More stories

  • in

    Ecological and evolutionary dynamics of multi-strain RNA viruses

    Gupta, S. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kucharski, A. J., Andreasen, V. & Gog, J. R. Capturing the dynamics of pathogens with many strains. J. Math. Biol. 72, 1–24 (2016).PubMed 
    Article 

    Google Scholar 
    Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLoS Comput. Biol. 9, e1003308 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gog, J. R. & Grenfell, B. T. Dynamics and selection of many-strain pathogens. Proc. Natl Acad. Sci. USA 99, 17209–17214 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Recker, M., Pybus, O. G., Nee, S. & Gupta, S. The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types. Proc. Natl Acad. Sci. USA 104, 7711–7716 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jang, Y., Seo, T. & Seo, S. H. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch. Virol. 165, 1141–1150 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salvesen, H. A. & Whitelaw, C. B. A. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manage. 7, 23 (2021).Article 

    Google Scholar 
    Ma, W., Kahn, R. E. & Richt, J. A. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J. Mol. Genet. Med. 03, 158–166 (2009).CAS 
    Article 

    Google Scholar 
    Mancera Gracia, J. C., Pearce, D. S., Masic, A. & Balasch, M. Influenza A virus in swine: epidemiology, challenges and vaccination strategies. Front. Vet. Sci. 7, 647 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Regenmortel, M. H. V. Virus species and virus identification: past and current controversies. Infect. Genet. Evol. 7, 133–144 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lazebnik, T. & Bunimovich-Mendrazitsky, S. Generic approach for mathematical model of multi-strain pandemics. PLoS ONE 17, e0260683 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Sandeman, M., Recker, M. & Gupta, S. The antigenic evolution of influenza: drift or thrift? Phil. Trans. R. Soc. B 368, 20120200 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pitzer, V. E. et al. Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proc. Natl Acad. Sci. USA 108, 19353–19358 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paploski, I. A. D. et al. Temporal dynamics of co-circulating lineages of porcine reproductive and respiratory syndrome virus. Front. Microbiol. 10, 2486 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bishop, S. C., Axford, R. F. E., Nicholas, F. W. & Owen, J. B. Breeding for Disease Resistance in Farm Animals 3rd edn (CABI, 2010); https://doi.org/10.1079/9781845935559.0000Domingo, E. & Schuster, P. in Quasispecies: From Theory to Experimental Systems (eds Domingo, E. & Schuster, P.) 1–22 (Springer, 2015); https://doi.org/10.1007/82_2015_453Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, N., Trible, B. R., Kerrigan, M. A., Tian, K. & Rowland, R. R. R. ORF5 of porcine reproductive and respiratory syndrome virus (PRRSV) is a target of diversifying selection as infection progresses from acute infection to virus rebound. Infect. Genet. Evol. 40, 167–175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S. Identification of Genetic Mutations that Confer Escape from Innate or Adaptive Host Immune Responses During PRRSV Infection In Vivo NPB #12-173 (National Pork Board, 2014).Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dou, D., Revol, R., Östbye, H., Wang, H. & Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 9, 1581 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hamilton, B. S., Whittaker, G. R. & Daniel, S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4, 1144–1168 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, K. et al. Virus–host interactions in foot-and-mouth disease virus infection. Front. Immunol. 12, 571509 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Millet, J. K., Jaimes, J. A. & Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa057 (2020).Wang, G., Wang, Y., Shang, Y., Zhang, Z. & Liu, X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol. J. 12, 9 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sokol, C. L. & Luster, A. D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 7, a016303 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Theofilopoulos, A., Baccala, R., Beutler, B. & Kono, D. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mueller, S. N. & Rouse, B. T. in Clinical Immunology (eds Rich, R. R. et al.) 421–431 (Elsevier, 2008); https://doi.org/10.1016/B978-0-323-04404-2.10027-2Chen, X. et al. Host immune response to influenza A virus infection. Front. Immunol. 9, 320 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Agrawal, B. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 10, 2631 (2019)iCAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharma, S. & Thomas, P. G. The two faces of heterologous immunity: protection or immunopathology. J. Leukoc. Biol. 95, 405–416 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spackman, E. & Sitaras, I. Animal Influenza Virus (Springer, 2020).Anderson, C. S., McCall, P. R., Stern, H. A., Yang, H. & Topham, D. J. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics 19, 51 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cai, Z., Zhang, T. & Wan, X.-F. Concepts and applications for influenza antigenic cartography. Influenza Other Respi. Viruses 5, 204–207 (2011).PubMed Central 

    Google Scholar 
    Wang, P. et al. Predicting influenza antigenicity by matrix completion with antigen and antiserum similarity. Front. Microbiol. 9, 2500 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hirst, G. K. Studies of antigenic differences among strains of influenza by means of red cell agglutination. J. Exp. Med. 78, 407–423 (1943).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendra, J. A., Tohma, K., Ford-Siltz, L. A., Lepore, C. J. & Parra, G. I. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc. Natl Acad. Sci. USA 118, e2015874118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, S. M., Katzelnick, L. & Bedford, T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. Elife 8, e42496 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, Y. et al. Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Sci. Rep. 7, 1545 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zeller, M. A. et al. Machine learning prediction and experimental validation of antigenic drift in h3 influenza A viruses in swine. mSphere 6, e00920–e00920 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wikramaratna, P. S. et al. Five challenges in modelling interacting strain dynamics. Epidemics 10, 31–34 (2015).PubMed 
    Article 

    Google Scholar 
    Elliott, P. et al. Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science 374, eabl9551 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bianco, S., Shaw, L. B. & Schwartz, I. B. Epidemics with multistrain interactions: the interplay between cross immunity and antibody-dependent enhancement. Chaos 19, 043123 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nickbakhsh, S. et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl Acad. Sci. USA 116, 27142–27150 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Poon, A. F. Y. et al. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS ONE 8, e78122 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gill, M. S. et al. Improving bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingman, J. F. C. On the genealogy of large populations. J. Appl. Probab. 19, 27–43 (1982).Article 

    Google Scholar 
    Griffiths, R. C. & Tavare, S. Ancestral inference in population genetics. Stat. Sci. 9, 307–319 (1994).Article 

    Google Scholar 
    Magee, D., Suchard, M. A. & Scotch, M. Bayesian phylogeography of influenza A/H3N2 for the 2014–15 season in the United States using three frameworks of ancestral state reconstruction. PLoS Comput. Biol. 13, e1005389 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Müller, N. F., Rasmussen, D. & Stadler, T. MASCOT: parameter and state inference under the marginal structured coalescent approximation. Bioinformatics 34, 3843–3848 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yan, L., Neher, R. A. & Shraiman, B. I. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. Elife 8, e44205 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paploski, I. A. D. et al. Phylogenetic structure and sequential dominance of sub-lineages of PRRSV type-2 lineage 1 in the United States. Vaccines 9, 608 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kistler, K. E. & Bedford, T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E. Elife 10, e64509 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bedford, T. et al. Integrating influenza antigenic dynamics with molecular evolution. Elife 2014, e01914 (2014).Article 

    Google Scholar 
    de Carvalho Ferreira, H. C. et al. An integrative analysis of foot-and-mouth disease virus carriers in Vietnam achieved through targeted surveillance and molecular epidemiology. Transbound. Emerg. Dis. 64, 547–563 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Huang, J. H. et al. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2008–2010. Am. J. Trop. Med. Hyg. 87, 349–358 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Höckerstedt, L. M., Siren, J. P. & Laine, A.-L. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J. Evol. Biol. 31, 844–852 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papaïx, J., Burdon, J. J., Lannou, C. & Thrall, P. H. Evolution of pathogen specialisation in a host metapopulation: joint effects of host and pathogen dispersal. PLoS Comput. Biol. 10, e1003633 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M. & Laine, A.-L. Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology 95, 703–714 (2014).PubMed 
    Article 

    Google Scholar 
    Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics 14, 289 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wargo, A. R. & Kurath, G. Viral fitness: definitions, measurement, and current insights. Curr. Opin. Virol. 2, 538–545 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dayarian, A. & Shraiman, B. I. How to infer relative fitness from a sample of genomic sequences. Genetics 197, 913–923 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neher, R. A., Russell, C. A. & Shraiman, B. I. Predicting evolution from the shape of genealogical trees. Elife 3, e03568 (2014).PubMed Central 
    Article 

    Google Scholar 
    Doumayrou, J., Thébaud, G., Vuillaume, F., Peterschmitt, M. & Urbino, C. Mapping genetic determinants of viral traits with FST and quantitative trait locus (QTL) approaches. Virology 484, 346–353 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagylaki, T. Fixation indices in subdivided populations. Genetics 148, 1325–1332 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tubiana, L., Božič, A. L., Micheletti, C. & Podgornik, R. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys. J. 108, 194–202 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jordan-Paiz, A., Franco, S. & Martínez, M. A. Impact of synonymous genome recoding on the HIV life cycle. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.606087 (2021).Cuevas, J. M., Domingo-Calap, P. & Sanjuán, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    Su, Y. C. F. et al. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nat. Commun. 6, 7952 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kryazhimskiy, S., Dieckmann, U., Levin, S. A. & Dushoff, J. On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. PLoS Comput. Biol. 3, e159 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Peralta, R., Vargas-De-León, C., Cabrera, A. & Miramontes, P. Dynamics of high-risk nonvaccine human papillomavirus types after actual vaccination scheme. Comput. Math. Methods Med. 2014, 542923 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ranjeva, S. L. et al. Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc. Natl Acad. Sci. USA 114, 13573–13578 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguiar, M., Stollenwerk, N. & Kooi, B. W. The stochastic multi-strain dengue model: analysis of the dynamics. AIP Conf. Proc. 1389, 1224 (2011).Blower, S. M., Aschenbach, A. N., Gershengorn, H. B. & Kahn, J. O. Predicting the unpredictable: transmission of drug-resistant HIV. Nat. Med. 7, 1016–1020 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharomi, O. & Gumel, A. B. Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn. 2, 323–345 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B., Drake, J. M. & Rohani, P. An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinformatics 12, 87 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sofonea, M. T., Alizon, S. & Michalakis, Y. From within-host interactions to epidemiological competition: a general model for multiple infections. Phil. Trans. R. Soc. B 370, 20140303 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanderWaal, K. L. & Ezenwa, V. O. Heterogeneity in pathogen transmission: mechanisms and methodology. Funct. Ecol. 30, 1606–1622 (2016).Article 

    Google Scholar 
    Cobey, S. & Pascual, M. Consequences of host heterogeneity, epitope immunodominance, and immune breadth for strain competition. J. Theor. Biol. 270, 80–87 (2011).PubMed 
    Article 

    Google Scholar 
    Aguiar, M., Ballesteros, S., Kooi, B. W. & Stollenwerk, N. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis. J. Theor. Biol. 289, 181–196 (2011).PubMed 
    Article 

    Google Scholar 
    Breban, R., Drake, J. M. & Rohani, P. A general multi-strain model with environmental transmission: invasion conditions for the disease-free and endemic states. J. Theor. Biol. 264, 729–736 (2010).PubMed 
    Article 

    Google Scholar 
    Kamo, M. & Sasaki, A. The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D 165, 228–241 (2002).Martcheva, M. A non-autonomous multi-strain SIS epidemic model. J. Biol. Dyn. 3, 235–251 (2009).PubMed 
    Article 

    Google Scholar 
    Pugliese, A. On the evolutionary coexistence of parasite strains. Math. Biosci. 177–178, 355–375 (2002).PubMed 
    Article 

    Google Scholar 
    Roche, B. & Rohani, P. Environmental transmission scrambles coexistence patterns of avian influenza viruses. Epidemics 2, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    Korobeinikov, A. & Dempsey, C. A continuous phenotype space model of RNA virus evolution within a host. Math. Biosci. Eng. 11, 919–927 (2014).Article 

    Google Scholar 
    Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A. & Liu, W. M. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta, S., Swinton, J. & Anderson, R. M. Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. B 256, 231–238 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koelle, K., Khatri, P., Kamradt, M. & Kepler, T. B. A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. J. R. Soc. Interface 7, 1257–1274 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lion, S. & Gandon, S. Spatial evolutionary epidemiology of spreading epidemics. Proc. R. Soc. B 283, 20161170 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, e1000536 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lipsitch, M., Colijn, C., Cohen, T., Hanage, W. P. & Fraser, C. No coexistence for free: neutral null models for multistrain pathogens. Epidemics 1, 2–13 (2009).PubMed 
    Article 

    Google Scholar 
    Read, J. M. & Keeling, M. J. Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B 270, 699–708 (2003).Article 

    Google Scholar 
    Eshelman, C. M. et al. Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Phil. Trans. R. Soc. B 365, 2503–2513 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Makau, D. N. et al. Integrating animal movements with phylogeography to model the spread of PRRS virus in the US. Virus Evol. https://doi.org/10.1093/ve/veab060 (2021).Kistler, K. E., Huddleston, J. & Bedford, T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 30, 545–555 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Roossinck, M. J. Genetic bottlenecks reduce population variation in an experimental RNA virus population. J. Virol. 78, 10582–10587 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCrone, J. T. et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife 7, e35962 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nelson, M. I. et al. Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog. 2, e125 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369, 582–587 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    da Silva Filipe, A. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat. Microbiol. 6, 112–122 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tayoun, A. A. et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci. Rep. 10, 17720 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obermeyer, F. et al. Analysis of 2.1 million SARS-CoV-2 genomes identifies mutations associated with transmissibility. Science 376, 1327–1332 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl Acad. Sci. USA 111, 10767–10772 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).CAS 
    Article 

    Google Scholar 
    Clay, P. A. & Rudolf, V. H. W. How parasite interaction strategies alter virulence evolution in multi‐parasite communities. Evolution 73, 2189–2203 (2019).PubMed 
    Article 

    Google Scholar 
    Bishop, S. C., Doeschl-Wilson, A. B. & Woolliams, J. A. Uses and implications of field disease data for livestock genomic and genetics studies. Front. Genet. 3, 114 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez‐Nevado, C., Lam, T. T. Y., Holmes, E. C. & Pagán, I. The impact of host genetic diversity on virus evolution and emergence. Ecol. Lett. 21, 253–263 (2018).PubMed 
    Article 

    Google Scholar 
    Schulte, R. D., Makus, C. & Schulenburg, H. Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J. Evol. Biol. 26, 1836–1840 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Duxbury, E. M. L. et al. Host–pathogen coevolution increases genetic variation in susceptibility to infection. Elife 8, e46440 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ganusov, V. V., Bergstrom, C. T. & Antia, R. Within‐host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56, 213–223 (2002).PubMed 
    Article 

    Google Scholar 
    González, R., Butković, A. & Elena, S. F. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evol. 5, vez024 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Regoes, R. R., Nowak, M. A. & Bonhoeffer, S. Evolution of virulence in a heterogeneous host population. Evolution 54, 64–71 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yates, A., Antia, R. & Regoes, R. R. How do pathogen evolution and host heterogeneity interact in disease emergence? Proc. R. Soc. B 273, 3075–3083 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rochman, N. D. et al. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2104241118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).PubMed 
    Article 

    Google Scholar 
    Gidari, A. et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. J. Infect. 83, 467–472 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Changrob, S. et al. Cross-neutralization of emerging SARS-CoV-2 variants of concern by antibodies targeting distinct epitopes on spike. MBio https://doi.org/10.1128/mBio.02975-21 (2021).Vidal, S. J. et al. Correlates of neutralization against SARS-CoV-2 variants of concern by early pandemic sera. J. Virol. 95, e0040421 (2021).PubMed 
    Article 

    Google Scholar 
    Muik, A. et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152–1153 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bushman, M., Kahn, R., Taylor, B. P., Lipsitch, M. & Hanage, W. P. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 184, 6229–6242 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koopman, J. S., Simon, C. P., Getz, W. M. & Salter, R. Modeling the population effects of escape mutations in SARS-CoV-2 to guide vaccination strategies. Epidemics 36, 100484 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Correlating gut microbial membership to brown bear health metrics

    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article 

    Google Scholar 
    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. PNAS 104, 10075–10079 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Roederer, J. G. & Malone, T. F. (eds) Resilience of Ecosystems: Local Surprise and Global Change 228–269 (Cambridge University Press, 1985).
    Google Scholar 
    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).PubMed 
    Article 

    Google Scholar 
    Lafferty, D. J. R., Belant, J. L. & Phillips, D. L. Testing the niche variation hypothesis with a measure of body condition. Oikos 124, 732–740 (2015).Article 

    Google Scholar 
    Mangipane, L. S. et al. Dietary plasticity in a nutrient-rich system does not influence brown bear (Ursus arctos) body condition or denning. Polar Biol. 41, 763–772 (2018).Article 

    Google Scholar 
    Mangipane, L. S. et al. Dietary plasticity and the importance of salmon to brown bear (Ursus arctos) body size and condition in a low Arctic ecosystem. Polar Biol. 43, 825–833 (2020).Article 

    Google Scholar 
    Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    McKenney, E. A., Koelle, K., Dunn, R. R. & Yoder, A. D. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, A. M., Sun, E. W., Rogers, G. B. & Keating, D. J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 10, 428 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Cani, P. D. & Delzenne, N. M. Interplay between obesity and associated metabolic disorders: New insights into the gut microbiota. Curr. Opin. Pharmacol. 9, 737–743 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arinell, K. et al. Brown bears (Ursus arctos) seem resistant to atherosclerosis­despite highly elevated plasma lipids during hibernation and active state. Clin. Transl. Sci. 5, 269–272 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nelson, R. A. Protein and fat metabolism in hibernating bears. Fed. Proc. 39, 2955–2958 (1980).CAS 
    PubMed 

    Google Scholar 
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McKenney, E. A., Maslanka, M., Rodrigo, A. & Yoder, A. D. Bamboo specialists from two mammalian orders (primates, carnivora) share a high number of low-abundance gut microbes. Microb. Ecol. 76, 272–284 (2018).PubMed 
    Article 

    Google Scholar 
    Edwards, M. A., Derocher, A. E., Hobson, K. A., Branigan, M. & Nagy, J. A. Fast carnivores and slow herbivores: Differential foraging strategies among grizzly bears in the Canadian Arctic. Oecologia 165, 877–889 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Levi, T. et al. Community ecology and conservation of bear-salmon ecosystems. Front. Ecol. Evol. 8, 513304 (2020).Article 

    Google Scholar 
    Milakovic, B. & Parker, K. L. Quantifying carnivory by grizzly bears in a multi-ungulate system. J. Wildl. Manage. 77, 39–47 (2013).Article 

    Google Scholar 
    Krajmalnik-Brown, R., Ilhan, Z.-E., Kang, D.-W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201–214 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hashimoto, T., Hussien, R. & Brooks, G. A. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: Evidence of a mitochondrial lactate oxidation complex. Am. J. Physiol.-Endocrinol. Metab. 290, E1237–E1244 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker, S. & The, H. C. Recent insights into Shigella: A major contributor to the global diarrhoeal disease burden. Curr. Opin. Infect. Dis. 31, 449–454 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, K.-E. et al. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome 8, 107 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waites, K. B., Schelonka, R. L., Xiao, L., Grigsby, P. L. & Novy, M. J. Congenital and opportunistic infections: Ureaplasma species and Mycoplasma hominis. Semin. Fetal Neonatal. Med. 14, 190–199 (2009).PubMed 
    Article 

    Google Scholar 
    Barboza, P. S., Farley, S. D. & Robbins, C. T. Whole-body urea cycling and protein turnover during hyperphagia and dormancy in growing bears (Ursus americanus and U. arctos). Can. J. Zool. 75, 2129. https://doi.org/10.1139/z97-848 (2011).Article 

    Google Scholar 
    Johanne Hansen, M. et al. Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears. Int. J. Syst. Evol. Microbiol. 65, 3683–3689 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Waldram, A. et al. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J. Proteome Res. 8, 2361–2375 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hardie, J. M. & Whiley, R. A. The genus Streptococcus. In The Genera of Lactic Acid Bacteria (eds Wood, B. J. B. & Holzapfel, W. H.) 55–124 (Springer, 1995).Chapter 

    Google Scholar 
    Li, F., Wang, M., Wang, J., Li, R. & Zhang, Y. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front. Cell. Infect. Microbiol. 9, 206 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. G. & Lee, A. The role of Helicobacter species in newly recognized gastrointestinal tract diseases of animals. Lab. Anim. Sci. 47, 222–255 (1997).CAS 
    PubMed 

    Google Scholar 
    McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, e0124618 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stevens, C. E. & Hume, I. D. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 78, 393–427 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hilderbrand, G. V. et al. Plasticity in physiological condition of female brown bears across diverse ecosystems. Polar Biol. 41, 773–780 (2018).Article 

    Google Scholar 
    Ley, R. E. et al. Obesity alters gut microbial ecology. PNAS 102, 11070–11075 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Magne, F. et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 103, 91–93 (1969).Article 

    Google Scholar 
    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trujillo, S. M. et al. Intrinsic and extrinsic factors influence on an omnivore’s gut microbiome. PLoS ONE 17, e0266698 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hilderbrand, G. V. et al. Body size and lean mass of brown bears across and within four diverse ecosystems. J. Zool. 305, 53–62 (2018).Article 

    Google Scholar 
    Wilson, R. R., Gustine, D. D. & Joly, K. Evaluating potential effects of an industrial road on winter habitat of caribou in North-Central Alaska. Arctic 67, 472–482 (2014).Article 

    Google Scholar 
    Gasaway, W. C. et al. The role of predation in limiting moose at low densities in Alaska and Yukon and implications for conservation. Wildl. Monogr. 12, 3–59 (1992).
    Google Scholar 
    Taylor, W. P., Reynolds, H. V. & Ballard, W. B. Immobilization of grizzly bears with tiletamine hydrochloride and zolazepam hydrochloride. J. Wildl. Manage. 53, 978–981 (1989).Article 

    Google Scholar 
    Farley, S. D. & Robbins, C. T. Development of two methods to estimate body composition of bears. Can. J. Zool. 72, 220–226 (1994).Article 

    Google Scholar 
    Hilderbrand, G. V., Robbins, C. T. & Farley, S. D. Response: Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 76, 2301–2303 (1998).Article 

    Google Scholar 
    McKenney, E. A., Greene, L. K., Drea, C. M. & Yoder, A. D. Down for the count: Cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb. Ecol. Health Dis. 28, 1335165 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): Application to microbial communities. PeerJ 8, e9593 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. U.S.A. 106, 22427–22432 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 9, 2068–2077 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Simpson, E. H. Measurement of diversity. Nature 163, 688–688 (1949).ADS 
    MATH 
    Article 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Hamidi, B., Wallace, K., Vasu, C. & Alekseyenko, A. V. Wd∗$Wd*-test: Robust distance-based multivariate analysis of variance. Microbiome 7, 51 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alekseyenko, A. V. Multivariate Welch t-test on distances. Bioinformatics 32, 3552–3558 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Bacterial diversity in surface sediments of collapsed lakes in Huaibei, China

    Zhang, Bo. et al. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer. Front. Environ. Sci. Eng. 13, 20 (2019).Article 

    Google Scholar 
    Li, Y. et al. Distribution and ecological risk assessment of heavy metals in sediments in Chinese collapsed lakes. Pol. J. Environ. Stud. 26, 181–188 (2017).CAS 
    Article 

    Google Scholar 
    Li, J. et al. Analysis of heavy metal sources and health risk assessment of typical coal mine collapsed lakes in Huaibei Coalfield, Anhui Province, China. Polish J. Environ. Stud. 29, 3193–3202 (2020).CAS 
    Article 

    Google Scholar 
    James, I. P. & Jennifer, B. H. M. Conceptual challenges in microbial community ecology. Philos. Trans. R. Soc. B 375, 20190241 (2020).Article 

    Google Scholar 
    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Falkowski Paul, G., Fenchel, T. & Delong Edward, F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95, 6578 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkes, R. J. et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390–394 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wurzbacher, C. et al. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. Microbiome 5, 41 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369 (2009).CAS 
    Article 

    Google Scholar 
    Strauss, E. A., Mitchell, N. L. & Lamberti, G. A. Factors regulating nitrification in aquatic sediments: Effects of organic carbon, nitrogen availability, and pH. Can. J. Fish. Aquat. Sci. 59, 554–563 (2002).CAS 
    Article 

    Google Scholar 
    Seymour, J. R., Seuront, L. & Mitchell, J. G. Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Estuar. Coast. Shelf Sci. 73, 651–666 (2007).ADS 
    Article 

    Google Scholar 
    Aciego Pietri, J. C. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).CAS 
    Article 

    Google Scholar 
    Pavloudi, C., Kristoffersen, J. B., Oulas, A., De Troch, M. & Arvanitidis, C. Sediment microbial taxonomic and functional diversity in a natural salinity gradient challenge Remane’s “species minimum” concept. PeerJ 5, e3687 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wei, G., Li, M., Li, F., Li, H. & Gao, Z. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Appl. Microbiol. Biotechnol. 100, 9683–9697 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. T. Ten years of next-generation sequencing technology. Trends Genet. 30, 418–426 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sadaiappan, B., Prasannakumar, C., Subramanian, K. & Mahendran, S. Metagenomic data of vertical distribution and abundance of bacterial diversity in the hypersaline sediments of Mad Boon-mangrove ecosystem, Bay of Bengal. Data Brief 22, 716–721 (2019).PubMed 
    Article 

    Google Scholar 
    Kim, K. Microbial diversity analysis of sediment from Nakdong River Estuary in the republic of Korea using 16s rRNA gene amplicon sequencing. Microbiol. Resour. Announc. 7, e01186-e11118 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Deng, Y., Liu, Y., Dumont, M. & Conrad, R. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microb. Ecol. 73, 101–110 (2017).PubMed 
    Article 

    Google Scholar 
    Palmer, M. A., Covich, A. P., Lake, S., Biro, P. & Bund, W. JVd. Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity. Bioscience 50, 1062–1075 (2000).Article 

    Google Scholar 
    Silveira, R. et al. Bacteria and archaea communities in Cerrado natural pond sediments. Microb. Ecol. 81, 563–578 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galand, P. E. et al. Disturbance increases microbial community diversity and production in marine sediments. Front. Microbiol. 7, 1950 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dai, Y. et al. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Appl. Microbiol. Biotechnol. 100, 4161–4175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai, Y. et al. Macrophyte identity shapes water column and sediment bacterial community. Hydrobiologia https://doi.org/10.1007/s10750-019-3930-y (2019).Article 

    Google Scholar 
    Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P. S. & Nautiyal, C. S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 64, 450–460 (2012).PubMed 
    Article 

    Google Scholar 
    Huang, W. et al. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network. MicrobiologyOpen 8, e00644 (2019).PubMed 
    Article 

    Google Scholar 
    Ji, B., Liang, J., Ma, Y., Zhu, L. & Liu, Y. Bacterial community and eutrophic index analysis of the East Lake. Environ. Pollut. 252, 682–688 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, H. et al. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. & Pye, K. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361, 436–448 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, L. et al. The molecular characteristics of dissolved organic matter in urbanized river sediments and their environmental impact under the action of microorganisms. Sci Total Environ 827, 154289 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Adhikari, N. P., Adhikari, S., Liu, X., Shen, L. & Gu, Z. Bacterial diversity in alpine lakes: A review from the third pole region. J. Earth Sci. 30, 387–396 (2019).CAS 
    Article 

    Google Scholar 
    Wang, P. et al. Shift in bacterioplankton diversity and structure: Influence of anthropogenic disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China. Sci. Rep. 7, 12529 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Winters, A. D., Marsh, T. L., Brenden, T. O. & Faisal, M. Molecular characterization of bacterial communities associated with sediments in the Laurentian Great Lakes. J. Great Lakes Res. 40, 640–645 (2014).CAS 
    Article 

    Google Scholar 
    Yang, J., Jiang, H., Dong, H. & Liu, Y. A comprehensive census of lake microbial diversity on a global scale. Sci. China Life Sci. 62, 1320–1331 (2019).PubMed 
    Article 

    Google Scholar 
    Aida, M.-R. & Coker, J. A. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000Research 3, 168 (2014).Article 

    Google Scholar 
    Guo, H., Nasir, M., Lv, J., Dai, Y. & Gao, J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicol. Environ. Saf. 144, 300–306 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaci, A., Petit, F., Fournier, M., Cécillon, S. & Berthe, T. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core. Environ. Sci. Pollut. Res. 23, 4095–4110 (2016).CAS 
    Article 

    Google Scholar 
    Hamed, A. et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol. Ecol. 91, 1–11 (2015).
    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Li, Q., Zhao, X. & Hu, C. ISO10390: 2005 soil quality-determination of pH. Pollut. Control Technol. 1, 53–55 (2006).
    Google Scholar 
    Bremner, J. Total nitrogen. Methods of soil analysis: Part 2 chemical microbiological properties. Agron. Ser. 9, 1149–1178 (1965).CAS 

    Google Scholar 
    O’halloran, I. & Cade-Menun, B. Total and organic phosphorus. Soil Sampling Methods Anal. 2, 265–291 (2008).
    Google Scholar 
    Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Can. Res. 73, 5905–5913 (2013).CAS 
    Article 

    Google Scholar 
    Tanja, M. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 21, 2957–2963 (2011).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Nave Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J. & Glckner, F. O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. Bioinformatics 12, 35–30 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Ultrasonic antifouling devices negatively impact Cuvier’s beaked whales near Guadalupe Island, México

    Long-term acoustic data collectionPassive acoustic monitoring was conducted from November 19, 2018 to October 3, 2020, with 683 days of recording effort overall (Supplementary Table 2), using a High-frequency Acoustic Recording Package (HARP)37. The HARP was deployed in Bahía Norte, Guadalupe Island, located approximately 150 miles offshore of México’s Baja California Peninsula (Fig. 1). The HARP was bottom-mounted and deployed to a depth of approximately 1100 m, with a calibrated hydrophone suspended ~30 m above the seafloor. The same hydrophone was used for both deployments to facilitate data comparison. The omnidirectional hydrophone sensor (ITC-1042, International Transducer Corporation, Santa Barbara, CA) had an approximately flat (±3 dB) hydrophone sensitivity from 10 Hz to 100 kHz of −200 dB re V/μPa. The sensor was connected to a custom-built preamplifier board and bandpass filter. The calibrated system response was corrected for during analysis. Data were sampled continuously at a 200 kHz sampling rate with 16-bit quantization, effectively monitoring a frequency range of 10 Hz–100 kHz.Automatic detection and manual classification of beaked whale echolocation clicksBeaked whales can be acoustically identified by their echolocation clicks38. These signals are frequency-modulated (FM) upswept pulses, which appear to be species-specific and are distinguishable by their spectral and temporal features. Cuvier’s beaked whale echolocation signals are well differentiated from the acoustic signals of other beaked whale species. They are polycyclic with a characteristic FM pulse upsweep, peak frequency around 40 kHz, and uniform inter-pulse interval of about 0.4–0.5 s39,40. Additionally, Cuvier’s beaked whale FM pulses have characteristic spectral peaks at approximately 17 and 23 kHz.Beaked whale FM pulses were detected in the HARP data with an automated method using the MATLAB-based (Mathworks, Natick, MA) custom software program Triton (https://github.com/MarineBioAcousticsRC/Triton) and other MATLAB custom routines. After all potential echolocation signals were identified with a Teager–Kaiser energy detector41,42, an expert system discriminated between delphinid clicks and beaked whale FM pulses. A decision about presence or absence of beaked whale signals was based on detections within a 75 s segment. Only segments with more than seven detections were used in further analysis. All echolocation signals with a peak and center frequency below 32 and 25 kHz, respectively, a duration less than 355 μs, and a sweep rate of More

  • in

    First report of the blood-feeding pattern in Aedes koreicus, a new invasive species in Europe

    Study areaThe study area was located in Northeastern Italy (Fig. 2). Specifically, it encompassed 13 municipalities in the Valbelluna (located in Belluno Province), Valsugana, and Cembra valleys (located in Trento Province). The study area has a sub-continental, temperate climate, with cold, often snowy winters and warm, mild summers. Human settlements consist mainly of small villages composed of country houses with private gardens and public parks, all surrounded by forested areas; among the sampled municipalities, only Belluno and Feltre had more than 10,000 inhabitants.Figure 2Study area. Points represent the sampling sites marked with the ID number as in Tables 2 and 3. Background satellite image from Sentinel-2 cloudless (https://s2maps.eu), and urban places from OpenStreetMap contributors (https://openstreetmap.org). Map created using QGIS 3.22.Full size imageHost surveyThe presence and abundance of domestic animal hosts in each site were estimated through a door-to-door census. As the flight range of Ae. koreicus is unknown, a field inspection was performed within a 200-m radius of the sampling site, corresponding to the average flight distance of Ae. albopictus recorded in a study conducted in Italy46. The survey was carried out once in 2020. Residents were asked if they owned animals (dogs, cats, farm animals) and how many they had or, where possible, they were counted directly by the study team (visual inspection). The presence of wild ungulates was estimated according to data provided by the Forestry and Fauna Service—Wildlife Office of the Autonomous Province of Trento. The wild ungulate census was carried out in spring by visual inspection along transects, and repeated three times by hunters and personnel of the wildlife management provincial office.47. The average number of roe deer, red deer, and chamois in 2020 was considered for the analyses. Collected information was used to qualitatively estimate potential host availability in the sampling areas. Human population density in the areas surrounding the sampling point was estimated using the Global Human Settlement Database (GHS Data)48.Collection of Aedes koreicus and blood meal analysisSampling was carried out from 2013 to 2020 (from May to October) with different frequencies in the various years; most collections were made in 2020 (20 collections) and just one in 2019. In total, 23 different sites were sampled where Ae. koreicus were known to be present: 14 in Trento and 9 in Belluno Province, respectively (Table 1 and Supplementary Table S1 online), with altitudes ranging from 234 to 775 m a.s.l.6,16. Engorged mosquitoes were collected in public and private houses, garden centers, cemeteries, and from periurban dry-stone walls using a home-built handheld aspirator (a modified handheld vacuum) (Fig. 3). Mosquitoes were aspirated from shady areas under vegetation, walls, and catch basins. In addition, all engorged females collected during routine invasive mosquito surveillance were used for the analyses. In this surveillance, BG-sentinel traps (Biogents AG, Regensburg, Germany) baited with a BG-Lure cartridge (Biogents) were activated for 24 h fortnightly. Immediately after collection, each sample was placed in a cooler, transported to the laboratory, and stored at − 80 °C until molecular analysis.Figure 3Home-built handheld aspirator (a modified handheld vacuum).Full size imageSampled mosquitoes were identified at species level according to Montarsi et al.21 and ECDC guidelines for invasive mosquito surveillance in Europe49. Blood-fed females were isolated from collected mosquitoes to identify the blood meal host.DNA of single blood-fed mosquito samples, collected from 2013 to 2016, was extracted using Microlab Starlet automated liquid-handling workstations (Hamilton), using a MagMAX Pathogen RNA/DNA kit (Applied Biosystems, USA), according to the manufacturer’s instructions. DNA of a single abdomen of blood-fed mosquitoes, collected from 2017 to 2020, was extracted using QIAamp DNA Investigator kit tissues (Qiagen, Germany), following the manufacturer’s protocol. All samples were analyzed using a nested PCR with a specific set of primers targeting the vertebrate mitochondrial cytochrome c oxidase subunit I (COI) gene, as previously described50. The first PCR reaction was carried out in a total volume of 50 μl, containing 2 units of AmpliTaq Gold DNA Polymerase (Applied Biosystem, USA), 5 μl of 10X Buffer, 2.5 mM of MgCl2, 0.2 mM of each dNTP, 2.5 μl of DMSO, 0.2 mM of primers M13BCV-FW (5’-TGT AAA ACG ACG GCC AGT HAA YCA YAA RGA YAT YGG-3’) and BCV-RV1 (5’-GCY CAN ACY ATN CCY ATR TA-3’), and 5 μl of extracted DNA. The second PCR reaction was carried out in a total volume of 50 μl containing 2 units of AmpliTaq Gold DNA Polymerase (Applied Biosystem, USA), 5 μl of 10X Buffer, 2.0 mM of MgCl2, 0.2 mM of each dNTP, 2.5 μl of DMSO, 0.4.mM of primers M13 (5’-GTA AAA CGA CGG CCA GTG-3’) and BCV-RV2 (5’-ACY ATN CCY ATR TAN CCR AAN GG-3’), and 1 μl of the PCR products obtained during the first amplification step. The thermal profile of the first PCR consisted of activation at 95 °C for 10 min, followed by 40 cycles at 94 °C for 40 s, 45 °C for 40 s, and 72 °C for 1 min, with a final extension step of 7 min at 72 °C. The thermal profile of the second PCR consisted of activation for 10 min at 95 °C followed by 16 cycles of a touchdown protocol at 94 °C for 40 s, decreasing the annealing temperature from 60 °C to 45 °C for 40 s (1 °C/cycle), followed by 72 °C for 1 min. Then, 30 cycles at 94 °C for 40 s, 45 °C for 40 s, and 72 °C for 1 min, with a final extension step of 7 min at 72 °C. Negative controls were included during the extraction and amplification stages to confirm avoidance of contamination.The amplicons were sequenced in both directions using a 16-capillary ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems, USA). To identify the blood meal host species, nucleotide sequences were compared with representative sequences available in the GenBank database using the Basic Local Alignment Search Tool (BLAST). Positive identification was made when  > 97% identity was attained between the query and subject sequence.Statistical analysisAs most of the identified hosts were either humans or wild ungulates (see Results), we investigated how the probability of feeding on these two host groups was affected by different abiotic factors. Specifically, we considered two binary response variables indicating whether or not the blood meal was acquired from a human/wild ungulate host. We developed univariate (i.e., with only one explanatory variable) generalized linear models (GLMs) with a binomial-distributed error structure, considering in turn, for each response variable, the following four explanatory covariates: (i) the altitude of the sampling point; (ii) the human population density in the area surrounding the sampling point, defined as 250 m square units, as per the Global Human Settlement Database48; (iii) the percentage of non-artificial land cover within different buffers (100, 250 and 500 m radius from the sampling point), as per the Corine Land Cover dataset (defined as the sum of the fractions of agricultural and forested areas)51; the distance associated with the model with the lowest AIC value was then selected; (iv) the minimum distance of the sampling point from the nearest pixel labeled as forest, according to the Corine category. All analyses, including plot creation, was performed using R v4.0.252 and “tidyverse”, “ggplot2”, and “gridExtra” libraries.Map in Fig. 1 was generated by QGIS 3.22 using Sentinel-2 cloudless as background satellite image and urban places from OpenStreetMap database53,54,55. More

  • in

    Seasonal microbial dynamics in the ocean inferred from assembled and unassembled data: a view on the unknown biosphere

    Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, et al. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res. 2015;25:534–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Pevzner PA. Joint analysis of long and short reads enables accurate estimates of microbiome complexity. Cell Syst. 2018;7:192–200.e3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT. Individual genome assembly from complex community short-read metagenomic datasets. ISME J. 2012;6:898–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lapidus AL, Korobeynikov AI. Metagenomic data assembly—the way of decoding unknown microorganisms. Front Microbiol. 2021;12:613791.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotech. 2014;32:822–8.CAS 
    Article 

    Google Scholar 
    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    Crespo BG, Wallhead PJ, Logares R, Pedrós-Alió C. Probing the rare biosphere of the North-West Mediterranean Sea: an experiment with high sequencing effort. PLOS ONE. 2016;11:e0159195.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedrós-Alió C. Dipping into the rare biosphere. Science. 2007;315:192–3.PubMed 
    Article 

    Google Scholar 
    Sauret C, Séverin T, Vétion G, Guigue C, Goutx M, Pujo-Pay M, et al. ‘Rare biosphere’ bacteria as key phenanthrene degraders in coastal seawaters. Environmental Pollution. 2014;194:246–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kalenitchenko D, Le Bris N, Peru E, Galand PE. Ultra-rare marine microbes contribute to key sulfur related ecosystem functions. Mol Ecol. 2018;27:1494–504.PubMed 
    Article 

    Google Scholar 
    Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, et al. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol Ecol. 2016;25:5925–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Micro. 2015;13:217–29.CAS 
    Article 

    Google Scholar 
    Debroas D, Hugoni M, Domaizon I. Evidence for an active rare biosphere within freshwater protists community. Mol Ecol. 2015;24:1236–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.PubMed 
    Article 

    Google Scholar 
    Hugoni M, Taib N, Debroas D, Domaizon I, Dufournel IJ, Bronner G, et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. PNAS. 2013;110:6004–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debroas D, Domaizon I, Humbert J-F, Jardillier L, Lepère C, Oudart A, et al. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol. 2017;93:1.Article 
    CAS 

    Google Scholar 
    Elshahed MS, Youssef NH, Spain AM, Sheik C, Najar FZ, Sukharnikov LO, et al. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl Environ Microbiol. 2008;74:5422–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pascoal F, Magalhães C, Costa R. The Link Between the Ecology of the Prokaryotic Rare Biosphere and Its Biotechnological Potential. Front Microbiol. 2020;11:231.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmont TO, Eren AM, Maccario L, Prestat E, Esen ÖC, Pelletier E, et al. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol. 2015;6:358.PubMed 
    PubMed Central 

    Google Scholar 
    Sachdeva R, Campbell BJ, Heidelberg JF Rare microbes from diverse Earth biomes dominate community activity. bioRxiv 2019; 636373. https://doi.org/10.1101/636373.Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ulyantsev VI, Kazakov SV, Dubinkina VB, Tyakht AV, Alexeev DG. MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data. Bioinformatics. 2016;32:2760–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon P. VEGAN, a package of R functions for community ecology. J Vegetation Sci. 2003;14:927–30.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 
    Article 

    Google Scholar 
    Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nature methods. 2015;12:902–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biology. 2011;12:R60.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169.Article 
    CAS 

    Google Scholar 
    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462.CAS 
    PubMed 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Meth. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 2009;10:161.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohart F, Gautier B, Singh A, Cao K-AL. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Computational Biology. 2017;13:e1005752.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Palarea-Albaladejo J, Martín-Fernández JA. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell Lab Syst. 2015;143:85–96.CAS 
    Article 

    Google Scholar 
    Plaza Oñate F, Le Chatelier E, Almeida M, Cervino ACL, Gauthier F, Magoulès F, et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics. 2019;35:1544–52.PubMed 
    Article 
    CAS 

    Google Scholar 
    Csardi G, Nepusz T. The Igraph Software Package for Complex Network Research. InterJournal 2006, Complex Systems, 1695.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: Network Visualizations of Relationships in Psychometric Data. J Stat Softw. 2012;48:1–18.Article 

    Google Scholar 
    Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. PNAS. 2009;106:22427–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a Coastal Ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 2002;420:806–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouvier T, del Giorgio PA. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol. 2007;9:287–97.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thingstad TF, Våge S, Storesund JE, Sandaa R-A, Giske J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc Natl Acad Sci USA. 2014;111:7813–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedrós-Alió C. Marine microbial diversity: can it be determined? Trends Microbiol. 2006;14:257–63.PubMed 
    Article 
    CAS 

    Google Scholar 
    Gobet A, Böer SI, Huse SM, van Beusekom JEE, Quince C, Sogin ML, et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J. 2012;6:542–53.PubMed 
    Article 

    Google Scholar 
    Pascoal F, Costa R, Assmy P, Duarte P, Magalhães C. Exploration of the types of rarity in the arctic ocean from the perspective of multiple methodologies. Microb Ecol. 2021;84:59–72.PubMed 
    Article 
    CAS 

    Google Scholar 
    Huete-Stauffer TM, Arandia-Gorostidi N, Díaz-Pérez L, Morán XAG. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions. FEMS Microbiol Ecol. 2015;91:fiv111.PubMed 
    Article 
    CAS 

    Google Scholar 
    Arandia-Gorostidi N, Huete-Stauffer TM, Alonso-Sáez L, G. Morán XA. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ Microbiol. 2017;19:4493–505.CAS 
    PubMed 
    Article 

    Google Scholar 
    Giovannoni SJ, Bibbs L, Cho J-C, Stapels MD, Desiderio R, Vergin KL, et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature. 2005;438:82–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz P, Yarza P, Rapp JZ, Glöckner FO. Expanding the world of marine bacterial and archaeal clades. Front Microbiol. 2016;6:1524.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pereira O, Hochart C, Boeuf D, Auguet JC, Debroas D, Galand PE. Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea. ISME J. 2020;15:1302–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota. Science. 2012;335:587–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. MicrobiologyOpen. 2019;8:e00852.PubMed 
    PubMed Central 

    Google Scholar 
    Tully BJ. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat Commun. 2019;10:271.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, et al. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol. 2018;20:734–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. Microbial dark matter investigations: how microbial studies transform biological knowledge and empirically sketch a logic of scientific discovery. Genome Biol Evol. 2018;10:707–15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, et al. A global ocean atlas of eukaryotic genes. Nature Communications. 2018;9:373.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thomas AM, Segata N. Multiple levels of the unknown in microbiome research. BMC Biology. 2019;17:48.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Huge dataset shows 80% of US professors come from just 20% of institutions

    Hear the latest from the world of science, with Nick Petrić Howe and Benjamin Thompson.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:46 Inequalities in US faculty hiringIn the US, where a person gained their PhD can have an outsized influence on their future career. Now, using a decade worth of data, researchers have shown there are stark inequalities in the hiring process, with 80% of US faculty trained at just 20% of institutions.Research article: Wapman et al.09:01 Research HighlightsHow wildlife can influence chocolate production, and the large planets captured by huge stars.Research Highlight: A chocoholic’s best friends are the birds and the batsResearch Highlight: Giant stars turn to theft to snag jumbo planets11:42 Briefing ChatWe discuss some highlights from the Nature Briefing. This time, what science says about grieving for a public figure, and why suburban Australians are sharing increasingly sophisticated measures to prevent cockatoos from opening wheelie bins.Nature News: Millions are mourning the Queen — what’s the science behind public grief?The Guardian: ‘Interspecies innovation arms race’: cockatoos and humans at war over wheelie bin raidsSubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Leaf water content contributes to global leaf trait relationships

    The theoretical modelThe model presented here builds on a recently developed metabolic theory based on biochemical kinetics. It describes a non-linear relationship between plant metabolic rate per unit of dry mass (Bs, nmol g−1 s−1), such as light-saturated photosynthetic rates and dark respiration rates, plant water content (S, g g−1), and temperature (in degrees K)19,20, i.e.$${B}_{{{{{{rm{s}}}}}}}={g}_{1}{e}^{{k}_{1}S/left({K}_{1}+Sright)}{e}^{-E/{kT}}$$
    (1)
    where g1 is a normalisation constant, k1 represents the maximum increase in specific metabolic rates due to changes in water content (i.e. from dehydrated to fully hydrated), K1 represents the water content when the mean reaction rate of cellular metabolism reaches one-half of its maximum, E is the activation energy, and k is Boltzmann’s constant. In this model S is defined on a dry mass basis (i.e. the ratio of plant water mass to plant dry mass) to broaden its range and better reflect the proportional changes in the amount of water in plant tissues20. Full details of the model’s assumptions can be found in the Methods and Huang et al.19,20. The model was tested and shown to hold true for a broad range of species and for whole plants and above- and belowground organs20. Here, we first applied the model to describe the quantitative effects of dry mass-based LWC (the ratio of leaf water mass to leaf dry mass) and temperature on the light-saturated leaf photosynthetic rate per unit of dry mass or leaf photosynthetic capacity (Ps, nmol CO2 g−1 s−1), which can be expressed as$${{{{{rm{ln}}}}}}left({P}_{{{mbox{s}}}}right)={{{{{rm{ln}}}}}}left(frac{{P}_{{{{{{rm{L}}}}}}}}{{M}_{{{{{{rm{L}}}}}}}}right)={{{{{rm{ln}}}}}}left({g}_{1}right)+frac{{k}_{1}cdot {{{{{rm{LWC}}}}}}}{{K}_{1}+{{{{{rm{LWC}}}}}}}-frac{E}{{kT}},$$
    (2)
    where PL is the light-saturated whole-leaf photosynthetic rate (nmol s−1). Equation 2 indicates that the log-transformed temperature-corrected Ps (i.e. Pscor) should increase with LWC, following Michaelis-Menten type hyperbolic response, i.e.$${{{{{rm{ln}}}}}}left({P}_{{{mbox{scor}}}}right)={{{{{rm{ln}}}}}}left({P}_{{{{{{rm{s}}}}}}}{e}^{E/{kT}}right)={{{{{rm{ln}}}}}}left({g}_{1}right)+frac{{k}_{1}cdot {{{{{rm{LWC}}}}}}}{{K}_{1}+{{{{{rm{LWC}}}}}}}.$$
    (3)
    Rearranging Eq. (2) shows that the temperature- and LWC-corrected whole-leaf photosynthetic rate (i.e. PLcor) should scale isometrically with ML, i.e.$${P}_{{{mbox{Lcor}}}}={P}_{{{{{{rm{L}}}}}}}{e}^{-{k}_{1}cdot {{{{{rm{LWC}}}}}}/left({K}_{1}+{{{{{rm{LWC}}}}}}right)}{e}^{E/{kT}}={g}_{1}{M}_{{{{{{rm{L}}}}}}}.$$
    (4)
    In this study, we refer to the temperature or water content correction as moving the temperature term ((frac{E}{{kT}})) or water content term ((frac{{k}_{1}cdot {{{{{rm{LWC}}}}}}}{{K}_{1}+{{{{{rm{LWC}}}}}}})) to the left-hand side of the model, an approach that has been commonly used in previous studies28.Following previous studies29,30,31, we assume that PL is proportional to AL, i.e. ({P}_{L}propto {A}_{L})because leaf area directly determines the light interception capacity1. Therefore, the quantitative relationship between SLA and LWC and temperature can be described as$${{{{{{mathrm{ln}}}}}}}left({{mbox{SLA}}}right)={{{{{{mathrm{ln}}}}}}}left(frac{{A}_{{{{{{rm{L}}}}}}}}{{M}_{{{{{{rm{L}}}}}}}}right)={{{{{{mathrm{ln}}}}}}}left({g}_{2}right)+frac{{k}_{1}cdot {{{{{rm{LWC}}}}}}}{{K}_{1}+{{{{{rm{LWC}}}}}}}-frac{E}{{kT}},$$
    (5)
    where g2 is another normalisation constant. Given that leaf area is a direct indicator of leaf photosynthetic capacity and that both traits reflect the long-term adaptation of plants to environmental change3,13, k1 in Eqs. (2) and (5) represent the maximum increase in mass-specific leaf photosynthetic capacity due to changes in water content. Since the temperature has a direct effect on the metabolic rates32 and productivity of ecosystems33, it is reasonable to assume that temperature can affect SLA globally34,35. Therefore, in this context T denotes the mean growing-season temperature (in degrees K), as SLA might be more responsive to long-term changes in temperature. Equation (5) predicts that SLA should increase with both LWC and the growing-season temperature. Rearranging Eq. (5) yields$${{{{{{mathrm{ln}}}}}}}left({{mbox{SL}}}{{{mbox{A}}}}_{{{mbox{cor}}}}right)={{{{{{mathrm{ln}}}}}}}left({{mbox{SLA}}}{e}^{E/{kT}}right)={{{{{{mathrm{ln}}}}}}}left({g}_{2}right)+frac{{k}_{1}cdot {{{{{rm{LWC}}}}}}}{{K}_{1}+{{{{{rm{LWC}}}}}}},$$
    (6)
    which predicts that the log-transformed temperature-corrected SLA (i.e. SLAcor) should increase with LWC following Michaelis-Menten dynamics. Likewise, by moving (frac{{k}_{1}cdot {{{{{rm{LWC}}}}}}}{{K}_{1}+{{{{{rm{LWC}}}}}}}) and (frac{E}{{kT}}) to the left-hand side and ML to the right-hand side of Eq. (5), we observe that the temperature- and LWC-corrected leaf area (i.e. ALcor) should scale isometrically with leaf mass, i.e.$${A}_{{{mbox{Lcor}}}}={A}_{{{{{{rm{L}}}}}}}{e}^{-{k}_{1}cdot {{{{{rm{LWC}}}}}}/left({K}_{1}+{{{{{rm{LWC}}}}}}right)}{e}^{E/{kT}}={g}_{2}{M}_{{{{{{rm{L}}}}}}}.$$
    (7)
    We note that the scaling of PLcor and ALcor with respect to ML will reveal how LWC mediates the scaling exponent of leaf trait relationships.Effects of LWC and temperature on leaf trait scalingThe numerical value of the exponent for the PL versus AL scaling relationship calculated from the empirical data was 0.99 (Supplementary Fig. 1; 95% CI = 0.95 and 1.02, r2 = 0.87), strongly supporting the model assumption that PL scales isometrically with AL. We then examined the effect of LWC on leaf trait scaling. The numerical value of the scaling exponent for the PL versus ML relationship was 0.95 (Fig. 2a; 95% CI = 0.92 and 0.99, r2 = 0.83). The non-linear relationship between Pscor and LWC described by Eq. (3) was supported by the empirical data (Fig. 2b; Supplementary Table 1). The non-linear model (Eq. 3) also had a lower Akaike’s Information Criterion score than the simple linear model between log-transformed Pscor and LWC (i.e. 793.5 versus 1988.8). After LWC and temperature were corrected (see Eq. 4), the numerical value of the scaling exponent became 0.97 (Fig. 2c; 95% CI = 0.94 and 1.01, r2 = 0.85), which was statistically indistinguishable from 1.0 (P  > 0.05), as predicted by the model. Likewise, the numerical value of the exponent (i.e. α) for the AL versus ML scaling relationship was 1.02 (Fig. 2d; 95% CI = 1.02 and 1.03, r2 = 0.92). Additional analyses using the pooled dataset showed that log-transformed SLA increased with LWC following Michaelis-Menten dynamics, as predicted by Eq. (6) (Fig. 2e; Supplementary Table 1). After the effects of LWC and temperature were accounted for (using Eq. 7), the numerical value of α became 1.01 (Fig. 2f; 95% CI = 1.00 and 1.01, r2 = 0.95). Thus, both of the scaling exponents numerically converged onto 1.0 once LWC and temperature were corrected. In addition, an inspection of the locally weighted smoothing (LOWESS) curves showed that the curvature in both scaling relationships was reduced after the effects of LWC and temperature were corrected, as predicted by the model (Fig. 2).Fig. 2: The quantitative effects of dry mass-based leaf water content (LWC) on leaf photosynthesis and SLA.a Scaling of leaf photosynthetic rate (PL, nmol s−1) with leaf dry mass (ML, g). b Non-linear fit to the relationship between temperature-corrected mass-specific leaf photosynthetic rate (Pscor, nmol g−1 s−1) and LWC (g g−1) based on Eq. (3). c Scaling of temperature- and LWC-corrected leaf photosynthetic rate (PLcor, nmol s−1) with ML (g). d Scaling of leaf area (AL, cm2) with leaf dry mass (ML, g). e Non-linear fit to the relationship between temperature-corrected specific leaf area (SLAcor, cm2 g−1) and LWC based on Eq. (6). f Scaling of temperature- and LWC-corrected leaf area (ALcor, cm2) with leaf dry mass (ML, g). Data with LWC greater than 25 were not shown in panel e for a better visualisation. LOWESS curves (blue lines) and 95% confidence intervals are shown.Full size imageThe results presented here show that temperature and LWC quantitatively correlate with other leaf traits, such as Ps and SLA (or LMA), as predicted by the model. The increases in Ps and SLA attenuate with increasing LWC (Fig. 2b, e), indicating that leaf water availability sets a constraint on the maximum Ps and SLA that leaves can reach. It has long been recognised that SLA is closely correlated with leaf growth rate and metabolic activity14,36,37. Therefore, it is reasonable to also expect that SLA, as well as Ps, will be quantitatively affected by LWC, which can change as a function of developmental status (such as leaf maturation and the accumulation of lignified tissues) and transiently as a function of evapotranspiration. LWC is also a reflection of species-specific adaptation to environmental conditions in different biomes. Nevertheless, our model, as well as the empirical data used to test it, reveal a broad and statistically robust correlation between critical leaf functional traits and leaf tissue water content. However, the observed variations in Pscor (Fig. 2b) suggest that in addition to temperature and LWC, other factors (e.g. plant phylogeny and soil fertility) may also affect leaf photosynthetic capacity, which is not accounted for in our model and should be critically examined in future research.Leaf area-mass scaling among different groupsThe numerical value of α varied across different plant growth forms, ecosystems, and latitudinal zones (Fig. 3 and Supplementary Table 2). In particular, the leaf area versus mass scaling relationship showed a clear pattern along a latitudinal gradient (Fig. 3c and Supplementary Table 2). The numerical value of α decreased from 1.10 in boreal regions (95% CI = 1.08 and 1.12, r2 = 0.91) to 1.00 in temperate regions (95% CI = 0.99 and 1.01, r2 = 0.91), and to 0.94 in tropical regions (95% CI = 0.92 and 0.95, r2 = 0.91). However, after correcting for the effects of LWC and temperature, as predicted, α converged onto 1.0 across all different groupings, and the r2 values of the scaling relationships also increased (Fig. 3 and Supplementary Table 2).Fig. 3: The exponents of leaf area-mass scaling with and without temperature and LWC corrections among different groups.a Comparison of scaling exponents among plant growth forms (n = 1688, 491, 1097, and 832 for forbs, graminoids, shrubs, and trees, respectively). b Comparison of scaling exponents among ecosystem types (n = 97, 1367, 1285, 1271, and 114 for deserts, forests, grasslands, tundra, and wetlands, respectively). c Comparison of scaling exponents among different latitudinal zones (n = 1111, 2113, and 910 for tropical, temperate, and boreal zones, respectively). Error bars indicate 95% confidence intervals.Full size imageOur analyses show that LWC also affects the numerical values of the exponents of leaf trait scaling relationships, which helps to explain why different works sometimes report significant differences in the exponents governing these relationships8,10. In particular, the numerical values of the scaling exponent governing the leaf area versus mass scaling relationship differ among different plant growth forms, ecosystems, and latitudinal zones (Fig. 3 and Supplementary Table 2), indicating that no invariant “scaling exponent” (i.e. α) holds true for the leaf area-mass scaling relationship. For example, in our dataset, α is significantly smaller than 1.0 in tropical regions (i.e. in keeping with a “diminishing returns” relationship in leaf area with respect to increasing leaf mass), close to 1.0 in temperate regions (i.e. a break-even relationship), and significantly larger than 1.0 in boreal regions (i.e. an “increasing returns” relationship). This shift in α along a latitudinal gradient may be associated with the different strategies to cope with variations in water availability, e.g. the high evapotranspiration rates in tropical regions may constrain increases in leaf area with increasing leaf mass, therefore resulting in diminishing returns, whereas, in boreal regions, the reduced water stress may enable plants to maximise leaf area to achieve relatively high photosynthetic capacities. Despite the variability in the numerical values of scaling exponents across different groups, the degree of curvature in these scaling relationships is reduced, and exponents converge onto unity after the effects of LWC and temperature are accounted for (Fig. 3), as predicted by the model (Eq. 7). This finding indicates that the variations in the exponent can, at least partially, be ascribed to the effects of LWC on SLA and the relative rate of increase in leaf area versus leaf mass. It is noteworthy that the numerical value of the scaling exponent for the PL versus ML relationship is also very close to 1.0, indicating the relatively weak effects of temperature and LWC on leaf photosynthesis-mass scaling. This may be partially attributed to the relatively limited number of data with concurrent LWC measurements and the adaptation of leaf traits to long-term temperature changes (see below for detailed discussion). Nevertheless, more measurements on LWC and leaf photosynthetic rates are needed to further test how LWC mediates leaf photosynthesis-mass scaling.Given that LWC was weakly correlated with ML (Supplementary Fig. 2, log-log slope = −0.01, 95% CI = −0.02 and 0, r2  More