More stories

  • in

    Positive geographic correlation between soldiers’ weapon size and defensive prowess in a eusocial aphid, Ceratovacuna japonica

    Predator abundanceThe number of predators on the aphid colonies varied spatiotemporally (Fig. 2). In particular, the number of predators in population A was significantly larger than that in population B in August but not in September (August, t20 = 3.93, P  0.05). In population A, we found predators on the aphid colonies in August and September, but not in June and July. In August, the only predators found were A. ignipicta larvae (0.76 ± 0.19 individuals per aphid colony), whereas in September the predators comprised both A. ignipicta larvae (0.033 ± 0.033 individuals per aphid colony) and T. hamada larvae (0.033 ± 0.033 individuals per aphid colony). In population B, we found no predators in any of the months.Figure 2Temporal and between-population variation in the number of predators per aphid colony. The number of predators represents the sum of the numbers of A. ignipicta and T. hamada larvae. Error bars denote s.e. Asterisks indicate a significant difference between populations (***P  More

  • in

    Inferring the age of breeders from easily measurable variables

    Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 
    Article 

    Google Scholar 
    Sergio, F. et al. Variation in age-structured vital rates of a long-lived raptor: Implications for population growth. Basic Appl. Ecol. 12, 107–115 (2011).Article 

    Google Scholar 
    Sydeman, W. J., Huber, H. R., Emslie, S. D., Ribic, C. A. & Nur, N. Age-specific weaning success of northern elephant seals in relation to previous breeding experience. Ecology 76, 2204–2217 (1991).Article 

    Google Scholar 
    Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N. G., Loison, A. & Toïgo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    Caswell, H. Matrix Population Models. Online Library (Wiley, 2001).
    Google Scholar 
    Colchero, F. et al. The diversity of population responses to environmental change. Ecol. Lett. 22, 342–353 (2019).PubMed 
    Article 

    Google Scholar 
    Morris, W. F. & Doak, D. F. Quantitative Conservation Biology (Sinauer, 2002).
    Google Scholar 
    Stott, I., Townley, S. & Hodgson, D. J. A framework for studying transient dynamics of population projection matrix models: A synthesis of transient demography. Ecol. Lett. 14, 959–970 (2011).PubMed 
    Article 

    Google Scholar 
    Vitousek, P. M. Beyond global warming: Ecology and global change. Ecology 75, 1861–1876 (1994).Article 

    Google Scholar 
    Gamelon, M. et al. Influence of life-history tactics on transient dynamics: A comparative analysis across mammalian populations. Am. Nat. 184, 673–683 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jackson, J., Mar, K. U., Htut, W., Childs, D. Z. & Lummaa, V. Changes in age?structure over four decades were a key determinant of population growth rate in a long-lived mammal. J. Anim. Ecol. 89, 2268–2278 (2020).PubMed 
    Article 

    Google Scholar 
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Oro, D. & Pradel, R. Recruitment of audouin’s gull to the ebro delta colony at metapopulation level in the western mediterranean. Mar. Ecol. Prog. Ser. 180, 267–273 (1999).ADS 
    Article 

    Google Scholar 
    Payo-Payo, A. et al. Predator arrival elicits differential dispersal, change in age structure and reproductive performance in a prey population. Sci. Rep. 8, 1–7 (2018).CAS 
    Article 

    Google Scholar 
    Dunshea, G. et al. Telomeres as age markers in vertebrate molecular ecology. Mol. Ecol. Resour. 11, 225–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna tenuirostris) using dna methylation-based biomarkers. Mol. Ecol. Resour. 19, 411–425 (2019).PubMed 
    Article 

    Google Scholar 
    Horvath, S. Dna methylation age of human tissues and cell types. Genome Biol. 14, 1–20 (2013).Article 

    Google Scholar 
    Xia, X., Chen, W., McDermott, J. & Han, J.-D.J. Molecular and phenotypic biomarkers of aging. F1000Research 6, 860 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parrott, B. B. & Bertucci, E. M. Epigenetic aging clocks in ecology and evolution. Trends Ecol. Evol. 34, 767–770 (2019).PubMed 
    Article 

    Google Scholar 
    Monaghan, P., Maklakov, A. A. & Metcalfe, N. B. Intergenerational transfer of ageing: Parental age and offspring lifespan. Trends Ecol. Evol. 35, 927–937 (2020).PubMed 
    Article 

    Google Scholar 
    Moorad, J. A. & Nussey, D. H. Evolution of maternal effect senescence. Proc. Natl. Acad. Sci. 113, 362–367 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ivimey-Cook, E. & Moorad, J. The diversity of maternal-age effects upon pre-adult survival across animal species. Proc. R. Soc. B 287, 20200972 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krist, M. Egg size and offspring quality: A meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).PubMed 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    Oro, D., Hernández, N., Jover, L. & Genovart, M. From recruitment to senescence: Food shapes the age-dependent pattern of breeding performance in a long-lived bird. Ecology 95, 446–457 (2014).PubMed 
    Article 

    Google Scholar 
    Lemaitre, J.-F. & Gaillard, J.-M. Reproductive senescence: New perspectives in the wild: Reproductive senescence in the wild. Biol. Rev. 92, 2182–2199 (2017).PubMed 
    Article 

    Google Scholar 
    Forslund, P. & Part, T. Age and reproduction in birds-hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Age-specific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: Patterns and processes in a natural population. J. Anim. Ecol. 72, 765–776 (2003).Article 

    Google Scholar 
    Cam, E., Aubry, L. M. & Authier, M. The conundrum of heterogeneities in life history studies. Trends Ecol. Evol. 31, 872–886 (2016).PubMed 
    Article 

    Google Scholar 
    Hamel, S., Côté, S. D., Gaillard, J.-M. & Festa-Bianchet, M. Individual variation in reproductive costs of reproduction: High-quality females always do better. J. Anim. Ecol. 78, 143–151 (2009).PubMed 
    Article 

    Google Scholar 
    Hamel, S., Gaillard, J.-M. & Yoccoz, N. G. Introduction to: Individual heterogeneity—the causes and consequences of a fundamental biological process (2018).Gimenez, O., Cam, E. & Gaillard, J.-M. Individual heterogeneity and capture-recapture models: What, why and how?. Oikos 127, 664–686 (2018).Article 

    Google Scholar 
    Räsänen, K. & Kruuk, L. E. B. Maternal effects and evolution at ecological time-scales. Funct. Ecol. 21, 408–421 (2007).Article 

    Google Scholar 
    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed 
    Article 

    Google Scholar 
    Mills, J. A. et al. Archiving primary data: Solutions for long-term studies. Trends Ecol. Evol. 30, 581–589 (2015).PubMed 
    Article 

    Google Scholar 
    Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. 116, 9658–9664 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beamonte-Barrientos, R., Velando, A., Drummond, H. & Torres, R. Senescence of maternal effects: Aging influences egg quality and rearing capacities of a long-lived bird. Am. Nat. 175, 469–480 (2010).PubMed 
    Article 

    Google Scholar 
    Descamps, S. et al. Detecting population heterogeneity in effects of north Atlantic oscillations on seabird body condition: Get into the rhythm. Oikos 119, 1526–1536 (2010).Article 

    Google Scholar 
    Froy, H., Phillips, R. A., Wood, A. G., Nussey, D. H. & Lewis, S. Age-related variation in reproductive traits in the wandering albatross: Evidence for terminal improvement following senescence. Ecol. Lett. 16, 642–649 (2013).PubMed 
    Article 

    Google Scholar 
    Giron, D. & Casas, J. Mothers reduce egg provisioning with age. Ecol. Lett. 6, 273–277 (2003).Article 

    Google Scholar 
    Lecomte, V. J. et al. Patterns of aging in the long-lived wandering albatross. Proc. Natl. Acad. Sci. 107, 6370–6375 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massot, M. et al. An integrative study of ageing in a wild population of common lizards: Integrative study of ageing. Funct. Ecol. 25, 848–858 (2011).Article 

    Google Scholar 
    Nussey, D. H. et al. Inter and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174, 342–357 (2009).PubMed 
    Article 

    Google Scholar 
    Vega-Trejo, R., Kruuk, L. E. B., Jennions, M. D. & Head, M. L. What happens to offspring when parents are inbred, old or had a poor start in life? Evidence for sex-specific parental effects. J. Evol. Biol. 31, 1138–1151 (2018).PubMed 
    Article 

    Google Scholar 
    Attard, M. R. G. et al. A new, three-dimensional geometric morphometric approach to assess egg shape. PeerJ 6, e5052 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holveck, M.-J., Guerreiro, R., Perret, P., Doutrelant, C. & Gregoire, A. Eggshell coloration indicates female condition during egg-laying: A field experiment in blue tits. Biol. J. Lin. Soc. 128, 181–200 (2019).Article 

    Google Scholar 
    Siefferman, L., Navara, K. J. & Hill, G. E. Egg coloration is correlated with female condition in eastern bluebirds (Sialia sialis). Behav. Ecol. Sociobiol. 59, 651–656 (2006).Article 

    Google Scholar 
    Valcu, C.-M. et al. Life history shapes variation in egg composition in the blue tit Cyanistes caeruleus. Commun. Biol. 2, 1–14 (2019).Article 

    Google Scholar 
    Genovart, M., Oro, D. & Tenan, S. Immature survival, fertility, and density dependence drive global population dynamics in a long-lived species. Ecology 99, 2823–2832 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fernandez-Chacon, A. et al. When to stay, when to disperse and where to go: Survival and dispersal patterns in a spatially structured seabird population. Ecography 36, 1117–1126 (2013).Article 

    Google Scholar 
    Tavecchia, G., Pradel, R., Genovart, M. & Oro, D. Density-dependent parameters and demographic equilibrium in open populations. Oikos 116, 1481–1492 (2007).Article 

    Google Scholar 
    Oro, D. Perturbation, Behavioural Feedbacks, and Population Dynamics in Social Animals: When to Leave and Where to Go (Oxford Univ Press, 2020).Book 

    Google Scholar 
    Ferrer, M. & Penteriani, V. A process of pair formation leading to assortative mating: Passive age-assortative mating by habitat heterogeneity. Anim. Behav. 66, 137–143 (2003).Article 

    Google Scholar 
    Ludwig, S. C. & Becker, P. H. Supply and demand: Causes and consequences of assortative mating in common terns sterna hirundo. Behav. Ecol. Sociobiol. 62, 1601–1611 (2008).Article 

    Google Scholar 
    Oro, D., Jover, L. & Ruiz, X. Influence of trawling activity on the breeding ecology of a threatened seabird, audouin’s gull Larus audouinii. Mar. Ecol. Prog. Ser. 139, 19–29 (1996).ADS 
    Article 

    Google Scholar 
    Hoyt, D. F. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96, 73–77 (1979).
    Google Scholar 
    Oro, D., Ruiz, X., Jover, L., Pedrocchi, V. & González-Solís, J. Diet and adult time budgets of audouin’s gull Larus audouinii in response to changes in commercial fisheries. Ibis 139, 631–637 (1997).Article 

    Google Scholar 
    Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M. An overview of the north atlantic oscillation. In Geophysical Monograph Series Vol. 134 (eds Hurrell, J. W. et al.) (American Geophysical Union, 2003).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).RStudio Team. RStudio: Integrated Development Environment for R (RStudio, PBC, 2022).Breiman, L. (ed.) Classification and Regression Trees repr. (Chapman and Hall, 1998).
    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomforest. R News 2, 18–22 (2002).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation (2018). R package version 0.7.6.Kuhn, M. The caret package. J. Stat. Softw. 28, 25 (2012).
    Google Scholar  More

  • in

    Impacts of climate change and human activities on different degraded grassland based on NDVI

    Bi, X. et al. Response of grassland productivity to climate change and anthropogenic activities in arid regions of Central Asia. Peer J. 8, e9797–e9797 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, W. et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 83, 303–313 (2017).
    Google Scholar 
    Liu, Y. Y. et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 106, 105504–105504 (2019).
    Google Scholar 
    Zhang, Y. et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 563–564, 210–220 (2016).ADS 
    PubMed 

    Google Scholar 
    Wang, Z. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, China. Ecol. Inf. 33, 32–44 (2016).CAS 

    Google Scholar 
    He, C. Y., Tian, J., Gao, B. & Zhao, Y. Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 187(1), 4199 (2015).PubMed 

    Google Scholar 
    Liu, Y. Y. et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 690, 27–39 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jiang, L. L., Jiapaer, G., Bao, A. M., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).ADS 
    PubMed 

    Google Scholar 
    Chen, T. et al. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 653, 1311–1325 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gang, C. et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Sci. Total Environ. 645, 827–836 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guo, D. & Wang, H. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos. 118, 5216–5230 (2013).ADS 

    Google Scholar 
    Yang, Y. et al. Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. J. Arid Environ. 135, 164–172 (2016).ADS 

    Google Scholar 
    Li, C. X., Jong, R., Schmid, B., Wulf, H. & Michael, E. S. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecol. Indic. 119, 106641 (2020).
    Google Scholar 
    Li, F., Chen, W., Zeng, Y., Zhao, Q. J. & Wu, B. F. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sens. 6, 4705–4722 (2014).ADS 

    Google Scholar 
    Wang, J., Brown, D. G. & Chen, J. Q. Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian plateau. Landsc. Ecol. 28(4), 725–739 (2014).
    Google Scholar 
    Han, D. M. et al. Evaluation of semiarid grassland degradation in north China from multiple perspectives. Ecol. Eng. 112, 41–50 (2018).
    Google Scholar 
    Liu, H. X. et al. Response of vegetation productivity to climate change and human activities in the Shaanxi–Gansu–Ningxia region, China. J. Indian Soc. Remote Sens. 46(7), 1081–1092 (2018).
    Google Scholar 
    Zheng, K. et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 660, 236–244 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yan, Y. C., Liu, X. P., Wen, Y. Y. & Ou, J. P. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 103, 542–553 (2019).
    Google Scholar 
    Wang, H. et al. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chin. Geogra. Sci. 26, 35–47 (2016).CAS 

    Google Scholar 
    Thomas, M. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6(6), 5717–5731 (2014).
    Google Scholar 
    Becerril-Pina, R., Mastachi-Loza, C. A., Gonzalez-Sosa, E., Diaz-Delgado, C. & Ba, K. M. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid Environ. 120, 4–13 (2015).ADS 

    Google Scholar 
    Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57(4), 535–554 (2004).ADS 

    Google Scholar 
    Meng, M. et al. Vegetation change in response to climate factors and human activities on the Mongolian Plateau. Peer J. 7, e7735 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens Environ. 197, 43–57 (2017).ADS 

    Google Scholar 
    Gedefaw, M. G., Geli, H. M. E. & Abera, T. A. Assessment of rangeland degradation in New Mexico using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. 13(9), 1618–1618 (2021).ADS 

    Google Scholar 
    Zhang, F. Changes of Grassland Net Primary Productivity in the Qinghai Tibet Plateau During the Past 34 Years and Analysis of Its Local Degradation Characteristics (Lanzhou University, 2021).
    Google Scholar 
    Li, L. H. et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecol. Evol. 8(11), 5949–5963 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, Z. C. et al. Greening of the earth and its drivers. Nat. Clim. Change. 6, 791–795 (2016).ADS 
    CAS 

    Google Scholar 
    Song, L. C., Ma, W. W., Li, G., Liu, S. N. & Lu, G. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland. Acta Pratacul. Sin. 30(09), 27–37 (2021).
    Google Scholar 
    Dai, L. C. et al. Effect of grazing management strategies on alpine grassland on the northeastern Qinghai-Tibet Plateau. Ecol. Eng. 173, 106418 (2021).
    Google Scholar 
    Liu, Y. Y. et al. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Glob. Ecol. Conserv. 28, e01574 (2021).
    Google Scholar 
    Bestelmeyer, B. T., Duniway, M. C., James, D. K., Burkett, L. M. & Havstad, K. M. A test of critical thresholds and their indicators in a desertification-prone ecosystem: More resilience than we thought. Ecol. Lett. 16, 339–345 (2013).PubMed 

    Google Scholar 
    Kéfi, S. et al. Early warning signals of ecological transitions: Methods for spatial patterns. PLoS ONE 9(3), e92097 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. Z. et al. IKONOS image-based extraction of the distribution area of Stellera chamaejasme L. in Qilian County of Qinghai Province, China. Remote Sens. 8(2), 148 (2016).ADS 

    Google Scholar 
    Liu, Y. Q. & Lu, C. H. Quantifying grass coverage trends to identify the hot plots of grassland degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health. 18(2), 416 (2021).MathSciNet 
    PubMed Central 

    Google Scholar 
    Kendall, M. G. Rank Correlation Methods (Griffin, 1948).MATH 

    Google Scholar 
    Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).MathSciNet 
    MATH 

    Google Scholar 
    Zhang, Z. M. & Lu, C. H. Clustering analysis of soybean production to understand its spatiotemporal dynamics in the North China Plain. Sustainability. 12(15), 6178 (2020).
    Google Scholar 
    Pei, T. T. et al. The sensitivity of vegetation phenology to extreme climate indices in the Loess Plateau, China. Sustainability. 13(14), 7623–7623 (2021).
    Google Scholar 
    Lu, B. B., Charlton, M., Harris, P. & Fotheringham, A. S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 28(4), 660–681 (2014).
    Google Scholar 
    Sun, L. Q., Zhang, F. H., Yang, S. W., Qiu, A. G. & Zhang, X. L. The method of selecting geographically and temporally weight regression variable based on stepwise regression. Sci. Surv. Mapp. 44(01), 73–78+97 (2019).
    Google Scholar 
    Jiang, W. G. et al. Spatio-temporal analysis of vegetation variation in the Yellow River basin. Ecol. Indic. 51, 117–126 (2015).
    Google Scholar 
    Ndayisaba, F. et al. Understanding the spatial temporal vegetation dynamics in Rwanda. Remote Sens. 8(2), 129 (2016).ADS 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449(7159), 213–217 (2007).ADS 
    PubMed 

    Google Scholar 
    Chen, J. J., Yi, S. H. & Qin, Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma 297, 1–9 (2017).ADS 
    CAS 

    Google Scholar 
    Cai, H. Y., Yang, X. H. & Xu, X. L. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecol. Eng. 83, 112–119 (2015).
    Google Scholar 
    Wang, P., Lassoie, J. P., Morreale, S. J. & Dong, S. K. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau. China. Rangel. J. 37(1), 1–9 (2015).
    Google Scholar 
    Lu, C. B. & Hou, L. F. Cause analysis and Control Countermeasures of grassland degradation in Qilian County, Qinghai Province. Today Anim. Husb. Vet. Med. 34(02), 62 (2018).
    Google Scholar 
    Guo, X. W. et al. Light grazing significantly reduces soil water storage in Alpine Grasslands on the Qinghai-Tibet Plateau. Sustainability. 12(6), 2523–2523 (2020).
    Google Scholar 
    Bai, Y. F. et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 742, 140574–140574 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, T. et al. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 743, 140649 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, A., Wu, J. G. & Huang, J. H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 27(7), 969–982 (2012).CAS 

    Google Scholar 
    Wu, J. S. et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manag. 281, 111875–111875 (2020).
    Google Scholar 
    Gang, C. et al. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop Sci. 201(1), 57–68 (2015).
    Google Scholar 
    Gang, C. C. et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72(11), 4273–4282 (2014).
    Google Scholar 
    Chen, Y. Z. et al. Grassland carbon sequestration ability in China: A new perspective from terrestrial aridity zones. Rangeland Ecol. Manag. 69(1), 84–94 (2016).
    Google Scholar 
    Mowll, W. et al. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia 177(4), 959–969 (2015).ADS 
    PubMed 

    Google Scholar 
    Zhou, Y. et al. Climate contributions to vegetation variations in central Asian Drylands: Pre- and post-USSR collapse. Remote Sens. 7(3), 2449–2470 (2015).ADS 

    Google Scholar 
    Ji, Y. et al. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 7(1), 1–11 (2020).CAS 

    Google Scholar 
    Zeng, B. & Yang, T. B. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003. Environ. Monit. Assess. 144(1–3), 403–417 (2008).PubMed 

    Google Scholar 
    Duan, A. M. & Xiao, Z. X. Does the climate warming hiatus exist over the Tibetan Plateau?. Sci. Rep. 5(1), 13711 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fang, J. Y. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32(21), L21411 (2005).ADS 

    Google Scholar 
    Zhao, X., Tan, K., Zhao, S. & Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ. 75(10), 946–952 (2011).ADS 

    Google Scholar 
    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change. 6(1), 75–78 (2016).ADS 

    Google Scholar 
    Dong, S. K., Shang, Z. H., Gao, J. X. & Boone, R. B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 287(C), 106684 (2019).
    Google Scholar 
    Xu, H. P. et al. Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels. Environ Monit Assess. 191(11), 678 (2019).CAS 
    PubMed 

    Google Scholar 
    Wen, W. Y. et al. Research on soil net nitrogen mineralization in Stipa grandis grassland with different stages of degradation. Geosci J. 20(4), 485–494 (2016).ADS 
    CAS 

    Google Scholar 
    She, Y. et al. Vegetation attributes and soil properties of alpine grassland in different degradation stages on the Qinghai-Tibet Plateau, China: A meta-analysis. Arab J Geosci. 15, 193 (2022).
    Google Scholar 
    Xu, G. P. Study on the Change of Vegetation and Soil Nutrients of Alpine Meadow Under Different Degradation Degrees in Eastern Qilian Mountains (Gansu Agricultural University, 2006).
    Google Scholar 
    Anderson, K. et al. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang. Biol. 26(3), 1608–1625 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. X. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 189–190, 11–18 (2014).ADS 

    Google Scholar 
    Zhang, X. W., Li, G., Dong, K. H. & Zhao, X. Effects of grazing and enclosure on community characteristics and biodiversity in Leymus chinensis grassland. J. Grassl. Forage Sci. 4, 22–27 (2019).
    Google Scholar 
    Huang, K. et al. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 8(10), 876 (2016).ADS 

    Google Scholar 
    Duan, Q. T., Luo, L. H., Zhao, W. Z., Zhuang, Y. L. & Liu, F. Mapping and evaluating human pressure changes in the Qilian mountains. Remote Sens. 13(12), 2400–2400 (2021).ADS 

    Google Scholar 
    Wang, Y. et al. Performance and obstacle tracking to natural forest resource protection project: A rangers’ case of Qilian mountain, China. Int. J. Environ. Res. Public Health. 17(16), 5672 (2020).PubMed Central 

    Google Scholar 
    Li, Z. Y. et al. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 735, 139370 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, C. X., de Jong, R., Schmid, B., Wulf, H. & Schaepman, M. E. Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Sci. Total Environ. 665, 678–689 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. L. et al. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degrad. Dev. 24, 72–80 (2011).
    Google Scholar 
    Li, C. B. et al. Regional vegetation dynamics and its response to climate change—a case study in the Tao River Basin in Northwestern China. Environ. Res. Lett. 9(12), 125003–125003 (2014).ADS 

    Google Scholar 
    Liu, Y. Y. et al. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 32(17), 4974–4987 (2021).
    Google Scholar 
    Hou, X. Chinese Grassland Science (Science Press, 2013) (In Chinese).
    Google Scholar  More

  • in

    Rethinking the complexity and uncertainty of spatial networks applied to forest ecology

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. https://doi.org/10.1126/science.1155121 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Le Quere, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649. https://doi.org/10.5194/essd-8-605-2016 (2016).ADS 
    Article 

    Google Scholar 
    DavidMorales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77. https://doi.org/10.1016/j.foreco.2015.06.011 (2015).Article 

    Google Scholar 
    Kauppi, P. E., Sandstrom, V. & Lipponen, A. Forest resources of nations in relation to human well-being. PLoS One 13, e0196248. https://doi.org/10.1371/journal.pone.0196248 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 1327. https://doi.org/10.1126/science.aaz7005 (2020).CAS 
    Article 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 31, 219–227. https://doi.org/10.1007/s10980-015-0312-3 (2016).Article 

    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.1500052 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Audino, L. D., Murphy, S. J., Zambaldi, L., Louzada, J. & Comita, L. S. Drivers of community assembly in tropical forest restoration sites: Role of local environment, landscape, and space. Ecol. Appl. 27, 1731–1745. https://doi.org/10.1002/eap.1562 (2017).Article 
    PubMed 

    Google Scholar 
    Temperton, V. M., Hobbs, R. J., Nuttle, T. & Halle, S. in Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice [Science and Practice of Ecological Restoration]. i–xv, 1–439 (2004).Young, T. P., Chase, J. M. & Huddleston, R. T. Community succession and assembly: Comparing, contrasting and combining paradigms in the context of ecological restoration. Ecol. Restor. 19, 5–18 (2001).Article 

    Google Scholar 
    Vellend, M. The Theory of Ecological Communities (Princeton University Press, 2016).
    Google Scholar 
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43(43), 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411 (2012).Article 

    Google Scholar 
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) (Centre for Agricultural Publishing and Documentation, 1971).
    Google Scholar 
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501. https://doi.org/10.1086/282687 (1970).Article 

    Google Scholar 
    Schmid, J. S., Taubert, F., Wiegand, T., Sun, I. F. & Huth, A. Network science applied to forest megaplots: Tropical tree species coexist in small-world networks. Sci. Rep. https://doi.org/10.1038/s41598-020-70052-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. X. et al. Prevalence of inter-tree competition and its role in shaping the community structure of a natural Mongolian scots pine (Pinus sylvestris var. mongolica) forest. Forests https://doi.org/10.3390/f8030084 (2017).Article 

    Google Scholar 
    Hubbell, S. P. et al. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557. https://doi.org/10.1126/science.283.5401.554 (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Janik, D. et al. Breaking through beech: A three-decade rise of sycamore in old-growth European forest. Forest Ecol. Manag. 366, 106–117. https://doi.org/10.1016/j.foreco.2016.02.003 (2016).Article 

    Google Scholar 
    Svatek, M., Rejzek, M., Kvasnica, J., Repka, R. & Matula, R. Frequent fires control tree spatial pattern, mortality and regeneration in argentine open woodlands. Forest Ecol. Manag. 408, 129–136. https://doi.org/10.1016/j.foreco.2017.10.048 (2018).Article 

    Google Scholar 
    Giammarchi, F. et al. Effects of the lack of forest management on spatiotemporal dynamics of a subalpine Pinus cembra forest. Scand. J. Forest Res. 32, 142–153. https://doi.org/10.1080/02827581.2016.1207802 (2017).Article 

    Google Scholar 
    Janik, D. et al. Patterns of Fraxinus angustifolia in an alluvial old-growth forest after declines in flooding events. Eur. J. Forest Res. 135, 215–228. https://doi.org/10.1007/s10342-015-0925-8 (2016).Article 

    Google Scholar 
    Bagchi, R. et al. Defaunation increases the spatial clustering of lowland western amazonian tree communities. J. Ecol. 106, 1470–1482. https://doi.org/10.1111/1365-2745.12929 (2018).Article 

    Google Scholar 
    Zhang, L. Y., Dong, L. B., Liu, Q. & Liu, Z. G. Spatial patterns and interspecific associations during natural regeneration in three types of secondary forest in the central part of the greater Khingan mountains, Heilongjiang province, China. Forests https://doi.org/10.3390/f11020152 (2020).Article 

    Google Scholar 
    Obiang, N. L. E. et al. Determinants of spatial patterns of canopy tree species in a tropical evergreen forest in Gabon. J. Veg. Sci. 30, 929–939. https://doi.org/10.1111/jvs.12778 (2019).Article 

    Google Scholar 
    Wiegand, T. et al. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annu. Rev. Ecol. Evol. Syst. 48(48), 329–351. https://doi.org/10.1146/annurev-ecolsys-110316-022936 (2017).Article 

    Google Scholar 
    Gabriel, E. Spatial point patterns: Methodology and applications with R. Math. Geosci. 49, 815–817. https://doi.org/10.1007/s11004-016-9670-x (2017).CAS 
    Article 
    MATH 

    Google Scholar 
    Baddeley, A., Rubak, R. & Turner, R. Spatial Point Patterns, Methodology and Applications with R (CRC Press, 2016).MATH 

    Google Scholar 
    Wiegand, T. & Moloney, K. A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x (2004).Article 

    Google Scholar 
    Plotkin, J. B., Chave, J. M. & Ashton, P. S. Cluster analysis of spatial patterns in Malaysian tree species. Am. Nat. 160, 629–644. https://doi.org/10.1086/342823 (2002).Article 
    PubMed 

    Google Scholar 
    Ripley, B. D. Modeling spatial patterns. J. R. Stat. Soc. B 39, 172–212 (1977).
    Google Scholar 
    He, F. L. & Gaston, K. J. Estimating species abundance from occurrence. Am. Nat. 156, 553–559. https://doi.org/10.1086/303403 (2000).Article 
    PubMed 

    Google Scholar 
    Diggle, P. Statistical Analysis of Spatial Point Patterns (Academic Press, 1983).MATH 

    Google Scholar 
    Pielou, E. C. The use of point-to-plant distances in the study of the pattern of plant-populations. J. Ecol. 47, 607–613. https://doi.org/10.2307/2257293 (1959).Article 

    Google Scholar 
    Losapio, G., Montesinos-Navarro, A. & Saiz, H. Perspectives for ecological networks in plant ecology. Plant Ecol. Divers. 12, 87–102. https://doi.org/10.1080/17550874.2019.1626509 (2019).Article 

    Google Scholar 
    Fuller, M. M., Wagner, A. & Enquist, B. J. Using network analysis to characterize forest structure. Nat. Resour. Model. 21, 225–247. https://doi.org/10.1111/j.1939-7445.2008.00004.x (2008).MathSciNet 
    Article 

    Google Scholar 
    Montoya, J. M., Pimm, S. L. & Sole, R. V. Ecological networks and their fragility. Nature 442, 259–264. https://doi.org/10.1038/nature04927 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353. https://doi.org/10.1016/j.tree.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    Nakagawa, Y., Yokozaw, M. & Hara, T. Complex network analysis reveals novel essential properties of competition among individuals in an even-aged plant population. Ecol. Complex 26, 95–116. https://doi.org/10.1016/j.ecocom.2016.03.005 (2016).Article 

    Google Scholar 
    Wiegand, T. & Moloney, K. A. Handbook of Spatial Point Pattern Analysis in Ecology (CRC Press, 2013).Book 

    Google Scholar 
    Barthelemy, M. Spatial networks. Phys. Rep. Rev. Sect. Phys. Lett. 499, 1–101. https://doi.org/10.1016/j.physrep.2010.11.002 (2011).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Keren, S. Modeling tree species count data in the understory and canopy layer of two mixed old-growth forests in the Dinaric region. Forests https://doi.org/10.3390/f11050531 (2020).Article 

    Google Scholar 
    Podlaski, R. Models of the fine-scale spatial distributions of trees in managed and unmanaged forest patches with Abies alba Mill. and Fagus sylvatica L. Forest Ecol. Manag. 439, 1–8 (2019).Article 

    Google Scholar 
    Levin, S. A. Theoretical ecology—Principles and applications, 3rd edition. Science 316, 1699–1700. https://doi.org/10.1126/science.1141870 (2007).CAS 
    Article 

    Google Scholar 
    Martinez-Lopez, V., Garcia, C., Zapata, V., Robledano, F. & De la Rua, P. Intercontinental long-distance seed dispersal across the Mediterranean basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420. https://doi.org/10.1111/mec.15413 (2020).Article 
    PubMed 

    Google Scholar 
    Dale, M. R. T. & Fortin, M. J. From graphs to spatial graphs. Annu. Rev. Ecol. Evol. Syst. 41, 21–38. https://doi.org/10.1146/annurev-ecolsys-102209-144718 (2010).Article 

    Google Scholar 
    Silva, C. A. et al. Treetop: A shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists. Methods Ecol. Evol. 13, 1164–1176. https://doi.org/10.1111/2041-210x.13830 (2022).Article 

    Google Scholar 
    Tatsumi, S., Yamaguchi, K. & Furuya, N. Forestscanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13900 (2022).Article 

    Google Scholar 
    Ferraz, A., Saatchi, S. S., Longo, M. & Clark, D. B. Tropical tree size-frequency distributions from airborne LiDAR. Ecol. Appl. 30, e02154. https://doi.org/10.1002/eap.2154 (2020).Article 
    PubMed 

    Google Scholar 
    Bianchi, E., Bugmann, H., Hobi, M. L. & Bigler, C. Spatial patterns of living and dead small trees in subalpine Norway spruce forest reserves in Switzerland. Forest Ecol. Manag. 494, 119315. https://doi.org/10.1016/j.foreco.2021.119315 (2021).Article 

    Google Scholar 
    Tatsumi, S., Owari, T., Yin, M. F. & Ning, L. Z. Neighborhood analysis of underplanted Korean pine demography in larch plantations: Implications for uneven-aged management in northeast china. Forest Ecol. Manag. 322, 10–18. https://doi.org/10.1016/j.foreco.2014.03.022 (2014).Article 

    Google Scholar 
    Cornett, M. W., Reich, P. B. & Puettmann, K. J. Canopy feedbacks and microtopography regulate conifer seedling distribution in two Minnesota conifer-deciduous forests. Ecoscience 4, 353–364. https://doi.org/10.1080/11956860.1997.11682414 (1997).Article 

    Google Scholar 
    Wang, X. F., Zheng, G., Yun, Z. X. & Moskal, L. M. Characterizing tree spatial distribution patterns using discrete aerial LiDAR data. Remote Sens. Basel 12, 712. https://doi.org/10.3390/rs12040712 (2020).ADS 
    Article 

    Google Scholar 
    Matérn, B. Spatial variation: Stochastic models and their application to some problems in forest surveys and other sampling investigations. Meddelanden från Statens Skogsforskningsinstitut 49, 1–144 (1960).MathSciNet 

    Google Scholar 
    Matérn, B. Spatial Variation. Lecture Notes in Statistics Vol. 36 (Springer, 1986).Book 

    Google Scholar 
    Thomas, M. A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36, 18–25 (1949).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Lotwick, H. W. Simulation of some spatial hard core models, and the complete packing problem. J. Stat. Comput. Simul. 15, 295–314 (1982).MathSciNet 
    Article 

    Google Scholar 
    Strauss, D. J. A model for clustering. Biometrika 62, 467–475 (1975).MathSciNet 
    Article 

    Google Scholar 
    Cressie Noel, A. C. Statistics for Spatial Data (Wiley-Interscience, 1993).Book 

    Google Scholar 
    Besag, J. E. Contribution to the discussion of the paper by Ripley. J. R. Stat. Soc. 39, 193–195 (1977).MathSciNet 

    Google Scholar  More

  • in

    Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate

    Royse DJ. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Singh M, editor. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products. New Delhi; 2014. p. 1–6.Vos AM, Heijboer A, Boschker HTS, Bonnet B, Lugones LG, Wosten HAB. Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express. 2017; 7:12.Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H. Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS ONE. 2015;10:e0138909.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beyer DM. Basic procedures for Agaricus mushroom growing PennState Extension: the Pennsylvania State University. 2003. https://extension.psu.edu/basic-procedures-for-agaricus-mushroom-growing.Wang L, Mao J, Zhao H, Li M, Wei Q, Zhou Y, et al. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. J Ind Microbiol Biotechnol. 2016;43:1249–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams JDW, Frostick LE. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system. Bioresour Technol. 2008;99:1097–102.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu L, Wang S, Guo X, Zhao T, Zhang B. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Manage. 2018;73:101–12.CAS 
    Article 

    Google Scholar 
    Reyes-Torres M, Oviedo-Ocana ER, Dominguez I, Komilis D, Sanchez A. A systematic review on the composting of green waste: feedstock quality and optimization strategies. Waste Manage. 2018;77:486–99.CAS 
    Article 

    Google Scholar 
    Pardo‐Giménez A, González JEP, Zied DC. Casing materials and techniques in Agaricus bisporus cultivation. In: Zied DC, Pardo‐Giménez A, editors. Edible and medicinal mushrooms technology and applications. Chichester, UK: Wiley; 2017. p. 149–74.Baars JJP, Scholtmeijer K, Sonnenberg ASM, van Peer A. Critical factors involved in primordia building in Agaricus bisporus: a review. Molecules. 2020;25:2984.Vieira FR, Pecchia JA. Bacterial community patterns in the Agaricus bisporus cultivation system, from compost raw materials to mushroom caps. Microb Ecol. 2021;84:20–32.PubMed 
    Article 

    Google Scholar 
    Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels. 2008;1:1–9.Article 

    Google Scholar 
    Jurak E, Patyshakuliyeva A, de Vries RP, Gruppen H, Kabel MA. Compost grown Agaricus bisporus lacks the ability to degrade and consume highly substituted xylan fragments. PLoS ONE. 2015;10:e0134169.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, et al. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol. 2003;53:349–410.
    Google Scholar 
    Kutzner HJ. Microbiology of composting. In: Rehm H-J, Reed G, editors. Biotechnology. 11c. 2nd ed. Verlag: Wiley-VCH; 2000. p. 35–100.Carrasco J, Garcia-Delgado C, Lavega R, Tello ML, De Toro M, Barba-Vicente V, et al. Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Microb Biotechnol. 2020;13:1933–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vieira FR, Pecchia JA. Bacterial community patterns in the Agaricus bisporus cultivation system, from compost raw materials to mushroom caps. Microb Ecol. 2021;82. https://doi.org/10.1007/s00248-021-1833-5.Vieira FR, Pecchia JA. An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting–Phase II) for Agaricus bisporus cultivation. Microb Ecol. 2018;75:318–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao GT, Song TT, Shen YY, Jin QL, Feng WL, Fan LJ, et al. Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. Hortscience. 2019;54:100–9.CAS 
    Article 

    Google Scholar 
    Wiegant WM. Growth characteristics of the thermophilic fungus Scytalidium thermophilum in relation to production of mushroom compost. Appl Environ Microbiol. 1992;58:1301–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fermor T, Randle P, Smith J. Compost as a substrate and its preparation. In: Flegg PB, Spencer DM, Wood D, editors. The biology and technology of the cultivated mushroom. Chichester, UK: John Wiley & Sons, Ltd; 1985. p. 81–109.Straatsma G, Samson RA, Olijnsma TW, Op den Camp HJM, Gerrits JPG, Griensven LJLDV. Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol. 1994;60:454–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross RC, Harris PJ. An investigation into the selective nature of mushroom compost. Sci Hortic. 1983;19:55–64.Article 

    Google Scholar 
    Coello-Castillo MM, Sanchez JE, Royse DJ. Production of Agaricus bisporus on substrates pre-colonized by Scytalidium thermophilum and supplemented at casing with protein-rich supplements. Bioresour Technol. 2009;100:4488–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Szekely A, Sipos R, Berta B, Vajna B, Hajdu C, Marialigeti K. DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb Ecol. 2009;57:522–33.PubMed 
    Article 

    Google Scholar 
    Kertesz M, Safianowicz K, Bell TL. New insights into the microbial communities and biological activities that define mushroom compost. Sci Cultiv Edible Fungi. 2016;19:161–5.
    Google Scholar 
    McGee CF, Byrne H, Irvine A, Wilson J. Diversity and dynamics of the DNA and cDNA-derived bacterial compost communities throughout the Agaricus bisporus mushroom cropping process. Ann Microbiol. 2017;67:751–61.CAS 
    Article 

    Google Scholar 
    McGee CF, Byrne H, Irvine A, Wilson J. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. Mycologia. 2017;109:475–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yeates C, Gillings MR. Rapid purification of DNA from soil for molecular biodiversity analysis. Lett Appl Microbiol. 1998;27:49–53.CAS 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22.
    Google Scholar 
    Lever MA, Torti A, Eickenbusch P, Michaud AB, Santl-Temkiv T, Jorgensen BB. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol. 2015;6:476.Muyzer G, Waal ECD, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation For Statistical Computing; 2019.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina aplicon data. Nat Meth. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2010;27:592–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Veget Sci. 2003;14:927–30.Article 

    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.Sharma HS, Kilpatrick M. Mushroom (Agaricus bisporus) compost quality factors for predicting potential yield of fruiting bodies. Can J Microbiol. 2000;46:515–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seaby DA. Mushroom (Agaricus bisporus) yield modelling for the bag method of mushroom production using commercial yields and from micro plots. Sci Cultiv Edible Fungi. 1995;14:409–16.
    Google Scholar 
    O’Donoghue DC. Relationship between some compost factors and their effects on yield of Agaricus. Mushroom Sci. 1965;6:245–54.
    Google Scholar 
    Andersen B, Sorensen JL, Nielsen KF, van den Ende BG, de Hoog S. A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genet Biol. 2009;46:642–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP. Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers. 2012;52:197–207.Article 

    Google Scholar 
    Souza TP, Marques SC, Santos D, Dias ES. Analysis of thermophilic fungal populations during phase II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol. 2014;30:2419–25.PubMed 
    Article 

    Google Scholar 
    Vajna B, Szili D, Nagy A, Márialigeti K. An improved sequence-aided T-RFLP analysis of bacterial succession during oyster mushroom substrate preparation. Microb Ecol. 2012;64:702–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Du R, Yan J, Li S, Zhang L, Zhang S, Li J, et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol Biofuels. 2015;8:10.Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol. 2005;71:7099–106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol. 2002;59:529–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vajna B, Adrienn N, Sajben-Nagy E, Manczinger L, Szijártó N, Kádár Z, et al. Microbial community structure changes during oyster mushroom substrate preparation. Appl Microbiol Biotechnol. 2010;86:367–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Karadag D, Özkaya B, Ölmez E, Nissilä ME, Çakmakçı M, Yıldız Ş, et al. Profiling of bacterial community in a full-scale aerobic composting plant. Int Biodeter Biodeg. 2013;77:85–90.CAS 
    Article 

    Google Scholar 
    Rathinam NK, Gorky, Bibra M, Salem DR, Sani RK. Bioelectrochemical approach for enhancing lignocellulose degradation and biofilm formation in Geobacillus strain WSUCF1. Bioresour Technol. 2020;295:122271.Song TT, Shen YY, Jin QL, Feng WL, Fan LJ, Cao GT, et al. Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. PeerJ. 2021;9:e10452.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang X, Zhong Y, Yang S, Zhang W, Xu M, Ma A, et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresour Technol. 2014;170:183–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodfellow M, Maldonado LA, Quintana ET. Reclassification of Nonomuraea flexuosa (Meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int J Syst Evol Microbiol. 2005;55:1979–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin SB, Stutzenberger FJ. Purification and characterization of the major beta-1,4-endoglucanase from Thermomonospora curvata. J Appl Bacteriol. 1995;79:447–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kukolya J, Nagy I, Láday M, Tóth E, Oravecz O, Márialigeti K, et al. Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. Int J Syst Evol Microbiol. 2002;52:1193–9.CAS 
    PubMed 

    Google Scholar 
    Weon H-Y, Lee S-Y, Kim B-Y, Noh H-J, Schumann P, Kim J-S, et al. Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., isolated from livestock-manure composts. Int J Syst Evol Microbiol. 2007;57:2908–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B. Geobacillus galactosidasius sp. nov., a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol. 2011;34:419–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gavande PV, Basak A, Sen S, Lepcha K, Murmu N, Rai V, et al. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization. Sci Rep. 2021;11:3032.Xu JQ, Lu YY, Shan GC, He XS, Huang JH, Li QL. Inoculation with compost-born thermophilic complex microbial consortium induced organic matters degradation while reduced nitrogen loss during co-composting of dairy manure and sugarcane leaves. Waste Biomass Valor. 2019;10:2467–77.CAS 
    Article 

    Google Scholar 
    Yoon JH, Kang SJ, Im WT, Lee ST, Oh TK. Chelatococcus daeguensis sp nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int J Syst Evol Microbiol. 2008;58:2224–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou C, Liu Z, Huang Z-L, Dong M, Yu X-L, Ning P. A new strategy for co-composting dairy manure with rice straw: addition of different inocula at three stages of composting. Waste Manage. 2015;40:38–43.CAS 
    Article 

    Google Scholar 
    Gómez A. New technology in Agaricus bisporus cultivation. In: Zied DC, Pardo-Giménez A, editors. Edible and medicinal mushrooms. Chichester, UK: John Wiley & Sons; 2017. p. 211–20.von Minnigerode HF, editor. Method for controlling and regulating the composting process. Proceedings of the Eleventh International Scientific Congress on the Cultivation of Edible Fungi. Sydney, Australia: The International Society for Mushroom Science; 1981.Jurak E, Gruppen H, Kabel MA, Eggink G, Meyer AS, van der Maarel MJEC, et al. How mushrooms feed on compost: conversion of carbohydrates and lignin in industrial wheat straw based compost enabling the growth of Agaricus bisporus. Wageningen University—Graduate School VLAG; 2015.Miller FC, Macauley BJ, Harper ER. Investigation of various gases, pH and redox potential in mushroom composting Phase-I stacks. Aust J Exper Agric. 1991;31:415–25.Article 

    Google Scholar 
    Miller FC, Harper ER, Macauley BJ, Gulliver A. Composting based on moderately thermophilic and aerobic conditions for the production of commercial growing compost. Aust J Exper Agric. 1990;30:287–96.Article 

    Google Scholar 
    Carrasco J, Preston GM. Growing edible mushrooms: a conversation between bacteria and fungi. Environ Microbiol. 2020;22:858–72.PubMed 
    Article 

    Google Scholar  More

  • in

    Author Correction: Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams

    Correction to: Nature Ecology & Evolution https://doi.org/10.1038/s41559-019-0970-7, published online 2 September 2019.The Journal would like to note that the authors first made contact in September 2019 to raise the concerns that follow, and the Journal apologizes both for the delay in relaying these corrections publicly and for the changed instances that prevent making corrections to the original article itself. What follows is the Author correction.In the version of this article initially published, we made several errors in our R analysis code, and in the text and figures. First, the number of species with negative net dispersal velocity (net DV) were incorrectly calculated, resulting in slight changes in Fig. 2 and Supplementary Fig. 6, and in the text. The amended figures are provided below (Figs. 1–7). Changes to the text under the ‘DVs’ subsection of Results are: “When considering the mainstem pathway, we estimate that the mobile subpopulations of 134 (old version: 124) and 185 (old version: 174) (RCP 4.5 and 8.5, respectively) species will experience dispersal deficits in at least 50% of their southern Appalachian range, whereas these estimates increase to 229 (old version: 226) and 231 (old version: 232) species for the stationary subpopulation. Slow-climate-velocity tributaries reduce the number of species experiencing dispersal deficits by 99.3% (old version: 99.2%) and 90.3% (old version: 16.9%) (RCP 4.5 and 8.5, respectively) for the mobile component and 17.9% (old version: 90.8%) and 12.1% (old version: 12.9%) for the stationary component (Fig. 2a,b).” The two large discrepancies in dispersal deficit values (90.3% vs. 16.9%; 17.9% vs. 90.8%) were solely consequences of original text errors (16.9% and 90.8% values were erroneously switched), and not differences in calculations; therefore, the results did not change.Fig. 1Figure 2, original and corrected.Full size imageFig. 2Figure 3c,d, original and corrected.Full size imageFig. 3Figure 4, original and corrected.Full size imageFig. 4Figure 5, original and corrected.Full size imageFig. 5Supplementary Figure 6, original.Full size imageFig. 5Supplementary Figure 6, corrected.Full size imageFig. 6Supplementary Figure 8, original.Full size imageFig. 6Supplementary Figure 8, corrected.Full size imageFig. 7Supplementary Figure 9, original.Full size imageFig. 7Supplementary Figure 9, corrected.Full size imageSecond, we made errors when plotting Fig. 3c,d. Boxplots of mean change in habitat suitability were plotted instead of median change as specified in the caption; further, whiskers did not include the entire range of values. The amended figure is provided below. We would like to correct associated errors in text; specific changes are: “Our ENMs estimate a median 15.1% (old version: mean 14.1%) reduction (range −42.5% to +16.6% [old version: −51.6% to +2.4%] across 233 species) in habitat suitability associated with the tributary pathway compared with only a 3.8% (old version: 1.6%) reduction (−11.0% to +12.3% [old version: −7.9% to +1.8%]) for the mainstem pathway due to differing non-temperature habitat conditions (Fig. 3a,b).”Third, we made errors when plotting Fig. 4 and Supplementary Fig. 8. Specifically, net DV values were incorrectly rescaled; one extinct species was erroneously included in the plot; and the number of species in each quadrant was counted incorrectly. The amended figures are shown below. We would like to add a sentence (“The y-axes are inverse hyperbolic sine (asinh)-transformed”) to the caption of Fig. 4 to describe the y-axis scaling in the amended figures. There were two other text errors in the caption. The phrase “Mean net DV” should have been “Median net DV,” whereas the phrase “mean habitat suitability” should have read “median change in habitat suitability.” Therefore, the corrected Fig. 4 caption should read: “Species-level mismatch between net DV and upstream habitat suitability. a–d, Median net DV of mobile (a,b) and stationary subpopulations under the RCP 8.5 scenario plotted as a function of median change in habitat suitability for mainstem (a,c) and tributary (b,d) dispersal pathways. Each point represents a species and is computed as the median response across all projected occupied reaches. Red and blue numbers correspond to the number of species in each of the four quadrants. The y-axes are inverse hyperbolic sine (asinh)-transformed. e–h, Four species highlighting the diversity in dispersal-based and habitat suitability-based vulnerability: streamline chub (e); brook trout (f); flathead catfish (g); blacknose dace (h). Credit: David Neely (e–h)”. These corrections did not change our inferences.Fourth, there were errors in rescaling and plotting net DV values and in the calculation of quadrant percentages in Fig. 5 and Supplementary Fig. 9. The amended figures are shown below. We would like to add two sentences at the end of Fig. 5 caption to provide greater detail on plotting methods: “The y-axes of the scatterplots are inverse hyperbolic sine (asinh)-transformed. For clarity, the scatterplots show net DV values ≥ −13,000 and ≤ 130, and change in habitat suitability values ≤ 100, representing >99.5% of all observations.” There was one other text error in the caption: the phrase “mean habitat suitability” should have read “mean change in habitat suitability.” Therefore, the corrected Fig. 4 caption should read: “Community-level mismatch between net DV and upstream habitat suitability. a–d, Mean net DV of mobile (a,b) and stationary (c,d) subpopulations under the RCP 8.5 scenario plotted as a function of mean change in habitat suitability for mainstem (a,c) and tributary (b,d) dispersal pathways. Each point (scatterplot) and reach (map) is computed as the mean response for all species projected to occur within the reach. Quadrant numbers represent percentage of reaches in the quadrant. Colours associated with the upper-right quadrant correspond to ‘safe’ reaches where community members can keep pace with ISVs and habitat suitability increases. Colours associated with the lower-left quadrant correspond to ‘vulnerable’ reaches where community members cannot keep pace with ISVs and habitat suitability declines. The y-axes of the scatterplots are inverse hyperbolic sine (asinh)-transformed. For clarity, the scatterplots show net DV values ≥ −13,000 and ≤ 130, and change in habitat suitability values ≤ 100, representing >99.5% of all observations.” These corrections did not change our inferences.Fifth, there was an error in the last sentence of the “Calculating net DVs” subsection in Methods: “Last, we calculated the mean net DV for each species (species-specific DV) by averaging net DVs at all occupied reaches, as well as the community-wide net DV at each stream reach (reach-specific DV) by averaging the net DVs of all species at each reach.” This sentence should have read “Last, we calculated the median net DV for each species (species-specific DV) across all occupied reaches, as well as the mean community-wide net DV at each stream reach (reach-specific DV) by averaging the net DVs of all species at each reach.”Corrections of calculation errors yielded results that were similar to those in the original analysis whereas corrections of plotting and text errors did not affect our original inferences. Therefore, these errors did not change the overall results and conclusions of the article. We sincerely apologize for any misunderstanding and inconvenience caused by these errors. More

  • in

    Drosophila suzukii preferentially lays eggs on spherical surfaces with a smaller radius

    Little, C. M., Chapman, T. W. & Hillier, N. K. Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. J. Insect Sci. 20, 5. https://doi.org/10.1093/jisesa/ieaa034 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tait, G. et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. J. Economic Entomol. 114, 1950–1974. https://doi.org/10.1093/jee/toab158 (2021).Article 

    Google Scholar 
    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integ. Pest Manag. 2, G1–G7. https://doi.org/10.1603/IPM10010 (2011).Article 

    Google Scholar 
    Hamby, K. A. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605–619. https://doi.org/10.1007/s10340-016-0756-5 (2016).Article 

    Google Scholar 
    Stewart, T. J., Wang, X. G., Molinar, A. & Daane, K. M. Factors limiting peach as a potential host for Drosophila suzukii (Diptera: Drosophilidae). J. Economic Entomol. 107, 1771–1779. https://doi.org/10.1603/EC14197 (2014).Article 

    Google Scholar 
    Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128. https://doi.org/10.1007/s10886-015-0544-3 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poyet, M. et al. The wide potential trophic niche of the Asiatic fruit fly Drosophila suzukii: The key of its invasion success in temperate Europe?. PLoS ONE 10, e0152785. https://doi.org/10.1371/journal.pone.0142785 (2015).CAS 
    Article 

    Google Scholar 
    Lee, J. C. et al. Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J. Pest Sci. 89, 771–780. https://doi.org/10.1007/s10340-015-0692-9 (2016).Article 

    Google Scholar 
    Entling, W., Anslinger, S., Jarausch, B., Michl, G. & Hoffmann, C. Berry skin resistance explains oviposition preferences of Drosophila suzukii at the level of grape cultivars and single berries. J. Pest Sci. 92, 477–484. https://doi.org/10.1007/s10340-018-1040-7 (2019).Article 

    Google Scholar 
    Guo, L. et al. Identification of potential mechanosensitive ion channels involved in texture discrimination during Drosophila suzukii egg-laying behavior. Insect Mol. Biol. 29, 444–451. https://doi.org/10.1111/imb.12654 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kidera, H. & Takahashi, K. H. Chemical cues from competitors change the oviposition preference of Drosophila suzukii. Entomol. Exp. Appl. 168, 304–310. https://doi.org/10.1111/eea.12889 (2020).CAS 
    Article 

    Google Scholar 
    Little, C. M., Dixon, P. L., Chapman, T. W. & Hillier, N. K. Role of fruit characters and colour on host selection of boreal fruits and berries by Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 152, 546–562. https://doi.org/10.4039/tce.2020.1 (2020).Article 

    Google Scholar 
    Tait, G. et al. Reproductive site selection: evidence of an oviposition cue in a highly adaptive Dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 49, 355–363. https://doi.org/10.1093/ee/nvaa005 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tonina, L. et al. Texture features explain the susceptibility of grapevine cultivars to Drosophila suzukii (Diptera: Drosophilidae) infestation in ripening and drying grapes. Sci. rep. 10, 10245. https://doi.org/10.1038/s41598-020-66567-9 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wernicke, M., Lethmayer, C. & Bluemel, S. Laboratory trials to investigate potential repellent/oviposition deterrent effects of selected substances on Drosophila suzukii adults. Bull. Insectol 73, 249–255 (2020).
    Google Scholar 
    Durkin, S. M. et al. Behavioral and genomic sensory adaptation underlying the pest activity of Drosophila suzukii. Mol. Biol. Evol. 38, 2532–2546. https://doi.org/10.1093/molbev/msab048 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dweck, H. K. M., Talross, G. J. S., Wang, W. & Carlson, J. R. Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii. Elife 10, e64317. https://doi.org/10.7554/eLife.64317 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elsensohn, J. E., Aly, M. F. K., Schal, C. & Burrack, H. J. Social signals mediate oviposition site selection in Drosophila suzukii. Sci. Rep. 11, 3796. https://doi.org/10.1038/s41598-021-83354-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kienzle, R. & Rohlfs, M. Mind the wound!—fruit injury ranks higher than, and interacts with, heterospecific cues for Drosophila suzukii oviposition. Insects 12, 424. https://doi.org/10.3390/insects12050424 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sato, A., Tanaka, K. M., Yew, J. Y. & Takahashi, A. Drosophila suzukii avoidance of microbes in oviposition choice. R. Soc. Open Sci. 8, 201601. https://doi.org/10.1098/rsos.201601 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stockton, D. G., Cha, D. H. & Loeb, G. M. Does habituation affect the efficacy of semiochemical oviposition repellents developed against Drosophila suzukii?. Environ. Entomol. 50, 1322–1331. https://doi.org/10.1093/ee/nvab099 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wöhner, T. et al. Insights into the susceptibility of raspberries to Drosophila suzukii oviposition. J. Appl Entomol. 145, 182–190. https://doi.org/10.1111/jen.12839 (2021).CAS 
    Article 

    Google Scholar 
    Baena, R. et al. Ripening stages and volatile compounds present in strawberry fruits are involved in the oviposition choice of Drosophila suzukii (Diptera: Drosophilidae). Crop Prot. 153, 105883. https://doi.org/10.1016/j.cropro.2021.105883 (2022).CAS 
    Article 

    Google Scholar 
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Broström, G. & Holmberg, H. Generalized linear models with clustered data: Fixed and random effects models. Comput. Stat. Data Anal. 55, 3123–3134. https://doi.org/10.1016/j.csda.2011.06.011 (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Asplen, M. K. et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 88, 469–494. https://doi.org/10.1007/s10340-015-0681-z (2015).Article 

    Google Scholar 
    Knapp, L., Mazzi, D. & Finger, R. The economic impact of Drosophila suzukii: Perceived costs and revenue losses of Swiss cherry, plum and grape growers. Pest Management Sci. 77, 978–1000. https://doi.org/10.1002/ps.6110 (2020).CAS 
    Article 

    Google Scholar 
    Ishii, S. Studies on the host preference of the cowpea weevil (Callosobruchus chinensis L.). Bull. Natl. Inst. Agric. Sci. Ser. C 1, 185–156 (1952).
    Google Scholar 
    Katsoyannos, B. I. & Pittara, I. S. Effect of size of artificial oviposition substrates and presence of natural host fruits on the selection of oviposition site by Dacus oleae. Entmol. Exp. Appl. 34, 326–332 (1983).Article 

    Google Scholar 
    McDonald, P. T. & McInnis, D. O. Ceratitis capitata: Effect of host fruit size on the number of eggs per clutch. Entomol. Exp. Appl. 37, 207–211 (1985).Article 

    Google Scholar 
    Pittara, I. S. & Katsoyannos, B. I. Effect of shape, size and color on selection of oviposition sites by Chaetorellia australis. Entomol. Exp. Appl. 63, 105–113 (1992).Article 

    Google Scholar 
    Greenberg, S. M., Sappington, T. W., Sétamou, M. & Coleman, R. J. Influence of different cotton fruit sizes on boll weevil (Coleoptera: Curculionidae) oviposition and survival to adulthood. Environ. Entomol. 33, 443–449. https://doi.org/10.1603/0046-225X-33.2.443 (2004).Article 

    Google Scholar 
    Showler, A. T. Relationship of different cotton square sizes to boll weevil (Coleoptera: Curculionidae) feeding and oviposition in field conditions. J. Econ. Entomol. 98, 1572–1579. https://doi.org/10.1603/0022-0493-98.5.1572 (2005).Article 
    PubMed 

    Google Scholar 
    Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Avidov, Z., Berlinger, M. J. & Applebaum, S. W. Physiological aspects of host specificity in the Bruchidae: III. Effect of curvature and surface area on oviposition of Callosobruchus chinensis L.. Anim. Behav. 13, 178–180 (1965).Article 

    Google Scholar 
    Sambaraju, K. R. & Phillips, T. W. Effects of physical and chemical factors on oviposition by Plodia interpunctella (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 101, 955–963 (2008).Article 

    Google Scholar 
    Schmidt, J. M. & Smith, J. J. B. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: A possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986).Article 

    Google Scholar 
    Jois, S. et al. Sexually dimorphic peripheral sensory neurons regulate copulation duration and persistence in male Drosophila. Sci. Rep. 12, 1–12. https://doi.org/10.1038/s41598-022-10247-3 (2022).CAS 
    Article 

    Google Scholar 
    Crava, C. M. et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 125, 104088. https://doi.org/10.1016/j.jinsphys.2020.104088 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sampson, B. J. et al. Novel aspects of Drosophila suzukii (Diptera: Drosophilidae) biology and an improved method for culturing this invasive species with a modified D. melanogaster diet. Florida Entomol. 99, 774–780. https://doi.org/10.1653/024.099.0433 (2016).Article 

    Google Scholar  More

  • in

    Ecological and evolutionary dynamics of multi-strain RNA viruses

    Gupta, S. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kucharski, A. J., Andreasen, V. & Gog, J. R. Capturing the dynamics of pathogens with many strains. J. Math. Biol. 72, 1–24 (2016).PubMed 
    Article 

    Google Scholar 
    Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLoS Comput. Biol. 9, e1003308 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gog, J. R. & Grenfell, B. T. Dynamics and selection of many-strain pathogens. Proc. Natl Acad. Sci. USA 99, 17209–17214 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Recker, M., Pybus, O. G., Nee, S. & Gupta, S. The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types. Proc. Natl Acad. Sci. USA 104, 7711–7716 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jang, Y., Seo, T. & Seo, S. H. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch. Virol. 165, 1141–1150 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salvesen, H. A. & Whitelaw, C. B. A. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manage. 7, 23 (2021).Article 

    Google Scholar 
    Ma, W., Kahn, R. E. & Richt, J. A. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J. Mol. Genet. Med. 03, 158–166 (2009).CAS 
    Article 

    Google Scholar 
    Mancera Gracia, J. C., Pearce, D. S., Masic, A. & Balasch, M. Influenza A virus in swine: epidemiology, challenges and vaccination strategies. Front. Vet. Sci. 7, 647 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Regenmortel, M. H. V. Virus species and virus identification: past and current controversies. Infect. Genet. Evol. 7, 133–144 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lazebnik, T. & Bunimovich-Mendrazitsky, S. Generic approach for mathematical model of multi-strain pandemics. PLoS ONE 17, e0260683 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Sandeman, M., Recker, M. & Gupta, S. The antigenic evolution of influenza: drift or thrift? Phil. Trans. R. Soc. B 368, 20120200 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pitzer, V. E. et al. Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proc. Natl Acad. Sci. USA 108, 19353–19358 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paploski, I. A. D. et al. Temporal dynamics of co-circulating lineages of porcine reproductive and respiratory syndrome virus. Front. Microbiol. 10, 2486 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bishop, S. C., Axford, R. F. E., Nicholas, F. W. & Owen, J. B. Breeding for Disease Resistance in Farm Animals 3rd edn (CABI, 2010); https://doi.org/10.1079/9781845935559.0000Domingo, E. & Schuster, P. in Quasispecies: From Theory to Experimental Systems (eds Domingo, E. & Schuster, P.) 1–22 (Springer, 2015); https://doi.org/10.1007/82_2015_453Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N., Trible, B. R., Kerrigan, M. A., Tian, K. & Rowland, R. R. R. ORF5 of porcine reproductive and respiratory syndrome virus (PRRSV) is a target of diversifying selection as infection progresses from acute infection to virus rebound. Infect. Genet. Evol. 40, 167–175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S. Identification of Genetic Mutations that Confer Escape from Innate or Adaptive Host Immune Responses During PRRSV Infection In Vivo NPB #12-173 (National Pork Board, 2014).Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dou, D., Revol, R., Östbye, H., Wang, H. & Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 9, 1581 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hamilton, B. S., Whittaker, G. R. & Daniel, S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4, 1144–1168 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, K. et al. Virus–host interactions in foot-and-mouth disease virus infection. Front. Immunol. 12, 571509 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Millet, J. K., Jaimes, J. A. & Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa057 (2020).Wang, G., Wang, Y., Shang, Y., Zhang, Z. & Liu, X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol. J. 12, 9 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sokol, C. L. & Luster, A. D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 7, a016303 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Theofilopoulos, A., Baccala, R., Beutler, B. & Kono, D. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mueller, S. N. & Rouse, B. T. in Clinical Immunology (eds Rich, R. R. et al.) 421–431 (Elsevier, 2008); https://doi.org/10.1016/B978-0-323-04404-2.10027-2Chen, X. et al. Host immune response to influenza A virus infection. Front. Immunol. 9, 320 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Agrawal, B. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 10, 2631 (2019)iCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharma, S. & Thomas, P. G. The two faces of heterologous immunity: protection or immunopathology. J. Leukoc. Biol. 95, 405–416 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spackman, E. & Sitaras, I. Animal Influenza Virus (Springer, 2020).Anderson, C. S., McCall, P. R., Stern, H. A., Yang, H. & Topham, D. J. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics 19, 51 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cai, Z., Zhang, T. & Wan, X.-F. Concepts and applications for influenza antigenic cartography. Influenza Other Respi. Viruses 5, 204–207 (2011).PubMed Central 

    Google Scholar 
    Wang, P. et al. Predicting influenza antigenicity by matrix completion with antigen and antiserum similarity. Front. Microbiol. 9, 2500 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hirst, G. K. Studies of antigenic differences among strains of influenza by means of red cell agglutination. J. Exp. Med. 78, 407–423 (1943).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendra, J. A., Tohma, K., Ford-Siltz, L. A., Lepore, C. J. & Parra, G. I. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc. Natl Acad. Sci. USA 118, e2015874118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, S. M., Katzelnick, L. & Bedford, T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. Elife 8, e42496 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, Y. et al. Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Sci. Rep. 7, 1545 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zeller, M. A. et al. Machine learning prediction and experimental validation of antigenic drift in h3 influenza A viruses in swine. mSphere 6, e00920–e00920 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wikramaratna, P. S. et al. Five challenges in modelling interacting strain dynamics. Epidemics 10, 31–34 (2015).PubMed 
    Article 

    Google Scholar 
    Elliott, P. et al. Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science 374, eabl9551 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bianco, S., Shaw, L. B. & Schwartz, I. B. Epidemics with multistrain interactions: the interplay between cross immunity and antibody-dependent enhancement. Chaos 19, 043123 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nickbakhsh, S. et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl Acad. Sci. USA 116, 27142–27150 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Poon, A. F. Y. et al. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS ONE 8, e78122 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gill, M. S. et al. Improving bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingman, J. F. C. On the genealogy of large populations. J. Appl. Probab. 19, 27–43 (1982).Article 

    Google Scholar 
    Griffiths, R. C. & Tavare, S. Ancestral inference in population genetics. Stat. Sci. 9, 307–319 (1994).Article 

    Google Scholar 
    Magee, D., Suchard, M. A. & Scotch, M. Bayesian phylogeography of influenza A/H3N2 for the 2014–15 season in the United States using three frameworks of ancestral state reconstruction. PLoS Comput. Biol. 13, e1005389 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Müller, N. F., Rasmussen, D. & Stadler, T. MASCOT: parameter and state inference under the marginal structured coalescent approximation. Bioinformatics 34, 3843–3848 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yan, L., Neher, R. A. & Shraiman, B. I. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. Elife 8, e44205 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paploski, I. A. D. et al. Phylogenetic structure and sequential dominance of sub-lineages of PRRSV type-2 lineage 1 in the United States. Vaccines 9, 608 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kistler, K. E. & Bedford, T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E. Elife 10, e64509 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bedford, T. et al. Integrating influenza antigenic dynamics with molecular evolution. Elife 2014, e01914 (2014).Article 

    Google Scholar 
    de Carvalho Ferreira, H. C. et al. An integrative analysis of foot-and-mouth disease virus carriers in Vietnam achieved through targeted surveillance and molecular epidemiology. Transbound. Emerg. Dis. 64, 547–563 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Huang, J. H. et al. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2008–2010. Am. J. Trop. Med. Hyg. 87, 349–358 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Höckerstedt, L. M., Siren, J. P. & Laine, A.-L. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J. Evol. Biol. 31, 844–852 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papaïx, J., Burdon, J. J., Lannou, C. & Thrall, P. H. Evolution of pathogen specialisation in a host metapopulation: joint effects of host and pathogen dispersal. PLoS Comput. Biol. 10, e1003633 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M. & Laine, A.-L. Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology 95, 703–714 (2014).PubMed 
    Article 

    Google Scholar 
    Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics 14, 289 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wargo, A. R. & Kurath, G. Viral fitness: definitions, measurement, and current insights. Curr. Opin. Virol. 2, 538–545 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dayarian, A. & Shraiman, B. I. How to infer relative fitness from a sample of genomic sequences. Genetics 197, 913–923 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neher, R. A., Russell, C. A. & Shraiman, B. I. Predicting evolution from the shape of genealogical trees. Elife 3, e03568 (2014).PubMed Central 
    Article 

    Google Scholar 
    Doumayrou, J., Thébaud, G., Vuillaume, F., Peterschmitt, M. & Urbino, C. Mapping genetic determinants of viral traits with FST and quantitative trait locus (QTL) approaches. Virology 484, 346–353 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagylaki, T. Fixation indices in subdivided populations. Genetics 148, 1325–1332 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tubiana, L., Božič, A. L., Micheletti, C. & Podgornik, R. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys. J. 108, 194–202 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jordan-Paiz, A., Franco, S. & Martínez, M. A. Impact of synonymous genome recoding on the HIV life cycle. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.606087 (2021).Cuevas, J. M., Domingo-Calap, P. & Sanjuán, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Su, Y. C. F. et al. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nat. Commun. 6, 7952 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kryazhimskiy, S., Dieckmann, U., Levin, S. A. & Dushoff, J. On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. PLoS Comput. Biol. 3, e159 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Peralta, R., Vargas-De-León, C., Cabrera, A. & Miramontes, P. Dynamics of high-risk nonvaccine human papillomavirus types after actual vaccination scheme. Comput. Math. Methods Med. 2014, 542923 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ranjeva, S. L. et al. Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc. Natl Acad. Sci. USA 114, 13573–13578 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguiar, M., Stollenwerk, N. & Kooi, B. W. The stochastic multi-strain dengue model: analysis of the dynamics. AIP Conf. Proc. 1389, 1224 (2011).Blower, S. M., Aschenbach, A. N., Gershengorn, H. B. & Kahn, J. O. Predicting the unpredictable: transmission of drug-resistant HIV. Nat. Med. 7, 1016–1020 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharomi, O. & Gumel, A. B. Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn. 2, 323–345 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B., Drake, J. M. & Rohani, P. An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinformatics 12, 87 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sofonea, M. T., Alizon, S. & Michalakis, Y. From within-host interactions to epidemiological competition: a general model for multiple infections. Phil. Trans. R. Soc. B 370, 20140303 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanderWaal, K. L. & Ezenwa, V. O. Heterogeneity in pathogen transmission: mechanisms and methodology. Funct. Ecol. 30, 1606–1622 (2016).Article 

    Google Scholar 
    Cobey, S. & Pascual, M. Consequences of host heterogeneity, epitope immunodominance, and immune breadth for strain competition. J. Theor. Biol. 270, 80–87 (2011).PubMed 
    Article 

    Google Scholar 
    Aguiar, M., Ballesteros, S., Kooi, B. W. & Stollenwerk, N. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis. J. Theor. Biol. 289, 181–196 (2011).PubMed 
    Article 

    Google Scholar 
    Breban, R., Drake, J. M. & Rohani, P. A general multi-strain model with environmental transmission: invasion conditions for the disease-free and endemic states. J. Theor. Biol. 264, 729–736 (2010).PubMed 
    Article 

    Google Scholar 
    Kamo, M. & Sasaki, A. The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D 165, 228–241 (2002).Martcheva, M. A non-autonomous multi-strain SIS epidemic model. J. Biol. Dyn. 3, 235–251 (2009).PubMed 
    Article 

    Google Scholar 
    Pugliese, A. On the evolutionary coexistence of parasite strains. Math. Biosci. 177–178, 355–375 (2002).PubMed 
    Article 

    Google Scholar 
    Roche, B. & Rohani, P. Environmental transmission scrambles coexistence patterns of avian influenza viruses. Epidemics 2, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    Korobeinikov, A. & Dempsey, C. A continuous phenotype space model of RNA virus evolution within a host. Math. Biosci. Eng. 11, 919–927 (2014).Article 

    Google Scholar 
    Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A. & Liu, W. M. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta, S., Swinton, J. & Anderson, R. M. Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. B 256, 231–238 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koelle, K., Khatri, P., Kamradt, M. & Kepler, T. B. A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. J. R. Soc. Interface 7, 1257–1274 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lion, S. & Gandon, S. Spatial evolutionary epidemiology of spreading epidemics. Proc. R. Soc. B 283, 20161170 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, e1000536 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lipsitch, M., Colijn, C., Cohen, T., Hanage, W. P. & Fraser, C. No coexistence for free: neutral null models for multistrain pathogens. Epidemics 1, 2–13 (2009).PubMed 
    Article 

    Google Scholar 
    Read, J. M. & Keeling, M. J. Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B 270, 699–708 (2003).Article 

    Google Scholar 
    Eshelman, C. M. et al. Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Phil. Trans. R. Soc. B 365, 2503–2513 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Makau, D. N. et al. Integrating animal movements with phylogeography to model the spread of PRRS virus in the US. Virus Evol. https://doi.org/10.1093/ve/veab060 (2021).Kistler, K. E., Huddleston, J. & Bedford, T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 30, 545–555 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Roossinck, M. J. Genetic bottlenecks reduce population variation in an experimental RNA virus population. J. Virol. 78, 10582–10587 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCrone, J. T. et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife 7, e35962 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nelson, M. I. et al. Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog. 2, e125 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369, 582–587 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    da Silva Filipe, A. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat. Microbiol. 6, 112–122 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tayoun, A. A. et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci. Rep. 10, 17720 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obermeyer, F. et al. Analysis of 2.1 million SARS-CoV-2 genomes identifies mutations associated with transmissibility. Science 376, 1327–1332 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl Acad. Sci. USA 111, 10767–10772 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).CAS 
    Article 

    Google Scholar 
    Clay, P. A. & Rudolf, V. H. W. How parasite interaction strategies alter virulence evolution in multi‐parasite communities. Evolution 73, 2189–2203 (2019).PubMed 
    Article 

    Google Scholar 
    Bishop, S. C., Doeschl-Wilson, A. B. & Woolliams, J. A. Uses and implications of field disease data for livestock genomic and genetics studies. Front. Genet. 3, 114 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez‐Nevado, C., Lam, T. T. Y., Holmes, E. C. & Pagán, I. The impact of host genetic diversity on virus evolution and emergence. Ecol. Lett. 21, 253–263 (2018).PubMed 
    Article 

    Google Scholar 
    Schulte, R. D., Makus, C. & Schulenburg, H. Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J. Evol. Biol. 26, 1836–1840 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Duxbury, E. M. L. et al. Host–pathogen coevolution increases genetic variation in susceptibility to infection. Elife 8, e46440 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ganusov, V. V., Bergstrom, C. T. & Antia, R. Within‐host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56, 213–223 (2002).PubMed 
    Article 

    Google Scholar 
    González, R., Butković, A. & Elena, S. F. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evol. 5, vez024 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Regoes, R. R., Nowak, M. A. & Bonhoeffer, S. Evolution of virulence in a heterogeneous host population. Evolution 54, 64–71 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yates, A., Antia, R. & Regoes, R. R. How do pathogen evolution and host heterogeneity interact in disease emergence? Proc. R. Soc. B 273, 3075–3083 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rochman, N. D. et al. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2104241118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).PubMed 
    Article 

    Google Scholar 
    Gidari, A. et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. J. Infect. 83, 467–472 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Changrob, S. et al. Cross-neutralization of emerging SARS-CoV-2 variants of concern by antibodies targeting distinct epitopes on spike. MBio https://doi.org/10.1128/mBio.02975-21 (2021).Vidal, S. J. et al. Correlates of neutralization against SARS-CoV-2 variants of concern by early pandemic sera. J. Virol. 95, e0040421 (2021).PubMed 
    Article 

    Google Scholar 
    Muik, A. et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152–1153 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bushman, M., Kahn, R., Taylor, B. P., Lipsitch, M. & Hanage, W. P. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 184, 6229–6242 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koopman, J. S., Simon, C. P., Getz, W. M. & Salter, R. Modeling the population effects of escape mutations in SARS-CoV-2 to guide vaccination strategies. Epidemics 36, 100484 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More