (2017).
    Google Scholar 
    Lehmann, T. & Diabaté, A. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect. Genet. Evol. 8, 737–746 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clements, A. N. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).Gibson, G., Warren, B. & Russell, I. J. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Assoc. Res. Otolaryngol. 11, 527–540 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Feugère, L., Gibson, G., Manoukis, N. C. & Roux, O. Mosquito sound communication: are male swarms loud enough to attract females? J. R. Soc. Interface 18, 20210121 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poda, S. B. et al. Sex aggregation and species segregation cues in swarming mosquitoes: role of ground visual markers. Parasit. Vectors 12, 589 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dao, A. et al. Assessment of alternative mating strategies in Anopheles gambiae: does mating occur indoors? J. Med. Entomol. 45, 643–652 (2008).PubMed 

    Google Scholar 
    Gomulski, L. Aspects of Mosquito Mating Behaviour. PhD thesis, Univ. London (1988).Kelly, D. W. & Dye, C. Pheromones, kairomones and the aggregation dynamics of the sandfly Lutzomyia longipalpis. Anim. Behav. 53, 721–731 (1997).Article 

    Google Scholar 
    Bray, D. P., Alves, G. B., Dorval, M. E., Brazil, R. P. & Hamilton, J. G. C. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis to experimental chicken sheds treated with insecticide. Parasit. Vectors 3, 16 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diabaté, A. et al. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol. Biol. 11, 184 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levi-Zada, A. et al. Diel periodicity of pheromone release by females of Planococcus citri and Planococcus ficus and the temporal flight activity of their conspecific males. Naturwissenschaften 101, 671–678 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bjostad, L. B., Gaston, L. K. & Shorey, H. H. Temporal pattern of sex pheromone release by female Trichoplusia ni. J. Insect Physiol. 26, 493–498 (1980).Article 

    Google Scholar 
    Merlin, C. et al. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythms 22, 502–514 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 2494 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robledo, N. & Arzuffi, R. Influence of host fruit and conspecifics on the release of the sex pheromone by Toxotrypana curvicauda males (Diptera: Tephritidae). Environ. Entomol. 41, 387–391 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andersson, J. et al. Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210, 964–970 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mozūraitis, R. et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 4, 1395–1401 (2020).Article 
    PubMed 

    Google Scholar 
    Poda, S. B. et al. No evidence for long-range male sex pheromones in two malaria mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.187542 (2021).Verhulst, N. O. et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 5, e15829 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, S. K. & Kim, K. Human body-odor components and their determination. Trends Anal. Chem. 30, 784–796 (2011).CAS 
    Article 

    Google Scholar 
    Dormont, L., Bessiere, J. M., McKey, D. & Cohuet, A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions. J. Exp. Biol. 216, 2783–2788 (2013).CAS 
    PubMed 

    Google Scholar 
    Dormont, L., Bessière, J. M. & Cohuet, A. Human skin volatiles: a review. J. Chem. Ecol. 39, 569–578 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tchouassi, D. P. et al. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus. PLoS Negl. Trop. Dis. 7, e2007 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poli, D. et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J. Chromatogr. B. 878, 2643–2651 (2010).CAS 
    Article 

    Google Scholar 
    Filipiak, W. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath. Res. 8, 027111 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Calenic, B. & Amann, A. Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 6, 357–376 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cainap, C., Pop, L. A., Balacescu, O. & Cainap, S. S. Early diagnosis and screening in lung cancer. Am. J. Cancer Res. 10, 1993–2009 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dekel, A., Yakir, E. & Bohbot, J. D. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochem. Mol. Biol. 111, 103174 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nyasembe, V. O. et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS Negl. Trop. Dis. 9, e89818 (2014).
    Google Scholar 
    Wondwosen, B. et al. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malar. J. 17, 90 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wondwosen, B. et al. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci. Rep. 6, 37930 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suh, E., Choe, D., Saveer, A. M. & Zwiebel, L. J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11, e0149800 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kostiainen, R. Volatile organic compounds in the indoor air of normal and sick houses. Atmos. Environ. 29, 693–702 (1995).CAS 
    Article 

    Google Scholar 
    Kruza, M., Lewis, A. C., Morrison, C. G. & Carslaw, N. Impact of surface ozone interactions on indoor air chemistry: a modeling study. Indoor Air 27, 1001–1011 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tripet, F., Dolo, G., Traoré, S. & Lanzaro, G. C. The ‘wingbeat hypothesis’ of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. J. Med. Entomol. 41, 375–384 (2004).Article 
    PubMed 

    Google Scholar 
    Facchinelli, L. et al. Stimulating Anopheles gambiae swarms in the laboratory: application for behavioural and fitness studies. Malar. J. 14, 271 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niang, A. et al. Semi-field and indoor setups to study malaria mosquito swarming behavior. Parasit. Vectors 12, 446 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibson, G. Swarming behaviour of the mosquito Culex pipiens quinquefasciatus: a quantitative analysis. Physiol. Entomol. 10, 283–296 (1985).Article 

    Google Scholar 
    Bimbilé Somda, N. S. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role of body size in the mating system of Anopheles gambiae. J. Vector Ecol. 37, 289–297 (2012).Article 
    PubMed 

    Google Scholar 
    Maïga, H. et al. Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop. 132S, S102–S107 (2014).Article 

    Google Scholar 
    Schiestl, F. P. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13, 643–656 (2010).Article 
    PubMed 

    Google Scholar 
    Goodrich, K. R., Zjhra, M. L., Ley, C. A. & Raguso, R. A. When flowers smell fermented: the chemistry and ontogeny of yeasty floral scent in Pawpaw (Asimina triloba: Annonaceae). Int. J. Plant Sci. 167, 33–46 (2006).CAS 
    Article 

    Google Scholar 
    Iatrou, K. & Biessmann, H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem. Mol. Biol. 38, 268–274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pitts, R. J., Rinker, D. C., Jones, P. L., Rokas, A. & Zwiebel, L. J. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12, 271 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, T. et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr. Biol. 17, 1533–1544 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guidobaldi, F., May-Concha, I. J. & Guerenstein, P. G. Morphology and physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 108, 96–111 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosqueira, B. et al. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Trop. 148, 162–169 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poda, S. B. et al. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa). Malar. J. 17, 136 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diabaté, A. et al. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Heal. 9, 1267–1273 (2004).Article 

    Google Scholar 
    Santolamazza, F. et al. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 7, 163 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lefèvre, T. et al. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Trop. Med. Int. Heal. 14, 228–236 (2009).Article 

    Google Scholar 
    Lefèvre, T. et al. Beer consumption increases human attractiveness to malaria mosquitoes. PLoS ONE 5, e9546 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vantaux, A. et al. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation. Front. Ecol. Evol. 3, 86 (2015).Article 

    Google Scholar 
    Nguyen, P. L. et al. No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci. Rep. 7, 9415 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tienpont, B., David, F., Bicchi, C. & Sandra, P. High capacity headspace sorptive extraction. J. Microcolumn Sep. 12, 577–584 (2000).CAS 
    Article 

    Google Scholar 
    Bicchi, C., Cordero, C., Iori, C., Rubiolo, P. & Sandra, P. Headspace Sorptive Extraction (HSSE) in the headspace analysis of aromatic and medicinal plants. J. High. Resolut. Chromatogr. 23, 539–546 (2000).CAS 
    Article 

    Google Scholar 
    Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. J. Ecol. 106, 2256–2273 (2018).Article 

    Google Scholar 
    Zellner, Bd’Acampora et al. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr. J. 23, 297–314 (2008).Article 
    CAS 

    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J. M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar  More