Poelman, E. H., van Loon, J. J. A. & Dicke, M. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13, 534–541 (2008).CAS
PubMed
Article
Google Scholar
Degenhardt, J. et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. USA 106, 13213–13218 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Dicke, M. Behavioural and community ecology of plants that cry for help. Plant. Cell Environ. 32, 654–665 (2009).CAS
PubMed
Article
Google Scholar
Himanen, S. J. et al. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181, 174–186 (2009).CAS
PubMed
Article
Google Scholar
Girling, R. D. et al. Parasitoids select plants more heavily infested with their caterpillar hosts: A new approach to aid interpretation of plant headspace volatiles. Proc. Biol. Sci. 278, 2646–2653 (2011).CAS
PubMed
PubMed Central
Google Scholar
Tamiru, A. et al. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol. Lett. 14, 1075–1083 (2011).PubMed
Article
Google Scholar
Njihia, T. N. et al. Identification of kairomones of second instar nymphs of the variegated coffee bug Antestiopsis thunbergii (Heteroptera: Pentatomidae). Chemoecology 27, 239–248 (2017).CAS
Article
Google Scholar
Becker, C. et al. Effects of abiotic factors on HIPV-mediated interactions between plants and parasitoids. BioMed. Res. Int. 2015, 1–18 (2015).Article
CAS
Google Scholar
Brilli, F., Loreto, F. & Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant. Sci. 10, 264 (2019).PubMed
PubMed Central
Article
Google Scholar
Aoun, W. B., El Akkari, M., Flénet, F., Jacquet, F. & Gabrielle, B. Recommended fertilization practices improve the environmental performance of biodiesel from winter oilseed rape in France. J. Cleaner Prod. 139, 242–249 (2016).Article
CAS
Google Scholar
Micha, E., Roberts, W., O’ Sullivan, L., O’ Connell, K. & Daly, K. Examining the policy-practice gap: the divergence between regulation and reality in organic fertiliser allocation in pasture based systems. Agric. Syst. 179, 102708 (2020).Article
Google Scholar
Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32 (2013).CAS
PubMed
Article
Google Scholar
Ormeño, E. & Fernandez, C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr. Bioact. Compd. 8, 71–79 (2012).PubMed
PubMed Central
Article
Google Scholar
Hu, B. et al. VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: A comparison of Miscanthus and Salix. Environ. Pollut. 237, 205–217 (2018).CAS
PubMed
Article
Google Scholar
Olson, D. M., Cortesero, A. M., Rains, G. C., Potter, T. & Lewis, W. J. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biol. Control. 49, 239–244 (2009).CAS
Article
Google Scholar
Rosatto, L., Lainé, P. & Ourry, A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: Nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52, 1655–1663 (2001).Article
Google Scholar
Yoneyama, T., Ito, O. & Engelaar, W. M. H. G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochem. Rev. 2, 121–132 (2003).CAS
Article
Google Scholar
Fahey, J. W., Zalcmann, A. T. & Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51 (2001).CAS
PubMed
Article
Google Scholar
Mithen, R. F. Glucosinolates and their degradation products. Adv. Bot. Res. 35, 213–262 (2001).ADS
CAS
Article
Google Scholar
García-Coronado, H. et al. Analysis of a suppressive subtractive hybridization library of Alternaria alternata resistant to 2-propenyl isothiocyanate. Electron. J. Biotechnol. 18, 320–326 (2015).Article
Google Scholar
Renwick, J. A. A., Haribal, M., Gouinguené, S. & Städler, E. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J. Chem. Ecol. 32, 755–766 (2006).CAS
PubMed
Article
Google Scholar
Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).CAS
PubMed
Article
Google Scholar
Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).CAS
PubMed
Article
Google Scholar
Butler, J., Garratt, M. P. D. & Leather, S. R. Fertilisers and insect herbivores: a meta-analysis. Ann. Appl. Biol. 161, 223–233 (2012).Article
Google Scholar
Soufbaf, M., Fathipour, Y., Zalucki, M. P. & Hui, C. Importance of primary metabolites in canola in mediating interactions between a specialist leaf-feeding insect and its specialist solitary endoparasitoid. Arthropod-Plant Interact. 6, 241–250 (2012).Article
Google Scholar
De Vries, S. C., van de Ven, G. W. J., van Ittersum, M. K. & Giller, K. E. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34, 588–601 (2010).Article
CAS
Google Scholar
Hegewald, H., Koblenz, B., Wensch-Dorendorf, M. & Christen, O. Impacts of high intensity crop rotation and N management on oilseed rape productivity in Germany. Crop Pasture sci. 67, 439–449 (2016).CAS
Article
Google Scholar
Jankowski, K. J., Budzyński, W. S., Załuski, D., Hulanicki, P. S. & Dubis, B. Using a fractional factorial design to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field. Crop. Res. 188, 50–61 (2016).Article
Google Scholar
Chakwizira, E. et al. Effects of nitrogen rate on nitrate-nitrogen accumulation in forage kale and rape crops. Grass. Forage Sci. 70, 268–282 (2015).CAS
Article
Google Scholar
Rathke, G. W., Behrens, T. & Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 117, 80–108 (2006).CAS
Article
Google Scholar
Henke, J., Breustedt, G., Sieling, K. & Kage, H. Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. J. Agric. Sci. 145, 455–468 (2007).CAS
Article
Google Scholar
Eurostat. Agriculture, Forestry and Fishery Statistics (Publications Office of the European Union, 2020). https://doi.org/10.2785/143455.Book
Google Scholar
Zapata, N., Vargas, M., Reyes, J. F. & Belmar, G. Quality of biodiesel and press cake obtained from Euphorbia lathyris, Brassica napus and Ricinus communis. Ind. Crops Prod. 38, 1–5 (2012).CAS
Article
Google Scholar
Alford, D. V., Nilsson, C. & Ulber, B. Insect pests of oilseed rape crops. In Biocontrol of Oilseed Rape Pests (ed. Alford, D. V.) 9–42 (Blackwell Science, 2003).Chapter
Google Scholar
Veromann, E., Luik, E., Metspalu, L. & Williams, I. Key pests and their parasitoids on spring and winter oilseed rape in Estonia. Entomol. Fennica 17, 4 (2006).Article
Google Scholar
Meier, U. (ed.) Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph (Blackwell Wissenschaft, 1997).
Google Scholar
Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991).Article
Google Scholar
Williams, I. H. The major insect pests of oilseed rape in Europe and their management: An overview. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I. H.) 1–43 (Springer, 2010).Chapter
Google Scholar
Williams, I. H. & Free, J. B. The feeding and mating behaviour of pollen beetles (Meligethes aeneus Fab.) and seed weevils (Ceutorhynchus assimilis Payk.) on oil-seed rape (Brassica napus L.). J. Agric. Sci. 91, 453–459 (1978).Article
Google Scholar
Ekbom, B. & Borg, A. Pollen beetle (Meligethes aeneus) oviposition and feeding preference on different host plant species. Entomol. Exp. Appl. 78, 291–299 (1996).Article
Google Scholar
Kaasik, R. et al. Meligethes aeneus oviposition preferences, larval parasitism rate and species composition of parasitoids on Brassica nigra, Raphanus sativus and Eruca sativa compared with on Brassica napus. Biol. Control 69, 65–71 (2014).Article
Google Scholar
Thieme, T., Heimbach, U. & Müller, A. Chemical control of insect pests and insecticide resistance in oilseed rape. In Biocontrol-based integrated management of oilseed rape pests (ed. Williams, I. H.) 313–335 (Springer, 2010). https://doi.org/10.1007/978-90-481-3983-5_12.Chapter
Google Scholar
Slater, R. et al. Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes spp.): A coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest. Manag. Sci. 67, 633–638 (2011).CAS
PubMed
Article
Google Scholar
Zimmer, C. T., Köhler, H. & Nauen, R. Baseline susceptibility and insecticide resistance monitoring in European populations of Meligethes aeneus and Ceutorhynchus assimilis collected in winter oilseed rape. Entomol Exp Appl 150, 279–288 (2014).CAS
Article
Google Scholar
Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M. & Xue, Q. 2008. Documentation of pesticide resistance in arthropods. In Global Pesticide Resistance in Arthropods (eds Whalon, M. E. et al.) 32–39 (Cromwell Press, Berlin, 2008).Chapter
Google Scholar
Willow, J., Silva, A., Veromann, E. & Smagghe, G. Acute effect of low-dose thiacloprid exposure synergised by tebuconazole in a parasitoid wasp. PLoS ONE 14, e0212456 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
Osborne, P. Observations on the natural enemies of Meligethes aeneus (F.) and M. viridescens (F.) [Coleoptera: Nitidulidae]. Parasitology 50, 91–110 (1960).CAS
PubMed
Article
Google Scholar
Büchi, R. Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric. Ecosyst. Environ. 90, 255–263 (2002).Article
Google Scholar
Veromann, E., Saarniit, M., Kevväi, R. & Luik, A. Effect of crop management on the incidence of Meligethes aeneus Fab. and their larval parasitism rate in organic and conventional winter oilseed rape. Agronomy Res. 7, 548–554 (2009).
Google Scholar
Veromann, E. et al. Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Prot 43, 79–88 (2013).CAS
Article
Google Scholar
Kovács, G. et al. Effects of land use on infestation and parasitism rates of cabbage seed weevil in oilseed rape. Pest Manag Sci 75, 658–666 (2019).PubMed
Article
CAS
Google Scholar
Kaasik, R., Kovács, G., Toome, M., Metspalu, L. & Veromann, E. The relative attractiveness of Brassica napus, B. rapa, B. juncea and Sinapis alba to pollen beetles. Bio. Control. 59, 19–28 (2014).
Google Scholar
Lucas-Barbosa, D. et al. Endure and call for help: strategies of black mustard plants to deal with a specialized caterpillar. Funct. Ecol. 31, 325–333 (2017).Article
Google Scholar
Toome, M. et al. Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232, 235–243 (2010).CAS
PubMed
Article
Google Scholar
Kännaste, A., Copolovici, L. & Niinemets, Ü. Gas chromatography–mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants. Methods Mol. Biol. 1153, 161–169. https://doi.org/10.1007/978-1-4939-0606-2_11 (2014).CAS
Article
PubMed
Google Scholar
Kask, K., Kännaste, A., Talts, E., Copolovici, L. & Niinemets, Ü. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant Cell Environ. 39, 2027–2042 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Niinemets, Ü. et al. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8, 2209–2246 (2011).ADS
CAS
Article
Google Scholar
Copolovici, L., Kännaste, A., Remmel, T., Vislap, V. & Niinemets, Ü. Volatile emissions from Alnus glutionosa induced by herbivory are quantitatively related to the extent of damage. J. Chem. Ecol. 37, 18–28 (2011).CAS
PubMed
Article
Google Scholar
Peck, J. E. In Multivariate Analysis for Ecologists: Step-by-Step 2nd edn (ed. Peck, J. E.) (MjM Software Design, 2016).
Google Scholar
Narits, L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agron. Res. 8, 671–686 (2010).ADS
Google Scholar
Naderi, R. & Ghadiri, H. Competition of wild mustard (Sinapis arvense L.) densities with rapeseed (Brassica napus L.) under different levels of nitrogen fertilizer. J. Agr. Sci. Technol. 13, 45–51 (2011).
Google Scholar
Grzebisz, W., Łukowiak, R. & Kotnis, K. Evaluation of nitrogen fertilization systems based on the in-season variability in the nitrogenous growth factor and soil fertility factors—A case of winter oilseed rape (Brassica napus L.). Agronomy 10, 1701 (2020).CAS
Article
Google Scholar
He, H. et al. Genotypic variation in nitrogen utilization efficiency of oilseed rape (Brassica napus) under contrasting N supply in pot and field experiments. Front. Plant. Sci. 8, 1825 (2017).PubMed
PubMed Central
Article
Google Scholar
Pashalidou, F. G., Lucas-Barbosa, D., van Loon, J. J. A., Dicke, M. & Fatouros, N. E. Phenotypic plasticity of plant response to herbivore eggs: Effects on resistance to caterpillars and plant development. Ecology 94, 702–713 (2013).PubMed
Article
Google Scholar
Lucas-Barbosa, D., Loon van, J. J. A., Gols, R., Beek van, T. A. & Dicke, M. Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Funct. Ecol. 27, 245–254 (2013).Article
Google Scholar
Milchunas, D. G. & Noy-Meir, I. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99, 113–130 (2002).Article
Google Scholar
Williams, I. H. & Free, J. B. Compensation of oil-seed rape (Brassica napus L.) plants after damage to their buds and pods. J. Agric. Sci. 92, 53–59. https://doi.org/10.1017/S0021859600060494 (1979).Article
Google Scholar
Tatchell, G. Compensation in spring-sown oil-seed rape (Brassica napus L.) plants in response to injury to their flower buds and pods. J. Agric. Sci. 101, 565–573. https://doi.org/10.1017/S0021859600038594 (1983).Article
Google Scholar
Tiffin, P. Mechanisms of tolerance to herbivore damage: What do we know?. Evol. Ecol. 14, 523–536. https://doi.org/10.1023/A:1010881317261 (2000).Article
Google Scholar
Pinet, A., Mathieu, A. & Jullien, A. Floral bud damage compensation by branching and biomass allocation in genotypes of Brassica napus with different architecture and branching potential. Front. Plant Sci 6, 70. https://doi.org/10.3389/fpls.2015.00070 (2015).Article
PubMed
PubMed Central
Google Scholar
Muzika, R. M. & Pregitzer, K. S. Effect of nitrogen fertilization on leaf phenolic production of grand fir seedlings. Trees 6, 241–244 (1992).Article
Google Scholar
Kesselmeier, J. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies. J. Atmos. Chem. 39, 219–233 (2001).CAS
Article
Google Scholar
Karl, T., Curtis, A. J., Rosenstiel, T. N., Monson, R. K. & Fall, R. Transient releases of acetaldehyde from tree leaves—Products of a pyruvate overflow mechanism?. Plant. Cell Environ. 25, 1121–1131 (2002).CAS
Article
Google Scholar
Szczepaniak, W., Grzebisz, W., Potarzycki, J., Łukowiak, R. & Przygocka-Cyna, K. Nutritional status of winter oilseed rape in cardinal stages of growth as the yield indicator. Plant Soil Environ. 61, 291–296 (2015).CAS
Article
Google Scholar
Anjum, N. A. et al. Improving growth and productivity of Oleiferous brassicas under changing environment: Significance of nitrogen and sulphur nutrition, and underlying mechanisms. Scientific World J. 2012, 657808 (2012).Article
CAS
Google Scholar
Okereke, C. N., Liu, B., Kaurilind, E. & Niinemets, Ü. Heat stress resistance drives coordination of emissions of suites of volatiles after severe heat stress and during recovery in five tropical crops. Environ. Exp. Bot. 184, 104375 (2021).CAS
Article
Google Scholar
Kanagendran, A., Pazouki, L. & Niinemets, Ü. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ. Exp. Bot. 145, 21–38 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Robertson, G. W. et al. A comparison of the flower volatiles from hawthorn and four raspberry cultivars. Phytochemistry 33, 1047–1053 (1993).CAS
Article
Google Scholar
Robertson, G. W., Griffiths, D. W., Smith, W. M. & Butcher, R. D. The application of thermal desorption-gas chromatography-mass spectrometry to the analyses of flower volatiles from five varieties of oilseed rape (Brassica napus spp. oleifera). Phytochem. Anal. 4, 152–157 (1993).CAS
Article
Google Scholar
Kos, M. et al. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. Phytochemistry 77, 162–170 (2012).CAS
PubMed
Article
Google Scholar
Niinemets, Ü., Kännaste, A. & Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant. Sci. 4, 262. https://doi.org/10.3389/fpls.2013.00262 (2013).Article
PubMed
PubMed Central
Google Scholar
Shannon, R. W. R. et al. Something in the air? The impact of volatiles on mollusc attack of oilseed rape seedlings. Ann. Bot. 117, 1073–1082 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
Ruther, J., Reinecke, A. & Hilker, M. Plant volatiles in the sexual communication of Melolontha hippocastani: Response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol. Entomol. 27, 76–83 (2002).Article
Google Scholar
Khan, Z. R., Pickett, J. A., Berg, J. V. D., Wadhams, L. J. & Woodcock, C. M. Exploiting chemical ecology and species diversity: Stem borer and striga control for maize and sorghum in Africa. Pest. Manag. Sci. 56, 957–962 (2000).CAS
Article
Google Scholar
Jayanthi, P. D. K. et al. Specific volatile compounds from mango elicit oviposition in gravid Bactrocera dorsalis females. J. Chem. Ecol. 40, 259–266 (2014).Article
CAS
Google Scholar
Hu, Z. et al. Aldehyde volatiles emitted in succession from mechanically damaged leaves of poplar cuttings. J. Plant. Biol. 51, 269–275 (2008).Article
Google Scholar
Giacomuzzi, V., Mattheis, J. P., Basoalto, E., Angeli, S. & Knight, A. L. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). Pest. Manag. Sci. 73, 1837–1845 (2017).CAS
PubMed
Article
Google Scholar
Torrens-Spence, M. P. et al. Structural basis for independent origins of new catalytic machineries in plant AAAD proteins. BioRxiv 404970 (2018)Birkett, M. A. et al. The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Med. Vet. Entomol. 18, 313–322 (2004).CAS
PubMed
Article
Google Scholar
Brodmann, J. et al. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr. Biol. 18, 740–744 (2008).CAS
PubMed
Article
Google Scholar
Hervé, M. R. et al. Oviposition behavior of the pollen beetle (Meligethes aeneus): A functional study. J. Insect. Behav. 28, 107–119 (2015).Article
Google Scholar
Hilker, M. & Meiners, T. Plants and insect eggs: How do they affect each other?. Phytochemistry 72, 1612–1623 (2011).CAS
PubMed
Article
Google Scholar
Ibanez, S., Gallet, C. & Després, L. Plant insecticidal toxins in ecological networks. Toxins 4, 228–243 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar More