Ecological resilience of restored peatlands to climate change
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).
Google Scholar
Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).CAS
Article
Google Scholar
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS
Article
Google Scholar
Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS
Google Scholar
Bonn, A. et al. Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 9, 54–65 (2014).Article
Google Scholar
Martin-Ortega, J., Allott, T. E., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).Article
Google Scholar
Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article
Google Scholar
Chimner, R. A., Cooper, D. J., Wurster, F. C. & Rochefort, L. An overview of peatland restoration in North America: where are we after 25 years? Restor. Ecol. 25, 283–292 (2017).Article
Google Scholar
Andersen, R. et al. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 25, 271–282 (2017).Article
Google Scholar
Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).Article
Google Scholar
Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).Article
Google Scholar
Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abd6034 (2020).Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1–7 (2018).CAS
Article
Google Scholar
Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article
Google Scholar
Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).Article
Google Scholar
Scheffer, M. Critical transitions in nature and society (Princeton University, 2009).Alexandrov, G. A., Brovkin, V. A., Kleinen, T. & Yu, Z. The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences 17, 47–54 (2020).CAS
Article
Google Scholar
Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article
Google Scholar
Rydin, H., Jeglum, J. K. & Bennett, K. D. The biology of peatlands, 2nd edition (Oxford University Press, 2013).Kim, J. et al. Water table fluctuation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition. Front. Earth Sci. 8, 717 (2021).
Google Scholar
IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability (Cambridge University Press, In Press).Belyea, L. R. Non-linear dynamics of peatlands and potential feedbackson the climate system, in Northern Peatlands and Carbon Cycling (A, Baird. et al. eds), pp 5–18 (American Geophysical Union Monograph Series, 2009).Holden, J. et al. Overland flow velocity and roughness properties in peatlands. Water Resour. Res. 44, https://doi.org/10.1029/2007WR006052 (2008).Holden, J., Wallage, Z. E., Lane, S. N. & McDonald, A. T. Water table dynamics in undisturbed, drained and restored blanket peat. J. Hydrol. 402, 103–114 (2011).Article
Google Scholar
Glaser, P. H. et al. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Glob. Biogeochem. Cycles 18, GB1003 (2004).Article
CAS
Google Scholar
Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross‐scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).Article
Google Scholar
Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology 8, 113–127 (2015).Article
Google Scholar
Holden, J., Evans, M. G., Burt, T. P. & Horton, M. Impact of land drainage on peatland hydrology. J. Environ. Qual. 35, 1764–1778 (2006).CAS
Article
Google Scholar
Liu, H. & Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient—a meta study. Hydrol. Process. 33, 101–114 (2019).Article
Google Scholar
Gałka, M., Tobolski, K., Górska, A. & Lamentowicz, M. Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: implications for ecological restoration. Holocene 27, 130–141 (2017).Article
Google Scholar
Lamentowicz, M. et al. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands. Biol. Lett. 15, https://doi.org/10.1098/rsbl.2019.0043 (2019).van der Velde, Y. Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.210174211 (2021).Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS
Article
Google Scholar
Minayeva, T. Y. & Sirin, A. A. Peatland biodiversity and climate change. Biol. Bull. Rev. 2, 164–175 (2012).Article
Google Scholar
Minayeva, T. Y., Bragg, O. & Sirin, A. A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 19, 1–36 (2017).
Google Scholar
Andersen, R., Chapman, S. J. & Artz, R. R. Microbial communities in natural and disturbed peatlands: a review. Soil Biol. Biochem. 1, 979–994 (2013).Article
CAS
Google Scholar
van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).Article
Google Scholar
Hugron, S. & Rochefort, L. Sphagnum mosses cultivated in outdoor nurseries yield efficient plant material for peatland restoration. Mires Peat 20, 1–6 (2018).
Google Scholar
Vitt, D. H. Peatlands: ecosystems dominated by bryophytes. In: Shaw A. J. & Goffinet B. (eds) Bryophyte biology, pp 312–343 (Cambridge University Press, 2002).Yu, Z. et al. Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. Holocene 13, 801–808 (2003).Article
Google Scholar
Chiapusio, G. et al. Sphagnum species module their phenolic profiles and mycorrhizal colonization of surrounding Andromeda polifolia along peatland microhabitats. J. Chem. Ecol. 44, 1146–1157 (2018).CAS
Article
Google Scholar
Sherwood, J. H. et al. Effect of drainage and wildfire on peat hydrophysical properties. Hydrol. Process. 27, 1866–1874 (2013).Article
Google Scholar
Tanneberger, F., Flade, M., Preiksa, Z. & Schröder, B. Habitat selection of the globally threatened aquatic warbler Acrocephalus paludicola at the western margin of its breeding range and implications for management. Ibis 152, 347–358 (2010).Article
Google Scholar
Kreyling, J. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 1–8 (2021).Article
CAS
Google Scholar
Ritson, J. P. et al. Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning–a research agenda. Sci. Total Environ. 759, https://doi.org/10.1016/j.scitotenv.2020.143467 (2021).Secco, E. D., Haapalehto, T., Haimi, J., Meissner, K. & Tahvanainen, T. Do testate amoebae communities recover in concordance with vegetation after restoration of drained peatlands? Mires Peat 18, https://doi.org/10.19189/MaP.2016.OMB.231 (2016).Basiliko, N. et al. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands. Front. Microbiol. 31, https://doi.org/10.3389/fmicb.2013.00215 (2013).Barber, K. E. Peat stratigraphy and climatic change. vol 219, (AA Balkema, 1981).Quinton, W. L. & Roulet, N. T. Spring and summer runoff hydrology of a subarctic patterned wetland. Arctic Alpine Res. 30, 285–294 (1998).Article
Google Scholar
Eppinga, M. B., Rietkerk, M., Wassen, M. J. & De Ruiter, P. C. Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecol. 200, 53–68 (2009).Article
Google Scholar
Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant– soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).CAS
Article
Google Scholar
Fenton, N. J. Applied ecology in Canada’s boreal: a holistic view of the mitigation hierarchy and resilience theory. Botany 94, 1009–1014 (2016).Article
Google Scholar
Xu, L. X. et al. Maintain spatial heterogeneity, maintain biodiversity—a seed bank study in a grazed alpine fen meadow. Land Degrad. Dev. 28, 1376–1385 (2017).Article
Google Scholar
Laine, J., Vasander, H. & Laiho, R. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 1, 785–802 (1995).
Google Scholar
Gatis, N. et al. The effect of drainage ditches on vegetation diversity and CO2 fluxes in a Molinia caerulea‐dominated peatland. Ecohydrology 9, 407–420 (2016).CAS
Article
Google Scholar
Swindles, G. T. et al. Resilience of peatland ecosystem services over millennial timescales: evidence from a degraded British bog. Journal of Ecology 104, 621–636 (2016).Article
Google Scholar
Liu, H., Gao, C. & Wang, G. Understand the resilience and regime shift of the wetland ecosystem after human disturbances. Sci. Total Environ. 643, 1031–1040 (2018).CAS
Article
Google Scholar
Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).CAS
Article
Google Scholar
Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).Article
Google Scholar
Strack, M. et al. Controls on plot-scale growing season CO2 and CH4 fluxes in restored peatlands: do they differ from unrestored and natural sites? Mires Peat 17, 1–18 (2016).
Google Scholar
Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Global Change Biol. 24, 5751–5768 (2018).Article
Google Scholar
Hambley, G. et al. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat 23, https://doi.org/10.19189/MaP.2018.DW.346 (2019).Schwieger, S. et al. Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks in a dry year. Ecosystems 24, 1093–1109 (2021).CAS
Article
Google Scholar
Poulin, M., Andersen, R. & Rochefort, L. A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor. Ecol. 21, 363–371 (2013).Article
Google Scholar
Gonzalez, E. & Rochefort, L. Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol. Eng. 68, 279–290 (2014).Article
Google Scholar
Karofeld, E., Müür, M. & Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ. Sci. Pollut. Res. 23, 13706–13717 (2016).Article
Google Scholar
Karofeld, E., Kaasik, A. & Vellak, K. Growth characteristics of three Sphagnum species in restored extracted peatland. Restor. Ecol. 28, 1574–1583 (2020).Article
Google Scholar
Purre, A. H., Ilomets, M., Truus, L., Pajula, R. & Sepp, K. The effect of different treatments of moss layer transfer technique on plant functional types biomass in revegetated milled peatlands. Restor. Ecol. 28, 1584–1595 (2020).Article
Google Scholar
Beyer, F. et al. Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18, 917–935 (2021).CAS
Article
Google Scholar
Ketcheson, S. J. & Price, J. S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 31, 1263–1274 (2011).Article
Google Scholar
McCarter, C. P. R. & Price, J. S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 55, 73–81 (2013).Article
Google Scholar
Koebsch, F. et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philos. Transac. R. Soc. B 375, https://doi.org/10.1098/rstb.2019.0685 (2020).Blier‐Langdeau, A., Guêné‐Nanchen, M., Hugron, S. & Rochefort, L. The resistance and short‐term resilience of a restored extracted peatland ecosystems post‐fire: an opportunistic study after a wildfire. Restor. Ecol. 30, https://doi.org/10.1111/rec.13545 (2022).Rochefort, L., Quinty, F., Campeau, S., Johnson, K. & Malterer, T. North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecol. Manage. 11, 3–20 (2003).CAS
Article
Google Scholar
Lavoie, C., St-Louis, A. & Lachance, D. Vegetation dynamics on an abandoned vacuum-mined peatland: Five years of monitoring. Wetlands Ecol. Manage. 13, 621–633 (2005).Article
Google Scholar
Poulin, M., Rochefort, L., Quinty, F. & Lavoie, C. Spontaneous revegetation of mined peatlands in eastern Canada. Can. J. Botany 83, 539–557 (2005).Article
Google Scholar
Quinty, F., LeBlanc, M.-C. & Rochefort, L. Peatland Restoration Guide—PERG, CSPMA and APTHQ (Université Laval, 2020).Wagner, D. J. & Titus, J. E. Comparative desiccation tolerance of two Sphagnum mosses. Oecologia 62, 182–187 (1984).Article
Google Scholar
Gonzalez, E. & Rochefort, L. Declaring success in Sphagnum peatland restoration: identifying outcomes from readily measurable vegetation descriptors. Mires Peat 24, 1–16 (2019).
Google Scholar
Scotland National Peatland Plan. Working for our future. https://www.nature.scot/doc/scotlands-national-peatland-plan-working-our-future#:~:text=The%202020%20Challenge%20for%20Scotland’s,more%20resilient%20to%20climate%20change (2020).Wilkie, N. M. & Mayhew, P. W. The management and restoration of damaged blanket bog in the north of Scotland. Bot. J. Scotl. 55, 125–133 (2003).Article
Google Scholar
Hancock, M. H., Klein, D., Andersen, R. & Cowie, N. R. Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Appl. Veg. Sci. 21, 167–178 (2018).Article
Google Scholar
Harris, A. & Baird, A. J. Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion. Ecosystems 22, 1035–1054 (2019).Article
Google Scholar
Bradley, A. V., Andersen, R., Marshall, C., Sowter, A. & Large, D. J. Identification of typical ecohydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dyn. 10, 261–277 (2022).Article
Google Scholar
Gaffney, P. P., Hancock, M. H., Taggart, M. A. & Andersen, R. Measuring restoration progress using pore-and surface-water chemistry across a chronosequence of formerly afforested blanket bogs. J. Environ. Manage. 219, 239–251 (2018).CAS
Article
Google Scholar
Hermans, R. et al. Climate benefits of forest-to-bog restoration on deep peat–Policy briefing. Climate X Change 1–5, https://www.climatexchange.org.uk/media/3654/climate-benefits-of-forest-to-bog-restoration-on-deep-peat.pdf (2019).Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17, 1–28 (2016).
Google Scholar
Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1–5 (2020).Article
CAS
Google Scholar
Young, D. M. et al. Misinterpreting carbon accumulation rates in records from near-surface peat. Sci. Rep. 9, 1–8 (2019).Article
CAS
Google Scholar
Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).CAS
Article
Google Scholar
Klimkowska, A. et al. Are we restoring functional fens? The outcomes of restoration projects in fens re-analysed with plant functional traits. PLoS One 14, https://doi.org/10.1371/journal.pone.0215645 (2019).Huth, V. et al. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor. Ecol. 30, https://doi.org/10.1111/rec.13490 (2022).Schimelpfenig, D., Cooper, D. J. & Chimner, R. A. Effectiveness of ditch blockage for restoring hydrologic and soil processes in mountain peatlands. Restor. Ecol. 22, 257–265 (2014).Article
Google Scholar
Laine, A. M., Tolvanen, A., Mehtätalo, L. & Tuittila, E. S. Vegetation structure and photosynthesis respond rapidly to restoration in young coastal fens. Ecol. Evol. 6, 6880–6891 (2016).Article
Google Scholar
Gallego-Sala, A. V. & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).Article
Google Scholar
Schneider, R. R., Devito, K., Kettridge, N. & Bayne, E. Moving beyond bioclimatic envelope models:50 integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the51 western Canadian boreal plain: Western boreal ecosystem transitions under climate change. Ecohydrology 9, 899–908 (2016).Article
Google Scholar
Blundell, A. & Holden, J. Using palaeoecology to support blanket peatland management. Ecol. Indic. 49, 110–120 (2005).Article
Google Scholar
Newman, S. et al. Drivers of landscape evolution: multiple regimes and their influence on carbon sequestration in a sub‐tropical peatland. Ecol. Monogr. 87, 578–599 (2017).Article
Google Scholar
Wilkinson, S. L., Moore, P. A., Flannigan, M. D., Wotton, B. M. & Waddington, J. M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Environ. Res. Lett. 13, https://doi.org/10.1088/1748-9326/aaa136 (2018).Hokanson, K. J. et al. A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots. Ecohydrology 11, https://doi.org/10.1002/eco.1942 (2018).IPCC. Global warming of 1.5 °C (IPCC, 2018).Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C. & Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Change 70, https://doi.org/10.1016/j.gloenvcha.2021.102323 (2021).Tanneberger, F. et al. The power of nature‐based solutions: how peatlands can help us to achieve key EU sustainability objectives. Adv. Sustain. Syst. 5, https://doi.org/10.1002/adsu.202000146 (2021).Loisel, J. & Walenta, J. Carbon parks could secure essential ecosystems for climate stabilization. Nat. Ecol. Evol. 6, 486–488 (2022).Article
Google Scholar
Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).Terzano, D. Community‐led peatland restoration in Southeast Asia: 5Rs approach. Restor. Ecol. 3, https://doi.org/10.1111/rec.13642 (2022). More