Anticyclonic eddies aggregate pelagic predators in a subtropical gyre
Chaigneau, A., Gizolme, A. & Grados, C. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79, 106–119 (2008).ADS
Article
Google Scholar
McGillicuddy, D. J. Jr et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).ADS
CAS
Article
Google Scholar
Dufois, F. et al. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2, 1–7 (2016).Article
Google Scholar
Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PLoS ONE 7, e30161 (2012).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–333 (2011).ADS
CAS
PubMed
Article
Google Scholar
Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003 (2004).ADS
Article
CAS
Google Scholar
Bell, J. D. et al. Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories. Mar. Policy 51, 584–591 (2015).Article
Google Scholar
Della Penna, A. & Gaube, P. Mesoscale eddies structure mesopelagic communities. Front. Mar. Sci. 7, 454 (2020).ADS
Article
Google Scholar
Braun, C. D. et al. The functional and ecological significance of deep diving by large marine predators. Ann. Rev. Mar. Sci. 14, 129–159 (2022).PubMed
Article
Google Scholar
McGillicuddy, D. J. Jr Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 8, 125–159 (2016).PubMed
Article
Google Scholar
Fennell, S. & Rose, G. Oceanographic influences on deep scattering layers across the North Atlantic. Deep-Sea Res. Part I Oceanogr. Res. Pap. 105, 132–141 (2015).ADS
Article
Google Scholar
Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. Part II Topical Stud. Oceanogr. 140, 55–73 (2017).ADS
Article
Google Scholar
Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Natl Acad. Sci. USA 116, 17187–17192 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Doyle, T. K. et al. Leatherback turtles satellite-tagged in European waters. Endanger. Species Res. 4, 23–31 (2008).Article
Google Scholar
Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS
CAS
Article
Google Scholar
Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Polovina, J. J., Abecassis, M., Howell, E. A. & Woodworth, P. Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996-2006. Fish. Bull. 107, 523–531 (2009).
Google Scholar
Royer, T. C. Ocean eddies generated by seamounts in the North Pacific. Science 199, 1063–1064 (1978).ADS
CAS
PubMed
Article
Google Scholar
Liu, Y. et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. Part I Oceanogr. Res. Pap. 68, 54–67 (2012).ADS
Article
Google Scholar
Bernstein, R. L. & White, W. B. Time and length scales of baroclinic eddies in the central North Pacific Ocean. J. Phys. Oceanogr. 4, 613–624 (1974).ADS
Article
Google Scholar
Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).Article
Google Scholar
Woodworth, P. A. et al. Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra). Mar. Mammal Sci. 28, 638–647 (2012).Article
Google Scholar
Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS ONE 12, e0172839 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
Chambault, P. et al. Swirling in the ocean: immature loggerhead turtles seasonally target old anticyclonic eddies at the fringe of the North Atlantic Gyre. Prog. Oceanogr. 175, 345–358 (2019).ADS
Article
Google Scholar
Gaube, P., McGillicuddy Jr, D., Chelton, D., Behrenfeld, M. & Strutton, P. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220 (2014).Waga, H., Kirawake, T. & Ueno, H. Impacts of mesoscale eddies on phytoplankton size structure. Geophys. Res. Lett. 46, 13191–13198 (2019).ADS
Article
Google Scholar
Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).ADS
PubMed
Article
CAS
Google Scholar
Chen, Y.-lL. et al. Biologically active warm-core anticyclonic eddies in the marginal seas of the western Pacific Ocean. Deep Sea Res. Part I 106, 68–84 (2015).CAS
Article
Google Scholar
Harke, M. J. et al. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ. Microbiol. 23, 4807–4822 (2021).CAS
PubMed
Article
Google Scholar
Hawco, N. J. et al. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochem. Cycles 35, e2021GB007112 (2021).ADS
CAS
Article
Google Scholar
Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).CAS
PubMed
Article
Google Scholar
Madigan, D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).Article
Google Scholar
Arostegui, M., Gaube, P. & Braun, C. Movement ecology and stenothermy of satellite-tagged shortbill spearfish (Tetrapturus angustirostris). Fish. Res. 215, 21–26 (2019).Article
Google Scholar
Lehodey, P., Senina, I. & Murtugudde, R. A spatial ecosystem and populations dynamics model (SEAPODYM)—modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318 (2008).ADS
Article
Google Scholar
Varghese, S. P., Somvanshi, V. S. & Dalvi, R. S. Diet composition, feeding niche partitioning and trophic organisation of large pelagic predatory fishes in the eastern Arabian Sea. Hydrobiologia 736, 99–114 (2014).CAS
Article
Google Scholar
Ward, P. & Myers, R. A. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat.Sci. 62, 1130–1142 (2005).Article
Google Scholar
Kai, E. T. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).ADS
CAS
Article
Google Scholar
Lima, I. D., Olson, D. B. & Doney, S. C. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: biological production and community structure. J. Geophys. Res. Oceans 107, 25-1–25-21 (2002).Article
Google Scholar
Spall, S. A. & Richards, K. J. A numerical model of mesoscale frontal instabilities and plankton dynamics—I. model formulation and initial experiments. Deep-Sea Res. Part I Oceanogr. Res. Pap. 47, 1261–1301 (2000).ADS
Article
Google Scholar
Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P. & Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052756 (2012).Article
Google Scholar
Guidi, L. et al. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? J. Geophys. Res. Biogeosciences https://doi.org/10.1029/2012JG001984 (2012).Article
Google Scholar
Chow, C. H., Cheah, W., Tai, J. H. & Liu, S. F. Anomalous wind triggered the largest phytoplankton bloom in the oligotrophic North Pacific Subtropical Gyre. Sci. Rep. 9, 15550 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
Guo, M., Xiu, P., Chai, F. & Xue, H. Mesoscale and submesoscale contributions to high sea surface chlorophyll in subtropical gyres. Geophys. Res. Lett. 46, 13217–13226 (2019).ADS
Article
Google Scholar
Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).ADS
Article
Google Scholar
Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).ADS
CAS
PubMed
Article
Google Scholar
St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Marine Sci. 3, 31 (2016).
Google Scholar
Bigelow, K., Musyl, M. K., Poisson, F. & Kleiber, P. Pelagic longline gear depth and shoaling. Fish. Res. 77, 173–183 (2006).Article
Google Scholar
Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. Can. J. Fish. Aquat.Sci. 70, 1723–1740 (2013).Article
Google Scholar
Woodworth-Jefcoats, P. A., Polovina, J. & Drazen, J. Synergy among oceanographic variability, fishery expansion, and longline catch composition in the central North Pacific Ocean. Fish. Bull. 116, 228–239 (2018).Article
Google Scholar
Boggs, C. H. Depth, capture time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips. Fish. Bull. 90, 642–658 (1992).
Google Scholar
Walsh, W. A. & Brodziak, J. Applications of Hawaii longline fishery observer and logbook data for stock assessment and fishery research. NOAA Tech. Memo. 57, 62 (2016).
Google Scholar
Walsh, W. A. & Brodziak, J. Billfish CPUE standardization in the Hawaii longline fishery: model selection and multimodel inference. Fish. Res. 166, 151–162 (2015).Article
Google Scholar
Gilman, E., Chaloupka, M., Fitchett, M., Cantrell, D. L. & Merrifield, M. Ecological responses to blue water MPAs. PLoS ONE 15, e0235129 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Portner, E. J., Polovina, J. J. & Choy, C. A. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox). Deep-Sea Research Part I 125, 40–51 (2017).ADS
Article
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article
Google Scholar
Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 http://florianhartig.github.io/DHARMa/ (2020).Jackson, C. H. Multi-state models for panel data: the msm package for R. J. Stat. Softw. https://doi.org/10.18637/jss.v038.i08 (2011).Article
Google Scholar
Bates, D. et al. lme4: Linear mixed-effects models using ’Eigen’ and S4. R package version 1.1-25 https://github.com/lme4/lme4/ (2020).Lenth, R. et al. emmeans: Estimated marginal means, aka least-squares mean. R package version 1.7.2 https://github.com/rvlenth/emmeans (2022).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.r-project.org/ More