More stories

  • in

    Flavobacterial exudates disrupt cell cycle progression and metabolism of the diatom Thalassiosira pseudonana

    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237.CAS 
    PubMed 
    Article 

    Google Scholar 
    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell W, Mitchell R. Chemotactic and growth response of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev. 2017;41:880–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Windler M, Bova D, Kryvenda A, Straile D, Gruber A, Kroth PG. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycol Res. 2014;62:269–81.Article 

    Google Scholar 
    Buhmann MT, Schulze B, Forderer A, Schleheck D, Kroth PG. Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. J Phycol. 2016;52:463–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Tol HM, Amin SA, Armbrust EV. Ubiquitous marine bacterium inhibits diatom cell division. ISME J. 2017;11:31–42.PubMed 
    Article 
    CAS 

    Google Scholar 
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grossart H-P, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Crenn K, Duffieux D, Jeanthon C. Bacterial epibiotic communities of ubiquitous and abundant marine diatoms are distinct in short- and long-term associations. Front Microbiol. 2018;9:2879.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Behringer G, Ochsenkühn MA, Fei C, Fanning J, Koester JA, Amin SA. Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol. 2018;9:659.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schäfer H, Abbas B, Witte H, Muyzer G. Genetic diversity of ‘satellite’ bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 2002;42:25–35.PubMed 

    Google Scholar 
    Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci. 2020;117:3656–3662.Stock W, Blommaert L, De Troch M, Mangelinckx S, Willems A, Vyverman W, et al. Host specificity in diatom-bacteria interactions alleviates antagonistic effects. FEMS Microbiol Ecol. 2019;95:fiz171.Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, et al. Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife. 2016;5:e17473.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, et al. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J. 2010;4:61–77.PubMed 
    Article 
    CAS 

    Google Scholar 
    Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, et al. Plasmid curing and the loss of grip – the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol. 2015;38:120–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Paul C, Pohnert G. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One. 2011;6:e21032.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stock F, Bilcke G, De Decker S, Osuna-Cruz CM, Van den Berge K, Vancaester E, et al. distinctive growth and transcriptional changes of the diatom Seminavis robusta in response to quorum sensing related compounds. Front Microbiol. 2020;11:1240.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guillard RRL Culture of Phytoplankton for Feeding Marine Invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals: proceedings — 1st conference on culture of marine invertebrate animals greenport. Boston, MA: Springer US; 1975. p. 29–60.Rasband WS (2016). ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA. Available at: http://imagej.nih.gov/ij/, 1997–2015.DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.CAS 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.Article 
    CAS 

    Google Scholar 
    Alexa A, Rahnenfuhrer J (2021). topGO: Enrichment analysis for gene ontology. R package version 2.46.0.Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” InterJournal, Complex Systems, 1695. https://igraph.org.Wei Q, Khan IK, Ding Z, Yerneni S, Kihara D. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinform. 2017;18:177.Article 
    CAS 

    Google Scholar 
    Shapiro HM (2003). Physical parameters and their uses. In: Shapiro HM (ed). Practical Flow Cytometry. John Wiley & Sons, Inc.: New York, NY, USA, pp. 273-85.Clercq AD, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol. 2006;41:293–313.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environ Microbiol Rep. 2018;10:412–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Whalen KE, Kirby C, Nicholson RM, O’Reilly M, Moore BS, Harvey EL. The chemical cue tetrabromopyrrole induces rapid cellular stress and mortality in phytoplankton. Sci Rep. 2018;8:15498.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 2016;10:1742–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkel ZV, Irwin AJ, Schofield O. Resource limitation alters the ¾ size scaling of metabolic rates in phytoplankton. Mar Ecol Prog Ser. 2004;273:269–80.Article 

    Google Scholar 
    De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Ólafsson E. Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol. 2006;332:1–11.Article 

    Google Scholar 
    Finkel ZV. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnol Oceanogr. 2001;46:86–94.CAS 
    Article 

    Google Scholar 
    Wilhelm T, Said M, Naim V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes. 2020;11:642.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Gelot C, Magdalou I, Lopez BS. Replication stress in mammalian cells and its consequences for mitosis. Genes. 2015;6:267–98.Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. – Genet. Toxicol. Environ. Mutagen. 2008;651:14–29.CAS 

    Google Scholar 
    Van de Meene AML, Pickett-Heaps JD. Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications. Eur J Phycol. 2004;39:93–104.Article 

    Google Scholar 
    Pollara SB, Becker JW, Nunn BL, Boiteau R, Repeta D, Mudge MC, et al. Bacterial quorum-sensing signal arrests phytoplankton cell division and impacts virus-induced mortality. mSphere. 2021;6:e00009–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Von Dassow P, Petersen TW, Chepurnov VA, Virginia Armbrust E. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J Phycol. 2008;44:335–49.Article 
    CAS 

    Google Scholar 
    Pokrzywinski KL, Tilney CL, Warner ME, Coyne KJ. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Sci Rep. 2017;7:45102.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durkin CA, Mock T, Armbrust EV. Chitin in diatoms and its association with the cell wall. Eukaryot Cell. 2009;8:1038.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wildermuth MC. Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol. 2010;13:449–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cho J-C, Giovannoni SJ. Croceibacter atlanticus gen. nov., sp. nov., A Novel Marine Bacterium in the Family Flavobacteriaceae. Syst Appl Microbiol. 2003;26:76–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. 2012;3:e00036–12.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ndhlovu A, Durand PM, Ramsey G. Programmed cell death as a black queen in microbial communities. Mol Ecol. 2021;30:1110–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 2017;543:555–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy SF, Ziv N, Siegal ML. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 2012;10:e1001325.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blair PM, Land ML, Piatek MJ, Jacobson DA, Lu T-YS, Doktycz MJ, et al. Exploration of the biosynthetic potential of the populus microbiome. mSystems. 2018;3:e00045–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helfrich EJN, Vogel CM, Ueoka R, Schäfer M, Ryffel F, Müller DB, et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol. 2018;3:909–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Long RA, Qureshi A, Faulkner DJ, Azam F. 2-n-Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol. 2003;69:568–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calabrese EJ. Hormesis: from mainstream to therapy. Cell Commun Signal. 2014;8:289–91.Article 

    Google Scholar 
    Chen WM, Sheu FS, Sheu SY. Novel l-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzym Microb Technol. 2011;49:372–9.CAS 
    Article 

    Google Scholar 
    El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, et al. Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Front Cell Infect Microbiol. 2017;7:364.Ricci V, Giannouli M, Romano M, Zarrilli R. Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World J Gastroenterol. 2014;20:630–8.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Teeling H, Fuchs Bernhard M, Becher D, Klockow C, Gardebrecht A, Bennke Christin M, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa

    Hawkes, C. V., Bull, J. J. & Lau, J. A. Symbiosis and stress: how plant microbiomes affect host evolution. Philos. T. R. Soc. B. 375, 20190590 (2020).CAS 
    Article 

    Google Scholar 
    Leopold, D. R. & Busby, P. E. Host Genotype and Colonist Arrival Order Jointly Govern Plant Microbiome Composition and Function. Curr. Biol. 30, 3260–3266 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia, J. & Kao-Kniffin, J. Microbial Group Dynamics in Plant Rhizospheres and Their Implications on Nutrient Cycling. Front. Plant Sci. 9, 1516 (2018).Article 

    Google Scholar 
    Marschner P. Plant-Microbe Interactions in the Rhizosphere and Nutrient Cycling in Nutrient Cycling in Terrestrial Ecosystems (eds. Marschner, P. & Rengel, Z.) 159–183 (Springer, 2007).Vannier, N., Agler, M. & Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS Pathog. 15, e1007740 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 6584 (2019).
    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    Dessaux, Y., Grandclemént, C. & Faure, D. Engineering the Rhizosphere. Trends Plant Sci. 21, 266–278 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Panke-Buisse, K., Poole, A., Goodrich, J., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    van den Bergh, B. et al. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol. Mol. Biol. Rev. 82, e00008–e00018 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Garcia, J. & Kao-Kniffin, J. Can dynamic network modelling be used to identify adaptive microbiomes? Funct. Ecol. 34, 2065–2074 (2020).Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, D. & Wilson, E. Evolution “for the good of the group”. Am. Sci. 96, 380–389 (2008).Article 

    Google Scholar 
    de la Fuente Cantó, C. et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951–964 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sachs, J., Mueller, U., Wilcox, T. & Bull, J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).PubMed 
    Article 

    Google Scholar 
    Harrington, K. & Sanchez, A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7, e28230 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rauch, J., Kondev, J. & Sanchez, A. Cooperators trade off ecological resilience and evolutionary stability in public goods games. J. R. Soc. Interface 14, 20160967 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sexton, D. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turner, T. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere. microbiome plants ISME J. 7, 2248–2258 (2013).CAS 
    PubMed 

    Google Scholar 
    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    George, E., Marschner, H. & Jakobsen, I. Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil. Crit. Rev. Biotechnol. 15, 257–270 (1995).Article 

    Google Scholar 
    Hodge, A. & Fitter Alastair, H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107, 13754–13759 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game. Plant Cell Environ. 36, 1911–1915 (2013).PubMed 

    Google Scholar 
    Delaux, P. M. et al. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 10, e1004487 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anas, M. et al. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 53, 47 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madhaiyan, M. et al. Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int. J. Syst. Evol. Microbiol. 65, 578–586 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, H. et al. Environmental filtering of bacterial functional diversity along an aridity gradient. Sci. Rep. 9, 866 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, S15 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuntal, B. K., Chandrakar, P., Sadhu, S. & Mandhi, S. S. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 13, 442–454 (2019).PubMed 
    Article 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 25, 217–228 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu, Q. et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. NPJ Biofilms Microbiomes 6, 8 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust, K. et al. Cross-biome comparison of microbial association networks. Front. Microbiol. 6, 1200 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rengel, Z. & Marschner, P. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. N. Phytol. 168, 305–312 (2005).CAS 
    Article 

    Google Scholar 
    Marschner, P. The Role of Rhizosphere Microorganisms in Relation to P Uptake by Plants in The Ecophysiology of Plant-Phosphorus Interactions (eds. White, P. & Hammond, J.) 165–167 (Springer, 2008).Repert, D., Underwood, J., Smith, R. & Song, B. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station. J. Geophys. Res. Biogeosci. 119, 2328–2344 (2014).CAS 
    Article 

    Google Scholar 
    Rolletschek, H. et al. Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol. 137, 1236–1249 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sanders, A. et al. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 59, 540–552 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter, A. M. & Tegeder, M. Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr. Biol. 26, 2044–2051 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meier, I. C. et al. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. N. Phytol. 226, 583–594 (2020).CAS 
    Article 

    Google Scholar 
    Xu, Y., He, J., Cheng, W., Xing, X. & Li, L. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 3, 201–207 (2010).Article 

    Google Scholar 
    Henneron, L. et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. N. Phytol. 228, 1269–1282 (2020).CAS 
    Article 

    Google Scholar 
    Hobbie, E. A. & Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. N. Phytol. 196, 367–382 (2012).CAS 
    Article 

    Google Scholar 
    Zhou, S. et al. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15N isotopic technique. Sci. Total Environ. 430, 93–100 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fuertes-Mendizábal, T. et al. 15N Natural Abundance Evidences a Better Use of N Sources by Late Nitrogen Application in Bread Wheat. Front. Plant Sci. 9, 853 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoneyama, T., Omata, T., Nakata, S. & Yazaki, J. Fractionation of Nitrogen Isotopes during the Uptake and Assimilation of Ammonia by Plants. Plant Cell Physiol. 32, 1211–1217 (1991).CAS 

    Google Scholar 
    Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, 356 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Granada, C., Passaglia, L., de Souza, E. & Sperotto, R. Is Phosphate Solubilization the Forgotten Child of Plant Growth-Promoting Rhizobacteria? Front. Microbiol. 9, 2054 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Compant, S., Duffy, B., Nowak, J., Clément, C. & Barka, E. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl. Environ. Microbiol. 71, 4951 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berges, J.A., & Mulholland, M.R. Enzymes and nitrogen cycling in Nitrogen in the marine environment (eds. Capone, D., Bronk, D., Mulholland, M., & Carpenter, E.) 1385–1444 (Elsevier 2008).DeAngelis, K. M., Lindow, S. E. & Firestone, M. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microb. Ecol. 66, 197–207 (2008).CAS 
    Article 

    Google Scholar 
    Evans, S., Martiny, J. & Allison, S. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 11, 176–185 (2017).PubMed 
    Article 

    Google Scholar 
    Ron, R., Fragman-Sapir, O. & Kadmon, R. (2018). Dispersal increases ecological selection by increasing effective community size. Proc. Natl Acad. Sci. USA. 115, 11280–11285 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Busby, P. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. & Schäfer, P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Front. Plant Sci. 9, 1205 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garcia, J. et al. Selection pressure on the rhizosphere microbiome alters nitrogen use efficiency and seed yield in Brassica rapa. National Center for Biotechnology Information Repository. https://www.ncbi.nlm.nih.gov/sra/PRJNA833111 (2022).Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollet, T. et al. Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteria. FEMS Microbiol. Ecol. 94, fiy083 (2018).
    Google Scholar 
    Durno, W. E. et al. Expanding the boundaries of local similarity analysis. BMC Genomics 14, S3 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garcia, J. et al. Selection pressure on the rhizosphere microbiome alters nitrogen use efficiency and seed yield in Brassica rapa. https://doi.org/10.5281/zenodo.6800595 (2022). More

  • in

    Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China

    Spatial–temporal characteristics of land use changeAs shown in Fig. 2, cultivated land was the dominant land use type in Shandong Province during the past 40 years, which accounted for 69.86% (1980), 69.98% (1990), 69.25% (2000), 68.00% (2010) and 66.88% (2020) respectively. Moreover, it was found that the area of cultivated land, forest land, grassland, unused land and ocean gradually decreased, whereas the water area and URL (urban and rural industrial and mining residential land) increased obviously. In particular, grassland decreased by 7542.87 km2 in the past 40 years with a decline rate of 37.18%, which was much higher than cultivated land and forest land. This phenomenon was attributed to the fact that cultivated land and forest land were less susceptible to encroachment as their high vegetation coverage, while grassland was easily occupied by other land types. The serious occupation by other land types has led to a significant reduction in unused land with a very high decline ratio of 64.32% from 2010 to 2020. In contrast to unused land, URL increased significantly at this period (Fig. 3), which was due to the rapidly economic development.Figure 2Land use type map of Shandong Province from 1980 to 2020.Full size imageFigure 3Sankey diagram of land use transfer in different periods.Full size imageThe total area of land use conversion in Shandong Province was 86,909 km2 during the past 40 years, the most drastic change was observed from 2010 to 2020. On the one hand, the major project of new and old kinetic energy conversion in Shandong Province had been implemented since 2000, which led to the expansion of urban land and dramatic changes in land use patterns. On the other hand, social, economic, technological and other factors had a direct impact on land use change by influencing people’s decision-making on land use (e.g., demand for land products, investment in land, protection of land resources, etc.)45,46,47,48. Statistics showed that GDP (Gross Domestic Product) and population density of Shandong Province had increased significantly since 21st century. The GDP of 2010–2020 was about 10 times that of 1980–2000 and population density had also increased by 1.4 times (Data from: Shandong statistical yearbook, http://tjj.shandong.gov.cn/col/col6279/index.html). As the most direct reflection of human activities, land use change was obviously affected by factors such as agricultural cultivation, industrial and mining construction, and urbanization driven by population growth49,50.The most significant changes of land use type were URL (increased by 17.75%), grassland (decreased by 8.72%) and cultivated land (decreased by 7.26%) over the past forty years. URL was mostly converted from cultivated land (26,306 km2) and grassland (1684 km2), which reflected the serious situation of occupying cultivated land in the process of urbanization in Shandong Province. It was caused by tight land use scale and relatively flat terrain of grassland. Besides, the range of land use type in the four periods also exhibited great variations. The conversion of land use from 1980 to 1990 was concentrated in the Yellow River Delta, Laizhou Bay and Weishan Lake, for the same as 1990–2000. At the period of 2000 to 2010, the conversion types concentrated in Bohai Bay and Yellow River Delta. The land use conversion was violent and widely distributed from 2010 to 2020, which was different from previous periods from 1980 to 2010. The conversion of cultivated land → URL and URL → cultivated land were widely distributed in Shandong Province, while another conversion of grassland → cultivated land and forest → cultivated land were concentrated in the Central and South Shandong Mountains and Jiaodong Hills. In addition, the conversion of cultivated land → water area and URL → water area were concentrated in Bohai Bay, Yellow River Delta and Laizhou Bay. Ample water, flat terrain and fertile soils in these bays and deltas facilitates agricultural cultivation and other productive activities. Therefore, the conversion of land use types from 1980 to 2010 was mainly concentrated here (Fig. 4). Specifically, the conversion of water area → URL was 1083 km2 from 1980 to 1990, unused land → water area was 925 km2 from 1990 to 2000, cultivated land → water area was 687 km2 from 2000 to 2010. However, the pattern of land use change dominated by natural factors has been broken in the process of increasing demand for social development and continuous advancement of science and technology. The conversion of land use types has become more dispersed in spatial distribution and the types of conversion have become more diverse.Figure 4Spatial distribution map of land use conversion types in different periods.Full size imageIn fact, one issue of concern in the early exploitation of water was the ecological problems caused by over-exploitation. For example, the cut-off of the Yellow River downstream made it difficult to guarantee the water security of industrial and agricultural production and residential life in the areas along the way. At the same time, the safety of coastal ecosystems was threatened and the phenomenon of soil salinization had become more serious. To alleviate these problems, government and the public have taken a series of measures such as establishing the Yellow River Delta National Nature Reserve was established in 1992, returning farmland to lakes and wetlands, and improving the landscape pattern of rivers and lakes by carrying out ecological treatment in the coastal zone of rivers and lakes51,52. By 2020, the area of water has increased by 50% compared to 1980, while many ecological security issues have been mitigated.Spatial–temporal characteristics of habitat degradationThe spatial–temporal variation of land use types were conducted to explore the variation trend of its habitat quality in Shandong Province. The InVEST-HQ was applied to obtain layers of habitat degradation in different periods. According to the interval range of 0–0.03, 0.03–0.07 and 0.07–0.18, habitat degradation was divided into three levels: slight, moderate and high degradation35,38.As shown in Fig. 5, the habitat quality in Shandong Province was dominated by moderate degradation, with the proportion of 73.30% (1980), 73.25% (1990), 72.49% (2000), 70.45% (2010) and 64.33% (2020), respectively. The spatial pattern of habitat quality was consistent with cultivated land, indicating that cultivated land who was affected by natural and anthropogenic activities exhibited moderate degradation. The proportion of moderate degradation has decreased due to cultivated land have been encroached upon for construction in the process of development, thus habitat degradation has become more and more serious. Although some of the moderate degraded areas were also converted to slight degraded areas, the area of conversion was very small compared to its conversion to high degraded areas.Figure 5Distribution map of habitat degradation in Shandong Province from 1980 to 2020.Full size imageThe proportion of slight degradation ranges from 22.38% to 24.89%, it was concentrated in the Yellow River Delta, the Central and South of Shandong Mountains, Weishan Lake and Jiaodong Hills, which was less disturbed by human activities. Compared with 1980, the proportion of slight degraded areas increased marginally in 2020, and its change was a fluctuating process. The proportion of slight degraded areas decreased from 1980 to 1990, and its proportion slowly increased from 1990 to 2020. This dynamic change process could be verified according to the spatial distribution characteristics in the Yellow River Delta. The habitat quality of the Yellow River Delta, which originally showed slight degradation, showed high degradation in 1990, 2000 and 2010.The proportion of high degradation ranges from 4.03% to 10.78%, which was concentrated in the built-up area of the city where human activities were more intensive. The proportion of high degraded areas has been increasing, indicating that the habitat has been degraded severely and its quality has declined. As the proportion of high degraded areas raised, two patterns of their spatial distribution also emerged. First spatial pattern was concentrated in urban built-up areas because of the high degree of human exploitation of land, which led to significant habitat degradation. The second pattern was a circle structure with “slight degradation” as the center and “high degradation-moderate degradation-slight degradation” outward, which was similar to the spatial distribution structure of habitat degradation in Fujian Province studied by Li et al.40. The circle structure was formed in 2010, and the distribution range was significantly expanded in 2020. The reason for the formation was that the built-up land in the city center has been severely damaged, and the possibility of re-degradation was reduced, instead showing “slight degradation”. However, the adjacent urban areas were more threatened and severely degraded, presenting “high degradation”. With the increase of distance, habitat threat and degradation decreased gradually, displaying “slight degradation”.Spatial–temporal evolution characteristics of habitat qualityThe InVEST-HQ was used to obtain layers of habitat quality in different periods. As summarized in Table 4, habitat quality was divided into five levels by the interval range: low (0–0.2), relatively low (0.2–0.4), medium (0.4–0.6), relative high (0.6–0.8), and high (0.8–1.0)35,38.Table 4 The proportion of habitat quality level at different periods in Shandong Province.Full size tableOur study concluded that the level of habitat quality in Shandong Province declined from 1980 to 2020.The results showed an overall decline of 4.75% in Shandong Province. Among them, the most significant rate of decline was observed in 2010–2020 (1.86%), which was similar to the phase change characteristics of land use types. At this period, the “Development Plan of Yellow River Delta Efficient Ecological Economic Zone” and the “Development Plan of Shandong Peninsula Blue Economic Zone” have become national development strategies. The demonstration area of “Bohai granary” and the restructuring of steel industry were carried out simultaneously. Meanwhile, the Beijing-Shanghai high-speed railway (Shandong section), Qingdao Jiaozhou Bay Bridge, Jiaozhou Bay Tunnel have strengthened the connection between Shandong Province and the outside world. As a result, rapid development has led to a rapid decline in the quality of its habitat. The rate of decline in 1980–1990 (1.43%) and 2000–2010 (1.42%) was comparable and the rate of decline in 1990–2000 was the lowest at 0.12%, which was significantly related to the development level of cities in each period. The period of 1980–1990 and 2000–2010 were in the initial and rapid promotion stages of reform and opening-up respectively. The initial stage was led by rural reform, and urban reform was launched on a pilot basis. The rapid advancement stage was led by urban reform, and economic development entered a healthy track of steady progress. Therefore, the proportion of habitat quality changes in the two periods was comparable. The period of 1990–2000 was in the exploration and transition stage of reform and opening-up, whose development process was relatively stable, resulting in the lowest rate of change in habitat quality.The average value of habitat quality in Shandong Province was 1980 (0.5091), 1990 (0.5018), 2000 (0.5012), 2010 (0.4941) and 2020 (0.4849), which decreased during the entire period. Habitat quality was dominated by medium-level throughout the whole period, with the proportion in 1980 (68.95%), 1990 (68.54%), 2000 (67.74%), 2010 (66.37%) and 2020 (65.47%). The land type in this category was mainly cultivated land (Fig. 6), which was continuous encroachment during the study period, resulting in a decrease in the percentage of medium-level habitat quality. From 1980 to 2020, the percentage of low-level habitat quality increased from 12.67% to 17.44%, and the relatively low-level decreased from 0.46% to 0.23%. The main reason was the continuous increasing of construction land and the degree of habitat threat led to the decreasing of habitat suitability. Therefore, the area of low-level habitat quality showed an increasing trend. Low and relative low-level habitat quality areas were concentrated in the urban areas of coastal and inland cities, and the Yellow River Delta. Urban areas, with a large scale of industry, commerce and population, also have a high level of urbanization. The original natural habitat has been modified during the development process, which resulted low-level habitat quality. The habitat quality of the Yellow River Delta was dynamic. The low-level pattern formed by early over-exploitation was improved in later conservation and development. The proportion of high-level habitat quality increased from 11.64% to 12.98%, and the relatively high-level decreased from 6.28% to 3.88%. In terms of spatial distribution, it was concentrated in the Central and South Shandong Mountains, Jiaodong Hills, the Yellow River Delta (2020), Weishan Lake and Wulian Mountain. These areas were dominated by mountains and well-protected water, which had high habitat suitability and were less stressed by surrounding construction land, thus maintaining high-level habitat quality. The increase of high-level habitat quality was due to the influence of water with high habitat suitability, which expanded a lot in the past 40 years, leading to the spread of high-level regional habitat quality, especially in the Yellow River Delta.Figure 6Distribution map of habitat quality in Shandong Province from 1980 to 2020.Full size imageThe value of Moran’s I was 0.3935 (1980), 0.3852 (1990), 0.4031 (2000), 0.4186 (2010) and 0.4644 (2020), respectively, which revealed that the spatial agglomeration of habitat quality in Shandong Province was characterized by agglomeration, and the trend of agglomeration increased obviously after 2000.As shown in Fig. 7, the habitat quality in Shandong Province exhibited obvious spatial heterogeneity, and spatial distribution of cold and hot spot was consistent with the topographic features. Hot spot (high-value area of habitat quality) presented “two primary and two secondary + Yellow River Delta”. Two primary hot spots distributed in the Central and South Shandong Mountains and the Jiaodong Hills, the two secondary hot spots located in Weishan Lake and Wulian Mountain. The formation of above hot spot was mainly due to high altitudes or steep slopes conferred favorable habitat quality, which was associated with the accessibility of human activities. Human accessibility at high altitudes or steep slopes was limited, so it was unlikely to cause major interference with the original environment53,54. However, the formation of other hot spot in Yellow River Delta was due to protective human activities. Cold spot (low-value area of habitat quality) was scattered in the northwestern Plain of Shandong Province, provincial capital metropolitan area and peninsula urban agglomeration which was dominated by cultivated land and built-up land in the cities that was affected by agricultural cultivation and industrial activities.Figure 7Distribution map of hot and cold spots of habitat quality in Shandong Province from 1980 to 2020.Full size imageOverall, the spatial distribution pattern of habitat quality in Shandong Province was relatively stable and affected by many factors, among which land use change was the most important one9,40,55. The most dominant land type in Shandong Province was cultivated land, which was concentrated in the northwest plain. Influenced by agricultural farming, the habitat quality of cultivated land presented medium-level category. At the same time, the habitat quality of some cultivated land has decreased due to the influence of construction land intrusion. The high vegetation coverage and rich species diversity of mountains and hills make their natural habitat quality superior. With the development of urban economy, the scale of construction land in coastal lowlands as well as inland urban areas continued to expand. The increase in population density as well as the intensity of land use activities has led to the expansion of regional dehabitatization. In addition, the dynamic changes in the habitat quality of the Yellow River Delta indicated that differences in the degree of land use change led to a variety of impacts on habitat quality. Therefore, habitat quality improvement and ecological protection should be based on local regional resource endowments and follow the concept of comprehensive, coordinated and sustainable development. Administration should formulate differentiated ecological protection strategies. For urban land development, authorities should increase the intensive utilization of construction land, limit the development boundaries of urban land and increase the greening rate inside urban land, such as equipped with urban green space park and other ecological land. In order to ensure the efficiency of agricultural production in Shandong Province, authorities should pay special attention to the conservation of cultivated land and to the development of ecological agriculture56. For natural ecosystems such as forest and grassland, authorities should improve the natural reserve system57. The vegetation ecological restoration project should be carried out according to local conditions. Drawing on the effective experience of ecological changes in the Yellow River Delta, we would take it as a typical example in future development and adopt corresponding administrative methods to coordinate the relationship between economy and habitat quality and change the dilemma of low-level habitat quality areas. Therefore, it is necessary to implement reasonable and effective territorial space planning to achieve regional sustainable development. More

  • in

    Exploring plant volatile-mediated interactions between native and introduced plants and insects

    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
    Google Scholar 
    Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).
    Google Scholar 
    Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041 (2015).CAS 
    PubMed 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).
    Google Scholar 
    Duenas, M. A. et al. The role played by invasive species in interactions with endangered and threatened species in the United States: A systematic review. Biodivers. Conserv. 27, 3171–3183 (2018).
    Google Scholar 
    Weidenhamer, J. D. & Callaway, R. M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 36, 59–69 (2010).CAS 
    PubMed 

    Google Scholar 
    Bajwa, A. A., Chauhan, B. S., Farooq, M., Shabbir, A. & Adkins, S. W. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 244, 39–57 (2016).CAS 
    PubMed 

    Google Scholar 
    Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines?. Ecol. Entomol. 46, 729–742. https://doi.org/10.1111/een.12973 (2021).Article 

    Google Scholar 
    Bezemer, T. M., Harvey, J. A. & Cronin, J. T. Response of native insect communities to invasive plants. Annu. Rev. Entomol. 59, 119 (2014).CAS 
    PubMed 

    Google Scholar 
    Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Kalisz, S., Kivlin, S. N. & Bialic-Murphy, L. Allelopathy is pervasive in invasive plants. Biol. Invasions 23, 367–371 (2021).
    Google Scholar 
    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737 (2012).ADS 

    Google Scholar 
    Zhang, P., Li, B., Wu, J. & Hu, S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecol. Lett. 22, 200–210 (2019).ADS 
    PubMed 

    Google Scholar 
    Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32 (2013).CAS 
    PubMed 

    Google Scholar 
    Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Bruce, T. J., Wadhams, L. J. & Woodcock, C. M. Insect host location: A volatile situation. Trends Plant Sci. 10, 269–274 (2005).CAS 
    PubMed 

    Google Scholar 
    Clavijo McCormick, A., Unsicker, S. B. & Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310 (2012).CAS 
    PubMed 

    Google Scholar 
    Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant–plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kegge, W. & Pierik, R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 15, 126–132 (2010).CAS 
    PubMed 

    Google Scholar 
    Effah, E., Holopainen, J. K. & Clavijo McCormick, A. Potential roles of volatile organic compounds in plant competition. Perspect. Plant Ecol. Evol. Syst. 38, 58–63 (2019).
    Google Scholar 
    Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J. & Unsicker, S. B. Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol. 19, 1–17 (2019).
    Google Scholar 
    Karban, R., Wetzel, W. C., Shiojiri, K., Pezzola, E. & Blande, J. D. Geographic dialects in volatile communication between sagebrush individuals. Ecology 97, 2917–2924 (2016).PubMed 

    Google Scholar 
    Wheeler, G. S., David, A. S. & Lake, E. C. Volatile chemistry, not phylogeny, predicts host range of a biological control agent of Old-World climbing fern. Biol. Control 159, 104636 (2021).CAS 

    Google Scholar 
    Li, N. et al. Manipulating two olfactory cues causes a biological control beetle to shift to non-target plant species. J. Ecol. 105, 1534–1546 (2017).CAS 

    Google Scholar 
    Buddenhagen, C. E. Broom Control Monitoring at Tongariro National Park (Department of Conservation Wellington, 2000).
    Google Scholar 
    Hayes, L. et al. Biocontrol of Weeds: Achievements to Date and Future Outlook. Ecosystem services in New Zealand-conditions and trends Vol. 2, 375–385 (Manaaki Whenua Press, 2013).
    Google Scholar 
    Bagnall, A. Heather at Tongariro. A study of a weed introduction. Tussock Grasslands Mt. Lands Inst. Rev 41, 17–21 (1982).
    Google Scholar 
    Chapman, H. M. & Bannister, P. The spread of heather, Calluna vulgaris (L.) Hull, into indigenous plant communities of Tongariro National Park. N. Z. J. Ecol. 7–16 (1990).Effah, E. et al. Effects of two invasive weeds on arthropod community structure on the Central Plateau of New Zealand. Plants 9, 919 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Keesing, V. F. Impacts of invasion on community structure: habitat and invertebrate assemblage responses to Calluna vulgaris (L.) Hull invasion, in Tongariro National Park, New Zealand, Massey University Palmerston North, New Zealand, (1995).Peterson, P. G., Fowler, S. V. & Barrett, P. Is the poor establishment and performance of heather beetle in Tongariro National Park due to the impact of parasitoids predators or disease. N. Z. Plant Prot. 57, 89–93. https://doi.org/10.30843/nzpp.2004.57.6977 (2004).Article 

    Google Scholar 
    Ajpark. The brands and the bees: trade marks and the mānuka challenge for honey businesses, https://www.ajpark.com/insights/the-brands-and-the-bees-trade-marks-and-the-manuka-challenge-for-honey-businesses/#:~:text=M%C4%81nuka%20is%20a%20taonga%20species,may%20be%20offensive%20to%20M%C4%81ori (2021).Effah, E. et al. Seasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites. Sci. Rep. 10, 1–11 (2020).
    Google Scholar 
    Effah, E., Min Tun, K., Rangiwananga, N. & Clavijo McCormick, A. Mānuka clones differ in their volatile profiles: Potential implications for plant defence, pollinator attraction and bee products. Agronomy 12, 169 (2022).CAS 

    Google Scholar 
    Effah, E. et al. Natural variation in volatile emissions of the invasive weed Calluna vulgaris in New Zealand. Plants 9, 283 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).Ripley, B. et al. Package ‘mass’. Cran r 538, 113–120 (2013).
    Google Scholar 
    Chen, B. M., Liao, H. X., Chen, W. B., Wei, H. J. & Peng, S. L. Role of allelopathy in plant invasion and control of invasive plants. Allelopathy J 41, 155–166 (2017).
    Google Scholar 
    Ninkovic, V., Markovic, D. & Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. 44, 1030–1043 (2021).CAS 
    PubMed 

    Google Scholar 
    Holopainen, J. K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529–533 (2004).CAS 
    PubMed 

    Google Scholar 
    Rhoades, D. F. Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In Plant Resistance to Insects (ed. Hedin, P. A.) 55–68 (American Chemical Society, 1983).
    Google Scholar 
    Hedin, P. A. Plant Resistance to Insects (American Chemical Society, 1983).
    Google Scholar 
    Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144 (2010).PubMed 

    Google Scholar 
    Barbosa, P. et al. Associational resistance and associational susceptibility: Having right or wrong neighbors. Annu. Rev. Ecol. Evol. Syst. 40, 1 (2009).
    Google Scholar 
    Kigathi, R. N., Weisser, W. W., Veit, D., Gershenzon, J. & Unsicker, S. B. Plants suppress their emission of volatiles when growing with conspecifics. J. Chem. Ecol. 39, 537–545 (2013).CAS 
    PubMed 

    Google Scholar 
    Peñuelas, J. & Llusià, J. Influence of intra-and inter-specific interference on terpene emission by Pinus halepensis and Quercus ilex seedlings. Biol. Plant. 41, 139–143 (1998).
    Google Scholar 
    Ormeno, E., Fernandez, C. & Mévy, J.-P. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68, 840–852 (2007).CAS 
    PubMed 

    Google Scholar 
    Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—A mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).CAS 
    PubMed 

    Google Scholar 
    Kessler, A. & Kalske, A. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 49, 115–138 (2018).
    Google Scholar 
    Quintana-Rodriguez, E. et al. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol. 103, 250–260 (2015).CAS 

    Google Scholar 
    Loreto, F. & D’Auria, S. How do plants sense volatiles sent by other plants? Trends Plant Sci. (2021).Giordano, D., Facchiano, A., D’Auria, S. & Loreto, F. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. Elife 10, e66741 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ninkovic, V., Markovic, D. & Dahlin, I. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspect. Plant Ecol. Evol. Syst. 23, 11–17 (2016).
    Google Scholar 
    Kegge, W. et al. Red: far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann. Bot. 115, 961–970 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20, 1281–1328 (1994).CAS 
    PubMed 

    Google Scholar 
    Anderson, P., Sadek, M., Larsson, M., Hansson, B. & Thöming, G. Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim. Behav. 85, 1169–1175 (2013).
    Google Scholar 
    Cunningham, J. P., Moore, C. J., Zalucki, M. P. & West, S. A. Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207, 87–94 (2004).PubMed 

    Google Scholar 
    McCormick, A. C., Reinecke, A., Gershenzon, J. & Unsicker, S. B. Feeding experience affects the behavioral response of polyphagous gypsy moth caterpillars to herbivore-induced poplar volatiles. J. Chem. Ecol. 42, 382–393 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Proffit, M., Khallaf, M. A., Carrasco, D., Larsson, M. C. & Anderson, P. ‘Do you remember the first time?’ Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecol. Lett. 18, 365–374 (2015).PubMed 

    Google Scholar 
    Mayhew, P. J. Herbivore host choice and optimal bad motherhood. Trends Ecol. Evol. 16, 165–167 (2001).PubMed 

    Google Scholar 
    Jackson, T. et al. Anticipating the unexpected–managing pasture pest outbreaks after large-scale land conversion (New Zealand Grassland Association, 2012).Townsend, R. J., Dunbar, J. E. & Jackson, T. A. Flight behaviour of the manuka chafers, Pyronota festiva (Fabricius) and Pyronota setosa (Given) (Coleoptera: Melolonthinae), on the flipped soils of Cape Foulwind on the West Coast of New Zealand. N. Z. Plant Prot. 71, 255–261. https://doi.org/10.30843/nzpp.2018.71.175 (2018).Article 

    Google Scholar 
    Ferguson, C. M. et al. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. N. Z. J. Agric. Res. 62, 255–315 (2019).
    Google Scholar 
    Cunningham, J. Can mechanism help explain insect host choice?. J. Evol. Biol. 25, 244–251 (2012).CAS 
    PubMed 

    Google Scholar 
    Syrett, P., Smith, L. A., Bourner, T. C., Fowler, S. V. & Wilcox, A. A European pest to control a New Zealand weed: Investigating the safety of heather beetle, Lochmaea suturalis (Coleoptera: Chrysomelidae) for biological control of heather, Calluna vulgaris. Bull. Entomol. Res. 90, 169–178. https://doi.org/10.1017/S0007485300000286 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fowler, S., Harman, H., Memmott, J., Peterson, P. & Smith, L. In Proceedings of the XII International Symposium on Biological Control of Weeds (eds Julien, M. H. et al.) 495–502.Fowler, S. V. et al. Investigating the poor performance of heather beetle, Lochmaea suturalis (Thompson) (Coleoptera: Chrysomelidae), as a weed biocontrol agent in New Zealand: Has genetic bottlenecking resulted in small body size and poor winter survival?. Biol. Control 87, 32–38 (2015).
    Google Scholar 
    Effah, E. et al. Herbivory and attenuated UV radiation affect volatile emissions of the invasive weed Calluna vulgaris. Molecules 25, 3200 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Pearson, D. E. & Callaway, R. M. Indirect nontarget effects of host-specific biological control agents: Implications for biological control. Biol. Control 35, 288–298 (2005).
    Google Scholar 
    Rand, T. A. & Louda, S. M. Exotic weed invasion increases the susceptibility of native plants to attack by a biocontrol herbivore. Ecology 85, 1548–1554. https://doi.org/10.1890/03-3067 (2004).Article 

    Google Scholar  More

  • in

    Effects of Chlorella extracts on growth of Capsicum annuum L. seedlings

    Deli, J., Matus, Z. & Tóth, G. Carotenoid composition in the fruits of asparagus officinalis. J. Agric. Food Chem. 48, 2793–2796 (2000).CAS 
    PubMed 

    Google Scholar 
    Howard, L. R., Talcott, S. T., Brenes, C. H. & Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 48, 1713–1720 (2000).CAS 
    PubMed 

    Google Scholar 
    Odgerel, B. & Tserendulam, D. Effect of Chlorella as a biofertilizer on germination of wheat and barley grains. P. Mongolian Acad. Sci. 56(4), 26–31 (2016).
    Google Scholar 
    Sun, R. B., Guo, X. S., Wang, D. Z. & Chua, H. Y. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 95(6), 171–178 (2015).
    Google Scholar 
    Yu, Y. Q., Luo, Z. B., Fu, H. & Jin, Y. Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing China. Sci. Total Environ. 754, 1–8 (2021).
    Google Scholar 
    Ahmad, P. et al. Role of transgenic plants in agriculture and biopharming. Biotech. Adv. 30, 524–540 (2012).CAS 

    Google Scholar 
    Sherlock, R. & Morrey, J. D. Ethical Issues in Biotechnology (Rowman and Littlefield. Publishers, Inc., 2002).
    Google Scholar 
    Schiavon, M., Ertani, A. & Nardi, S. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of TCA cycle and N metabolism in Zea mays L. J. Agric. Food Chem. 56, 11800–11808 (2008).CAS 
    PubMed 

    Google Scholar 
    Muscolo, A., Sidari, M. & Nardi, S. Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J. Geochem. Explor. 129, 57–63 (2013).CAS 

    Google Scholar 
    Nardi, S., Carletti, P., Pizzeghello, D., Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. PART I. Fundamentals and Impact of Mineral-Organic-Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM). (Ed. Senesi, N., Xing, B., Huang, P.M.) 301–335 (John Wiley and Sons, Hoboken, 2009).Ertani, A., Nardi, S. & Altissimo, A. Review: long-term research activity on the biostimulant properties of natural origin compounds. Acta Hort. 1009, 181–188 (2013).
    Google Scholar 
    Ertani, A. et al. Biostimulant activity of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant Nutr. Soil Sci. 172, 237–244 (2009).CAS 

    Google Scholar 
    Vaccaro, S. et al. Effect of a compost and its water-soluble fractions on key enzymes of nitrogen metabolism in maize seedlings. J. Agric. Food Chem. 57, 11267–11276 (2009).CAS 
    PubMed 

    Google Scholar 
    Azcona, I. et al. Growth and development of pepper are affected by humic substances derived from composted sludge. J. Plant Nutr. Soil Sci. 174, 916–924 (2011).CAS 

    Google Scholar 
    Schiavon, M. et al. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 36, 662–669 (2010).CAS 
    PubMed 

    Google Scholar 
    Ertani, A., Schiavon, M., Muscolo, A. & Nardi, S. Alfalfa plant-derived biostimulant stimulates short-term growth of salt stressed Zea mays L. plants. Plant Soil 364, 145–158 (2013).CAS 

    Google Scholar 
    Pascual, I., Azcona, I., Morales, F., Aguirreolea, J. & Sanchez-Diaz, M. Growth, yield and physiology of verticillium-inoculated pepper plants treated with ATAD and composted sewage sludge. Plant Soil 319, 291–306 (2009).CAS 

    Google Scholar 
    Pascual, I. et al. Growth, yield and fruit quality of pepper plants amended with two sanitized sewage sludges. J. Agric. Food Chem. 58, 6951–6959 (2010).CAS 
    PubMed 

    Google Scholar 
    Kim, M. J., Shim, C. K., Kim, Y. K., Ko, B. G. & Kim, B. H. Effect of Biostimulator Chlorella fusca on improving growth and qualities of Chinese Chives and Spinach in organic farm. Plant Pathol. J. 34(6), 567–574 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pulz, O. & Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biot. 65, 635–648 (2004).CAS 

    Google Scholar 
    Kim, S. J., Ko, E. J., Hong, J. K. & Jeun, Y. C. Ultrastructures of Colletotrichum orbiculare in cucumber leaves expressing systemic acquired resistance mediated by Chlorella fusca. Plant Pathol. J. 34(2), 113–120 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faheed, F. A. & Abd-El Fattah, Z. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of Lettuce Plant. J. Agri. Soc. Sci. 4, 165–169 (2008).
    Google Scholar 
    Agwa, O. K., Ogugbue, C. J. & Williams, E. E. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int. J. Agric. Res. 12(4), 181–189 (2017).CAS 

    Google Scholar 
    Ördög, V. et al. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Physicol. 16, 309–401 (2004).
    Google Scholar 
    Stirk, W. A., Novák, O., Strnad, M. & van Staden, J. Cytokinins in macroalgae. Plant Growth Regul. 41, 13–24 (2003).CAS 

    Google Scholar 
    Kholssi, R., Marks, E. A. N., Montero, J. M. O., Debdoubi, A. & Rad, C. Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth. J. Plant Growth Regul. 38, 644–649 (2019).CAS 

    Google Scholar 
    Stirk, W. A., Ördög, V., Van Staden, J. & Jäger, K. Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J. Appl. Phycol. 14, 215–221 (2002).CAS 

    Google Scholar 
    Park, E. R., Jo, J. O., Kim, S. M., Lee, M. Y. & Kim, K. S. Volatile flavor component of leek (Allium tuberosum Rotter). J. Korean Soc. Food Sci. Nutr. 27, 563–567 (1998) ((in Korean)).CAS 

    Google Scholar 
    Jin, H. et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnol. Bioeng. 117, 96–108 (2020).CAS 
    PubMed 

    Google Scholar 
    Kim, M. J., Shim, C. K., Kim, Y. K., Hong, S. J. & Kim, S. C. Isolation and morphological identification of fresh water green algae from organic farming habitats in Korea. Korean J. Org. Agric. 22, 743–760 (2014).
    Google Scholar 
    Li, L., Tian, S. L., Jiang, J. & Wang, Y. Regulation of nitric oxide to Capsicum under lower light intensities. S. Afr. J. Bot. 132, 268–276 (2020).CAS 

    Google Scholar 
    Cho, Y. Y., Oh, S. B., Oh, M. M. & Son, J. E. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hortic-Amst. 111, 330–334 (2007).
    Google Scholar 
    Oster, U., Tanaka, R., Tanaka, A. & Rudiger, W. Cloning and functional expression of gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J. 21(3), 305–310 (2000).CAS 
    PubMed 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254 (1976).CAS 
    PubMed 

    Google Scholar  More

  • in

    Pile driving repeatedly impacts the giant scallop (Placopecten magellanicus)

    Duarte, C. M. et al. The soundscape of the Anthropocene ocean. Science 371, eaba4658 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: Lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).Article 

    Google Scholar 
    Dahl, P. H., de Jong, C. A. & Popper, A. N. The underwater sound field from impact pile driving and its potential effects on marine life. Acoust. Today. 11, 18–25 (2015).
    Google Scholar 
    Mooney, T. A., Andersson, M. H. & Stanley, J. Acoustic impacts of offshore wind energy on fishery resources. Oceanography 33, 82–95 (2020).Article 

    Google Scholar 
    Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, A. P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).PubMed 
    Article 

    Google Scholar 
    Jones, I. T., Stanley, J. A. & Mooney, T. A. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Mar. Pollut. Bull. 150, 110792 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, L. & Elliott, M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci. Total. Environ. 595, 255–268 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hawkins, A. D., Hazelwood, R. A., Popper, A. N. & Macey, P. C. Substrate vibrations and their potential effects upon fishes and invertebrates. J. Acoust. Soc. Am. 149, 2782–2790 (2021).ADS 
    PubMed 
    Article 

    Google Scholar 
    Popper, A. N. et al. Offshore wind energy development: Research priorities for sound and vibration effects on fishes and aquatic invertebrates. J. Acoust. Soc. Am. 151, 205–215 (2022).PubMed 
    Article 

    Google Scholar 
    Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean. Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    Roberts, L., Cheesman, S., Breithaupt, T. & Elliott, M. Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar. Ecol. Prog. Ser. 538, 185–195 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proc. Natl. Acad. Sci. 114, E8537–E8546 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newell, R. I. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish. Res. 23, 51–62 (2004).
    Google Scholar 
    Wijsman, J.W.M., Troost, K., Fang, J. & Roncarati, A. Global production of marine bivalves. Trends and challenges. Goods and services of marine bivalves, (Eds. Small, A.D., Ferrerira, J.G., Grant, J., Petersen, J.K., Strand, O.) 7–26 (Springer, Cham, 2019).Perveen, R., Kishor, N. & Mohanty, S. R. Off-shore wind farm development: Present status and challenges. Renew. Sust. Energ. Rev. 29, 780–792 (2014).Article 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Mar. Policy. 48, 172–183 (2014).Article 

    Google Scholar 
    Musial, W.D., Beiter, P.C., Spitsen, P., Nunemaker, J. & Gevorgian, V. 2018 offshore wind technologies market report. US Department of Energy (2019).Lacroix, D. & Pioch, S. The multi-use in wind farm projects: more conflicts or a win-win opportunity?. Aquat. Living. Resour. 24, 129–135 (2011).Article 

    Google Scholar 
    FishstatJ. FishStatJ-Software for Fishery and Aquaculture Statistical Time Series. FAO Fisheries Division [online], Rome. Accessed April 10, 2022. (2020).Flanders Marine Institute. Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11. Available online at https://www.marineregions.org/ (2019).Kallehave, D., Byrne, B. W., LeBlanc Thilsted, C. & Mikkelsen, K. K. Optimization of monopiles for offshore wind turbines. Philos. Trans. R. Soc. A 373, 20140100 (2015).ADS 
    Article 

    Google Scholar 
    Bruns, B., Stein, P., Kuhn, C., Sychla, H. & Gattermann, J. Hydro sound measurements during the installation of large diameter offshore piles using combinations of independent noise mitigation systems. Proceedings of the Inter-noise Conference 1–10 (Melbourne, Australia, 2014).Hunt, H. L. & Scheibling, R. E. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155, 269–301 (1997).ADS 
    Article 

    Google Scholar 
    Pilditch, C. A. & Grant, J. Effect of variations in flow velocity and phytoplankton concentration on sea scallop (Placopecten magellanicus) grazing rates. J. Exp. Mar. Biol. Ecol. 240, 111–136 (1999).Article 

    Google Scholar 
    Chauvaud, L., Thouzeau, G. & Paulet, Y. M. Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J. Exp. Mar. Biol. Ecol. 227, 83–111 (1998).Article 

    Google Scholar 
    Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic Sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13, e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hawkins, A. D., Pembroke, A. E. & Popper, A. N. Information gaps in understanding the effects of noise on fishes and invertebrates. Rev. Fish. Biol. Fish. 25, 39–64 (2015).Article 

    Google Scholar 
    Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article 

    Google Scholar 
    Sabet, S. S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article 

    Google Scholar 
    Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change. Biol. 22, 3349–3360 (2016).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Hubert, J., Booms, E., Witbaard, R. & Slabbekoorn, H. Responsiveness and habituation to repeated sound exposures and pulse trains in blue mussels. J. Exp. Mar. Biol. Ecol. 547, 151668 (2022).Article 

    Google Scholar 
    Robson, A. A., Chauvaud, L., Wilson, R. P. & Halsey, L. G. Small actions, big costs: the behavioural energetics of a commercially important invertebrate. J. R. Soc. Interface. 9, 1486–1498 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, G. E. & Gruffydd, L. D. The types of escape reactions elicited in the scallop Pecten maximus by selected sea-star species. Mar. Biol. 10, 87–93 (1971).Article 

    Google Scholar 
    Livingstone, D. R., Dezwaan, A. & Thompson, R. J. Aerobic metabolism octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 70, 35–44 (1981).Article 

    Google Scholar 
    Comeau, L. A., Babarro, J. M., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa Spain. Aquac. Rep. 9, 68–73 (2018).Article 

    Google Scholar 
    Wilson, R., Reuter, P. & Wahl, M. Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar. Biol. 147, 1165–1172 (2005).Article 

    Google Scholar 
    Comeau, L. A. & Babarro, J. M. Narrow valve gaping in the invasive mussel Limnoperna securis: implications for competition with the indigenous mussel Mytilus galloprovincialis in NW Spain. Aquac. Int. 22, 1215–1227 (2014).CAS 
    Article 

    Google Scholar 
    Comeau, L. A., Mayrand, E. & Mallet, A. Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar. Biol. 159, 2269–2279 (2012).Article 

    Google Scholar 
    Palmer, B. A. et al. The image-forming mirror in the eye of the scallop. Science 358, 1172–1175 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chappell, D. R., Horan, T. M. & Speiser, D. I. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc. R. Soc. B. 288, 20211730 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mat, A. M., Massabuau, J. C., Ciret, P. & Tran, D. Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol. Int. 29, 857–867 (2012).PubMed 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods. Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Dickie, L. M. & Medcof, J. C. Causes of mass mortalities of scallops (Placopecten magellanicus) in the southwestern Gulf of St Lawrence. J. Fish. Res. Board. Can. 20, 451–482 (1963).Article 

    Google Scholar 
    Coleman, S., Cleaver, C., Morse, D., Brady, D. C. & Kiffney, T. The coupled effects of stocking density and temperature on Sea Scallop (Placopecten magellanicus) growth in suspended culture. Aquac. Rep. 20, 100684 (2021).Article 

    Google Scholar 
    Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES. J. Mar. Sci. 77, 890–900 (2020).Article 

    Google Scholar 
    ISO, 18406. Underwater acoustics measurement of radiated underwater sound from percussive pile driving. International Organization for Standardization (Geneva, Switzerland), 1–33 (2017).Madsen, P. T. Marine mammals and noise: Problems with root mean square sound pressure levels for transients. J. Acoust. Soc. Am. 117, 3952–3957 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R.V. emmeans: Estimated marginal means, aka least squares means. R package version 1.3.5.1. Retrieved from http://CRAN.R-project.org/package=emmeans (2019).Kragh, I. M. et al. Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 222, jeb216606 (2019).PubMed 
    Article 

    Google Scholar 
    Warner, R. M. Spectral Analysis of Time-Series Data (Guilford Press, 1998).
    Google Scholar 
    Fisher, R. A. Tests of significance in harmonic analysis. Proc. Math. Phys. Eng. Sci. 125, 54–59 (1929).MATH 

    Google Scholar  More

  • in

    A georeferenced rRNA amplicon database of aquatic microbiomes from South America

    Cole, J., Findlay, S. & Pace, M. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).ADS 
    Article 

    Google Scholar 
    Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    Cotner, J. B. & Biddanda, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5, 105–121 (2002).CAS 
    Article 

    Google Scholar 
    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, C., Fuhrman, J., Horner-Devine, M. & Martiny, J. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).ADS 
    Article 

    Google Scholar 
    White, W. R. World water: resources, usage and the role of man-made reservoirs. Report No. FR/R0012. Fundation for Water Research, (2010).Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B. & Lettenmaier, D. P. Continental runoff into the oceans (1950–2008). J. Hydrometeorol. 16, 1502–1520 (2015).ADS 
    Article 

    Google Scholar 
    Stevaux, J. C., Paes, R. J., Franco, A. A., Mário, M. L. & Fujita, R. H. Morphodynamics in the confluence of large regulated rivers: The case of Paraná and Paranapanema Rivers. Lat. Am. J. Sedimentol. Basin Anal. 16, 101–109 (2009).
    Google Scholar 
    Brêda, J. P. L. F. et al. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522 (2020).ADS 
    Article 

    Google Scholar 
    Llames, M. E. & Zagarese, H. E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters vol.2 (ed. Linkens, G. E.). (Oxford: Elsevier, 2009).Cabrera, A. L. & Willink, A. Biogeografia De America Latina 2da edn (Organización de los Estados Americanos, 1980).Morrone, J. J. Biogeografía de América Latina y el Caribe 1st edn. (Nature, 2001).Morrone, J. J. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1–110 (2014).PubMed 
    Article 

    Google Scholar 
    Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sarmento, H. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686, 1–14 (2012).Article 

    Google Scholar 
    Meerhoff, M. et al. Environmental Warming in Shallow Lakes. A Review of Potential Changes in Community Structure as Evidenced from Space-for-Time Substitution Approaches. Adv. Ecol. Res. 46, 259–349 (2012).Article 

    Google Scholar 
    Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metz, S. & Huber, P. et al. A georeferenced rRNA amplicon database of aquatic microbiomes from South America (Dataset), Zenodo, https://doi.org/10.5281/zenodo.6802178 (2022).Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000 Research 5, 1492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/10.1101/081257v1 (2016).Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffith, G. E., Omernik, J. M. & Azevedo, S. H. Ecological classification of the Western Hemisphere http://ecologicalregions.info/htm/ecoregions.htm (1998).Salcedo, J. C. R. South America: Argentina, Bolivia, and Peru https://www.worldwildlife.org/ecoregions/nt1002 Accessed (2018).Vidal, J. Geografía del Perú: las ocho regiones naturales, la regionalización transversal, la microregionalización 9th edn (PEISA, 1987).Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Austral 8, 85–101 (1998).
    Google Scholar 
    Iriondo, M. Quaternary lakes of Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 81–88 (1989).Article 

    Google Scholar 
    Soto, D. & Campos, H. in Ecología de los bosques templados de Chile vol. 1 (eds. Khalin, J. M. & Villagrán, C.) (Editorial Universitaria, 1995).Modenutti, B. et al. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: Organic matter, light and nutrient relationships. Ecol. Austral 20, 95–114 (2010).
    Google Scholar 
    Modenutti, B. E. et al. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag. 3, 179–186 (1998).Article 

    Google Scholar 
    Quirós, R. & Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 4, 55–64 (1999).Article 

    Google Scholar 
    Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Balseiro, E. & Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 68, 528–541 (2014).PubMed 
    Article 

    Google Scholar 
    Modenutti, B. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371 (2013).CAS 
    Article 

    Google Scholar 
    Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816, 39–48 (2018).CAS 
    Article 

    Google Scholar 
    Sioli, H. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana 1, 267–277 (1968).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Salati, E. & Vose, P. B. Amazon Basin: A system in equilibrium. Science. 225, 129–138 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Melack, J. M. & Forsberg, B. R. In The Biogeochemistry of the Amazon Basin Vol. 1 (eds. MacCLain, M. E., Victoria, R. & Richey, J. E.). (Oxford Scholarship Online, 2001).Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).
    Google Scholar 
    Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot. 80, 223–230 (1997).Article 

    Google Scholar 
    Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).Article 

    Google Scholar 
    Vasconcelos, V., de Carvalho Júnior, O. A., de Souza Martins, É. & Couto Júnior, A. F. in World Geomorphological Landscapes. Vol. 1 (eds. Vieira, B., Salgado, A. & Santos, L.) (Springer, 2015).Bichsel, D. et al. Water quality of rural ponds in the extensive agricultural landscape of the Cerrado (Brazil). Limnology 17, 239–246 (2016).CAS 
    Article 

    Google Scholar 
    Cunha, D. G. F., Calijuri, M., do, C. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).Article 

    Google Scholar 
    Morellato, L. P. C. & Haddad, C. F. B. Introduction: The Brazilian atlantic forest. Biotropica 32, 786–792 (2000).Article 

    Google Scholar 
    Galindo-Leal, C. & Câmara, I. de G. The Atlantic Forest of South America: Biodiversity status, threats, and outlook 1st edn (Island Press, 2003).Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist 204, 459–473 (2014).PubMed 
    Article 

    Google Scholar 
    Caliman, A. et al. Temporal coherence among tropical coastal lagoons: A search for patterns and mechanisms. Brazilian J. Biol. 70, 803–814 (2010).CAS 
    Article 

    Google Scholar 
    Junger, P. C. et al. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons. Microb. Ecol. 75, 52–63 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Depetris, P. J., Probst, J. L., Pasquini, A. I. & Gaiero, D. M. The geochemical characteristics of the Paraná River suspended sediment load: An initial assessment. Hydrol. Process. 17, 1267–1277 (2003).ADS 
    Article 

    Google Scholar 
    Orfeo, O. & Stevaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).ADS 
    Article 

    Google Scholar 
    Neiff, J. J. Large rivers of South America: toward the new approach. Verh. Internat. Verein. Limnol 26, 167–180 (1996).
    Google Scholar 
    Unrein, F. Changes in phytoplankton community along a transversal section of the Lower Paraná floodplain, Argentina. Hydrobiologia 468, 123–134 (2002).Article 

    Google Scholar 
    Devercelli, M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639, 5–19 (2010).CAS 
    Article 

    Google Scholar 
    Huber, P. et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 14, 2951–2966 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS 
    Article 

    Google Scholar 
    Conde, D., Arocena, R. & Recursos, R.-G. L. acuáticos superficiales de Uruguay: ambientes, algunas problemáticas y desafios para la gestión. Ambios 10, 1–7 (2003).
    Google Scholar 
    Martin, L. & Suguio, K. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 119–140 (1992).Article 

    Google Scholar 
    Alonso, C. et al. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon. Front. Microbiol. 4, 1664–302X (2013).Article 
    CAS 

    Google Scholar 
    Amaral, V., Graeber, D., Calliari, D. & Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918 (2016).ADS 
    Article 

    Google Scholar 
    Rennella, A. M. M., Quiro, R. & Quirós, R. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556, 181–191 (2006).Article 

    Google Scholar 
    Diaz, M., Pedrozo, F. & Baccala, N. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv. Res. Manag. 5, 213–229 (2000).Article 

    Google Scholar 
    Izaguirre, I. et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob. Ecol. Conserv. 14, e00391 (2018).Article 

    Google Scholar 
    Porcel, S., Saad, J. F., Sabio y García, C. A. & Izaguirre, I. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81, 51 (2019).Article 
    CAS 

    Google Scholar 
    Bernal, M. C. et al. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J. Limnol. 80, 84–99 (2021).
    Google Scholar 
    Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, 44–47 (2011).Article 
    CAS 

    Google Scholar 
    ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA217932 (2013).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA302313 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA294718 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA309832 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA326475 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48609 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA289691 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA414894 (2018).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA323673 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA356055 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA390178 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA725228 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA292014 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA316315 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA406945 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA515842 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA321235 (2016).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998328 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998330 (2015).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB36116 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB29989 (2019).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA788397 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48353 (2022).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB37379 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB46122 (2021).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40710 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40864 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40854 (2020).ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA268541 (2015). More

  • in

    Carbon farming: integrate biodiversity metrics

    Incentivizing farmers to shift from conventional to regenerative practices could help fulfil the United Nations Food Systems commitments to transform food supply chains — as well as reducing carbon emissions (see L. A. Schulte et al. Nature Sustain. 5, 384–388; 2022).
    Competing Interests
    The authors declare no competing interests. More