More stories

  • in

    Author Correction: Global priority areas for ecosystem restoration

    Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina C. Jakovac, André Braga Junqueira, Eduardo Lacerda & Agnieszka E. LatawiecInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina C. Jakovac, André Braga Junqueira, Eduardo Lacerda, Agnieszka E. Latawiec, Robin L. Chazdon & Carlos Alberto de M. ScaramuzzaPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Renato Crouzeilles & Fabio R. ScaranoBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgSchool of Biological Sciences, University of Queensland, St Lucia, Queensland, AustraliaHawthorne L. BeyerForest Ecology and Management Group, Wageningen University, Wageningen, The NetherlandsCatarina C. JakovacInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré Braga JunqueiraDepartment of Geography, Fluminense Federal University, Niterói, BrazilEduardo LacerdaDepartment of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Kraków, PolandAgnieszka E. LatawiecSchool of Environmental Sciences, University of East Anglia, Norwich, UKAgnieszka E. LatawiecDepartment of Zoology, University of Cambridge, Cambridge, UKAndrew Balmford, Stuart H. M. Butchart & Paul F. DonaldInternational Union for Conservation of Nature (IUCN), Gland, SwitzerlandThomas M. BrooksWorld Agroforestry Center (ICRAF), University of the Philippines, Los Baños, The PhilippinesThomas M. BrooksInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaThomas M. BrooksBirdLife International, Cambridge, UKStuart H. M. Butchart & Paul F. DonaldDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USARobin L. ChazdonWorld Resources Institute, Global Restoration Initiative, Washington, DC, USARobin L. ChazdonTropical Forests and People Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, AustraliaRobin L. ChazdonInstitute of Social Ecology, University of Natural Resources and Life Sciences Vienna, Vienna, AustriaKarl-Heinz Erb & Christoph PlutzarDepartment of Forest Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro BrancalionRSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Edinburgh, UKGraeme Buchanan & Paul F. DonaldSecretariat of the Convention on Biological Diversity (SCBD), Montreal, Quebec, CanadaDavid CooperInstituto Multidisciplinario de Biología Vegetal, CONICET and Universidad Nacional de Córdoba, Córdoba, ArgentinaSandra DíazUN Environment World Conservation Monitoring Centre, Cambridge, UKValerie Kapos & Lera MilesEcosystem Services Management (ESM) Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaDavid Leclère, Michael Obersteiner & Piero ViscontiEnvironmental Change Institute, Oxford University Centre for the Environment, Oxford, UKMichael ObersteinerDivision of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Vienna, AustriaChristoph Plutzar More

  • in

    Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport

    Identification of a regime shift in Beaufort summer sea ice characteristicsFigure 2 shows time series of Beaufort Sea summer sea ice concentration, sea ice age, and sea ice thickness, as well as the ratio of Beaufort ice volume to that of the entire Arctic27. We define the summer to be the months of July, August, and September. A step function has been fit to the time series with a breakpoint determined by a minimization of the root-mean square fit to the data with a significance test of the difference of the means that takes into account the temporal autocorrelation of geophysical time series28; see Methods Section for further information. The first three metrics (Fig. 2a–c) indicate a transition toward less extensive, thinner and younger ice pack occurred around 2007. Furthermore, the Beaufort’s contribution to total Arctic ice volume decreased in 2007 from approximately 10% to 5% (Fig. 2d). We will refer in this study to the period from 2007-present as the “young ice regime,” while the period prior to 2007 will be referred to as the “old ice regime.” All metrics indicate that the summers of 2020 and 2021 (as well as 2013), stand out with ice characteristics above the mean for this new ice regime. This is especially true for the ice volume ratio where values for these past two summers approach those typical of conditions prior to the 2007 transition.Fig. 2: Characteristics of summer (July–September) Beaufort Sea ice.Time series of the: a sea ice concentration (%) from the NSIDC CDR dataset 1979–2021; b sea ice age (years) from the NSIDC dataset 1984–2021; c sea ice thickness (m) from PIOMAS 1979–2021 and d ratio of the volume of Beaufort sea ice to Arctic sea ice from PIOMAS 1979–2021. In all cases, the red lines represent the step function fit with the specified breakpoint that minimizes the root-mean square error in the fit. The statistical significance of the step is indicated in the legend.Full size imageSea ice conditions during 2019/2020 and 2020/2021Figure 3 shows time series of Beaufort Sea ice concentration and thickness for the 2-year period October 2019–September 2021, as well as climatological values for the first 13 years of the young ice regime (2007–2019) and anomalies with respect to these 13 years. The results show that starting in May of both years, concentration and thickness were both higher than the climatology by at least 1 standard deviation. The area-mean thickness anomaly was larger in 2020, while the sea ice concentration anomaly was larger in 2021.Fig. 3: Monthly mean Beaufort Sea ice characteristics from October 1 2019–September 30 2021.Time series (red curves) of the (a) monthly mean sea ice concentration (%) from the NSIDC CDR dataset and (b) monthly mean sea ice thickness (m) from PIOMAS with the climatological monthly mean values shown in black with one standard deviation above/below the mean indicated by the shading. The climatology is based on 2007–2019. In (c) and (d), the corresponding anomalies are shown with the shading representing +/− one standard deviation.Full size imageFigure 4 provides the Beaufort Sea ice thickness and age distributions in summer for (i) the first 13 years of the old ice regime (1979–1991) when the region was dominated by multi-year ice, (ii) the first 13 years of the young ice regime (2007–2019), (iii) the year 2020, and (iv) the year 2021. A kernel smoothing technique29 was used to fit the distributions to the data. The old ice regime was dominated by thick, old ice, with smaller contributions from thin, young ice. In contrast, the young ice regime is dominated by thin, young ice with a long “tail” of thick, old ice. The years 2020 and 2021 are representative of this young ice regime, although with thick and old ice generally ≥1 standard deviation above the mean (An exception is the amount of ice older than ~2 years in 2020, which is very close to the mean). Further analysis (Supplementary Fig. S1) indicates that many years in the young ice regime show small secondary peaks of thick or old ice (such as seen in the 2021 thickness distribution between 1.5 and 2 m). These “long-tailed” thickness and age distributions are similar to that found in summer 2020 in the Wandel Sea1. Thus, it seems that the Beaufort Sea is now dominated by thin, young ice, but a substantial component of thick, old ice remains. In the following sections, we examine the advective origins of this thick, old ice.Fig. 4: Frequency distribution of summer (July–September) sea ice characteristics in the region of interest.a PIOMAS sea ice thickness distribution and b NSIDC sea ice age distribution. Climatological distributions for 1979–1991 (1984–1991 for ice age) and 2007–2019 are shown as well as distributions for 2020 and 2021. The shading represents one standard deviation above/below the 2007–2019 mean.Full size imageImpact of sea ice transport on the observed anomalies during the summers of 2020 and 2021Recent work23,24,25 has emphasized the role that sea ice mass transport plays in determining the characteristics of pack ice in the Beaufort Sea. This transport can be decomposed into contributions from ice motion and from ice thickness; the seasonal climatology of these constituents as well as conditions during 2019/2020 and 2020/2021 are shown in Fig. 5. The climatology (Fig. 5a–d) indicates the presence of a seasonally varying anticyclonic Beaufort Gyre in the western Arctic as well as the presence of the thickest ice along the northern coast of Greenland and the Canadian Arctic Archipelago, i.e., the LIA. The spatial extent of the Beaufort Gyre is largest during the cool season, defined as fall (OND), winter (JFM) and spring (AMJ) when there is transport of ice from the LIA into the Beaufort Sea as well as transport of ice out of the Beaufort Sea into the Chukchi Sea. During summer (JAS), the Beaufort Gyre shrinks to only fill the Beaufort Sea.Fig. 5: Annual cycle in seasonal mean (OND: October–December; JFM: January–March; AMJ: April–June; JAS: July–September) sea ice thickness (shading – m) and sea ice motion (vectors- km/day).Results are shown for climatology (a–d) as well as 2019/2020 (e–h) and 2020/2021 (i–l). The polygon indicates the region along the Beaufort Coast over which statistics were computed. All fields are from PIOMAS.Full size imageThe situation during 2019/2020 (Fig. 5e–h) differs markedly from the climatology. During fall 2019 (Fig. 5e), the Beaufort Gyre was displaced southwestward with a small region of cyclonic ice motion at the boundary between the Chukchi and Beaufort Seas. Consistent with the collapse of the Beaufort High during winter 202026, ice motion during this period (Fig. 5f) is generally eastward in the Beaufort Sea and largely cyclonic over the entire Arctic Ocean. This results in ice transport from the Chukchi Sea into the Beaufort Sea and even beyond, i.e., into the LIA. In spring 2020 (Fig. 5g), transport continued from the Beaufort Sea to the LIA, although the Chukchi-to-Beaufort transport abated. By summer 2020, ice motion had reverted toward climatology (Fig. 5h).Conditions during 2020/2021 (Fig. 5i–l) were closer to climatology as compared to 2019/2020, although with some differences. Most notably during fall 2020 (Fig. 5i), the transport of thick, old ice from the LIA was restricted to a narrow region along the coast of the Canadian Arctic Archipelago, which appears to be linked to the presence of thick ice in the eastern Beaufort Sea. As discussed previously23, this strong transport continued into winter 2021 (Fig. 5j), although its width increased and thus broadly impacted the northeastern Beaufort Sea. There was also strong westward transport out of the Beaufort into the Chukchi Sea.Figure 6 shows the anomalies in sea ice motion, mass convergence, and thickness for the winters of 2020 and 2021 as well as the anomalies in sea-level pressure and 10 m wind fields for the same periods. The contrast in ice motion and sea ice thickness between the two winters is striking. During winter 2020 (Fig. 6a), anomalous cyclonic ice motion is evident as well as anomalously thick sea ice against Banks Island caused by convergence forced by eastward motion at this time (Fig. 6c, which actually started in fall 2019, Fig. 5f). Convergence also extends from the eastern Beaufort into the western LIA, where it acts to counter the long-term thinning trend; the result is enhanced negative ice thickness anomalies. This is supported by a comparison with winter 2021 (Fig. 6b, d), when thickness anomalies were much more negative and ice motion in the western LIA was closer to climatology, i.e., weakly divergent. Comparison of ice motion and thickness fields in the winters of 2020 and 2021 (Supplementary Fig. S2) demonstrates that the differences between these 2 years extend all the way from the Chukchi and Beaufort Seas into the western LIA.Fig. 6: Anomalous nature of the winter (JFM) sea ice and atmospheric circulation during 2020 and 2021.Sea ice thickness (shading – m) and sea ice motion (vectors- km/day) anomalies with respect to climatology (2007–2019) for: a 2020 and b 2021. Sea ice mass convergence (shading – m/month) and sea ice motion (vectors- km/day) anomalies with respect to climatology (2007–2019) for: c 2020 and d 2021. Sea-level pressure (contours – mb), 10 m wind (vectors- m/s) and 10 m wind speed (shading-m/s) anomalies with respect to climatology (1979–2021) for: e 2020 and f 2021. The polygon indicates the region along the Beaufort Coast over which statistics were computed. Sea ice fields are from PIOMAS. Atmospheric fields are from ERA5.Full size imageThe atmospheric circulation anomalies for these two winters highlight the role that sea-level pressure plays in forcing ice motion. During winter 2020 (Fig. 6e), the collapse of the Beaufort High26 resulted in lower sea-level pressures across the Arctic Ocean associated with a minimum 16 mb lower than climatology centered over the Barents Sea. Associated with this collapse, a cyclonic surface wind anomaly was present across the Arctic Ocean with a particularly high amplitude across the western boundary of the Beaufort Sea. In contrast, winter 2021 (Fig. 6f) was characterized by higher sea-level pressure over the Arctic Ocean with a maximum anomaly of 8 mb over the Barents Sea. As a result of this pressure perturbation, wind speeds were higher over the Arctic Ocean but did not reach the magnitudes observed during winter 2020.Quantifying the role of ice transport in anomalous Beaufort Sea ice conditions during the winters of 2019/2020 and 2020/2021Ice area and volume fluxes provide a way to quantify the transport of sea ice30. Figure 7 shows the cumulative fluxes across the boundaries of the Beaufort Sea (as defined in Fig. 1) from October 1 through the following June 1 for 2019/2020, 2020/2021, as well as a climatology for the first 13 years of the young ice period 2007–2019. Positive values indicate a flux into the region. Daily PIOMAS ice motion and ice thickness data were used to calculate these fluxes. The ice area fluxes were also computed using the NSIDC ice motion data31 with similar results obtained (Supplementary Fig. S3).Fig. 7: Variability in the PIOMAS sea ice fluxes into the region of interest.Cumulative: a ice area (105km2) flux and b ice volume flux (102km3) through the northern boundary of the region of interest. Cumulative: c ice area (105km2) flux and d ice volume flux (102km3) through the western boundary of the region of interest. The net cumulative: e ice area (105km2) flux and f ice volume flux (102km3) through the northern and western boundaries of the region of interest. Results are shown for climatology (2007–2019) as well as for 2019–2020 and 2020–2021 with the shading representing +/− one standard deviation above/below the climatological mean. Positive fluxes are into the region of interest.Full size imageWe first consider the northern boundary. The ice area and volume fluxes across this boundary are relatively small in the climatology (Fig. 7a, b), with interannual variability that includes some years in which the fluxes are negative, i.e., from the Beaufort Sea toward the LIA. During the period from October to January in 2019/2020 as well as in 2020/2021, ice area and volume fluxes are positive and growing, at rates near or above the climatological mean, indicating intensifying ice transport into the Beaufort Sea. After January, the 2 years differ. In winter 2020 the cumulative fluxes plateau, indicating near-zero values in contrast to the climatology which continues to grow. Then in spring 2020 the fluxes turn strongly negative, with values of one or more standard deviation below the mean, implying an export of ice from the Beaufort Sea into the LIA. In fact, the cool season 2019/2020 ends with an unusually large net export of ice volume from the Beaufort into the LIA. The following year, we see that the fluxes in winter 2021 continue to intensify at about 1 standard deviation above the mean. Then in spring the cumulative fluxes decline back toward the climatological mean, with end-of-cool-season values near the climatological young ice regime mean of net transport from the LIA into the Beaufort.At the western boundary, climatological ice area and ice volume fluxes are both directed out of the Beaufort Sea and into the Chukchi Sea (Fig. 7c, d). Although interannual variability is higher than that at the northern boundary, the fluxes are typically always negative. This is what makes the 2019/2020 area and volume fluxes so remarkable, in that they are nearly zero through winter 2020, and then turn strongly positive in spring, with values at or exceeding the mean by more than one standard deviation throughout the entire period. These positive fluxes reflect strong ice import from the west (Fig. 5f). In contrast, the fluxes in 2020/2021 became large and negative by early winter (greater than 1 standard deviation from the climatological mean), although this moderates later in the winter and spring. In this year, fluxes were strongly westward, from the Beaufort into the Chukchi Sea.The sum of the fluxes across the two boundaries provides a measure of the net transport into the Beaufort Sea (Fig. 7e, f). The climatology indicates that the net ice area and volume fluxes are negative, indicating a loss of ice from the Beaufort Sea. This reflects the fact that the transport out of the region through the western boundary usually exceeds the transport into the region through the northern boundary. In this context, the net fluxes during 2019/2020 again stand out as remarkable, since they are strongly positive (i.e., net transport into the Beaufort), especially for ice area flux. The net fluxes during 2020/2021 are closer to climatological values, and are well within the range of climatological variability.Impact of cool season ice fluxes on Beaufort Sea summer ice conditionsIn this section, we seek to quantify how the cool-season sea ice transport into the Beaufort Sea impacts ice conditions in the following summer using two metrics. The first metric is Beaufort Sea ice volume (i.e., the product of ice thickness and ice concentration27) on June 1. Even though melt can occur in parts of the study region prior to the beginning of June32, it is nevertheless a useful date for the start of the melt season. Our second metric is Beaufort Sea area-mean ice concentration during September, a measure of ice conditions at the end of the melt season and a closely observed indicator of climate change33,34.In Fig. 8, we correlate the net ice volume flux over the cool season, i.e., the period from October 1 to June 1 of the following year, against the Beaufort Sea June 1 ice volume anomaly, calculated by detrending the time series using a step function in 2007 that takes into account the changes between the new and old ice regimes (Fig. 2). The ice volume flux does not exhibit any trend and so no detrending was done for this time series. The correlation was done for both the old and young ice regimes. For both periods, there is a statistically significant linear relationship showing that larger net cool season ice transport into the Beaufort Sea leads to larger ice volume anomalies on June 1. However, the larger spread in the data for the old ice regime leads to a smaller percentage of the variance explained by ice transport, ~14%, as compared to ~45% for the young ice regime. The statistics are similar if May 1 is used as the end of the cool season, although using April 1 degrades the relationship to statistical insignificance, consistent with the springtime “predictability barrier”35 that arises from late-winter variability in ice-dynamics and ice growth.Fig. 8: Relationship between cumulative cool season ice volume flux into the Beaufort Sea region and June 1 Beaufort Sea ice volume 1980–2021.Scatterplot of the cool season (October 1 – June 1 following year) PIOMAS ice volume flux and June 1 PIOMAS ice volume anomaly. Linear least squares fit to the data for the two regimes are also shown as are the percentage of the variance explained. The ice volume time series has been detrended by step functions with a breakpoint in 2007.Full size imageRegarding conditions at the end of the summer, it seems intuitive that ice retreat might be slowed by the presence of thick ice. Indeed, discussions in the popular press5 have speculated that thick ice contributed to the relatively moderate September 2021 sea ice extent (12th lowest on record and the highest since 2014). On the other hand, it has also been suggested that cool atmospheric conditions during the summer of 2021 contributed to this relative maxima in sea ice extent36.To explore this question, we correlate PIOMAS-derived Beaufort Sea ice volume on June 1 with NSIDC CDR-derived September-mean sea ice concentration37. Given the nature of the underlying time series (Fig. 2), we have used step functions with a breakpoint in 2007 to detrend the data (see Materials and Methods). Although there is considerable spread, Fig. 9 indicates that there is a statistically significant linear relationship, with June 1 ice volume accounting for just under 40% of the variability in ice concentration during September for both the old and new ice regimes. Similar results are obtained if one uses the PIOMAS sea ice concentration during September (Supplementary Fig. S4).Fig. 9: Relationship between June 1 ice conditions and September mean ice concentration 1979–2021.Scatterplot of the June 1 PIOMAS ice volume anomaly and the NSIDC CDR September monthly mean ice concentration anomaly. Linear least squares fit to the data for the two regimes are also shown as are the percentage of the variance explained. Both time series have been detrended by step functions with a breakpoint in 2007.Full size imageA next logical step might be to link these two correlations together and ask, How does cool season ice transport impact end-of-summer ice concentration? Given the above results, assuming that there are no other factors related to cool season transport that impact summer ice melt and the cascade of probabilities, one would expect that the former would explain ~5% and ~16% of the variability in the latter for the old and new ice regimes. The results shown in Supplementary Fig. S5 confirm these assumptions; however, we also find that this relationship is not statistically significant in either regime. More

  • in

    Predation of ant species Lasius alienus on tick eggs: impacts of egg wax coating and tick species

    To date, many kinds of potential predator–prey interactions have been demonstrated between ticks and a wide range of animals, including birds, mammals, and arthropods such as beetles, spiders, and ants1,2,3. Of those, the ants were indicated to be one of the most effective tick predators4,5. More than 27 ant species of 17 genera (Anoplolepis, Aphaenogaster, Camponotus, Crematogaster, Ectatomma, Formica, Iridomyrmex, Meranoplus, Monomorium, Myrmica, Notoncus, Pheidole, Pogonomyrmex, Polyrhachis, Rhytidoponera, Solenopsis, and Tapinoma) have been reported to be effective on different tick species (Amblyomma spp., Boophilus spp., Ornithodoros spp., Ixodes spp., Argas spp., Aponomma hydrosauri, Rhipicephalus appendiculatus, Otobius megnini, and Dermacentor variabilis)2,6,7,8. It is known that ants and other predators can affect ticks in a consumptive or nonconsumptive / behavioral manner and, as a result, may reduce the abundance of ticks in the overlap ranges8,9,10. However, the effects of ants on ticks are closely related to the ant species and the species, developmental stages, and physiological status of the ticks, and as a consequence, the impact of ants on ticks can exhibit fairly high variability2,8. Furthermore, there is no sufficient data on the factors determining the tick-ant relationship11,12.Ant predation has been examined in all developmental stages of ticks, but the proportion of the studies based on the eggs is relatively low compared to the other stages2. In an egg-based study, the eggs of O. megnini, the spinose ear tick, were supplied to five different ant species, and of those, Tapinoma melanocephalum was the only species that fed on the eggs7. Conflicting results have been reported from the studies13,14 carried out to determine the predatory effects of ant species Pheidole megacephala on the eggs of Boophilus (Rhipicephalus) microplus14. Rhipicephalus sanguineus was demonstrated to secrete an acarine allomone when attacked by fire ants, Solenopsis invicta15. This allomone-based ant deterrence is known to protect ticks from being eliminated within the sympatric range. The eggs, intact and cracked, of tick species Amblyomma americanum were not attacked by S. invicta, and it was interpreted that this deterrence might be related to the possible presence of the allomone within the eggs12.This study was carried out to determine whether the ant species Lasius alienus (Förster, 1850) (Hymenoptera: Formicidae) has any predatory effect on the eggs of tick species Hyalomma marginatum, H. excavatum, and Rhipicephalus bursa, and if the tick egg wax has any protective properties against possible predation. Ticks lay eggs (each 50–100 µg in weight and 0.5–1 mm in length) with a wax coat 0.5–2.0 µm thick, which is secreted by the female-tick-specific glands and organs such as the Gené’s16,17. Different molecules have been detected in the wax, such as alkanes, fatty acids, steroids, alcohols, and some specific proteins and lipoproteins18,19,20. However, detailed data on the wax content, especially its bioactive components, are not yet available20,21. As for the function of the wax, it has been reported that it reduces water loss, waterproofs the eggs, ensures the proper gas exchange between the eggs and air and holds the eggs together16,18. The wax also provides protection against chemical and physical factors such as cold, heat, proteinase K and pronase, or microbial agents including bacteria, fungi, viruses, and protozoa19,20,21,22,23,24,25.Lasius alienus is one of the most abundant ant species in the Western Palearctic26. Its distribution area can range from natural open habitats, light forests, and forest edges to urbanized areas such as wooded residential areas and gardens. The nests can be encountered mostly in the soil, under stones, or other substances, and the nest densities may reach up to 10–50 nests/100 m2 in some endemic territories. The number of workers (2­4 mm in length) in a colony can be more than 10,000. In the active periods in hot and warm months, workers establish foraging trails on the ground, in trees, and even in dwellings for food27,28. Lasius alienus was reported to gather plant nectar, honeydew secreted by aphids and to consume both dead and small living arthropods28,29,30. However, there is no data in the literature on whether this or any other species in the Lasius genera have a predatory interaction with ticks. Furthermore, the only definitive association of L. alienus with predation on Acarina has been established recently with Dermanyssus gallinae (poultry red mite)31.Considering the fact that the workers of L. alienus can forage effectively in many different places within the wide range distribution area27,28,31, it seems quite possible that several tick species encounter this ant species in their habitat32. This ant can feed by scavenging and predating small insects, and it meets their protein needs by hunting large numbers of small invertebrates, especially during larval feeding periods using the central foraging strategy29. Whichever invertebrates are abundant in their environment, the ants undoubtedly tend to consume more of them, especially if they are easy to hunt and transport27,28,29. Engorged large female ixodid ticks (around 1–1.5 cm depending on the species) lay a single batch of a large number of eggs (hundreds or thousands depending on the species and feeding levels) for several days or weeks at the hiding points such as cracks, crevices, and spaces under stones or various objects on the ground21,33 that the ant can easily reach due to its small size. In ixodid ticks, the female ticks lay eggs at once and die. The next generation continues entirely through the eggs21. Referring to these data, it seems hypothetically possible that any level of predation of L. alienus on the eggs, which are immobile and easy to reach and carry for the ants, can have a direct effect on the tick community in the overlap ranges. At this point, of course, whether the natural distribution areas of the ant and tick species overlap and, potentially, whether there is a possible evolutionary background between them are of the expected determining factors in a possible predation34.The nests of L. alienus can be seen almost everywhere in the soil in its ranging territories, however, the density increases from dry steppe, open pasture and bushlands to cultivated areas, woodlands, and gardens29. In this study, three ixodid tick species were selected that are more or less different from each other in terms of biology, ecology, and therefore the probability of encountering L. alienus in their natural habitat. Of these, H. marginatum is a two-host tick, the immature stages (larvae and nymphs) prefer rabbits, hedgehogs and birds to feed, and the adults (male and female) use particularly cattle as host. The immature stages of mostly three-host tick H. excavatum, wild rodents are the preferable host, and a wide range of large wild animals, cattle and some other domestic animals can be the host for the adults. Both species are known as arid environment ticks, however, in accordance with their different host preferences as well, H. excavatum is more prevalent in the arid open fields, steppe, and bushlands32,35. Both immature and adult stages of two-host tick R. bursa use primarily domestic ruminants to feed. Although there is no detailed data on the natural dynamics of R. bursa, this species is suspected of having a kind of peri-farm natural dynamics32. More

  • in

    Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds

    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Caro, T. & Koneru, M. Towards an ecology of protective coloration. Biol. Rev. 96, 611–641 (2021).PubMed 
    Article 

    Google Scholar 
    Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article 

    Google Scholar 
    Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. Ser. B 340, 215–225 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).Article 

    Google Scholar 
    Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lind, O., Mitkus, M., Olsson, P. & Kelber, A. Ultraviolet vision in birds: the importance of transparent eye media. Proc. R. Soc. Lond. Ser. B 281, 20132209 (2014).
    Google Scholar 
    Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, 2414 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stevens, M. & Cuthill, I. C. Hidden messages: are ultraviolet signals a special channel in avian communication? Bioscience 57, 501–507 (2007).Article 

    Google Scholar 
    Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. Ultraviolet signals in birds are special. Proc. R. Soc. Lond. Ser. B 270, 61–67 (2003).Article 

    Google Scholar 
    Eaton, M. D. & Lanyon, S. M. The ubiquity of avian ultraviolet plumage reflectance. Proc. R. Soc. Lond. Ser. B 270, 1721–1726 (2003).Article 

    Google Scholar 
    Gomez, D. & Théry, M. Influence of ambient light on the evolution of colour signals: comparative analysis of a Neotropical rainforest bird community. Ecol. Lett. 7, 279–284 (2004).Article 

    Google Scholar 
    Mullen, P. & Pohland, G. Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150, 59–68 (2008).Article 

    Google Scholar 
    Burns, K. J. & Shultz, A. J. Widespread cryptic dichromatism and ultraviolet reflectance in the largest radiation of Neotropical songbirds: Implications of accounting for avian vision in the study of plumage evolution. Auk 129, 211–221 (2012).Article 

    Google Scholar 
    Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K. & Hastad, O. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc. R. Soc. Lond. Ser. B 279, 1269–1276 (2012).
    Google Scholar 
    Bleiweiss, R. Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolut. Biol. 41, 404–424 (2014).Article 

    Google Scholar 
    Lind, O. & Delhey, K. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds. J. Evol. Biol. 28, 715–722 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, A. T. D. & Cuthill, I. C. Ultraviolet vision in birds: what is its function? Vis. Res 34, 1471–1478 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. Revealing the colourful side of birds: spatial distribution of conspicuous plumage colours on the body of Australian birds. J. Avian Biol. 51, e02222 (2020).Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, E. T., Leighton, G. M., Freeman, B. G., Lees, A. C. & Ligon, R. A. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat. Commun. 10, 1602 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl Acad. Sci. USA 110, 10687–10692 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).Article 

    Google Scholar 
    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 15, 555–560 (2018).Article 
    CAS 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).Article 

    Google Scholar 
    Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).Article 

    Google Scholar 
    Aljabar, P., Heckemann, R. A., Hammers, A., Hajnal, J. V. & Rueckert, D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baiker, M. et al. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Med. Image Anal. 14, 723–737 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).ADS 
    Article 

    Google Scholar 
    Kumar, Y. H. S., Manohar, N. & Chethan, H. K. Animal classification system: a block based approach. Procedia Computer Sci. 45, 336–343 (2015).Article 

    Google Scholar 
    Unger, J., Merhof, D. & Renner, S. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evol. Biol. 16, 248 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohler, R. A segmentation system based on thresholding. Computer Graph. Image Process. 15, 319–338 (1981).Article 

    Google Scholar 
    Adams, R. & Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 18, 641–647 (1994).Article 

    Google Scholar 
    Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Boykov, Y. Y. & Jolly, M. P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. in Proceedings Eighth IEEE International Conference on Computer Vision (2001).Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 1802, 02611 (2018).
    Google Scholar 
    Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv 1606, 00915 (2017).
    Google Scholar 
    Chen, L. C., Papandreou, G., Schroff, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 1706, 05587 (2017).
    Google Scholar 
    Everingham, M. et al. The PASCAL Visual Object Classes challenge—a retrospective. Int. J. Computer Vis. 111, 98–136 (2015).Article 

    Google Scholar 
    Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. in Advances In Neural Information Processing Systems (2012).He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Szegedy, C. et al. Going deeper with convolutions. arXiv 1409, 4842 (2014).ADS 

    Google Scholar 
    Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. arXiv 1603, 06937 (2016).
    Google Scholar 
    Wei, S. E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose machines. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2015).Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).PubMed 
    Article 

    Google Scholar 
    Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).PubMed 
    Article 

    Google Scholar 
    Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a Neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Philos. Soc. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    Passarotto, A., Rodríguez‐Caballero, E., Cruz-Miralles, Á., Avilés Jesús, M. & Sheard, C. Ecogeographical patterns in owl plumage colouration: Climate and vegetation cover predict global colour variation. Glob. Ecol. Biogeogr. 31, 515–530 (2022).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galván, I., Rodríguez-Martínez, S., Carrascal, L. M. & Portugal, S. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    Delhey, K., Dale, J., Valcu, M. & Kempenaers, B. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol. Lett. 22, 726–736 (2019).PubMed 
    Article 

    Google Scholar 
    Håstad, O., Victorsson, J. & Ödeen, A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl Acad. Sci. USA 102, 6391–6394 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lind, O., Henze, M. J., Kelber, A. & Osorio, D. Coevolution of coloration and colour vision? Philos. Trans. R. Soc. Lond. Ser. B 372, 20160338 (2017).Article 
    CAS 

    Google Scholar 
    Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. arXiv 01105, 2017 (1612).
    Google Scholar 
    Zoph, B. et al. Rethinking pre-training and self-training. arXiv 2006, 06882 (2020).
    Google Scholar 
    Chang, Y. L. & Li, X. Adaptive image region-growing. IEEE Trans. Image Process. 3, 868–872 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, J., Yau, D. K. Y., Elmagarmid, A. K. & Aref, W. G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10, 1454–1466 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Joulin, A., van der Maaten, L., Jabri, A. & Vasilache, N. Learning visual features from large weakly supervised data. arXiv 1511, 02251 (2015).
    Google Scholar 
    Hestness, J. et al. Deep learning scaling is predictable, empirically. arXiv 1712, 00409 (2017).
    Google Scholar 
    Hudson, L. N. et al. Inselect: automating the digitization of natural history collections. PLoS ONE 10, e0143402 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. Semantic segmentation of herbarium specimens using deep learning techniques. in Computational Science and Technology (2020).Cordts, M. et al. The Cityscapes dataset for semantic urban scene understanding. arXiv 01685, 2016 (1604).
    Google Scholar 
    Deng, J. et al. ImageNet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009).Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D human pose estimation: new benchmark and state of the art analysis. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014).Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 120, 122–125 (2000).
    Google Scholar 
    Ruder, S. An overview of gradient descent optimization algorithms. arXiv 1609, 04747 (2016).
    Google Scholar 
    Kingma, D. P. & Ba, J. L. ADAM: a method for stochastic optimisation. arXiv 1412, 6980 (2014).ADS 

    Google Scholar 
    Loshchilov, I. & Hutter, F. SGDR: stochastic gradient descent with warm restarts. arXiv 1608, 03983 (2016).
    Google Scholar 
    Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 1603, 04467 (2016).
    Google Scholar 
    He, Y. et al. Code for: Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds. https://doi.org/10.5281/zenodo.6916988 (2022).Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 1207, 0580 (2012).
    Google Scholar 
    van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, J. S. Digital image smoothing and the signam filter. Computer Vis., Graph., Image Process. 24, 255–269 (1983).Article 

    Google Scholar 
    Haralick, R. M., Sternberg, S. R. & Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9, 532–550 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979).Article 

    Google Scholar 
    Sezgin, M. & Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004).ADS 
    Article 

    Google Scholar 
    Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour models. Int. J. Computer Vis. 1, 321–331 (1988).MATH 
    Article 

    Google Scholar 
    Coffin, D. DCRAW V. 9.27. https://www.cybercom.net/~dcoffin/dcraw/ (2016).Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Y. PhenoLearn v.1.0.1. https://doi.org/10.5281/zenodo.6950322 (2022).Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evolution 10, 1097–1107 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol. Biol. 11, 313 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. Ser. B 281, 20140298 (2014).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar  More

  • in

    Multi-queen breeding is associated with the origin of inquiline social parasitism in ants

    Hölldobler, B. & Wilson, E. O. The number of queens: An important trait in ant evolution. Naturwissenschaften 64, 8–15 (1977).Article 
    ADS 

    Google Scholar 
    Maynard Smith, J. & Szathmáry, E. Major Transitions in Evolution (Oxford University Press, 1995).
    Google Scholar 
    Keller, L. Queen Number and Sociality in Insects (Oxford Science Publications, 1994).
    Google Scholar 
    Keller, L. Levels of Selection in Evolution (Princeton University Press, 1999).
    Google Scholar 
    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3191–3207 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).Article 

    Google Scholar 
    Borowiec, M. L. et al. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenet. Evol. 134, 111–121 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, W. O. H., Ratnieks, F. L. W. & Oldroyd, B. P. Multiple paternity or multiple queens: Two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21, 1090–1095 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Belknap Press of Harvard University Press, 1971).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Giraud, T., Blatrix, R., Poteaux, C., Solignac, M. & Jaisson, P. High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Behav. Ecol. Sociobiol. 49, 128–134 (2001).Article 

    Google Scholar 
    Schmid-Hempel, P. & Crozier, R. H. Ployandry versus polygyny versus parasites. Philos. Trans. R. Soc. B Biol. Sci. 354, 507–515 (1999).Article 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W. W. Norton & Company, 2009).
    Google Scholar 
    Trunzer, B., Heinze, J. & Hölldobler, B. Cooperative colony founding and experimental primary polygyny in the ponerine ant Pachycondyla villosa. Insectes Soc. 45, 267–276 (1998).Article 

    Google Scholar 
    Rüppell, O. & Heinze, J. Alternative reproductive tactics in females: The case of size polymorphism in winged ant queens. Insectes Soc. 46, 6–17 (1999).Article 

    Google Scholar 
    Hughes, W. O. H. & Boomsma, J. J. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl. Acad. Sci. U.S.A. 105, 5150–5153 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Pedersen, J. S. & Boomsma, J. J. Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J. Evol. Biol. 12, 903–917 (1999).Article 

    Google Scholar 
    Rüppell, O., Strätz, M., Baier, B. & Heinze, J. Mitochondrial markers in the ant Leptothorax rugutulus reveal the population genetic consequences of philopatry at different hierarchial levels. Mol. Ecol. 12, 795–801 (2003).PubMed 
    Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Alternative reproductive tactics in the queen-size-dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behav. Ecol. Sociobiol. 50, 189–197 (2001).Article 

    Google Scholar 
    Pamilo, P. Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70, 472–480 (1993).Article 

    Google Scholar 
    Qian, Z. Q. et al. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20, 3681–3691 (2011).CAS 
    PubMed 

    Google Scholar 
    Keller, L. & Reeve, H. K. Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–102 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol. 10, 137–147 (1982).Article 

    Google Scholar 
    Rissing, S. W., Pollock, G. B., Higgins, M. R., Hagen, R. H. & Smith, D. R. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338, 420–422 (1989).Article 
    ADS 

    Google Scholar 
    Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Intracolonial patterns of reproduction in the queen-size dimorphic ant Leptothorax rugatulus. Behav. Ecol. 13, 239–247 (2002).Article 

    Google Scholar 
    Buschinger, A. Sympatric speciation and radiative evolution of socially parasitic ants—Heretic hypotheses and their factual background. Z. für Zool. Syst. und Evol. 28, 241–260 (1990).Article 

    Google Scholar 
    Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biol. J. Linn. Soc. 43, 157–178 (1991).Article 

    Google Scholar 
    Rabeling, C. Social parasitism. In Encyclopedia of Social Insects (ed. Starr, C.) 838–858. https://doi.org/10.1007/978-3-319-90306-4_175-1 (Springer, 2020).Chapter 

    Google Scholar 
    Huang, M. H. & Dornhaus, A. A meta-analysis of ant social parasitism: Host characteristics of different parasitism types and a test of Emery’s rule. Ecol. Entomol. 33, 589–596 (2008).Article 

    Google Scholar 
    Ward, P. S. A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants. Syst. Entomol. 21, 253–263 (1996).Article 

    Google Scholar 
    Jansen, G., Savolainen, R. & Vepsäläinen, K. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56, 294–304 (2010).PubMed 
    Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Genetic divergence between the sympatric queen morphs of the ant Myrmica rubra. Mol. Ecol. 24, 2463–2476 (2015).PubMed 
    Article 

    Google Scholar 
    Nettel-Hernanz, A., Lachaud, J. P., Fresneau, D., López-Muñoz, R. A. & Poteaux, C. Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae). Org. Divers. Evol. 15, 543–553 (2015).Article 

    Google Scholar 
    Rabeling, C., Schultz, T. R., Pierce, N. E. & Bacci, M. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry. Curr. Biol. 24, 2047–2052 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Natl. Acad. Sci. U.S.A. 100, 7169–7174 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumner, S., Hughes, W. O. H. & Boomsma, J. J. Evidence for differential selection and potential adaptive evolution in the worker caste of an inquiline social parasite. Behav. Ecol. Sociobiol. 54, 256–263 (2003).Article 

    Google Scholar 
    Prebus, M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol. Biol. 17, 1–22 (2017).Article 

    Google Scholar 
    Fischer, G. et al. Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Curr. Biol. 30, 3639-3646.e4 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, J. D. & Rissing, S. W. Molecular evidence for the origin of workerless social parasites in the ant genus Pogonomyrmex. Evolution 56, 2017–2028 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shoemaker, D. D. W., Ahrens, M. E. & Ross, K. G. Molecular phylogeny of fire ants of the Solenopsis saevissima species-group based on mtDNA sequences. Mol. Phylogenet. Evol. 38, 200–215 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier, D. et al. Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS ONE 11, e0156440 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. & Moritz, R. F. A. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43, 67–72 (1998).Article 

    Google Scholar 
    Starks, P. T., Watson, R. E., Dipaola, M. J. & Dipaola, C. P. The effect of queen number on nestmate discrimination in the facultatively polygynous ant Pseudomyrmex pallidus (Hymenoptera: Formicidae). Ethology 104, 573–584 (1998).Article 

    Google Scholar 
    Hora, R. R. et al. Facultative polygyny in Ectatomma tuberculatum (Formicidae, Ectatomminae). Insectes Soc. 52, 194–200 (2005).Article 

    Google Scholar 
    Dahan, R. A., Grove, N. K., Bollazzi, M., Gerstner, B. P. & Rabeling, C. Decoupled evolution of mating biology and social structure in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 76, 7 (2022).Article 

    Google Scholar 
    Buschinger, A. Evolution of social parasitism in ants. Trends Ecol. Evol. 1, 155–160 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keller, L. & Reeve, H. K. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704 (1994).PubMed 
    Article 

    Google Scholar 
    Frumhoff, P. C. & Ward, P. S. Individual-level selection, colony-level selection, and the association between polygyny and worker monomorphism in ants. Am. Nat. 139, 559–590 (1992).Article 

    Google Scholar 
    Rissing, S. W. & Pollock, G. B. Pleometrosis and polygyny in ants. In Interindividual Behavioral Variability in Social Insects (ed. Jeanne, R. L.) 179–222 (Westview Press, 1988).
    Google Scholar 
    Keller, L. & Passera, L. Physiologie des sexués femelles de fourmis (Hymenoptera: Formicidae) en relation avec le mode the fondation. Actes des Colloq. Insectes Sociaux 5, 63–68 (1989).
    Google Scholar 
    Foitzik, S. & Heinze, J. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9, 367–375 (1998).Article 

    Google Scholar 
    Schär, S. & Nash, D. R. Evidence that microgynes of Myrmica rubra ants are social parasites that attack old host colonies. J. Evol. Biol. 27, 2396–2407 (2014).PubMed 
    Article 

    Google Scholar 
    Gallardo, A. Notes systématique et éthologiques sur les fourmis attines de la République Argentine. An. del Mus Nac. Hist. Nat. Buenos Aires 28, 317–344 (1916).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Ridley, M. The Explanation of Organic Diversity: The Comparative Methods and Adaptations for Mating (Oxford Science Publications, 1983).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2021).Wolf, J. I. & Seppä, P. Queen size dimorphism in social insects. Insectes Soc. 63, 25–38 (2015).Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Mating isolation between the ant Myrmica rubra and its microgynous social parasite. Insectes Soc. 63, 79–86 (2016).Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & Rabeling, C. Two new species of socially parasitic Nylanderia ants from the southeastern United States. Zookeys 921, 23–48 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabeling, C. et al. Acromyrmex fowleri: A new inquiline social parasite species of leaf-cutting ants from South America, with a discussion of social parasite biogeography in the Neotropical region. Insectes Soc. 66, 435–451 (2019).Article 

    Google Scholar 
    Grüter, C., Jongepier, E. & Foitzik, S. Insect societies fight back: The evolution of defensive traits against social parasites. Philos. Trans. R. Soc. B Biol. Sci. 373, 1. https://doi.org/10.1098/rstb.2017.0200 (2018).Article 

    Google Scholar 
    Davies, N. B., Bourke, A. F. G., De, L. & Brooke, M. Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race. Trends Ecol. Evol. 4, 274–278 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herbers, J. M. & Foitzik, S. The ecology of slavemaking ants and their hosts in north temperate forests. Ecology 83, 148–163 (2002).Article 

    Google Scholar 
    Foitzik, S. & Herbers, J. M. Colony structure of a slavemaking ant. II. Frequency of slave raids and impact on the host population. Evolution 55, 316–323 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. Tropical social parasites in the ant genus Pheidole, with an analysis of the anatomical parasitic syndrome (Hymenoptera: Formicidae). Insectes Soc. 31, 316–334 (1984).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Complex determination of queen body size in the queen size dimorphic ant Leptothorax rugatulus (Formicidae: Hymenoptera). Heredity 87, 33–40 (2001).PubMed 
    Article 

    Google Scholar 
    Nonacs, P. & Tobin, J. E. Selfish larvae: Development and the evolution of parasitic behavior in the Hymenoptera. Evolution 46, 1605–1620 (1992).PubMed 
    Article 

    Google Scholar 
    Wolf, J. I. & Seppä, P. Dispersal and mating in a size-dimorphic ant. Behav. Ecol. Sociobiol. 70, 1267–1276 (2016).Article 

    Google Scholar 
    Elmes, G. W. Miniature queens of the ant Myrmica rubra L. (Hymenoptera, Formicidae). Entomologist 106, 133–136 (1973).
    Google Scholar 
    Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J. & Fresneau, D. A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa 52, 47–52 (2008).
    Google Scholar 
    Seifert, B. Taxonomic description of Myrmica microrubra n. sp.—A social parasitic ant so far known as the microgyne of Myrmica rubra (L.). Abhandlungen Berichte des Nat. Görlitz 67, 9–12 (1993).
    Google Scholar 
    Rabeling, C. & Bacci, M. A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst. Entomol. 35, 379–392 (2010).Article 

    Google Scholar 
    Trible, W. & Kronauer, D. J. C. Caste development and evolution in ants: It’s all about size. J. Exp. Biol. 220, 53–62 (2017).PubMed 
    Article 

    Google Scholar 
    Aron, S., Passera, L. & Keller, L. Evolution of miniaturisation in inquiline parasitic ants: Timing of male elimination in Plagiolepis pygmaea, the host of Plagiolepis xene. Insectes Soc. 51, 395–399 (2004).Article 

    Google Scholar 
    West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (a review). Proc. Natl. Acad. Sci. 83, 1388–1392 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Schultz, T. R., Bekkevold, D. & Boomsma, J. J. Acromyrmex insinuator new species: An incipient social parasite of fungus-growing ants. Insectes Soc. 45, 457–471 (1998).Article 

    Google Scholar 
    Hakala, S. M., Seppä, P. & Helanterä, H. Evolution of dispersal in ants (Hymenoptera: Formicidae): A review on the dispersal strategies of sessile superorganisms. Myrmecol. News 29, 35–55 (2019).
    Google Scholar 
    Leppänen, J., Vepsäläinen, K. & Savolainen, R. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecol. Evol. 1, 46–62 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & LaPolla, J. S. Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae). Zookeys 552, 49–65 (2016).Article 

    Google Scholar 
    Lopez-Osorio, F., Perrard, A., Pickett, K. M., Carpenter, J. M. & Agnarsson, I. Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). R. Soc. Open Sci. https://doi.org/10.1098/rsos.150159 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81 (2015).Article 

    Google Scholar 
    Heinze, J., Buschinger, A., Poettinger, T. & Suefuji, M. Multiple convergent origins of workerlessness and inbreeding in the socially parasitic ant genus Myrmoxenus. PLoS ONE 10, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    Suefuji, M. & Heinze, J. Degenerate slave-makers, but nevertheless slave-makers? Host worker relatedness in the ant Myrmoxenus kraussei. Integr. Zool. 10, 182–185 (2015).PubMed 
    Article 

    Google Scholar 
    Talbot, M. The natural history of the workerless ant parasite, Formica talbotae. Psyche 83, 282–288 (1976).Article 

    Google Scholar 
    Wilson, E. O. The first workerless parasite in the ant genus Formica (Hymenoptera: Formicidae). Psyche 83, 277–281 (1976).Article 

    Google Scholar 
    Borowiec, M. L., Cover, S. P. & Rabeling, C. The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc. Natl. Acad. Sci. 118, e2026029118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaeggi, A. V. & Gurven, M. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195 (2013).PubMed 
    Article 

    Google Scholar 
    Van Der Maas, H. L., Kan, K.-J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 16 (2017).PubMed Central 
    Article 

    Google Scholar 
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).PubMed 
    Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–894 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Biggs, R. O., Peterson, G. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23, 3 (2018).Article 

    Google Scholar 
    Walker, B. & Meyers, J. A. Thresholds in ecological and social-ecological systems: a developing database. Ecol. Soc. 9, 2 (2004).
    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar 
    Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 

    Google Scholar 
    Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S., Deffuant, G. & Calabrese, J. M. in Viability and Resilience of Complex Systems (eds. Deffuant, G., & Gilbert, N.) 15–36 (Springer, 2011).Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, C., Yang, S., Shea, K. & Albert, R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys. Rev. E 86, 021924 (2012).Article 
    CAS 

    Google Scholar 
    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl Acad. Sci. USA 118, (2021).Whanpetch, N. et al. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar. Coast. Shelf Sci. 87, 246–252 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V., van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).PubMed 
    Article 

    Google Scholar 
    van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wright, D. H. A simple, stable model of mutualism incorporating handling time. Am. Nat.134, 664–667 (1989).Article 

    Google Scholar 
    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl Acad. Sci. USA 115, E639–E647 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003).CAS 
    Article 

    Google Scholar 
    Martinez, N. D., Williams, R. J., Dunne, J. A. & Pascual, M. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. Pascual, M., Dunne, J. A., & Dunne, J. A.) 163–185 (Oxford University Press, 2006).Chen, S., O’Dea, E. B., Drake, J. M. & Epureanu, B. I. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).Article 

    Google Scholar 
    Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Marsh, H. et al. Optimizing allocation of management resources for wildlife. Conserv. Biol. 21, 387–399 (2007).PubMed 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reyer, C. P. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed 
    Article 

    Google Scholar 
    Hurwicz, L. The design of mechanisms for resource allocation. Am. Econ. Rev. 63, 1–30 (1973).
    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).Article 

    Google Scholar 
    Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).PubMed 
    Article 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).Article 

    Google Scholar 
    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Web of Life, Ecological Networks Database (Bascompte Lab, accessed 12 June 2017); http://www.web-of-life.es/map.php?type=5/Gleeson, J. P., Melnik, S., Ward, J. A., Porter, M. A. & Mucha, P. J. Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85, 026106 (2012).Article 
    CAS 

    Google Scholar 
    Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).Vázquez, D. P. Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes PhD thesis, University of Tennessee (2002).Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants of the microstructure of plant-pollinator networks. Ecology 95, 3314–3324 (2014).Article 

    Google Scholar 
    Memmott, J. The structure of a plant-pollinator food web. Ecol. Lett. 2, 276–280 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dicks, L., Corbet, S. & Pywell, R. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    SMITH-RAMÍREZ, C., Martinez, P., Nunez, M., González, C. & Armesto, J. J. Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot. J. Linn. Soc. 147, 399–416 (2005).Article 

    Google Scholar 
    Dupont, Y. L., Hansen, D. M. & Olesen, J. M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26, 301–310 (2003).Article 

    Google Scholar 
    Dupont, Y. L. & Olesen, J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009).PubMed 
    Article 

    Google Scholar  More

  • in

    Swallows shrink as climate warms

    Gardner, J. L., Heinsohn, R. & Joseph, L. Proc. R. Soc. B 276, 3845–3852 (2009).Article 

    Google Scholar 
    Shipley, J. R., Twining, C. W., Taff, C. C., Vitousek, M. N. & Winkler, D. W. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01457-8 (2022).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. Nature 421, 37–42 (2003).CAS 
    Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Gardner, J. L. et al. Proc. R. Soc. B 286, 20192258 (2019).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Trends Ecol. Evol. 36, 1036–1048 (2021).Article 

    Google Scholar 
    Millien, V. et al. Ecol. Lett. 9, 853–869 (2006).Article 

    Google Scholar  More

  • in

    Distribution of SOCD along different offshore distances in China's fresh-water lake-Chaohu under different habitats

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597. https://doi.org/10.1007/s10980-012-9758-8 (2013).Article 

    Google Scholar 
    Koehler, A. K., Sottocornola, M. & Kiely, G. How strong is the current carbon sequestration of an Atlantic blanket bog?. Glob. Change Biol. 17, 309–319. https://doi.org/10.1111/j.1365-2486.2010.02180.x (2015).ADS 
    Article 

    Google Scholar 
    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 1–12. https://doi.org/10.1029/2002GB001917 (2003).CAS 
    Article 

    Google Scholar 
    Dong, H. Y., Qian, L. W., Yan, J. F. & Wang, L. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ. Monit. Assess. 192, 585. https://doi.org/10.1007/s10661-020-08547-0 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zaher, H., Sabir, M., Benjelloun, H. & Paul-Igor, H. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. J. Environ. Manage. 254, 109544. https://doi.org/10.1016/j.jenvman.2019.109544 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friborg, T. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30, 2129. https://doi.org/10.1029/2003GL017797 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Dayathilake, D., Lokupitiya, E. & Wijeratne, V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation. Wetlands. https://doi.org/10.1007/s13157-021-01424-7 (2021).Article 

    Google Scholar 
    Li, X. W. et al. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 10, 54–60. https://doi.org/10.1016/j.ecoser.2014.09.004 (2014).Article 

    Google Scholar 
    Liu, K. et al. Diversity of vascular plant and classification system of vegetation in wetlands of Anhui Province. Acta Ecol. Sin. 34, 5434–5444. https://doi.org/10.5846/stxb201301160109 (2014).Article 

    Google Scholar 
    Liu, H., Zheng, L., Wu, J. & Liao, Y. H. Past and future ecosystem service trade-offs in Poyang Lake Basin under different land use policy scenarios. Arab. J. Geosci. 13, 46. https://doi.org/10.1007/s12517-019-5004-x (2020).Article 

    Google Scholar 
    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35. https://doi.org/10.1016/j.biocon.2015.10.023 (2016).Article 

    Google Scholar 
    Yang, X., Liu, S., Jia, C., Liu, Y. & Yu, C. C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 298, 113540. https://doi.org/10.1016/j.jenvman.2021.113540 (2021).Article 

    Google Scholar 
    Ghosh, S. & Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 13, 191–203. https://doi.org/10.1016/j.rsase.2018.10.014 (2019).Article 

    Google Scholar 
    Means, M. M., Ahn, C., Korol, A. R. & Williams, L. D. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland. J. Environ. Manag. 165, 133–139. https://doi.org/10.1016/j.jenvman.2015.09.016 (2016).Article 

    Google Scholar 
    Fenstermacher, D. E., Rabenhorst, M. C., Lang, M. W., McCarty, G. W. & Needelman, B. A. Carbon in natural, cultivated, and restored depressional wetlands in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 45, 743–750. https://doi.org/10.2134/jeq2015.04.0186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abegaz, A., Winowiecki, L. A., Vågen, T., Langan, S. & Smith, J. U. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands. Agric. Ecosyst. Environ. 34, 190–208. https://doi.org/10.1016/j.agee.2015.11.019 (2016).CAS 
    Article 

    Google Scholar 
    Xie, E., Zhang, Y., Huang, B., Zhao, Y. & Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 205, 104763. https://doi.org/10.1016/j.still.2020.104763 (2021).Article 

    Google Scholar 
    Jackson, R. B. et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    Sun, K. K., Chen, X., Dong, X. H. & Yang, X. D. Spatiotemporal patterns of carbon sequestration in a large shallow lake, Lake Chaohu: Evidence from multiple-core records. Limnologica 81, 125748. https://doi.org/10.1016/j.limno.2020.125748 (2020).CAS 
    Article 

    Google Scholar 
    Chen, X., Yang, X. D., Dong, X. H. & Liu, E. F. Environmental changes in Lake Chaohu (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica. 43, 10–17. https://doi.org/10.1016/j.limno.2012.03.002 (2013).CAS 
    Article 

    Google Scholar 
    Yu, J. H. et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J. Lake Sci. 33, 1467–1477. https://doi.org/10.18307/2021.0514 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, M. & Kong, F. X. The process, spatial and temporal distrbition and mitigation strategies of the eutrophication of Lake Chaohu (1984–2013). J. Lake Sci. 27, 791–798. https://doi.org/10.18307/2015.0505 (2015).Article 

    Google Scholar 
    Teng, Z., Cao, X. Q., Sun, M. Y., Li, P. X. & Xu, X. N. Effect of different ecological restoration patterns on soil labile organic carbon and carbon pool management index of lakeside wetland of Lake Chaohu. Ecol. Environ. Sci. 28, 752–760. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2019).Article 

    Google Scholar 
    Wang, J. J. et al. Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest. For. Syst. 28, e018. https://doi.org/10.5424/fs/2019283-15404 (2019).Article 

    Google Scholar 
    Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599. https://doi.org/10.1111/J.1365-2486.2008.01591.X (2008).ADS 
    Article 

    Google Scholar 
    Li, J. et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecologica Sinica 40, 8928–8935. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2020).Article 

    Google Scholar 
    Ma, W. W. et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chin. J. Appl. Ecol. 29, 3900–3906. https://doi.org/10.13287/j.1001-9332.201812.003 (2018).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, L. et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress. Chin. J. Appl. Ecol. 24, 2040–2048. https://doi.org/10.1038/ngeo1123 (2013).CAS 
    Article 

    Google Scholar 
    Liao, X. J. et al. Distribution pattern of soil organic carbon contents in the coastal wetlands in Eastern Fujian. Wetl. Sci. 11, 192–197. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    Kong, F. L., Min, X. I., Yue, L. I., Li-Hua, X. U. & Feng, X. M. Distribution and storage of DOC in a typical annular wetland of Sanjiang Plain. Bull. Soil Water Conserv. 33, 176–179. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    He, L. P., Meng, G. T., Li, G. X., Li, P. R. & Chai, Y. Soil organic carbon and its distribution characteristics in the soil profile under different vegetation recovery modes in toutang small watershed of Jinsha river. Resour. Environ. Yangtze Basin 25, 476–485. https://doi.org/10.13248/j.cnki.wetlandsci.2013.02.003 (2016).Article 

    Google Scholar 
    Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323. https://doi.org/10.1016/j.ecoleng.2008.09.005 (2008).Article 

    Google Scholar 
    Dong, J. et al. A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China. Sci. Total Environ. 806, 150629. https://doi.org/10.1016/j.scitotenv.2021.150629 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, S., Adhikari, K., Wang, Q., Jin, X. & Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 84, 263–272. https://doi.org/10.1016/j.ecolind.2017.08.046 (2018).CAS 
    Article 

    Google Scholar 
    Zhao, Q. et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 20, 537–547. https://doi.org/10.1016/j.ecohyd.2019.10.008 (2020).Article 

    Google Scholar 
    Weishampel, P., Kolka, R. & King, J. Y. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA. For. Ecol. Manag. 257, 747–754. https://doi.org/10.1016/j.foreco.2008.10.008 (2009).Article 

    Google Scholar 
    Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X. & Zhao, Y. C. Regional patterns of soil organic carbon stocks in China. J. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS 
    Article 

    Google Scholar 
    Wu, Y. et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain. Acta Ecol. Sinica. 40, 5761–5770. https://doi.org/10.5846/stxb201908161713 (2020).Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627. https://doi.org/10.1126/science.1097396 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More