More stories

  • in

    Observing and modeling long-term persistence of P. noctiluca in coupled complementary marine systems (Southern Tyrrhenian Sea and Messina Strait)

    Lucas, C. H. et al. Gelatinous zooplankton biomass in the global oceans: Geographic variation and environmental drivers. Glob. Ecol. Biogeogr. 23, 701–714. https://doi.org/10.1111/Geb.12169 (2014).Article 

    Google Scholar 
    Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. USA 110, 1000–1005. https://doi.org/10.1073/pnas.1210920110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Graham, W. M. et al. Linking human well-being and jellyfish: Ecosystem services, impacts, and societal responses. Front. Ecol. Environ. 12, 515–523. https://doi.org/10.1890/130298 (2014).Article 

    Google Scholar 
    Lucas, C. H., Gelcich, S. & Uye, S. I. Living with jellyfish: Management and adaptation strategies. In Jellyfish Blooms (eds Pitt, K. A. & Lucas, C. H.) 129–150 (Springer, 2014).Chapter 

    Google Scholar 
    De Donno, A. et al. Impact of stinging jellyfish proliferations along south Italian coasts: Human health hazards, treatment and social costs. Int. J. Environ. Res. Public Health 11, 2488–2503 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bosch-Belmar, M. et al. Consequences of stinging plankton blooms on finfish mariculture in the Mediterranean Sea. Front. Mar. Sci. 4, 240. https://doi.org/10.3389/fmars.2017.0024 (2017).Article 

    Google Scholar 
    Mayer, A. G. Medusae of the World: The Hydromedusae 132–498 (Carnegie institution of Washington, 1910).Book 

    Google Scholar 
    Kramp, P. L. Synopsis of the medusae of the world. J. Mar. Biol. Assoc. UK 40, 1–469 (1961).
    Google Scholar 
    Canepa, A. et al. Pelagia noctiluca in the Mediterranean Sea. In Jellyfish Blooms (eds Pitt, K. A. & Lucas, C. H.) 237–266 (Springer, 2014).Chapter 

    Google Scholar 
    Marambio, M. et al. Unfolding jellyfish bloom dynamics along the Mediterranean basin by transnational citizen science initiatives. Diversity 13, 274. https://doi.org/10.3390/d13060274 (2021).Article 

    Google Scholar 
    Mamish, S., Durgham, H. & Ikhtiyar, S. The first Pelagia noctiluca outbreak off the Syrian coast (the eastern Mediterranean Sea), five years after its first appearance. SSRG Int. J. Agric. Environ. Sci. 6, 72–75 (2019).
    Google Scholar 
    Daly Yahia, M. N. et al. Are outbreaks of Pelagia noctiluca (Forsskäl, 1775) more frequent in the Mediterranean Basin?. ICES Coop. Res. Rep. 300, 8–14 (2010).
    Google Scholar 
    Aissi, M., Touzri, C., Gueroun, S. K. M., Kefi-Daly Yahia, O. & Daly Yahia, M. N. Persistent occurrence and life cycle of Pelagia noctiluca in the channel of Bizerte (Northern Tunisia). Ecol. Environ. Conserv. 20, 1453–1460 (2014).
    Google Scholar 
    Kogovsĕk, T., Bogunović, B. & Malej, A. Recurrence of bloom forming scyphomedusae: Wavelet analysis of a 200-year time series. Hydrobiologia 645, 81–96 (2010).Article 
    CAS 

    Google Scholar 
    Pestoric, B. et al. Scyphomedusae and ctenophora of the eastern adriatic: Historical overview and new data. Diversity 13, 186. https://doi.org/10.3390/d13050186 (2021).CAS 
    Article 

    Google Scholar 
    UNEP (United Nations Environmental Programme). Workshop on Jellyfish Blooms in the Mediterranean, Athens (1984).UNEP (United Nations Environmental Programme). Jellyfish blooms in the Mediterranean Sea. Proceedings of II Workshop on Jellyfish in the Mediterranean Sea, Athens (1991).Goy, J., Morand, P. & Etienne, M. Long term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean. Sea Prediction by climatic variables. Deep-Sea Res. A 36, 269–279 (1989).ADS 
    Article 

    Google Scholar 
    Bernard, P., Berline, L. & Gorsky, G. Long term (1981–2008) monitoring of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) on the French Mediterranean Coasts. J. Oceanogr. Res. Data 4, 1–10 (2011).
    Google Scholar 
    Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish population: Trends in large marine ecosystems. Hydrobiologia 690, 3–20 (2012).Article 

    Google Scholar 
    Rosa, S., Pansera, M., Granata, A. & Guglielmo, L. Interannual variability, growth, reproduction and feeding of Pelagia noctiluca (Cnidaria: Scyphozoa) in the Straits of Messina (Central Mediterranean Sea): Linkages with temperature and diet. J. Mar. Syst. 111–112, 97–107 (2013).Article 

    Google Scholar 
    Aoutien, M., Bekkali, R., Nachit, D., Luan, K. & Mrhraoui, M. Predicting jellyfish strandings in the Moroccan North-West Mediterranean coastline. Eur. Sci. J. 15, 72–84. https://doi.org/10.19044/esj.2019.v15n2p72 (2019).Article 

    Google Scholar 
    Lynam, C. P., Hay, S. J. & Brierley, A. S. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol. Oceanogr. 49, 637–643 (2004).ADS 
    Article 

    Google Scholar 
    Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782 (2011).ADS 
    Article 

    Google Scholar 
    Brodeur, R. D. et al. Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog. Oceanogr. 77, 103–111 (2008).ADS 
    Article 

    Google Scholar 
    Molinero, J. C. et al. Climate control on the longterm anomalous changes of zooplankton communities in the Northwestern Mediterranean. Glob. Change Biol. 14, 11–26 (2008).ADS 
    Article 

    Google Scholar 
    Licandro, P. et al. A blooming jellyfish in the northeast Atlantic and Mediterranean. Biol. Let. 6, 688–691 (2010).CAS 
    Article 

    Google Scholar 
    Ferraris, M. et al. Distribution of Pelagia noctiluca (Cnidaria, Scyphozoa) in the Ligurian Sea (NW Mediterranean Sea). J. Plankton Res. 34, 874–885 (2012).Article 

    Google Scholar 
    Malačič, V., Petelin, B. & Malej, A. Advection of the jellyfish Pelagia noctiluca (Scyphozoa) studied by the Lagrangian tracking of water mass in the climatic circulation of the Adriatic Sea. Geophys. Res. Abstr. 9, 02802 (2007).
    Google Scholar 
    Rubio, P. & Muñoz, J. M. Predicción estival del riesgo de blooms de Pelagia noctiluca (litoral central catalán). In Situaciones de riesgo climático en España (ed. Novau, J. C.) 281–287 (Instituto Pirenaico de Ecología, 1997).
    Google Scholar 
    Berline, L., Zakardjian, B., Molcard, A., Ourmieres, Y. & Guihou, K. Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Mar. Pollut. Bull. 70, 90–99 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olds, A. D. et al. Quantifying the conservation value of seascape connectivity: A global synthesis. Glob. Ecol. Biogeogr. 25, 3–15 (2016).Article 

    Google Scholar 
    Vodopivec, M., Peliz, A. J. & Malej, A. Offshore marine constructions as propagators of moon jellyfish dispersal. Environ. Res. Lett. 12, 084003 (2017).ADS 
    Article 

    Google Scholar 
    Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Fernandez-Arcaya, U. et al. Ecological role of submarine canyons and need for canyon conservation: A review. Front. Mar. Sci. 4, 5. https://doi.org/10.3389/fmars.2017.00005 (2017).Article 

    Google Scholar 
    Würtz, M. Towards a Mediterranean canyon inventory. Workshop (EBSAs), 7 to 11 April 2014, Málaga, Spain, 1–4 (2014).Sacchetti, F. Il ritorno di MeteoMedusa. Focus (Madison) 237, 92–94 (2012).
    Google Scholar 
    Benedetti-Cecchi, L. et al. Deterministic factors overwhelm stochastic environmental fluctuations as drivers of jellyfish outbreaks. PLoS ONE 10, e0141060. https://doi.org/10.1371/journal.pone.0141060 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malej, A. & Malej, M. Population dynamics of the jellyfish Pelagia noctiluca (Forsskäl, 1775). In Proceedings of the 25th EMBS, Marine Eutrophication and Population Dynamics (ed. Colombo, G.A.) 215–219 (Olsen & Olsen, 1992).Rottini-Sandrini, L., Avian, M., Axiak, V. & Malej, A. The breeding period of Pelagia noctiluca (Scyphozoa, Semaeostomeae) in the Adriatic and central Mediterranean Sea. Nova Thalass. 6, 65–75 (1983).
    Google Scholar 
    Milisenda, G. et al. Reproductive and bloom patterns of Pelagia noctiluca in the Strait of Messina, Italy. Estuar. Coast. Shelf Sci. 201, 29–39. https://doi.org/10.1016/j.ecss.2016.01.002 (2018).ADS 
    Article 

    Google Scholar 
    Magazzù, G. et al. Picoplankton: Contribution to phytoplankton production in the Strait of Messina. Mar. Ecol. 8, 21–31 (1987).ADS 
    Article 

    Google Scholar 
    Guglielmo, L., Crescenti, N., Costanzo, G. & Zagami, G. Zooplankton and micronekton communities in the Straits of Messina. In The Straits of Messina ecosystem, present knowledge for an ecohydrodynamical approach. Proceedings of Symposium held in Messina, 4–6 April 1991, Messina (eds. Guglielmo, L., Manganaro, A. & De Domenico, E.) 247–270 (Dipartimento di Biologia Animale ed Ecologia, 1995).Guglielmo, L. et al. The Strait of Messina: A key area for Pelagia noctiluca (Cnidaria, Scyphozoa). In Jellyfish: Ecology, Distribution Patterns and Human Interactions (ed. Mariottini, G. L.) 71–90 (Nova Science Publishers Inc., 2017).
    Google Scholar 
    Astraldi, M. & Gasparini, G. P. The seasonal characteristics of the circulation in the Tyrrhenian Sea. In: Seasonal and Interannual Variability of the Western Mediterranean Sea, Coast. Estuar. Studies, Vol. 46, 115–134 (American Geophysical Union, 1994).Krivosheya, V. G. Water circulation and structure in the Tyrrhenian Sea. Oceanology 23, 166–171 (1983).
    Google Scholar 
    Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20, 423–442. https://doi.org/10.1016/S0924-7963(98)00078-5 (1999).Article 

    Google Scholar 
    Vetrano, A., Napolitano, E., Iacono, R., Schroeder, K. & Gasparini, G. P. Tyrrhenian Sea circulation and water mass fluxes in spring 2004: Observations and model results. J. Geophys. Res. 115, C06023 (2010).ADS 

    Google Scholar 
    Iacono, R., Napolitano, E., Marullo, S., Artale, V. & Vetrano, A. Seasonal variability of the Tyrrhenian Sea surface geostrophic circulation as assessed by altimeter data. J. Phys. Oceanogr. 43, 1710–1732. https://doi.org/10.1175/JPO-D-12-0112.1 (2013).ADS 
    Article 

    Google Scholar 
    Boero, F. et al. CoCoNet: Towards coast to coast networks of Marine Protected Areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Sci. Res. Inf. Technol. 6(Suppl.), 1–95 (2016).
    Google Scholar 
    Rio, M. H. et al. A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J. Mar. Syst. 65, 484–508 (2007).Article 

    Google Scholar 
    Cucco, A. et al. Hydrodynamic modelling of coastal seas: The role of tidal dynamics in the Messina Strait, Western Mediterranean Sea. Nat. Hazards Earth Syst. Sci. 16, 1553–1569 (2016).ADS 
    Article 

    Google Scholar 
    Hopkins, T. S., Salusti, E. & Settimi, D. Tidal forcing of the water mass interface in the Straits of Messina. J. Geophys. Res. 89, 2013–2024 (1984).ADS 
    Article 

    Google Scholar 
    Bignami, F. & Salusti, E. Tidal currents and transient phenomena in the Strait of Messina: A review. In: The Physical Oceanography of Sea Straits (ed. Pratt, L. J.) 95–124 (Kluwer Academic, 1990).Azzaro, F., Decembrini, F., Raffa, F. & Crisafi, E. Seasonal variability of phytoplankton fluorescence in relation to the Straits of Messina (Sicily) tidal upwelling. Ocean Sci. Discuss. 4, 415–440 (2007).ADS 

    Google Scholar 
    De Domenico, E., Cortese, G. & Pulicanò, G. Chemical characteristics of the waters in the Straits of Messina. In The Straits of Messina ecosystem, present knowledge for an ecohydrodynamical approach. Proceedings of Symposium held in Messina, 4–6 April 1991, Messina (eds. Guglielmo, L., Manganaro, A., & De Domenico, E.) 155–167 (Dipartimento di Biologia Animale ed Ecologia Marina, 1995).Guglielmo, L. Distribuzione di Chetognati nell’area idrografica dello Stretto di Messina. Pubbl. Staz. Zool. Napoli 40, 34–72 (1976).
    Google Scholar 
    Sitran, R., Bergamasco, A., Decembrini, F. & Guglielmo, L. Temporal succession of tintinnids in the northern Ionian Sea, Central Mediterranean. J. Plankton Res. 29, 495–508 (2007).Article 

    Google Scholar 
    AA.VV. Final Scientific Report of the Project Cluster 10—SAM “Realizzazione ed attivazione di una rete integrata di piattaforme costiere e mezzo mobile attrezzati per Sistemi Avanzati di Monitoraggio delle acque (SAM)”, funded by the Italian Ministry of University and Scientifical and Technological Research (MURST), Internal Data File, Istituto Sperimentale Talassografico, National Research Council, Messina, Italy (2005).Sitran, R. Caratterizzazione dei popolamenti microzooplanctonici nell’area idrografica dello Stretto di Messina, University of Messina, Ph.D. Thesis XVII cycle (2006) (in Italian).Bergamasco, A. et al. A laboratory for the observation of a highly-energetic coastal marine system: The Straits of Messina. In Volume DTA/06–2011, “Marine Research at CNR” 2185–2202 (Department of Earth and Environment of National Research Council, 2011).Doyle, T. K. et al. Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. J. Plankton Res. 30, 963–968 (2008).Article 

    Google Scholar 
    Guglielmo, L. Spiaggiamenti di eufausiacei lungo la costa messinese dello Stretto dal dicembre 1968 al dicembre 1969. Boll. Pesca Piscic. Idrobiol. 24, 71–77 (1969).
    Google Scholar 
    Guglielmo, L., Costanzo, G. & Berdar, A. Ulteriore contributo alla conoscenza dei crostacei spiaggiati lungo il litorale messinese dello Stretto. Atti Soc. Pelorit. 19, 129–156 (1973).
    Google Scholar 
    Scotto Di Carlo, B., Costanzo, G., Fresi, E., Guglielmo, L. & Ianora, A. Feeding ecology and stranding mechanisms in two lanternfishes, Hygophum benoiti and Myctophum punctatum. Mar. Ecol. Prog. Ser 9, 13–24 (1982).ADS 
    Article 

    Google Scholar 
    Battaglia, P., Ammendolia, G., Cavallaro, M., Consoli, P. & Esposito, V. Influence of lunar phases, winds and seasonality on the stranding of mesopelagic fish in the Strait of Messina (Central Mediterranean Sea). Mar. Ecol. 38, e12459. https://doi.org/10.1111/maec.12459 (2017).Article 

    Google Scholar 
    Umgiesser, G., Canu, D. M., Cucco, A. & Solidoro, C. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 51, 123–145 (2004).Article 

    Google Scholar 
    Ferrarin, C., Bergamasco, A., Umgiesser, G. & Cucco, A. Hydrodynamics and spatial zonation of the Capo Peloro coastal system (Sicily) through 3-D numerical modeling. J. Mar. Syst. 117, 96–107 (2013).Article 

    Google Scholar 
    Umgiesser, G., Ferrarin, C., Cucco, A., De Pascalis, F. & Bellafiore, D. Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J. Geophys. Res. Oceans 119, 2212–2226 (2014).ADS 
    Article 

    Google Scholar 
    Cucco, A., Quattrocchi, G., Satta, A., Antognarelli, F. & De Biasio, F. Predictability of wind-induced sea surface transport in coastal areas. J. Geophys. Res. Oceans 121, 5847–5871. https://doi.org/10.1002/2016JC011643 (2016).ADS 
    Article 

    Google Scholar 
    Cucco, A., Quattrocchi, G. & Zecchetto, S. The role of temporal resolution in modeling the wind induced sea surface transport in coastal seas. J. Mar. Syst. 193, 46–58. https://doi.org/10.1016/j.jmarsys.2019.01.004 (2019).Article 

    Google Scholar 
    Quattrocchi, G. et al. An operational numerical system for oil stranding risk assessment in a high-density vessel traffic area. Front. Mar. Sci. 8, 585396. https://doi.org/10.3389/fmars.2021.585396 (2021).Article 

    Google Scholar 
    Cucco, A. et al. A high-resolution real-time forecasting system for predicting the fate of oil spills in the Strait of Bonifacio (western Mediterranean Sea). Mar. Pollut. Bull. 64, 1186–1200 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cucco, A. & Umgiesser, G. The Trapping Index: How to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins. Mar. Pollut. Bull. 98, 210–220 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quattrocchi, G. et al. Optimal design of a Lagrangian observing system for hydrodynamic surveys. J. Oper. Oceanogr. 9(suppl.), s77–s88. https://doi.org/10.1080/1755876X.2015.1114805 (2016).Article 

    Google Scholar 
    Quattrocchi, G. et al. Hydrodynamic controls on connectivity of the high commercial value shrimp Parapenaeus longirostris (Lucas, 1846) in the Mediterranean Sea. Sci. Rep. 9, 16935. https://doi.org/10.1038/s41598-019-53245-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pastor-Prieto, M. et al. Spatial heterogeneity of Pelagia noctiluca ephyrae linked to water masses in the Western Mediterranean. PLoS ONE 16, e0249756. https://doi.org/10.1371/journal.pone.0249756 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haeckel, E. Das system der medusen. Monographie der Medusen 499–510 (Gustav Fischer Verlag, 1880).
    Google Scholar 
    Avian, M. Temperature influence on in vitro reproduction and development of Pelagia noctiluca (Forsskäl, 1775). Boll. Zool. 53, 385–391 (1986).Article 

    Google Scholar 
    Fossette, S. et al. Current-oriented swimming by jellyfish and its role in bloom maintenance. Curr. Biol. 25, 342–347. https://doi.org/10.1016/j.cub.2014.11.050 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).ADS 
    Article 

    Google Scholar 
    Demirov, E. & Pinardi, N. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability. J. Mar. Syst. 33–34, 23–50 (2002).Article 

    Google Scholar 
    Menna, M. et al. New insights of the Sicily channel and Southern Tyrrhenian sea variability. Water 11, 1355 (2019).Article 

    Google Scholar 
    Avian, M. & Rottini Sandrini, L. Oocyte development in four species of scyphomedusa in the northern Adriatic Sea. Hydrobiologia 216/217, 189–195 (1991).Article 

    Google Scholar 
    Malej, A. Behaviour and trophic ecology of the jellyfish Pelagia noctiluca (Forsskäl, 1775). J. Exp. Mar. Biol. Ecol. 126, 259–270 (1989).Article 

    Google Scholar 
    Lo Bianco, S. Notizie biologiche riguardanti specialmente il periodo di maturità sessuale degli animali del golfo di Napoli. Mitt. Zool. Stn. Neapel 19, 513–761 (1909).
    Google Scholar 
    Purcell, J. E., Malej, A. & Benović, A. Potential links of jellyfish to eutrophication and fisheries. In Coastal and Estuarine Studies, Ecosystem at the Land-Sea Margin Drainage Basin to Coastal Sea (eds Malone, T. C. et al.) 241–263 (American Geophysical Union, 1999).Chapter 

    Google Scholar 
    Spezie, G. C., Sansone, E., Budillon, G. & Gallarato, A. Caratterizzazione idrodinamica del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia. Campagna oceanografica 1994. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM94). In Data Rep., (eds. Faranda, F. M. & Povero, P.) 1–82 (1995).Spezie, G. C. et al. Rilievi idrodinamici nel sistema Eolie e nei bacini limitrofi di Cefalù e Gioia. Campagna oceanografiche 1995. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 1–98 (1996).Carrada, G. C., Ribera D’Alcalà, M. & Saggiomo, V. The pelagic system of the Southern Tyrrhenian Sea. Some comments and working hypotheses. In Proceedings IX Proceedings XII Italian Association of Oceanography and Limnology Congress 151–166 (1992).Povero, P., Misic, C., Acconero, A. & Fabiano M. Distribuzione e caratterizzazione biochimica della sostanza organica particellata nelle acque del Tirreno Sud Orientale. In Acts 12 Congress of the Italian Association of Oceanology and Limnology 227–237 (1998).Brancato, G., Minutoli, R., Granata, A., Sidoti, O. & Guglielmo L. Diversity and vertical migration of euphausiids across the Straits of Messina area. In: Mediterranean Ecosystem: Structures and Processes (eds. Faranda, F. M., Guglielmo, L. & Spezie, G.) 131–141 (Springer, 2001).Sitran, R., Bergamasco, A., Decembrini, F. & Guglielmo, L. Microzooplankton (tintinnid ciliates) diversity: Coastal community structure and driving mechanisms in the Southern Tyrrhenian Sea (Western Mediterranean). J. Plankton Res. 31, 153–170 (2009).Article 

    Google Scholar 
    Fonda Umani, S., Monti, M., Minutoli, R. & Guglielmo, L. Recent advances in the Mediterranean researches on zooplankton: from spatial–temporal patterns of distribution to processes oriented studies. Adv. Oceanogr. Limnol. 1, 295–356 (2010).Article 

    Google Scholar 
    Giordano, D. et al. Summer larval fish assemblages in the Southern Tyrrhenian Sea (Western Mediterranean Sea). Mar. Ecol. 36, 104–117. https://doi.org/10.1111/maec.12123 (2015).ADS 
    Article 

    Google Scholar 
    Fonda Umani, S., Milani, L. & Martecchini, E. Distribuzione dei popolamenti microzooplanctonici durante la campagna oceanografica Eolie 1994. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 199–222 (1995).Carrada, G. C., Mangoni, O. & Sgrosso, S. Distribuzione spaziale di clorofilla a e di feopigmenti in diverse frazioni dimensionali del fitoplancton. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 197–216 (1996).Guglielmo, L. et al. Distribuzione verticale e migrazione giornaliera dello zooplancton e del micronecton nel Tirreno meridionale (Isole Eolie). Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 217–246 (1996).Innamorati, M., Lazzara, L., Massi, L., Biondi, N. & Nuccio, C. Fitoplancton, luce e produzione primaria nella’Arcipelago delle Isole Eolie, in estate. Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 161–196 (1996).Zunini Sertorio, T., Licandro, P., Giallain, M. & Bernat, P. Distribuzione verticale della biomassa zooplanctonica su una stazione delle Isole Eolie (Luglio 1995). Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EUCUMM95). In Data Rep. (eds. Faranda, F. M. & Povero, P.) 247–254 (1996).Sabates, A. et al. Pathways for Pelagia noctiluca jellyfish intrusions onto the Catalan shelf and their interactions with early life fish stages. J. Mar. Syst. 187, 52–61 (2018).Article 

    Google Scholar 
    Mosetti, F. Currents in the Straits of Messina. In The Straits of Messina ecosystem (eds Guglielmo, L. et al.) 13–29 (University of Messina, Department of Marine Biology and Ecology, 1995).
    Google Scholar 
    Zavodnik, D. Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa). Mar. Biol. 94, 265–269 (1987).Article 

    Google Scholar 
    El Rahi, J., Weeber, M. P. & El Serafy, G. Modelling the effect of behavior on the distribution of the jellyfish Mauve stinger (Pelagia noctiluca) in the Balearic Sea using an individual-based model. Ecol. Model. 433, 109230 (2020).Article 

    Google Scholar 
    Axiak, V. & Civili, F. S. Jellyfish blooms in the Mediterranean: causes, mechanisms, impact on man and the environment. A programme review. In: UNEP: Jellyfish blooms in the Mediterranean. Proceedings of the II Workshop on Jellyfish in the Mediterranean Sea. MAP Tech. Rep. Ser. Vol. 47, 1–10 (UNEP, 1991).Keesing, J. K. et al. Role of winds and tides in timing of beach strandings, occurrence, and significance of swarms of the jellyfish Crambione mastigophora Mass 1903 (Scyphozoa: Rhizostomeae: Catostylidae) in north-western Australia. Hydrobiologia 768, 19–36. https://doi.org/10.1007/s10750-015-2525-5 (2016).CAS 
    Article 

    Google Scholar 
    Aglieri, G. et al. First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS ONE 9, e99647. https://doi.org/10.1371/journal.pone.0099647 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alpers, W., Brandt, P. & Rubino, A. Internal waves generated in the Strait of Gibraltar and Messina: Observations from space. In Remote Sensing of the European Seas (eds. Barale, V. & Gade, M.) 319–330 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6772.Droghei, R. et al. The role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait. Sci. Rep. 6, 36376. https://doi.org/10.1038/srep36376 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    La Forgia, G. et al. Sediment resuspension and bedform generation induced by internal solitary waves. Geophys. Res. Abs. Vol. 21, EGU2019-9121, EGU General Assembly (2019).Lohmann, H. Die Stromunger in der Strasse von Messina und die verteilung des planktons in derselben. Int. Rev. Ges. Hydrobiol. 2, 505–556 (1909).Article 

    Google Scholar 
    Magazzù, G. & Andreoli, C. Trasferimenti fitoplanctonici attraverso lo Stretto di Messina in relazione alle condizioni idrologiche. Boll. Pesca Piscic. Idrobiol. 26, 125–193 (1971).
    Google Scholar 
    Palanques, A. et al. General patterns of circulation, sediment fluxes and ecology of the Palamòs (La Fonera) submarine canyon, northwestern Mediterranean. Progr. Oceanogr. 66, 89–119 (2005).ADS 
    Article 

    Google Scholar 
    Granata, A. et al. Vertical distribution and diel migration of zooplankton and micronekton in Polcevera submarine canyon of the Ligurian mesopelagic zone (NW Mediterranean Sea). Progr. Oceanogr. 183, 102298. https://doi.org/10.1016/j.pocean (2020).Article 

    Google Scholar 
    Zagami, G. et al. Spring copepod vertical zonation pattern and diel migration in the open Ligurian Sea (north-western Mediterranean). Progr. Oceanogr. 183, 102297. https://doi.org/10.1016/j.pocean (2020).Article 

    Google Scholar 
    Danovaro, R. & Boero, F. Italian seas. In: World Seas: An Environmental Evaluation. Vol. I Europe, The Americas and West Africa. (ed. Sheppard, C.) 283–306 (Elsevier Ltd., 2019). https://doi.org/10.1016/B978-0-12-805068-2.00044-9Lo Iacono, C., Sulli, A. & Agate, M. Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin. Deep-Sea Res. 104, 93–105 (2014).
    Google Scholar  More

  • in

    The shrunk genetic diversity of coral populations in North-Central Patagonia calls for management and conservation plans for marine resources

    Försterra, G. et al. Animal forests in the Chilean fiord region: Discoveries and perspectives in shallow and deep waters. In Marine Animal Forests. Orejas Saco del Valle (eds Rossi, S. et al.) 1–35 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_3-1.Chapter 

    Google Scholar 
    Castilla, J. C. et al. (eds) Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Iriarte, J. L. et al. Oceanographic Processes in Chilean Fjords of Patagonia: From small to large-scale studies. Prog. Oceanogr. 129, 1–7. https://doi.org/10.1016/j.pocean.2014.10.004 (2014).ADS 
    Article 

    Google Scholar 
    Iriarte, J. L. Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front. Mar. Sci. 5, 360. https://doi.org/10.3389/fmars.2018.00360 (2018).Article 

    Google Scholar 
    Strub, P. T. et al. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 172, 159–198. https://doi.org/10.1016/j.pocean.2019.01.004 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Häussermann, V. et al. Macrobentos de fondos duros de la Patagonia chilena: Énfasis en la conservación de bosques sublitorales de invertebrados y algas. In Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (eds Castilla, J. C. et al.) (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Kol, P. H. Los Riesgos de la Expansión Salmonera en la Patagonia Chilena. Estado de la Salmonicultura Intensiva en la Región de Magallanes (AIDA, 2018).Iversen, A. et al. Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 522, 735089. https://doi.org/10.1016/j.aquaculture.2020.735089 (2020).Article 

    Google Scholar 
    Cárdenas-Retamal, R. et al. Impact assessment of salmon farming on income distribution in remote coastal areas: The Chilean case. Food Policy 101, 102078. https://doi.org/10.1016/j.foodpol.2021.102078 (2021).Article 

    Google Scholar 
    Chavez, C. et al. Main issues and challenges for sustainable development of salmon farming in Chile: A socio-economic perspective. Rev. Aquac. 11, 403–421. https://doi.org/10.1111/raq.12338 (2019).Article 

    Google Scholar 
    Quiñones, R. A. et al. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 11, 375–402. https://doi.org/10.1111/raq.12337 (2019).Article 

    Google Scholar 
    Mardones, J. I. et al. Disentangling the environmental processes responsible for the world’s largest farmed fish-killing harmful algal bloom: Chile, 2016. Sci. Total Environ. 76, 1–19. https://doi.org/10.1016/j.scitotenv.2020.144383 (2021).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Upraising a silent pollution: Antibiotic resistance at coastal environments and transference to long-distance migratory shorebirds. Sci. Total Environ. 777, 1–7. https://doi.org/10.1016/j.scitotenv.2021.146004 (2021).CAS 
    Article 

    Google Scholar 
    SUBPESCA. Listado de concesiones de acuicultura d salmónidos por agrupación de concesiones en las regiones X, XI y XII (Julio 2021). https://www.subpesca.cl/portal/619/w3-article-103129.html (2021).Gorny, M. et al. Las comunidades marinas bentónicas de la Reserva Nacional Katalalixar (Chile). Oceanografía, 29–44 (2020).Friedlander, A. M. et al. Marine communities of the newly created Kawésqar National Reserve, Chile: From glaciers to the Pacific Ocean. PLoS One 16(4), e0249413. https://doi.org/10.1371/journal.pone.0249413 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mardones, J. I. et al. Toxic dinoflagellate blooms of Alexandrium catenella in Chilean fjords: A resilient winner from climate change. ICES J. Mar. Sci. 74(4), 988–995. https://doi.org/10.1093/icesjms/fsw164 (2016).Article 

    Google Scholar 
    Alvarez-Garreton, C. et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846. https://doi.org/10.5194/hess-22-5817-2018 (2018).ADS 
    Article 

    Google Scholar 
    Novak, B. J. et al. Transforming ocean conservation: Applying the genetic rescue toolkit. Genes 11, 209. https://doi.org/10.3390/genes11020209 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Outeiro, L. et al. Using ecosystem services mapping for marine spatial planning in southern Chile under scenario assessment. Ecosyst. Serv. 16, 341–353. https://doi.org/10.1016/j.ecoser.2015.03.004 (2015).Article 

    Google Scholar 
    Anbleyth-Evans, J. et al. Toward marine democracy in Chile: Examining aquaculture ecological impacts through common property local ecological knowledge. Mar. Policy 113, 103690. https://doi.org/10.1016/j.marpol.2019.103690 (2019).Article 

    Google Scholar 
    Kershaw, F. et al. Geospatial genetics: Integrating genetics into marine protection and spatial planning. Aquat. Conserv. Mar Freshw. Ecosyst. https://doi.org/10.1002/aqc.3622 (2021).Article 

    Google Scholar 
    Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173. https://doi.org/10.1016/j.marpol.2018.04.022 (2018).Article 

    Google Scholar 
    Paredes, J. et al. Population genetic structure at the northern edge of the distribution of Alexandrium catenella in the Patagonian fjords and its expansion along the open Pacific Ocean coast. Front. Mar. Sci. 5, 532. https://doi.org/10.3389/fmars.2018.00532 (2019).Article 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean. PeerJ 6, e4173. https://doi.org/10.7717/peerj.4173 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. High genetic diversity and low-population differentiation in the Patagonian sprat (Sprattus fuegensis) based on mitochondrial DNA. Mitochondrial DNA Part A 29(8), 1148–1155. https://doi.org/10.1080/24701394.2018.1424841 (2018).CAS 
    Article 

    Google Scholar 
    Pérez-Alvarez, M. et al. Historical dimensions of population structure in a continuously distributed marine species: The case of the endemic Chilean dolphin. Sci. Rep. 6, 35507. https://doi.org/10.1038/srep35507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Alvarez, J. M. et al. Phylogeography and demographic inference of the endangered sei whale, with implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3717 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(1), 1–14. https://doi.org/10.1002/aqc.3421 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Genetic conservation management of marine resources and ecosystems of Patagonian Fjords. Front. Mar. Sci. 8, 612195. https://doi.org/10.3389/fmars.2021.612195 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus and cross-species amplifications in the Scleractinia Order. J. Hered. 106(3), 322–330. https://doi.org/10.1093/jhered/esv010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Miller, K. J. & Gunasekera, R. M. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci. Rep. 7, 1–14. https://doi.org/10.1038/srep46103 (2017).CAS 
    Article 

    Google Scholar 
    Holloley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517. https://doi.org/10.2144/000113156 (2009).Article 

    Google Scholar 
    Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C. et al. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Falush, D. et al. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).Article 
    PubMed 

    Google Scholar 
    Kopelman, N. M. et al. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K. et al. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627. https://doi.org/10.1111/1755-0998 (2016).Article 
    PubMed 

    Google Scholar 
    Piry, S. et al. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).Article 

    Google Scholar 
    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. et al. dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2022). https://ggplot2.tidyverse.org. ISBN 978-3-319-24277-4.Addamo, A. M. et al. Microsatellites of Desmophyllum dianthus—Comau Fjord. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.612195. Zenodo. https://doi.org/10.5281/zenodo.4435966 (2021).Tecklin, D. Sensing the limits of fixed marine property rights in changing coastal ecosystems: Salmon aquaculture concessions, crises, and governance challenges in Southern Chile. J. Int. Wildl. Law Policy 19(4), 284–300. https://doi.org/10.1080/13880292.2016.1248647 (2016).Article 

    Google Scholar 
    Buschmann, A. H. et al. Salmon aquaculture and coastal ecosystem health in Chile: Analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast. Manag. 52, 243–249. https://doi.org/10.1016/j.ocecoaman.2009.03.002 (2009).Article 

    Google Scholar 
    Pantoja, S. et al. Oceanography of the Chilean Patagonia. Cont. Shelf Res. 31, 149–153. https://doi.org/10.1016/j.csr.2010.10.013 (2011).ADS 
    Article 

    Google Scholar 
    Molina, V. & Fernández, C. Bacterioplankton response to nitrogen and dissolved organic matter produced from salmon mucus. Microbiol. Open 9(12), e1132. https://doi.org/10.1002/mbo3.1132 (2020).CAS 
    Article 

    Google Scholar 
    Försterra, G. & Häussermann, V. First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool. Verh. 345, 117–128 (2003).
    Google Scholar 
    Brown, S. M. et al. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem. PLoS One 8(4), e59732. https://doi.org/10.1371/journal.pone.0059732 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460. https://doi.org/10.1111/mec.13782 (2016).Article 
    PubMed 

    Google Scholar 
    Thiel, M. et al. The Humboldt Current system of Northern and Central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
    Google Scholar 
    Giesecke, R. et al. General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America. Front. Mar. Sci. Coast. Ocean Process. 8, 621822. https://doi.org/10.3389/fmars.2021.621822 (2021).Article 

    Google Scholar 
    Chaigneau, A. Surface circulation and fronts of the South Pacific Ocean, east of 120°. Geophys. Res. Lett. 32, L08605. https://doi.org/10.1029/2004GL022070 (2005).ADS 
    Article 

    Google Scholar 
    Aiken, C. M. A reanalysis of the Chilean ocean circulation: Preliminary results for the region between 20°S to 40°S. Lat. Am. J. Aquat. Res. 45(1), 193–198. https://doi.org/10.3856/vol45-issue1-fulltext-19 (2017).Article 

    Google Scholar 
    González, H. E. et al. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 402, 13–30. https://doi.org/10.3354/meps08360 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    González, H. E. et al. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Cont. Shelf Res. 31, 225–243. https://doi.org/10.1016/j.csr.2010.08.010 (2011).ADS 
    Article 

    Google Scholar 
    Feehan, K. A. et al. Highly seasonal reproduction in deep-water emergent Desmophyllum dianthus (Scleractinia: Caryophylliidae) from the Northern Patagonian Fjords. Mar. Biol. 166(4), 52. https://doi.org/10.1007/s00227-019-3495-3 (2019).Article 

    Google Scholar 
    Försterra, G. et al. Mass die off of the cold-water coral Desmophyllum dianthus in the Chilean Patagonian Fjord Region. Bull. Mar. Sci. 90(3), 895–899 (2014).Article 

    Google Scholar 
    Mora-Soto, A. et al. A song of wind and ice: Increased frequency of marine cold-spells in southwestern Patagonia and their possible effects on giant kelp forests. J. Geophys. Res. Oceans 127, e2021JC017801. https://doi.org/10.1029/2021JC017801 (2022).ADS 
    Article 

    Google Scholar 
    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    Verberk, W. Explaining general patterns in species abundance and distributions. Nat. Sci. Educ. 3(10), 38 (2011).
    Google Scholar 
    Devenish, C. et al. Extreme and complex variation in range-wide abundances across a threatened Neotropical bird community. Divers. Distrib. 23, 910–921. https://doi.org/10.1111/ddi.12577 (2017).Article 

    Google Scholar 
    Iriarte, J. L. et al. Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. N. Z. J. Mar. Freshw. Res. 51(2), 304–315. https://doi.org/10.1080/00288330.2016.1220955 (2016).CAS 
    Article 

    Google Scholar 
    Silva, N. et al. Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y Laguna San Rafael (Crucero Cimar-Fiordo 1). Cienc. Tecnol. Mar. 20, 23–106 (1997).
    Google Scholar 
    Iriarte, J. L. et al. Low spring primary production and microplankton carbon biomass in Sub-Antarctic Patagonian channels and fjords (50–53°S). Arct. Antarct. Alp. Res. 50(1), e1525186. https://doi.org/10.1080/15230430.2018.1525186 (2018).Article 

    Google Scholar 
    Höfer, J. et al. All you can eat: The functional response of the cold-water coral Desmophyllum dianthus feeding on krill and copepods. PeerJ 6, e5872. https://doi.org/10.7717/peerj.5872 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montero, P. et al. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem. Estuar. Coast. Shelf Sci. 199, 105e116. https://doi.org/10.1016/j.ecss.2017.09.027 (2017).CAS 
    Article 

    Google Scholar 
    Quiroga, E. et al. Seasonal benthic patterns in a glacial Patagonian fjord: The role of suspended sediment and terrestrial organic matter. Mar. Ecol. Prog. Ser. 561, 31–50. https://doi.org/10.3354/meps11903 (2016).ADS 
    Article 

    Google Scholar 
    Escribano, R. et al. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Prog. Oceanogr. 75, 470–485. https://doi.org/10.1016/j.pocean.2007.08.027 (2007).ADS 
    Article 

    Google Scholar 
    Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4, e1606. https://doi.org/10.7717/peerj.1606 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Dios, A. et al. Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus. PeerJ 8, e8236. https://doi.org/10.7717/peerj.8236 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-Márquez, V. et al. Asexual reproduction in bad times? The case of Cladocora caespitosa in the eastern Mediterranean Sea. Coral Reefs 40, 663–677. https://doi.org/10.1007/s00338-020-02040-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva, N. & Calvete, C. Características oceanográficas físicas y químicas de canales australes chilenos entre el Golfo de Penas y el Estrecho de Magallanes (Crucero Cimar-Fiordo 2). Cienc. Tecnol. Mar. 20, 23–88 (2002).
    Google Scholar 
    Häussermann, V. et al. Species that fly at a higher game: Patterns of deep–water emergence along the Chilean coast, including a global review of the phenomenon. Front. Mar. Sci. 8, 688316. https://doi.org/10.3389/fmars.2021.688316 (2021).Article 

    Google Scholar 
    Fillinger, L. & Richter, C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: A cold-water coral thriving at low pH. PeerJ 1, e194. https://doi.org/10.7717/peerj.194 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Addamo, A. M. et al. Biodiversity and distribution of corals in Chile. Mar. Biodivers. 52, 33. https://doi.org/10.1007/s12526-022-01271-7 (2022).Article 

    Google Scholar 
    Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 8, 584445. https://doi.org/10.3389/fmars.2021.584445 (2021).Article 

    Google Scholar 
    SGS SIGA. 4.15 Pobreza multidimensional y pobreza por ingresos de la Region de los Lagos. Agosto 2018. Subsecreteria de Desarollo Regional y Administrativo, Gobierno de Chile (2018).FAO. The state of world fisheries and aquaculture. http://www.fao.org/3/a-i720e.pdf (2014).Niklitschek, E. J. et al. Southward expansion of the Chilean salmon industry in the Patagonian Fjords: Main environmental challenges. Rev. Aquac. 4, 1–24. https://doi.org/10.1111/raq.1201 (2013).Article 

    Google Scholar 
    Soto, M. V. et al. Natural hazards and exposure of strategic connectivity in extreme territories. Comau Fjord, North Patagonia, Chile. Rev. Geogr. Norte Grande 73, 57–75 (2019).Article 

    Google Scholar 
    Montes, R. M. et al. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65. https://doi.org/10.1016/j.hal.2018.05.004 (2018).Article 
    PubMed 

    Google Scholar 
    Lembeye, G. Harmful algal blooms in the austral Chilean channels and fjords. In Progress in the Oceanographic Knowledge of Chilean Interior Waters, from Puerto Montt to Cape Horn (eds Silva, N. & Palma, S.) 99–103 (Comité Oceanográfico, 2008).
    Google Scholar 
    Häussermann, V. et al. Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ 5, e3123. https://doi.org/10.7717/peerj.3123 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Google IncGoogle Earth. Retrieved from https://www.google.com/earth/versions/#download-pro (2009). More

  • in

    Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2

    Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).Ridgwell, A. & Zeebe, R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).Article 

    Google Scholar 
    Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. Part 2 54, 521–537 (2007).Article 

    Google Scholar 
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 20170075 (2018).Article 

    Google Scholar 
    Aloisi, G. Covariation of metabolic rates and cell size in coccolithophores. Biogeosciences 12, 6215–6284 (2015).Article 

    Google Scholar 
    Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).Article 

    Google Scholar 
    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).Article 

    Google Scholar 
    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).Article 

    Google Scholar 
    McClelland, H. L. O., Bruggeman, J., Hermoso, M. & Rickaby, R. E. M. The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8, 14511 (2017).Article 

    Google Scholar 
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).Article 

    Google Scholar 
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. 6, 34263 (2016).Article 

    Google Scholar 
    Duchamp-Alphonse, S. et al. Enhanced ocean–atmosphere carbon partitioning via the carbonate counter pump during the last deglacial. Nat. Commun. 9, 2396 (2018).Article 

    Google Scholar 
    Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).Article 

    Google Scholar 
    Meier, K. J. S., Berger, C. & Kinkel, H. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II). Mar. Micropaleontol. 112, 1–12 (2014).Article 

    Google Scholar 
    Su, X., Liu, C. & Beaufort, L. Late Quaternary coccolith weight variations in the northern South China Sea and their environmental controls. Mar. Micropaleontol. 154, 101798 (2020).Article 

    Google Scholar 
    Berger, C., Meier, K. J. S., Kinkel, H. & Baumann, K.-H. Changes in calcification of coccoliths under stable atmospheric CO2. Biogeosciences 11, 929–944 (2014).Article 

    Google Scholar 
    Zachos, J., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).Article 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).Article 

    Google Scholar 
    Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11, 4436 (2020).Article 

    Google Scholar 
    Holtz, L.-M., Wolf-Gladrow, D. & Thoms, S. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores—a numerical model study for Emiliania huxleyi. J. Theor. Biol. 420, 117–127 (2017).Article 

    Google Scholar 
    Hermoso, M., Horner, T. J., Minoletti, F. & Rickaby, R. E. M. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater. Geochim. Cosmochim. Acta 141, 612–627 (2014).Article 

    Google Scholar 
    Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C. & Rickaby, R. E. M. Vanishing coccolith vital effects with alleviated carbon limitation. Biogeosciences 13, 301–312 (2016).Article 

    Google Scholar 
    Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785 (2010).Article 

    Google Scholar 
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149 (2003).Article 

    Google Scholar 
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).Article 

    Google Scholar 
    Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).Article 

    Google Scholar 
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores. Biogeosciences 14, 1493–1509 (2017).Article 

    Google Scholar 
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nat. Geosci. 6, 218–222 (2013).Article 

    Google Scholar 
    Herrmann, S. & Thierstein, H. R. Cenozoic coccolith size changes—evolutionary and/or ecological controls? Palaeogeogr. Palaeoclimatol. Palaeoecol. 333–334, 92–106 (2012).Article 

    Google Scholar 
    Young, J. R. & Ziveri, P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 22, 1679–1700 (2000).Article 

    Google Scholar 
    Daniels, C. J., Sheward, R. M. & Poulton, A. J. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species. Biogeosciences 11, 6915–6925 (2014).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).Article 

    Google Scholar 
    Misra, S. & Froelich, P. N. Lithium isotope history of cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).Article 

    Google Scholar 
    Ravizza, G. E. & Zachos, J. C. in Treatise on Geochemistry Vol. 6 (ed. Elderfield, H.) 551–581 (Elsevier, 2003).McArthur, J. M., Howarth, R. J. & Bailey, T. R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr‐isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. J. Geol. 109, 155–170 (2001).Article 

    Google Scholar 
    Pegram, W. J., Krishnaswami, S., Ravizza, G. E. & Turekian, K. K. The record of sea water 1870s/1860s variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–576 (1992).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Leg 208 summary. In Zachos, J. C., Kroon, D. & Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–112: College Station, TX (Ocean Drilling Program) (2004).Brummer, G. J. A. & van Eijden, A. J. M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar. Micropaleontol. 19, 99–117 (1992).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 433 (2018).Article 

    Google Scholar 
    Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Sci. Rep. 9, 2486 (2019).Article 

    Google Scholar 
    Zhang, Y. G. et al. Refining the alkenone–pCO2 method I: lessons from the Quaternary glacial cycles. Geochim. Cosmochim. Acta 260, 177–191 (2019).Article 

    Google Scholar 
    Freeman, K. H. & Pagani, M. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems Vol. 177 (eds Baldwin, I. T. et al.) 35–61 (Springer-Verlag, 2005).Pagani, M. The alkenone–CO2 proxy and ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. A 360, 609–632 (2002).Article 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).Article 

    Google Scholar 
    Henehan, M. J. et al. Revisiting the Middle Eocene Climatic Optimum ‘Carbon Cycle Conundrum’ with new estimates of atmospheric pCO2 from boron isotopes. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003713 (2020).Zachos, J., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 

    Google Scholar 
    Stap, L., Sluijs, A., Thomas, E. & Lourens, L. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean, Paleoceanography 24, PA1211, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008PA001655 (2009).Sluijs, A. et al. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780 (2009).Article 

    Google Scholar 
    Stap, L. et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38, 607–610 (2010).Article 

    Google Scholar 
    Bohaty, S. M. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017 (2003).Article 

    Google Scholar 
    van der Ploeg, R. et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nat. Commun. 9, 2877 (2018).Article 

    Google Scholar 
    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).Article 

    Google Scholar 
    Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822–e1501822 (2016).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Site 1263. In Zachos, J. C., Kroon, D., Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–87 College Station, TX (Ocean Drilling Program) (2004).Bice, K. L., Sloan, L. C. & Barron, E. J. in Warm Climates in Earth History (eds Huber, B. T., Macleod, K. G., & Wing, S. L.) 79–129 (Cambridge Univ. Press, 2000).Handoh, I. C., Bigg, G. R. & Jones, E. J. W. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 31–58 (2003).Article 

    Google Scholar 
    Minoletti, F., Hermoso, M. & Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nat. Protoc. 4, 14–24 (2009).Article 

    Google Scholar 
    Zhang, H., Stoll, H., Bolton, C., Jin, X. & Liu, C. A refinement of coccolith separation methods: Measuring the sinking characters of coccoliths. Biogeosciences Discussions (2018): 1–30 https://doi.org/10.5194/bg-2018-82 (2020).Hermoso, M. et al. Towards the use of the coccolith vital effects in palaeoceanography: a field investigation during the middle Miocene in the SW Pacific Ocean. Deep Sea Res. Part 1 160, 103262 (2020).Article 

    Google Scholar 
    Lauretano, V., Hilgen, F. J., Zachos, J. C. & Lourens, L. J. Astronomically tuned age model for the early Eocene carbon isotope events: a new high-resolution δ13Cbenthic record of ODP site 1263 between ~49 and ~54 Ma. Newsl. Stratigr. 49, 383–400 (2016).Article 

    Google Scholar 
    Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M. & Zachos, J. C. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 11, 1181–1195 (2015).Article 

    Google Scholar 
    Westerhold, T. et al. Astronomical Calibration of the Ypresian Time Scale: Implications for Seafloor Spreading Rates and the Chaotic Behaviour of the Solar System? Preprint at Clim. Past Discuss. https://doi.org/10.5194/cp-2017-15 (2017).Gatuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. seacarb: Seawater Carbonate Chemistry (2021); https://CRAN.R-project.org/package=seacarb More

  • in

    Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan

    Blanton, L. S. The rickettsioses: A practical update. Infect. Dis. Clin. North Am. 33, 213–229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parola, P. et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 26, 657–702 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Satjanadumrong, J., Hughes, T., Stenos, J. & Blacksell, S. D. Diagnosis of spotted fever group Rickettsia infections: The Asian perspective. Epidemiol. Infect. 147, e286 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graves, S. & Stenos, J. Rickettsioses in Australia. Ann. N. Y. Acad. Sci. 1166, 151–155 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Niang, M. et al. Prevalence of antibodies to Rickettsia conorii, Ricketsia africae, Rickettsia typhi and Coxiella burnetii in Mauritania. Eur. J. Epidemiol. 14, 817–818 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parola, P. Tick-borne rickettsial diseases: Emerging risks in Europe. Comp. Immunol. Microbiol. Infect. Dis. 27, 297–304 (2004).PubMed 
    Article 

    Google Scholar 
    Nanayakkara, D. M., Rajapakse, R. P. V. J., Wickramasinghe, S. & Kularatne, S. A. M. Serological evidence for exposure of dogs to Rickettsia conorii, Rickettsia typhi, and Orientia tsutsugamushi in Sri Lanka. Vector Borne Zoon. Dis. Larchmt. N 13, 545–549 (2013).Article 

    Google Scholar 
    Brown, L. D. & Macaluso, K. R. Rickettsia felis, an emerging flea-borne rickettsiosis. Curr. Trop. Med. Rep. 3, 27–39 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, P. N. et al. A prospective, open-label, randomized trial of doxycycline versus azithromycin for the treatment of uncomplicated murine typhus. Clin. Infect. Dis. 68, 738–747 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vallee, J. et al. Contrasting spatial distribution and risk factors for past infection with scrub typhus and murine typhus in Vientiane City, Lao PDR. 4 (2010).Akram, S. M., Jamil, R. T. & Gossman, W. G. Rickettsia Akari (2021).Dong, X., El Karkouri, K., Robert, C., Raoult, D. & Fournier, P.-E. Genome sequence of Rickettsia australis, the agent of Queensland tick typhus. J. Bacteriol. 194, 5129 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fournier, P.-E. & Raoult, D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann. N. Y. Acad. Sci. 1166, 1–11 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Legendre, K. P. & Macaluso, K. R. Rickettsia felis: A review of transmission mechanisms of an emerging pathogen. Trop. Med. Infect. Dis. 2, E64 (2017).PubMed 
    Article 

    Google Scholar 
    Murray, G. G. R., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia using different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279 (2016).PubMed 
    Article 

    Google Scholar 
    Shpynov, S. N., Fournier, P., Pozdnichenko, N. N., Gumenuk, A. S. & Skiba, A. A. New approaches in the systematics of rickettsiae. New Microbes New Infect. 23, 93–102 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shpynov, S. et al. Detection of a rickettsia closely related to Rickettsia aeschlimannii, ‘Rickettsia heilongjiangensis’, Rickettsia sp. strain RpA4, and Ehrlichia muris in ticks collected in Russia and Kazakhstan. J. Clin. Microbiol. 42, 2221–2223 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aung, A. K., Spelman, D. W., Murray, R. J. & Graves, S. Review article: Rickettsial infections in Southeast Asia: Implications for local populace and febrile returned travelers. Am. J. Trop. Med. Hyg. 91, 451–460 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodkvamtook, W. et al. Scrub typhus outbreak in Chonburi Province, Central Thailand, 2013. Emerg. Infect. Dis. 24, 361–365 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Vongphayloth, K., Hertz, J. C., Brey, P. & Newton, P. N. Tick-transmitted human infections in Asia. Microbiol. Aust. 39, 203–206 (2018).Article 

    Google Scholar 
    Bartoshevic, E. To the issue of rickettsioses. Health Care Kazakhstan 3, 20–24 (1952) (in Russian).
    Google Scholar 
    Kereyev, N. Human natural focal diseases in Kazakhstan. Alma-ata (1961) (in Russian).Arkhangelskiy, D. Experimental study of tick-borne rickettsial pathogen in Almaty region. In Collection of Scientific Papers of the Institute of Microbiology and Virologoy Vol 4. Physiology and ecology of micro-organisms. Almta-ata 176–85 (1961) (in Russian).Kyraubayev, K. et al. Study of Dermacentor marginatus ticks for Rickettsiae in Central Kazakhstan. Proc. ASM (2014).Shpynov, S. et al. Detection and identification of spotted fever group Rickettsiae in dermacentor ticks from Russia and Central Kazakhstan. Eur. J. Clin. Microbiol. Infect. Dis. 20, 903–905 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shpynov, S., Rudakov, N. & Yastrebov, V. Identification of new genotypes of rickettsia tick-borne spotted fever group in the south of the Ural, Siberia, Far East and Kazakhstan. Epidemiol. Infect. Dis. 1, 23–27 (2005).
    Google Scholar 
    Hay, J. et al. Biosurveillance in Central Asia: Successes and challenges of tick-borne disease research in Kazakhstan and Kyrgyzstan. Front. Public Health 4, 4 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yegemberdiyeva, R. & Shapieva, Z. Clinical and epidemiological characteristic of tick-borne rickettsiosis in Kazakhstan. Abstract Book of the International Conference on Zoonoses. Ulaanbaatar 48–51 (2008).Rudakov, N. V., Shpynov, S. N., Samoilenko, I. E. & Tankibaev, M. A. Ecology and epidemiology of spotted fever group Rickettsiae and new data from their study in Russia and Kazakhstan. Ann. N. Y. Acad. Sci. 990, 12–24 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sansyzbayev, Y. et al. Survey for Rickettsiae within fleas of Great Gerbils, Almaty Oblast, Kazakhstan. Vector Borne Zoon. Dis. Larchmt. N 17, 172–178 (2017).Article 

    Google Scholar 
    Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring. Almaty. Epidemiological situation of infectious diseases in the Republic of Kazakhstan from 2016. Annual Report (2016) (in Russian).CDC. https://www.cdc.gov/vhf/omsk/index.html (2022).Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 1–16 (2019).Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomassone, L. et al. Neglected vector-borne zoonoses in Europe: Into the wild. Vet. Parasitol. 251, 17–26 (2018).PubMed 
    Article 

    Google Scholar 
    Schex, S., Dobler, G. & Riehm, J. Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector Borne Zoon. Dis. 11, 493–502 (2011).Article 

    Google Scholar 
    Tukhanova, N. et al. Molecular characterisation and phylogeny of Tula virus in Kazakhstan. Viruses 14, 1258 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wölfel, R., Essbauer, S. & Dobler, G. Diagnostics of tick-borne rickettsioses in Germany: A modern concept for a neglected disease. Int. J. Med. Microbiol. 298, 368–374 (2008).Article 
    CAS 

    Google Scholar 
    Fournier, P. E., Roux, V. & Raoult, D. Phylogenetic analysis of spotted fever group Rickettsiae by study of the outer surface protein rOmpA. Int. J. Syst. Bacteriol. 48(Pt 3), 839–849 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jado, I. et al. Molecular method for identification of Rickettsia species in clinical and environmental samples. J. Clin. Microbiol. 44, 4572–4576 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, T. A. BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turebekov, N. et al. Occurrence of anti-Rickettsia spp. antibodies in hospitalized patients with undifferentiated febrile illness in the southern region of Kazakhstan. Am. J. Trop. Med. Hyg. 104, 2000–2008 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    SPC SEEM. Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan (2021).Yamamoto, Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin. Vaccine Immunol. 9, 508–514 (2002).CAS 
    Article 

    Google Scholar 
    Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 197 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gajda, E. et al. Spotted fever Rickettsiae in wild-living rodents from south-western Poland. Parasit. Vectors 10, 413 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Essbauer, S., Hofmann, M., Kleinemeier, C., Wölfel, S. & Matthee, S. Rickettsia diversity in southern Africa: A small mammal perspective. Ticks Tick-Borne Dis. 9, 288–301 (2018).PubMed 
    Article 

    Google Scholar 
    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 6 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    El Karkouri, K., Ghigo, E., Raoult, D. & Fournier, P.-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci. Rep. 12, 3807 (2022).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zemtsova, G. E., Montgomery, M. & Levin, M. L. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals. PLoS One 10, e0116658 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri, C., Schumann, O., Schumann, C. & Gern, L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum?. Ticks Tick-Borne Dis. 5, 245–251 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tadin, A. et al. Molecular survey of zoonotic agents in rodents and other small mammals in Croatia. Am. J. Trop. Med. Hyg. 94, 466–473 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Karbowiak, G., Biernat, B., Stańczak, J., Szewczyk, T. & Werszko, J. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 3. Rickettsiae. Ann. Parasitol. 62, 89–100 (2016).PubMed 

    Google Scholar 
    Zemtsova, G., Killmaster, L. F., Mumcuoglu, K. Y. & Levin, M. L. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp. Appl. Acarol. 52, 383–392 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehácek, J., Urvölgyi, J., Kocianová, E. & Jedlicka, L. Susceptibility of some species of rodents to Rickettsiae. Folia Parasitol. (Praha) 39, 265–284 (1992).
    Google Scholar 
    Rehácek, J., Zupancicová, M., Kovácová, E., Urvölgyi, J. & Brezina, R. Study of rickettsioses in Slovakia. III. Experimental infection of Apodemus flavicollis Melch. by Rickettsiae of the spotted fever (SF) group isolated in Slovakia. J. Hyg. Epidemiol. Microbiol. Immunol. 21, 306–313 (1976).PubMed 

    Google Scholar 
    Biernat, B., Stańczak, J., Michalik, J., Sikora, B. & Wierzbicka, A. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland. Ticks Tick-Borne Dis. 7, 135–141 (2016).PubMed 
    Article 

    Google Scholar 
    Stańczak, J. et al. Prevalence of infection with Rickettsia helvetica in feeding ticks and their hosts in western Poland. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 15(Suppl 2), 328–329 (2009).
    Google Scholar 
    Barandika, J. F. et al. Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl. Environ. Microbiol. 73, 6166–6171 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spitalská, E., Boldis, V., Kostanová, Z., Kocianová, E. & Stefanidesová, K. Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol. 52, 175–179 (2008).PubMed 

    Google Scholar 
    Guo, L.-P. et al. Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China-Kazakhstan border. Parasit. Vectors 8, 461 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The establishment of ecological conservation for herpetofauna species in hotspot areas of South Korea

    Giovanelli, J. G. R., Haddad, C. F. B. & Alexandrino, J. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol. Invas. 10, 585–590. https://doi.org/10.1007/s10530-007-9154-5 (2008).Article 

    Google Scholar 
    Sillero, N. Modelling suitable areas for Hyla meridionalis under current and future hypothetical expansion scenarios. Amphib. Reptil. 31, 37–50. https://doi.org/10.1163/156853810790457948 (2010).Article 

    Google Scholar 
    Foley, D. H. et al. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae). J. Vector Ecol. 39, 168–181. https://doi.org/10.1111/j.1948-7134.2014.12084.x,Pubmed:24820570 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS. J. Arid Environ. 75, 1029–1037. https://doi.org/10.1016/j.jaridenv.2011.06.006 (2011).ADS 
    Article 

    Google Scholar 
    Kim, J., Seo, C., Kwon, H., Ryu, J. & Kim, M. A study on the species distribution modeling using national ecosystem survey data. J. Environ. Impact Assess. 21, 593–607 (2012) (in Korean with English abstract).
    Google Scholar 
    Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS One 11, e0144076. https://doi.org/10.1371/journal.pone.0144076,Pubmed:26735688 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, M. S. et al. Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea. Korean J. Environ. Ecol. 31, 381–396. https://doi.org/10.13047/KJEE.2017.31.4.381 (2017).Article 

    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Padoa-Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers. Distrib. 15, 108–116. https://doi.org/10.1111/j.1472-4642.2008.00516.x (2009).Article 

    Google Scholar 
    Sillero, N. Modelling a species in expansion at local scale: Is Hyla meridionalis colonising new areas in Salamanca, Spain. Acta Herpetol. 4, 37–46 (2009).
    Google Scholar 
    Yun, S., Lee, J. W. & Yoo, J. C. Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Glob. Ecol. Conserv. 22, e00976. https://doi.org/10.1016/j.gecco.2020.e00976 (2020).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2012).
    Google Scholar 
    Katayama, N. et al. Indirect positive effects of agricultural modernization on the abundance of Japanese tree frog tadpoles in rice fields through the release from predators. Aquat. Ecol. 47, 225–234. https://doi.org/10.1007/s10452-013-9437-0 (2013).Article 

    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272. https://doi.org/10.1080/21513732.2013.821168 (2013).Article 

    Google Scholar 
    Cortes, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of Neotropical amphibians and reptiles: A review. Univ. Sci. 20, 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna (2015).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485. https://doi.org/10.1038/nature09670,Pubmed:21350480 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. https://doi.org/10.1126/science.1184695,Pubmed:20466932 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118. https://doi.org/10.1111/j.1472-4642.2009.00619.x (2010).Article 

    Google Scholar 
    Blank, L. & Blaustein, L. Using ecology niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167. https://doi.org/10.1007/s10750-012-1101-5 (2012).Article 

    Google Scholar 
    de Pous, P., Beukema, W., Weterings, M., Dümmer, I. & Geniez, P. Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: A preliminary assessment. Biodivers. Conserv. 20, 89–118. https://doi.org/10.1007/s10531-010-9948-0 (2011).Article 

    Google Scholar 
    NIBR (National Institute of Biological Resources). National List of Species (Reptiles and amphibians). https://www.kbr.go.kr/stat/ktsnfiledown/downpopup.do (2020).Ministry of the Environment. List of Prohibited Wildlife Such as Capture and Harvesting (Ministry of the Environment, 2015).NIBR (National Institute of Biological Resources). Red Data Book of Republic of Korea. Amphibians and Reptiles (NIBR, Incheon), 110–117 (2019).Kim, J. B. Taxonomic list and distribution of Korean Amphibians. Korean J. Herpetol. 1, 1–13 (2009) (in Korean with English abstract).
    Google Scholar 
    Song, J. Y. & Lee, I. Elevation distribution of Korean Amphibians. Korean J. Herpetol. 1, 15–19 (2009) (in Korean with English abstract).
    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of Amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010) (in Korean with English abstract).
    Google Scholar 
    Do, M. S. et al. Anuran Community Patterns in the rice fields of the mid-western region of the Republic of Korea. Glob. Ecol. Conserv. 26, e01448. https://doi.org/10.1016/j.gecco.2020.e01448 (2021).Article 

    Google Scholar 
    Kim, I. H., Son, S. H., Kang, S. W. & Kim, J. B. Distribution and habitat characteristics of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 15–22 (2012) (in Korean with English abstract).
    Google Scholar 
    Do, M. S., Lee, J. W., Jang, H. J., Kim, D. I. & Yoo, J. C. Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological niche-based models and GIS1a. Korean J. Environ. Ecol. 30, 173–184. https://doi.org/10.13047/KJEE.2016.30.2.173 (2016) (in Korean with English abstract).Article 

    Google Scholar 
    Do, M. S. et al. The study on habitat analysis and ecological niche of Korean Brown Frogs (Rana dybowskii, R. Coreana and R. huanrensis) using the species distribution model. Korean J. Herpetol. 9, 1–11 (2018).
    Google Scholar 
    Do, M. S., Choi, S., Jang, H. J. & Suh, J. H. Predicting the Distribution of three Korean pit viper Species (Gloydius brevicaudus, G. ussuriensis and G. intermedius) under Climate Change. Russ. J. Herpetol. (2022)Koo, K. S., Park, D. & Oh, H. S. Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J. Asia Pac. Biodivers. 12, 1–6. https://doi.org/10.1016/j.japb.2018.11.001 (2019).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals (Basel) 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 

    Google Scholar 
    Shin, Y. et al. How threatened is Scincella huanrenensis? An update on threats and trends. Conservation 1, 58–72. https://doi.org/10.3390/conservation1010005 (2021).Article 

    Google Scholar 
    Lee, S. Y. et al. Distribution prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the climate change. Korean J. Environ. Ecol. 35, 480–489. https://doi.org/10.13047/KJEE.2021.35.5.480 (2021).Article 

    Google Scholar 
    Ra, N. Y. Habitat and Behavioral Characteristics, Captive Breeding and Recovery Strategy of the Endangered Gold-Spotted Pond Frog (Rana Plancyi Chosenica). PhD thesis (Kangwon Natl Univ., 2010).Borzée, A., Kim, J. Y. & Jang, Y. Asymmetric competition over calling sites in two closely related treefrog species. Sci. Rep. 6, 32569. https://doi.org/10.1038/srep32569,Pubmed:27599461 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, W. Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. J. Korean Environ. Res. Tech. 18, 71–82 (2015) (in Korean with English abstract).
    Google Scholar 
    Ahn, J. Y., Choi, S., Kim, H., Suh, J. H. & Do, M. S. Ecological niche and interspecific competition of two frog species (Pelophylax nigromaculatus and P. chosenicus) in South Korea using the geographic information system. KJEE 54, 363–373 (2021).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J. & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea (NIER, 2011) (in Korean).Lee, J. H. & Park, D. Spatial ecology of translocated and resident Amur ratsnakes (Elaphe schrenckii) in two mountain valleys of South Korea. Asian Herpetol. Res. 2, 223–229 (2012).Article 

    Google Scholar 
    Do, M. S., Nam, K. B. & Yoo, J. C. First observation on courtship behavior of short-tailed viper snake, Gloydius saxatilis (Squamata: Viperidae) in Korea. J. Asia Pac. Biodivers. 10, 583–586. https://doi.org/10.1016/j.japb.2017.08.003 (2017).Article 

    Google Scholar 
    Do, M. S. & Nam, K. B. Distribution patterns and ecological niches of the red-tongued pit viper (Gloydius ussuriensis) and the Central Asian pit viper (Gloydius intermedius) in Cheonmasan Mountain, South Korea. Russ. J. Herpetol. 28, 348–354. https://doi.org/10.30906/1026-2296-2021-28-6-348-354 (2021).Article 

    Google Scholar 
    Do, M. S. Habitat use and hiding behavior of Central Asian pit viper (Gloydius intermedius). Korean J. Herpetol. 12, 1–8 (2021).
    Google Scholar 
    Min, M. S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90. https://doi.org/10.1038/nature03474,Pubmed:15875021 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, J. Y. Current status and distribution of reptiles in the Republic of Korea. Korean J. Environ. Biol. 25, 124–138 (2007).
    Google Scholar 
    Jang, H. J., Kim, D. I. & Jang, M. H. Distribution of reptiles in South Korea: based on the 3rd National Ecosystem Survey. Korean J. Herpetol. 7, 30–35 (2016) (in Korean with English abstract).
    Google Scholar 
    Seo, C. W., Choi, T. Y., Choi, Y. S. & Kim, D. Y. A study on wildlife habitat suitability modeling for goral (Nemorhaedus caudatus raddeanus) in Seoraksan national park. J. Korean Environ. Res. Reveg Tech. 11, 28–38 (2008) (in Korean with English abstract).
    Google Scholar 
    Kown, H. S. Integrated Evaluation Model of Biodiversity for Conservation Planning: Focused on MT, PhD thesis (Mt Deokyu and MT: Jiri, 2011, 2011). Gaya Regions (Graduate School, Seoul Natl Univ., 2011).Urbina-Cardona, J. N. & Loyola, R. D. Applying niche-based models to predict endangered-hylid potential distributions: Are Neotropical protected areas effective enough?. Trop. Conserv. Sci. 1, 417–445. https://doi.org/10.1177/194008290800100408 (2008).Article 

    Google Scholar 
    Korea Forest Service. Forest area by administrative district. https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardList.do?mn=NKFS_04_05_10&pageIndex=1&pageUnit=10&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchdept=&searchWrd=&ctgryLrcls=CTGRY070&ntcStartDt=&ntcEndDt=&bbsId=BBSMSTR_1016 (2015).Statistics Korea. Population and housing census results in South Korea. https://www.kostat.go.kr/portal/korea/kor_nw/1/2/2/index.board (2020).Hyun, J. Brokering science, blaming culture: The US–South Korea ecological survey in the Demilitarized Zone, 1963–8. Hist. Sci. 59, 315–343. https://doi.org/10.1177/0073275320974209,Pubmed:33287575 (2021).Article 
    PubMed 

    Google Scholar 
    Choung, E. H. A theoretical study on the landscape of the Korean DMZ and its spatial significance. Inter-Asian Cult. Stud. 22, 16–35. https://doi.org/10.1080/14649373.2021.1886465 (2021).Article 

    Google Scholar 
    Ministry of the Environment. Report on Biodiversity in the DMZ (Demilitarized Zone) Area. Seocheon-Gun (Ministry of the Environment, 2016).Statistics Korea. Status of species investigation by national park in South Korea. https://kosis.kr/statHtml/statHtml.do?orgId=355&tblId=TX_35501_A069&conn_path=I3 (2021).Koo, K. S., Kwon, S., Do, M. S. & Kim, S. Distribution characteristics of exotic turtles in Korean wild-Based. Korean J Ecol. Environ. 50, 286–294. https://doi.org/10.11614/KSL.2017.50.3.286 (2017).Article 

    Google Scholar 
    National Institute of Ecology. 30 Years of the Natural Environment Survey 1986–2015 (National Inst. of Ecology, Seocheon, 2017).Korea National Park Research Institute. Report on Natural Resource Study. https://www.knps.or.kr/ (2021).GBIF. Global Biodiversity Information Facility Home. http://www.gbif.org/ (2020).Kim, D. I. Species Distribution Modeling, Microhabitat Use, and Morphological Variation of the Schlegel’s Japanese Gecko (Gekko japonicus). PhD thesis (Graduate School, Kangwon Natl Univ., 2019).Borzée, A. et al. Yellow Sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299. https://doi.org/10.1371/journal.pone.0234299,Pubmed:32579561 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NGII (National Geographic Information Institute). Digital Topographic Map. https://www.ngii.go.kr (2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Pradhan, P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8, 29–34 (2016).
    Google Scholar 
    Yi, Y. J., Cheng, X., Yang, Z. F. & Zhang, S. H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010 (2016).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Phillips, S., Dudik, M. & Schapire, R. A maximum entropy approach to species distribution modeling. In Proceeding of the 21st International Conference on Machine Learning 655–662 (ACM Pr., 2004).Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. A. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci. Rep. 11, 23099. https://doi.org/10.1038/s41598-021-02525-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    VanderWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Modell. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C. & Codding, B. F. Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS One 15, e0239424. https://doi.org/10.1371/journal.pone.0239424,Pubmed:33002016 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (OUP, 2011).Book 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x (2006).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Article 

    Google Scholar 
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195–207. https://doi.org/10.1007/s10584-018-2338-4 (2019).ADS 
    Article 

    Google Scholar 
    del Castillo Domínguez, S. L. et al. Predicting the invasion of the acoustic niche: potential distribution and call transmission efficiency of a newly introduced frog in Cuba. Perspect. Ecol. Conserv. 19, 90–97. https://doi.org/10.1016/j.pecon.2020.12.002 (2021).Article 

    Google Scholar 
    Lee, J. W. et al. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea. Ecol. Evol. 4, 3689–3702. https://doi.org/10.1002/ece3.1209,Pubmed:25478158 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Segal, R. D., Massaro, M., Carlile, N. & Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv. 24, 959–969. https://doi.org/10.1111/acv.12698 (2021).Article 

    Google Scholar 
    Mori, E. et al. How the South was won: Current and potential range expansion of the crested porcupine in Southern Italy. Mamm. Biol. 101, 11–19. https://doi.org/10.1007/s42991-020-00058-2 (2021).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615,Pubmed:3287615 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1,Pubmed:19323182 (2009).Article 
    PubMed 

    Google Scholar 
    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 27, 756–769. https://doi.org/10.1071/WF18072 (2018).Article 

    Google Scholar 
    Zhuang, H. et al. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case. Biodivers. Sci. 26, 931–940. https://doi.org/10.17520/biods.2018059 (2018).Article 

    Google Scholar 
    NGII (National Geographic Information Institute). Geographical Extent of the Conservation Area in South Korea. https://www.ngii.go.kr (2021).Bosso, L. et al. A gap analysis for threatened bat populations on Sardinia hystrix, the Italian. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    Ahmadi, M. et al. Species and space: A combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5 (2020).Article 

    Google Scholar  More

  • in

    Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).PubMed 
    Article 

    Google Scholar 
    Atkinson, C. L., Capps, K. A., Rugenski, A. T. & Vanni, M. J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rev. 92, 2003–2023 (2016).PubMed 
    Article 

    Google Scholar 
    Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).Article 

    Google Scholar 
    Vanni, M. J., Boros, G. & McIntyre, P. B. When are fish sources vs. sinks of nutrients in lake ecosystems?. Ecology 94(10), 2195–206 (2013).PubMed 
    Article 

    Google Scholar 
    Lovell, T. Nutrition and Feeding of Fish Vol. 260 (Van Nostrand Reinhold, 1989).Book 

    Google Scholar 
    Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: The potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Nat. Acad. Sci. USA 112(8), 2617–2622 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alves, J. M. et al. Stoichiometry of benthic invertebrate nutrient recycling: Interspecific variation and the role of body mass. Aquat. Ecol. 44, 421–430 (2010).CAS 
    Article 

    Google Scholar 
    Hall, R. O. J., Koch, B. J., Marshall, M. C., Taylor, B. W. & Tronstad, L. M. In How Body Size Mediates the Role of Animals in Nutrient Cycling in Aquatic Ecosystems (eds Hildrew, A. G. et al.) 286–305 (Cambridge University Press, 2007).
    Google Scholar 
    Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc. Nat. Acad. Sci. USA 112, 2640–2647 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: A global synthesis. Ecology 97, 3460–3471 (2016).PubMed 
    Article 

    Google Scholar 
    Burel, C. et al. Effects of temperature on growth and metabolism in juvenile turbot. J. Fish Biol. 49, 678–692 (1996).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12(5), 369–384 (2009).PubMed 
    Article 

    Google Scholar 
    McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Nat. Acad. Sci. USA 104, 4461–4466 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barneche, D. R. & Allen, A. P. Embracing general theory and taxon-level idiosyncrasies to explain nutrient recycling. Proc. Nat. Acad. Sci. USA 112, 6248–6249 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glaholt, S. P. Jr. & Vanni, M. J. Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshw. Biol. 50, 1864–1881 (2005).CAS 
    Article 

    Google Scholar 
    McIntyre, P. B. & Flecker, A. S. Ecological Stoichiometry as an integrative framework in stream fish ecology. Am. Fish. Soc. Symp. 73, 539–558 (2010).
    Google Scholar 
    Pough, F. H., Janis, C. M. & Heiser, J. B. Vertebrate Life (Prentice-Hall, 2005).
    Google Scholar 
    Griffiths, D. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshw. Fish 15, 86–95 (2006).Article 

    Google Scholar 
    McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?. Ecology 89(8), 2335–2346 (2008).PubMed 
    Article 

    Google Scholar 
    Cross, W. F., Benstead, J. P., Rosemond, A. D. & Wallace, J. B. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett. 6, 721–732 (2003).Article 

    Google Scholar 
    Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78(6), 1816–1831 (1997).Article 

    Google Scholar 
    Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293 (2002).Article 

    Google Scholar 
    Fritschie, K. J. & Olden, J. D. Disentangling the influences of mean body size and size structure on ecosystem functioning: an example of nutrient recycling by a non-native crayfish. Ecol. Evol. 6, 159–169 (2016).PubMed 
    Article 

    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    White, C. R. & Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Natl Acad. Sci. USA 100, 4046–4049 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capellini, I., Venditti, C. & Barton, R. A. Phylogeny and metabolic scaling in mammals. Ecology 91, 2783–2793 (2010).PubMed 
    Article 

    Google Scholar 
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 107, 12941–12945 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tátrai, I. Influence of temperature, rate of feeding and body weight on nitrogen metabolism of bream Abramis brama L. Comp. Biochem. Physiol. 83A, 543–547 (1986).Article 

    Google Scholar 
    Tsui, T. K. N. et al. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J. Exp. Biol. 205, 651–659 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zakés, Z., Szczepkowski, M., Demska-Zakés, K. & Jesiolowski, M. Oxygen consumption and ammonia excretion by juvenile pike, Esox lucius L. Arch. Pol. Fish. 15, 79–92 (2007).
    Google Scholar 
    Liu, F., Yang, S. & Chen, H. Effect of temperature, stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis x M. chrysops). Aquac. Res. 40, 450–455 (2009).CAS 
    Article 

    Google Scholar 
    Currie, S. et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 88, 43–58 (2010).CAS 
    Article 

    Google Scholar 
    Dockray, J. J., Reid, S. D. & Wood, C. M. Effects of elevated summer temperatures and reduced pH on metabolism and growth of juvenile rainbow trout (Oncorhynchus mykiss) on unlimited ration. Can. J. Fish. Aquat. Sci. 53, 2752–2763 (1996).Article 

    Google Scholar 
    Oliveira-Cunha, P. et al. Effects of incubation conditions on nutrient mineralisation rates in fish and shrimp. Freshw. Biol. 63(9), 1107–1117 (2018).CAS 
    Article 

    Google Scholar 
    Pilati, A. & Vanni, M. J. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116, 1663–1674 (2007).Article 

    Google Scholar 
    Moody, E. K., Corman, J. R., Elser, J. J. & Sabo, J. L. Diet composition affects the rate and N: P ratio of fish excretion. Fresh. Biol. 60, 456–465 (2015).CAS 
    Article 

    Google Scholar 
    Chew, S. F. & Ip, Y. K. Excretory nitrogen metabolism and defense against ammonia toxicity in air-breathing fishes. J. Fish Biol. 84, 603–638 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helder, C. Subsídios para Gestão dos Recursos Hídricos das bacias hidrográficas dos rios Macacu, São João, Macaé e Macabu (Secretaria do Meio Ambiente, 1999).
    Google Scholar 
    Mazzoni, R., Moraes, M., Rezende, C. F. & Miranda, J. C. Alimentação e padrões ecomorfológicos das espécies de peixes de riacho do alto rio Tocantins, Goiás, Brasil. Iheringia. Série Zool. 100, 2 (2010).
    Google Scholar 
    Menezes, N. A., Weitzman, S. H.,Weitzman, M. J., Oyakawa, O. T., Lima, F. C. T. & Castro, R. M. C. Peixes de água doce da Mata Atlantica. Museu de Zoologia, Universidade de São Paulo, 1ª edição. ISBN: 9788587735034 (2007).Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. Peixes de Riachos da Mata Atlântica. Editora Neotropica, 1ª edição. ISBN: 859904902x (2006).Fogaça, F. N. O., Aranha, J. M. R. & Esper, M. D. L. P. Ictiofauna do rio do Quebra (Antonina, PR, Brasil): ocupação espacial e hábito alimentar. Interciencia 28(3), 168–173 (2003).
    Google Scholar 
    Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56(10), 1801–1808. https://doi.org/10.1139/f99-128 (1999).CAS 
    Article 

    Google Scholar 
    Taylor, B. W. et al. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J. North Am. Benthol. Soc. 26, 167–177 (2007).Article 

    Google Scholar 
    Gotherman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwater (Blackwell, 1978).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).Article 

    Google Scholar 
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    Faraday, J. J. Linear Models with R (CRC Press, 2009).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More

  • in

    A functional vulnerability framework for biodiversity conservation

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (2021).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138.e3 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8074–8079 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life‐history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2018).ADS 
    Article 

    Google Scholar 
    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, A. J. Certainty and uncertainty in climate change predictions: what use are climate models? Environ. Resour. Econ. 39, 37–44 (2008).Article 

    Google Scholar 
    Field, C. B. et al. Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–32 (2014).Shiogama, H. et al. Predicting future uncertainty constraints on global warming projections. Sci. Rep. 6, 18903 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S. et al. The Pacific Decadal Oscillation is less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).PubMed 
    Article 

    Google Scholar 
    Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. 57, 241–252 (2020).Article 

    Google Scholar 
    Francalanci, S., Paris, E. & Solari, L. On the vulnerability of woody riparian vegetation during flood events. Environ. Fluid Mech. 20, 635–661 (2020).Article 

    Google Scholar 
    Pellegrini, A. F. A. et al. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 20, 307–316 (2017).PubMed 
    Article 

    Google Scholar 
    Jørgensen, L. L., Planque, B., Thangstad, T. H. & Certain, G. Vulnerability of megabenthic species to trawling in the Barents Sea. ICES J. Mar. Sci. 73, i84–i97 (2016).Article 

    Google Scholar 
    Certain, G., Jørgensen, L. L., Christel, I., Planque, B. & Bretagnolle, V. Mapping the vulnerability of animal community to pressure in marine systems: disentangling pressure types and integrating their impact from the individual to the community level. ICES J. Mar. Sci. 72, 1470–1482 (2015).Article 

    Google Scholar 
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 548 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staudt, A. et al. The added complications of climate change: understanding and managing biodiversity and ecosystems. Front. Ecol. Env. 11, 494–501 (2013).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153 (2016).Article 

    Google Scholar 
    O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).ADS 
    Article 

    Google Scholar 
    Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).PubMed 
    Article 

    Google Scholar 
    Soranno, P. A. et al. Quantifying regional reference conditions for freshwater ecosystem management: a comparison of approaches and future research needs. Lake Reserv. Manag. 27, 138–148 (2011).Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Cons. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    Williams, B. A. et al. Global rarity of intact coastal regions. Cons. Biol. c13874, 1–12 (2022).Kültz, D. Defining biological stress and stress responses based on principles of physics. J. Exp. Zool. A: Ecol. Integr. Physiol. 333, 350–358 (2020).Article 

    Google Scholar 
    Tinker, J., Lowe, J., Pardaens, A., Holt, J. & Barciela, R. Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog. Oceanogr. 148, 56–73 (2016).ADS 
    Article 

    Google Scholar 
    Xu, L. et al. Potential precipitation predictability decreases under future warming. Geophys. Res Lett. 47, e2020GL090798 (2020).ADS 

    Google Scholar 
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).PubMed 
    Article 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    Trindade-Santos, I., Moyes, F. & Magurran, A. E. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proc. R. Soc. B. 287, 20200889 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).ADS 
    Article 

    Google Scholar 
    Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).Article 

    Google Scholar 
    McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Nat. Acad. Sci. USA 115, 3084–3089 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B. 288, 20201600 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lavergne, S., Thuiller, W., Molina, J. & Debussche, M. Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region: environmental factors influencing the distribution of rare plants. J. Biogeogr. 32, 799–811 (2005).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).PubMed 
    Article 

    Google Scholar 
    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Nat. Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waldock, C. et al. A quantitative review of abundance-based species distribution models. Ecography 2022, e05694 (2022).Article 

    Google Scholar 
    Global Biodiversity Information Facility. available at: https://www.gbif.org/Ocean Biodiversity Information System. available at: https://obis.org/Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef life survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations Framework Convention on Climate Change. Paris Agreement. United Nations (2015).Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Peterson, G. et al. Uncertainty, climate change, and adaptive management. Conserv. Ecol. 1, art4 (1997).
    Google Scholar 
    Dewulf, A. & Biesbroek, R. Nine lives of uncertainty in decision-making: strategies for dealing with uncertainty in environmental governance. Policy Soc. 37, 441–458 (2018).Article 

    Google Scholar 
    Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).PubMed 
    Article 

    Google Scholar 
    Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).Article 

    Google Scholar 
    Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ICES (2021). Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. Report. https://doi.org/10.17895/ices.pub.8211.Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. ICES J. Mar. Sci. 57, 1303–1309 (2000).Article 

    Google Scholar 
    Montero‐Serra, I., Edwards, M. & Genner, M. J. Warming shelf seas drive the sub tropicalization of European pelagic fish communities. Glob. Change Biol. 21, 144–153 (2014).ADS 
    Article 

    Google Scholar 
    Guillen, J. et al. A review of the European union landing obligation focusing on its implications for fisheries and the environment. Sustainability 10, 900 (2018).Article 

    Google Scholar 
    Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 24, 1988–2009 (2021).PubMed 
    Article 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Nat. Acad. Sci. USA 117, 24345–24351 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Cons. 221, 44–58 (2018).Article 

    Google Scholar 
    Petchey, O. L. Functional diversity: back to basics and looking forward. Ecol Lett. 9, 741–758 (2006).Lefcheck, J. S., Bastazini, V. A. G. & Griffin, J. N. Choosing and using multiple traits in functional diversity research. Environ. Conserv. 42, 104–107 (2015).Article 

    Google Scholar 
    Zhu, L. et al. Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci. Rep. 7, 3643 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Funct. Ecol. 31, 427–435 (2017).Article 

    Google Scholar 
    Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).PubMed 
    Article 

    Google Scholar 
    de Bello, F., Carmona, C. P., Leps, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Boyer, A. G. & Jetz, W. Extinctions and the loss of ecological function in island bird communities. Glob. Ecol. Biogeogr. 23, 679–688 (2014).Article 

    Google Scholar 
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. United Nations. https://www.refworld.org/docid/57b6e3e44.html (2015).Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of trait spaces: assessing trait space quality. Glob. Ecol. Biogeogr. 24, 728–740 (2015).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).Article 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (2011).Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).Article 

    Google Scholar 
    Beukhof, E., Dencker, T. S., Palomares, M. L. D. & Maureaud, A. A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas. PANGAEA, https://doi.org/10.1594/PANGAEA.900866 (2019).Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA coral reef watch. Remote Sens. 6, 11579–11606 (2014).ADS 
    Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Stekhoven, D. J. & Bürhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78, 103–116 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T. et al. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 46, 18–29 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morens, D. M., Folkers, G. K. & Fauci, A. S. Emerging infections: A perpetual challenge. Lancet Infect. Dis. 8, 710–719 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunningham, A. A. A walk on the wild side—emerging wildlife diseases. BMJ 331, 1214–1215 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the interface, humal.-animal. Science 326, 1362–1368 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, Z. et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    Sczyrba, A. et al. Critical assessment of metagenome interpretation: A benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Álvarez-Romero, J. G., Pressey, R. L., Ban, N. C., Torre-Cosío, J. & Aburto-Oropeza, O. Marine conservation planning in practice: Lessons learned from the gulf of California. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 483–505 (2013).Article 

    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).Article 

    Google Scholar 
    Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).Article 

    Google Scholar 
    Deepak, D. et al. Pinniped zoonoses: A review. Int. J. Livest. Res. 9, 1 (2019).Article 

    Google Scholar 
    Hermosilla, C. et al. Gastrointestinal parasites and bacteria in free-living South American sea lions (Otaria flavescens) in Chilean Comau Fjord and new host record of a Diphyllobothrium scoticum-like cestode. Front. Mar. Sci. 5, 1–13 (2018).Article 

    Google Scholar 
    Oxley, A. P. A., Powell, M. & McKay, D. B. Species of the family Helicobacteraceae detected in an Australian sea lion (Neophoca cinerea) with chronic gastritis. J. Clin. Microbiol. 42, 3505–3512 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waltzek, T. B., Cortés-Hinojosa, G., Wellehan, J. F. X. & Gray, G. C. Marine mammal zoonoses: A review of disease manifestations. Zoonoses Public Health 59, 521–535 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dans, S. L., Crespo, E. A. & Coscarella, M. A. Wildlife tourism: Underwater behavioral responses of South American sea lions to swimmers. Appl. Anim. Behav. Sci. 188, 91–96 (2017).Article 

    Google Scholar 
    Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).Article 

    Google Scholar 
    Fuks, G. et al. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbime 6, 1–13 (2018).Article 

    Google Scholar 
    Barb, J. J. et al. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS ONE 11, e0148047 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: A high throughput sequencing approach. Helgol. Mar. Res. 71, 1–10 (2017).Article 

    Google Scholar 
    Brooks, J. P. et al. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies Ecological and evolutionary microbiology. BMC Microbiol. 15, 1–14 (2015).Article 

    Google Scholar 
    Ramirez-delgado, D. et al. Multi-locus evaluation of gastrointestinal bacterial communities from Zalophus californianus pups in the Gulf of California, México. PeerJ https://doi.org/10.7717/peerj.13235 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chakravorty, S., Helb, D., Burday, M. & Connell, N. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick. Borne. Dis. 8, 453–461 (2017).PubMed 
    Article 

    Google Scholar 
    Gold, Z. et al. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol. Ecol. Resour. 21, 2546–2564 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alnajar, S. & Gupta, R. S. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol. 54, 108–127 (2017).PubMed 
    Article 

    Google Scholar 
    Jiang, L. et al. Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory. J. Microbiol. 58, 357–366 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janda, J. M. & Abbott, S. L. The changing face of the family enterobacteriaceae (Order: Enterobacterales): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 34, 1–45 (2021).Article 

    Google Scholar 
    Shi, R. et al. Pathogenicity of Shigella in chickens. PLoS ONE 9, 1–7 (2014).
    Google Scholar 
    Roy, B., Tousif Ahamed, S. K., Bandyopadhyay, B. & Giri, N. Development of quinolone resistance and prevalence of different virulence genes among Shigella flexneri and Shigella dysenteriae in environmental water samples. Lett. Appl. Microbiol. 71, 86–93 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarkson, K. A. et al. Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine 66, 103308 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khalil, I. A. et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Detection of Shigella in milk and clinical samples by magnetic immunocaptured-loop-mediated isothermal amplification assay. Front. Microbiol. 9, 1–7 (2018).Article 

    Google Scholar 
    Maurelli, A. T. et al. Shigella infection as observed in the experimentally inoculated domestic pig, Sus scrofa domestica. Microb. Pathog. 25, 189–196 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukarati, N. L. et al. A serological survey of Bacillus anthracis reveals widespread exposure to the pathogen in free-range and captive lions in Zimbabwe. Transbound. Emerg. Dis. 68, 1676–1684 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Norris, M. H. et al. Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains. PLoS ONE 15, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    Conesa, A., Garofolo, G., Di Pasquale, A. & Cammà, C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011–2021): Microbiological and WGS data risk assessment. EFSA J. 20, 1–12 (2022).Article 
    CAS 

    Google Scholar 
    Buettner, S., Wieland, B., Staerk, K. D. C. & Regula, G. Risk attribution of Campylobacter infection by age group using exposure modelling. Epidemiol. Infect. 138, 1748–1761 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz-Sanchez, S., Hanning, I., Pendleton, S. & D’Souza, D. Next-generation sequencing: The future of molecular genetics in poultry production and food safety. Poult. Sci. 92, 562–572 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yekani, M. et al. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb. Pathog. 149, 104506 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wareham, D. W., Wilks, M., Ahmed, D., Brazier, J. S. & Millar, M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 40, 67–68 (2005).Article 

    Google Scholar 
    Yoshino, Y. et al. Clinical features of Bacteroides bacteremia and their association with colorectal carcinoma. Infection 40, 63–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Committee on Biological Agents (ABAS). TRBA 466 Classification of Prokaryotes (Bacteria and Archaea) into Risk Groups (2010).Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, 36–42 (2013).Article 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 1–7 (2015).Article 

    Google Scholar  More