More stories

  • in

    Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2

    Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).Ridgwell, A. & Zeebe, R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).Article 

    Google Scholar 
    Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. Part 2 54, 521–537 (2007).Article 

    Google Scholar 
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 20170075 (2018).Article 

    Google Scholar 
    Aloisi, G. Covariation of metabolic rates and cell size in coccolithophores. Biogeosciences 12, 6215–6284 (2015).Article 

    Google Scholar 
    Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).Article 

    Google Scholar 
    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).Article 

    Google Scholar 
    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).Article 

    Google Scholar 
    McClelland, H. L. O., Bruggeman, J., Hermoso, M. & Rickaby, R. E. M. The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8, 14511 (2017).Article 

    Google Scholar 
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).Article 

    Google Scholar 
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. 6, 34263 (2016).Article 

    Google Scholar 
    Duchamp-Alphonse, S. et al. Enhanced ocean–atmosphere carbon partitioning via the carbonate counter pump during the last deglacial. Nat. Commun. 9, 2396 (2018).Article 

    Google Scholar 
    Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).Article 

    Google Scholar 
    Meier, K. J. S., Berger, C. & Kinkel, H. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II). Mar. Micropaleontol. 112, 1–12 (2014).Article 

    Google Scholar 
    Su, X., Liu, C. & Beaufort, L. Late Quaternary coccolith weight variations in the northern South China Sea and their environmental controls. Mar. Micropaleontol. 154, 101798 (2020).Article 

    Google Scholar 
    Berger, C., Meier, K. J. S., Kinkel, H. & Baumann, K.-H. Changes in calcification of coccoliths under stable atmospheric CO2. Biogeosciences 11, 929–944 (2014).Article 

    Google Scholar 
    Zachos, J., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).Article 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).Article 

    Google Scholar 
    Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11, 4436 (2020).Article 

    Google Scholar 
    Holtz, L.-M., Wolf-Gladrow, D. & Thoms, S. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores—a numerical model study for Emiliania huxleyi. J. Theor. Biol. 420, 117–127 (2017).Article 

    Google Scholar 
    Hermoso, M., Horner, T. J., Minoletti, F. & Rickaby, R. E. M. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater. Geochim. Cosmochim. Acta 141, 612–627 (2014).Article 

    Google Scholar 
    Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C. & Rickaby, R. E. M. Vanishing coccolith vital effects with alleviated carbon limitation. Biogeosciences 13, 301–312 (2016).Article 

    Google Scholar 
    Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785 (2010).Article 

    Google Scholar 
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149 (2003).Article 

    Google Scholar 
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).Article 

    Google Scholar 
    Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).Article 

    Google Scholar 
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores. Biogeosciences 14, 1493–1509 (2017).Article 

    Google Scholar 
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nat. Geosci. 6, 218–222 (2013).Article 

    Google Scholar 
    Herrmann, S. & Thierstein, H. R. Cenozoic coccolith size changes—evolutionary and/or ecological controls? Palaeogeogr. Palaeoclimatol. Palaeoecol. 333–334, 92–106 (2012).Article 

    Google Scholar 
    Young, J. R. & Ziveri, P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 22, 1679–1700 (2000).Article 

    Google Scholar 
    Daniels, C. J., Sheward, R. M. & Poulton, A. J. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species. Biogeosciences 11, 6915–6925 (2014).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).Article 

    Google Scholar 
    Misra, S. & Froelich, P. N. Lithium isotope history of cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).Article 

    Google Scholar 
    Ravizza, G. E. & Zachos, J. C. in Treatise on Geochemistry Vol. 6 (ed. Elderfield, H.) 551–581 (Elsevier, 2003).McArthur, J. M., Howarth, R. J. & Bailey, T. R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr‐isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. J. Geol. 109, 155–170 (2001).Article 

    Google Scholar 
    Pegram, W. J., Krishnaswami, S., Ravizza, G. E. & Turekian, K. K. The record of sea water 1870s/1860s variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–576 (1992).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Leg 208 summary. In Zachos, J. C., Kroon, D. & Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–112: College Station, TX (Ocean Drilling Program) (2004).Brummer, G. J. A. & van Eijden, A. J. M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar. Micropaleontol. 19, 99–117 (1992).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 433 (2018).Article 

    Google Scholar 
    Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Sci. Rep. 9, 2486 (2019).Article 

    Google Scholar 
    Zhang, Y. G. et al. Refining the alkenone–pCO2 method I: lessons from the Quaternary glacial cycles. Geochim. Cosmochim. Acta 260, 177–191 (2019).Article 

    Google Scholar 
    Freeman, K. H. & Pagani, M. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems Vol. 177 (eds Baldwin, I. T. et al.) 35–61 (Springer-Verlag, 2005).Pagani, M. The alkenone–CO2 proxy and ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. A 360, 609–632 (2002).Article 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).Article 

    Google Scholar 
    Henehan, M. J. et al. Revisiting the Middle Eocene Climatic Optimum ‘Carbon Cycle Conundrum’ with new estimates of atmospheric pCO2 from boron isotopes. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003713 (2020).Zachos, J., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 

    Google Scholar 
    Stap, L., Sluijs, A., Thomas, E. & Lourens, L. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean, Paleoceanography 24, PA1211, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008PA001655 (2009).Sluijs, A. et al. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780 (2009).Article 

    Google Scholar 
    Stap, L. et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38, 607–610 (2010).Article 

    Google Scholar 
    Bohaty, S. M. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017 (2003).Article 

    Google Scholar 
    van der Ploeg, R. et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nat. Commun. 9, 2877 (2018).Article 

    Google Scholar 
    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).Article 

    Google Scholar 
    Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822–e1501822 (2016).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Site 1263. In Zachos, J. C., Kroon, D., Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–87 College Station, TX (Ocean Drilling Program) (2004).Bice, K. L., Sloan, L. C. & Barron, E. J. in Warm Climates in Earth History (eds Huber, B. T., Macleod, K. G., & Wing, S. L.) 79–129 (Cambridge Univ. Press, 2000).Handoh, I. C., Bigg, G. R. & Jones, E. J. W. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 31–58 (2003).Article 

    Google Scholar 
    Minoletti, F., Hermoso, M. & Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nat. Protoc. 4, 14–24 (2009).Article 

    Google Scholar 
    Zhang, H., Stoll, H., Bolton, C., Jin, X. & Liu, C. A refinement of coccolith separation methods: Measuring the sinking characters of coccoliths. Biogeosciences Discussions (2018): 1–30 https://doi.org/10.5194/bg-2018-82 (2020).Hermoso, M. et al. Towards the use of the coccolith vital effects in palaeoceanography: a field investigation during the middle Miocene in the SW Pacific Ocean. Deep Sea Res. Part 1 160, 103262 (2020).Article 

    Google Scholar 
    Lauretano, V., Hilgen, F. J., Zachos, J. C. & Lourens, L. J. Astronomically tuned age model for the early Eocene carbon isotope events: a new high-resolution δ13Cbenthic record of ODP site 1263 between ~49 and ~54 Ma. Newsl. Stratigr. 49, 383–400 (2016).Article 

    Google Scholar 
    Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M. & Zachos, J. C. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 11, 1181–1195 (2015).Article 

    Google Scholar 
    Westerhold, T. et al. Astronomical Calibration of the Ypresian Time Scale: Implications for Seafloor Spreading Rates and the Chaotic Behaviour of the Solar System? Preprint at Clim. Past Discuss. https://doi.org/10.5194/cp-2017-15 (2017).Gatuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. seacarb: Seawater Carbonate Chemistry (2021); https://CRAN.R-project.org/package=seacarb More

  • in

    Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan

    Blanton, L. S. The rickettsioses: A practical update. Infect. Dis. Clin. North Am. 33, 213–229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parola, P. et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 26, 657–702 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Satjanadumrong, J., Hughes, T., Stenos, J. & Blacksell, S. D. Diagnosis of spotted fever group Rickettsia infections: The Asian perspective. Epidemiol. Infect. 147, e286 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graves, S. & Stenos, J. Rickettsioses in Australia. Ann. N. Y. Acad. Sci. 1166, 151–155 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Niang, M. et al. Prevalence of antibodies to Rickettsia conorii, Ricketsia africae, Rickettsia typhi and Coxiella burnetii in Mauritania. Eur. J. Epidemiol. 14, 817–818 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parola, P. Tick-borne rickettsial diseases: Emerging risks in Europe. Comp. Immunol. Microbiol. Infect. Dis. 27, 297–304 (2004).PubMed 
    Article 

    Google Scholar 
    Nanayakkara, D. M., Rajapakse, R. P. V. J., Wickramasinghe, S. & Kularatne, S. A. M. Serological evidence for exposure of dogs to Rickettsia conorii, Rickettsia typhi, and Orientia tsutsugamushi in Sri Lanka. Vector Borne Zoon. Dis. Larchmt. N 13, 545–549 (2013).Article 

    Google Scholar 
    Brown, L. D. & Macaluso, K. R. Rickettsia felis, an emerging flea-borne rickettsiosis. Curr. Trop. Med. Rep. 3, 27–39 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, P. N. et al. A prospective, open-label, randomized trial of doxycycline versus azithromycin for the treatment of uncomplicated murine typhus. Clin. Infect. Dis. 68, 738–747 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vallee, J. et al. Contrasting spatial distribution and risk factors for past infection with scrub typhus and murine typhus in Vientiane City, Lao PDR. 4 (2010).Akram, S. M., Jamil, R. T. & Gossman, W. G. Rickettsia Akari (2021).Dong, X., El Karkouri, K., Robert, C., Raoult, D. & Fournier, P.-E. Genome sequence of Rickettsia australis, the agent of Queensland tick typhus. J. Bacteriol. 194, 5129 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fournier, P.-E. & Raoult, D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann. N. Y. Acad. Sci. 1166, 1–11 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Legendre, K. P. & Macaluso, K. R. Rickettsia felis: A review of transmission mechanisms of an emerging pathogen. Trop. Med. Infect. Dis. 2, E64 (2017).PubMed 
    Article 

    Google Scholar 
    Murray, G. G. R., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia using different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279 (2016).PubMed 
    Article 

    Google Scholar 
    Shpynov, S. N., Fournier, P., Pozdnichenko, N. N., Gumenuk, A. S. & Skiba, A. A. New approaches in the systematics of rickettsiae. New Microbes New Infect. 23, 93–102 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shpynov, S. et al. Detection of a rickettsia closely related to Rickettsia aeschlimannii, ‘Rickettsia heilongjiangensis’, Rickettsia sp. strain RpA4, and Ehrlichia muris in ticks collected in Russia and Kazakhstan. J. Clin. Microbiol. 42, 2221–2223 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aung, A. K., Spelman, D. W., Murray, R. J. & Graves, S. Review article: Rickettsial infections in Southeast Asia: Implications for local populace and febrile returned travelers. Am. J. Trop. Med. Hyg. 91, 451–460 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodkvamtook, W. et al. Scrub typhus outbreak in Chonburi Province, Central Thailand, 2013. Emerg. Infect. Dis. 24, 361–365 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Vongphayloth, K., Hertz, J. C., Brey, P. & Newton, P. N. Tick-transmitted human infections in Asia. Microbiol. Aust. 39, 203–206 (2018).Article 

    Google Scholar 
    Bartoshevic, E. To the issue of rickettsioses. Health Care Kazakhstan 3, 20–24 (1952) (in Russian).
    Google Scholar 
    Kereyev, N. Human natural focal diseases in Kazakhstan. Alma-ata (1961) (in Russian).Arkhangelskiy, D. Experimental study of tick-borne rickettsial pathogen in Almaty region. In Collection of Scientific Papers of the Institute of Microbiology and Virologoy Vol 4. Physiology and ecology of micro-organisms. Almta-ata 176–85 (1961) (in Russian).Kyraubayev, K. et al. Study of Dermacentor marginatus ticks for Rickettsiae in Central Kazakhstan. Proc. ASM (2014).Shpynov, S. et al. Detection and identification of spotted fever group Rickettsiae in dermacentor ticks from Russia and Central Kazakhstan. Eur. J. Clin. Microbiol. Infect. Dis. 20, 903–905 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shpynov, S., Rudakov, N. & Yastrebov, V. Identification of new genotypes of rickettsia tick-borne spotted fever group in the south of the Ural, Siberia, Far East and Kazakhstan. Epidemiol. Infect. Dis. 1, 23–27 (2005).
    Google Scholar 
    Hay, J. et al. Biosurveillance in Central Asia: Successes and challenges of tick-borne disease research in Kazakhstan and Kyrgyzstan. Front. Public Health 4, 4 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yegemberdiyeva, R. & Shapieva, Z. Clinical and epidemiological characteristic of tick-borne rickettsiosis in Kazakhstan. Abstract Book of the International Conference on Zoonoses. Ulaanbaatar 48–51 (2008).Rudakov, N. V., Shpynov, S. N., Samoilenko, I. E. & Tankibaev, M. A. Ecology and epidemiology of spotted fever group Rickettsiae and new data from their study in Russia and Kazakhstan. Ann. N. Y. Acad. Sci. 990, 12–24 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sansyzbayev, Y. et al. Survey for Rickettsiae within fleas of Great Gerbils, Almaty Oblast, Kazakhstan. Vector Borne Zoon. Dis. Larchmt. N 17, 172–178 (2017).Article 

    Google Scholar 
    Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring. Almaty. Epidemiological situation of infectious diseases in the Republic of Kazakhstan from 2016. Annual Report (2016) (in Russian).CDC. https://www.cdc.gov/vhf/omsk/index.html (2022).Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 1–16 (2019).Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomassone, L. et al. Neglected vector-borne zoonoses in Europe: Into the wild. Vet. Parasitol. 251, 17–26 (2018).PubMed 
    Article 

    Google Scholar 
    Schex, S., Dobler, G. & Riehm, J. Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector Borne Zoon. Dis. 11, 493–502 (2011).Article 

    Google Scholar 
    Tukhanova, N. et al. Molecular characterisation and phylogeny of Tula virus in Kazakhstan. Viruses 14, 1258 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wölfel, R., Essbauer, S. & Dobler, G. Diagnostics of tick-borne rickettsioses in Germany: A modern concept for a neglected disease. Int. J. Med. Microbiol. 298, 368–374 (2008).Article 
    CAS 

    Google Scholar 
    Fournier, P. E., Roux, V. & Raoult, D. Phylogenetic analysis of spotted fever group Rickettsiae by study of the outer surface protein rOmpA. Int. J. Syst. Bacteriol. 48(Pt 3), 839–849 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jado, I. et al. Molecular method for identification of Rickettsia species in clinical and environmental samples. J. Clin. Microbiol. 44, 4572–4576 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, T. A. BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turebekov, N. et al. Occurrence of anti-Rickettsia spp. antibodies in hospitalized patients with undifferentiated febrile illness in the southern region of Kazakhstan. Am. J. Trop. Med. Hyg. 104, 2000–2008 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    SPC SEEM. Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan (2021).Yamamoto, Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin. Vaccine Immunol. 9, 508–514 (2002).CAS 
    Article 

    Google Scholar 
    Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 197 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gajda, E. et al. Spotted fever Rickettsiae in wild-living rodents from south-western Poland. Parasit. Vectors 10, 413 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Essbauer, S., Hofmann, M., Kleinemeier, C., Wölfel, S. & Matthee, S. Rickettsia diversity in southern Africa: A small mammal perspective. Ticks Tick-Borne Dis. 9, 288–301 (2018).PubMed 
    Article 

    Google Scholar 
    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 6 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    El Karkouri, K., Ghigo, E., Raoult, D. & Fournier, P.-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci. Rep. 12, 3807 (2022).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zemtsova, G. E., Montgomery, M. & Levin, M. L. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals. PLoS One 10, e0116658 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri, C., Schumann, O., Schumann, C. & Gern, L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum?. Ticks Tick-Borne Dis. 5, 245–251 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tadin, A. et al. Molecular survey of zoonotic agents in rodents and other small mammals in Croatia. Am. J. Trop. Med. Hyg. 94, 466–473 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Karbowiak, G., Biernat, B., Stańczak, J., Szewczyk, T. & Werszko, J. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 3. Rickettsiae. Ann. Parasitol. 62, 89–100 (2016).PubMed 

    Google Scholar 
    Zemtsova, G., Killmaster, L. F., Mumcuoglu, K. Y. & Levin, M. L. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp. Appl. Acarol. 52, 383–392 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehácek, J., Urvölgyi, J., Kocianová, E. & Jedlicka, L. Susceptibility of some species of rodents to Rickettsiae. Folia Parasitol. (Praha) 39, 265–284 (1992).
    Google Scholar 
    Rehácek, J., Zupancicová, M., Kovácová, E., Urvölgyi, J. & Brezina, R. Study of rickettsioses in Slovakia. III. Experimental infection of Apodemus flavicollis Melch. by Rickettsiae of the spotted fever (SF) group isolated in Slovakia. J. Hyg. Epidemiol. Microbiol. Immunol. 21, 306–313 (1976).PubMed 

    Google Scholar 
    Biernat, B., Stańczak, J., Michalik, J., Sikora, B. & Wierzbicka, A. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland. Ticks Tick-Borne Dis. 7, 135–141 (2016).PubMed 
    Article 

    Google Scholar 
    Stańczak, J. et al. Prevalence of infection with Rickettsia helvetica in feeding ticks and their hosts in western Poland. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 15(Suppl 2), 328–329 (2009).
    Google Scholar 
    Barandika, J. F. et al. Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl. Environ. Microbiol. 73, 6166–6171 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spitalská, E., Boldis, V., Kostanová, Z., Kocianová, E. & Stefanidesová, K. Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol. 52, 175–179 (2008).PubMed 

    Google Scholar 
    Guo, L.-P. et al. Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China-Kazakhstan border. Parasit. Vectors 8, 461 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The establishment of ecological conservation for herpetofauna species in hotspot areas of South Korea

    Giovanelli, J. G. R., Haddad, C. F. B. & Alexandrino, J. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol. Invas. 10, 585–590. https://doi.org/10.1007/s10530-007-9154-5 (2008).Article 

    Google Scholar 
    Sillero, N. Modelling suitable areas for Hyla meridionalis under current and future hypothetical expansion scenarios. Amphib. Reptil. 31, 37–50. https://doi.org/10.1163/156853810790457948 (2010).Article 

    Google Scholar 
    Foley, D. H. et al. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae). J. Vector Ecol. 39, 168–181. https://doi.org/10.1111/j.1948-7134.2014.12084.x,Pubmed:24820570 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS. J. Arid Environ. 75, 1029–1037. https://doi.org/10.1016/j.jaridenv.2011.06.006 (2011).ADS 
    Article 

    Google Scholar 
    Kim, J., Seo, C., Kwon, H., Ryu, J. & Kim, M. A study on the species distribution modeling using national ecosystem survey data. J. Environ. Impact Assess. 21, 593–607 (2012) (in Korean with English abstract).
    Google Scholar 
    Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS One 11, e0144076. https://doi.org/10.1371/journal.pone.0144076,Pubmed:26735688 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, M. S. et al. Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea. Korean J. Environ. Ecol. 31, 381–396. https://doi.org/10.13047/KJEE.2017.31.4.381 (2017).Article 

    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Padoa-Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers. Distrib. 15, 108–116. https://doi.org/10.1111/j.1472-4642.2008.00516.x (2009).Article 

    Google Scholar 
    Sillero, N. Modelling a species in expansion at local scale: Is Hyla meridionalis colonising new areas in Salamanca, Spain. Acta Herpetol. 4, 37–46 (2009).
    Google Scholar 
    Yun, S., Lee, J. W. & Yoo, J. C. Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Glob. Ecol. Conserv. 22, e00976. https://doi.org/10.1016/j.gecco.2020.e00976 (2020).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2012).
    Google Scholar 
    Katayama, N. et al. Indirect positive effects of agricultural modernization on the abundance of Japanese tree frog tadpoles in rice fields through the release from predators. Aquat. Ecol. 47, 225–234. https://doi.org/10.1007/s10452-013-9437-0 (2013).Article 

    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272. https://doi.org/10.1080/21513732.2013.821168 (2013).Article 

    Google Scholar 
    Cortes, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of Neotropical amphibians and reptiles: A review. Univ. Sci. 20, 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna (2015).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485. https://doi.org/10.1038/nature09670,Pubmed:21350480 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. https://doi.org/10.1126/science.1184695,Pubmed:20466932 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118. https://doi.org/10.1111/j.1472-4642.2009.00619.x (2010).Article 

    Google Scholar 
    Blank, L. & Blaustein, L. Using ecology niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167. https://doi.org/10.1007/s10750-012-1101-5 (2012).Article 

    Google Scholar 
    de Pous, P., Beukema, W., Weterings, M., Dümmer, I. & Geniez, P. Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: A preliminary assessment. Biodivers. Conserv. 20, 89–118. https://doi.org/10.1007/s10531-010-9948-0 (2011).Article 

    Google Scholar 
    NIBR (National Institute of Biological Resources). National List of Species (Reptiles and amphibians). https://www.kbr.go.kr/stat/ktsnfiledown/downpopup.do (2020).Ministry of the Environment. List of Prohibited Wildlife Such as Capture and Harvesting (Ministry of the Environment, 2015).NIBR (National Institute of Biological Resources). Red Data Book of Republic of Korea. Amphibians and Reptiles (NIBR, Incheon), 110–117 (2019).Kim, J. B. Taxonomic list and distribution of Korean Amphibians. Korean J. Herpetol. 1, 1–13 (2009) (in Korean with English abstract).
    Google Scholar 
    Song, J. Y. & Lee, I. Elevation distribution of Korean Amphibians. Korean J. Herpetol. 1, 15–19 (2009) (in Korean with English abstract).
    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of Amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010) (in Korean with English abstract).
    Google Scholar 
    Do, M. S. et al. Anuran Community Patterns in the rice fields of the mid-western region of the Republic of Korea. Glob. Ecol. Conserv. 26, e01448. https://doi.org/10.1016/j.gecco.2020.e01448 (2021).Article 

    Google Scholar 
    Kim, I. H., Son, S. H., Kang, S. W. & Kim, J. B. Distribution and habitat characteristics of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 15–22 (2012) (in Korean with English abstract).
    Google Scholar 
    Do, M. S., Lee, J. W., Jang, H. J., Kim, D. I. & Yoo, J. C. Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological niche-based models and GIS1a. Korean J. Environ. Ecol. 30, 173–184. https://doi.org/10.13047/KJEE.2016.30.2.173 (2016) (in Korean with English abstract).Article 

    Google Scholar 
    Do, M. S. et al. The study on habitat analysis and ecological niche of Korean Brown Frogs (Rana dybowskii, R. Coreana and R. huanrensis) using the species distribution model. Korean J. Herpetol. 9, 1–11 (2018).
    Google Scholar 
    Do, M. S., Choi, S., Jang, H. J. & Suh, J. H. Predicting the Distribution of three Korean pit viper Species (Gloydius brevicaudus, G. ussuriensis and G. intermedius) under Climate Change. Russ. J. Herpetol. (2022)Koo, K. S., Park, D. & Oh, H. S. Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J. Asia Pac. Biodivers. 12, 1–6. https://doi.org/10.1016/j.japb.2018.11.001 (2019).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals (Basel) 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 

    Google Scholar 
    Shin, Y. et al. How threatened is Scincella huanrenensis? An update on threats and trends. Conservation 1, 58–72. https://doi.org/10.3390/conservation1010005 (2021).Article 

    Google Scholar 
    Lee, S. Y. et al. Distribution prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the climate change. Korean J. Environ. Ecol. 35, 480–489. https://doi.org/10.13047/KJEE.2021.35.5.480 (2021).Article 

    Google Scholar 
    Ra, N. Y. Habitat and Behavioral Characteristics, Captive Breeding and Recovery Strategy of the Endangered Gold-Spotted Pond Frog (Rana Plancyi Chosenica). PhD thesis (Kangwon Natl Univ., 2010).Borzée, A., Kim, J. Y. & Jang, Y. Asymmetric competition over calling sites in two closely related treefrog species. Sci. Rep. 6, 32569. https://doi.org/10.1038/srep32569,Pubmed:27599461 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, W. Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. J. Korean Environ. Res. Tech. 18, 71–82 (2015) (in Korean with English abstract).
    Google Scholar 
    Ahn, J. Y., Choi, S., Kim, H., Suh, J. H. & Do, M. S. Ecological niche and interspecific competition of two frog species (Pelophylax nigromaculatus and P. chosenicus) in South Korea using the geographic information system. KJEE 54, 363–373 (2021).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J. & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea (NIER, 2011) (in Korean).Lee, J. H. & Park, D. Spatial ecology of translocated and resident Amur ratsnakes (Elaphe schrenckii) in two mountain valleys of South Korea. Asian Herpetol. Res. 2, 223–229 (2012).Article 

    Google Scholar 
    Do, M. S., Nam, K. B. & Yoo, J. C. First observation on courtship behavior of short-tailed viper snake, Gloydius saxatilis (Squamata: Viperidae) in Korea. J. Asia Pac. Biodivers. 10, 583–586. https://doi.org/10.1016/j.japb.2017.08.003 (2017).Article 

    Google Scholar 
    Do, M. S. & Nam, K. B. Distribution patterns and ecological niches of the red-tongued pit viper (Gloydius ussuriensis) and the Central Asian pit viper (Gloydius intermedius) in Cheonmasan Mountain, South Korea. Russ. J. Herpetol. 28, 348–354. https://doi.org/10.30906/1026-2296-2021-28-6-348-354 (2021).Article 

    Google Scholar 
    Do, M. S. Habitat use and hiding behavior of Central Asian pit viper (Gloydius intermedius). Korean J. Herpetol. 12, 1–8 (2021).
    Google Scholar 
    Min, M. S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90. https://doi.org/10.1038/nature03474,Pubmed:15875021 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, J. Y. Current status and distribution of reptiles in the Republic of Korea. Korean J. Environ. Biol. 25, 124–138 (2007).
    Google Scholar 
    Jang, H. J., Kim, D. I. & Jang, M. H. Distribution of reptiles in South Korea: based on the 3rd National Ecosystem Survey. Korean J. Herpetol. 7, 30–35 (2016) (in Korean with English abstract).
    Google Scholar 
    Seo, C. W., Choi, T. Y., Choi, Y. S. & Kim, D. Y. A study on wildlife habitat suitability modeling for goral (Nemorhaedus caudatus raddeanus) in Seoraksan national park. J. Korean Environ. Res. Reveg Tech. 11, 28–38 (2008) (in Korean with English abstract).
    Google Scholar 
    Kown, H. S. Integrated Evaluation Model of Biodiversity for Conservation Planning: Focused on MT, PhD thesis (Mt Deokyu and MT: Jiri, 2011, 2011). Gaya Regions (Graduate School, Seoul Natl Univ., 2011).Urbina-Cardona, J. N. & Loyola, R. D. Applying niche-based models to predict endangered-hylid potential distributions: Are Neotropical protected areas effective enough?. Trop. Conserv. Sci. 1, 417–445. https://doi.org/10.1177/194008290800100408 (2008).Article 

    Google Scholar 
    Korea Forest Service. Forest area by administrative district. https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardList.do?mn=NKFS_04_05_10&pageIndex=1&pageUnit=10&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchdept=&searchWrd=&ctgryLrcls=CTGRY070&ntcStartDt=&ntcEndDt=&bbsId=BBSMSTR_1016 (2015).Statistics Korea. Population and housing census results in South Korea. https://www.kostat.go.kr/portal/korea/kor_nw/1/2/2/index.board (2020).Hyun, J. Brokering science, blaming culture: The US–South Korea ecological survey in the Demilitarized Zone, 1963–8. Hist. Sci. 59, 315–343. https://doi.org/10.1177/0073275320974209,Pubmed:33287575 (2021).Article 
    PubMed 

    Google Scholar 
    Choung, E. H. A theoretical study on the landscape of the Korean DMZ and its spatial significance. Inter-Asian Cult. Stud. 22, 16–35. https://doi.org/10.1080/14649373.2021.1886465 (2021).Article 

    Google Scholar 
    Ministry of the Environment. Report on Biodiversity in the DMZ (Demilitarized Zone) Area. Seocheon-Gun (Ministry of the Environment, 2016).Statistics Korea. Status of species investigation by national park in South Korea. https://kosis.kr/statHtml/statHtml.do?orgId=355&tblId=TX_35501_A069&conn_path=I3 (2021).Koo, K. S., Kwon, S., Do, M. S. & Kim, S. Distribution characteristics of exotic turtles in Korean wild-Based. Korean J Ecol. Environ. 50, 286–294. https://doi.org/10.11614/KSL.2017.50.3.286 (2017).Article 

    Google Scholar 
    National Institute of Ecology. 30 Years of the Natural Environment Survey 1986–2015 (National Inst. of Ecology, Seocheon, 2017).Korea National Park Research Institute. Report on Natural Resource Study. https://www.knps.or.kr/ (2021).GBIF. Global Biodiversity Information Facility Home. http://www.gbif.org/ (2020).Kim, D. I. Species Distribution Modeling, Microhabitat Use, and Morphological Variation of the Schlegel’s Japanese Gecko (Gekko japonicus). PhD thesis (Graduate School, Kangwon Natl Univ., 2019).Borzée, A. et al. Yellow Sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299. https://doi.org/10.1371/journal.pone.0234299,Pubmed:32579561 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NGII (National Geographic Information Institute). Digital Topographic Map. https://www.ngii.go.kr (2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Pradhan, P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8, 29–34 (2016).
    Google Scholar 
    Yi, Y. J., Cheng, X., Yang, Z. F. & Zhang, S. H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010 (2016).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Phillips, S., Dudik, M. & Schapire, R. A maximum entropy approach to species distribution modeling. In Proceeding of the 21st International Conference on Machine Learning 655–662 (ACM Pr., 2004).Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. A. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci. Rep. 11, 23099. https://doi.org/10.1038/s41598-021-02525-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    VanderWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Modell. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C. & Codding, B. F. Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS One 15, e0239424. https://doi.org/10.1371/journal.pone.0239424,Pubmed:33002016 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (OUP, 2011).Book 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x (2006).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Article 

    Google Scholar 
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195–207. https://doi.org/10.1007/s10584-018-2338-4 (2019).ADS 
    Article 

    Google Scholar 
    del Castillo Domínguez, S. L. et al. Predicting the invasion of the acoustic niche: potential distribution and call transmission efficiency of a newly introduced frog in Cuba. Perspect. Ecol. Conserv. 19, 90–97. https://doi.org/10.1016/j.pecon.2020.12.002 (2021).Article 

    Google Scholar 
    Lee, J. W. et al. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea. Ecol. Evol. 4, 3689–3702. https://doi.org/10.1002/ece3.1209,Pubmed:25478158 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Segal, R. D., Massaro, M., Carlile, N. & Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv. 24, 959–969. https://doi.org/10.1111/acv.12698 (2021).Article 

    Google Scholar 
    Mori, E. et al. How the South was won: Current and potential range expansion of the crested porcupine in Southern Italy. Mamm. Biol. 101, 11–19. https://doi.org/10.1007/s42991-020-00058-2 (2021).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615,Pubmed:3287615 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1,Pubmed:19323182 (2009).Article 
    PubMed 

    Google Scholar 
    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 27, 756–769. https://doi.org/10.1071/WF18072 (2018).Article 

    Google Scholar 
    Zhuang, H. et al. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case. Biodivers. Sci. 26, 931–940. https://doi.org/10.17520/biods.2018059 (2018).Article 

    Google Scholar 
    NGII (National Geographic Information Institute). Geographical Extent of the Conservation Area in South Korea. https://www.ngii.go.kr (2021).Bosso, L. et al. A gap analysis for threatened bat populations on Sardinia hystrix, the Italian. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    Ahmadi, M. et al. Species and space: A combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5 (2020).Article 

    Google Scholar  More

  • in

    Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).PubMed 
    Article 

    Google Scholar 
    Atkinson, C. L., Capps, K. A., Rugenski, A. T. & Vanni, M. J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rev. 92, 2003–2023 (2016).PubMed 
    Article 

    Google Scholar 
    Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).Article 

    Google Scholar 
    Vanni, M. J., Boros, G. & McIntyre, P. B. When are fish sources vs. sinks of nutrients in lake ecosystems?. Ecology 94(10), 2195–206 (2013).PubMed 
    Article 

    Google Scholar 
    Lovell, T. Nutrition and Feeding of Fish Vol. 260 (Van Nostrand Reinhold, 1989).Book 

    Google Scholar 
    Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: The potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Nat. Acad. Sci. USA 112(8), 2617–2622 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alves, J. M. et al. Stoichiometry of benthic invertebrate nutrient recycling: Interspecific variation and the role of body mass. Aquat. Ecol. 44, 421–430 (2010).CAS 
    Article 

    Google Scholar 
    Hall, R. O. J., Koch, B. J., Marshall, M. C., Taylor, B. W. & Tronstad, L. M. In How Body Size Mediates the Role of Animals in Nutrient Cycling in Aquatic Ecosystems (eds Hildrew, A. G. et al.) 286–305 (Cambridge University Press, 2007).
    Google Scholar 
    Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc. Nat. Acad. Sci. USA 112, 2640–2647 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: A global synthesis. Ecology 97, 3460–3471 (2016).PubMed 
    Article 

    Google Scholar 
    Burel, C. et al. Effects of temperature on growth and metabolism in juvenile turbot. J. Fish Biol. 49, 678–692 (1996).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12(5), 369–384 (2009).PubMed 
    Article 

    Google Scholar 
    McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Nat. Acad. Sci. USA 104, 4461–4466 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barneche, D. R. & Allen, A. P. Embracing general theory and taxon-level idiosyncrasies to explain nutrient recycling. Proc. Nat. Acad. Sci. USA 112, 6248–6249 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glaholt, S. P. Jr. & Vanni, M. J. Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshw. Biol. 50, 1864–1881 (2005).CAS 
    Article 

    Google Scholar 
    McIntyre, P. B. & Flecker, A. S. Ecological Stoichiometry as an integrative framework in stream fish ecology. Am. Fish. Soc. Symp. 73, 539–558 (2010).
    Google Scholar 
    Pough, F. H., Janis, C. M. & Heiser, J. B. Vertebrate Life (Prentice-Hall, 2005).
    Google Scholar 
    Griffiths, D. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshw. Fish 15, 86–95 (2006).Article 

    Google Scholar 
    McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?. Ecology 89(8), 2335–2346 (2008).PubMed 
    Article 

    Google Scholar 
    Cross, W. F., Benstead, J. P., Rosemond, A. D. & Wallace, J. B. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett. 6, 721–732 (2003).Article 

    Google Scholar 
    Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78(6), 1816–1831 (1997).Article 

    Google Scholar 
    Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293 (2002).Article 

    Google Scholar 
    Fritschie, K. J. & Olden, J. D. Disentangling the influences of mean body size and size structure on ecosystem functioning: an example of nutrient recycling by a non-native crayfish. Ecol. Evol. 6, 159–169 (2016).PubMed 
    Article 

    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    White, C. R. & Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Natl Acad. Sci. USA 100, 4046–4049 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capellini, I., Venditti, C. & Barton, R. A. Phylogeny and metabolic scaling in mammals. Ecology 91, 2783–2793 (2010).PubMed 
    Article 

    Google Scholar 
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 107, 12941–12945 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tátrai, I. Influence of temperature, rate of feeding and body weight on nitrogen metabolism of bream Abramis brama L. Comp. Biochem. Physiol. 83A, 543–547 (1986).Article 

    Google Scholar 
    Tsui, T. K. N. et al. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J. Exp. Biol. 205, 651–659 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zakés, Z., Szczepkowski, M., Demska-Zakés, K. & Jesiolowski, M. Oxygen consumption and ammonia excretion by juvenile pike, Esox lucius L. Arch. Pol. Fish. 15, 79–92 (2007).
    Google Scholar 
    Liu, F., Yang, S. & Chen, H. Effect of temperature, stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis x M. chrysops). Aquac. Res. 40, 450–455 (2009).CAS 
    Article 

    Google Scholar 
    Currie, S. et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 88, 43–58 (2010).CAS 
    Article 

    Google Scholar 
    Dockray, J. J., Reid, S. D. & Wood, C. M. Effects of elevated summer temperatures and reduced pH on metabolism and growth of juvenile rainbow trout (Oncorhynchus mykiss) on unlimited ration. Can. J. Fish. Aquat. Sci. 53, 2752–2763 (1996).Article 

    Google Scholar 
    Oliveira-Cunha, P. et al. Effects of incubation conditions on nutrient mineralisation rates in fish and shrimp. Freshw. Biol. 63(9), 1107–1117 (2018).CAS 
    Article 

    Google Scholar 
    Pilati, A. & Vanni, M. J. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116, 1663–1674 (2007).Article 

    Google Scholar 
    Moody, E. K., Corman, J. R., Elser, J. J. & Sabo, J. L. Diet composition affects the rate and N: P ratio of fish excretion. Fresh. Biol. 60, 456–465 (2015).CAS 
    Article 

    Google Scholar 
    Chew, S. F. & Ip, Y. K. Excretory nitrogen metabolism and defense against ammonia toxicity in air-breathing fishes. J. Fish Biol. 84, 603–638 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helder, C. Subsídios para Gestão dos Recursos Hídricos das bacias hidrográficas dos rios Macacu, São João, Macaé e Macabu (Secretaria do Meio Ambiente, 1999).
    Google Scholar 
    Mazzoni, R., Moraes, M., Rezende, C. F. & Miranda, J. C. Alimentação e padrões ecomorfológicos das espécies de peixes de riacho do alto rio Tocantins, Goiás, Brasil. Iheringia. Série Zool. 100, 2 (2010).
    Google Scholar 
    Menezes, N. A., Weitzman, S. H.,Weitzman, M. J., Oyakawa, O. T., Lima, F. C. T. & Castro, R. M. C. Peixes de água doce da Mata Atlantica. Museu de Zoologia, Universidade de São Paulo, 1ª edição. ISBN: 9788587735034 (2007).Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. Peixes de Riachos da Mata Atlântica. Editora Neotropica, 1ª edição. ISBN: 859904902x (2006).Fogaça, F. N. O., Aranha, J. M. R. & Esper, M. D. L. P. Ictiofauna do rio do Quebra (Antonina, PR, Brasil): ocupação espacial e hábito alimentar. Interciencia 28(3), 168–173 (2003).
    Google Scholar 
    Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56(10), 1801–1808. https://doi.org/10.1139/f99-128 (1999).CAS 
    Article 

    Google Scholar 
    Taylor, B. W. et al. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J. North Am. Benthol. Soc. 26, 167–177 (2007).Article 

    Google Scholar 
    Gotherman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwater (Blackwell, 1978).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).Article 

    Google Scholar 
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    Faraday, J. J. Linear Models with R (CRC Press, 2009).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More

  • in

    A functional vulnerability framework for biodiversity conservation

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (2021).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138.e3 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8074–8079 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life‐history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2018).ADS 
    Article 

    Google Scholar 
    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, A. J. Certainty and uncertainty in climate change predictions: what use are climate models? Environ. Resour. Econ. 39, 37–44 (2008).Article 

    Google Scholar 
    Field, C. B. et al. Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–32 (2014).Shiogama, H. et al. Predicting future uncertainty constraints on global warming projections. Sci. Rep. 6, 18903 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S. et al. The Pacific Decadal Oscillation is less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).PubMed 
    Article 

    Google Scholar 
    Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. 57, 241–252 (2020).Article 

    Google Scholar 
    Francalanci, S., Paris, E. & Solari, L. On the vulnerability of woody riparian vegetation during flood events. Environ. Fluid Mech. 20, 635–661 (2020).Article 

    Google Scholar 
    Pellegrini, A. F. A. et al. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 20, 307–316 (2017).PubMed 
    Article 

    Google Scholar 
    Jørgensen, L. L., Planque, B., Thangstad, T. H. & Certain, G. Vulnerability of megabenthic species to trawling in the Barents Sea. ICES J. Mar. Sci. 73, i84–i97 (2016).Article 

    Google Scholar 
    Certain, G., Jørgensen, L. L., Christel, I., Planque, B. & Bretagnolle, V. Mapping the vulnerability of animal community to pressure in marine systems: disentangling pressure types and integrating their impact from the individual to the community level. ICES J. Mar. Sci. 72, 1470–1482 (2015).Article 

    Google Scholar 
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 548 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staudt, A. et al. The added complications of climate change: understanding and managing biodiversity and ecosystems. Front. Ecol. Env. 11, 494–501 (2013).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153 (2016).Article 

    Google Scholar 
    O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).ADS 
    Article 

    Google Scholar 
    Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).PubMed 
    Article 

    Google Scholar 
    Soranno, P. A. et al. Quantifying regional reference conditions for freshwater ecosystem management: a comparison of approaches and future research needs. Lake Reserv. Manag. 27, 138–148 (2011).Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Cons. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    Williams, B. A. et al. Global rarity of intact coastal regions. Cons. Biol. c13874, 1–12 (2022).Kültz, D. Defining biological stress and stress responses based on principles of physics. J. Exp. Zool. A: Ecol. Integr. Physiol. 333, 350–358 (2020).Article 

    Google Scholar 
    Tinker, J., Lowe, J., Pardaens, A., Holt, J. & Barciela, R. Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog. Oceanogr. 148, 56–73 (2016).ADS 
    Article 

    Google Scholar 
    Xu, L. et al. Potential precipitation predictability decreases under future warming. Geophys. Res Lett. 47, e2020GL090798 (2020).ADS 

    Google Scholar 
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).PubMed 
    Article 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    Trindade-Santos, I., Moyes, F. & Magurran, A. E. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proc. R. Soc. B. 287, 20200889 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).ADS 
    Article 

    Google Scholar 
    Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).Article 

    Google Scholar 
    McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Nat. Acad. Sci. USA 115, 3084–3089 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B. 288, 20201600 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lavergne, S., Thuiller, W., Molina, J. & Debussche, M. Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region: environmental factors influencing the distribution of rare plants. J. Biogeogr. 32, 799–811 (2005).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).PubMed 
    Article 

    Google Scholar 
    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Nat. Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waldock, C. et al. A quantitative review of abundance-based species distribution models. Ecography 2022, e05694 (2022).Article 

    Google Scholar 
    Global Biodiversity Information Facility. available at: https://www.gbif.org/Ocean Biodiversity Information System. available at: https://obis.org/Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef life survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations Framework Convention on Climate Change. Paris Agreement. United Nations (2015).Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Peterson, G. et al. Uncertainty, climate change, and adaptive management. Conserv. Ecol. 1, art4 (1997).
    Google Scholar 
    Dewulf, A. & Biesbroek, R. Nine lives of uncertainty in decision-making: strategies for dealing with uncertainty in environmental governance. Policy Soc. 37, 441–458 (2018).Article 

    Google Scholar 
    Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).PubMed 
    Article 

    Google Scholar 
    Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).Article 

    Google Scholar 
    Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ICES (2021). Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. Report. https://doi.org/10.17895/ices.pub.8211.Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. ICES J. Mar. Sci. 57, 1303–1309 (2000).Article 

    Google Scholar 
    Montero‐Serra, I., Edwards, M. & Genner, M. J. Warming shelf seas drive the sub tropicalization of European pelagic fish communities. Glob. Change Biol. 21, 144–153 (2014).ADS 
    Article 

    Google Scholar 
    Guillen, J. et al. A review of the European union landing obligation focusing on its implications for fisheries and the environment. Sustainability 10, 900 (2018).Article 

    Google Scholar 
    Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 24, 1988–2009 (2021).PubMed 
    Article 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Nat. Acad. Sci. USA 117, 24345–24351 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Cons. 221, 44–58 (2018).Article 

    Google Scholar 
    Petchey, O. L. Functional diversity: back to basics and looking forward. Ecol Lett. 9, 741–758 (2006).Lefcheck, J. S., Bastazini, V. A. G. & Griffin, J. N. Choosing and using multiple traits in functional diversity research. Environ. Conserv. 42, 104–107 (2015).Article 

    Google Scholar 
    Zhu, L. et al. Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci. Rep. 7, 3643 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Funct. Ecol. 31, 427–435 (2017).Article 

    Google Scholar 
    Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).PubMed 
    Article 

    Google Scholar 
    de Bello, F., Carmona, C. P., Leps, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Boyer, A. G. & Jetz, W. Extinctions and the loss of ecological function in island bird communities. Glob. Ecol. Biogeogr. 23, 679–688 (2014).Article 

    Google Scholar 
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. United Nations. https://www.refworld.org/docid/57b6e3e44.html (2015).Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of trait spaces: assessing trait space quality. Glob. Ecol. Biogeogr. 24, 728–740 (2015).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).Article 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (2011).Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).Article 

    Google Scholar 
    Beukhof, E., Dencker, T. S., Palomares, M. L. D. & Maureaud, A. A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas. PANGAEA, https://doi.org/10.1594/PANGAEA.900866 (2019).Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA coral reef watch. Remote Sens. 6, 11579–11606 (2014).ADS 
    Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Stekhoven, D. J. & Bürhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78, 103–116 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T. et al. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 46, 18–29 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morens, D. M., Folkers, G. K. & Fauci, A. S. Emerging infections: A perpetual challenge. Lancet Infect. Dis. 8, 710–719 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunningham, A. A. A walk on the wild side—emerging wildlife diseases. BMJ 331, 1214–1215 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the interface, humal.-animal. Science 326, 1362–1368 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, Z. et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    Sczyrba, A. et al. Critical assessment of metagenome interpretation: A benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Álvarez-Romero, J. G., Pressey, R. L., Ban, N. C., Torre-Cosío, J. & Aburto-Oropeza, O. Marine conservation planning in practice: Lessons learned from the gulf of California. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 483–505 (2013).Article 

    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).Article 

    Google Scholar 
    Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).Article 

    Google Scholar 
    Deepak, D. et al. Pinniped zoonoses: A review. Int. J. Livest. Res. 9, 1 (2019).Article 

    Google Scholar 
    Hermosilla, C. et al. Gastrointestinal parasites and bacteria in free-living South American sea lions (Otaria flavescens) in Chilean Comau Fjord and new host record of a Diphyllobothrium scoticum-like cestode. Front. Mar. Sci. 5, 1–13 (2018).Article 

    Google Scholar 
    Oxley, A. P. A., Powell, M. & McKay, D. B. Species of the family Helicobacteraceae detected in an Australian sea lion (Neophoca cinerea) with chronic gastritis. J. Clin. Microbiol. 42, 3505–3512 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waltzek, T. B., Cortés-Hinojosa, G., Wellehan, J. F. X. & Gray, G. C. Marine mammal zoonoses: A review of disease manifestations. Zoonoses Public Health 59, 521–535 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dans, S. L., Crespo, E. A. & Coscarella, M. A. Wildlife tourism: Underwater behavioral responses of South American sea lions to swimmers. Appl. Anim. Behav. Sci. 188, 91–96 (2017).Article 

    Google Scholar 
    Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).Article 

    Google Scholar 
    Fuks, G. et al. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbime 6, 1–13 (2018).Article 

    Google Scholar 
    Barb, J. J. et al. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS ONE 11, e0148047 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: A high throughput sequencing approach. Helgol. Mar. Res. 71, 1–10 (2017).Article 

    Google Scholar 
    Brooks, J. P. et al. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies Ecological and evolutionary microbiology. BMC Microbiol. 15, 1–14 (2015).Article 

    Google Scholar 
    Ramirez-delgado, D. et al. Multi-locus evaluation of gastrointestinal bacterial communities from Zalophus californianus pups in the Gulf of California, México. PeerJ https://doi.org/10.7717/peerj.13235 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chakravorty, S., Helb, D., Burday, M. & Connell, N. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick. Borne. Dis. 8, 453–461 (2017).PubMed 
    Article 

    Google Scholar 
    Gold, Z. et al. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol. Ecol. Resour. 21, 2546–2564 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alnajar, S. & Gupta, R. S. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol. 54, 108–127 (2017).PubMed 
    Article 

    Google Scholar 
    Jiang, L. et al. Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory. J. Microbiol. 58, 357–366 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janda, J. M. & Abbott, S. L. The changing face of the family enterobacteriaceae (Order: Enterobacterales): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 34, 1–45 (2021).Article 

    Google Scholar 
    Shi, R. et al. Pathogenicity of Shigella in chickens. PLoS ONE 9, 1–7 (2014).
    Google Scholar 
    Roy, B., Tousif Ahamed, S. K., Bandyopadhyay, B. & Giri, N. Development of quinolone resistance and prevalence of different virulence genes among Shigella flexneri and Shigella dysenteriae in environmental water samples. Lett. Appl. Microbiol. 71, 86–93 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarkson, K. A. et al. Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine 66, 103308 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khalil, I. A. et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Detection of Shigella in milk and clinical samples by magnetic immunocaptured-loop-mediated isothermal amplification assay. Front. Microbiol. 9, 1–7 (2018).Article 

    Google Scholar 
    Maurelli, A. T. et al. Shigella infection as observed in the experimentally inoculated domestic pig, Sus scrofa domestica. Microb. Pathog. 25, 189–196 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukarati, N. L. et al. A serological survey of Bacillus anthracis reveals widespread exposure to the pathogen in free-range and captive lions in Zimbabwe. Transbound. Emerg. Dis. 68, 1676–1684 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Norris, M. H. et al. Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains. PLoS ONE 15, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    Conesa, A., Garofolo, G., Di Pasquale, A. & Cammà, C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011–2021): Microbiological and WGS data risk assessment. EFSA J. 20, 1–12 (2022).Article 
    CAS 

    Google Scholar 
    Buettner, S., Wieland, B., Staerk, K. D. C. & Regula, G. Risk attribution of Campylobacter infection by age group using exposure modelling. Epidemiol. Infect. 138, 1748–1761 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz-Sanchez, S., Hanning, I., Pendleton, S. & D’Souza, D. Next-generation sequencing: The future of molecular genetics in poultry production and food safety. Poult. Sci. 92, 562–572 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yekani, M. et al. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb. Pathog. 149, 104506 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wareham, D. W., Wilks, M., Ahmed, D., Brazier, J. S. & Millar, M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 40, 67–68 (2005).Article 

    Google Scholar 
    Yoshino, Y. et al. Clinical features of Bacteroides bacteremia and their association with colorectal carcinoma. Infection 40, 63–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Committee on Biological Agents (ABAS). TRBA 466 Classification of Prokaryotes (Bacteria and Archaea) into Risk Groups (2010).Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, 36–42 (2013).Article 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 1–7 (2015).Article 

    Google Scholar  More

  • in

    Predicting the effects of climate change on the cross-scale epidemiological dynamics of a fungal plant pathogen

    Data collectionStudy sitesWe selected four study sites in the Upper Gunnison Basin in Colorado, USA. As we intended for these sites to capture a large amount of variation in environmental conditions, the primary criteria we used for site selection was elevation. Mirroring patterns of mountain weather observed worldwide, elevation is correlated with a multitude of environmental factors in the Rocky Mountains. Predominant trends include a negative correlation between altitude and temperature, a positive correlation between altitude and precipitation34, and transitions in plant community composition (from ‘mountain shrub’ to ‘montane’ to ‘subalpine’ to ‘alpine’) with increasing altitude35.Our sites span a large elevation gradient of approximately 1000 m that captures significant variation in environmental conditions. These sites should not be interpreted as a direct ‘elevation for climate substitution’, especially considering the significant changes in weather at each site that occur over the course of our observation periods, which ran from June to July. The lowest site, ‘cement creek’ (CC; approximately 38.82156° N, 106.86893° W), falls within a sage brush meadow on the boundary between the mountain shrub and montane vegetation zones at 2440 m elevation. The second lowest site, ‘bus turnaround’ (BT; approximately 38.97130° N, 106.99595° W), is situated in an open subalpine meadow at the base of Gothic Mountain at ~ 2940 m. The second highest site, ‘gothic mountain’ (GM; approximately 38.97969° N, 107.01937° W), is also in the subalpine zone on a steep hillside within a clearing in an evergreen forest on the lower slopes of Gothic Mountain at 3220 m. The highest site, ‘high meadow’ (HM; approximately 38.96779° N, 107.02184° W), is on an exposed meadow at the upper fringes of the subalpine zone on the shoulder of Gothic Mountain at 3,410 m.We began our observations at each site by mapping the flax population (see “Population mapping” sub-section below). This occurred on 6/15/2020 for CC, 6/17/2020 for BT, 6/16/2020 for GM, and 6/18/2020 for HM. We concluded all observations at CC on 7/27/2020, at BT on 7/29/2020, at GM on 7/28/2020, and at HM on 7/10/2020 (aside from spore trap collection which concluded on 7/21/2020).Weather monitoringWe deployed environmental sensors to record longitudinal weather data at each of our sites. We recorded temperature, humidity, rainfall, and wind speed and direction (at ~ 1 m above ground) every five minutes (see Supplementary Text 1 for logger specifications). We used temperature and humidity data to calculate absolute humidity (Supplementary Text 2). Due to logistical constraints, rainfall and wind speed/direction loggers were deployed later than temperature and humidity loggers.We extracted weather metrics for a given observation period from this data as follows: We calculated the mean, maximum, and minimum temperature as the mean, maximum, or minimum of temperature readings. Likewise, we calculated mean absolute humidity as the mean of absolute humidity records (calculated from temperature and relative humidity every five minutes). Daily mean rainfall was calculated as of mean rainfall records multiplied by the number of 5 min increments in a day (i.e. 288).Future climate dataTo enable forecasting of the effects of climate change on within and between host transmission processes, we compiled projected future weather data. We extracted downscaled climate and hydrological data generated using the Localized Constructed Analogs (LOCA) method and the CESM1(CAM5) model from the “Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections” archive36,37,38,39,40. Specifically, we extracted values for daily mean temperature, relative humidity, and rainfall from the CESM1(CAM5) hydrology model, and values for daily maximum and minimum temperature from the CESM1(CAM5) climate model for both the RCP4.5 and RCP8.5 emissions scenarios41. Temporally, this data spanned June through July in 2020, 2030, 2040, 2045, 2050, 2060, and 2070. Spatially, this data represents projections for the area spanning (38.9375, 39.0) latitude and (− 107.0, − 106.9375) longitude. This area is the finest grained spatial extent including the BT site for which projections were available.Population mappingIn order to uncover drivers of population level epidemiological dynamics, it is necessary to characterize the ‘landscape of susceptibility’ in the host population. For spatially structured infectious disease systems such as flax rust, this involves documenting not only the infection status of each individual and any likely covariates of contact rate or susceptibility (e.g. size), but also the spatial arrangement of individuals. To accomplish this, we established 10 by 20 m transects at each of our field sites. We recorded the coordinates of each transect corner and the compass bearings associated with the transect axes (so that wind direction could be translated to the transect coordinate system) using a Garmin GPS unit (part #: 010-01735-10). At the beginning of the field season, we mapped the location, height, and infection status (healthy or diseased) of each plant within each transect. Plants with heights less than five centimeters were denoted as seedlings. While other metrics of size such as stem count could be used to form a more complete picture of plant size, we chose to use height alone as a proxy for size as it was the only measure that we could feasibly record for the many hundreds of plants within each transect. At the CC site, we were unable to map all healthy plants in certain areas of the transect due to time constraints, but we did record data for all diseased plants in these regions.Epidemiological surveysAfter documenting the initial epidemiological conditions, we tracked the spatiotemporal spread of flax rust within each transect. Approximately once per week, we visually inspected each flax individual in the transect for signs of disease, recording the location of any newly infected plants so they could be matched to a previously uninfected plant. We also recorded the height of all newly infected plants. We conducted these epidemiological surveys at least seven times at each site. Plants identified as infected in the initial population mapping and in these subsequent epidemiological surveys were marked with flags to ensure that they would not be repeatedly recorded as newly infected. Although we did not map the entirety of the CC transect, we covered the entire 10 by 20 m area in all epidemiological surveys.Diseased focal plantsWithin each transect, we designated a subset of diseased plants as ‘focal diseased plants’ and used them to make detailed measurements of within-host disease spread processes. These processes included changes in infection intensity, which we measured at the plant scale, as well as pustule growth, which we measured at the sub-plant scale using changes in pustule area and as a proxy.All initially infected plants were designated as diseased focal plants, and we continued to give this designation to newly diseased plants (except in some cases, diseased plants with height of approximately 5 cm or less, as these plants were too delicate to be manipulated) until we obtained at least 25 infected focal diseased plants per site. This occurred on 7/20/2020 at CC, on 7/1/2020 at BT, and on 7/9/2020 at GM and HM. We inserted metal tags into the ground at the base of diseased focal plants so they could be quickly and reliably identified. To facilitate longitudinal measurements of disease spread at sub-plant scales, we marked up to three infected stems on each focal diseased plant with pieces of colored flagging tape tied around the base of the stem. These stems were chosen haphazardly. On each of these stems (when possible), we marked the tip of one infected leaf with black ink. We preferentially marked leaves with one or a few pustules. Approximately once every three days, we recorded detailed measurements of plant height and within-host disease spread processes.To measure pustule growth, we photographed each marked leaf with a millimeter ruler in frame using a Cannon EOS Rebel T7i DSLR camera fitted with a Canon EF-S 35 mm f/2.8 Macro IS STM lens and a Cannon MR-14EX II Macro Ring Lite. While achieving consistent photographic angles and lighting conditions is impossible in a field setting, we attempted to keep the leaf and the scale in the same plane while maintaining a perpendicular shooting angle. We also adjusted camera settings so that pustule boundaries could be clearly distinguished in images. We used ImageJ software42 to measure the maximum and minimum diameters of each photographed pustule, and calculated pustule area assuming pustules to be elliptical. To enable the size of individual pustules to be tracked across observations, each measured pustule in each image was labeled so that it could be re-identified in subsequent images based on its location on the leaf and position relative to other pustules. We omitted data for any pustule that could not be confidently identified or whose borders became indistinct from other pustules. We marked a new leaf when we were unable to find the previously marked leaf, when the leaf was accidentally removed during data collection, or when the condition of the leaf deteriorated significantly. We suspect that either the presence of ink or our handling of the plant contributed significantly to the rate at which leaf condition deteriorated, but nevertheless we were able to observe the growth of many pustules over many weeks.To measure infection intensity, we first counted the number of infected stems. Next, for each marked stem, we recorded the length of infected tissue as the length of the stem segment spanning the lowest (relative to the ground) pustule to the highest pustule. Finally, we counted the number of pustules present on a haphazardly selected leaf in the middle of the region of infected tissue on each marked stem. We did not use the same leaf at each observation as the middle of the region of infected tissue changed due to disease spread. Using these measurements, we calculated an infection intensity metric as the product of the number of infected stems, the average length of infected tissue, and the average number of pustules present on a leaf in the middle of the region of infected tissue.Healthy focal plantsAs we wished to investigate patterns of growth in both healthy and infected plants, we designated certain uninfected plants as healthy focal plants, and measured their height whenever we measured the height of focal diseased plants. To control for potential effects of stem marking on the growth of diseased focal plants, we made these same markings on healthy focal plants. Healthy focal plants were selected haphazardly, and we added new healthy focal plants over time to keep the number of diseased and healthy focal plants approximately equal. At some sites, the number of healthy focal plants fell towards the end of the observation period as many healthy focal plants became infected. When this occurred, we stopped recording data for the plant, and in some cases designated it as a diseased focal plant.Spore depositionTo measure the distribution of spore deposition from an infected plant, and how it relates to the infection intensity of the source plant and wind patterns, we deployed spore traps in arrays around a subset of focal diseased plants. We chose focal disease plants that were as removed as possible from other diseased plants to minimize the number of spores originating from other plants that would be caught in the spore traps. These spore traps consisted of a ~ 2 cm2 section of Scotch Permanent Clear Mounting Tape (part #: MT76272-5) affixed to plastic backing with double sided tape. These spore traps were secured into the ground with ~ 5 cm nails. We deployed these traps at distances of either {~ 5 cm} (traps at ~ 5 cm were placed as close to the plant as possible), {~ 5 and 25 cm}, {~ 5, 25, and 50 cm}, or {~ 5, 25, 50, and 100 cm} in each of the four directions corresponding to the axes of the transect in which they were located. The traps were left in the field for approximately one week, and then collected. The sections of mounting tape were transferred to microscope slides and sealed in place using clear packing tape. We then used a light microscope to count the number of spores present in a known area. We counted spores in an area of 0.8 cm2 for most spore traps that contained few or no spores, but we counted a minimum area of 0.1 cm2 for all spore traps, including those with greater than 10,000 spores per cm2. Melampsora lini spores were identified visually using a slide prepared with spores as a reference for spore size, shape, and color. The spores matched descriptions in the literature43. We did not observe any rust fungi other than M. lini in or around our transects, so we can be reasonably certain that our counts represent only M. lini spores from infected focal diseased plants.Statistical analysesPlant growth and within-host disease spreadTo infer how different weather factors affect plant growth, pustule growth, and changes in infection intensity, we fit generalized additive models18. We used longitudinal observations of plant height in healthy and diseased focal plants to fit the model of plant growth, and longitudinal observations of within-host disease spread at various scales in focal diseased plants to fit all other models. Because the observation periods associated with our measurements of these processes varied, we formatted the response variables in change-per-day units: For our analyses of plant growth, pustule growth, and infection intensity progression we used change in plant height per day, change in pustule area per day, and change in infection intensity per day respectively as the response variables.To infer the effects of weather variables, we included smooth terms for these factors as predictors in each model. For each observation of change in plant height, pustule area, or infection intensity, we determined the start and end timepoints of the observation period to extract the corresponding weather data. For observations of plant height, we used 12:00:00 on the day of the observation as the start/end timepoints of the observation period. For observations of pustule area, we used photograph timestamps as the start and end timepoints. For observations of infection intensity, we used the average of the timestamps of photographs taken of pustules on that plant’s leaves as the start and/or end timepoints if such photographs were taken, because all data for an individual diseased focal plant was generally collected at once. If such photographs were not taken, we used the mean timestamp of all photographs taken at that plant’s site on the observation date as the start and/or end timepoint. To focus our analysis on fine-grained relationships between weather and within-host disease spread, we discarded data corresponding to observation windows of eight or more days. According to this criterion, 13 of 609 data points were discarded in the analysis of plant growth, 216 of 3535 data points were discarded in the analysis of pustule growth, and 25 of 338 data points were discarded in the analysis of infection intensity progression. Using the start and end timepoints of the observation period as bounds, we extracted the following variables from the weather data: temperature (mean, maximum, and minimum), absolute humidity, and mean daily rainfall.To account for the nested nature of our data, we included smooth terms for study site and plant identity as random effects (accomplished by setting bs = ”re” in the s() function in mgcv) in each model. In the case of the analyses of pustule growth, plant identity refers to the plant on which the pustules were observed. We also included a term in each model that accounted for the value of the previous observation to capture any allometric effects. In the model of change in plant height per day, this term was a full tensor smooth product of last observed height and infection intensity. In the model of change in pustule area per day, this term was a smooth of last observed pustule area. In the model of change in infection intensity per day, this term was a full tensor smooth product of the base 10 logarithm of the last observed infection intensity and last observed maximum plant height.We fit these models using the gam() function in the mgcv R package and the restricted maximum likelihood parameter estimation method18,44. We used gaussian response distributions with identity link functions. The dimensionality of all basis functions was set to the default value determined by mgcv. The one exception to this involved the marginal basis for log10 infection intensity (a part of the tensor term) in the model of change in infection intensity per day. The dimensionality of this marginal basis was increased to 15 after model diagnostics indicated that the default basis dimension was insufficient. To implement variable selection so that insignificant predictor terms would be effectively removed from the models, we used the double penalty approach of Mara and Wood45 (via the ‘select = TRUE’ option in the mgcv gam() function).The coefficients of the fit models can be used to infer the effects of weather factors on plant growth and within host disease spread. To translate these inferences into predictions about how climate change might affect plant growth and within-host disease spread, we simulated trajectories of plant growth, pustule area, and infection intensity under various climate conditions. For each class of simulation, we started by defining a hypothetical starting state. For simulations of plant growth, this was a 10 cm tall uninfected plant (the plant was assumed to remain uninfected for the entire simulation). For simulations of pustule growth, this was a pustule with area 0.1 cm2. For simulations of infection intensity, this was a 25 cm tall plant with infection intensity 1.0. Next, we simulated 100 trajectories from the model posteriors using observed weather data for each site and a step size of seven days. In these simulations, we restricted plant height, pustule area, and infection intensity to remain greater or equal to 5 cm, 0 mm2, and 0.1, respectively. We included the random effect of site (but not plant identity) when making these predictions. After confirming that these simulation results qualitatively recapitulated observed patterns, we simulated sets of 100 trajectories for future climate data sets. We again excluded the random effect of plant identity when making these projections. We used the same set of 100 random number seeds for each set of 100 trajectory simulations.While performing these simulations, we extracted weather variables as follows: When extracting weather variables from observed data sets, we defined the observation period as 00:00:00 on the first day in a step to 00:00:00 on the last day in a step (e.g. midnight on July 1st to midnight on July 8th). We extracted weather metrics as described in the “Weather data” subsection of the “Data collection” section above. Applying these same methods to the projected weather data is not possible, as these data sets only give only daily mean values. Instead, we calculated mean temperature as the mean of daily mean temperature values, maximum temperature as the maximum of daily maximum temperature values, and minimum temperature as the minimum of daily minimum temperature values. Similarly, we used daily mean temperature and relative humidity to calculate daily mean absolute humidity, and calculated mean absolute humidity as the mean of these values. We applied this same procedure to calculate mean rainfall.Spore dispersalTo infer how spore deposition is related to source plant infection intensity, wind speed, and wind direction, we fit a tilted gaussian plume model22 (TGPM) to our spore deposition data. The equation specifying the TGPM is as follows:$$begin{aligned} & dleft(I,H,s,X,Yright)=frac{I k {W}_{s}}{2 pi s {sigma }^{2} }{e}^{frac{{-Y}^{2}}{2{sigma }^{2}}-frac{{(H-frac{{W}_{s }X}{s})}^{2}}{2{sigma }^{2}}} \ & for quad X >0 0 \ & for quad Xle 0.end{aligned}$$This equation describes the concentration of spores deposited at a given point ((d)) as a function of wind speed ((s)), the infection intensity of the source plant ((I)), a constant relating (I) to the source concentration of spores ((k)), and the coordinates of the point (X,Y), relative to the source. The coordinate system has the source at the origin, the X-axis parallel to the wind direction (with wind flowing in a positive direction), the Y-axis perpendicular to the X-axis on the plane defined by the ground (assumed to be flat), and the vertical Z-axis orthogonal to the X and Y axes. The shape of the three dimensional spore plum emanating from the source is defined by (s), along with constants specifying the falling velocity of spores (({W}_{s})), the height of the source ((H)), and the standard deviation of spore dispersion (({sigma }^{2})) in the horizontal and vertical directions. Following Levine and Okubu22, we calculate ({sigma }^{2}) as a function of a diffusion coefficient, (A), assuming that the variance in spore distribution increases linearly with time. We also assume that spores diffuse along the Y and Z axes at equal rates.$${sigma }^{2}=frac{2AX}{s}.$$We fit the parameters (k, {W}_{s},) and (sigma ) by minimizing the sum of squared differences between model predictions and the spore deposition data we collected from the spore traps arranged around diseased focal plants. We assumed that all spores deposited on a spore trap originated from the associated diseased focal plant, and that spore deposition occurred between noon on the day of deployment and ceased at noon two days post-deployment as the spore traps lost their adhesive properties and became saturated with dust. When predicting spore deposition using the TGPM, we set (I) equal to the infection intensity of the source diseased focal plant on the day of spore trap deployment and (H) equal to half of the maximum height of the source diseased focal plant at the day of spore trap deployment. As wind speed and direction were recorded every 5 min, we calculated total spore deposition as the sum of predicted deposition across five minute time windows. In each individual estimate, we set (s) equal to wind speed and calculated (X) and (Y) from wind direction and the location of the spore trap relative to the focal diseased plant (see Supplementary Text 3).TransmissionUsing the fitted TGPM we next sought to connect patterns of spore dispersal to transmission. The first step in this process was to align data on the spatiotemporal spread of disease with the locations of all healthy and infected plants (including non-focal plants) within each transect so that the relative locations of these could be determined (see Supplementary Text 4). Next, we built a dataset (‘corrected plant height data’) describing the height of all plants on the dates of epidemiological surveys. We preferentially used actual measurements from the initial population survey, epidemiological surveys, or focal plant measurements where they existed. For the majority of plants, height was not recorded on the date of a given epidemiological survey. In these cases, we fore- or hind-casted height from a previous or future record of plant height (whichever was closer) using the fitted generalized additive model of plant growth and observed weather data spanning the period between the date of interest and the closest record. We included the random effect of study site when making predictions, but not the random effect of plant identity as we wished to forecast heights of both focal and non-focal plants and only focal plant data was used to fit the model of plant growth.After completing these steps, we next built a ‘transmission data set’ connecting weather conditions, predicted spore deposition, plant height, and infection occurrence across the time windows between each epidemiological survey. We included separate entries for each healthy plant (focal and non-focal) during each time window. We limited the scope of this data to the periods for each transect in which all infected plants (that were not seedlings) were tracked as diseased focal plants. Using noon on the date of one epidemiological survey as the beginning of the time window, and noon on the date of the next epidemiological survey as the end of the time window, we extracted the same weather variables as described in “Plant growth and within-host disease spread”. Plant height values were extracted from the ‘corrected plant height’ data set. We determined that a plant became infected if a plant with identical coordinates (after data alignment) was recorded as newly infected in the epidemiological survey that took place at the end of the observation period. Total spore deposition for each healthy plant was calculated as the sum of predicted spore deposition originating from each of the plants in the same transect that was infected at the beginning of the time window. To predict the spore deposition experienced by a healthy plant that originated from an individual diseased plant, we used the TGMP(.) We extracted the height of the diseased plant at the beginning of the time window and set (H) to half of this value. Likewise, we extracted the infection intensity of the diseased plant at the beginning of the time window, and set I equal to this value. For diseased seedlings that were not tracked as diseased focal plants, we set I = 0.1, as most were observed to be lightly infected. There were 14 instances of missing infection intensity data for a diseased focal plant on a certain date. In these cases, we fore- or hind-casted infection intensity for that plant using the generalized additive model of infection intensity progression fit in “Plant growth and within-host disease spread” (while including the random effect for study site, but not for plant identity), the closest observation of infection intensity for that plant, and the weather data spanning the time period from the missing observation to the closest measurement. We set the values of (k, {W}_{s},) and (sigma ) to those fit in the “spore deposition” section above. As wind speed and direction were recorded every five minutes, we summed spore deposition over 5 min windows that matched the resolution of the wind speed and direction data. For each of these windows, we predicted spore deposition after setting the values of X and Y based on the relative location of the healthy and diseased plants and the direction of the wind (see Supplementary Information).Using this data set, we modeled infection outcomes in a generalized additive model framework. We assumed a binomial response distribution, coding the outcome of an infection as 1 and the outcome of no infection as 0. To account for variation in the duration of observation period, we used a complementary log–log link function, and included the log time as an offset in the model46. We included smooth terms for all weather variables as predictors, along with smooth terms study site and plant identity as random effects (accomplished by setting bs = ”re” in the s() function in mgcv). To infer the connection between spore deposition and infection, we also included a full tensor smooth product between the base 10 logarithm of mean total spore deposition per day and maximum plant height. When fitting the tensor, we fixed the smoothing parameter for the marginal smooth for log10 total spore deposition to (1times {10}^{10}). This effectively sets the shape of this marginal smooth to be linear, preventing any overfitting involving non-monotonic effects of spore deposition. Height was included as a factor in the tensor for two reasons. First, we calculated spore deposition for a point. In reality, the spore deposition experienced by a plant depends on the size of the ‘target’ that it presents. As such, larger plants are presumably challenged by a greater number of spores than a smaller plant for the same level of predicted spore deposition. Secondly, plant size could be correlated with quantitative resistance, because leaf age can influence pustule development20. To achieve computational feasibility, we fit this model using the bam() function in the mgcv R package and the fast restricted maximum likelihood parameter estimation method (“fREML”). We again implemented variable selection so that insignificant predictor terms would be effectively removed from the models via the double penalty approach.To infer the effects of climate change and to illustrate the relationships between spore deposition, plant height, and infection risk, we predicted odds of infection using the estimated parameters of the fitted GAM (Fig. 5; Supplementary Fig. S14) and various weather data sets. In all of these projections, we included the random effect of site but excluded the random effect of plant identity.Epidemiological modelModel descriptionTo predict how the population level epidemiological dynamics of flax-rust might be affected in various climate change scenarios, we constructed a spatio-temporal epidemic model. This model tracks the infection status, infection intensity, and height of plants over time as infection spreads within the modeled population. There are three components required to simulate the model: (1) initial conditions describing the locations and starting states of all plants, (2) weather data, and (3) models of spore dispersal, transmission, infection intensity progression, and plant growth.The initial conditions for individual simulations of the epidemic model were in all cases constructed to represent either the BT or GM study populations on the date of an early epidemiological survey. For BT, this date was chosen as the first which had complete weather data (spanning 00:000:00 to 24:00:00), which was 6/24/2020. For GM, this date was set to 7/2/2020. Weather data was available for earlier dates, but a sharp increase in prevalence occurred during the prior week, perhaps due to prior missed observations of new infections. The model consistently underestimated observed prevalence when initialized prior to this increase in prevalence. We did not use the HM study population to initialize the model as no epidemiological surveys occurred on a date with complete weather data. Likewise, we do not use the CC study population to initialize the model because not all regions of the transect were mapped (see “Population mapping” sub-section in “Data collection” above).The construction of initial conditions to represent a given site proceeded as follows. The locations of all plants were taken from the ‘corrected plant height’ data set. Plants observed to be infected on the date of the first epidemiological survey were initialized as infected, and all other plants were initialized as uninfected. Following the first epidemiological survey, all infected plants (except for several that were approximately 5 cm or less in height) were designated diseased focal plants and their infection intensity was recorded. We used these measurements as the initial infection intensities of infected plants. We fore- or hind-casted infection intensities for any missing records using the method described in the transmission sub-section of the statistical analyses section above. Plant heights were taken from the ‘corrected plant height’ data set.The weather data component of the model is used to predict spore dispersal, transmission, infection intensity progression, and plant growth in conjunction with the fitted statistical models of these processes. As such, it needs to describe mean weather conditions over the period spanning a simulation step. Additionally, because the TGPM is calibrated to make predictions over 5 min intervals, the weather data must also describe average wind speed and direction over five minute windows.We used the fitted statistical model relating weather to the processes spore dispersal (TGPM), transmission, infection intensity progression, and plant growth to simulate these processes in the epidemiological model. These models contain random effects for both site and plant identity. The random effect of plant identity was excluded when making predictions about infection intensity progression and plant growth as random effects were only fit for focal plants. We included random effects of plant identity when making predictions using the transmission model because random effects were fit for all plants in the modeled populations.Using these components, the model simulates changes in infection status, infection intensity and plant height in time steps of 7 days. The simulation for each time step proceeds as follows:

    (1)

    First, the model predicts the number of spores deposited at the location of each healthy plant over the course of the entire time step. As all infected plants are assumed to be sources of spore deposition, the model predicts total spore deposition as the sum of spore deposition originating from each infected plant. The spore deposition originating from a single infected plant is calculated as the sum of predictions over 5 min windows spanning the time step. Individual predictions were generated using the TGPM with I is set to the infection intensity of the source plant at the beginning of the time step, H set to 0.5 times the height of the source plant at the beginning of the time step, s set to average wind speed, and X and Y set according to locations of the source and target plants and wind direction (see Supplementary Information). The parameters (k, {W}_{s},) and (sigma ) were set to the values fit to spore trap data.

    (2)

    Next, for each healthy plant, the model infers the probability of that plant becoming infected from predicted spore deposition at that plant’s location and mean weather metrics using the transmission model. Following this, a random number in [0,1] is drawn, and if it is equal or lower to the probability of infection that plant becomes infected. All newly infected plants are set to have an infection intensity of 1.0.

    (3)

    After simulating the transmission process, the model next simulates changes in infection intensity. For each plant, we simulated a prediction of the change in infection intensity per day by drawing randomly from the posterior of the infection intensity progression model. We used the infection intensity and height of that plant at the beginning of the time step along with mean weather metrics spanning the time step as the model inputs. We multiplied the predicted change in infection intensity per day by the length of the time step and added it to the plant’s infection intensity at the beginning of the time step to calculate the new infection intensity of the plant.

    (4)

    Finally, we used a similar process to simulate change in plant height. For each plant, we simulated a prediction of the change in height per day by drawing randomly from the posterior of the plant growth model. Again, we used the height of that plant at the beginning of the time step along with mean weather metrics spanning the time step as model inputs. To calculate the new height of the plant, we multiplied the predicted change in height per day by the length of the time step and added this number to the plant’s height at the beginning of the time step.

    There are two sources of stochasticity within the epidemiological model. The first of these sources pertains to the probability of infection. Although the predicted probability of infection for a certain combination of predictor values is always the same, we compare this probability to a random number to determine if infection occurs. The second source of stochasticity pertains to predicted changes in infection intensity and plant height. We predict rates of infection intensity change and plant growth by drawing randomly from the posterior distributions of the corresponding fitted models. These sources of stochasticity allow us to understand the variation in epidemiological model predictions via repeated simulation.SimulationTo validate the epidemiological model, we simulated 10 epidemiological trajectories for the BT and GM sites and compared the results to our observations of flax-rust spread to ensure a qualitative match. For each of these sites, we initialized the model using data corresponding to the site as described above and used observed weather (from the same site) data to run the simulation. When extracting weather variables from observed weather data sets, we defined the observation period as 00:00:00 on the first day in a step to 00:00:00 on the last day in a step (e.g. noon on July 1st to noon on July 8th). We included the random effects of site and plant identity when making predictions from the transmission model, and the random effects of site when making predictions from the infection intensity and plant growth models.To infer the effects of climate change of flax-rust epidemiology, we again initialized the model using data corresponding to the for BT and GM sites, and then simulated 10 epidemiological trajectories for each set of weather data (RCP4.5 and 8.5 emissions scenarios and the years 2020, 2030, 2040, 2045, 2050, 2060 and 2070). We extracted weather metrics as described in the “Weather data” subsection of the “Data collection” section above. We used observed records of wind speed and direction to simulate spore deposition using the TGPM as the projected data sets lack these measures. As before we included the random effects of site and plant identity when making predictions from the transmission model, and the random effects of site when making predictions from the infection intensity and plant growth models. For each set of 10 model simulations corresponding to a unique site and weather data set combination, we used the same 10 random number seeds. More

  • in

    Long-term blast control in high eating quality rice using multilines

    The top-brand nonglutinous rice variety ‘Koshihikari’, which has a high palatability, is extremely susceptible to blast. Therefore, farmers apply fungicides over four times during the rice production season. As Koshihikari is sold by the Niigata brand, it has been traditionally viewed as having a high eating quality in Japan, and because of this, both farmers and consumers have requested that the multiline variety KO-BL be tested to determine if it is equivalent to Koshihikari before its introduction. Trials comparing Koshihikari and KO-BL were carried out in 2003 and 2004 in 594 and 622 fields covering 236 and 315 ha, respectively. These trials evaluated plant homogeneity, eating quality, and blast suppression using fewer fungicidal sprays. Following favorable results, in 2005, all Koshihikari were converted to KO-BL multiline variety covering an area of 94,000 ha. In addition, seed use and cultivation were restricted to the Niigata area to distinguish KO-BL from Koshihikari grown in other prefectures.Seed production and mixture processes are managed with precision by each prefectural official member (Fig. 1a). Original isogenic lines (ILs) were separately produced from the original stock in the original strain fields by the Niigata prefectural government. Using a precise mixture machine, the mixture of four ILs was then blended by weight in 2000 kg volumes, all multiplied by ten (giving a total volume of 20 t). Original production fields and commercial fields all used blended seeds that had been authorized by seed production farmers and commercial farmers in the 2003 and 2004 trials. Thus, it takes two years for seed production at the original strain field followed by the original production field for the preparation of commercial fields; thus, the seed mixture composition needs to be determined at least two years before introduction. Susceptible and resistant (effective) ILs were mixed at a ratio of 3:7 from 2005 to 2019 (Fig. 1b, Supplementary Table S1). Susceptible ILs, possessing Pia and Pii genes, were always mixed at a ratio of 1:2, but the composition of resistant ILs, containing Pita-2, Piz, Pib, Piz-t, and Pit genes, was changed every two to three years to avoid the breakdown of resistance6. These changes were determined by annually monitoring blast race distributions.Figure 1Representative seed production flow from original stock to commercial field and history of Koshihikari BL composition from 2005 to 2019 in Niigata Prefecture. (a) S1–S2, susceptible KO-BL; R1-R2, resistant KO-BL. Seeds obtained from original stock field at the Niigata Agricultural Research Institute. Seeds obtained from the original strain field and the original production field at both designated farmers’ fields. Commercial field (general farmers field) used for KO-BL production. Each field requires a year for seed production. (b) Pia and Pii, susceptible; Pita-2, Piz, Pib, Piz-t, and Pit, resistant. The proportion of susceptible KO-BLs and resistant KO-BLs was consistently 3:7 across years.Full size imageIn Niigata Prefecture, the predominant 5 blast races distributed from 1994 to 2004 were 001.0 (virulent to Koshihikari [Pik-s]), 003.0 (virulent to Pik-s and Pia), 005.0 (virulent to Pik-s and Pii), 007.0 (virulent to Pik-s, Pia, and Pii), and 037.1 (virulent to Pik-s, Pia, Pii, and Pik) (Fig. 2a, Supplementary Table S2). Because all the 5 races were virulent to Koshihikari, which had been widely cultivated in Niigata area during the years, there were no drastic race changes. In addition, genetic variations in blast resistance indicated that Koshihikari also harbored the Pish gene, and that the Pia, Pii, and Pik genes were also dominant in the Hokuriku region, including Niigata Prefecture21. Virulent blast races against the resistance genes Pish, Pia, Pii, Pi3, Pi5(t), Pik, Pik-s, and Pi19(t) were dominantly distributed in Niigata Prefecture22. These reports confirmed that Koshihikari had been susceptible to dominant blast races before KO-BL introduction.Figure 2Blast race change during the 1994–2019 period in Niigata Prefecture and the worst-case simulation of blast race dynamics in KO-BL during the 2005–2019 (years 1–15) period. Races and virulences are shown in Table 1. (a) A red line indicates the year (2005) when KO-BL was introduced. Races 007.0 and 037.1 became dominant after the introduction. (b) Actual races and their rates in 2004 and annual KO-BL compositions from 2005 to 2019 were set in the simulation. Parameters set in the simulation were as follows: maximum lesion number in a year, 10,000,000; weather condition, 10 (favorable); virulent mutation rate, 10–5; overwintering probability, 0.01; number of simulated years, 15; and number of simulation trials, 1000. The 1000 trial results for the lesion number increase in each race were averaged in each year and transformed into rates to show race dynamics. All simulation results are shown in Supplementary Table 6 in Supplementary information 2. The races 007.0 and 037.1 were also dominant until year 15 (correspond to 2019). Both actual and simulated race dynamics showed no outbreaks of the resistant composition of KO-BL.Full size imageIn the 2005 release year of KO-BL, the predominant blast races, 001.0 (virulent to Pik-s) and 003.0 (virulent to Pik-s and Pia), drastically decreased in distribution from 41.8% to 22.3% and 27.6% to 17.3%, respectively (Fig. 2a, Supplementary Table S2). Interestingly, races 001.0 and 003.0 rapidly decreased by 5.4% and 1.3% in 2006, respectively, even though especially Pia, which can be infected by the race 003.0, was used in the KO-BL composition. Because all ILs in the composition of KO-BL were resistant to race 001.0, and race 003.0 was only virulent to Pia, which made up 10% of the annual KO-BL composition (Table 1). In contrast, races 007.0 (virulent to Pik-s, Pia, and Pii) and 037.1 (virulent to Pik-s, Pia, Pii, and Pik) dominated from 2005 to 2019. The higher rate of race 007.0 detection was affected by 30% of the ILs composing the annual KO-BL were susceptible. The second highest rate of race 037.1 detection was affected by a number of factors: the high susceptibility of a minor cultivar that had Pii and Pik, the mosaic configuration of fields typical in Niigata, and the air-borne spread of race 037.1. To maintain consensus on KO-BL cultivation based on total blast suppression in Niigata, rarely detected races virulent to resistant ILs in commercial fields are strictly supervised by the prefectural government to avoid unnecessary confusion in Niigata residents.Table 1 Susceptible or resistant reaction of Koshihikari and KO-BL against blast races.Full size tableIn 2008, to mathematically support KO-BL composition changes, we developed a simulation software to estimate long-term blast race dynamics in multilines using a plant‒pathogen coevolution system23. The model calculated the persistence of resistant ILs to determine the optimal timing of changes to multiline variety compositions. To simulate race dynamics in KO-BL, we set five currently investigated races, 001.0 (virulent to Pik-s), 003.0 (virulent to Pik-s and Pia), 005.0 (virulent to Pik-s and Pii), 007.0 (virulent to Pik-s, Pia, and Pii), and 037.1 (virulent to Pik-s, Pia, Pii, and Pik), and their rates in 2004, as well as five emerging races, 043.0 (virulent to Pik-s, Pia, and Piz), 303.0 (virulent to Pik-s, Pia, and Pita-2), 003.2 (virulent to Pik-s, Pia, and Pib), 403.0 (virulent to Pik-s, Pia, and Piz-t), and 003.4 (virulent to Pik-s, Pia, and Pit) (see Fig. 2b, Supplementary Table S3) against five newly introduced respective resistant KO-BLs (see Fig. 1b, Supplementary Table S1) and the annual KO-BL compositions from 2005 to 2019. The worst case (severe epidemic) simulation result (Fig. 2b, Supplementary Tables S3 and S6) showed that race 007.0 (virulent to susceptible Pik-s, Pia and Pii) became the predominant race (77.4%), and race 037.1 (virulent to Pik-s, Pia, Pii, and Pik) remained at a low frequency (21.6%) until the fifteenth year (corresponding to 2019). In addition, super-race virulent to all KO-BLs did not emerge in this simulation. These suppression of outbreaks of newly emerged virulent races, including super-race on resistant KO-BL was apparently affected by 2–3 years of change in resistant KO-BL composition, and total suppression of blast occurrence decreasing the blast population. These results indicated that almost all the epidemics analyzed reflected actual race dynamics without affecting other minor races from other susceptible cultivars grown in Niigata, especially up to 2011. Thus, our decision support system provides an evaluation of KO-BL persistence and indicates the KO-BL composition changes needed for blast race population control in large areas. In addition, our simulation model may be useful for evaluating future KO-BL composition changes.Blast occurrence drastically decreased after 2005 (Fig. 3a, Supplementary Table S4). The average occurrence of leaf and panicle blast was 46.1% and 52.9% during the 1995–2004 period and 9.5% and 9.6% during the 2005–2019 period, respectively. This resulted in a blast suppression effect by 70% of the resistant composition in KO-BL. Current seed production fields are rarely contaminated with virulent races against resistant KO-BLs. This suggests that seed sanitation contributes to the suppression of virulent pathogen epidemics in multilines. In addition, induced resistance24,25 may have no effect on the practical use of multilines. Rice plants were found to induce a resistance response when inoculated with avirulent races of blast (those that stimulate protective responses to virulent race attacks). As the detection of several races in one area is rare and blast occurrence tends to be low, conditions that induce resistance in field situations do not occur. Fungicide applications to control blast in KO-BL and other minor cultivars decreased by approximately one-third during the 2005–2019 period compared with 2004 (Fig. 3b, Supplementary Table S5). Thus, the commercial scale use of crop diversity is clearly effective for the environmentally friendly control of airborne diseases.Figure 3Leaf and panicle blast occurrence from 1994 to 2019 and blast control area from 2004 to 2019 in Niigata Prefecture. (a) A red line indicates the year (2005) when KO-BL was introduced. (b) Gross fungicide spray area decreased by approximately one-third during the 2005–2019 period compared with 2004.Full size imageThe optimum long-term solution for pathogen population control using genetic diversity includes multilines. Blast occurrence in KO-BL introduced in Niigata, and the theoretical value of blast suppression in KO-BL tested at small scales, were reduced by approximately 10% compared to that of monoculture plots26,27,28. Thirty percent of susceptible ILs in KO-BL have the potential to improve compatible races with susceptible ILs and become predominant in large areas. This would contribute to the suppression of rapid increases in new virulent races emerging in the blast population. To maintain consensus on KO-BL cultivation based on total blast suppression in Niigata, rarely detected races virulent to resistant KO-BLs in commercial fields are strictly monitored by the prefectural government. Educating Niigata farmers ensures the long-term use of KO-BL. In fact, lower blast occurrence has been attributed to careful KO-BL cultivation and seed management.The implementation of genetically diversified homogeneous seed mixtures, rotations with resistant KO-BL, restricted KO-BL cultivation, and pathogen monitoring allowed rice quality to be maintained, diseases to be suppressed, and environmentally sound agriculture to be economically viable in Niigata. Collaboration among prefectural officers, farmers, and consumers in Niigata has resulted in safer rice production with good agricultural practices (GAPs) that meet sustainable development goals (SDGs). In addition, DNA tests differentiate KO-BL from the original Koshihikari for buyers, thereby prohibiting illegal distribution. Multiline varieties have been used in small areas in two different prefectures. For example, in Miyagi pref., Sasanishiki BL consisted of Pik, Pik-m, and Piz at ratios of 4:3:3 and 3:3:4 in 1995 and 1996, respectively. This composition was changed to Pik, Pik-m, Piz, and Piz-t at a ratio of 1:1:4:4 from 1997 to 2007 to prevent an increase in race 037.1 (virulent to the BL: Pik and Pik-m). In addition, an equal mixture of seven BLs (Pib, Pik, Pik-m, Piz, Piz-t, Pita, and Pita-2) was cultivated in 300 ha areas (maximum 4000 ha) from 2008 to 2014 without any outbreaks observed. In Toyama pref., the Koshihikari Toyama BL, which consists of resistant ILs, Pita-2, Pib, and Pik-p at a ratio of 4:4:2, was cultivated in an area of 300 ha and required a 50% reduction in chemical inputs from 2003 up to the present. Our model also calculated a greater than 50-year persistence in terms of the small area effect in both prefectural cases. This result depends on an insufficient pathogen population increase in virulent mutations against resistant ILs (data not shown). In this way, the practical use of a multiline provides control without the need for as much fungicide with or without a periodic change in IL composition. Our results demonstrate that the management of crop and pathogen coevolution can control diseases at large scales and, thereby, contribute to global food security. More