Editorial Committee of Vegetation Map China. Vegetation Map of China (1:1000 000) (Geology Press, 2007).Fu, B. et al. Current condition and protection strategies of Qinghai–Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci. 36, 1298–1306 (2021).
 Google Scholar 
 Zhang, Y. et al. Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009. Acta Geogr. Sin. 68, 1197–1211 (2013).
 Google Scholar 
 Bao, C. & Liu, R. Spatiotemporal evolution of the urban system in the Tibetan Plateau. J. Geoinf. Sci. 21, 1330–1340 (2019).
 Google Scholar 
 Miehe, G. et al. The Kobresia pygmaea ecosystem of the Tibetan highlands — origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ. 648, 754–771 (2019). This work describes features of K. pygmaea grassland and reveals that overstocking has caused pasture degradation and soil deterioration.Article 
 Google Scholar 
 Liu, Y. et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 690, 27–39 (2019).Article 
 Google Scholar 
 Cao, J. et al. Grassland degradation on the Qinghai–Tibetan Plateau: reevaluation of causative factors. Rangel. Ecol. Manag. 72, 988–995 (2019).Article 
 Google Scholar 
 Zhao, X. Restoration and Sustainable Management of Degradaded Grassland in the Three Rivers Headwater (Science Press, 2011).Gao, Q. Exploration and Study on Eoclogical Revelization Fuatures in Qiangtang Plateau (China Agriculture Press, 2015).Gu, X. et al. Soil extractable organic C and N contents, methanotrophic activity under warming and degradation in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 278, 6–14 (2019).Article 
 Google Scholar 
 Li, Y. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 222, 213–222 (2016).Article 
 Google Scholar 
 Wang, W., Wang, Q. & Wang, H. The effect of land management on plant community composition, species diversity, and productivity of alpine Kobersia steppe meadow. Ecol. Res. 21, 181–187 (2005).Article 
 Google Scholar 
 Xu, H., Wang, X. & Zhang, X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 92, 251–259 (2016).Article 
 Google Scholar 
 Yu, L., Tang, L., Wei, D., Mei, M. & Zhou, H. Characteristics and causes of changes of alpine grassland productivity in the source region of Yellow River. Int. Conf. Geoinformatics https://doi.org/10.1109/GEOINFORMATICS.2010.5567879 (2010).Article 
 Google Scholar 
 Yang, Y. et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob. Chang. Biol. 19, 637–648 (2013). This work shows that soil microbial community functional structure is very sensitive to livestock grazing.Article 
 Google Scholar 
 Gao, Y. Z. et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307, 41–50 (2008).Article 
 Google Scholar 
 Dlamini, A. P. et al. Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa. Agric. Water Manag. 98, 1711–1718 (2011).Article 
 Google Scholar 
 Niemandt, C. & Greve, M. Fragmentation metric proxies provide insights into historical biodiversity loss in critically endangered grassland. Agric. Ecosyst. Environ. 235, 172–181 (2016).Article 
 Google Scholar 
 Kang, S. C. et al. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 5, 15101–15101 (2010).Article 
 Google Scholar 
 Shen, H. et al. Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai–Tibetan Plateau. Environ. Pollut. 251, 731–737 (2019).Article 
 Google Scholar 
 Yu, G. R. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424 (2019).Article 
 Google Scholar 
 Lu, C. & Tian, H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J. Geophys. Res. 112, D22S05 (2007).
 Google Scholar 
 National Bureau of Statistics of China. China Statistics Yearbook (China Statistics Press, 2020).Mo, X. Sustainable livestock carring capacity and overgrazing rate of grassland over Qinghai–Tibet plateau since 1980. Natl Tibetan Plateau Data Center https://doi.org/10.11888/Socioeco.tpdc.270347 (2020).Article 
 Google Scholar 
 Tian, Y. Y., Jiang, G. H., Zhou, D. Y. & Li, G. Y. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai–Tibetan Plateau from 2000 to 2018. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.125323 (2021).Article 
 Google Scholar 
 Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob. Chang. Biol. 24, 184–196 (2018).Article 
 Google Scholar 
 Li, L. et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecol. Evol. 8, 5949–5963 (2018). This work finds that large inconsistencies exist in distinguishing the respective contribution of climatic and anthropogenic forces to grassland dynamics.Article 
 Google Scholar 
 Zhong, L., Ma, Y. M., Xue, Y. K. & Piao, S. L. Climate change trends and impacts on vegetation greening over the Tibetan Plateau. J. Geophys. Res. Atmos. 124, 7540–7552 (2019). This work demonstrates that the general increasing trends in vegetation density and greening of the QTP are mainly caused by climate factors, using satellite-derived climate and vegetation data from 1999 to 2014.Article 
 Google Scholar 
 Yang, K. & He, J. China meteorological forcing dataset (1979–2018). Natl Tibetan Plateau Data Center https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file (2019).Article 
 Google Scholar 
 Xiong, Q. et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai–Tibet Plateau of China during 2000–2015. J. Arid. Land 11, 637–651 (2019).Article 
 Google Scholar 
 Pan, T., Zou, X. T., Liu, Y. J., Wu, S. H. & He, G. M. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 108, 307–317 (2017).Article 
 Google Scholar 
 Hou, X. 1:1 Million vegetation map of China (National Tibetan Plateau Data Center, 2019).Peng, S. S. et al. Recent change of vegetation growth trend in China. Environ. Res. Lett. 6, 044027 (2011).Article 
 Google Scholar 
 Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).Article 
 Google Scholar 
 Zhu, Z. C. et al. Greening of the earth and its drivers. Nat. Clim. Chang. 6, 791 (2016).Article 
 Google Scholar 
 Vermote, E. et al. NOAA climate data record (CDR) of normalized difference vegetation index (NDVI), version 4. NOAA Natl Cent. Environ. Inf. https://doi.org/10.7289/V5PZ56R6 (2014).Article 
 Google Scholar 
 Chen, H. et al. Attribution analyses of changes in alpine grasslands on the Qinghai–Tibetan Plateau. Chin. Sci. Bull. 65, 2406–2418 (2020). This work demonstrates that human activities play an increasingly important role in the restoration of degraded grasslands.Article 
 Google Scholar 
 Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).Article 
 Google Scholar 
 Cai, D. et al. Vegetation dynamics on the Tibetan Plateau (1982–2006): an attribution by ecohydrological diagnostics. J. Clim. 28, 4576–4584 (2015).Article 
 Google Scholar 
 Zhou, W. et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 83, 303–313 (2017).Article 
 Google Scholar 
 Liu, Z. et al. Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai–Tibet Plateau. Biodivers. Sci. 23, 451–462 (2015).Article 
 Google Scholar 
 Harris, R. B. Rangeland degradation on the Qinghai–Tibetan Plateau: a review of the evidence of its magnitude and causes. J. Arid. Environ. 74, 1–12 (2010).Article 
 Google Scholar 
 Lu, S. et al. Basic characteristics of Stipa sareptana var. krylovii communities in China. Chin. J. Plant. Ecol. 44, 1087–1094 (2020).Article 
 Google Scholar 
 Qiao, X. et al. Distribution, community characteristics and classification of Stipa tianschanica var. klemenzii steppe in China. Chin. J. Plant. Ecol. 41, 231–237 (2017).Article 
 Google Scholar 
 Qiao, X., Guo, K., Zhao, L., Yang, Y. & Zhao, H. Distribution, community characteristics and classification of Stipa basiplumosa steppe on Tibetan Plateau. Geogr. Res. 36, 2432–2440 (2017).
 Google Scholar 
 Qiao, X., Guo, K., Zhao, L., Wang, Z. & Liu, C. Community characteristics of Stipa bungeana alliance in China. Chin. J. Plant Ecol. 44, 986–994 (2020).Article 
 Google Scholar 
 Zhu, Y., Qiao, X., Guo, K., Xu, R. & Zhao, L. Distribution, community characteristics and classification of Stipa tianschanica var. gobica steppe in China. Chin. J. Plant Ecol. 42, 785–792 (2018).Article 
 Google Scholar 
 Li, X. R., Jia, X. H. & Dong, G. R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai–Tibet plateau, north-west China. J. Arid. Environ. 64, 505–522 (2006).Article 
 Google Scholar 
 Tang, L. et al. Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai–Tibet Plateau. Rangel. J. 37, 107–115 (2015).Article 
 Google Scholar 
 Zhou, X. Chinese Kobresia Meadow (Science Press, 2001).Wang, B. Z. et al. Potential distribution patterns of Stipa bungeana in China and the major factors influencing distribution. Acta Prataculturae Sinica 28, 3–13 (2019).
 Google Scholar 
 Sun, H., Li, W., Zhang, M. & Han, Y. A comprehensive scientific expedition to the Qinghai–Tibet Plateau. Resour. Sci. 8, 22–30 (1986).
 Google Scholar 
 Zhu, F. X. et al. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim. Dyn. 51, 2209–2227 (2018).Article 
 Google Scholar 
 Chen, L. T. et al. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 288, 166–174 (2017).Article 
 Google Scholar 
 Ding, J. et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nat. Geosci. 10, 420–424 (2017).Article 
 Google Scholar 
 Tian, L. M. et al. Variations in soil nutrient availability across Tibetan grassland from the 1980s to 2010s. Geoderma 338, 197–205 (2019).Article 
 Google Scholar 
 Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).Article 
 Google Scholar 
 Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai–Tibetan Plateau. Glob. Chang. Biol. 19, 2940–2955 (2013). This work suggests that warming enhanced NPP and soil respiration but many uncertainties remain.Article 
 Google Scholar 
 Shen, M. G. et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci. Rev. 2, 454–467 (2015).Article 
 Google Scholar 
 Liu, X. D., Yin, Z. Y., Shao, X. M. & Qin, N. S. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005jd006915 (2006).Article 
 Google Scholar 
 Yang, K. et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob. Planet. Change 112, 79–91 (2014). This work reviews the main spatio-temporal characteristics of climate change on the QTP.Article 
 Google Scholar 
 Klein, J. A., Harte, J. & Zhao, X. Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol. Appl. 17, 541–557 (2007).Article 
 Google Scholar 
 Li, C. et al. Productivity and quality of alpine grassland vary with soil water availability under experimental warming. Front. Plant. Sci. 9, 1790 (2018).Article 
 Google Scholar 
 Peng, A. H. et al. Plant community responses to warming modified by soil moisture in the Tibetan Plateau. Arct. Antarct. Alp. Res. 52, 60–69 (2020).Article 
 Google Scholar 
 Li, F. et al. Leaf area rather than photosynthetic rate determines the response of ecosystem productivity to experimental warming in an alpine steppe. J. Geophys. Res. Biogeosci. 124, 2277–2287 (2019).Article 
 Google Scholar 
 Zong, N. et al. Responses of ecosystem CO2 fluxes to short-term experimental warming and nitrogen enrichment in an alpine meadow, northern Tibet Plateau. Sci. World J. 2013, 415318 (2013).Article 
 Google Scholar 
 Chen, Q., Niu, B., Hu, Y., Luo, T. & Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. 714, 136787 (2020).Article 
 Google Scholar 
 Wang, X. X. et al. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai–Tibet Plateau of China. Soil. Biol. Biochem. 76, 140–142 (2014).Article 
 Google Scholar 
 Jiang, L. L. et al. Plant organic N uptake maintains species dominance under long-term warming. Plant Soil 433, 243–255 (2018).Article 
 Google Scholar 
 Li, N. et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai–Tibet Plateau. Acta Ecol. Sin. 31, 895–905 (2011).
 Google Scholar 
 Jiang, Y., Fan, M. & Zhang, Y. Effect of short-term warming on plant community features of alpine meadow in northern Tibet. Chin. J. Ecol. 36, 616–622 (2017).
 Google Scholar 
 Wang, S. et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93, 2365–2376 (2012). This work shows the effects of asymmetric warming and moderate grazing on plant composition, diversity, productivity and their relationships.Article 
 Google Scholar 
 Liu, P. et al. Ambient climate determines the directional trend of community stability under warming and grazing. Glob. Change Biol. 27, 5198–5210 (2021). This work finds that the negative effect of warming on plant diversity disappears with experimental duration, and ambient climate modulates the effects of warming and grazing on productivity stability.Article 
 Google Scholar 
 Zhang, B. et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai–Tibet Plateau. PLoS ONE 9, e103859 (2014).Article 
 Google Scholar 
 Chen, X. et al. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos. Environ. 157, 111–124 (2017).Article 
 Google Scholar 
 Zhang, Y. et al. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai–Tibetan Plateau. Rangel. J. 37, 57–65 (2015).Article 
 Google Scholar 
 Quan, Q. et al. High-level rather than low-level warming destabilizes plant community biomass production. J. Ecol. 109, 1607–1617 (2021).Article 
 Google Scholar 
 Wang, X. et al. Response of greenhouse gases emission fluxes to long-term warming in alpine meadow of northern Tibet. Chin. J. Agrometeorol. 39, 152–161 (2018).
 Google Scholar 
 Klein, J. A., Harte, J. & Zhao, X. Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol. Lett. 7, 1170–1179 (2004).Article 
 Google Scholar 
 Zhang, C. H. et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai–Tibet Plateau. Biol. Conserv. 213, 218–224 (2017).Article 
 Google Scholar 
 Li, X. et al. Responses of biotic interactions of dominant and subordinate species to decadal warming and simulated rotational grazing in Tibetan alpine meadow. Sci. China Life Sci. 61, 849–859 (2018).Article 
 Google Scholar 
 Klein, J. A., Harte, J. & Zhao, X. Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Glob. Chang. Biol. 11, 1440–1451 (2005).Article 
 Google Scholar 
 Chen, J. et al. Warming effects on ecosystem carbon fluxes are modulated by plant functional types. Ecosystems 20, 515–526 (2017).Article 
 Google Scholar 
 Zhang, Y. Q. & Welker, J. M. Tibetan alpine tundra responses to simulated changes in climate: aboveground biomass and community responses. Arct. Alp. Res. 28, 203–209 (1996).Article 
 Google Scholar 
 Liu, H. et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl Acad. Sci. USA 115, 4051–4056 (2018). This work demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but also causes a shift from above-ground to below-ground productivity.Article 
 Google Scholar 
 Ganjurjav, H. et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau. Agric. For. Meteorol. 223, 233–240 (2016).Article 
 Google Scholar 
 Jiang, F., Wei, X., Kang, B. & Shao, X. Effects of warming on alpine meadow diversity and primary productivity. Acta Agrestia Sin. 27, 298–305 (2019).
 Google Scholar 
 Zong, N. et al. Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China. Chin. J. Appl. Ecol. 27, 3739–3748 (2016).
 Google Scholar 
 Peng, F. et al. Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa6508 (2017).Article 
 Google Scholar 
 Dorji, T. et al. Grazing and spring snow counteract the effects of warming on an alpine plant community in Tibet through effects on the dominant species. Agric. For. Meteorol. 263, 188–197 (2018).Article 
 Google Scholar 
 Xue, X., Peng, F., You, Q., Xu, M. & Dong, S. Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai–Tibet Plateau. Ecol. Evol. 5, 4063–4078 (2015).Article 
 Google Scholar 
 Jing, X. et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry 117, 39–54 (2014).Article 
 Google Scholar 
 Yu, C. Q., Shen, Z. X., Zhang, X. Z., Sun, W. & Fu, G. Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an alpine meadow on the Tibetan Plateau. Sci. World J. 2014, 152576 (2014).
 Google Scholar 
 Zhang, Y. et al. Simulated warming enhances the responses of microbial N transformations to reactive N input in a Tibetan alpine meadow. Environ. Int. 141, 105795 (2020).Article 
 Google Scholar 
 Jia, J. et al. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Glob. Chang. Biol. 25, 4383–4393 (2019).Article 
 Google Scholar 
 Ding, X. L. et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil. Biol. Biochem. 135, 13–19 (2019).Article 
 Google Scholar 
 Guan, S. et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil. Biol. Biochem. 116, 224–236 (2018).Article 
 Google Scholar 
 Rui, Y. C. et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai–Tibet Plateau in China. J. Soils Sediment. 11, 903–914 (2011).Article 
 Google Scholar 
 Heng, T., Wu, J., Xie, S. & Wu, M. The responses of soil C and N, microbial biomass C or N under alpine meadow of Qinghai–Tibet Plateau to the change of temperature and precipitation. Chin. Agric. Sci. Bull. 27, 425–430 (2011).
 Google Scholar 
 Li, N., Wang, G., Yang, Y., Gao, Y. & Liu, G. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai–Tibet Plateau. Soil. Biol. Biochem. 43, 942–953 (2011).Article 
 Google Scholar 
 Zhao, J. X. et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107761 (2019). This work shows that increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe.Article 
 Google Scholar 
 Wu, H. et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau. Sci. Total Environ. 705, 135818 (2020).Article 
 Google Scholar 
 Shi, F. S., Chen, H., Chen, H. F., Wu, Y. & Wu, N. The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau. Ecol. Res. 27, 725–733 (2012).Article 
 Google Scholar 
 Fu, G., Zhang, H. R. & Sun, W. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the northern Tibetan Plateau. Sci. Total Environ. 650, 2666–2673 (2019).Article 
 Google Scholar 
 Xiong, Q. L. et al. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai–Tibet Plateau, southwestern China. Appl. Soil. Ecol. 101, 72–83 (2016).Article 
 Google Scholar 
 Wang, C. et al. Responses of plant leaf traits to simulated rainfall changes in alpine region. Acta Ecol. Sin. 41, 1–13 (2021).Article 
 Google Scholar 
 Zhang, K. et al. Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Front. Microbiol. 7, 1032 (2016).
 Google Scholar 
 Evans, R. D. & Ehleringer, J. R. Water and nitrogen dynamics in an arid woodland. Oecologia 99, 233–242 (1994).Article 
 Google Scholar 
 Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly, W. P. III & Macko, S. A. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob. Chang. Biol. 10, 350–358 (2004).Article 
 Google Scholar 
 Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4, 3763–3763 (2014).Article 
 Google Scholar 
 Liu, Y. W., Xu, R., Wang, Y. S., Pan, Y. P. & Piao, S. L. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau. Atmos. Chem. Phys. 15, 11683–11700 (2015).Article 
 Google Scholar 
 Wang, W. et al. Atmospheric nitrogen deposition to a southeast Tibetan forest ecosystem. Atmosphere https://doi.org/10.3390/atmos11121331 (2020).Article 
 Google Scholar 
 Zou, X. et al. Ice-core based assessment of nitrogen deposition in the central Tibetan Plateau over the last millennium. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.152692 (2022).Article 
 Google Scholar 
 Aerts, R., Wallen, B. & Malmer, N. Growth-limiting nutrients in sphagnum-dominated bogs subject to low and high amospheric nitrogen supply. J. Ecol. 80, 131–140 (1992).Article 
 Google Scholar 
 Bai, Y. F. et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob. Chang. Biol. 16, 358–372 (2010).Article 
 Google Scholar 
 Du, Y. Population statistics of Qinghai–Tibet Plateau (1952–2016) (National Tibetan Plateau Data Center, 2019).Zhang, Y. J., Zhang, X. Q., Wang, X. Y., Liu, N. & Kan, H. M. Establishing the carrying capacity of the grasslands of China: a review. Rangel. J. 36, 1–9 (2014).Article 
 Google Scholar 
 Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021). This work shows that socio-ecological solutions are needed to combat degradation and promote restoration.Article 
 Google Scholar 
 Liu, M. et al. Effects of rotational and continuous overgrazing on newly assimilated C allocation. Biol. Fertil. Soils 57, 193–202 (2021).Article 
 Google Scholar 
 Yang, X. X. et al. Different responses of soil element contents and their stoichiometry (C:N:P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106628 (2019).Article 
 Google Scholar 
 Lin, B., Zhao, X. R., Zheng, Y., Qi, S. & Liu, X. Z. Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan Plateau. J. Soils Sediment. 17, 2752–2762 (2017).Article 
 Google Scholar 
 Ma, W. M., Ding, K. Y. & Li, Z. W. Comparison of soil carbon and nitrogen stocks at grazing-excluded and yak grazed alpine meadow sites in Qinghai–Tibetan Plateau, China. Ecol. Eng. 87, 203–211 (2016).Article 
 Google Scholar 
 Li, W. et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai–Tibetan Plateau. Ecol. Eng. 98, 123–133 (2017).Article 
 Google Scholar 
 Sun, J. et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS ONE 9, e108821 (2014).Article 
 Google Scholar 
 Niu, K. C., He, J. S. & Lechowicz, M. J. Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. J. Appl. Ecol. 53, 1554–1564 (2016).Article 
 Google Scholar 
 Luan, J. W. et al. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai–Tibet Plateau. Ecol. Eng. 64, 262–268 (2014).Article 
 Google Scholar 
 Wei, D. et al. Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant Soil 359, 45–55 (2012).Article 
 Google Scholar 
 Shen, H. et al. Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. 280, 161–168 (2019).Article 
 Google Scholar 
 Jiang, L. et al. Grazing modifies inorganic and organic nitrogen uptake by coexisting plant species in alpine grassland. Biol. Fertil. Soils 52, 211–221 (2016).Article 
 Google Scholar 
 Sun, Y., Schleuss, P. M., Pausch, J., Xu, X. L. & Kuzyakov, Y. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing. Biol. Fertil. Soils 54, 569–581 (2018).Article 
 Google Scholar 
 Chen, B. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai–Tibet Plateau. Agric. For. Meteorol. 189-190, 11–18 (2014).Article 
 Google Scholar 
 Wang, Z. Q. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 33, 32–44 (2016).Article 
 Google Scholar 
 Huang, K. et al. The influences of climate change and human activities on vegetation dynamics in the Qinghai–Tibet Plateau. Remote Sens. 8, 876 (2016).Article 
 Google Scholar 
 Li, L. et al. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai–Tibet Plateau. Sci. Total Environ. 678, 21–29 (2019).Article 
 Google Scholar 
 Wang, Z. et al. Vegetation expansion on the Tibetan Plateau and its relationship with climate change. Remote. Sens. https://doi.org/10.3390/rs12244150 (2020).Article 
 Google Scholar 
 Wu, J. et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai–Tibetan Plateau. J. Environ. Manag. 281, 111875 (2021).Article 
 Google Scholar 
 Fu, G., Shen, Z. X. & Zhang, X. Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the northern Tibetan Plateau. Agric. For. Meteorol. 249, 11–21 (2018).Article 
 Google Scholar 
 Hu, Y. et al. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environ. Res. 189, 109917 (2020).Article 
 Google Scholar 
 Ma, Z. et al. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 8, 15378 (2017).Article 
 Google Scholar 
 Bai, W., Xi, J. & Wang, G. Effects of short-term warming and nitrogen addition on CO2 emission during growing season in an alpine swamp meadow ecosystem of Qinghai–Tibetan Plateau. Chin. J. Ecol. 38, 927–936 (2019).
 Google Scholar 
 Bai, W., Wang, G. X., Xi, J. Y., Liu, Y. W. & Yin, P. S. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. Eur. J. Soil Biol. 92, 16–23 (2019).Article 
 Google Scholar 
 Ge, Y. et al. Effects of warming and nitrogen addition on plant community structure and species diversity of alpine meadow in northern Tibet. Ecol. Environ. Sci. 28, 2185–2191 (2019).
 Google Scholar 
 Zong, N. et al. Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chin. J. Appl. Ecol. 29, 59–67 (2018).
 Google Scholar 
 Zhu, X. X. et al. Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau. Agric. For. Meteorol. 214, 506–514 (2015).Article 
 Google Scholar 
 Fu, G. et al. Clipping alters the response of biomass production to experimental warming: a case study in an alpine meadow on the Tibetan Plateau, China. J. Mt. Sci. 12, 935–942 (2015).Article 
 Google Scholar 
 Chen, S. P. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA. 115, 4027–4032 (2018).Article 
 Google Scholar 
 Wu, J. S. et al. Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the northern Tibetan Plateau. Chin. Sci. Bull. 59, 4332–4340 (2014).Article 
 Google Scholar 
 Sun, J., Cheng, G. W., Li, W. P., Sha, Y. K. & Yang, Y. C. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens. 5, 1894–1911 (2013).Article 
 Google Scholar 
 Sun, J. et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405–1414 (2020). This work finds that fencing enclosures lead to some negative impacts, such as hindering wildlife movement.Article 
 Google Scholar 
 Yu, C. et al. Grazing exclusion to recover degraded alpine pastures needs scientific assessments across the northern Tibetan Plateau. Sustainability https://doi.org/10.3390/su8111162 (2016).Article 
 Google Scholar 
 Wu, J. & Wang, X. Effect of enclosure ages on community characters and biomas of the degraded alpine steppe at the northern Tibet. Acta Agrestia Sin. 25, 261–266 (2017).
 Google Scholar 
 Zhao, J. X., Luo, T. X., Li, R. C., Li, X. & Tian, L. H. Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau. Agric. For. Meteorol. 218, 114–121 (2016).Article 
 Google Scholar 
 Deng, L., Sweeney, S. & Shangguan, Z. P. Grassland responses to grazing disturbance: plant diversity changes with grazing intensity in a desert steppe. Grass Forage Sci. 69, 524–533 (2014).Article 
 Google Scholar 
 Yuan, Z., Epstein, H. & Li, G. Grazing exclusion did not affect soil properties in alpine meadows in the Tibetan permafrost region. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2019.105657 (2020).Article 
 Google Scholar 
 Zhang, W. et al. Effects of banning grazing and delaying grazing on species diversity and biomass of alpine meadow in northern Tibet. J. Agric. Sci. Technol. 15, 143–149 (2013).
 Google Scholar 
 Miao, F., Guo, Y., Miao, P., Guo, Z. & Shen, Y. The northeast edge of Qinghai–Tibet Plateau area of alpine meadow community characteristics respond to nurture. Acta Prataculture Sin. 21, 11–16 (2012).
 Google Scholar 
 Lu, X. et al. Short-term grazing exclusion has no impact on soil properties and nutrients of degraded alpine grassland in Tibet, China. Solid Earth 6, 1195–1205 (2015).Article 
 Google Scholar 
 Gao, Y. H., Zeng, X. Y., Schumann, M. & Chen, H. Effectiveness of exclosures on restoration of degraded alpine meadow in the eastern Tibetan Plateau. Arid. Land. Res. Manag. 25, 164–175 (2011).Article 
 Google Scholar 
 Yao, X. X. et al. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai–Tibet Plateau. Ecol. Eng. 130, 80–93 (2019).Article 
 Google Scholar 
 Chen, W., Chang, H. & Liu, R. Fractal features of soil particle size distributions and their implications for indicating enclosure management in a semiarid grassland ecosystem. Pol. J. Ecol. 68, 132–144 (2020).
 Google Scholar 
 Smith, D., King, R. & Allen, B. L. Impacts of exclusion fencing on target and non-target fauna: a global review. Biol. Rev. 95, 1590–1606 (2020).Article 
 Google Scholar 
 Zhang, Y. et al. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. J. Geogr. Sci. 26, 27–44 (2016).Article 
 Google Scholar 
 Hu, J. Research on the status quo and problems of natural reserve construction in Qinghai–Tibet Plateau. Environ. Dev. 32, 204–206 (2020).
 Google Scholar 
 Shao, Q., Fan, J., Liu, J., Cao, W. & Liu, L. Target-based assessment on effects of first-stage ecological conservation and restoration project in three-river source region, China and policy recommendations. Bull. Chin. Acad. Sci. 32, 35–44 (2017).
 Google Scholar 
 Liu, F. & Zeng, Y. N. Spatial–temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years. Acta Ecol. Sin. 39, 1528–1540 (2019).
 Google Scholar 
 Zhang, Y., Wu, X., Qi, W., Li, S. & Bai, W. Characteristics and protection effectiveness of nature reserves on the Tibetan Plateau, China. Resources. Science 37, 1455–1464 (2015).
 Google Scholar 
 Buckley, M. C. & Crone, E. E. Negative off-site impacts of ecological restoration: understanding and addressing the conflict. Conserv. Biol. 22, 1118–1124 (2008).Article 
 Google Scholar 
 Cao, S. X. & Zhang, J. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 28, 898–903 (2015).Article 
 Google Scholar 
 Li, Y. & Li, W. Why “Balance of Forage and Livestock” system failed to reach sustainable grassland utilization. China Agric. Univ. J. Soc. Sci. Ed. 29, 124–131 (2012).
 Google Scholar 
 Du, S. A Study on the Satisfaction Degree of Herdsmen’s Income and Grassland Ecological Compensation Policy. Master thesis, Lanzhou Univ. (2019).Yu, H., Wang, G., Yang, Y. & Lü, Y. Concept of grassland green carrying capacity and its application framework in national park. Acta Ecol. Sin. 40, 7248–7254 (2020).
 Google Scholar 
 Deng, Y. & Li, C. The investigation and research about the Farmland Retirement and Environment Project in the Yangtze River headwaters area. Ecol. Econ. 2, 77–80 (2006).
 Google Scholar 
 Zhou, Q. et al. Analysis on the relationship between grassland area and forage-livestock balance in Qinghai–Tibet Plateau. Chin. J. Grassl. 41, 110–117 (2019).
 Google Scholar 
 Li, Y. et al. Awareness and reaction of herdsmen to the policy of returning grazing land to grasslands in the Changtang Plateau,Tibet. Pratacultural Sci. 30, 788–794 (2013).
 Google Scholar 
 Fan, J. et al. Third pole national park group construction is scientific choice for implementing strategy of major function zoning and green development in Tibet, China. Bull. Chin. Acad. Sci. 32, 932–944 (2017).
 Google Scholar 
 Xu, Z., Cheng, S. & Gao, L. Impacts of herders sedentarization on regional spatial heterogeneity and grassland ecosystem change in pastoral area. J. Arid. Land. Resour. Environ. 31, 8–13 (2017).
 Google Scholar 
 Ptackova, J. Sedentarisation of Tibetan nomads in China: implementation of the Nomadic settlement project in the Tibetan Amdo area; Qinghai and Sichuan Provinces. Pastoralism https://doi.org/10.1186/2041-7136-1-4 (2011).Article 
 Google Scholar 
 Weber, K. T. & Horst, S. Desertification and livestock grazing: the roles of sedentarization, mobility and rest. Pastoralism https://doi.org/10.1186/2041-7136-1-19 (2011).Article 
 Google Scholar 
 Zhang, J. et al. Ecological consequence of nomad settlement policy in the pasture area of Qinghai–Tibetan Plateau: from plant and soil perspectives. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2020.110114 (2020).Article 
 Google Scholar 
 Li, C. X., de Jong, R., Schmid, B., Wulf, H. & Schaepman, M. E. Spatial variation of human influences on grassland biomass on the Qinghai–Tibetan Plateau. Sci. Total Environ. 665, 678–689 (2019).Article 
 Google Scholar 
 Kuang, W. Dataset of Urban Distribution, Urban Population and Built-up Area in Tibetan Plateau (2000–2015) (National Tibetan Plateau Data Center, 2021).Tian, L. & Chen, J. Urban expansion inferenced by ecosystem production on the Qinghai–Tibet plateau. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac3178 (2022).Article 
 Google Scholar 
 Liu, Y. & Lu, C. Quantifying grass coverage trends to identify the hot plots of grassland degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph18020416 (2021).Article 
 Google Scholar 
 Tang, L. et al. Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. Soil. Biol. Biochem. 134, 113–121 (2019).Article 
 Google Scholar 
 Zhong, L. Tourism Planning Case in Tibetan Plateau (China Tourism Press, 2018).La, M. Discussion of the coordinated development of tourism development and ecological Environment Protection in Tibetan. Soc. Sci. Res. 6, 118–120, (2013).
 Google Scholar 
 Zhuang, M. et al. Opportunities for household energy on the Qinghai–Tibet Plateau in line with United Nations’ Sustainable Development Goals. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2021.110982 (2021).Article 
 Google Scholar 
 Ruess, R. W. & Mcnaughton, S. J. Grazing and the dynamics of nutrient and energy regulated microbial processes in the serengeti grasslands. Oikos 49, 101–110 (1987).Article 
 Google Scholar 
 Li, M. et al. Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Glob. Ecol. Conserv. 21, 13 (2020).
 Google Scholar 
 Wang, Z. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 33, 32–44 (2016).Article 
 Google Scholar 
 Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.68d2bb30 (2019).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).Article 
 Google Scholar  More