More stories

  • in

    Changes in limiting factors for forager population dynamics in Europe across the last glacial-interglacial transition

    Metcalf, C. J. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007).PubMed 
    Article 

    Google Scholar 
    French, J. C., Riris, P., Fernandez-Lopez de Pablo, J., Lozano, S. & Silva, F. A manifesto for palaeodemography in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190707 (2021).PubMed 
    Article 

    Google Scholar 
    French, J. C. Demography and the Palaeolithic archaeological record. J. Archaeol. Method Th. 23, 150–199 (2016).Article 

    Google Scholar 
    Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses – The Tasmanian case. Am. Antiquity 69, 197–214 (2004).Article 

    Google Scholar 
    Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Shennan, S. Demography and cultural innovation: a model and its implications for the emergence of modern human culture. Camb. Archaeol. J. 11, 5–16 (2001).Article 

    Google Scholar 
    Jorgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).Article 

    Google Scholar 
    Jorgensen, E. K. & Riede, F. Convergent catastrophes and the termination of the Arctic Norwegian Stone Age: a multi-proxy assessment of the demographic and adaptive responses of mid-Holocene collectors to biophysical forcing. Holocene 29, 1782–1800 (2019).ADS 
    Article 

    Google Scholar 
    Riede, F. Lateglacial and Postglacial Pioneers in Northern Europe (Archaeopress, 2014).Tallavaara, M. & Seppä, H. Did the mid-Holocene environmental changes cause the boom and bust of hunter-gatherer population size in eastern Fennoscandia? Holocene 22, 215–225 (2011).ADS 
    Article 

    Google Scholar 
    Kavanagh, P. H. et al. Hindcasting global population densities reveals forces enabling the origin of agriculture. Nat. Hum. Behav. 2, 478–484 (2018).PubMed 
    Article 

    Google Scholar 
    Tallavaara, M., Luoto, M., Korhonen, N., Jarvinen, H. & Seppa, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bliege Bird, R. & Codding, B. F. Promise and peril of ecological and evolutionary modelling using cross-cultural datasets. Nat. Ecol. Evol. 6, 1–3 (2021).Hamilton, M. J. & Tallavaara, M. Statistical inference, scale and noise in comparative anthropology. Nat. Ecol. Evol. 6, 122 (2022).PubMed 
    Article 

    Google Scholar 
    Gurven, M. D. & Davison, R. J. Periodic catastrophes over human evolutionary history are necessary to explain the forager population paradox. Proc. Natl Acad. Sci. USA 116, 12758–12766 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tallavaara, M. & Jorgensen, E. K. Why are population growth rate estimates of past and present hunter-gatherers so different? Philos. T R Soc. B 376, 20190708 (2021).Blackman, F. F. Optima and limiting factors. With two diagrams in the text. Ann. Bot. Lond. 19, 281–296 (1905).Article 

    Google Scholar 
    Maier, A. et al. Cultural evolution and environmental change in Central Europe between 40 and 15 ka. Quat. Int. 581-582, 225–240 (2021).Article 

    Google Scholar 
    Zhu, D., Galbraith, E. D., Reyes-Garcia, V. & Ciais, P. Global hunter-gatherer population densities constrained by influence of seasonality on diet composition. Nat. Ecol. Evol. 5, 1536 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Binford, L. R. Archaeology as anthropology. Am. Antiquity 28, 217–225 (1962).Article 

    Google Scholar 
    Lowe, J. J. et al. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quat. Sci. Rev. 27, 6–17 (2008).ADS 
    Article 

    Google Scholar 
    Bocquet-Appel, J. P., Demars, P. Y., Noiret, L. & Dobrowsky, D. Estimates of upper Palaeolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).Article 

    Google Scholar 
    Fort, J., Pujol, T. & Cavalli-Sforza, L. L. Palaeolithic populations and waves of advance (Human range expansions). Camb. Archaeol. J. 14, 53–61 (2004).Article 

    Google Scholar 
    Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20190714 (2021).PubMed 
    Article 

    Google Scholar 
    de Pablo, J. F. L. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).Binford, L. R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets. (Univ. California Press, 2019).Johnson, A. L. Exploring adaptive variation among hunter-gatherers with Binford’s frames of reference. J. Archaeol. Res. 22, 1–42 (2014).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl Acad. Sci. USA 115, 1232–1237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front Ecol. Environ. 1, 412–420 (2003).Article 

    Google Scholar 
    Cade, B. S., Terrell, J. W. & Schroeder, R. L. Estimating effects of limiting factors with regression quantiles. Ecology 80, 311–323 (1999).Article 

    Google Scholar 
    Burman, P., Chow, E. & Nolan, D. A cross-validatory method for dependent data. Biometrika 81, 351–358 (1994).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190218 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie, D. J. Energy and large-scale patterns of animal-species and plant-species richness. Am. Nat. 137, 27–49 (1991).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, 2010).Harcourt, A. Human Biogeography (Univ. California Press, 2012).Marlowe, F. W. Hunter-gatherers and human evolution. Evol. Anthropol. 14, 54–67 (2005).Article 

    Google Scholar 
    Belovsky, G. E. An optimal foraging-based model of hunter-gatherer population-dynamics. J. Anthropol. Archaeol. 7, 329–372 (1988).Article 

    Google Scholar 
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    Ohlemuller, R. Climate. Running out of climate space. Science 334, 613–614 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. Mistaking geography for biology: inferring processes from species distributions. Trends Ecol. Evol. 29, 572–580 (2014).PubMed 
    Article 

    Google Scholar 
    Wobst, H. M. The archaeo-ethnology of hunter-gatherers or the tyranny of the ethnographic record in archaeology. Am Antiquity 43, 303–309 (1978).Maier, A. et al. Demographic estimates of hunter-gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quat. Int. 425, 49–61 (2016).Article 

    Google Scholar 
    Riede, F. Oxford Handbook of the Archaeology and Anthropology of Hunter-Gatherers (Oxford Univ. Press, 2014).Jochim, M., Herhahn, C. & Starr, H. The Magdalenian colonization of southern Germany. Am. Anthropol. 101, 129–142 (1999).Article 

    Google Scholar 
    Arts, N. & Deeben, J. On the Northwestern Border of Late Magdalenian Territory: Ecology and Archaeology of Early Late Glacial Band Societies in Northwestern Europe. In Late Glacial in Central Europe. Culture and Environment. (eds Burdukiewicz, J. M. & Kobusiewicz, M.) (Polska Akademia Nauk, Warszawa 1987).Maier, A. Population and settlement dynamics from the Gravettian to the Magdalenian. Mitteilungen der Ges. f.ür. Urgesch. 26, 83–101 (2017).
    Google Scholar 
    Maier, A., Liebermann, C. & Pfeifer, S. J. Beyond the Alps and Tatra Mountains-the 20-14 ka repopulation of the northern mid-latitudes as inferred from palimpsests deciphered with keys from Western and Central Europe. J. Paleolit. Archaeol. 3, 398–452 (2020).Article 

    Google Scholar 
    Gamble, C., Davies, W., Pettitt, P. & Richards, M., Climate change. and evolving human diversity in Europe during the last glacial. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 243–253 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. Proceedings of the Prehistoric Society. (Cambridge Univ. Press).Bellwood, P. S. First Farmers: the Origins of Agricultural Societies. (Blackwell, Oxford 2005).d’Errico, F. et al. The origin and evolution of sewing technologies in Eurasia and North America. J. Hum. Evol. 125, 71–86 (2018).PubMed 
    Article 

    Google Scholar 
    Moseler, F. Brandstrukturen im späten Magdalénien: Betrieb, Nutzung und Funktion (Verlag des Römisch-Germanischen Zentralmuseums, 2020).Simova, I. & Storch, D. The enigma of terrestrial primary productivity: measurements, models, scales and the diversity-productivity relationship. Ecography 40, 239–252 (2017).Rosenzweig, M. L. Net primary productivity of terrestrial communities – prediction from climatological data. Am. Nat. 102, 67 (1968).Article 

    Google Scholar 
    Jensen, H. J. & Møberg, T. Et røgeri fra ældre stenalder ved Bølling Sø? Midtjyske Fortaellinger 2007, 51–62 (2008).Holst, D. Hazelnut economy of early Holocene hunter-gatherers: a case study from Mesolithic Duvensee, northern Germany. J. Archaeol. Sci. 37, 2871–2880 (2010).Article 

    Google Scholar 
    Boethius, A. Something rotten in Scandinavia: the world’s earliest evidence of fermentation. J. Archaeol. Sci. 66, 169–180 (2016).Article 

    Google Scholar 
    Dyson‐Hudson, R. & Smith, E. A. Human territoriality: an ecological reassessment. Am. Anthropol. 80, 21–41 (1978).Article 

    Google Scholar 
    Finlayson, C. The water optimisation hypothesis and the human occupation of the mid-latitude belt in the Pleistocene. Quat. Int 300, 22–31 (2013).Article 

    Google Scholar 
    Laland, K. N. & Brown, G. R. Niche construction, human behavior, and the adaptive-lag hypothesis. Evol. Anthropol. 15, 95–104 (2006).Article 

    Google Scholar 
    Laland, K. N. & O’Brien, M. J. Niche construction theory and archaeology. J. Archaeol. Method Th. 17, 303–322 (2010).Article 

    Google Scholar 
    Riede, F. Handbook of Evolutionary Research in Archaeology (Springer, 2019).Jöris, O. & Terberger, T. Zur Rekonstruktion eines Zeltes mit Trapezförmigem Grundriss am Magdalénien-Fundplatz Gönnersdorf/Mittelrhein: Eine» Quadratur des Kreises «? Arch.äologisches Korrespondenzblatt 31, 163–172 (2001).
    Google Scholar 
    Salomon, H., Vignaud, C., Lahlil, S. & Menguy, N. Solutrean and Magdalenian ferruginous rocks heat-treatment: accidental and/or deliberate action? J. Archaeol. Sci. 55, 100–112 (2015).CAS 
    Article 

    Google Scholar 
    Nakazawa, Y., Straus, L. G., Gonzalez-Morales, M. R., Solana, D. C. & Saiz, J. C. On stone-boiling technology in the Upper Paleolithic: behavioral implications from an Early Magdalenian hearth in El Miron Cave, Cantabria, Spain. J. Archaeol. Sci. 36, 684–693 (2009).Article 

    Google Scholar 
    Pedersen, J., Maier, A. & Riede, F. A punctuated model for the colonisation of the Late Glacial margins of northern Europe by Hamburgian hunter-gatherers. Quart.är. 65, 85–104 (2018).
    Google Scholar 
    Whallon, R. Social networks and information: non-“utilitarian” mobility among hunter-gatherers. J. Anthropol. Archaeol. 25, 259–270 (2006).Article 

    Google Scholar 
    Leal Filho, W. et al. Impacts of climate change to African indigenous communities and examples of adaptation responses. Nat. Commun. 12, 6224 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heitz, C. F., Hinz, M., Laabs, J. & Hafner, A. Mobility as resilience capacity in northern Alpine Neolithic settlement communities. Archaeol. Rev. Camb. 36, 75–106 (2021).
    Google Scholar 
    Riede, F., Oetelaar, G. A. & VanderHoek, R. From crisis to collapse in hunter-gatherer societies. A comparative investigation of the cultural impacts of three large volcanic eruptions on past hunter-gatherers. Crisis to Collapse–The Archaeology of Social Breakdown. Louvain-la-Neuve: UCL Presses Universitaires De Louvian 23–39 (2017).Halstead, P., O’Shea, J. & O’Shea, J. M. Bad Year Economics: Cultural Responses to Risk and Uncertainty. (Cambridge Univ. Press, 2004).Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Burke, A. et al. The archaeology of climate change: the case for cultural diversity. Proc Natl Acad Sci USA 118, e2108537118 (2021).Binford, L. R. Willow smoke and dogs tails – Hunter-gatherer settlement systems and archaeological site formation. Am. Antiquity 45, 4–20 (1980).Article 

    Google Scholar 
    Birdsell, J. B. Some environmental and cultural factors influencing the structuring of Australian aboriginal populations. Am. Nat. 87, 171–207 (1953).Article 

    Google Scholar 
    Kelly, R. L. The Lifeways of Hunter-Gatherers: The Foraging Spectrum (Cambridge Univ. Press, 2013).Penington, R. Hunter-gatherer demography. In Hunter-Gatherers: An Interdisciplinary Perspective. (eds. Panter-Brick, C., Layton, R. H. & Rowley-Conwy, P.) (Cambridge University Press, Cambridge, 2001).Wobst, H. M. Locational relationships in Paleolithic society. J. Hum. Evol. 5, 49–58 (1976).Article 

    Google Scholar 
    Richards, M. P., Pettitt, P. B., Stiner, M. C. & Trinkaus, E. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc. Natl Acad. Sci. USA 98, 6528–6532 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Drucker, D. & Bocherens, H. Carbon and nitrogen stable isotopes as tracers of change in diet breadth during Middle and Upper Palaeolithic in Europe. Int J. Osteoarchaeol. 14, 162–177 (2004).Article 

    Google Scholar 
    Kretschmer, I. Demographische Untersuchungen zu Bevölkerungsdichten, Mobilität und Landnutzungsmustern im späten Jungpaläolithikum (Verlag Marie Leidorf GmbH, 2015).Langley, M. C. & Street, M. Long range inland-coastal networks during the Late Magdalenian: evidence for individual acquisition of marine resources at Andernach-Martinsberg, German Central Rhineland. J. Hum. Evol. 64, 457–465 (2013).PubMed 
    Article 

    Google Scholar 
    Lanczont, M. et al. Late Glacial environment and human settlement of the Central Western Carpathians: a case study of the Nowa Biala 1 open-air site (Podhale Region, southern Poland). Quat. Int 512, 113–132 (2019).Article 

    Google Scholar 
    Cziesla, E. Robbenjagd in Brandenburg? Gedanken zur Verwendung großer Widerhakenspitzen. Ethnographisch-archaologische Z. 48, 1–48 (2007).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Le Cook, B. & Manning, W. G. Thinking beyond the mean: a practical guide for using quantile regression methods for health services research. Shanghai Arch. Psychiatry 25, 55 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Yee, T. W. & Mitchell, N. D. Generalized additive-models in plant ecology. J. Veg. Sci. 2, 587–602 (1991).Article 

    Google Scholar 
    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model 157, 89–100 (2002).Article 

    Google Scholar 
    Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. Ecology 81, 1970–1984 (2000).Article 

    Google Scholar 
    Drexler, M. & Ainsworth, C. H. Generalized additive models used to predict species abundance in the Gulf of Mexico: an ecosystem modeling tool. PLos ONE 8, e64458 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moisen, G. G. & Frescino, T. S. Comparing five modelling techniques for predicting forest characteristics. Ecol. Model 157, 209–225 (2002).Article 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2006).Zuur, A. F. A Beginner’s Guide to Generalized Additive Models with R (Highland Statistics Limited, 2012).Team, R. C. R: a language and environment for statistical computing. (2013).Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2021).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    AlejoOrdonez/PaleoPopDen: (Version NatCommV0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.6962693 (2022).Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 325, 310–314 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. Sci. Data 3, 160048 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peltier, W. R., Argus, D. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).ADS 
    Article 

    Google Scholar 
    Vermeersch, P. M. European population changes during the Marine Isotope Stages 2 and 3. Quat. Int 137, 77–85 (2005).Article 

    Google Scholar 
    Gamble, C., Davies, W., Pettitt, P., Hazelwood, L. & Richards, M. The archaeological and genetic foundations of the European population during the late glacial: Implications for ‘agricultural thinking’. Camb. Archaeol. J. 15, 193–223 (2005).Article 

    Google Scholar 
    Steele, J. Radiocarbon dates as data: quantitative strategies for estimating colonization front speeds and event densities. J. Archaeol. Sci. 37, 2017–2030 (2010).Article 

    Google Scholar 
    Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).Article 

    Google Scholar 
    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).Article 

    Google Scholar 
    Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Acad. Sci. USA 110, 443–447 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hijmans, R. J. et al. Package ‘raster’. R package 734, (2015).Lewin-Koh, N. J. et al. Package ‘maptools’. Internet: http://cran.r-project.org/web/packages/maptools/maptools.pdf (2012).Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).Article 

    Google Scholar 
    Lieth, H.Primary Productivity of the Biosphere (Springer, 1975). More

  • in

    Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort

    Sample collection and metagenomic sequencingWritten informed consent was obtained prior to participation in the project. The study protocol for the Japanese (Disease, Drug, Diet, Daily life) microbiome project was approved by the medical ethics committees of the Tokyo Medical University (Approval No: T2019-0119), National Center for Global Health and Medicine (Approval No: 1690), the University of Tokyo (Approval No: 2019185NI), Waseda University (Approval No: 2018-318), and the RIKEN Center for Integrative Medical Sciences (Approval No: H30-7). We conducted a prospective cross-sectional study of 4198 individuals participating in the Japanese 4D microbiome project, which commenced in January 2015 and is ongoing20.Participants registered in the project were those who visited hospitals in the area for disease diagnosis or a health checkup. Faecal samples are collected from both healthy and diseased participants. The eligibility criteria for participants are as follows: (1) born and raised in Japan; (2) age >15 years; (3) written informed consent provided; and (4) having an endoscopic diagnosis on colonoscopy; either having undergone a colonoscopy within the last 3 years or planning to undergo colonoscopy for colorectal cancer screening, surveillance, and diagnosis of various gastrointestinal symptoms. The exclusion criteria were as follows: (1) suspected acute infectious disease based on clinical findings (e.g., acute enterocolitis, pneumonia, tuberculosis etc.); (2) acute bleeding; (3) hearing loss; (4) unable to understand written documents; (5) unable to write and (6) limited ability to perform activities of daily living. No compensation was paid to participants.Participants collected faecal samples using a Cary–Blair medium-containing tube60 at home, and the samples were refrigerated for up to 2 days before the hospital visit. Immediately after participants arrived at the hospital, their faecal samples were frozen at −80 °C until DNA extraction. We avoided collecting samples within 1 month of administering bowel preparation for colonoscopy because it has a profound effect on the gut microbiome and metabolome61. Health professionals checked that the amount of stool was sufficient for analysis. Shotgun metagenomic sequencing was performed for 4241 faecal samples and quality controls were conducted20, from which 43 samples were excluded from further analyses due to the low number of high-quality reads (130 bp. Encoded genes in the contigs were predicted by MetaGeneMark (3.38)70. Assembled contigs were defined as phages if they passed all of the following six criteria.

    1.

    A genome size threshold was applied, and contigs less than 10 Kb were excluded, as typical dsDNA phages have genomes larger than >10 Kb71.

    2.

    Viral-specific k-mer patterns were checked by DeepVirFinder (v1.0)22. Contigs with p-values >0.05 were excluded from further analysis.

    3.

    To detect viral hallmark genes (VHGs) and plasmid hallmark genes, we performed a highly sensitive HMM-HMM search against the Pfam database72. First, the encoded genes were aligned to the viral protein database, collected from complete (circular) viral genomes (n = 13,628) in the IMG/VR v2 database30 using JackHMMER. The obtained HMM profiles were searched against the Pfam database using hhblits73 with a  >95% probability cut-off. These procedures were performed using the pipeline_for_high_sensitive_domain_search script (https://github.com/yosuken/pipeline_for_high_sensitive_domain_search)74,75. Contigs with plasmid hallmark genes or those without VHGs were excluded. The hallmark genes used in this analysis are summarised in Supplementary Data 3.

    4.

    The presence of housekeeping marker genes of prokaryotic species was checked by fetchMG (v1.0)76, and ribosomal RNA genes (5 S, 16 S and 23 S) were identified by barrnap (0.9) (https://github.com/tseemann/barrnap). Contigs with the marker genes and ribosomal RNA genes were excluded from further analysis.

    5.

    The encoded genes of each contig were aligned to the viral protein database and a plasmid protein database constructed from the reference plasmids in RefSeq (n = 16,136, in April 2020) using DIAMOND (v0.9.29.130)77 with the more-sensitive option. The number of genes aligned to each database was compared, and contigs with more genes aligned to the plasmid protein database were excluded from further analysis.

    6.

    The proportion of provirus regions was assessed by CheckV (v0.7)24, and contigs estimated with 70% and 10% contamination.To evaluate the performance of this custom pipeline, we applied the pipeline to reference phage genomes (n = 2609, as positive data) and plasmid sequences (n = 16,136, as negative data) in Refseq. The true positive rate was defined as the number of phages detected as phages by the pipeline divided by the number of reference phages. The false positive rate was defined as the number of plasmids detected as phages by the pipeline divided by the number of reference plasmids. DeepVirFinder22, VirSorter (v1.0.3)23 Virsorter2 (2.2.3)25, VIBRANT (v1.2.1)26, Seeker (v1.0.3)27 and ViralVerify (v1.1)28 were also applied to the same datasets with the default parameters, and the performance was compared among them.Analysis of phage genomesViral operational taxonomic units (vOTUs) were constructed by clustering phage genomes with a  > 95% identity29 using dRep (v2.2.3)78 with the default options. Representative sequences of each vOTU selected by dRep were further clustered with reference sequences in RefSeq, IMG/VR30, gut virome database (GVD)15, gut phage database (GPD)9, and metagenomic gut virus (MGV) database31 with >95% identity and >85% length coverage using aniclust.py script in the CheckV package to identify common sequences among the databases.To further construct broader viral clusters (VC), proportions of protein clusters shared between phages were assessed. First, to define protein clusters, similarity searches of all protein sequences from all the phages identified in this study were performed using DIAMOND with the more-sensitive option (e-value 20% of clusters were grouped as a VC, which corresponds approximately to family- or subfamily-level clusters7,37. Rarefaction curves of the vOTUs and VCs were estimated with the iNEXT function in the iNEXT package (v2.0.20)80. The similarity matrix of the phages based on the percentage of shared protein clusters was further projected by tSNE using the tsne function in the Rtsne package (v0.16).Taxonomy annotation of phages was performed with a voting approach described previously16 with minor modifications. First, the protein sequences of each phage were aligned to viral proteins detected from phage genomes in RefSeq (n = 2609, in April 2020) using DIAMOND with the more-sensitive option. Then, the best-hit taxonomy of each protein (family levels) was counted, and the most common taxonomy was assigned to the phage if >20% of proteins in the phage were aligned to the same taxonomy.Phage lifestyles (i.e. virulent or temperate) were predicted by BACPHLIP40 and alignments to reference bacterial genomes in the RefSeq. Phages were defined as temperate if the BACPHLIP score was >0.8 or the phage genome was aligned to any reference genomes with >1000 bp alignment length with >95% identity.Host predictionBacterial and archaeal genomes were downloaded from the RefSeq database (in April 2019). To reduce the redundancy of genomes from closely related strains in the same species (e.g. Escherichia coli), 10 genomes were selected randomly for species with more than 10 genomes, and other genomes were excluded from the dataset. The reference dataset consisted of 33,215 bacterial and 822 archaeal genomes.Host prediction of the identified phages was performed using CRISPR spacers81. CRISPR spacers were predicted from the reference microbial genomes and assembled contigs ( >10,000 bp) from the 4198 metagenomic datasets using PILER-CR (1.06)82. Short (100 bp) spacers were discarded. In total, 679,323 and 283,619 spacers were identified from the reference microbial genomes and assembled contigs, respectively. Taxonomy information was assigned to the assembled contigs if they were aligned to the microbial reference genomes with >90% identity and >70% length coverage thresholds using MiniMap283. The CRISPR spacers were mapped to the phage genomes using BLASTN with the option for short sequences: -a20 -m9 -e1 -G10 -E2 -q1 -W7 -F F81. CRISPR spacers, which were mapped with 100% identity or 1 mismatch/indel with >95% sequence alignment, were used for host assignment at the genus level. Assignments of host species were checked manually, and if any of the following non-human intestinal species were assigned, the host was excluded: Dickeya, Anaerobutyricum, Rubellimicrobium, Eisenbergiella, Harryflintia, Leucothrix, Photorhabdus, Spirosoma, Syntrophobotulus, Thermincola, Algoriphagus, Franconibacter, Kandleria, Lawsonibacter, Methylomonas, Provencibacterium, Pseudoruminoccoccus, Rhodanobacter, Romboutsia, Sharpea, Varibaculum and Thioalkalivibrio.Quantification of viral abundance and analysis of the virome profileTo quantify the viral abundances in each sample, metagenomic reads were mapped to the gene set of VHGs (Supplementary Data 3) of each representative vOTU using Bowtie2 with a  > 95% identity threshold, and reads per kilobase million (RPKM) were calculated for each vOTU. The reason for using only VHGs in the analysis was to avoid over-counting of viral reads, which could be caused by spurious mapping of reads from horizontally transferred genes of other phages or bacterial species. The α-diversity (Shannon diversity) of the vOTU-level viral profile was calculated using the diversity function in the vegan package. The β-diversity (Bray-Curtis distance) between individuals was assessed using the vegdist function, and the average distance against other individuals was calculated for each individual. The VC-level viral profile was obtained by summing all the RPKM of vOTUs for each VC.Phylogenetic analysis of novel VCsTo construct phylogenetic trees for the vOTUs and reference genomes, protein sequences of large terminases, portal proteins, and major capsid proteins (Supplementary Data 3), which are often used to construct phage phylogenetic trees7,9, were extracted from the vOTUs in the 10 most abundant VCs (VC_19, 1, 2, 24, 12, 15, 3, 44, 18, 6), and their homologues were searched for in the reference phage genomes in RefSeq using DIAMOND with the more-sensitive option (e-value 0.01% (n = 865) and genera with average relative abundance >0.5% (n = 32) were included in the analysis.Analysis of VLPs and whole metagenomes from 24 faecal samplesQuality filtering of sequenced reads from the 24 VLPs and whole metagenomes was performed using fastp (version 0.20.1)92 with the default parameters. Contamination with human (hg38) or phiX genomes was excluded by mapping the reads to the genomes using Bowtie2.To exclude bacterial DNA contamination in the VLP dataset, we performed further filtering. First, the VLP reads were assembled into contigs using MEGAHIT and the contigs were checked for virus or not. Contigs were defined as viral contigs if they were predicted as viruses by DeepVirFinder (P-value More

  • in

    Forest vulnerability to drought controlled by bedrock composition

    Moore, J., Pope, J., Woods, M. & Ellis, A. 2018 Aerial Survey Results: California (USDA, 2018).Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68, 77–88 (2018).Article 

    Google Scholar 
    Li, S. & Banerjee, T. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci. Rep. 11, 8779 (2021).Article 

    Google Scholar 
    Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2020).Article 

    Google Scholar 
    Asner, G. P. et al. Progressive forest canopy water loss during the 2012–2015 California drought. Proc. Natl Acad. Sci. USA 113, E249–E255 (2016).
    Google Scholar 
    Brodrick, P. G., Anderegg, L. D. L. & Asner, G. P. Forest drought resistance at large geographic scales. Geophys. Res. Lett. 46, 2752–2760 (2019).Article 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).Article 

    Google Scholar 
    Paz-Kagan, T. et al. What mediates tree mortality during drought in the southern Sierra Nevada? Ecol. Appl. 27, 2443–2457 (2017).Article 

    Google Scholar 
    Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is Tree Drought Mortality so Hard to Predict? Trends Ecol. Evol. 36, 520–532.(2021).Goodfellow, B. W. et al. The chemical, mechanical, and hydrological evolution of weathering granitoid. J. Geophys. Res. Earth Surf. 121, 1410–1435 (2016).Article 

    Google Scholar 
    Shen, X., Arson, C., Ferrier, K. L., West, N. & Dai, S. Mineral weathering and bedrock weakening: modeling microscale bedrock damage under biotite weathering. J. Geophys. Res. Earth Surf. 124, 2623–2646 (2019).Article 

    Google Scholar 
    McLaughlin, B. C. et al. Weather underground: subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Change Biol. 26, 3091–3107 (2020).Article 

    Google Scholar 
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 

    Google Scholar 
    Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).Article 

    Google Scholar 
    Tague, C. & Peng, H. The sensitivity of forest water use to the timing of precipitation and snowmelt recharge in the California Sierra: implications for a warming climate. J. Geophys. Res. Biogeosci. 118, 875–887 (2013).Article 

    Google Scholar 
    Hahm, W. J., Riebe, C. S., Lukens, C. E. & Araki, S. Bedrock composition regulates mountain ecosystems and landscape evolution. Proc. Natl Acad. Sci. USA 111, 3338–3343 (2014).Article 

    Google Scholar 
    Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L. & von Blanckenburg, F. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14, 3111–3128 (2017).Article 

    Google Scholar 
    Stone, E. C. Dew as an ecological factor: II. The effect of artificial dew on the survival of Pinus ponderosa and associated species. Ecology 38, 414–422 (1957).Article 

    Google Scholar 
    Wald, J. A., Graham, R. C. & Schoeneberger, P. J. Distribution and properties of soft weathered bedrock at ≤1 m depth in the contiguous United States. Earth Surf. Process. Landf. 38, 614–626 (2013).Article 

    Google Scholar 
    Klos, P. Z. et al. Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate. WIREs Water 5, e1277 (2018).Article 

    Google Scholar 
    Dawson, T. E., Hahm, W. J. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. N. Phytol. 226, 666–671 (2020).Article 

    Google Scholar 
    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).Article 

    Google Scholar 
    Holbrook, W. S. et al. Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone. Sci. Rep. 9, 4495 (2019).Article 

    Google Scholar 
    Krone, L. V. et al. Deep weathering in the semi-arid Coastal Cordillera, Chile. Sci. Rep. 11, 13057 (2021).Article 

    Google Scholar 
    Callahan, R. P. et al. Subsurface weathering revealed in hillslope‐integrated porosity distributions. Geophys. Res. Lett. 47, e2020GL088322 (2020).Holbrook, W. S. et al. Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory. Earth Surf. Process. Landf. 39, 366–380 (2014).Article 

    Google Scholar 
    Hayes, J. L., Riebe, C. S., Holbrook, W. S., Flinchum, B. A. & Hartsough, P. C. Porosity production in weathered rock: where volumetric strain dominates over chemical mass loss. Sci. Adv. 5, eaao0834 (2019).Article 

    Google Scholar 
    Riebe, C. S. et al. Anisovolumetric weathering in granitic saprolite controlled by climate and erosion rate. Geology 49, 551–555 (2021).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Vitousek, P. M., Porder, S. & Houlton, B. Z. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).Article 

    Google Scholar 
    Bateman, P. C., Dodge, F. C. W. & Bruggman, P. E. Major Oxide Analyses, CPIW Norms, Modes, and Bulk Specific Gravities of Plutonic Rocks from the Mariposa 1° × 2° Sheet, Central Sierra Nevada, California Open-File Report 84–162 (USGS, 1984).Amundson, R., Richter, D. D., Humphreys, G. S., Jobbagy, E. G. & Gaillardet, J. Coupling between biota and earth materials in the critical zone. Elements 3, 327–332 (2007).Article 

    Google Scholar 
    Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J. Geophys. Res. Biogeosci. 125, e2020JG005795 (2020).Gabet, E. J. & Mudd, S. M. Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J. Geophys. Res. 115, F04005 (2010).Bateman, P. C. Plutonism in the Central Part of the Sierra Nevada Batholith, California (USGS, 1992); http://pubs.er.usgs.gov/publication/pp1483Callahan, R. P. et al. Arrested development: erosional equilibrium in the southern Sierra Nevada, California, maintained by feedbacks between channel incision and hillslope sediment production. GSA Bull. 131, 1179–1202 (2019).Article 

    Google Scholar 
    Flinchum, B. A. et al. Estimating the water holding capacity of the critical zone using near-surface geophysics. Hydrol. Process. 32, 3308–3326 (2018).Article 

    Google Scholar 
    St. Clair, J. Geophysical Investigations of Underplating at the Middle American Trench, Weathering in the Critical Zone, and Snow Water Equivalent in Seasonal Snow. PhD thesis, Univ. Wyoming (2015).Dvorkin, J. & Nur, A. Elasticity of high‐porosity sandstones: theory for two North Sea data sets. Geophysics 61, 1363–1370 (1996).Article 

    Google Scholar 
    Gu, X. et al. Seismic refraction tracks porosity generation and possible CO2 production at depth under a headwater catchment. Proc. Natl Acad. Sci. USA 117, 18991–18997 (2020).Article 

    Google Scholar 
    Pasquet, S., Holbrook, W. S., Carr, B. J. & Sims, K. W. W. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system. Geophys. Res. Lett. 43, 12,027–12,035 (2016).Article 

    Google Scholar 
    Dahlgren, R. A., Boettinger, J. L., Huntington, G. L. & Amundson, R. G. Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78, 207–236 (1997).Article 

    Google Scholar 
    Stone, E. L. & Kalisz, P. J. On the maximum extent of tree roots. For. Ecol. Manage. 46, 59–102 (1991).Article 

    Google Scholar 
    Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–252 (1997).Article 

    Google Scholar 
    Goulden, M. L. et al. Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J. Geophys. Res. 117, G03028 (2012).Ma, Q. et al. Wildfire controls on evapotranspiration in California’s Sierra Nevada. J. Hydrol. 590, 125364 (2020).Article 

    Google Scholar 
    Roche, J. W., Goulden, M. L. & Bales, R. C. Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology 11, e1978 (2018).Bales, R. C. et al. Mechanisms controlling the impact of multi-year drought on mountain hydrology. Sci. Rep. 8, 690 (2018).Article 

    Google Scholar 
    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).Article 

    Google Scholar 
    Su, Y. et al. Emerging stress and relative resiliency of giant sequoia groves experiencing multiyear dry periods in a warming climate. J. Geophys. Res. Biogeosci. 122, 3063–3075 (2017).Article 

    Google Scholar 
    Moore, J., McAfee, L. & Iaccarino, J. 2016 Aerial Survey Results: California (USDA, 2017).Budyko, M. I., Miller, D. H. & Miller, D. H. Climate and Life (Academic Press, 1974).Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99 (1985).Article 

    Google Scholar 
    PRISM Climate Group PRISM Climate Data (Oregon State Univ., 2019).Bales, R. et al. Spatially distributed water-balance and meteorological data from the rain–snow transition, southern Sierra Nevada, California. Earth Syst. Sci. Data 10, 1795–1805 (2018).Article 

    Google Scholar 
    Callahan, R. P. Supplement for “Forest vulnerability to drought controlled by bedrock composition”. Hydroshare https://doi.org/10.4211/hs.edbb6ebfbc744186b5800932cd00b507 (2022).Earth Resources Observation and Science (EROS) Center USGS EROS Archive—Aerial Phorography—National Agriculture Imagery Program (NAIP) (USGS, 2017); https://doi.org/10.5066/F7QN651G More

  • in

    The bedrock of forest drought

    Bedrock composition can play a critical role in determining the structure and water demand of forests, influencing their vulnerability to drought. The properties of bedrock can help explain within-region patterns of tree mortality in the 2011–2017 California drought.Montane forests are iconic natural resources that provide habitat, carbon sequestration, regulation of water, and, for many cultures, profound meaning. A warming climate and prolonged droughts threaten these forests, as shown by the 2011–2017 drought in California, USA, which killed over 140 million trees. However, the vulnerability of forests to climate-driven risks is not evenly distributed across these landscapes. In the 2011–2017 drought, some contiguous forested areas (or forest stands) suffered more than 70% mortality while forests in other locations experienced few or no losses1. Understanding these spatial patterns is critical for the projection of future risks and for targeted forest management. Writing in Nature Geoscience, Callahan and colleagues look beneath the surface at the composition of bedrock and find a link to these patterns of drought mortality in the California Sierra2. More

  • in

    Increased drought effects on the phenology of autumn leaf senescence

    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 
    Article 

    Google Scholar 
    Piao, S. L. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    Article 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).CAS 
    Article 

    Google Scholar 
    Garonna, I. et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob. Change Biol. 20, 3457–3470 (2014).Article 

    Google Scholar 
    Piao, S. L. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    Article 

    Google Scholar 
    Zhao, Y. et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl Acad. Sci. USA 113, 1949–1954 (2016).CAS 
    Article 

    Google Scholar 
    Keskitalo, J., Bergquist, G., Gardestrom, P. & Jansson, S. A cellular timetable of autumn senescence. Plant Physiol. 139, 1635–1648 (2005).CAS 
    Article 

    Google Scholar 
    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).Article 

    Google Scholar 
    Wu, C. Y. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8, 1092–1096 (2018).CAS 
    Article 

    Google Scholar 
    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).CAS 
    Article 

    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).Article 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).CAS 
    Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Liu, L. B. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).CAS 
    Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Piao, S. L. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).CAS 
    Article 

    Google Scholar 
    Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    Article 

    Google Scholar 
    Seastedt, T. R. & Knapp, A. K. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).CAS 
    Article 

    Google Scholar 
    Korner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).CAS 
    Article 

    Google Scholar 
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).CAS 
    Article 

    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought. New Phytol. 178, 719–739 (2008).Article 

    Google Scholar 
    Nolan, R. H. et al. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant Cell Environ. 40, 3122–3134 (2017).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).CAS 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).CAS 
    Article 

    Google Scholar 
    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).CAS 
    Article 

    Google Scholar 
    Kannenberg, S. A., Driscoll, A. W., Szejner, P., Anderegg, W. R. L. & Ehleringer, J. R. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2118052118 (2021).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. https://doi.org/10.1038/s41467-017-02690-y (2018).Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 
    Article 

    Google Scholar 
    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 189, 71–80 (2014).Article 

    Google Scholar 
    Zhang, X. Y. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 156, 457–472 (2015).Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).Article 

    Google Scholar 
    Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M., Price, D. T., Kurz, W. A. & Wu, C. Y. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. J. Geophys. Res. 117, G03032 (2012).
    Google Scholar 
    Muñoz, S. ERA5-Land Monthly Averaged Data from 1981 to Present (C3S CDS, date accessed:10-8-2021); https://doi.org/10.24381/cds.68d2bb30Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Müller, W. A. et al. A Higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 10, 1383–1413 (2018).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    Article 

    Google Scholar 
    Allen, R. G., Smith, M., Pereira, L. S. & Perrier, A. An update for the calculation of reference evapotranspiration. ICID Bull. 43, 64–92 (1994).
    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01112-8 (2021).Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).CAS 
    Article 

    Google Scholar 
    Peng, J., Wu, C. Y., Zhang, X. Y., Wang, X. Y. & Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Change Biol. 25, 2174–2188 (2019).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Beaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 × 0.25 Degree Version 2.0 (GES DISC, 2015); https://doi.org/10.5067/342OHQM9AK6QBeaudoing, H., Rodell, M. & NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 ×0.25 Degree Version 2.1 (GES DISC, 2016); https://doi.org/10.5067/E7TYRXPJKWOQZheng, Y. et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 2725–2746 (2020).Article 

    Google Scholar 
    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. https://doi.org/10.1038/srep15956 (2015).Li, Y. et al. Estimating global ecosystem isohydry/anisohydry using active and passive microwave satellite data. J. Geophys. Res. 122, 3306–3321 (2017).Article 

    Google Scholar 
    Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).Article 

    Google Scholar 
    Botta, A., Viovy, N., Ciais, P., Friedlingstein, P. & Monfray, P. A global prognostic scheme of leaf onset using satellite data. Glob. Change Biol. 6, 709–725 (2000).Article 

    Google Scholar  More

  • in

    The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics

    Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8:1–8.
    Google Scholar 
    United Nations Department of Economic and Social Affairs. World population prospects: the 2017 revision. 2017. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.PubMed 

    Google Scholar 
    Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 2020;29:299–308.PubMed 

    Google Scholar 
    Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience. 2022;25:103821.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bounaffaa M, Florio A, le Roux X, Jayet PA. Economic and environmental analysis of maize inoculation by plant growth promoting rhizobacteria in the French Rhône-Alpes region. Ecol Econ. 2018;146:334–46.
    Google Scholar 
    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil. 2014;378:1–33.CAS 

    Google Scholar 
    Mallon C, van Elsas J, Salles J. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23:719–29.CAS 
    PubMed 

    Google Scholar 
    Mawarda PC, le Roux X, van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem.2020;148:1–13.
    Google Scholar 
    Mallon C, Poly F, le Roux X, Marring I, van Elsas J, Salles J. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology. 2015;96:915–26.PubMed 

    Google Scholar 
    Xing J, Jia X, Wang H, Ma B, Salles JF, Xu J. The legacy of bacterial invasions on soil native communities. Environ Microbiol. 2020;23:1–13.
    Google Scholar 
    Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.
    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;43:293–323.
    Google Scholar 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    Sherr BF, Sherr EB, Berman T. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol. 1983;45:1196–201.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199:203–11.CAS 
    PubMed 

    Google Scholar 
    Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18.CAS 

    Google Scholar 
    Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, et al. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS ONE. 2018;13:e0202941.PubMed 
    PubMed Central 

    Google Scholar 
    Iavicoli A, Boutet E, Buchala A, Métraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact. 2003;16:851–8.CAS 
    PubMed 

    Google Scholar 
    Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated pseudomonas fluorescens. Appl Environ Microbiol. 2010;76:5263–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jousset A, Scheu S, Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol. 2008;22:714–9.
    Google Scholar 
    Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mallon CA, le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial community following Bacillus invasion. iScience. 2022;25:1–17.
    Google Scholar 
    Yi Y, de Jong A, Spoelder J, Theo J, van Elsas JD, Kuipers OP. Draft genome sequence of Bacillus mycoides M2E15, a strain isolated from the endosphere of potato. Genome Announc. 2016;4:e00031.PubMed 
    PubMed Central 

    Google Scholar 
    Loznik B, Oosterkamp PJ. Fertilizer comprising protozoa and bacteria. World Intelectual Property Organization; 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017105238.Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:1–11.
    Google Scholar 
    Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61:289–98.CAS 

    Google Scholar 
    Neher OT, Johnston MR, Zidack NK, Jacobsen BJ. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biol Control. 2009;48:140–6.
    Google Scholar 
    Gao Z. Soil protists: from traits to ecological functions. University of Utrecht; 2020. https://dspace.library.uu.nl/handle/1874/400054.Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 2022;98:1–11.
    Google Scholar 
    Wright DA, Killham K, Glover LA, Prosser JI. Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol. 1995;61:3537–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright D, Killham K, Glover L, Biota JP-SS. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: Brussaard L, Kooistra MJ, editors. Soil structure/soil biota interrelationships. Amsterdam: Elsevier; 1993.p.633–40.
    Google Scholar 
    Thewes S, Soldati T, Eichinger L. Editorial: amoebae as host models to study the interaction with pathogens. Front Cell Infect Microbiol. 2019;9:47.PubMed 
    PubMed Central 

    Google Scholar 
    Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere protists change metabolite profiles in Zea mays. Front Microbiol. 2018;9:857.PubMed 
    PubMed Central 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritz K. The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–62.CAS 
    PubMed 

    Google Scholar 
    Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, et al. Biocontrol traits correlate with resistance to predation by protists in soil pseudomonads. Front Microbiol. 2020;11:3164.
    Google Scholar 
    Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1–7.
    Google Scholar 
    Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia. 2017;62:1–8.
    Google Scholar 
    van Elsas J, Chiurazzi M, Mallon C, Elhottova D, Krištůfek V, Salles J. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 

    Google Scholar 
    Horňák K, Corno G. Every coin has a back side: invasion by limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS ONE. 2012;7:e51576.PubMed 
    PubMed Central 

    Google Scholar 
    Gómez P, Paterson S, de Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:1–8.
    Google Scholar 
    Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19:726–39.CAS 
    PubMed 

    Google Scholar 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities within the soil microbiome. Soil Biol Biochem. 2019;135:379–82.CAS 

    Google Scholar 
    Schneider FD, Scheu S, Brose U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett. 2012;15:436–43.PubMed 

    Google Scholar 
    Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T, Canning-Clode J, et al. Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol. 2019;3:919–27.PubMed 

    Google Scholar 
    van Elsas JD, Trevors JT, Jansson JK, Nannipieri P, editors. Modern soil microbiology. 3rd ed. Boca Raton: CRC Press; 2019.Berga M, Székely AJ, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE. 2012;7:e365969.
    Google Scholar 
    Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE. Succession of the resident soil microbial community in response to periodic inoculations. Appl Environ Microbiol. 2021;87:e00046.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Hinfluences severe disease-mediated population declines in two of the most common garden bird species in Great Britain

    Gregory, R. D. & van Strien, A. Wild bird indicators: Using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Urban bird feeding: Connecting people with nature. PLoS ONE 11, e0158717 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).Article 

    Google Scholar 
    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R. & de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 30, 205–214 (2014).PubMed 
    Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: Epizootiology and demographic impacts on àapapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).Article 

    Google Scholar 
    George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. USA. 112, 14290–14294 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton, S. P. et al. Disease threats posed by alien species: The role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol. Infect. 134, 521–533 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434), 1459–1463 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shutt, J. D. & Lees, A. C. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biol. Conserv. 261, 109295 (2021).Article 

    Google Scholar 
    Van Doren, B. M. et al. Human activity shapes the wintering ecology of a migratory bird. Glob. Chang. Biol. 27, 2715–2727 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 2088 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lawson, B. et al. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170091 (2018).Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).Article 

    Google Scholar 
    Siriwardena, G. M. et al. The effect of supplementary winter seed food on breeding populations of farmland birds: Evidence from two large-scale experiments. J. Appl. Ecol. 44, 920–932 (2007).Article 

    Google Scholar 
    Kubasiewicz, L. M., Bunnefeld, N., Tulloch, A. I. T., Quine, C. P. & Park, K. J. Diversionary feeding: An effective management strategy for conservation conflict? Biodivers. Conserv. 25, 1–22 (2016).Article 

    Google Scholar 
    Lawson, B. et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect. Genet. Evol. 11, 1638–1645 (2011).PubMed 
    Article 

    Google Scholar 
    Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forrester, D. J. & Foster, G. W. Trichomonosis. In: Parasitic Diseases of Wild Birds 120–153 (Wiley-Blackwell, 2008).Lawson, B. et al. Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143–153 (2011).PubMed 
    Article 

    Google Scholar 
    Lawson, B. et al. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. B Biol. Sci. 367, 2852–2863 (2012).Article 

    Google Scholar 
    Woodward, I. D. et al. BirdTrends 2020: Trends in numbers, breeding success and survival for UK breeding birds. Research Report 732. BTO, Thetford. (2020).Enoksson, B. Age- and sex-related differences in dominance and foraging behaviour of nuthatches Sitta europaea. Anim. Behav. 36, 231–238 (1988).Article 

    Google Scholar 
    Tarvin, K. A. & Woolfenden, G. E. Patterns of dominance and aggressive behavior in blue jays at a feeder. Condor 99, 434–444 (1997).Article 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. Use of winter feeders by black-capped chickadees. Wildl. Soc. 56, 103–110 (1992).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    Musgrove, A. J. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 106, 64–100 (2013).
    Google Scholar 
    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. (T & AD Poyser, 2002).Main, I. G. The partial migration of Fennoscandian Greenfinches Carduelis chloris. Ringing Migr. 20, 167–180 (2000).Article 

    Google Scholar 
    Lack, P. C. The Atlas of Wintering Birds in Britain and Ireland. (T. & A.D. Poyser, 1986).Robinson, R. A. BirdFacts: profiles of birds occurring in Britain & Ireland. BTO, Thetford (2005). Available at: http://www.bto.org/birdfacts. Accessed: 15 May 2022.Tratalos, J. et al. Bird densities are associated with household densities. Glob. Chang. Biol. 13, 1685–1695 (2007).ADS 
    Article 

    Google Scholar 
    Gregory, R. D. Broad-scale habitat use of sparrows, finches and buntings in Britain. Die Vogelwelt 120, 47–57 (1999).
    Google Scholar 
    Newton, I. Finches. New Naturalist Series, Volume: 55. (HarperCollins, 1972).Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).Article 

    Google Scholar 
    Crick, H. Q. P. A bird-habitat coding system for use in Britain and Ireland incorporating aspects of land-management and human activity. Bird Study 39, 1–12 (1992).Article 

    Google Scholar 
    Davies, Z. G. et al. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 142, 761–771 (2009).Article 

    Google Scholar 
    Balmer, D. E. et al. Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. (BTO Books, 2013).Lawson, B. et al. Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7, 294–306 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svensson, L. Identification guide to European passerines, 4th edition. (BTO, 1992).Jenni, L. & Winkler, R. Moult and ageing of European passerines, 2nd edition. (Helm, 2020).Baillie, S. R. The contribution of ringing to the conservation and management of bird populations: A review. Ardea 89, 167–184 (2001).
    Google Scholar 
    Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: A hierarchical perspective (Academic Press, 2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (eds. Hornik, K., Leisch, F. & Zeileis, A.) (2003).Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R package version 0.6–1. (2020).Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: Towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361–1372 (2014).Article 

    Google Scholar 
    Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D. & Gaston, K. J. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. J. Appl. Ecol. 45, 1330–1338 (2008).Article 

    Google Scholar 
    Newson, S. E., Massimino, D., Johnston, A., Baillie, S. R. & Pearce-Higgins, J. W. Should we account for detectability in population trends? Bird Study 60, 384–390 (2013).Article 

    Google Scholar 
    Crick, H. Q. P., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its value for science and conservation. Bird Study 50, 254–270 (2003).Article 

    Google Scholar 
    Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology 91, 7–14 (2010).PubMed 
    Article 

    Google Scholar 
    Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 89, e01364 (2019).Article 

    Google Scholar 
    Weegman, M. D., Arnold, T. W., Clark, R. G. & Schaub, M. Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecol. Appl. 31, e02258 (2021).Article 

    Google Scholar 
    Koons, D. N., Iles, D. T., Schaub, M. & Caswell, H. A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol. Lett. 19, 1023–1031 (2016).PubMed 
    Article 

    Google Scholar 
    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol Appl. 27, 2102–2115 (2017).PubMed 
    Article 

    Google Scholar 
    Caswell, H. Matrix population models: Construction, analysis and interpretation. (Sinauer Associates, 2001).Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).Article 

    Google Scholar 
    Stanbury, A. et al. The status of our bird populations: The fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. A. & Isomursu, M. Impacts of trichomonosis epidemics on greenfinch Chloris chloris and chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357–366 (2013).Article 

    Google Scholar 
    PECBMS. EBCC/BirdLife/RSPB/CSO’ Pan-European Common Bird Monitoring Scheme. (2021). Available at: https://pecbms.info/. (Accessed: 14th July 2022)Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council and Lynx Edicions, 2020).Rijks, J. M. et al. Trichomonosis in greenfinches (Chloris chloris) in the Netherlands 2009–2017: A concealed threat. Front. Vet. Sci. 6, 425 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boele, A. et al. Broedvogels in Nederland in 2020. Sovonrapport 2022/05. (Sovon Vogelonderzoek Nederland, Nijmegen., 2022).Jones, D. The Birds at My Table: Why We Feed Wild Birds and Why It Matters. (Cornell University Press, 2018).Pennycott, T. W. et al. Causes of death of wild birds of the family fringillidae in Britain. Vet. Rec. 143, 155–158 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouwman, K. M. & Hawley, D. M. Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol. Lett. 6, 462–465 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, B. et al. Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae). Vet. J. 188, 96–100 (2011).PubMed 
    Article 

    Google Scholar 
    Clewley, G. D., Robinson, R. A. & Clark, J. A. Estimating mortality rates among passerines caught for ringing with mist nets using data from previously ringed birds. Ecol. Evol. 8, 5164–5172 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francis, M. L. et al. Effects of supplementary feeding on interspecific dominance hierarchies in garden birds. PLoS ONE 13, e0202152 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wojczulanis-Jakubas, K., Kulpińska, M. & Minias, P. Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter. J. Ethol. 33, 159–163 (2015).Article 

    Google Scholar 
    Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa. Volume VIII: Crows to Finches. (Oxford University Press, 1994).Brook, B. W. & Bradshaw, C. J. A. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87, 1445–1451 (2006).PubMed 
    Article 

    Google Scholar 
    Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. USA. 97, 5303–5306 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochachka, W. M., Dobson, A. P., Hawley, D. M. & Dhondt, A. A. Host population dynamics in the face of an evolving pathogen. J. Anim. Ecol. 90, 1480–1491 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J. F. et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 1234–1245 (2013).PubMed 
    Article 

    Google Scholar 
    Orros, M. E. & Fellowes, M. D. E. Wild bird feeding in an urban area: Intensity, economics and numbers of individuals supported. Acta Ornithol. 50, 43–58 (2015).Article 

    Google Scholar 
    Dirren, S., Borel, S., Wolfrum, N. & Korner-Nievergelt, F. Trichomonas gallinae infections in the naïve host Montifringilla nivalis subsp nivalis. J. Ornithol. 163, 333–337 (2022).Article 

    Google Scholar 
    Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 165, 128–138 (2013).Article 

    Google Scholar 
    Silvertown, J., Buesching, C., Jacobson, S. & Rebelo, T. Citizen science and nature conservation. in Key Topics in Conservation Biology 2 (eds. Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Baillie, S. R., Wernham, C. V. & Clark, J. A. Development of the British and Irish ringing scheme and its role in conservation biology. Ringing Migr. 19, S5–S19 (1999).Article 

    Google Scholar 
    Greenwood, J. J. D. Citizens, science and bird conservation. J. Ornithol. 148, S77–S124 (2007).Article 

    Google Scholar 
    Horns, J. J., Adler, F. R. & Şekercioğlu, Ç. H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).Article 

    Google Scholar 
    Ryan, R. L., Kaplan, R. & Grese, R. E. Predicting volunteer commitment in environmental stewardship programmes. J. Environ. Plan. Manag. 44, 629–648 (2001).Article 

    Google Scholar 
    Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. 246, 108587 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, V. Y. & Greig, E. I. Young adults’ motivations to feed wild birds and influences on their potential participation in citizen science: An exploratory study. Biol. Conserv. 235, 295–307 (2019).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Philos.Trans. R. Soc. B Biol. Sci. 373, 20170092 (2018).Article 

    Google Scholar 
    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).Article 

    Google Scholar 
    Rocha, G. & Quillfeldt, P. Effect of supplementary food on age ratios of European turtle doves (Streptopelia turtur L.). Anim. Biodivers. Conserv. 38, 11–21 (2015).Article 

    Google Scholar  More

  • in

    Assessing mammal trapping standards in wild boar drop-net capture

    Dubois, S. et al. International consensus principles for ethical wildlife control. Conserv. Biol. 31(4), 753–760 (2017).PubMed 
    Article 

    Google Scholar 
    Frank, B. & Glikman, J. A. Human–wildlife conflicts and the need to include coexistence. In Human–Wildlife Interactions (eds Frank, B. et al.) 1–19 (Cambridge University Press, 2019).
    Google Scholar 
    Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).CAS 
    Article 

    Google Scholar 
    Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum. Wildl. Interact. 5, 79–99 (2011).
    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 157 (2017).Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!—Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Vajas, P. et al. Many, large and early: Hunting pressure on wild boar relates to simple metrics of hunting effort. Sci. Total Environ. 698, 134251. https://doi.org/10.1016/j.scitotenv.2019.134251 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Licoppe, A. et al. Wild boar/feral pig in (peri-)urban areas. Managing wild boar in human-dominated landscapes. in International Union of Game Biologists (IUGB)—Congress IUGB 2013, 1–31 (2013).Torres-Blas, I. et al. Assessing methods to live-capture wild boars (Sus scrofa) in urban and peri-urban environments. Vet. Rec. 187, e85. https://doi.org/10.1136/vr.105766 (2020).Article 
    PubMed 

    Google Scholar 
    Adams, C. E. Urban Wildlife Management (CRC Press, 2016).
    Google Scholar 
    Conejero, C. et al. Past experiences drive citizen perception of wild boar in urban areas. Mamm. Biol. 96, 68–72 (2019).Article 

    Google Scholar 
    Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild pig populations along the urban gradient. In Invasive Wild Pigs in North America (eds VerCauteren, K. C. et al.) 439–463 (CRC Press, 2019).Chapter 

    Google Scholar 
    Massei, G. et al. Effect of the GnRH vaccine GonaCon on the fertility, physiology and behaviour of wild boar. Wildl. Res. 35, 540–547 (2008).CAS 
    Article 

    Google Scholar 
    Náhlik, A. et al. Wild boar management in Europe: Knowledge and practice. In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 339–353 (Cambridge University Press, 2017).Chapter 

    Google Scholar 
    Croft, S., Franzetti, B., Gill, R. & Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS One 15, e0238429. https://doi.org/10.1371/journal.pone.0238429 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Crespo, C. et al. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS One 13, e0202289. https://doi.org/10.1371/journal.pone.0202289 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schemnitz, S. D., Batcheller, G. R., Lovallo, M. J., White, H. B. & Fall, M. W. Capturing and handling wild animals. In Research and Management Techniques for Wildlife and Habitats (ed. Silvy, N. J.) 232–269 (John Hopkins University Press, 2009).
    Google Scholar 
    ECGCGRF (European Community, Government of Canada, and Government of the Russian Federation). Agreement on international humane trapping standards. Off. J. Eur. Communities 42, 43–57 (1997).
    Google Scholar 
    Anonymous. International agreement in the form of an agreed minute between the European Community and the United States of America on humane trapping standards. Off. J. Eur. Communities L219, 26–37 (1998).
    Google Scholar 
    ISO 10990-4. Methods for testing killing trap systems used on land and underwater. in Animal (Mammal) Traps—Part 4 (International Organization for Standardization, 1999).ISO 10990-5. Methods for testing restraining traps. in Animal (Mammal) Traps—Part 5 (International Organization for Standardization, 1999).Proulx, G., Cattet, M., Serfass, T. L. & Baker, S. E. Updating the AIHTS trapping standards to improve animal welfare and capture efficiency and selectivity. Animals 10, 1–26 (2020).Article 

    Google Scholar 
    Proulx, G. Mammal Trapping—Wildlife Management, Animal Welfare and International Standards (Alpha Wildlife Publications, 2022).
    Google Scholar 
    Iossa, G., Soulsbury, C. & Harris, S. Mammal trapping: A review of animal welfare standards of killing and restraining traps. Anim. Welf. 16, 335–352 (2007).CAS 

    Google Scholar 
    Muñoz-Igualada, J., Shivik, J. A., Domínguez, F. G., Lara, J. & González, L. M. Evaluation of cage-traps and cable restraint devices to capture red foxes in Spain. J. Wildl. Manag. 72, 830–836 (2008).Article 

    Google Scholar 
    Trap Research and Development Committee. Best Trapping Practices (Fur Institute of Canada, 2018).
    Google Scholar 
    Virgós, E. et al. A poor international standard for trap selectivity threatens global carnivore and biodiversity conservation. Biodivers. Conserv. 25, 1409–1419 (2016).Article 

    Google Scholar 
    Barasona, J. A., López-Olvera, J. R., Beltrán-Beck, B., Gortázar, C. & Vicente, J. Trap-effectiveness and response to tiletamine-zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Vet. Res. 9, 107 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shury, T. Physical capture and restraint. In Zoo Animal and Wildlife Immobilization and Anesthesia (eds West, G. et al.) 109–124 (Wiley Blackwell, 2015).
    Google Scholar 
    Webb, S. L., Lewis, J. S., Hewitt, D. G., Hellickson, M. W. & Bryant, F. C. Assessing the helicopter and net gun as a capture technique for white-tailed deer. J. Wildl. Manag. 72, 310–314 (2008).Article 

    Google Scholar 
    López-Olvera, J. R. et al. Comparative evaluation of effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois (Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica). Eur. J. Wildl. Res. 55, 193–202 (2009).Article 

    Google Scholar 
    Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. 7, 1–21 (2019).Article 
    CAS 

    Google Scholar 
    Mentaberre, G. et al. Azaperone and sudden death of drive net-captured southern chamois. Eur. J. Wildl. Res. 58, 489–493 (2012).Article 

    Google Scholar 
    Gaskamp, J. A., Gee, K. L., Campbell, T. A., Silvy, N. J. & Webb, S. L. Effectiveness and efficiency of corral traps, drop nets and suspended traps for capturing wild pigs (Sus scrofa). Animals 11, 1565 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, S. E., Macdonald, D. W. & Ellwood, S. A. Double standards in spring trap welfare. In Proceedings of the Ninth International Conference on Urban Pests (eds Daivies, C. & Pfeiffer, W. H.) 139–145 (Pureprint Group, 2017).
    Google Scholar 
    López-Olvera, J. R., Castillo-Contreras, R., González-Crespo, C., Conejero, C. & Mentaberre, G. Wild boar is not welcome in the city. Barcelona Metròpolis 103, 22–23 (2017).
    Google Scholar 
    Conejero, C. et al. Conflicto o habituación: las dos caras de la percepción social del jabalí urbano. in Proceedings of XIV Congreso de la Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM, 2019).Conferencia Sectorial de Medio Ambiente. Directrices Técnicas para la Captura de Especies Cinegéticas Predadoras: Homologación de Métodos y Acreditación de Usuarios (Ministerio para la Transición Ecológica y el Reto Demográfico de España, 2011).Generalitat de Catalunya—Government of Catalonia. Decret 56/2014 relatiu a l’homologació de mètodes de captura en viu d’espècies cinegètiques depredadores i d’espècies exòtiques invasores depredadores i l’acreditació de les persones que en són usuàries. Diari Oficial de la Generalitat de Catalunya 6609 (2014).Fahlman, Å. et al. Wild boar behaviour during live-trap capture in a corral-style trap: Implications for animal welfare. Acta Vet. Scand. 62, 1–11 (2020).Article 

    Google Scholar 
    Sharp, T. & Saunders, G. A Model for Assessing the Relative Humaneness of Pest Animal Control Methods (Australian Government—Department of Agriculture, Fisheries and Forestry [New Millennium Print], 2011).
    Google Scholar 
    Ziegler, L., Fischer, D., Nesseler, A. & Lierz, M. Validation of the live trap ‘Krefelder Fuchsfalle’ in combination with electronic trap sensors based on AIHTS standards. Eur. J. Wildl. Res. 64, 17 (2018).Article 

    Google Scholar 
    Marco, I. et al. Capture myopathy in little bustards after trapping and marking. J. Wildl. Dis. 42, 889–891 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rideout, C. B. Comparison of techniques for capturing mountain goats. J. Wildl. Manag. 38, 573 (1974).Article 

    Google Scholar 
    Jedrzejewski, W. & Kamler, J. F. Modified drop-net for capturing ungulates. Wildl. Soc. Bull. 32, 1305–1308 (2004).Article 

    Google Scholar 
    Gaskamp, J. A. Use of drop-nets for wild pig damage and disease abatement. Master’s thesis, available electronically from https://hdl.handle.net/1969.1/148198 (Texas A&M University, 2012).Lavelle, M. J. et al. When pigs fly: Reducing injury and flight response when capturing wild pigs. Appl. Anim. Behav. Sci. 215, 21–25 (2019).Article 

    Google Scholar 
    Masilkova, M. et al. Observation of rescue behaviour in wild boar (Sus scrofa). Sci. Rep. 11, 16217 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).Article 

    Google Scholar 
    Manfredo, M., Teel, T. & Bright, A. Why are public values toward wildlife changing?. Hum. Dimens. Wildl. 8, 287–306 (2003).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabañeros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar  More