More stories

  • in

    Genetic, maternal, and environmental influences on sociality in a pedigreed primate population

    Study subjectsSubjects in our study are individually recognized wild capuchins found in and around the Lomas Barbudal Biological Reserve in Guanacaste, Costa Rica. This population has been under observation since 1990 (Perry 2012; Perry et al. 2012), including near continuous observation from January 2002 through March 2020.Data collectionWe use proximity data on subjects collected during group scan sampling between January 2001 and March 2020 (Altmann 1974). Included in scans are the identity of the subject, and the identity of other individuals within approximately 4 meters of them. Scans have been collected on all individuals in study groups since 2002, and on all adults and subadults since 2001. Scans are taken opportunistically, without regard to time of day. At least 10 min separate consecutive scans of the same individual to reduce the non-independence of scans taken close in time.Data in this manuscript were collected by 124 observers, with an average of 7.1 data collectors per month. Observers typically work in teams of two to three and rotate across different groups to reduce potential observer bias. Observers also rotate across observer teams to avoid observer drift in coding, since observer teams could potentially start to code behaviors differently from each other in the absence of overlap in observer composition.Initial pedigree constructionOf the 376 individuals in our behavioral dataset, 280 (74.5%) were first seen within three months of their births, and we could confidently assign maternity to them based on demographic (pregnancies) and behavioral data (primary nursing) even prior to genotyping. Of the remaining individuals, 41 (10.9%) were males of unknown origin that immigrated into our study population, while the rest were natal to our study groups but were first seen as older infants ( >3 months), juveniles, or (sub)adults (14.6%) and required genotyping to assign/confirm maternity. Paternity was assigned based on genetic information when possible (but see Non-genotyped individuals).In total, 287 subjects (76.3%) had two assigned parents, 37 had one assigned parent (9.8%), and 52 (13.8%) had no assigned parent based on demographic, behavioral, and/or genetic parentage information. Most individuals with no assigned parents were immigrant males (78.9%).GenotypingInformation on genetic parentage assignment (at up to 18 microsatellite loci) in our study population is available from previously published work (1996–2005 (Muniz et al. 2006), 2005–2012 (Godoy et al. 2016b)). Partial genotypes (up to 14 loci) have been generated for individuals in this study which more recently entered the study population through birth or immigration (n = 91, 2012–2020) (See SI File 1). Briefly, DNA was extracted primarily from non-invasively collected fecal samples, and occasionally from tissue samples obtained from deceased individuals, then amplified at up to 18 autosomal tetranucleotide microsatellite loci (Muniz and Vigilant 2008) using either a 1-step or 2-step PCR protocol (Arandjelovic et al. 2009). There were no significant deviations from Hardy-Weinberg equilibrium, and no evidence of linkage disequilibrium between loci was found (Muniz 2008).DNA samples were run at a minimum in triplicate, but additional PCRs were performed on low quality samples (e.g., with low quantities of DNA). Genotypes at each of the loci were assigned to be heterozygous when each allele was seen at least twice in independent PCRs, and assigned as homozygous when the allele was seen in at least three independent PCRs in absence of a second allele.Amplicons were analyzed using an ABI PRISM3100 automated sequencer and GeneMapper Software (Applied Biosystems, Foster City, CA, USA). Likelihood-based parentage assignments were performed using CERVUS 2.0 or 3.0 (Marshall et al. 1998; Kalinowski et al. 2007). The average exclusionary power of the 18 microsatellites was 0.9888 for the first parent and 0.9998 for second parent (Muniz et al. 2006).Individuals with unknown parents (e.g., immigrant males, founders) were genotyped twice (i.e., using two independent DNA samples) following the procedures described above to guard against sample mix up. Known mother-offspring pairs were confirmed by ascertaining the absence of Mendelian mismatches across all loci for the pair, though one mismatch was allowed to account for null alleles, mutations, and genotyping errors. We detected one null allele in the population in 19 individuals and traced it back to a male who was either the father or grandfather of those individuals (Muniz et al. 2006; Godoy et al. 2016b).Candidate males for paternity assignment were chosen based on group membership around the time of an infant’s conception (typically 1–10 males). In cases when conceptions occurred prior to the habituation of a study group, we used the identities of all adult males present when the group was first observed. Candidate mothers were similarly chosen for individuals that were first seen as older infants, juveniles, or (sub)adults. For individuals born post-group habituation, CERVUS has always assigned paternity from the pool of potential candidate fathers. Parent-offspring pairs and trios were allowed one mismatch (excluding those at the locus with the known null allele).Pedigree updatingNon-genotyped individualsDuring stable tenures, alpha males in our population sire approximately 73% of infants born in their groups, including 90% of offspring born to unrelated females (Godoy et al. 2016a). There is strong evidence of inbreeding avoidance between alpha males and their female descendants, with relatedness to females as the primary factor constraining alpha male monopolization of paternity within groups (Muniz et al. 2006, 2010; Godoy et al. 2016a, 2016b; Wikberg et al. 2017, 2018). We used this information to update our pedigree, filling missing father information with the identity of the alpha male around the time of a non-genotyped individual’s conception, but only if their mother was not the daughter or granddaughter of the alpha male (i.e., with inbreeding avoidance). This approach allowed us to assign presumed paternity to 21 non-genotyped individuals (5.6% of subjects) who were natal to our study groups.Individuals with missing or incomplete parentageOut of the original four study groups (from which fissions led to eight additional study groups), we lacked parentage information (i.e., neither parent was sampled) for 12 individuals first seen at the time of habituation. We had incomplete parentage on an additional 11 adults (i.e., only one parent was sampled). We used the software program COLONY version 2.0.6.7 to look for evidence of whether these individuals were related to each other at the level of full sibling (Jones and Wang 2010). We also looked for potential full sibling pairs among the non-natal immigrant males in the population, since co-migrant males are typically kin (Perry 2012; Wikberg et al. 2014, 2018). We assigned five full sibling pairs among co-migrant males, and four full sibling pairs among natal founders. For any remaining co-migrant males and natal founder pairs that were not assigned as full siblings, we assumed these to be either paternal (migrants) or maternal (natal) half siblings, as is typical in this study population (Perry 2012). These assignments are likely to have some error. However, based on what we know about kinship in capuchins, it would introduce more error to assume that these pairs are unrelated.We pruned our modified population pedigree using the R package pedantics version 1.01 (Morrissey and Wilson 2010), to include only individuals that were linked to the subjects in our behavioral dataset. The reduction in missing data can improve convergence and mixing of models (Hadfield 2010). The pruned pedigree contained 419 individuals, with 353 maternities, 354 paternities, 209 full sibships, 413 maternal half sibships, and 1496 paternal half sibships. Maximum pedigree depth was six generations (mean = 3.03).Sociality measures (response variables)We generated two related proximity-based measures of sociality—(1) whether an individual was seen in proximity of another monkey (within ~4 meters) during a scan (i.e., they were not alone), and (2) the number of partners an individual has nearby (within ~4 meters) during a scan. The former is measure of the propensity of an individual to be social versus alone, while the latter is more indicative of the gregariousness of an individual. These two phenotypes are not independent, as they are generated from the same data (Fig. 1a).Fig. 1: Distribution of sociality, sampling, group size, and alpha tenure length.The scatterplot in a shows the proportion of scans per individual per month where the subjects were recorded in proximity of others on the x-axis, and the average number of social partners per scan per month for subjects on the y-axis. The sizes of the circles in a are proportional to sample size (range: 5–317 scans per data point). The figure in b shows the number of calendar years of data sampling per subject (range: 1–20), c variation in group size, and d the number of calendar years represented by different alpha tenures in the dataset. Note that d does not represent the full diversity of alpha tenure lengths in the population, only within the dataset: some tenure lengths are left-truncated as data from 1990–2000 are not included in this dataset. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016) and cowplot version 1.1.1 (Wilke 2020). The capuchin image was generated in R using sketcher version 0.1.3 (Tsuda 2020) based on an image taken by Nicholas Schleissmann.Full size imageWe compiled the scans of individuals by month (mean: 31.9, range: 5–317 scans per month) so that we had counts of (1) the total number of scans where an individual was social and (2) the total number of partners an individual had. With these counts we could look at the (1) proportion of time spent social (versus alone) and (2) the average number of partners an individual had, while still preserving information about sampling density (number of scans).To be included in any month, subjects needed to have at least five scan samples in that period. As we are interested in the repeatability of our measures of social behavior, subjects had to have at least six months of data to be included.We excluded dependent infants (less than one year of age) as potential social partners of their mothers. We also excluded these dependent infants as subjects, since an infant is expected to be in close proximity of its mother, particularly during the first half of their first year of life (Godoy 2010; Perry 2012). Including data from infants would likely introduce upward bias to heritability estimates, because mothers and their dependent offspring (whom share high relatedness) would often be in close proximity of each other, and their measures of proximity to others would thus also be highly correlated.On average, subjects spent just over half of their sampled time within approximately four meters of another monkey (mean: 0.539, standard deviation: 0.193) and had approximately one social partner per scan (mean: 1.057, standard deviation: 0.619) (Fig. 1a). Our dataset consisted of 22,138 monthly sociality scores on 376 subjects generated from 641 140 scans (mean: 56.5 months per subject, range: 6–184 months per subject). Almost all subjects (99.7%, i.e., all but one) were represented by data across more than one calendar year (25, 50, 75% quantiles: 4, 7, 10 different years of data collection) (Fig. 1b).Fixed effectsWe included age (as a cubic function) and sex in our models, as well as their interaction to account for differences in how male and female capuchins sexually mature and age. Age in our dataset was right-skewed with higher representation at younger ages (mean: 9.3 years, standard deviation: 6.9) (Fig. 2). To put the ages in developmental context, mean age at first live birth is around 6.3 years for females in this population, though females can begin reproducing in their 5th year (Perry et al. 2012). Males as young as six years old have been known to sire offspring (Godoy et al. 2016b), but males tend to not reach full adult size until their 10th year (Jack et al. 2014).Fig. 2: Sociality as a function of age and sex.Circles represent individual monthly data. The sizes of the circles are proportional to sample size (range: 5–317 shows per data point). Circles in a represent the proportion of time individuals were seen in proximity of others (not alone) per month, while in b represent the average number of partners for individuals per month. Solid lines represent estimated sociality scores based on age and sex, with all other fixed effects set to the mean. The two x-axes represent age as z-scores and in years. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016).Full size imageSeasonal environmental changes, such as in food abundance, or temperature and rain, can lead to changes in how individuals cluster near others, for example, because of how food resources become distributed in the environment. For example, in black-crested gibbons (Nomascus concolor), group averages of dyadic proximity have been documented to decrease from the dry season to wet season, with increased average group proximity during cold months and lowered proximity during warm months (Guan et al. 2013). We account for seasonal variation by modelling monthly changes as a sine wave, through inclusion of the sine and cosine functions of a transformed month variable (See SI File 1 for further details).Central America is a region of ENSO-related precipitation, where the El Niño-Southern Oscillation (ENSO) has an impact on large scale patterns of temperature and precipitation (Ropelewski and Halpert 1987). Bimonthly rainfall anomalies are linked with both the warm El Niño and cool La Niña phases in a neighboring tropical dry forest in Costa Rica, where long-term monitoring of wild white-faced capuchins has shown declines in reproductive output associated with El Niño-like conditions (Campos et al. 2015). To account for the large-scale influence of ENSO on group dynamics, we included a factor variable for three different ENSO phases (Average/Neutral, Cool/La Niña, and Warm/El Niño). We used the bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI.v2) obtained from the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration (https://psl.noaa.gov/enso/mei/, retrieved: 2021-11-06) to determine the different phases. MEI.v2 is a composite index of five different variables (sea level pressure, sea surface temperature, surface zonal winds, surface meridional winds, and Outgoing Longwave Radiation) used to create a time series of ENSO conditions from 1979 to present (Zhang et al. 2019). Warm phases correspond to MEI.v2 values of 0.5 or higher, while cool phases correspond to values of −0.5 or lower.Demographic differences between groups and within groups across time can also lead to variation in behavior. For example, group size has been found to correlate with the amount of time that individuals spend grooming in various primate species (Dunbar 1991; Lehmann et al. 2007). Group size is also associated with higher sociality measures such as both the number of strong and weak ties that individuals form in diverse clades of primates (Schülke et al. 2022). We attempt to account for variation that arises from such demographic differences by including group size (mean: 24.7, standard deviation: 7.9) (Fig. 1c) as a fixed effect.In our models, group size and cubic age were centered and scaled to a mean of zero and a standard deviation of one.Random effectsAll models include the identity of the subject (VID, n = 376) as a random factor, as well as subject identity nested within year (VID:Year, n = 3150), the identity of each subject’s mother (VM, n = 142), maternal identity nested within group of residence within year of data collection (VM:GroupAlpha:Year, n = 2085), and a special variable known as the animal term to account for additive genetic variance (VA). These components contribute to long- and/or short-term repeatability of individuals. All models also include year of data collection (VYear, n = 20), month nested within year (VMonth:Year, n = 224), and the identity of each subject’s group of residence both across years (VGroupAlpha, n = 56) and within years (VGroupAlpha:Year, n = 200).VID in the models (since the models also additionally estimate VM and VA) can be thought of as estimating the “permanent environment variance” (i.e., VPE) of an individual, which is the “individual-specific variation in environmental conditions that permanently affect the phenotype (e.g. early-life conditions)” (Dingemanse et al. 2010). VID:Year captures the variance explained by the repeated sampling of the same individuals within a particular year. We use it to estimate the proportion of the phenotypic variance due to similarity in the trait within individuals from data taken closer in time (within the same year). During such a relatively short period, individuals are more likely to be stable in important social traits such as kin availability, dominance rank for adults, and maternal dominance rank for infants and young juveniles.VM estimates the variance explained by maternal effects (m2), specifically similarity between maternal siblings. Maternal identities were not available for all subjects, namely 11 immigrant males of unknown origin who were not assigned by COLONY as having a full sibling. We created unique dummy codes for their maternal identities, so that no two of these individuals shared the same mother. We additionally nested maternal identities (VM:GroupAlpha:Year) to account for similarity between maternal siblings residing in the same group in the same year. Such a nested structure might capture potential upward biases on heritability due to maternal kin biases in spatial association among siblings residing in the same group.We estimate h2 in our models by fitting a random effects term (VA), referred to as the animal term, which in the R package MCMCglmm links to the identities of individuals in our population pedigree (Hadfield 2010; see below for details on the implementation of the models in MCMCglmm). Inclusion of the animal term provides our models with an additive genetic variance component based on the estimated coefficients of relatedness between individuals in our pedigree. In short, if animals that share more alleles are also more like each other in their behavior, then variation in the behavior may well be due to genetic variation in the population (under the assumption that phenotypic similarity is not due to a shared environment, or is adequately controlled for by fixed and random effects in the model).VYear and VMonth:Year were included in order to account for temporal variation in sociality scores not captured by the fixed effects of seasonality or ENSO phase. These could arise from, for example, observer drift in coding (i.e., measurement error) or prevailing environmental conditions (e.g., drought) that could lead to changes to how individuals cluster near others. There were 218 unique observer combinations across the 224 months represented in the dataset, so VMonth:Year should also capture variance due to any differences between observer teams, though we cannot separate out the unique influence of observers.VGroupAlpha represents variance arising from the different alpha tenures within groups in our study population. VGroupAlpha captures both variance due to group of residence effects and the additional influence of alpha tenures within those groups. In capuchins, alpha males are ‘keystone’ individuals, whose influence is disproportionate relative to that of others in the population, and thus play important roles in establishing group dynamics (Jack and Fedigan 2018). Including group of residence, as defined by alpha tenure, is also important because it helps to account for the higher relatedness within groups within alpha tenures which results from high male reproductive skew toward alpha males. At Lomas Barbudal, males can remain in their alpha position for upwards of 18 years. Alpha tenures in this dataset spanned one to 14 years (Fig. 1d), so we additionally nested the identity of alpha males per group within years (VGroupAlpha:Year) so as to separate the within-year and across-year influences of group of residence.Statistical methodsWe ran analyses in R 4.1.2 (R Core Team 2021), using a Bayesian method with the R package MCMCglmm version 2.32 (Hadfield 2010). Data and code used to run all models is provided in the Supplementary Information.For our binary response variable (social versus alone), which was pooled into monthly units, we fit models with a binomial distribution and logit link function (family = “multinomial2”), with the number of scans each individual was documented social (‘successes’) versus the number of times alone (‘failures’).For our other response variable (number of partners), which was also pooled into monthly units, we fit models with a Poisson distribution (family = “poisson”), with the total number (sum) of partners per month. We included the natural log of the number of scans per month as a fixed effect to account for sampling effort. We set a strong prior for the log of sampling effort so that the rate at which events occurred was 1 (i.e., we could look at average number of partners per scan).We used a parameter-expanded prior (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000) and two inverse Wishart priors (V = 1, nu = 0.002; V = 1, nu = 0.02) for the G structures in our models (i.e., random effects variance components). The prior on the residual variance component was set to one for both the binomial and Poisson models. Estimates for variance components were robust against the choice of prior (SI Fig. 3). We therefore only report findings from models run with parameter-expanded priors in the main text.Pilot runs (thin = 10, burnin = 3000, nitt = 13,000) indicated that autocorrelation values would remain high for some variance components in models run with parameter-expanded priors, even with large thinning intervals. We therefore increased the number of iterations to guarantee effective sample sizes of at least 1000, but ideally closer to 4000. All models were run with a long burn-in period of at least 10,000 iterations.We ran multiple chains (n = 4) of each model and assessed convergence of the chains visually (SI Files 2a-b), as well as through the Gelman-Rubin criterion implemented via the ‘gelman.diag’ function from the coda package in R (version 0.19-4) (Plummer et al. 2006). Scale reduction factors were below 1.02, signifying good convergence. We used Heidelberger and Welch’s convergence diagnostic test for stationarity to check convergence of each chain using the ‘heidel.diag’ function from the coda package. Results are presented from the first chain of each model.Reduced modelsInclusion of fixed effects can potentially have an impact on the estimates of variance components in models because total phenotypic variance (VP) is estimated (and partitioned among the different random effects) after conditioning on the fixed effects. Heritability estimates, for example, can be higher because the variance explained by the fixed effects structure (VFE) is not included in VP, thus making the relative contribution of VA to VP larger compared to the same model without fixed effects (Wilson 2008). Conversely, not adequately controlling for relevant fixed effects that contribute to phenotypic variance among and within individuals may potentially lead to an underestimation of VA and associated heritability (h2).We ran multiple reduced versions of our models to look at the impact of fixed effects on our variance components. We began with an intercept-only version (i.e., no fixed effects), then built-up complexity by adding in versions with the properties of the individuals first (age, sex), then properties of the group (group size), and subsequently environmental properties (seasonality, ENSO phases). Outputs for these reduced models are provided in the Supplementary Information (SI Table 2, SI Table 3).We provide the deviance information criterion (DIC) values for models (automatically generated by the MCMCglmm package). DIC is a generalization for multi-level models of the Akaike Information Criterion (AIC); and as in AIC, lower DIC values indicate better fit.Transformations from unobserved latent scale to observed data scaleOutputs from our MCMCglmm models were on the unobserved latent scale. We used the R package QGglmm (version 0.7.4) to additionally compute parameters of interest on the observed data scale (de Villemereuil et al. 2016; de Villemereuil 2018). We used the functions ‘QCicc’ to compute Intra-Class Correlation (ICC) coefficients and ‘QGparams’ to compute additive genetic variance and thus narrow-sense heritability (h2) on the observed data scale. We implemented the ‘QGparams’ and ‘QGicc’ functions with parameters model = ‘binomN.logit’ and n.obs = 32 (the average number of scans per subject per month in our dataset) for the binomial model and model = ‘Poisson.log’ for the Poisson model. The choice of value for n.obs is somewhat arbitrary, and we show the consequences for changes in values of this parameter (i.e., higher estimates with increasing values of n.obs) in SI Fig. 4.Closed form solutions in QGglmm are not available for integrating over posterior distributions generated from binomial models with logit link functions (de Villemereuil 2016). Consequently, using the ‘QGicc’ function is particularly slow. We therefore estimate ICCs from our binomial models using a random subset of the posterior (n = 1000 iterations).The code used for transforming the MCMCglmm outputs from the latent scale to the original data scale are available online (see DATA AVAILABILITY).Repeatability and the proportion of variance explained by variance componentsTotal phenotypic variance (VP) was the sum of estimates from all variance components and residual variance in a model (VP = VID + VID:Year + VM + VM:GroupAlpha:Year + VA + VGroupAlpha + VGroupAlpha:Year + VMonth:Year + VYear + Vresidual). The proportion of variance explained by each variance component was calculated by including its estimate in the numerator while including total phenotypic variance in the denominator. So, for example the proportion of variance explained by year of data collection was calculated as (left( {frac{{V_{Year}}}{{V_P}}} right)).Long-term repeatability was calculated with the sum of VID, VM, and VA in the numerator. Short-term repeatability was calculated similarly but with inclusion of within-series variances (VID + VM + VA + VID:Year + VM:GroupAlpha:Year) in the numerator to capture additional consistency in among-individual differences resulting from greater environmental similarity within a time series (i.e., year).We report posterior modes and 95% Highest Posterior Density intervals (i.e., 95HPDI in square brackets). Unless mentioned otherwise, we present results on the unobserved latent scale, and without the variance from the fixed effects (VFE) incorporated into VP. For completeness, estimates with VFE included in VP and transformations to the observed data scale are also provided in SI Table 3. More

  • in

    The Holocene temperature conundrum answered by mollusk records from East Asia

    Jiang, D. B., Lang, X. M., Tian, Z. P. & Wang, T. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations. J. Clim. 25, 4135–4153 (2012).ADS 
    Article 

    Google Scholar 
    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11300 years. Science 339, 1198–1201 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marsicek, J., Shuman, B., Bartlein, P., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Affolter, S., Huselmann, A., Fleitmann, D., Edwards, R. L. & Leuenberger, M. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Sci. Adv. 5, eaav3809 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bova, S., Rosenthal, Y., Liu, Z. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meyer, H. et al. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 8, 122–125 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, J., Lachniet, M., Chervyatsova, O., Asmerom, Y. & Polyak, V. J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 10, 430–435 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Mann, M., Schmidt, G., Miller, S. & LeGrande, A. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. 36, L05708 (2009).ADS 
    Article 

    Google Scholar 
    Liu, T. S. Loess and the Environment (In Chinese). (China Ocean Press, Beijing, 1985).Rousseau, D. D. & Wu, N. Q. A new molluscan record of the monsoon variability over the past 130 000 yr in the Luochuan loess sequence, China. Geology 25, 275–278 (1997).ADS 
    Article 

    Google Scholar 
    Wu, N. Q., Li, F. J. & Rousseau, D. D. Terrestrial mollusk records from Chinese loess sequences and changes in the East Asian monsoonal environment. J. Asian Earth Sci. 155, 35–48 (2018).ADS 
    Article 

    Google Scholar 
    Qian, L. Q. Climate of Loess Plateau (in Chinese). (China Meteorological Press, Beijing, 1991).Chen, D. & Gao, J. Economic Fauna Sinica of China: Terrestrial Mollusca (in Chinese). (Science Press, Beijing, 1987).Proćków, M., Drvotová, M., Juřičková, L. & Kuźnik-Kowalska, E. Field and laboratory studies on the life-cycle, growth and feeding preference in the hairy snail Trochulus hispidus (L., 1758) (Gastropoda: Pulmonata: Hygromiidae). Biologia 68, 131–141 (2013).Article 

    Google Scholar 
    Rousseau, D. Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195–209 (1991).Article 

    Google Scholar 
    Rousseau, D., Preece, R. & Limondin-Lozouet, N. British late glacial and Holocene climatic history reconstructed from land snail assemblages. Geology 26, 651–654 (1998).ADS 
    Article 

    Google Scholar 
    Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B 278, 2122–2132 (2011).PubMed 
    Article 

    Google Scholar 
    Gu, Z. Y., Liu, Z. X., Xu, B. & Wu, N. Q. Stable carbon and oxygen isotopes in land snail carbonate shells from a last glacial loess sequence and their implications of environmental changes (in Chinese). Quat. Sci. 29, 13–22 (2009).CAS 

    Google Scholar 
    Sun, X. H., Gu, Z. Y. & Xu, B. Oxygen isotopic variations in the shells collected monthly from a live species of land snails at local in Zhenjiang, Jiangsu Province, China (in Chinese). Quat. Sci. 29, 976–980 (2009).CAS 

    Google Scholar 
    Huang, L., Wu, N., Gu, Z. & Chen, X. Variability of snail growing season at the Chinese Loess Plateau during the last 75 ka. Chin. Sci. Bull. 57, 1036–1045 (2012).CAS 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Paleorecords reveal the increased temporal instability of species diversity under biodiversity loss. Quat. Sci. Rev. 269, 107147 (2021).Article 

    Google Scholar 
    Horsák, M. Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas 40, 459–467 (2011).Article 

    Google Scholar 
    Sümegi, P. & Gulyás, S. Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.‘s “A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin”. Earth-Sci. Rev. 221, 103675 (2021).Samartin, S. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Seppä, H., Birks, H., Odland, A., Poska, A. & Veski, S. A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J. Biogeogr. 31, 251–267 (2004).Article 

    Google Scholar 
    Allen, J. et al. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Rioual, P. et al. High-resolution record of climate stability in France during the last interglacial period. Nature 413, 293–296 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lu, H. et al. Seasonal climatic variation recorded by phytolith assemblages from Baoji loess sequence in central China over the last 150000 a. Sci. China, Ser. D. 26, 629–639 (1996).
    Google Scholar 
    Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).ADS 
    Article 

    Google Scholar 
    Lu, H. Y., Wu, N. Q., Liu, K. B., Jiang, H. & Liu, T. S. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 26, 759–772 (2007).ADS 
    Article 

    Google Scholar 
    Sun, J. M., Diao, G. Y., Wen, Q. Z. & Zhou, H. Y. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau (In Chinese). Geochimica 28, 265–272 (1999).CAS 

    Google Scholar 
    Wen, R. et al. Pollen–climate transfer functions intended for temperate eastern Asia. Quat. Int. 311, 3–11 (2013).Article 

    Google Scholar 
    Xu, Q., Xiao, J., Li, Y., Tian, F. & Nakagawa, T. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai lake area, inner Mongolia, China. J. Clim. 23, 2856–2868 (2010).ADS 
    Article 

    Google Scholar 
    Li, J. et al. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim. Dyn. 50, 1101–1113 (2018).Article 

    Google Scholar 
    Nakagawa, T., Tarasov, P. E., Nishida, K., Gotanda, K. & Yasuda, Y. Quantitative pollen-based climate reconstruction in central Japan: application to surface and Late Quaternary spectra. Quat. Sci. Rev. 21, 2099–2113 (2002).ADS 
    Article 

    Google Scholar 
    Chen, M.-T. et al. Dynamic millennial-scale climate changes in the northwestern Pacific over the past 40,000 years. Geophys. Res. Lett. 37, L23603 (2010).ADS 

    Google Scholar 
    Sun, Y., Oppo, D. W., Xiang, R., Liu, W. & Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, PA4005 (2005).ADS 
    Article 

    Google Scholar 
    de Garidel-Thoron, T. et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, PA3204 (2007).ADS 

    Google Scholar 
    Chen, F., Duan, Y. & Hou, J. An 88 ka temperature record from a subtropical lake on the southeastern margin of the Tibetan Plateau (third pole): new insights and future perspectives. Sci. Bull. 66, 1056–1057 (2021).Article 

    Google Scholar 
    James, R. P. & Arguez, A. On the estimation of daily climatological temperature variance. J. Atmos. Ocean. Tech. 32, 2297–2304 (2015).Article 

    Google Scholar 
    Mearns, L. O., Rosenzweig, C. & Goldberg, R. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Climatic Change 35, 367–396 (1997).Article 

    Google Scholar 
    Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).ADS 
    MATH 
    Article 

    Google Scholar 
    Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, A. J., Zhu, J., Poulsen, C. J., Tierney, J. E. & Skinner, C. B. Northern Hemisphere vegetation change drives a Holocene thermal maximum. Sci. Adv. 8, eabj6535 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambert, F. et al. The role of mineral-dust aerosols in polar temperature amplification. Nat. Clim. Chang. 3, 487–491 (2013).ADS 
    Article 

    Google Scholar 
    Xu, Y., Wang, H., Liao, H. & Jiang, D. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the last glacial maximum. J. Clim. 24, 843–858 (2011).ADS 
    Article 

    Google Scholar 
    Wohlfahrt, J., Harrison, S. P. & Braconnot, P. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Clim. Dynam. 22, 223–238 (2004).ADS 
    Article 

    Google Scholar 
    Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Clim. Past 1, 1–7 (2005).Article 

    Google Scholar 
    Braconnot, P., Joussaume, S., Marti, O. & de Noblet, N. Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett. 26, 2481–2484 (1999).ADS 
    Article 

    Google Scholar 
    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).ADS 
    Article 

    Google Scholar 
    Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E1–E3 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, F. J. et al. Quantitative distribution and calculation of ecological amplitude of land snail Metodontia in the Chinese Loess Plateau and adjacent regions (In Chinese with English abstract). Quat. Sci. 36, 564–574 (2016).
    Google Scholar 
    Dong, Y. J. et al. Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Sci. Total Environ. 676, 206–214 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, Y. J. et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quat. Sci. Rev. 248, 106579 (2020).Article 

    Google Scholar 
    Cameron, R. A. D. & Pokryszko, B. M. Estimating the species richness and composition of land mollusc communities: Problems, consequences and practical advice. J. Conchol. 38, 529–547 (2005).
    Google Scholar 
    Dong, Y., Wu, N., Li, F., Huang, L. & Wen, W. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS One 10, e0133541 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). (Microcomputer Power, New York, 2002).Ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination (Version 5.0). (Microcomputer Power, New York, 2012).Ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).Article 

    Google Scholar 
    Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P. Tracking Environmental Change Using Lake Sediments Volume 5: Data Handling and Numerical Techniques. p. 123–141. (Springer, London, 2012).Ter Braak, C. J. F. Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience 1, 127–140 (1994).Article 

    Google Scholar 
    Juggins, S. C2 data analysis (version 1.7.4). (Newcastle University, Newcastle, 2011).Juggins, S. Rioja: Analysis of Quaternary Science Data. R package version 0.9-21 http://cran.r-project.org/package=rioja (2017).Simpson, G. L. & Oksanen, J. Analogue: Analogue matching and Modern Analogue. Technique Transfer Function Models. R package version 0.17-4 https://cran.r-project.org/package=analogue (2020).Telford, R. J. palaeoSig: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. R package version 2.0-3 http://cran.r-project.org/package=palaeoSig (2019).Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olonscheck, D., Schurer, A. P., Lücke, L. & Hegerl, G. C. Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nat. Commun. 12, 7237 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y., Ren, G., Kang, H. & Sun, X. A significant bias of Tmax and Tmin average temperature and its trend. J. Appl. Meteorol. Clim. 58, 2235–2246 (2019).ADS 
    Article 

    Google Scholar 
    Parey, S., Dacunha-Castelle, D. & Hoang, T. T. H. Mean and variance evolutions of the hot and cold temperatures in Europe. Clim. Dyn. 34, 345–359 (2010).Article 

    Google Scholar 
    Dong, Y. SeaTemCon_R code for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426798 (2022).Article 

    Google Scholar 
    Dong, Y. Data repository for “The Holocene temperature conundrum answered by mollusk records from East Asia”. Zenodo https://doi.org/10.5281/zenodo.6426911 (2022).Article 

    Google Scholar  More

  • in

    Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages

    Wang C, Wang S. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol. 2017;62:73–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol. 2015;132:1–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA Entomopathogenic fungi: new insights into host-pathogen interactions. Advances in Genetics. 2016. Elsevier Ltd.Lu HL, St. Leger RJ. Insect immunity to entomopathogenic fungi. Adv Genet. 2016;94:251–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan S, Tao X, Huang S, Chen S, Xu A. Comparative immune systems in animals. Annu Rev Anim Biosci. 2014;2:235–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32:904–36.PubMed 
    Article 

    Google Scholar 
    Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. 2014;28:341–55.Article 

    Google Scholar 
    Scarborough CL, Ferrari J, Godfray HC. Aphid protected from pathogen. Science 2005;310:1781.CAS 
    PubMed 
    Article 

    Google Scholar 
    Łukasik P, van Asch M, Guo H, Ferrari J, Charles H. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013;16:214–8.PubMed 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E, Hermes C, et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun. 2017;8:15172.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun. 2018;9:2478.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol. 2010;6:261–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaltenpoth M, Goettler W, Koehler S, Strohm E. Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol. 2010;24:463–77.Article 

    Google Scholar 
    Wang X, Yang X, Zhou F, Tian ZQ, Cheng J, Michaud JP, et al. Symbiotic bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal infection. Biol Control. 2022;169:104895.CAS 
    Article 

    Google Scholar 
    Wang L, Feng Y, Tian J, Xiang M, Sun J, Ding J, et al. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 2015;9:1793–801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie CR, Stuart AE. Weeding and grooming of pathogens in agriculture by ants. Proc R Soc B Biol Sci. 2001;268:1033–9.CAS 
    Article 

    Google Scholar 
    Currie CR, Scottt JA, Summerbell RC, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999;398:701–4.CAS 
    Article 

    Google Scholar 
    Currie CR, Bot ANM, Boomsma JJ. Experimental evidence of a tripartite mutualism: Bacteria protect ant fungus gardens from specialized parasites. Oikos 2003;101:91–102.Article 

    Google Scholar 
    Um S, Fraimout A, Sapountzis P, Oh D-CC, Poulsen M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 2013;3:3250.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grubbs KJ, Surup F, Biedermann PHW, McDonald BR, Klassen JL, Carlson CM, et al. Cycloheximide-producing streptomyces associated with xyleborinus saxesenii and xyleborus affinis fungus-farming ambrosia beetles. Front Microbiol. 2020;11:1–12.Article 

    Google Scholar 
    Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Arnam EB, Currie CR, Clardy J. Defense contracts: Molecular protection in insect-microbe symbioses. Chem Soc Rev. 2018;47:1638–51.PubMed 
    Article 

    Google Scholar 
    Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem. 2016;12:314–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lackner G, Peters EE, Helfrich EJN, Piel J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci USA. 2017;114:E347–E356.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA. 2011;108:1955–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaltenpoth M, Strupat K, Svatoš A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016;10:527–31.PubMed 
    Article 

    Google Scholar 
    Geier B, Sogin EM, Michellod D, Janda M, Kompauer M, Spengler B, et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat Microbiol. 2020;5:498–510.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Roode JC, Lefèvre T. Behavioral immunity in insects. Insects 2012;3:789–820.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: Symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. mBio. 2019;10:e02376-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, et al. Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol. 2008;22:864–71.Article 

    Google Scholar 
    Bunker ME, Elliott G, Martin MO, Arnold AE, Weiss SL. Vertically transmitted microbiome protects eggs from fungal infection and egg failure. Anim Microbiome. 2021;3:43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nyholm SV. In the beginning: Egg-microbe interactions and consequences for animal hosts: Egg microbiomes in animals. Philos Trans R Soc B Biol Sci. 2020;375:20190593.CAS 
    Article 

    Google Scholar 
    Smith DFQ, Dragotakes Q, Kulkarni M, Hardwick M, Casadevall A, Microbiology M, et al. Melanization is an important antifungal defense mechanism in Galleria mellonella hosts. bioRxiv 2022.04.02.486843.Yokoi K, Hayakawa Y, Kato D, Minakuchi C, Tanaka T, Ochiai M, et al. Prophenoloxidase genes and antimicrobial host defense of the model beetle, Tribolium castaneum. J Invertebr Pathol. 2015;132:190–200.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang J, Huang W, Yuan C, Lu Y, Yang B, Wang CY, et al. Prophenoloxidase-mediated ex vivo immunity to delay fungal infection after insect ecdysis. Front Immunol. 2017;8:1–14.
    Google Scholar 
    Zhang J, Lu A, Kong L, Zhang Q, Ling E. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem. 2014;289:35891–906.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soluk DA. Postmolt susceptibility of ephemerella larvae to predatory stoneflies: constraints on defensive armour. Oikos 1990;58:336.Article 

    Google Scholar 
    Kanyile SN, Engl T, Kaltenpoth M. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J Exp Biol. 2022;225:1–9.Article 

    Google Scholar 
    Flórez LV, Kaltenpoth M. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ Microbiol. 2017;19:3674–88.PubMed 
    Article 
    CAS 

    Google Scholar 
    Uberti A, Smaniotto MA, Giacobbo CL, Lovatto M, Lugaresi A, Girardi GC. Novo inseto praga na cultura do pessegueiro: biologia de Lagria villosa Fabricius, 1783 (Coleoptera: Tenebrionidae) alimentados com pêssego. Sci Electron Arch. 2017;10:72–76.
    Google Scholar 
    Stammer HJ. Die Symbiose der Lagriiden (Coleoptera). Z für Morphol und Ökologie der Tiere. 1929;15:1–34.Article 

    Google Scholar 
    Boucias DG, Pendland JC Principles of Insect Pathology. 1998. Springer Science + Business Media, LLC, New York.Garcia MA, Pierozzi IJ. Aspectos da biologia e ecologia de Lagria villosa Fabricius, 1781 (Coleoptera, Lagriidae). Rev Bras Biol. 1982;42:415–20.
    Google Scholar 
    Vega FE, Posada F, Catherine Aime M, Pava-Ripoll M, Infante F, Rehner SA. Entomopathogenic fungal endophytes. Biol Control. 2008;46:72–82.Article 

    Google Scholar 
    Kabaluk JT, Ericsson JD. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J. 2007;99:1377–81.Article 

    Google Scholar 
    Hallouti A, Ait Hamza M, Zahidi A, Ait Hammou R, Bouharroud R, Ait Ben Aoumar A, et al. Diversity of entomopathogenic fungi associated with Mediterranean fruit fly (Ceratitis capitata (Diptera: Tephritidae)) in Moroccan Argan forests and nearby area: impact of soil factors on their distribution. BMC Ecol. 2020;20:1–13.Article 
    CAS 

    Google Scholar 
    Iwanicki NS, Pereira AA, Botelho ABRZ, Rezende JM, Moral RDA, Zucchi MI, et al. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp in insects, soil and sugarcane roots. Sci Rep. 2019;9:1–12.CAS 
    Article 

    Google Scholar 
    Roberts DW, St. Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Adv Appl Microbiol. 2004;54:1–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. Transmission of bacterial symbionts with and without genome erosion between a beetle host and the plant environment. Front Microbiol. 2021;12:715601.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gillespie JP, Bailey AM, Cobb B, Vilcinskas A. Fungi as elicitors of insect immune responses. Arch Insect Biochem Physiol. 2000;44:49–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ortiz-Urquiza A, Keyhani NO. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013;4:357–74.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grizanova EV, Coates CJ, Dubovskiy IM, Butt TM. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella. Virulence 2019;10:999–1012.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eaton WD, Love DC, Botelho C, Meyers TR, Imamura K, Koeneman T. Preliminary results on the seasonality and life cycle of the parasitic dinoflagellate causing bitter crab disease in Alaskan Tanner crabs (Chionoecetes bairdi). J Invertebr Pathol. 1991;57:426–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Field RH, Chapman CJ, Taylor AC, Neil DM, Vickerman K. Infection of the Norway lobster Nephrops norvegicus by a Hematodinium-like species of dinoflagellate on the west coast of Scotland. Dis Aquat Organ. 1992;13:1–15.Article 

    Google Scholar 
    Threlkeld ST, Chiavelli DA, Willey RL. The organization of zooplankton epibiont communities. Trends Ecol Evol. 1993;8:317–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duneau D, Ebert D. The role of moulting in parasite defence. Proc R Soc B Biol Sci. 2012;279:3049–54.Article 

    Google Scholar 
    Vandenberg JD, Ramos M, Altre JA. Dose-Response and Age- and Temperature-Related Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Two Isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Environ Entomol. 1998;27:1017–21.Article 

    Google Scholar 
    Vey A, Fargues J. Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineta larvae during ecdysis. J Invertebr Pathol. 1977;30:207–15.Article 

    Google Scholar 
    Reynolds SE, Samuels RI. Physiology and biochemistry of insect moulting fluid. Adv Insect Phys. 1996;26:157–232.CAS 
    Article 

    Google Scholar 
    Lopanik NB. Chemical defensive symbioses in the marine environment. Funct Ecol. 2014;28:328–40.Article 

    Google Scholar 
    Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA. 2009;106:17805–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 2006;311:81–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li H, Sosa-Calvo J, Horn HA, Pupo MT, Clardy J, Rabeling C, et al. Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants. Proc Natl Acad Sci USA. 2018;115:10720–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaltenpoth M, Roeser-Mueller K, Koehler S, Peterson A, Nechitaylo TY, Stubblefield JW, et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci. 2014;111:6359–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engl T, Kroiss J, Kai M, Nechitaylo TY, Svatoš A, Kaltenpoth M. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc Natl Acad Sci USA. 2018;115:E2020–E2029.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gil-Turnes MS, Hay ME, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 1989;246:116–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gil-Turnes MS, Fenical W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull. 1992;182:105–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffmann KH Insect Molecular Biology and Ecology. 2015. CRC Press.Eisner T, Morgan RC, Attygalle AB, Smedley SR, Herath KB, Meinwald J. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J Exp Biol. 1997;200:2493–2500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Waterworth SC, Flórez LV, Rees ER, Hertweck C, Kaltenpoth M, Kwan JC. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio. 2020;11:e02430-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niehs SP, Kumpfmüller J, Dose B, Little RF, Ishida K, Flórez LV, et al. Insect‐associated bacteria assemble the antifungal butenolide gladiofungin by non‐canonical polyketide chain termination. Angew Chem. 2020;132:23322–6.Article 

    Google Scholar 
    Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chem Biol. 2018;13:2414–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 
    CAS 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 2014;42:643–8.Article 
    CAS 

    Google Scholar 
    Weiss B, Kaltenpoth M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front Microbiol. 2016;7:1–10.Article 

    Google Scholar 
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paschke C, Leisner A, Hester A, Maass K, Guenther S, Bouschen W, et al. Mirion – A software package for automatic processing of mass spectrometric images. J Am Soc Mass Spectrom. 2013;24:1296–306.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Revisiting implementation of multiple natural enemies in pest management

    Model equationsOur host-parasite mathematical model involves the following host population components: ‘susceptible’ hosts denoted by (S), and hosts infected by k distinct types of parasites ((k=1,2,…,n)), the corresponding population numbers of infected hosts are denoted by (I_{i_1,i_2,…,i_k}), where each index (i_j) can take a value from 1, …, n (to avoid repeated counting of the same infection configuration, we require throughout the paper that (i_1 More

  • in

    The shrunk genetic diversity of coral populations in North-Central Patagonia calls for management and conservation plans for marine resources

    Försterra, G. et al. Animal forests in the Chilean fiord region: Discoveries and perspectives in shallow and deep waters. In Marine Animal Forests. Orejas Saco del Valle (eds Rossi, S. et al.) 1–35 (Springer, 2016). https://doi.org/10.1007/978-3-319-17001-5_3-1.Chapter 

    Google Scholar 
    Castilla, J. C. et al. (eds) Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Iriarte, J. L. et al. Oceanographic Processes in Chilean Fjords of Patagonia: From small to large-scale studies. Prog. Oceanogr. 129, 1–7. https://doi.org/10.1016/j.pocean.2014.10.004 (2014).ADS 
    Article 

    Google Scholar 
    Iriarte, J. L. Natural and human influences on marine processes in Patagonian Subantarctic coastal waters. Front. Mar. Sci. 5, 360. https://doi.org/10.3389/fmars.2018.00360 (2018).Article 

    Google Scholar 
    Strub, P. T. et al. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 172, 159–198. https://doi.org/10.1016/j.pocean.2019.01.004 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Häussermann, V. et al. Macrobentos de fondos duros de la Patagonia chilena: Énfasis en la conservación de bosques sublitorales de invertebrados y algas. In Conservación en la Patagonia Chilena: Evaluación del conocimiento, oportunidades y desafíos (eds Castilla, J. C. et al.) (Ediciones Universidad Católica, 2021).
    Google Scholar 
    Kol, P. H. Los Riesgos de la Expansión Salmonera en la Patagonia Chilena. Estado de la Salmonicultura Intensiva en la Región de Magallanes (AIDA, 2018).Iversen, A. et al. Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 522, 735089. https://doi.org/10.1016/j.aquaculture.2020.735089 (2020).Article 

    Google Scholar 
    Cárdenas-Retamal, R. et al. Impact assessment of salmon farming on income distribution in remote coastal areas: The Chilean case. Food Policy 101, 102078. https://doi.org/10.1016/j.foodpol.2021.102078 (2021).Article 

    Google Scholar 
    Chavez, C. et al. Main issues and challenges for sustainable development of salmon farming in Chile: A socio-economic perspective. Rev. Aquac. 11, 403–421. https://doi.org/10.1111/raq.12338 (2019).Article 

    Google Scholar 
    Quiñones, R. A. et al. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 11, 375–402. https://doi.org/10.1111/raq.12337 (2019).Article 

    Google Scholar 
    Mardones, J. I. et al. Disentangling the environmental processes responsible for the world’s largest farmed fish-killing harmful algal bloom: Chile, 2016. Sci. Total Environ. 76, 1–19. https://doi.org/10.1016/j.scitotenv.2020.144383 (2021).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Upraising a silent pollution: Antibiotic resistance at coastal environments and transference to long-distance migratory shorebirds. Sci. Total Environ. 777, 1–7. https://doi.org/10.1016/j.scitotenv.2021.146004 (2021).CAS 
    Article 

    Google Scholar 
    SUBPESCA. Listado de concesiones de acuicultura d salmónidos por agrupación de concesiones en las regiones X, XI y XII (Julio 2021). https://www.subpesca.cl/portal/619/w3-article-103129.html (2021).Gorny, M. et al. Las comunidades marinas bentónicas de la Reserva Nacional Katalalixar (Chile). Oceanografía, 29–44 (2020).Friedlander, A. M. et al. Marine communities of the newly created Kawésqar National Reserve, Chile: From glaciers to the Pacific Ocean. PLoS One 16(4), e0249413. https://doi.org/10.1371/journal.pone.0249413 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mardones, J. I. et al. Toxic dinoflagellate blooms of Alexandrium catenella in Chilean fjords: A resilient winner from climate change. ICES J. Mar. Sci. 74(4), 988–995. https://doi.org/10.1093/icesjms/fsw164 (2016).Article 

    Google Scholar 
    Alvarez-Garreton, C. et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846. https://doi.org/10.5194/hess-22-5817-2018 (2018).ADS 
    Article 

    Google Scholar 
    Novak, B. J. et al. Transforming ocean conservation: Applying the genetic rescue toolkit. Genes 11, 209. https://doi.org/10.3390/genes11020209 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Outeiro, L. et al. Using ecosystem services mapping for marine spatial planning in southern Chile under scenario assessment. Ecosyst. Serv. 16, 341–353. https://doi.org/10.1016/j.ecoser.2015.03.004 (2015).Article 

    Google Scholar 
    Anbleyth-Evans, J. et al. Toward marine democracy in Chile: Examining aquaculture ecological impacts through common property local ecological knowledge. Mar. Policy 113, 103690. https://doi.org/10.1016/j.marpol.2019.103690 (2019).Article 

    Google Scholar 
    Kershaw, F. et al. Geospatial genetics: Integrating genetics into marine protection and spatial planning. Aquat. Conserv. Mar Freshw. Ecosyst. https://doi.org/10.1002/aqc.3622 (2021).Article 

    Google Scholar 
    Jenkins, T. L. & Stevens, J. R. Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy. Mar. Policy 94, 165–173. https://doi.org/10.1016/j.marpol.2018.04.022 (2018).Article 

    Google Scholar 
    Paredes, J. et al. Population genetic structure at the northern edge of the distribution of Alexandrium catenella in the Patagonian fjords and its expansion along the open Pacific Ocean coast. Front. Mar. Sci. 5, 532. https://doi.org/10.3389/fmars.2018.00532 (2019).Article 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. Population genetic structure of Patagonian toothfish (Dissostichus eleginoides) in the Southeast Pacific and Southwest Atlantic Ocean. PeerJ 6, e4173. https://doi.org/10.7717/peerj.4173 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canales-Aguirre, C. B. C. et al. High genetic diversity and low-population differentiation in the Patagonian sprat (Sprattus fuegensis) based on mitochondrial DNA. Mitochondrial DNA Part A 29(8), 1148–1155. https://doi.org/10.1080/24701394.2018.1424841 (2018).CAS 
    Article 

    Google Scholar 
    Pérez-Alvarez, M. et al. Historical dimensions of population structure in a continuously distributed marine species: The case of the endemic Chilean dolphin. Sci. Rep. 6, 35507. https://doi.org/10.1038/srep35507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Alvarez, J. M. et al. Phylogeography and demographic inference of the endangered sei whale, with implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3717 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(1), 1–14. https://doi.org/10.1002/aqc.3421 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Genetic conservation management of marine resources and ecosystems of Patagonian Fjords. Front. Mar. Sci. 8, 612195. https://doi.org/10.3389/fmars.2021.612195 (2021).Article 

    Google Scholar 
    Addamo, A. M. et al. Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus and cross-species amplifications in the Scleractinia Order. J. Hered. 106(3), 322–330. https://doi.org/10.1093/jhered/esv010 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Miller, K. J. & Gunasekera, R. M. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci. Rep. 7, 1–14. https://doi.org/10.1038/srep46103 (2017).CAS 
    Article 

    Google Scholar 
    Holloley, C. E. & Geerts, P. G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517. https://doi.org/10.2144/000113156 (2009).Article 

    Google Scholar 
    Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C. et al. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).MathSciNet 
    MATH 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Falush, D. et al. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).Article 
    PubMed 

    Google Scholar 
    Kopelman, N. M. et al. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K. et al. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627. https://doi.org/10.1111/1755-0998 (2016).Article 
    PubMed 

    Google Scholar 
    Piry, S. et al. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1997).Article 

    Google Scholar 
    Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. et al. dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2022). https://ggplot2.tidyverse.org. ISBN 978-3-319-24277-4.Addamo, A. M. et al. Microsatellites of Desmophyllum dianthus—Comau Fjord. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.612195. Zenodo. https://doi.org/10.5281/zenodo.4435966 (2021).Tecklin, D. Sensing the limits of fixed marine property rights in changing coastal ecosystems: Salmon aquaculture concessions, crises, and governance challenges in Southern Chile. J. Int. Wildl. Law Policy 19(4), 284–300. https://doi.org/10.1080/13880292.2016.1248647 (2016).Article 

    Google Scholar 
    Buschmann, A. H. et al. Salmon aquaculture and coastal ecosystem health in Chile: Analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast. Manag. 52, 243–249. https://doi.org/10.1016/j.ocecoaman.2009.03.002 (2009).Article 

    Google Scholar 
    Pantoja, S. et al. Oceanography of the Chilean Patagonia. Cont. Shelf Res. 31, 149–153. https://doi.org/10.1016/j.csr.2010.10.013 (2011).ADS 
    Article 

    Google Scholar 
    Molina, V. & Fernández, C. Bacterioplankton response to nitrogen and dissolved organic matter produced from salmon mucus. Microbiol. Open 9(12), e1132. https://doi.org/10.1002/mbo3.1132 (2020).CAS 
    Article 

    Google Scholar 
    Försterra, G. & Häussermann, V. First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool. Verh. 345, 117–128 (2003).
    Google Scholar 
    Brown, S. M. et al. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem. PLoS One 8(4), e59732. https://doi.org/10.1371/journal.pone.0059732 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, Y. et al. Lack of genetic variation prevents adaptation at the geographic range margin in a damselfly. Mol. Ecol. 25, 4450–4460. https://doi.org/10.1111/mec.13782 (2016).Article 
    PubMed 

    Google Scholar 
    Thiel, M. et al. The Humboldt Current system of Northern and Central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
    Google Scholar 
    Giesecke, R. et al. General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America. Front. Mar. Sci. Coast. Ocean Process. 8, 621822. https://doi.org/10.3389/fmars.2021.621822 (2021).Article 

    Google Scholar 
    Chaigneau, A. Surface circulation and fronts of the South Pacific Ocean, east of 120°. Geophys. Res. Lett. 32, L08605. https://doi.org/10.1029/2004GL022070 (2005).ADS 
    Article 

    Google Scholar 
    Aiken, C. M. A reanalysis of the Chilean ocean circulation: Preliminary results for the region between 20°S to 40°S. Lat. Am. J. Aquat. Res. 45(1), 193–198. https://doi.org/10.3856/vol45-issue1-fulltext-19 (2017).Article 

    Google Scholar 
    González, H. E. et al. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 402, 13–30. https://doi.org/10.3354/meps08360 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    González, H. E. et al. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Cont. Shelf Res. 31, 225–243. https://doi.org/10.1016/j.csr.2010.08.010 (2011).ADS 
    Article 

    Google Scholar 
    Feehan, K. A. et al. Highly seasonal reproduction in deep-water emergent Desmophyllum dianthus (Scleractinia: Caryophylliidae) from the Northern Patagonian Fjords. Mar. Biol. 166(4), 52. https://doi.org/10.1007/s00227-019-3495-3 (2019).Article 

    Google Scholar 
    Försterra, G. et al. Mass die off of the cold-water coral Desmophyllum dianthus in the Chilean Patagonian Fjord Region. Bull. Mar. Sci. 90(3), 895–899 (2014).Article 

    Google Scholar 
    Mora-Soto, A. et al. A song of wind and ice: Increased frequency of marine cold-spells in southwestern Patagonia and their possible effects on giant kelp forests. J. Geophys. Res. Oceans 127, e2021JC017801. https://doi.org/10.1029/2021JC017801 (2022).ADS 
    Article 

    Google Scholar 
    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    Verberk, W. Explaining general patterns in species abundance and distributions. Nat. Sci. Educ. 3(10), 38 (2011).
    Google Scholar 
    Devenish, C. et al. Extreme and complex variation in range-wide abundances across a threatened Neotropical bird community. Divers. Distrib. 23, 910–921. https://doi.org/10.1111/ddi.12577 (2017).Article 

    Google Scholar 
    Iriarte, J. L. et al. Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord. N. Z. J. Mar. Freshw. Res. 51(2), 304–315. https://doi.org/10.1080/00288330.2016.1220955 (2016).CAS 
    Article 

    Google Scholar 
    Silva, N. et al. Características oceanográficas físicas y químicas de canales australes chilenos entre Puerto Montt y Laguna San Rafael (Crucero Cimar-Fiordo 1). Cienc. Tecnol. Mar. 20, 23–106 (1997).
    Google Scholar 
    Iriarte, J. L. et al. Low spring primary production and microplankton carbon biomass in Sub-Antarctic Patagonian channels and fjords (50–53°S). Arct. Antarct. Alp. Res. 50(1), e1525186. https://doi.org/10.1080/15230430.2018.1525186 (2018).Article 

    Google Scholar 
    Höfer, J. et al. All you can eat: The functional response of the cold-water coral Desmophyllum dianthus feeding on krill and copepods. PeerJ 6, e5872. https://doi.org/10.7717/peerj.5872 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montero, P. et al. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem. Estuar. Coast. Shelf Sci. 199, 105e116. https://doi.org/10.1016/j.ecss.2017.09.027 (2017).CAS 
    Article 

    Google Scholar 
    Quiroga, E. et al. Seasonal benthic patterns in a glacial Patagonian fjord: The role of suspended sediment and terrestrial organic matter. Mar. Ecol. Prog. Ser. 561, 31–50. https://doi.org/10.3354/meps11903 (2016).ADS 
    Article 

    Google Scholar 
    Escribano, R. et al. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Prog. Oceanogr. 75, 470–485. https://doi.org/10.1016/j.pocean.2007.08.027 (2007).ADS 
    Article 

    Google Scholar 
    Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4, e1606. https://doi.org/10.7717/peerj.1606 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez-Dios, A. et al. Effects of low pH and feeding on calcification rates of the cold-water coral Desmophyllum dianthus. PeerJ 8, e8236. https://doi.org/10.7717/peerj.8236 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-Márquez, V. et al. Asexual reproduction in bad times? The case of Cladocora caespitosa in the eastern Mediterranean Sea. Coral Reefs 40, 663–677. https://doi.org/10.1007/s00338-020-02040-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva, N. & Calvete, C. Características oceanográficas físicas y químicas de canales australes chilenos entre el Golfo de Penas y el Estrecho de Magallanes (Crucero Cimar-Fiordo 2). Cienc. Tecnol. Mar. 20, 23–88 (2002).
    Google Scholar 
    Häussermann, V. et al. Species that fly at a higher game: Patterns of deep–water emergence along the Chilean coast, including a global review of the phenomenon. Front. Mar. Sci. 8, 688316. https://doi.org/10.3389/fmars.2021.688316 (2021).Article 

    Google Scholar 
    Fillinger, L. & Richter, C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: A cold-water coral thriving at low pH. PeerJ 1, e194. https://doi.org/10.7717/peerj.194 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Addamo, A. M. et al. Biodiversity and distribution of corals in Chile. Mar. Biodivers. 52, 33. https://doi.org/10.1007/s12526-022-01271-7 (2022).Article 

    Google Scholar 
    Figuerola, B. et al. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 8, 584445. https://doi.org/10.3389/fmars.2021.584445 (2021).Article 

    Google Scholar 
    SGS SIGA. 4.15 Pobreza multidimensional y pobreza por ingresos de la Region de los Lagos. Agosto 2018. Subsecreteria de Desarollo Regional y Administrativo, Gobierno de Chile (2018).FAO. The state of world fisheries and aquaculture. http://www.fao.org/3/a-i720e.pdf (2014).Niklitschek, E. J. et al. Southward expansion of the Chilean salmon industry in the Patagonian Fjords: Main environmental challenges. Rev. Aquac. 4, 1–24. https://doi.org/10.1111/raq.1201 (2013).Article 

    Google Scholar 
    Soto, M. V. et al. Natural hazards and exposure of strategic connectivity in extreme territories. Comau Fjord, North Patagonia, Chile. Rev. Geogr. Norte Grande 73, 57–75 (2019).Article 

    Google Scholar 
    Montes, R. M. et al. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65. https://doi.org/10.1016/j.hal.2018.05.004 (2018).Article 
    PubMed 

    Google Scholar 
    Lembeye, G. Harmful algal blooms in the austral Chilean channels and fjords. In Progress in the Oceanographic Knowledge of Chilean Interior Waters, from Puerto Montt to Cape Horn (eds Silva, N. & Palma, S.) 99–103 (Comité Oceanográfico, 2008).
    Google Scholar 
    Häussermann, V. et al. Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ 5, e3123. https://doi.org/10.7717/peerj.3123 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Google IncGoogle Earth. Retrieved from https://www.google.com/earth/versions/#download-pro (2009). More

  • in

    Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2

    Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).Ridgwell, A. & Zeebe, R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).Article 

    Google Scholar 
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).Article 

    Google Scholar 
    Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174 (2004).Article 

    Google Scholar 
    Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).Article 

    Google Scholar 
    Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep Sea Res. Part 2 54, 521–537 (2007).Article 

    Google Scholar 
    Gibbs, S. J., Sheward, R. M., Bown, P. R., Poulton, A. J. & Alvarez, S. A. Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 20170075 (2018).Article 

    Google Scholar 
    Aloisi, G. Covariation of metabolic rates and cell size in coccolithophores. Biogeosciences 12, 6215–6284 (2015).Article 

    Google Scholar 
    Boudreau, B. P., Middelburg, J. J. & Luo, Y. The role of calcification in carbonate compensation. Nat. Geosci. 11, 894–900 (2018).Article 

    Google Scholar 
    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).Article 

    Google Scholar 
    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).Article 

    Google Scholar 
    McClelland, H. L. O., Bruggeman, J., Hermoso, M. & Rickaby, R. E. M. The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8, 14511 (2017).Article 

    Google Scholar 
    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).Article 

    Google Scholar 
    McClelland, H. L. O. et al. Calcification response of a key phytoplankton family to millennial-scale environmental change. Sci. Rep. 6, 34263 (2016).Article 

    Google Scholar 
    Duchamp-Alphonse, S. et al. Enhanced ocean–atmosphere carbon partitioning via the carbonate counter pump during the last deglacial. Nat. Commun. 9, 2396 (2018).Article 

    Google Scholar 
    Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).Article 

    Google Scholar 
    Meier, K. J. S., Berger, C. & Kinkel, H. Increasing coccolith calcification during CO2 rise of the penultimate deglaciation (Termination II). Mar. Micropaleontol. 112, 1–12 (2014).Article 

    Google Scholar 
    Su, X., Liu, C. & Beaufort, L. Late Quaternary coccolith weight variations in the northern South China Sea and their environmental controls. Mar. Micropaleontol. 154, 101798 (2020).Article 

    Google Scholar 
    Berger, C., Meier, K. J. S., Kinkel, H. & Baumann, K.-H. Changes in calcification of coccoliths under stable atmospheric CO2. Biogeosciences 11, 929–944 (2014).Article 

    Google Scholar 
    Zachos, J., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).Article 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).Article 

    Google Scholar 
    Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11, 4436 (2020).Article 

    Google Scholar 
    Holtz, L.-M., Wolf-Gladrow, D. & Thoms, S. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores—a numerical model study for Emiliania huxleyi. J. Theor. Biol. 420, 117–127 (2017).Article 

    Google Scholar 
    Hermoso, M., Horner, T. J., Minoletti, F. & Rickaby, R. E. M. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater. Geochim. Cosmochim. Acta 141, 612–627 (2014).Article 

    Google Scholar 
    Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C. & Rickaby, R. E. M. Vanishing coccolith vital effects with alleviated carbon limitation. Biogeosciences 13, 301–312 (2016).Article 

    Google Scholar 
    Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785 (2010).Article 

    Google Scholar 
    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149 (2003).Article 

    Google Scholar 
    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).Article 

    Google Scholar 
    Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).Article 

    Google Scholar 
    Sheward, R. M., Poulton, A. J., Gibbs, S. J., Daniels, C. J. & Bown, P. R. Physiology regulates the relationship between coccosphere geometry and growth phase in coccolithophores. Biogeosciences 14, 1493–1509 (2017).Article 

    Google Scholar 
    Gibbs, S. J. et al. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nat. Geosci. 6, 218–222 (2013).Article 

    Google Scholar 
    Herrmann, S. & Thierstein, H. R. Cenozoic coccolith size changes—evolutionary and/or ecological controls? Palaeogeogr. Palaeoclimatol. Palaeoecol. 333–334, 92–106 (2012).Article 

    Google Scholar 
    Young, J. R. & Ziveri, P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 22, 1679–1700 (2000).Article 

    Google Scholar 
    Daniels, C. J., Sheward, R. M. & Poulton, A. J. Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species. Biogeosciences 11, 6915–6925 (2014).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 

    Google Scholar 
    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).Article 

    Google Scholar 
    Misra, S. & Froelich, P. N. Lithium isotope history of cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).Article 

    Google Scholar 
    Ravizza, G. E. & Zachos, J. C. in Treatise on Geochemistry Vol. 6 (ed. Elderfield, H.) 551–581 (Elsevier, 2003).McArthur, J. M., Howarth, R. J. & Bailey, T. R. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr‐isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. J. Geol. 109, 155–170 (2001).Article 

    Google Scholar 
    Pegram, W. J., Krishnaswami, S., Ravizza, G. E. & Turekian, K. K. The record of sea water 1870s/1860s variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–576 (1992).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Leg 208 summary. In Zachos, J. C., Kroon, D. & Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–112: College Station, TX (Ocean Drilling Program) (2004).Brummer, G. J. A. & van Eijden, A. J. M. “Blue-ocean” paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar. Micropaleontol. 19, 99–117 (1992).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change. Front. Mar. Sci. 4, 433 (2018).Article 

    Google Scholar 
    Gafar, N. A. & Schulz, K. G. A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences 15, 3541–3560 (2018).Article 

    Google Scholar 
    Gafar, N. A., Eyre, B. D. & Schulz, K. G. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Sci. Rep. 9, 2486 (2019).Article 

    Google Scholar 
    Zhang, Y. G. et al. Refining the alkenone–pCO2 method I: lessons from the Quaternary glacial cycles. Geochim. Cosmochim. Acta 260, 177–191 (2019).Article 

    Google Scholar 
    Freeman, K. H. & Pagani, M. in A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems Vol. 177 (eds Baldwin, I. T. et al.) 35–61 (Springer-Verlag, 2005).Pagani, M. The alkenone–CO2 proxy and ancient atmospheric carbon dioxide. Phil. Trans. R. Soc. A 360, 609–632 (2002).Article 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).Article 

    Google Scholar 
    Henehan, M. J. et al. Revisiting the Middle Eocene Climatic Optimum ‘Carbon Cycle Conundrum’ with new estimates of atmospheric pCO2 from boron isotopes. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003713 (2020).Zachos, J., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).Article 

    Google Scholar 
    Stap, L., Sluijs, A., Thomas, E. & Lourens, L. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean, Paleoceanography 24, PA1211, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008PA001655 (2009).Sluijs, A. et al. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780 (2009).Article 

    Google Scholar 
    Stap, L. et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38, 607–610 (2010).Article 

    Google Scholar 
    Bohaty, S. M. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017 (2003).Article 

    Google Scholar 
    van der Ploeg, R. et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nat. Commun. 9, 2877 (2018).Article 

    Google Scholar 
    Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).Article 

    Google Scholar 
    Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822–e1501822 (2016).Article 

    Google Scholar 
    Shipboard Scientific Party, 2004. Site 1263. In Zachos, J. C., Kroon, D., Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, 208, 1–87 College Station, TX (Ocean Drilling Program) (2004).Bice, K. L., Sloan, L. C. & Barron, E. J. in Warm Climates in Earth History (eds Huber, B. T., Macleod, K. G., & Wing, S. L.) 79–129 (Cambridge Univ. Press, 2000).Handoh, I. C., Bigg, G. R. & Jones, E. J. W. Evolution of upwelling in the Atlantic Ocean basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 31–58 (2003).Article 

    Google Scholar 
    Minoletti, F., Hermoso, M. & Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nat. Protoc. 4, 14–24 (2009).Article 

    Google Scholar 
    Zhang, H., Stoll, H., Bolton, C., Jin, X. & Liu, C. A refinement of coccolith separation methods: Measuring the sinking characters of coccoliths. Biogeosciences Discussions (2018): 1–30 https://doi.org/10.5194/bg-2018-82 (2020).Hermoso, M. et al. Towards the use of the coccolith vital effects in palaeoceanography: a field investigation during the middle Miocene in the SW Pacific Ocean. Deep Sea Res. Part 1 160, 103262 (2020).Article 

    Google Scholar 
    Lauretano, V., Hilgen, F. J., Zachos, J. C. & Lourens, L. J. Astronomically tuned age model for the early Eocene carbon isotope events: a new high-resolution δ13Cbenthic record of ODP site 1263 between ~49 and ~54 Ma. Newsl. Stratigr. 49, 383–400 (2016).Article 

    Google Scholar 
    Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M. & Zachos, J. C. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 11, 1181–1195 (2015).Article 

    Google Scholar 
    Westerhold, T. et al. Astronomical Calibration of the Ypresian Time Scale: Implications for Seafloor Spreading Rates and the Chaotic Behaviour of the Solar System? Preprint at Clim. Past Discuss. https://doi.org/10.5194/cp-2017-15 (2017).Gatuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. seacarb: Seawater Carbonate Chemistry (2021); https://CRAN.R-project.org/package=seacarb More

  • in

    Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan

    Blanton, L. S. The rickettsioses: A practical update. Infect. Dis. Clin. North Am. 33, 213–229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parola, P. et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 26, 657–702 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Satjanadumrong, J., Hughes, T., Stenos, J. & Blacksell, S. D. Diagnosis of spotted fever group Rickettsia infections: The Asian perspective. Epidemiol. Infect. 147, e286 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graves, S. & Stenos, J. Rickettsioses in Australia. Ann. N. Y. Acad. Sci. 1166, 151–155 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Niang, M. et al. Prevalence of antibodies to Rickettsia conorii, Ricketsia africae, Rickettsia typhi and Coxiella burnetii in Mauritania. Eur. J. Epidemiol. 14, 817–818 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parola, P. Tick-borne rickettsial diseases: Emerging risks in Europe. Comp. Immunol. Microbiol. Infect. Dis. 27, 297–304 (2004).PubMed 
    Article 

    Google Scholar 
    Nanayakkara, D. M., Rajapakse, R. P. V. J., Wickramasinghe, S. & Kularatne, S. A. M. Serological evidence for exposure of dogs to Rickettsia conorii, Rickettsia typhi, and Orientia tsutsugamushi in Sri Lanka. Vector Borne Zoon. Dis. Larchmt. N 13, 545–549 (2013).Article 

    Google Scholar 
    Brown, L. D. & Macaluso, K. R. Rickettsia felis, an emerging flea-borne rickettsiosis. Curr. Trop. Med. Rep. 3, 27–39 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newton, P. N. et al. A prospective, open-label, randomized trial of doxycycline versus azithromycin for the treatment of uncomplicated murine typhus. Clin. Infect. Dis. 68, 738–747 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vallee, J. et al. Contrasting spatial distribution and risk factors for past infection with scrub typhus and murine typhus in Vientiane City, Lao PDR. 4 (2010).Akram, S. M., Jamil, R. T. & Gossman, W. G. Rickettsia Akari (2021).Dong, X., El Karkouri, K., Robert, C., Raoult, D. & Fournier, P.-E. Genome sequence of Rickettsia australis, the agent of Queensland tick typhus. J. Bacteriol. 194, 5129 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fournier, P.-E. & Raoult, D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann. N. Y. Acad. Sci. 1166, 1–11 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Legendre, K. P. & Macaluso, K. R. Rickettsia felis: A review of transmission mechanisms of an emerging pathogen. Trop. Med. Infect. Dis. 2, E64 (2017).PubMed 
    Article 

    Google Scholar 
    Murray, G. G. R., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia using different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279 (2016).PubMed 
    Article 

    Google Scholar 
    Shpynov, S. N., Fournier, P., Pozdnichenko, N. N., Gumenuk, A. S. & Skiba, A. A. New approaches in the systematics of rickettsiae. New Microbes New Infect. 23, 93–102 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shpynov, S. et al. Detection of a rickettsia closely related to Rickettsia aeschlimannii, ‘Rickettsia heilongjiangensis’, Rickettsia sp. strain RpA4, and Ehrlichia muris in ticks collected in Russia and Kazakhstan. J. Clin. Microbiol. 42, 2221–2223 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aung, A. K., Spelman, D. W., Murray, R. J. & Graves, S. Review article: Rickettsial infections in Southeast Asia: Implications for local populace and febrile returned travelers. Am. J. Trop. Med. Hyg. 91, 451–460 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodkvamtook, W. et al. Scrub typhus outbreak in Chonburi Province, Central Thailand, 2013. Emerg. Infect. Dis. 24, 361–365 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson, M. T., Vongphayloth, K., Hertz, J. C., Brey, P. & Newton, P. N. Tick-transmitted human infections in Asia. Microbiol. Aust. 39, 203–206 (2018).Article 

    Google Scholar 
    Bartoshevic, E. To the issue of rickettsioses. Health Care Kazakhstan 3, 20–24 (1952) (in Russian).
    Google Scholar 
    Kereyev, N. Human natural focal diseases in Kazakhstan. Alma-ata (1961) (in Russian).Arkhangelskiy, D. Experimental study of tick-borne rickettsial pathogen in Almaty region. In Collection of Scientific Papers of the Institute of Microbiology and Virologoy Vol 4. Physiology and ecology of micro-organisms. Almta-ata 176–85 (1961) (in Russian).Kyraubayev, K. et al. Study of Dermacentor marginatus ticks for Rickettsiae in Central Kazakhstan. Proc. ASM (2014).Shpynov, S. et al. Detection and identification of spotted fever group Rickettsiae in dermacentor ticks from Russia and Central Kazakhstan. Eur. J. Clin. Microbiol. Infect. Dis. 20, 903–905 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shpynov, S., Rudakov, N. & Yastrebov, V. Identification of new genotypes of rickettsia tick-borne spotted fever group in the south of the Ural, Siberia, Far East and Kazakhstan. Epidemiol. Infect. Dis. 1, 23–27 (2005).
    Google Scholar 
    Hay, J. et al. Biosurveillance in Central Asia: Successes and challenges of tick-borne disease research in Kazakhstan and Kyrgyzstan. Front. Public Health 4, 4 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yegemberdiyeva, R. & Shapieva, Z. Clinical and epidemiological characteristic of tick-borne rickettsiosis in Kazakhstan. Abstract Book of the International Conference on Zoonoses. Ulaanbaatar 48–51 (2008).Rudakov, N. V., Shpynov, S. N., Samoilenko, I. E. & Tankibaev, M. A. Ecology and epidemiology of spotted fever group Rickettsiae and new data from their study in Russia and Kazakhstan. Ann. N. Y. Acad. Sci. 990, 12–24 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sansyzbayev, Y. et al. Survey for Rickettsiae within fleas of Great Gerbils, Almaty Oblast, Kazakhstan. Vector Borne Zoon. Dis. Larchmt. N 17, 172–178 (2017).Article 

    Google Scholar 
    Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring. Almaty. Epidemiological situation of infectious diseases in the Republic of Kazakhstan from 2016. Annual Report (2016) (in Russian).CDC. https://www.cdc.gov/vhf/omsk/index.html (2022).Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 1–16 (2019).Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tomassone, L. et al. Neglected vector-borne zoonoses in Europe: Into the wild. Vet. Parasitol. 251, 17–26 (2018).PubMed 
    Article 

    Google Scholar 
    Schex, S., Dobler, G. & Riehm, J. Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector Borne Zoon. Dis. 11, 493–502 (2011).Article 

    Google Scholar 
    Tukhanova, N. et al. Molecular characterisation and phylogeny of Tula virus in Kazakhstan. Viruses 14, 1258 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wölfel, R., Essbauer, S. & Dobler, G. Diagnostics of tick-borne rickettsioses in Germany: A modern concept for a neglected disease. Int. J. Med. Microbiol. 298, 368–374 (2008).Article 
    CAS 

    Google Scholar 
    Fournier, P. E., Roux, V. & Raoult, D. Phylogenetic analysis of spotted fever group Rickettsiae by study of the outer surface protein rOmpA. Int. J. Syst. Bacteriol. 48(Pt 3), 839–849 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jado, I. et al. Molecular method for identification of Rickettsia species in clinical and environmental samples. J. Clin. Microbiol. 44, 4572–4576 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, T. A. BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turebekov, N. et al. Occurrence of anti-Rickettsia spp. antibodies in hospitalized patients with undifferentiated febrile illness in the southern region of Kazakhstan. Am. J. Trop. Med. Hyg. 104, 2000–2008 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    SPC SEEM. Kazakhstan Scientific Practical Center of Sanitary Epidemiological Expertise and Monitoring, Almaty, Kazakhstan (2021).Yamamoto, Y. PCR in diagnosis of infection: detection of bacteria in cerebrospinal fluids. Clin. Vaccine Immunol. 9, 508–514 (2002).CAS 
    Article 

    Google Scholar 
    Turebekov, N. et al. Prevalence of Rickettsia species in ticks including identification of unknown species in two regions in Kazakhstan. Parasit. Vectors 12, 197 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gajda, E. et al. Spotted fever Rickettsiae in wild-living rodents from south-western Poland. Parasit. Vectors 10, 413 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Essbauer, S., Hofmann, M., Kleinemeier, C., Wölfel, S. & Matthee, S. Rickettsia diversity in southern Africa: A small mammal perspective. Ticks Tick-Borne Dis. 9, 288–301 (2018).PubMed 
    Article 

    Google Scholar 
    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 6 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    El Karkouri, K., Ghigo, E., Raoult, D. & Fournier, P.-E. Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci. Rep. 12, 3807 (2022).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zemtsova, G. E., Montgomery, M. & Levin, M. L. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals. PLoS One 10, e0116658 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burri, C., Schumann, O., Schumann, C. & Gern, L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum?. Ticks Tick-Borne Dis. 5, 245–251 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tadin, A. et al. Molecular survey of zoonotic agents in rodents and other small mammals in Croatia. Am. J. Trop. Med. Hyg. 94, 466–473 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Karbowiak, G., Biernat, B., Stańczak, J., Szewczyk, T. & Werszko, J. The role of particular tick developmental stages in the circulation of tick-borne pathogens affecting humans in Central Europe. 3. Rickettsiae. Ann. Parasitol. 62, 89–100 (2016).PubMed 

    Google Scholar 
    Zemtsova, G., Killmaster, L. F., Mumcuoglu, K. Y. & Levin, M. L. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp. Appl. Acarol. 52, 383–392 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehácek, J., Urvölgyi, J., Kocianová, E. & Jedlicka, L. Susceptibility of some species of rodents to Rickettsiae. Folia Parasitol. (Praha) 39, 265–284 (1992).
    Google Scholar 
    Rehácek, J., Zupancicová, M., Kovácová, E., Urvölgyi, J. & Brezina, R. Study of rickettsioses in Slovakia. III. Experimental infection of Apodemus flavicollis Melch. by Rickettsiae of the spotted fever (SF) group isolated in Slovakia. J. Hyg. Epidemiol. Microbiol. Immunol. 21, 306–313 (1976).PubMed 

    Google Scholar 
    Biernat, B., Stańczak, J., Michalik, J., Sikora, B. & Wierzbicka, A. Prevalence of infection with Rickettsia helvetica in Ixodes ricinus ticks feeding on non-rickettsiemic rodent hosts in sylvatic habitats of west-central Poland. Ticks Tick-Borne Dis. 7, 135–141 (2016).PubMed 
    Article 

    Google Scholar 
    Stańczak, J. et al. Prevalence of infection with Rickettsia helvetica in feeding ticks and their hosts in western Poland. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 15(Suppl 2), 328–329 (2009).
    Google Scholar 
    Barandika, J. F. et al. Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl. Environ. Microbiol. 73, 6166–6171 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spitalská, E., Boldis, V., Kostanová, Z., Kocianová, E. & Stefanidesová, K. Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol. 52, 175–179 (2008).PubMed 

    Google Scholar 
    Guo, L.-P. et al. Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China-Kazakhstan border. Parasit. Vectors 8, 461 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The establishment of ecological conservation for herpetofauna species in hotspot areas of South Korea

    Giovanelli, J. G. R., Haddad, C. F. B. & Alexandrino, J. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol. Invas. 10, 585–590. https://doi.org/10.1007/s10530-007-9154-5 (2008).Article 

    Google Scholar 
    Sillero, N. Modelling suitable areas for Hyla meridionalis under current and future hypothetical expansion scenarios. Amphib. Reptil. 31, 37–50. https://doi.org/10.1163/156853810790457948 (2010).Article 

    Google Scholar 
    Foley, D. H. et al. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae). J. Vector Ecol. 39, 168–181. https://doi.org/10.1111/j.1948-7134.2014.12084.x,Pubmed:24820570 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS. J. Arid Environ. 75, 1029–1037. https://doi.org/10.1016/j.jaridenv.2011.06.006 (2011).ADS 
    Article 

    Google Scholar 
    Kim, J., Seo, C., Kwon, H., Ryu, J. & Kim, M. A study on the species distribution modeling using national ecosystem survey data. J. Environ. Impact Assess. 21, 593–607 (2012) (in Korean with English abstract).
    Google Scholar 
    Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS One 11, e0144076. https://doi.org/10.1371/journal.pone.0144076,Pubmed:26735688 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, M. S. et al. Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea. Korean J. Environ. Ecol. 31, 381–396. https://doi.org/10.13047/KJEE.2017.31.4.381 (2017).Article 

    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Padoa-Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers. Distrib. 15, 108–116. https://doi.org/10.1111/j.1472-4642.2008.00516.x (2009).Article 

    Google Scholar 
    Sillero, N. Modelling a species in expansion at local scale: Is Hyla meridionalis colonising new areas in Salamanca, Spain. Acta Herpetol. 4, 37–46 (2009).
    Google Scholar 
    Yun, S., Lee, J. W. & Yoo, J. C. Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Glob. Ecol. Conserv. 22, e00976. https://doi.org/10.1016/j.gecco.2020.e00976 (2020).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2012).
    Google Scholar 
    Katayama, N. et al. Indirect positive effects of agricultural modernization on the abundance of Japanese tree frog tadpoles in rice fields through the release from predators. Aquat. Ecol. 47, 225–234. https://doi.org/10.1007/s10452-013-9437-0 (2013).Article 

    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272. https://doi.org/10.1080/21513732.2013.821168 (2013).Article 

    Google Scholar 
    Cortes, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of Neotropical amphibians and reptiles: A review. Univ. Sci. 20, 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna (2015).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485. https://doi.org/10.1038/nature09670,Pubmed:21350480 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. https://doi.org/10.1126/science.1184695,Pubmed:20466932 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118. https://doi.org/10.1111/j.1472-4642.2009.00619.x (2010).Article 

    Google Scholar 
    Blank, L. & Blaustein, L. Using ecology niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167. https://doi.org/10.1007/s10750-012-1101-5 (2012).Article 

    Google Scholar 
    de Pous, P., Beukema, W., Weterings, M., Dümmer, I. & Geniez, P. Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: A preliminary assessment. Biodivers. Conserv. 20, 89–118. https://doi.org/10.1007/s10531-010-9948-0 (2011).Article 

    Google Scholar 
    NIBR (National Institute of Biological Resources). National List of Species (Reptiles and amphibians). https://www.kbr.go.kr/stat/ktsnfiledown/downpopup.do (2020).Ministry of the Environment. List of Prohibited Wildlife Such as Capture and Harvesting (Ministry of the Environment, 2015).NIBR (National Institute of Biological Resources). Red Data Book of Republic of Korea. Amphibians and Reptiles (NIBR, Incheon), 110–117 (2019).Kim, J. B. Taxonomic list and distribution of Korean Amphibians. Korean J. Herpetol. 1, 1–13 (2009) (in Korean with English abstract).
    Google Scholar 
    Song, J. Y. & Lee, I. Elevation distribution of Korean Amphibians. Korean J. Herpetol. 1, 15–19 (2009) (in Korean with English abstract).
    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of Amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010) (in Korean with English abstract).
    Google Scholar 
    Do, M. S. et al. Anuran Community Patterns in the rice fields of the mid-western region of the Republic of Korea. Glob. Ecol. Conserv. 26, e01448. https://doi.org/10.1016/j.gecco.2020.e01448 (2021).Article 

    Google Scholar 
    Kim, I. H., Son, S. H., Kang, S. W. & Kim, J. B. Distribution and habitat characteristics of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 15–22 (2012) (in Korean with English abstract).
    Google Scholar 
    Do, M. S., Lee, J. W., Jang, H. J., Kim, D. I. & Yoo, J. C. Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological niche-based models and GIS1a. Korean J. Environ. Ecol. 30, 173–184. https://doi.org/10.13047/KJEE.2016.30.2.173 (2016) (in Korean with English abstract).Article 

    Google Scholar 
    Do, M. S. et al. The study on habitat analysis and ecological niche of Korean Brown Frogs (Rana dybowskii, R. Coreana and R. huanrensis) using the species distribution model. Korean J. Herpetol. 9, 1–11 (2018).
    Google Scholar 
    Do, M. S., Choi, S., Jang, H. J. & Suh, J. H. Predicting the Distribution of three Korean pit viper Species (Gloydius brevicaudus, G. ussuriensis and G. intermedius) under Climate Change. Russ. J. Herpetol. (2022)Koo, K. S., Park, D. & Oh, H. S. Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J. Asia Pac. Biodivers. 12, 1–6. https://doi.org/10.1016/j.japb.2018.11.001 (2019).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals (Basel) 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 

    Google Scholar 
    Shin, Y. et al. How threatened is Scincella huanrenensis? An update on threats and trends. Conservation 1, 58–72. https://doi.org/10.3390/conservation1010005 (2021).Article 

    Google Scholar 
    Lee, S. Y. et al. Distribution prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the climate change. Korean J. Environ. Ecol. 35, 480–489. https://doi.org/10.13047/KJEE.2021.35.5.480 (2021).Article 

    Google Scholar 
    Ra, N. Y. Habitat and Behavioral Characteristics, Captive Breeding and Recovery Strategy of the Endangered Gold-Spotted Pond Frog (Rana Plancyi Chosenica). PhD thesis (Kangwon Natl Univ., 2010).Borzée, A., Kim, J. Y. & Jang, Y. Asymmetric competition over calling sites in two closely related treefrog species. Sci. Rep. 6, 32569. https://doi.org/10.1038/srep32569,Pubmed:27599461 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, W. Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. J. Korean Environ. Res. Tech. 18, 71–82 (2015) (in Korean with English abstract).
    Google Scholar 
    Ahn, J. Y., Choi, S., Kim, H., Suh, J. H. & Do, M. S. Ecological niche and interspecific competition of two frog species (Pelophylax nigromaculatus and P. chosenicus) in South Korea using the geographic information system. KJEE 54, 363–373 (2021).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J. & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea (NIER, 2011) (in Korean).Lee, J. H. & Park, D. Spatial ecology of translocated and resident Amur ratsnakes (Elaphe schrenckii) in two mountain valleys of South Korea. Asian Herpetol. Res. 2, 223–229 (2012).Article 

    Google Scholar 
    Do, M. S., Nam, K. B. & Yoo, J. C. First observation on courtship behavior of short-tailed viper snake, Gloydius saxatilis (Squamata: Viperidae) in Korea. J. Asia Pac. Biodivers. 10, 583–586. https://doi.org/10.1016/j.japb.2017.08.003 (2017).Article 

    Google Scholar 
    Do, M. S. & Nam, K. B. Distribution patterns and ecological niches of the red-tongued pit viper (Gloydius ussuriensis) and the Central Asian pit viper (Gloydius intermedius) in Cheonmasan Mountain, South Korea. Russ. J. Herpetol. 28, 348–354. https://doi.org/10.30906/1026-2296-2021-28-6-348-354 (2021).Article 

    Google Scholar 
    Do, M. S. Habitat use and hiding behavior of Central Asian pit viper (Gloydius intermedius). Korean J. Herpetol. 12, 1–8 (2021).
    Google Scholar 
    Min, M. S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90. https://doi.org/10.1038/nature03474,Pubmed:15875021 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, J. Y. Current status and distribution of reptiles in the Republic of Korea. Korean J. Environ. Biol. 25, 124–138 (2007).
    Google Scholar 
    Jang, H. J., Kim, D. I. & Jang, M. H. Distribution of reptiles in South Korea: based on the 3rd National Ecosystem Survey. Korean J. Herpetol. 7, 30–35 (2016) (in Korean with English abstract).
    Google Scholar 
    Seo, C. W., Choi, T. Y., Choi, Y. S. & Kim, D. Y. A study on wildlife habitat suitability modeling for goral (Nemorhaedus caudatus raddeanus) in Seoraksan national park. J. Korean Environ. Res. Reveg Tech. 11, 28–38 (2008) (in Korean with English abstract).
    Google Scholar 
    Kown, H. S. Integrated Evaluation Model of Biodiversity for Conservation Planning: Focused on MT, PhD thesis (Mt Deokyu and MT: Jiri, 2011, 2011). Gaya Regions (Graduate School, Seoul Natl Univ., 2011).Urbina-Cardona, J. N. & Loyola, R. D. Applying niche-based models to predict endangered-hylid potential distributions: Are Neotropical protected areas effective enough?. Trop. Conserv. Sci. 1, 417–445. https://doi.org/10.1177/194008290800100408 (2008).Article 

    Google Scholar 
    Korea Forest Service. Forest area by administrative district. https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardList.do?mn=NKFS_04_05_10&pageIndex=1&pageUnit=10&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchdept=&searchWrd=&ctgryLrcls=CTGRY070&ntcStartDt=&ntcEndDt=&bbsId=BBSMSTR_1016 (2015).Statistics Korea. Population and housing census results in South Korea. https://www.kostat.go.kr/portal/korea/kor_nw/1/2/2/index.board (2020).Hyun, J. Brokering science, blaming culture: The US–South Korea ecological survey in the Demilitarized Zone, 1963–8. Hist. Sci. 59, 315–343. https://doi.org/10.1177/0073275320974209,Pubmed:33287575 (2021).Article 
    PubMed 

    Google Scholar 
    Choung, E. H. A theoretical study on the landscape of the Korean DMZ and its spatial significance. Inter-Asian Cult. Stud. 22, 16–35. https://doi.org/10.1080/14649373.2021.1886465 (2021).Article 

    Google Scholar 
    Ministry of the Environment. Report on Biodiversity in the DMZ (Demilitarized Zone) Area. Seocheon-Gun (Ministry of the Environment, 2016).Statistics Korea. Status of species investigation by national park in South Korea. https://kosis.kr/statHtml/statHtml.do?orgId=355&tblId=TX_35501_A069&conn_path=I3 (2021).Koo, K. S., Kwon, S., Do, M. S. & Kim, S. Distribution characteristics of exotic turtles in Korean wild-Based. Korean J Ecol. Environ. 50, 286–294. https://doi.org/10.11614/KSL.2017.50.3.286 (2017).Article 

    Google Scholar 
    National Institute of Ecology. 30 Years of the Natural Environment Survey 1986–2015 (National Inst. of Ecology, Seocheon, 2017).Korea National Park Research Institute. Report on Natural Resource Study. https://www.knps.or.kr/ (2021).GBIF. Global Biodiversity Information Facility Home. http://www.gbif.org/ (2020).Kim, D. I. Species Distribution Modeling, Microhabitat Use, and Morphological Variation of the Schlegel’s Japanese Gecko (Gekko japonicus). PhD thesis (Graduate School, Kangwon Natl Univ., 2019).Borzée, A. et al. Yellow Sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299. https://doi.org/10.1371/journal.pone.0234299,Pubmed:32579561 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NGII (National Geographic Information Institute). Digital Topographic Map. https://www.ngii.go.kr (2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Pradhan, P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8, 29–34 (2016).
    Google Scholar 
    Yi, Y. J., Cheng, X., Yang, Z. F. & Zhang, S. H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010 (2016).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Phillips, S., Dudik, M. & Schapire, R. A maximum entropy approach to species distribution modeling. In Proceeding of the 21st International Conference on Machine Learning 655–662 (ACM Pr., 2004).Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. A. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci. Rep. 11, 23099. https://doi.org/10.1038/s41598-021-02525-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    VanderWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Modell. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C. & Codding, B. F. Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS One 15, e0239424. https://doi.org/10.1371/journal.pone.0239424,Pubmed:33002016 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (OUP, 2011).Book 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x (2006).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Article 

    Google Scholar 
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195–207. https://doi.org/10.1007/s10584-018-2338-4 (2019).ADS 
    Article 

    Google Scholar 
    del Castillo Domínguez, S. L. et al. Predicting the invasion of the acoustic niche: potential distribution and call transmission efficiency of a newly introduced frog in Cuba. Perspect. Ecol. Conserv. 19, 90–97. https://doi.org/10.1016/j.pecon.2020.12.002 (2021).Article 

    Google Scholar 
    Lee, J. W. et al. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea. Ecol. Evol. 4, 3689–3702. https://doi.org/10.1002/ece3.1209,Pubmed:25478158 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Segal, R. D., Massaro, M., Carlile, N. & Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv. 24, 959–969. https://doi.org/10.1111/acv.12698 (2021).Article 

    Google Scholar 
    Mori, E. et al. How the South was won: Current and potential range expansion of the crested porcupine in Southern Italy. Mamm. Biol. 101, 11–19. https://doi.org/10.1007/s42991-020-00058-2 (2021).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615,Pubmed:3287615 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1,Pubmed:19323182 (2009).Article 
    PubMed 

    Google Scholar 
    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 27, 756–769. https://doi.org/10.1071/WF18072 (2018).Article 

    Google Scholar 
    Zhuang, H. et al. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case. Biodivers. Sci. 26, 931–940. https://doi.org/10.17520/biods.2018059 (2018).Article 

    Google Scholar 
    NGII (National Geographic Information Institute). Geographical Extent of the Conservation Area in South Korea. https://www.ngii.go.kr (2021).Bosso, L. et al. A gap analysis for threatened bat populations on Sardinia hystrix, the Italian. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    Ahmadi, M. et al. Species and space: A combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5 (2020).Article 

    Google Scholar  More