More stories

  • in

    Impact report: how biodiversity coverage shapes lives and policies

    Callie Veelenturf measured the pH, conductivity and temperature near a leatherback sea turtle’s nest during research in Equatorial Guinea.Credit: Jonah Reenders

    This picture of marine conservation biologist Callie Veelenturf won the Nature Careers photo competition in 2018 — an event Veelenturf credits with kick-starting her career. She went on to assist in drafting a law that will help to protect species and habitats in Panama.Since 2021, editors at Nature have been tracking instances such as this, in which our journalism and opinion articles have had an impact. Here, we look at three times when content on biodiversity affected researchers, communities or policies. As well as shaping Veelenturf’s conservation work, Nature articles have raised the profile of a proposal to protect part of the Antarctic Ocean and fuelled discussions of carbon-tax proposals to fund tropical-forest conservation.Protect PanamaIn the prize-winning photo, Veelenturf was pictured with a leatherback sea turtle (Dermochelys coriacea) in Equatorial Guinea, where she was collecting data for her master’s degree at Purdue University Fort Wayne, Indiana, in 2016. She and biologist Jonah Reenders, now a photographer based in San Francisco, California, spent nearly half a year there, living in tents on Bioko Island, and Reenders took the picture of her as she measured the pH, conductivity and temperature of the sand near the leatherback’s nest.After the photo was published, a deluge of e-mails and messages “gave me this network, almost overnight, of other sea-turtle conservationists doing similar things around the world”, says Veelenturf, who is now based in Arraiján, Panama. “All of a sudden I was an ‘us’.”The photo award also validated her hard work, Veelenturf says, contradicting a common assumption that sea-turtle research just meant relaxing on the beach. Karla Barrientos-Muñoz, a Colombian sea-turtle conservationist at the Fundación Tortugas del Mar, based in Medellín, wrote that Veelenturf’s win was for all women in sea-turtle conservation. “It made me feel part of this community,” Veelenturf says.Inspired, she founded a non-profit organization called the Leatherback Project, based in Norfolk, Massachusetts, and later won a National Geographic Explorers grant, allowing her to perform the first scientific survey of sea turtles in Panama’s Pearl Islands archipelago. Here, her team worked with local communities to study the nesting sites and foraging grounds of olive ridley (Lepidochelys olivacea), green (Chelonia mydas), hawksbill (Eretmochelys imbricata) and eastern Pacific leatherback sea turtles.While doing fieldwork, Veelenturf read David Boyd’s book The Rights of Nature (2017), which described how some lawyers had fought to earn legal rights for nature. Such laws, which now exist in at least nine countries, make it easier to conserve the environment, because organizations can sue to protect a rainforest or stream. She went on to work with environmentally minded congress member Juan Diego Vásquez Gutiérrez and Panamanian legal advisers to draft a similar law for Panama, which is especially rich in biodiversity. Vásquez sponsored the legislation, and after more than a year of debate and revision by the public and in the national assembly, it was signed into law on 24 February 2022.Protect the AntarcticIn October 2020, a Comment article argued that the seas around the western Antarctic Peninsula should be designated a marine protected area. Overfishing there is removing large numbers of shrimp-like crustaceans called Antarctic krill (Euphausia superba), affecting the region’s entire web of species, including penguins, whales and seals, which feed on krill. The peninsula is also one of the fastest-warming ecosystems on the planet.A proposal for a marine protected area in the Antarctic must be approved by the groups of governments that make up the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Cassandra Brooks, a marine scientist at University of Colorado Boulder who co-authored the Nature piece and sits on CCAMLR’s non-voting science delegation, says that the Comment was sent to all the commission’s government delegations and observer groups. “If we can raise the issue in the public,” Brooks says, “it does help raise the issue within that diplomatic space.”The western Antarctic Peninsula proposal is one of three on the table for the next CCAMLR meeting in October 2022. It took ten years for CCAMLR to declare the Ross Sea a marine protected area. “The Antarctic does not have ten years,” says Comment co-author Carolyn Hogg, a conservation biologist at the University of Sydney in Australia.News stories about the article were published globally, including in China, India, South Korea and Malaysia. Hogg says it increased her visibility and further raised her profile with the Australian government. She is working with the government to ensure that the country’s threatened-species policy is informed by the latest genomic research. The goal is to give endangered populations the best chance of survival by preserving as much genetic diversity as possible.Hogg and Brooks wrote the piece with other women, some of whom were part of Homeward Bound, a global leadership programme for women in science, technology, engineering, mathematics and medicine. Many Homeward Bound participants and alumnae — 288 women from at least 30 countries — co-signed it and worked to translate it into many languages, “showing CCAMLR that this large community of women scientists from all over the world is watching, and going to hold them accountable”, Brooks says.Antarctica tends to be “both diplomatically and scientifically dominated by men”, she notes, and the impact of this global community of women was inspiring.Carbon tax for tropical forestsTropical countries should adopt a carbon tax, urged another Comment in February 2020, creating a levy on fossil fuels that should be used to conserve tropical forests. Costa Rica and Colombia had already adopted such a tax, and several other countries, including Indonesia, Brazil and Peru, are now considering implementing one, says Sebastian Troëng, executive vice-president of conservation partnerships at Conservation International who is based in Brussels and co-authored the piece.After the article was published, the authors made sure it was widely discussed. One of them, environmental economist Edward Barbier at Colorado State University in Fort Collins, presented the proposal at major meetings. These included the World Bank–International Monetary Fund forum in April 2022 and the Global Peatlands Initiative of the United Nations Framework Convention on Climate Change, at the 2021 climate summit COP26, in Glasgow, UK. The carbon-pricing proposal can be applied to any ecosystem, Barbier says. “Peatlands are ideal, because you’re saving probably the most carbon-dense ecosystem on our planet.”Meanwhile, Troëng’s colleagues presented the proposal to representatives from the finance and environment ministries of Chile, Mexico, Peru, Ecuador, Colombia and Costa Rica. “Since then, we’ve been working directly with government ministries,” he says, to strengthen the existing carbon-tax system in Colombia and to establish similar systems in Peru and Singapore. “I think what people appreciate the most is the fact that two countries have already done it, so it’s not just a theory or a wild idea, but it’s actually working,” Barbier says.“It’s always challenging to say, was it this paper that made something happen?” notes Troëng, on the impact of the article. “But it’s part of this growing consensus that nature plays an extremely important role in how we address climate change.” More

  • in

    Physiological responses to low CO2 over prolonged drought as primers for forest–grassland transitions

    Bond, W. Open Ecosystems (Oxford Univ. Press, 2019).Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).Article 

    Google Scholar 
    Haverd, V. et al. Coupling carbon allocation with leaf and root phenology predicts tree–grass partitioning along a savanna rainfall gradient. Biogeosciences 13, 761–779 (2016).CAS 
    Article 

    Google Scholar 
    Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecol. 35, 451–463 (2010).Article 

    Google Scholar 
    Kulmatiski, A. & Beard, K. H. Woody plant encroachment facilitated by increased precipitation intensity. Nat. Clim. Change 3, 833–837 (2013).CAS 
    Article 

    Google Scholar 
    Mitchell, P. J. et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. N. Phytol. 197, 862–872 (2013).CAS 
    Article 

    Google Scholar 
    Schutz, A. E. N., Bond, W. J. & Cramer, M. D. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160, 235–246 (2009).PubMed 
    Article 

    Google Scholar 
    Wigley, B., Cramer, M. & Bond, W. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).Article 

    Google Scholar 
    Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A. & Consortium, C. G. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spriggs, E. L., Christin, P.-A. & Edwards, E. J. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9, e97722 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKay, R. M. et al. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Phil. Trans. R. Soc. A 374, 20140301 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).CAS 
    Article 

    Google Scholar 
    Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bellasio, C. & Farquhar, G. D. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. N. Phytol. 223, 150–166 (2019).CAS 
    Article 

    Google Scholar 
    Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO(2) on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    Ward, J. K., Tissue, D. T., Thomas, R. B. & Strain, B. R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob. Change Biol. 5, 857–867 (1999).Article 

    Google Scholar 
    Scholes, R. J. & Archer, S. R. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article 

    Google Scholar 
    February, E. C. & Higgins, S. I. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S. Afr. J. Bot. 76, 517–523 (2010).Article 

    Google Scholar 
    February, E. C., Higgins, S. I., Bond, W. J. & Swemmer, L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94, 1155–1164 (2013).PubMed 
    Article 

    Google Scholar 
    Fynn, R. W. S. & Naiken, J. Different responses of Eragrostis curvula and Themeda triandra to rapid- and slow-release fertilisers: insights into their ecology and implications for fertiliser selection in pot experiments. Afr. J. Range Forage Sci. 26, 43–46 (2009).Article 

    Google Scholar 
    Osmolovskaya, N. et al. Methodology of drought stress research: experimental setup and physiological characterization. Int. J. Mol. Sci. 19, 4089 (2018).PubMed Central 
    Article 

    Google Scholar 
    Quirk, J., Bellasio, C., Johnson, D. A., Osborne, C. P. & Beerling, D. J. C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Funct. Ecol. 33, 388–398 (2019).Article 

    Google Scholar 
    Taylor, S. H. et al. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought. Glob. Change Biol. 20, 1992–2003 (2014).Article 

    Google Scholar 
    Bellasio, C., Quirk, J. & Beerling, D. J. Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci. 274, 181–192 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kipchirchir, K. O., Ngugi, K. R., Mwangi, M. S., Njomo, K. G. & Raphael, W. Water stress tolerance of six rangeland grasses in the Kenyan semi-arid rangelands. Am. J. Agric. For. 3, 222–229 (2015).
    Google Scholar 
    Kadioglu, A. & Terzi, R. A dehydration avoidance mechanism: leaf rolling. Bot. Rev. 73, 290–302 (2007).Article 

    Google Scholar 
    Bittman, S. & Simpson, G. M. Drought effect on leaf conductance and leaf rolling in forage grasses. Crop Sci. 29, 338–344 (1989).Article 

    Google Scholar 
    O’Toole, J. C. & Cruz, R. T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 65, 428–432 (1980).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Redmann, R. E. Adaptation of grasses to water stress—leaf rolling and stomate distribution. Ann. Mo. Bot. Gard. 72, 833–842 (1985).Article 

    Google Scholar 
    Volder, A., Tjoelker, M. G. & Briske, D. D. Contrasting physiological responsiveness of establishing trees and a C4 grass to rainfall events, intensified summer drought, and warming in oak savanna. Glob. Change Biol. 16, 3349–3362 (2010).Article 

    Google Scholar 
    Medeiros, J. S. & Ward, J. K. Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function. N. Phytol. 199, 738–748 (2013).CAS 
    Article 

    Google Scholar 
    Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nackley, L. L. et al. CO2 enrichment does not entirely ameliorate Vachellia karroo drought inhibition: a missing mechanism explaining savanna bush encroachment. Environ. Exp. Bot. 155, 98–106 (2018).CAS 
    Article 

    Google Scholar 
    Apgaua, D. M. et al. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Tree Physiol. 39, 1806–1820 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Syst. 39, 641–659 (2008).Article 

    Google Scholar 
    Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).Article 

    Google Scholar 
    Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J. Ecol. 101, 202–209 (2013).Article 

    Google Scholar 
    Jacobsen, J. V., Hanson, A. D. & Chandler, P. C. Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol. 80, 350–359 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brodersen, C. & McElrone, A. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00108 (2013).Chitarra, W. et al. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239, 887–899 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hasibeder, R., Fuchslueger, L., Richter, A. & Bahn, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. N. Phytol. 205, 1117–1127 (2015).CAS 
    Article 

    Google Scholar 
    Bradford, K. J. & Hsiao, T. C. in Physiological Plant Ecology II: Water Relations and Carbon Assimilation (eds Lange, O. L. et al.) 263–324 (Springer Berlin Heidelberg, 1982).Knox, K. J. E. & Clarke, P. J. Nutrient availability induces contrasting allocation and starch formation in resprouting and obligate seeding shrubs. Funct. Ecol. 19, 690–698 (2005).Article 

    Google Scholar 
    Hoffmann, W. A., Orthen, B. & Franco, A. C. Constraints to seedling success of savanna and forest trees across the savanna–forest boundary. Oecologia 140, 252–260 (2004).PubMed 
    Article 

    Google Scholar 
    Palacio, S., Maestro, M. & Montserrat-Martí, G. Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ. Exp. Bot. 59, 34–42 (2007).CAS 
    Article 

    Google Scholar 
    Hoffmann, W. A., Bazzaz, F. A., Chatterton, N. J., Harrison, P. A. & Jackson, R. B. Elevated CO2 enhances resprouting of a tropical savanna tree. Oecologia 123, 312–317 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galvez, D. A., Landhausser, S. M. & Tyree, M. T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation? Tree Physiol. 31, 250–257 (2011).PubMed 
    Article 

    Google Scholar 
    Poorter, H. et al. A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level. N. Phytol. https://doi.org/10.1111/nph.17802 (2022).Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. N. Phytol. 195, 653–666 (2012).Article 

    Google Scholar 
    Quirk, J., Bellasio, C., Johnson, D. A. & Beerling, D. J. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Ann. Bot. Lond. 124, 77–90 (2019).Article 
    CAS 

    Google Scholar 
    Davies, J. et al. in AGU Fall Meeting Abstracts EP41D-2374. https://ui.adsabs.harvard.edu/abs/2019AGUFMEP41D2374D/abstractMills, A. J., Rogers, K. H., Stalmans, M. & Witkowski, E. T. F. A framework for exploring the determinants of savanna and grassland distribution. BioScience 56, 579–589 (2006).Article 

    Google Scholar 
    Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. N. Phytol. 216, 1151–1160 (2017).CAS 
    Article 

    Google Scholar 
    Cardoso, A. W. et al. Winners and losers: tropical forest tree seedling survival across a West African forest–savanna transition. Ecol. Evol. 6, 3417–3429 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mitchard, E. T. A. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0406 (2013).Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Change 5, 823–829 (2015).Article 

    Google Scholar 
    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601–612 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ripley, B. S., Gilbert, M. E., Ibrahim, D. G. & Osborne, C. P. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351–1363 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    McAusland, L. et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. N. Phytol. 211, 1209–1220 (2016).Article 

    Google Scholar 
    Osborne, C. P. & Sack, L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Phil. Trans. R. Soc. B 367, 583–600 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pearcy, R. W. & Ehleringer, J. Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ. 7, 1–13 (1984).CAS 
    Article 

    Google Scholar 
    Moncrieff, G. R., Scheiter, S., Bond, W. J. & Higgins, S. I. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. N. Phytol. 201, 908–915 (2014).CAS 
    Article 

    Google Scholar 
    Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Change Biol. 6, 865–869 (2000).Article 

    Google Scholar 
    Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361, 61–64 (1993).Article 

    Google Scholar 
    Stevens, N., Lehmann, C. E., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).Article 

    Google Scholar 
    Charles-Dominique, T., Midgley, G. F., Tomlinson, K. W. & Bond, W. J. Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. N. Phytol. 218, 1419–1429 (2018).Article 

    Google Scholar 
    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bellasio, C., Fini, A. & Ferrini, F. Evaluation of a high throughput starch analysis optimised for wood. PLoS ONE 9, e86645 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kozloski, G. V., Rocha, J. B., Ribeiro Filho, H. M. N. & Perottoni, J. Comparison of acid and amyloglucosidase hydrolysis for estimation of non‐structural polysaccharides in feed samples. J. Sci. Food Agric. 79, 1112–1116 (1999).CAS 
    Article 

    Google Scholar 
    Bellasio, C., Beerling, D. J. & Griffiths, H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ. 39, 1180–1197 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bellasio, C., Beerling, D. J. & Griffiths, H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. Plant Cell Environ. 39, 1164–1179 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ethier, G. J. & Livingston, N. J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. Plant Cell Environ. 27, 137–153 (2004).CAS 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis (CSIRO, 2000).Bellasio, C. & Griffiths, H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ. 37, 1046–1058 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fini, A., Bellasio, C., Pollastri, S., Tattini, M. & Ferrini, F. Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J. Arid Environ. 89, 21–29 (2013).Article 

    Google Scholar 
    Ghannoum, O., Caemmerer, S. V. & Conroy, J. P. The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct. Plant Biol. 29, 1337–1348 (2002).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Wildfire-dependent changes in soil microbiome diversity and function

    Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    Google Scholar 
    Higuera, P. E. & Abatzoglou, J. T. Record‐setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. https://doi.org/10.1111/gcb.15388 (2020).Parks, S. A. & Abatzoglou, J. T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 47, e2020GL089858 (2020).Benavides-Solorio, J. D. D. & MacDonald, L. H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildl. Fire 14, 457–474 (2005).
    Google Scholar 
    Pierson, D. N., Robichaud, P. R., Rhoades, C. C. & Brown, R. E. Soil carbon and nitrogen eroded after severe wildfire and erosion mitigation treatments. Int. J. Wildl. Fire 28, 814–821 (2019).CAS 

    Google Scholar 
    Rhoades, C. C., Entwistles, D. & Butler, D. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int. J. Wildl. Fire 20, 430–442 (2011).CAS 

    Google Scholar 
    Chambers, M. E., Fornwalt, P. J., Malone, S. L. & Battaglia, M. A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine – dominated forests of the Colorado Front Range. For. Ecol. Manage. 378, 57–67 (2016).
    Google Scholar 
    Rhoades, C. C. et al. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems 22, 643–657 (2019).CAS 

    Google Scholar 
    Strickland, M. S., Lauber, C., Fierer, N. & Bradford, M. A. Testing the functional significance of microbial community composition. Ecology 90, 441–451 (2009).PubMed 

    Google Scholar 
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 

    Google Scholar 
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).CAS 
    PubMed 

    Google Scholar 
    Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manage. 220, 166–184 (2005).
    Google Scholar 
    Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
    Google Scholar 
    Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. & Glassman, S. I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manage. 485, 118923 (2021).
    Google Scholar 
    Villadas, P. J. et al. The soil microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): comparing unburned and burned habitats after a wildfire. Forests 10, 1051 (2019).
    Google Scholar 
    Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
    Google Scholar 
    Ibáñez, T. S., Wardle, D. A., Gundale, M. J. & Nilsson, M.-C. Effects of soil abiotic and biotic factors on tree seedling regeneration following a boreal forest wildfire. Ecosystems https://doi.org/10.1007/s10021-021-00666-0 (2021).Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).CAS 

    Google Scholar 
    Brown, S. P. et al. Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. For. Ecol. Manage. 451, 117520 (2019).
    Google Scholar 
    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Knelman, J. E., Schmidt, S. K., Garayburu-Caruso, V., Kumar, S. & Graham, E. B. Multiple, compounding disturbances in a forest ecosystem: fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Syst. 3, 1–1, 40 (2019).Zhang, L. et al. Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils mediates bacterial community assembly processes. ISME J. 5, 1943–1955 (2021).
    Google Scholar 
    Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. https://doi.org/10.1038/ismej.2014.36 (2014).Yang, S. et al. Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. Glob. Change Biol. 26, 431–442 (2020).
    Google Scholar 
    Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High‐severity wildfire leads to multi‐decadal impacts on soil biogeochemistry in mixed‐conifer forests. Ecol. Appl. 30, eap.2072 (2020).
    Google Scholar 
    Pérez-Valera, E., Goberna, M. & Verdú, M. Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biol. Biochem. 129, 80–89 (2019).
    Google Scholar 
    SantaCruz-Calvo, L., González-López, J. & Manzanera, M. Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. Int. J. Syst. Evol. Microbiol. 63, 4174–4180 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mongodin, E. F. et al. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet. 2, 2094–2106 (2006).CAS 

    Google Scholar 
    Bourguignon, N., Isaac, P., Alvarez, H., Amoroso, M. J. & Ferrero, M. A. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains. J. Basic Microbiol. 54, 1288–1294 (2014).CAS 
    PubMed 

    Google Scholar 
    Fischer, M. S. et al. Pyrolyzed substrates induce aromatic compound metabolism in the post-fire fungus, Pyronema domesticum. Front. Microbiol. 12, 729289 (2021).PubMed 

    Google Scholar 
    Arora, P. K. & Sharma, A. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG. Front. Microbiol. 6:551, 1–6 (2015).Ren, L. et al. Insight into metabolic versatility of an aromatic compounds-degrading Arthrobacter sp. YC-RL1. Front. Microbiol. 9:2438, 1–15 (2018).Cobo-Díaz, J. F. et al. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire. Microb. Ecol. 69, 895–904 (2015).PubMed 

    Google Scholar 
    Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. https://doi.org/10.1038/s41396-022-01232-9 (2022).Adkins, J., Docherty, K. M., Gutknecht, J. L. M. & Miesel, J. R. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity. Sci. Total Environ. 745, 140957 (2020).CAS 
    PubMed 

    Google Scholar 
    Newton, G. L., Buchmeier, N. & Fahey, R. C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72, 471–494 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reina-Bueno, M. et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 12, 207 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    Musto, H. et al. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 573, 73–77 (2004).CAS 
    PubMed 

    Google Scholar 
    Yakovchuk, P. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mooshammer, M. et al. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Sci. Adv. 3, e1602781 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl Acad. Sci. USA 118, 1–10 e2016810118 (2020).Long, A. M., Hou, S., Ignacio-Espinoza, J. C. & Fuhrman, J. A. Benchmarking microbial growth rate predictions from metagenomes. ISME J. 15, 183–195 (2021).CAS 
    PubMed 

    Google Scholar 
    Karlin, S., Mrázek, J., Campbell, A. & Kaiser, D. Characterizations of highly expressed genes of four fast-growing bacteria. J. Bacteriol. 183, 5025–5040 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).CAS 
    PubMed 

    Google Scholar 
    Faria, S. R. et al. Wildfire-induced alterations of topsoil organic matter and their recovery in Mediterranean eucalypt stands detected with biogeochemical markers. Eur. J. Soil Sci. 66, 699–713 (2015).CAS 

    Google Scholar 
    Chen, H., Rhoades, C. C. & Chow, A. T. Characteristics of soil organic matter 14 years after a wildfire: a pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study. J. Anal. Appl. Pyrolysis 152, 104922 (2020).CAS 

    Google Scholar 
    Knicker, H. Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quat. Int. 243, 251–263 (2011).
    Google Scholar 
    Bahureksa, W. et al. Nitrogen enrichment during soil organic matter burning and molecular evidence of Maillard reactions. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c06745 (2022).Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).CAS 

    Google Scholar 
    LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).CAS 

    Google Scholar 
    Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).CAS 
    PubMed 

    Google Scholar 
    Pingree, M. R. A. & DeLuca, T. H. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00053 (2017).Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, 1–21 e00076-18 (2018).Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A. & Sun, F. Alignment-free (d_2^ast) oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 45, 39–53 (2017).Kuzyakov, Y. & Mason-Jones, K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 127, 305–317 (2018).CAS 

    Google Scholar 
    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 

    Google Scholar 
    Hewelke, E. et al. Soil functional responses to natural ecosystem restoration of a pine forest peucedano-pinetum after a fire. Forests 11, 286 (2020).
    Google Scholar 
    Mahoney, D. P. & LaFavre, J. S. Coniochaeta extramundana, with a synopsis of other Coniochaeta species. Mycologia 73, 931–952 (1981).
    Google Scholar 
    Yang, T. et al. Distinct fungal successional trajectories following wildfire between soil horizons in a cold‐temperate forest. New Phytol. 227, 572–587 (2020).CAS 
    PubMed 

    Google Scholar 
    Steindorff, A. S. et al. Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environ. Microbiol. 23, 99–109 (2021).CAS 
    PubMed 

    Google Scholar 
    Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P. & Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme Res. 2014, 1–21 163242 (2014).Bouskill, N. J., Mekonnen, Z., Zhu, Q., Grant, R. & Riley, W. J. Microbial contribution to post-fire tundra ecosystem recovery over the 21st century. Commun. Earth Environ. 3, 26 (2022).
    Google Scholar 
    Yeager, C. M., Northup, D. E., Grow, C. C., Barns, S. M. & Kuske, C. R. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl. Environ. Microbiol. 71, 2713–2722 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, N. L. et al. Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046–2056 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Fraile, P., Benada, O., Cajthaml, T., Baldrian, P. & Lladó, S. Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil acidobacterium important in organic matter transformation. Appl. Environ. Microbiol. 82, 560–569 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the Phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS 

    Google Scholar 
    Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front. Microbiol. 9, 1–14 (2018).
    Google Scholar 
    Smith, S. E. & Read, D. Mycorrhizal symbiosis. Soil Sci. 137, 204 (1984).
    Google Scholar 
    Douglas, R. B., Parker, V. T. & Cullings, K. W. Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. For. Ecol. Manage. 208, 303–317 (2005).
    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. https://doi.org/10.1038/s41396-021-01159-7 (2022).Marx, D. H., Bryan, W. C. & Cordell, C. E. Survival and growth of pine seedlings with Pisolithus ectomycorrhizae after two years on reforestation sites in North Carolina and Florida. For. Science. 23, 363–373 (1977).
    Google Scholar 
    Franco, A. R., Sousa, N. R., Ramos, M. A., Oliveira, R. S. & Castro, P. M. L. Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal. Microb. Ecol. 68, 761–772 (2014).PubMed 

    Google Scholar 
    Kipfmueller, K. F. & Baker, W. L. A fire history of a subalpine forest in south-eastern Wyoming, USA. J. Biogeogr. 27, 71–85 (2000).
    Google Scholar 
    Key, C. H. & Benson, N. C. Landscape Assessment (LA) Sampling and Analysis Methods General Techical Report (USDA Forest Service, 2006).Parson, A., Robichaud, P. R., Lewis, S. A., Napper, C. & Clark, J. T. Field Guide for Mapping Post-fire Soil Burn Severity General Technical Report (USDA Forest Service, 2010); https://doi.org/10.2737/RMRS-GTR-243Miesel, J. R., Hockaday, W. C., Kolka, R. K. & Townsend, P. A. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region. J. Geophys. Res. Biogeosci. 120, 1124–1141 (2015).CAS 

    Google Scholar 
    Bundy, L. G. & Meisinger, J. J., Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.) in Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties 951–984 (Macmillan, 2018). https://doi.org/10.2136/sssabookser5.2.c41McDowell, W. H. et al. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biol. Biochem. 38, 1933–1942 (2006).CAS 

    Google Scholar 
    Thomas, G. W., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., Sumner, M. E. (Eds.) in Methods of Soil Analysis: Part 3 Chemical Methods, 5.3 475–490 (1996).Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 

    Google Scholar 
    Tolić, N. et al. Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 

    Google Scholar 
    Bramer, L. M. et al. ftmsRanalysis: an R package for exploratory data analysis and interactive visualization of FT-MS data. PLoS Comput. Biol. 16, e1007654 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. UNITE: a database providing web‐based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068 (2005).PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Oksanen, J. et al. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=veganMcMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Joshi, N. & Fass, J. Sickle: A Sliding-window, Adaptive, Quality-based Trimming Tool for Fastq Files, v1.33 (2011).Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M., Walker, J. M. (Ed.) BUSCO: assessing genome assembly and annotation completeness. Gene prediction 227–245 (Humana Press, 2019). https://doi.org/10.1007/978-1-4939-9173-0_14Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 

    Google Scholar 
    Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. RnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8, 1–13 (2019).CAS 

    Google Scholar 
    Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, 699–704 (2014).
    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 

    Google Scholar 
    Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS 
    PubMed 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Smid, M. et al. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinformatics 19, 236 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 

    Google Scholar 
    Guo, J., Vik, D., Pratama, A. A., Roux, S. & Sullivan, M. B. Viral Sequence Identification SOP with VirSorter2 (2021); protocols.io. https://doi.org/10.17504/protocols.io.btv8nn9wBland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41, e105 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Mild movement sequence repetition in five primate species and evidence for a taxonomic divide in cognitive mechanisms

    Study subjectsWe conducted foraging experiments on strepsirrhines (Nindividuals = 18) at the Duke Lemur Center (DLC), North Carolina, from February to November 201513. Our sample includes six fat-tailed dwarf lemurs (3–16 years of age, 3 males, 3 females), six gray mouse lemurs (3–7 years of age, all female), and six aye-ayes (17–32 years of age, 2 males, 4 females). Because these species are solitary and nocturnal, most animals were housed singly and were kept on a reversed light cycle such that they were active and could be tested during the day. Housing conditions were similar for all individuals, and they were all fed daily in a similar manner with a diet that included fruits, vegetables, meal worms, and monkey chow (details in13).All vervet data were collected on wild animals (Nindividuals = 12) at Lake Nabugabo, Uganda (0°22′–12° S and 31°54′ E) during four separate field seasons (April-June 2013, Double Trapezoid array, M group15; June–September 2013, Pentagon array, M group24; August–September 2015, Z-array, M group12; July–August 2017, Pentagon array, KS group25). M group was composed of between 21–28 individuals, containing 2–3 adult males, 7–9 adult females, 2 subadult males, 1–3 subadult females, and 9–12 juveniles and infants. KS group was composed of 39–40 individuals including 5 adult males, 11 adult females, 3 sub-adult males, 5 sub-adult females, and 15–16 juveniles and infants. All individuals were reliably identified based on natural features (details in12,15,24,25). Outside of foraging experiments, wild vervets were not provision fed.All Japanese macaque data (Nindividuals = 10) were collected at the Awajishima Monkey Centre (AMC), Awaji Island, Japan (34°14′43.6″ N and 134°52′59.9″ E) between July and August 2019 (Z-array26). AMC is a privately-run tourist and conservation center visited by a large group of free-ranging Japanese macaques (~ 400 individuals) called the “Awajishima group”47. The group is composed of different-aged individuals of both sexes, with bachelor males and bachelor male groups living around the periphery48. The Awajishima group forages on wild foods for much of their dietary requirements but is also provision-fed a combination of wheat and soybeans, supplemented with peanuts, fruits, and vegetables twice daily for ~ 10 months of the year (details in47,49,50).Study designNavigation arraysThe strepsirrhines and vervets were tested on a “double-trapezoid” shaped multi-destination array with six feeding platforms13,15, modified from17 (Fig. 1a), where there were 720 possible routes (6!). Three different double-trapezoid arrays were built to account for differences in body size: one for the smaller dwarf and mouse lemurs, one for the mid-sized aye-ayes, and one for the larger, wild vervets. Arrays were scaled such that the distance from platform 1–2 (the shortest distance between targets) was approximately twice the body length of the subject species. Vervets were additionally tested on a Z-shaped array with six feeding platforms (720 possible routes, Fig. 1b12), and a pentagon-shaped array with five feeding platforms (120 possible routes, Fig. 1c24,25,46). Japanese macaques were tested on an identically sized Z-array26.Figure 1Design of the navigational arrays used, with (a) the Double Trapezoid array used for Cheirogaleus medius, Microcebus murinus, Daubentonia madagascariensis, and Chlorocebus pygerythrus. Three different arrays were built and scaled to the body size of animals (see “Methods”). (b) The Z-array used for C. pygerythrus and Macaca fuscata. The same size array was used for both species because they are similar in adult body lengths (vervet mean range from four sites: 34.5–42.6 cm51, Japanese macaque mean range from six sites: 48.9–59.7 cm52. (c) The Pentagon used for C. pygerythrus. Distances here are unitless but roughly proportional to the body size of each species tested. Created in R version 4.0.4 and ProCreate.Full size imageFor strepsirrhine trials, DLC staff captured individuals in their enclosures and transported them in padded crates to the testing room. The dwarf and mouse lemur array was set up in a specially designed box (0.91 × 1.83 m) with a small compartment to contain strepsirrhines for rebaiting between trials. The aye-aye array was set up on the ground in a room measuring 2.44 × 4.27 m, where subjects stayed during the duration of their daily trials13. Vervet and macaque trials occurred when individual monkeys voluntarily left their group to participate in foraging experiments alone. Vervet arrays were set up using wooden feeding platforms (0.75 m long, 0.75 m wide × 0.75 m high) placed in an outdoor clearing measuring roughly 10 × 14 m in the home range of the study group. Japanese macaque arrays were also set up using small wooden feeding tables (0.40 m long, 0.30 m wide, 0.21 m high), covered in green plastic labeled with the platform number. Two identical arrays were built in neighbouring provision-feeding fields at the AMC (Near Lower Field: ~ 10 × 35 m, and Far Lower Field: ~ 15 × 45 m).In these studies, all platforms were baited with a single food item. The reward used varied by species (strepsirrhines: grape piece, apple piece, honey, agave nectar, or nut butters, vervets: slice of banana, piece of popcorn; macaques: single peanut or piece of sweet potato). Strepsirrhines have sensory adaptations for using olfaction to locate food53, while the cercopithecoids are heavily reliant on vision to locate resources54, so we ensured that each platform was baited with identical food items within a trial that smelled and looked the same to avoid biasing where the animals chose to go. Platforms for the wild monkeys were not rebaited between trials until all animals were ≥ 20 m away and the entire sequence could be rebaited before their return15,24,25,26.For all species, we started a trial when the tested individual entered the array and took the reward at a platform. We then recorded each successive platform visit (including revisits to empty platforms) until all rewards had been collected ending the trial. In our analyses, we included a total of 852 trials collected over six navigational experiments, completed by 40 unique individuals (18 lemurs, 12 vervets, 10 macaques) (Table 2).Table 2 Individuals and trial sample size included in the analysis.Full size tableData simulationsIn addition to empirically collected data, we simulated agents learning to travel efficiently in the same set of arrays using a simple iterative-reinforcement learning model based on the one used by Reynolds et al.6 to test for traplining behavior in bumblebees. In this model, agents move randomly between locations in an array until they visit all locations, then reset for another trial. If the agent completed a trial by travelling less distance than on previous trials, the probability of the agent repeating location-to-location transitions that occurred in that trial increased for future trials by a reinforcement factor. Initial transition probabilities were inversely proportional to the distance between two locations. Unlike Reynolds et al.6 our simulated agents started at a random location and were not required to return to that location to complete the trial. This matches the trial structure used in our experiments (open-TSP), and reflects multiple central place foraging patterns in primates55. Finally, agents could not return to the location they had just come from, using an “avoid the last location” behavioral heuristic observed in nectivores56,57, which prevented agents from getting stuck in “loops” between two locations (S1 Simulation Validation).Within each of the arrays used to collect empirical data, we ran simulations with reinforcement factors of 1 (no reinforcement), 1.2 (mild reinforcement), and 2 (strong reinforcement). For each array and reinforcement factor combination, we ran 100 agents that each completed 120 trials, where there was an equal probability of starting each trial at any location. Then, for each array and reinforcement factor combination, we ran 100 additional simulations per species tested in the given array, where the probability of starting a trial at any location was equal to the empirically observed location-starting probabilities of the respective species.These simulations were designed to help us test predictions of our two hypotheses regarding primate learning and decision making within the arrays. If primates learn to solve navigational arrays efficiently by reinforcing movements between platform pairs, they should exhibit overall greater receptiveness in their sequences of location visits than reinforcement factor 1 simulations, and a greater decrease over time in total distance travelled to complete the arrays. If primates are pre-disposed to navigate arrays using heuristics, they should exhibit shorter distances travelled on initial trials than in simulations.Data analysisFrom the raw sequences of locations visited in each trial, we calculated two metrics: minimum distance traveled, and the proportion of platform revisits that occurred within identical 3-platform visit sequences (determinism-DET)18. All calculations were done using R version 4.0.458 and packages rstan59 and tidyverse60. A fully reproducible data notebook containing this work, as well as all analyzed data, is available at https://github.com/aqvining/Do-Primates-Trapline. All figures were created by AQV in R version 4.0.4 and ProCreate.Distance traveledTo calculate minimum distance traveled, we created a distance matrix for each resource array containing the relative linear distance between any two resource locations. These minimum linear distances approximate the distances traveled by the animals, which may not necessarily be linear. We then summed the linear distances for all transitions made in a trial. Because resource arrays were scaled to the subject species’ body size, these relative distances were standardized.DeterminismGiven a sequence of observations, Ayers et al.63 defines determinism (DET) as the proportion of all matching observation-pairs (recurrences) that occur within matching sub-sequences of observations (repeats) of a given length (minL). This metric has been previously used to distinguish sequences of resource visitation generated by traplining behaviour from sequences generated by known processes of random movement within a given resource array18,61,62. It has several advantages in the analysis of foraging patterns, including the ability to detect repeated sequences between non-consecutive foraging bouts, imperfect repeats in sequences (i.e., omission or addition of a particular site), and distinguishing between forward- and reverse-order sequence repeats63.We adapted the methods of63 to calculate the number of recurrences and repeats generated by the sequence of location visits in each trial of our experiments and simulations. Based on an analysis of the sensitivity of DET scores to the parameterization of minL, we set minL to three for our calculations (S2 Sensitivity Analysis).Statistical analysesLearning ratesWe modelled distance travelled as a function of trial number, species, and individual. Metrics of animal performance on learned tasks are known to follow power functions over time and experience64, so we a priori applied log transformations to distance travelled and trial number, then fit a linear model. Thus, in the resulting model, the intercept can be interpreted as an estimated distance travelled on the first trial and the slope can be interpreted as the exponent of a learning curve. We modelled species and individual effects on the intercept by summing an estimated grand mean (µ0), species level deviation (µsp,j), and individual level deviation (µid,i). We treated species and individual level effects on the learning rate parameter (slope) the same way, summing a grand mean (b0), species level deviation (bsp,j), and individual level deviation (bid,i). We estimated additional parameters for the variance of individual level deviations in intercept and slope (σµID and σbID, respectively). Finally, after finding residuals in an initial analysis to have variances predicted by trial number and species, we estimated a separate error variance for each species (σε,sp) and weighted the standard deviations of the resulting error distributions by dividing them by the square root of one plus the trial number.We set regularizing priors on the model parameters, assuming distances travelled would remain within one order of magnitude of the most efficient route, but not setting any strict boundaries. For the grand mean of the intercept, we used a normal distribution centered around twice the minimum possible distance required to visit all platforms in the array, with a variance of one. For the grand mean of the slope and all species and individual level deviations to the slope and intercept, we used normal distributions centered at zero with variance of one. For all error terms, we used half-cauchy priors with a location parameter of zero and a scale parameter of one. The full, hierarchical definition of the model is given in Eq. (1).$$Distance sim {mu }_{0}+ {mu }_{sp,j}+ {mu }_{id, i}+left({b}_{0}+ {b}_{sp, j}+ {b}_{id,i}right)Trial+ epsilon$$$${mu }_{0} sim mathrm{N}(4.78, 1)$$$${mu }_{sp}, {b}_{0}, {b}_{sp} sim mathrm{N}(mathrm{0,1})$$$${mu }_{id} sim mathrm{N}(0, {sigma }_{mu ID})$$$${b}_{id} sim mathrm{N}(0, {sigma }_{bID})$$$$epsilon sim mathrm{N}(0, {sigma }_{epsilon ,sp}/sqrt[2]{1+Trial})$$$${sigma }_{mu ID}, {sigma }_{bID}, {sigma }_{epsilon } sim mathrm{Half Cauchy}(mathrm{0,1})$$DeterminismTo compare DET between species, and between empirical and simulated data, we created a binomial model of expected repeats generated in a trial given the number of recurrences (Eq. 2).$$Repeats sim binom(Recursions, DET)$$$$DET= {logit}^{-1}(alpha)$$$$alpha={a}_{0}+Sp+Src+ Int+ID$$$${a}_{0}, Sp, Src, Int sim mathrm{N}(0, 1)$$$$ID sim mathrm{N}(0, {sigma }_{ID})$$$${sigma }_{ID}sim mathrm{Half Cauchy}(mathrm{0,1})$$where a0 is the mean intercept, Sp is one of four coefficients determined by the species (simulations are of the “species” which was used to assign its starting-location probabilities), Src is one of four coefficients determined by the source (empirical data and each level of reinforcement factor), Int is one of 16 interaction coefficients (each possible combination of Sp and Src), and ID is a varying effect of the individual. Because the length of a sequence affects DET, we limit our analysis of DET to the sequences generated by a subject’s or an agent’s first ten trials. Subjects that completed fewer than ten trials were excluded from this portion of the analysis. More

  • in

    Convergence in phosphorus constraints to photosynthesis in forests around the world

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).ADS 
    Article 

    Google Scholar 
    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. L. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, D. A. et al. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences 14, 4663–4690 (2017).ADS 
    Article 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reed, S. C. et al. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. N. Phytologist 208, 324–329 (2015).CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    Kattge, J. et al. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).ADS 
    Article 

    Google Scholar 
    Rogers, A. The use and misuse of Vc,max in Earth System Models. Photosynthesis Res. 119, 15–29 (2014).CAS 
    Article 

    Google Scholar 
    Field, C. B. & Mooney, H. A. in On the economy of plant form and function. (ed T. J. Givnish) 25-55. (Cambridge University Press, 1986).Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Raven, J. A. Rubisco: still the most abundant protein of Earth? N. Phytologist 198, 1–3 (2013).CAS 
    Article 

    Google Scholar 
    Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).ADS 
    PubMed 
    Article 

    Google Scholar 
    Thornton, P. E. et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4018 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    Reich, P. B. et al. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    Achat, D. L. et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131, 173–202 (2016).CAS 
    Article 

    Google Scholar 
    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences 17, 4173–4222 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Vitousek, P. M. et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carstensen, A. et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177, 271–284 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ. 38, 1142–1156 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. (CSIRO Publishing, 2000).Brooks, A. et al. Effects of phosphorus nutrition on the response of photosynthesis to CO2 and O2, activation of ribulose bisphosphate carboxylase and amounts of ribulose bisphosphate and 3-phosphoglycerate in spinach leaves. Photosynthesis Res. 15, 133–141 (1988).CAS 
    Article 

    Google Scholar 
    Chen, J. L. et al. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93, 63–69 (1993).ADS 
    PubMed 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farquhar, G. D. et al. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soong, J. L. et al. Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Sci. Rep. 10, 2302 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norby, R. J. et al. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. N. Phytologist 215, 1425–1437 (2017).CAS 
    Article 

    Google Scholar 
    Crous, K. Y. et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. N. Phytologist 215, 992–1008 (2017).CAS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9, 17 (2005).Augusto, L. et al. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).ADS 
    Article 

    Google Scholar 
    Lambers, H. et al. Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 347, 7–27 (2011).Article 
    CAS 

    Google Scholar 
    Yan, L. et al. Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence. N. Phytologist 223, 1621–1633 (2019).CAS 
    Article 

    Google Scholar 
    Yang, X. & Post, W. M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8, 2907–2916 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duursma, R. A. Plantecophys – An R package for analysing and modelling leaf gas exchange data. Plos One 10, e0143346 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE. Geoscientific Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V-cmax) on global gross primary production. N. Phytologist 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637–645 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Neter, J. et al. Applied Linear Statistical Models, 4th ed., (McGraw-Hill, 1996).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evolution 4, 202–209 (2020).Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 490, 123–456 (2018).
    Google Scholar 
    Thornton, P. E. et al. Biospheric feedback effects in a synchronously coupled model of human and Earth systems. Nat. Clim. Chang. 7, 496-+ (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Wieder, W. R. et al. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Walker, A. P. et al. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evolution 4, 3218–3235 (2014).Article 

    Google Scholar 
    Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. N. Phytologist 196, 1098–1108 (2012).CAS 
    Article 

    Google Scholar 
    Jiang, M. K. et al. Towards a more physiological representation of vegetation phosphorus processes in land surface models. N. Phytologist 222, 1223–1229 (2019).Article 

    Google Scholar 
    Leuning, R. Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax. J. Exp. Bot. 48, 345–347 (1997).CAS 
    Article 

    Google Scholar 
    Bonardi, V. et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179–1182 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seiler, C. et al. Are terrestrial biosphere models fit for simulating the global land carbon sink? J. Adv. Model Earth Syst. 14, e2021MS002946 (2022).ADS 
    Article 

    Google Scholar 
    Goll, D. S. et al. Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts. Geophys. Res. Lett. 45, 8231–8240 (2018).ADS 
    Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Wang, Y. P. et al. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, X. J. et al. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43, 7205–7214 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).ADS 
    Article 

    Google Scholar 
    Bloomfield, K. J. et al. Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland, Australia). Biogeosciences 11, 7331–7347 (2014).ADS 
    Article 

    Google Scholar 
    Cernusak, L. A. et al. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).ADS 
    Article 

    Google Scholar 
    Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. N. Phytologist 214, 1002–1018 (2017).CAS 
    Article 

    Google Scholar 
    Rowland, L. et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Glob. Change Biol. 21, 4662–4672 (2015).ADS 
    Article 

    Google Scholar 
    Domingues, T. F. et al. Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecol. Diversity 7, 189–203 (2014).Article 

    Google Scholar 
    Kenzo, T. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    van de Weg, M. J. et al. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168, 23–34 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kenzo, T. et al. Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. Jpn. Agriculture Res. Q. 46, 167–180 (2012).Article 

    Google Scholar 
    Domingues, T. F. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Verryckt, L. T. et al. Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth Syst. Sci. Data 14, 5–18 (2022).ADS 
    Article 

    Google Scholar 
    Santiago, L. S. & Mulkey, S. S. A test of gas exchange measurements on excised canopy branches of ten tropical tree species. Photosynthetica 41, 343–347 (2003).CAS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Linking leaf and tree water use with an individual-tree model. Tree Physiol. 27, 1687–1699 (2007).PubMed 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Townsend, A. R. et al. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B. et al. Leaf structure (specific leaf area) modulates photosynthesis- nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12, 948–958 (1998).Article 

    Google Scholar 
    Rogers, A. et al. Improving representation of photosynthesis in Earth System Models. N. Phytologist 204, 12–14 (2014).Article 

    Google Scholar 
    Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. N. Phytologist 222, 768–784 (2019).CAS 
    Article 

    Google Scholar 
    Warton, D. I. et al. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Tian, H. Q. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Fungal succession on the decomposition of three plant species from a Brazilian mangrove

    Raghukumar, S. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Fungi Coast. Ocean. Mar. Ecosyst. Mar. Fungi. https://doi.org/10.1007/978-3-319-54304-8 (2017).Article 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 
    Article 

    Google Scholar 
    Sebastianes, F. L. D. S. et al. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59, 153–166 (2013).CAS 
    Article 

    Google Scholar 
    Holguin, G. et al. Mangrove health in an arid environment encroached by urban development—A case study. Sci. Total Environ. 363, 260–274 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schaeffer-Novelli, Y., Cintrón-Molero, G. & Adaime, R. R. Variability of Mangrove ecosystems along the Brazilian coast variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13, 204–218 (1990).Article 

    Google Scholar 
    Baskaran, R., Mohan, P., Sivakumar, K., Ragavan, P. & Sachithanandam, V. Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int. J. Microbiol. Res. 3, 124–127 (2012).
    Google Scholar 
    Alongi, D. M. The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285, 19–32 (1994).CAS 
    Article 

    Google Scholar 
    Taketani, R. G., Moitinho, M. A., Mauchline, T. H. & Melo, I. S. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ 6, e5710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schmit, J. P. & Mueller, G. M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 16, 99–111 (2007).Article 

    Google Scholar 
    Hawksworth, D. L. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 50, 9–18 (2004).
    Google Scholar 
    Valderrama, B. et al. Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico. Revista Mexicana de Biodiversidad 87, 18–28 (2016).Article 

    Google Scholar 
    Marano, A. V., Pires-Zottarelli, C. L. A., Barrera, M. D., Steciow, M. M. & Gleason, F. H. Diversity, role in decomposition, and succession of zoosporic fungi and straminipiles on submerged decaying leaves in a woodland stream. Hydrobiologia 659, 93–109 (2011).Article 

    Google Scholar 
    Pascoal, C. & Cassio, F. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl. Environ. Microbiol. 70, 5266–5273 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moitinho, M. A., Bononi, L., Souza, D. T., Melo, I. S. & Taketani, R. G. Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb. Ecol. https://doi.org/10.1007/s00248-018-1190-4 (2018).Article 
    PubMed 

    Google Scholar 
    Tan, T. K., Leong, W. F. & Jones, E. B. G. Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can. J. Bot. 67, 2686–2691 (1989).Article 

    Google Scholar 
    Ananda, K. & Sridhar, K. R. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. 80, 1431–1437 (2004).
    Google Scholar 
    Maria, G. L., Sridhar, K. R. & Bärlocher, F. Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot. Mar. 49, 450–455 (2006).CAS 
    Article 

    Google Scholar 
    Baldrian, P. et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6, 248–258 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycprrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mcmurdie, P. J. & Holmes, S. phyloseq : An R package for reproducible interactive analysis and graphics of microbiome census data. 8, (2013).Oksanen, P. Vegan 1.17-0. (2010).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Hamilton, N. E. & Ferry, M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat. Softw. Code Snippets 87, 1–17 (2018).
    Google Scholar 
    Hanski, I. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici 65–73 (1982).Gumiere, T. et al. A probabilistic model to identify the core microbial community. bioRxiv. https://doi.org/10.1101/491183 (2018).Article 

    Google Scholar 
    Salazar, G. EcolUtils: Utilities for community ecology analysis. (2019).Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).Book 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Promputtha, I. et al. Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Diversity 30, 23–36 (2008).
    Google Scholar 
    Kodsueb, R., McKenzie, E. H. C., Lumyong, S. & Hyde, K. D. Fungal succession on woody litter of Magnolia liliifera (Magnoliaceae). Fungal Diversity 30, 55–72 (2008).
    Google Scholar 
    Voriskova, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Osono, T. Phyllosphere fungi on leaf litter of Fagus crenata: Occurrence, colonization, and succession. Can. J. Bot. 80, 460–469 (2002).Article 

    Google Scholar 
    Osono, T. et al. Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Diversity 36, 101–119 (2009).
    Google Scholar 
    Costa, I. P. M. W., Maia, L. C. & Cavalcanti, M. A. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 43, 1165–1173 (2012).Article 

    Google Scholar 
    Sobrado, M. A. Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. 422–427 (2004). https://doi.org/10.1007/s00468-004-0320-4.Dias, A. C. F. et al. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests. Braz. J. Microbiol. 43, (2012).Moitinho, M. A. et al. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Braz. J. Microbiol. 50, 1041–1050 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barroso-Matos, T., Bernini, E. & Rezende, C. E. Descomposición de hojas de mangle en el estuario del Río Paraíba do Sul Rio de Janeiro, Brasil. Lat. Am. J. Aquat. Res. 40, 398–407 (2012).Article 

    Google Scholar 
    Sessegolo, G. C. & Lana, P. C. Lagunculana racemosa Leaves in a Mangrove of Paranaguä Bay (Southeastern Brazil). Bot. Mar. 34, 285–289 (1991).Article 

    Google Scholar 
    Miura, T. et al. Diversity of fungi on decomposing leaf litter in a sugarcane plantation and their response to tillage practice and bagasse mulching: implications for management effects on litter decomposition. Microb. Ecol. 70, 646–658 (2015).PubMed 
    Article 

    Google Scholar 
    Behnke-Borowczyk, J. & Wołowska, D. The identification of fungal species in dead wood of oak. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 17, 17–23 (2018).Article 

    Google Scholar 
    Simões, M. F. et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320 (2015).Article 

    Google Scholar 
    Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 22, 955–974 (2007).Article 

    Google Scholar 
    Zhang, W. et al. Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. CATENA 161, 85–95 (2018).CAS 
    Article 

    Google Scholar 
    Jones, E. B. G. & Choeyklin, R. Ecology of marine and freshwater basidiomycetes. in Ecology of Saprotrophic Basidiomycetes 301–324 (2007).Schneider, T. et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 6, 1749–1762 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, X. et al. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Biores. Technol. 170, 183–195 (2014).CAS 
    Article 

    Google Scholar 
    Koivusaari, P. et al. Fungi originating from tree leaves contribute to fungal diversity of litter in streams. Front. Microbiol. 10, (2019).Raudabaugh, D. B. et al. Coniella lustricola, a new species from submerged detritus. Mycol. Prog. 17, 191–203 (2018).Article 

    Google Scholar 
    Arfi, Y. et al. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp. Nat. Commun. 4, (2013). More

  • in

    Effects of maternal age and offspring sex on milk yield, composition and calf growth of red deer (Cervus elaphus)

    Trivers, R. L. Parental investment and sexual selection. in Sexual selection and the descent of man 136–179 (Aldine, 1972).Evans, R. M. The relationship between parental input and investment. Anim. Behav. 39, 797–798 (1990).Article 

    Google Scholar 
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    Willson, M. F. & Pianka, E. R. Sexual selection, sex ratio and mating system. Am. Nat. 97, 405–407 (1963).Article 

    Google Scholar 
    Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Major, M., Albon, S. D. & Guinness, F. E. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).Article 

    Google Scholar 
    Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B-Biol. Sci. 266, 1655–1661 (1999).CAS 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Reproductive success in male and female red deer. in Reproductive success 325–343 (University of Chicago Press, 1988).Pérez-Barbería, F. J. & Yearsley, J. M. Sexual selection for fighting skills as a driver of sexual segregation in polygynous ungulates: an evolutionary model. Anim. Behav. 80, 745–755 (2010).Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15, e0233809 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nussey, D. H. et al. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174, 342–357 (2009).PubMed 
    Article 

    Google Scholar 
    Geist, V. Deer of the World: Their Evolution, Behavior & Ecology (Stackpole Books, 1998).
    Google Scholar 
    Ricklefs, R. E. Evolutionary theories of aging: Confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 24–44 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).PubMed 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. in Bioenergetics of wild herbivores 215–238 (CRC-Press, 1985).Linn, J. G. Factors Affecting the Composition of Milk from Dairy Cows. in Designing Foods: Animal Product Options in the Marketplace (National Academies Press (US), 1988).Hinde, K., Power, M. L. & Oftedal, O. T. Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation. Am. J. Phys. Anthropol. 138, 148–157 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomendio, M., Clutton-Brock, T. H., Albon, S. D., Guinness, F. E. & Simpson, M. J. Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343, 261–263 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Berube, C. H., Festa-Bianchet, M. & Jorgenson, J. T. Reproductive costs of sons and daughters in Rocky Mountain bighorn sheep. Behav. Ecol. 7, 60–68 (1996).Article 

    Google Scholar 
    Landete-Castillejos, T., García, A., López-Serrano, F. R. & Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 57, 267–274 (2005).Article 

    Google Scholar 
    Hinde, K. First-time macaque mothers bias milk composition in favor of sons. Curr. Biol. 17, R958–R959 (2007).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinde, K. Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. Am. J. Hum. Biol. 21, 512–519 (2009).PubMed 
    Article 

    Google Scholar 
    Powe, C. E., Knott, C. D. & Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 22, 50–54 (2010).PubMed 
    Article 

    Google Scholar 
    Fujita, M. et al. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 149, 52–59 (2012).PubMed 
    Article 

    Google Scholar 
    Robert, K. A. & Braun, S. Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 7, e51099 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oftedal, O. T. Pregnancy and lactation. Bioenerg. Wild Herbiv. https://doi.org/10.1201/9781351070218-10 (2018).Article 

    Google Scholar 
    Rogers, G. & Stewart, J. The effects of some nutritional and non-nutritional factors on milk protein concentration and yield [dairy cattle]. Aust. J. Dairy Technol. 26–32 (1982).Lubritz, D. L., Forrest, K. & Robison, O. W. Age of cow and age of dam effects on milk production of hereford cows. J. Anim. Sci. 67, 2544–2549 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khan, M. S. & Shook, G. E. Effects of age on milk yield: Time trends and method of adjustment. J. Dairy Sci. 79, 1057–1064 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenness, R. Biochemical and nutritional aspects of milk and colostrum. in Lactation / edited by Bruce L. Larson ; written by Ralph R. Anderson … [et al.] 164–197 (Iowa State University, 1985).Ng-Kwai-Hang, K. F., Hayes, J. F., Moxley, J. E. & Monardes, H. G. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 65, 1993–1998 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kroeker, E. M., Ng-Kwai-Hang, K. F., Hayes, J. F. & Moxley, J. E. Effect of β-lactoglobulin variant and environmental factors on variation in the detailed composition of bovine milk serum proteins. J. Dairy Sci. 68, 1637–1641 (1985).CAS 
    Article 

    Google Scholar 
    Pérez-Barbería, F. J. et al. Water sprinkling as a tool for heat abatement in farmed Iberian red deer: Effects on calf growth and behaviour. PLoS ONE 16, e0249540 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Abecia, J. A. & Palacios, C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital. J. Anim. Sci. 17, 736–739 (2018).Article 

    Google Scholar 
    Hinde, K., Carpenter, A. J., Clay, J. S. & Bradford, B. J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 9, e86169 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thakkar, S. K. et al. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am. J. Hum. Biol. 25, 770–779 (2013).PubMed 
    Article 

    Google Scholar 
    Quinn, E. A. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a sample of Filipino mothers. Am. J. Phys. Anthropol. 152, 209–216 (2013).PubMed 

    Google Scholar 
    Ono, K. A. & Boness, D. J. Sexual dimorphism in sea lion pups: Differential maternal investment, or sex-specific differences in energy allocation?. Behav. Ecol. Sociobiol. 38, 31–41 (1996).Article 

    Google Scholar 
    Skibiel, A. L., Downing, L. M., Orr, T. J. & Hood, W. R. The evolution of the nutrient composition of mammalian milks. J. Anim. Ecol. 82, 1254–1264 (2013).PubMed 
    Article 

    Google Scholar 
    Mitoulas, L. R. et al. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 88, 29–37 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenkins, T. C. & McGuire, M. A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 89, 1302–1310 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbs, N. T., Baker, D. L., Bear, G. D. & Bowden, D. C. Ungulate grazing in sagebrush grassland: Effects of resource competition on secondary production. Ecol. Appl. 6, 218–227 (1996).Article 

    Google Scholar 
    Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H. D. Age-related patterns of reproductive success among female mountain gorillas. Am. J. Phys. Anthropol. 131, 511–521 (2006).PubMed 
    Article 

    Google Scholar 
    Sunderland, N., Heffernan, S., Thomson, S. & Hennessy, A. Maternal parity affects neonatal survival rate in a colony of captive bred baboons (Papio hamadryas). J. Med. Primatol. 37, 223–228 (2008).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Age-related body weight constraints on prenatal and milk provisioning in Iberian red deer (Cervus elaphus hispanicus) affect allocation of maternal resources. Theriogenology 71, 400–407 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bercovitch, F. B., Widdig, A. & Nürnberg, P. Maternal investment in rhesus macaques (Macaca mulatta): Reproductive costs and consequences of raising sons. Behav. Ecol. Sociobiol. 48, 1–11 (2000).Article 

    Google Scholar 
    López-Quintanilla, M. Comportamiento Social y Maternofilial del Ciervo en Cautividad (Universidad de Castilla-La Mancha, 2022).
    Google Scholar 
    Adam, C. L., Kyle, C. E. & Young, P. Growth and reproductive development of red deer calves (Cervus elaphus) born out-of-season. Anim. Sci. 55, 265–270 (1992).Article 

    Google Scholar 
    Landete-Castillejos, T., Garcia, A. & Gallego, L. Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): Effects of birth date and hind milk production and composition. J. Anim. Sci. 79, 1085–1092 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Great expectations – dominance, breeding success and offspring sex-ratios in red deer. Anim. Behav. 34, 460–471 (1986).Article 

    Google Scholar 
    Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).ADS 
    Article 

    Google Scholar 
    Youngner, V. B. & McKell, C. M. The Biology and Utilization of Grasses (Academic Press, 1972).
    Google Scholar 
    Pinares-Patiño, C. S. Methane emission from forage-fed sheep, a study of variation between animals. PhD thesis. Massey University, Wellington, New Zealand. (Massey University, 2000).van Tassell, C. P., Wiggans, G. R. & Norman, H. D. Method R estimates of heritability for milk, fat, and protein yields of United States dairy cattle. J. Dairy Sci. 82, 2231–2237 (1999).PubMed 
    Article 

    Google Scholar 
    Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 78, 2771–2777 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perrin, D. R. 709. The calorific value of milk of different species. J. Dairy Res. 25, 215–220 (1958).CAS 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing, v. 3.4.1. (R Foundation for Statistical Computing, 2017).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1–131. Retrieved on 229 July 2017 from http://CRAN.R-project.org/package=nlme. (2017).Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Citizen science in environmental and ecological sciences

    Fraisl, D. et al. Mapping citizen science contributions to the UN sustainable development goals. Sustain. Sci. 15, 1735–1751 (2020). This is the first article to quantitatively assess the potential of citizen science for SDG indicator monitoring.
    Google Scholar 
    Haklay, M. et al. Contours of citizen science: a vignette study. R. Soc. Open Sci. 8, 202108 (2021). This article comprehensively explores the diverse perceptions of citizen science.ADS 

    Google Scholar 
    Kullenberg, C. & Kasperowski, D. What is citizen science? — A scientometric meta-analysis. PLoS ONE 11, e0147152 (2016). This article analyses the main topical focal points of citizen science.
    Google Scholar 
    Lemmens, R., Antoniou, V., Hummer, P. & Potsiou, C. in The Science of Citizen Science (eds. Vohland, K. et al.) 461–474 (Springer International Publishing, 2021).Wynn, J. Citizen Science In The Digital Age: Rhetoric, Science, And Public Engagement (Univ. Alabama Press, 2017).Roser, M. & Ortiz-Ospina, E. Literacy. Our World in Data https://ourworldindata.org/literacy (2016).Pateman, R., Dyke, A. & West, S. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 6, 9 (2021).
    Google Scholar 
    Haklay, M. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 13–33 (Springer International Publishing, 2021).Odenwald, S. A citation study of citizen science projects in space science and astronomy. Citiz. Sci. Theory Pract. 3, 5 (2018).
    Google Scholar 
    Bedessem, B., Julliard, R. & Montuschi, E. Measuring epistemic success of a biodiversity citizen science program: a citation study. PLoS ONE 16, e0258350 (2021).
    Google Scholar 
    Gardiner, M. M. & Roy, H. E. The role of community science in entomology. Annu. Rev. Entomol. 67, 437–456 (2022).
    Google Scholar 
    Kasperowski, D. & Hillman, T. The epistemic culture in an online citizen science project: programs, antiprograms and epistemic subjects. Soc. Stud. Sci. 48, 564–588 (2018).
    Google Scholar 
    Lambers, K., Verschoof-van der Vaart, W. & Bourgeois, Q. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote. Sens. 11, 794 (2019).ADS 

    Google Scholar 
    Froeling, F. et al. Narrative review of citizen science in environmental epidemiology: setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 152, 106470 (2021).
    Google Scholar 
    Hilton, N. H. Stimmen: a citizen science approach to minority language sociolinguistics. Linguist. Vanguard. 7, 20190017 (2021).
    Google Scholar 
    Maisonneuve, N., Stevens, M., Niessen, M. E. & Steels, L. in Information Technologies in Environmental Engineering (eds Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A. & Gómez, J. M.) 215–228 (Springer, 2009).Arias, R., Capelli, L. & Diaz Jimenez, C. A new methodology based on citizen science to improve environmental odour management. Chem. Eng. Trans. 68, 7–12 (2018).
    Google Scholar 
    Nascimento, S., Rubio Iglesias, J. M., Owen, R., Schade, S. & Shanley, L. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hecker, S. et al.) 219–240 (UCL Press, 2018).Den Broeder, L., Devilee, J., Van Oers, H., Schuit, A. J. & Wagemakers, A. Citizen Science for public health. Health Promot. Int. 33, 505–514 (2018).
    Google Scholar 
    Bio Innovation Service. Citizen Science For Environmental Policy: Development Of An EU Wide Inventory And Analysis Of Selected Practices (Publications Office, 2018).Mielke, J., Vermaßen, H. & Ellenbeck, S. Ideals, practices, and future prospects of stakeholder involvement in sustainability science. Proc. Natl Acad. Sci. USA 114, E10648–E10657 (2017).
    Google Scholar 
    Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. Adv. Ecol. Res. 59, 169–223 (2018). This article describes the opportunities of citizen science for biodiversity research.
    Google Scholar 
    Isaac, N. J. B., Strien, A. J., August, T. A., Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014). This article describes bias-correction approaches for ecological trend estimates.
    Google Scholar 
    Tengö, M., Austin, B. J., Danielsen, F. & Fernández-Llamazares, Á. Creating synergies between citizen science and Indigenous and local knowledge. BioScience 71, 503–518 (2021).
    Google Scholar 
    Krick, E. Citizen experts in participatory governance: democratic and epistemic assets of service user involvement, local knowledge and citizen science. Curr. Sociol. https://doi.org/10.1177/00113921211059225 (2021).Article 

    Google Scholar 
    Danielsen, F. et al. in Citizen Science (eds Hecker, S. et al.) 110–123 (UCL Press, 2018).Luzar, J. B. et al. Large-scale environmental monitoring by Indigenous peoples. BioScience 61, 771–781 (2011).
    Google Scholar 
    UNESCO. UNESCO recommendation on open science. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en (2021).Wehn, U. et al. Impact assessment of citizen science: state of the art and guiding principles for a consolidated approach. Sustain. Sci. 16, 1683–1699 (2021). This article presents guidelines for a common approach in assessing citizen science impacts.
    Google Scholar 
    Aristeidou, M. & Herodotou, C. Online citizen science: a systematic review of effects on learning and scientific literacy. Citiz. Sci. Theory Pract. 5, 11 (2020).
    Google Scholar 
    Peter, M., Diekötter, T. & Kremer, K. Participant outcomes of biodiversity citizen science projects: a systematic literature review. Sustainability 11, 2780 (2019).
    Google Scholar 
    Turrini, T., Dörler, D., Richter, A., Heigl, F. & Bonn, A. The threefold potential of environmental citizen science — generating knowledge, creating learning opportunities and enabling civic participation. Biol. Conserv. 225, 176–186 (2018).
    Google Scholar 
    ECSA. Ten principles of citizen science. ECSA https://zenodo.org/record/5127534 (2015).Haklay, M. et al. ECSA’s characteristics of citizen science. ECSA https://zenodo.org/record/3758668 (2020).Danielsen, F. Community-based Monitoring In The Arctic (Univ. Alaska Press, 2020).Cooper, C. B. et al. Inclusion in citizen science: the conundrum of rebranding. Science 372, 1386–1388 (2021). This article discusses issues around justice, equity, diversity and inclusion related to citizen science.ADS 

    Google Scholar 
    Eitzel, M. V. et al. Citizen science terminology matters: exploring key terms. Citiz. Sci. Theory Pract. 2, 1 (2017). This article highlights how choice of concepts and terms affects knowledge creation.
    Google Scholar 
    Bonney, R. et al. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009). This article presents an early model for building and operating citizen science projects.
    Google Scholar 
    Haklay, M. in Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice (eds Sui, D., Elwood, S. & Goodchild, M.) 105–122 (Springer, 2013).Wiggins, A. & Crowston, K. From conservation to crowdsourcing: a typology of citizen science. In 44th Hawaii Int. Conf. on System Sciences 1–10 (IEEE, 2011).Shirk, J. L. et al. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. 17, art29 (2012). This article describes multiple forms of public participation in science.
    Google Scholar 
    Tweddle, J. C., Robinson, L. D., Pocock, M. J. O. & Roy, H. E. Guide to citizen science: developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. UK Environmental Observation Framework https://www.ceh.ac.uk/sites/default/files/citizenscienceguide.pdf (2012).Wiggins, A. et al. Data management guide for public participation in scientific research. DataONE https://old.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf (2013). This document describes essential steps of the data management life cycle.Silvertown, J., Buesching, C. D., Jacobson, S. K. & Rebelo, T. in Key Topics in Conservation Biology Vol. 2 (eds Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Pocock, M. J. O., Chapman, D. S., Sheppard, L. J. & Roy, H. E. Choosing and using citizen science: a guide to when and how to use citizen science to monitor biodiversity and the environment. SEPA https://www.ceh.ac.uk/sites/default/files/sepa_choosingandusingcitizenscience_interactive_4web_final_amended-blue1.pdf (2014).Participatory Monitoring and Management Partnership (PMMP). Manaus Letter: recommendations for the participatory monitoring of biodiversity. Participatory Monitoring and Management Partnership (PMMP) https://doi.org/10.25607/OBP-965 (2015).Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook Of Citizen Science In Ecology And Conservation (Univ. California Press, 2020).US GSA. Citizen science toolkit: basic steps for your project planning. citizenscience.gov https://www.citizenscience.gov/toolkit/howto/ (2022).García, F. S. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 419–437 (Springer International Publishing, 2021).Van Brussel, S. & Huyse, H. Citizen science on speed? Realising the triple objective of scientific rigour, policy influence and deep citizen engagement in a large-scale citizen science project on ambient air quality in Antwerp. J. Environ. Plan. Manag. 62, 534–551 (2019).
    Google Scholar 
    de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760 (2021).
    Google Scholar 
    Hyder, K., Townhill, B., Anderson, L. G., Delany, J. & Pinnegar, J. K. Can citizen science contribute to the evidence-base that underpins marine policy? Mar. Policy 59, 112–120 (2015).
    Google Scholar 
    Wehn, U. et al. Capturing and communicating impact of citizen science for policy: a storytelling approach. J. Environ. Manag. 295, 113082 (2021).
    Google Scholar 
    van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).
    Google Scholar 
    Laso Bayas, J. C. et al. Crowdsourcing LUCAS: citizens generating reference land cover and land use data with a mobile app. Land 9, 446 (2020).
    Google Scholar 
    Cooper, C. B. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology. Int. J. Biometeorol. 58, 1415–1419 (2014).ADS 

    Google Scholar 
    Pettibone, L. et al. Citizen Science For All. A Guide For Citizen Science Practitioners (Deutsches Zentrum für Integrative Biodiversitätsforschung, Helmholtz-Zentrum für Umweltforschung, Berlin-Brandenburgisches Institut für Biodiversitätsforschung, Museum für Naturkunde, Leibniz-Institut, 2016).Pernat, N. et al. How media presence triggers participation in citizen science — the case of the mosquito monitoring project ‘Mückenatlas’. PLoS ONE 17, e0262850 (2022).
    Google Scholar 
    Crowston, K. & Prestopnik, N. R. Motivation and data quality in a citizen science game: a design science evaluation. In 46th Hawaii Int. Conf. on System Sciences 450–459 (IEEE, 2013).Funder, M., Danielsen, F., Ngaga, Y., Nielsen, M. R. & Poulsen, M. K. Reshaping conservation: the social dynamics of participatory monitoring in Tanzania’s community-managed forests. Conserv. Soc. 11, 218–232 (2013).
    Google Scholar 
    Deterding, S. Gamification: designing for motivation. Interactions 19, 14–17 (2012).
    Google Scholar 
    West, S. & Pateman, R. Recruiting and retaining participants in citizen science: what can be learned from the volunteering literature? Citiz. Sci. Theory Pract. 1, 15 (2016). This article discusses participant motivations for engagement and volunteering.
    Google Scholar 
    Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding motivations for citizen science. Final report on behalf of UKEOF. SEI https://www.sei.org/publications/understanding-motivations-for-citizen-science/ (2016).Baruch, A., May, A. & Yu, D. The motivations, enablers and barriers for voluntary participation in an online crowdsourcing platform. Comput. Hum. Behav. 64, 923–931 (2016).
    Google Scholar 
    Larson, L. R. et al. The diverse motivations of citizen scientists: does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 242, 108428 (2020).
    Google Scholar 
    Danielsen, F. et al. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71, 484–502 (2021). This article summarizes the potential and intricacies of community-led citizen science.
    Google Scholar 
    Salmon, R. A., Rammell, S., Emeny, M. T. & Hartley, S. Citizens, scientists, and enablers: a tripartite model for citizen science projects. Diversity 13, 309 (2021).
    Google Scholar 
    Bowser, A., Shilton, K., Preece, J. & Warrick, E. Accounting for privacy in citizen science: ethical research in a context of openness. In Proc. 2017 ACM Conf. on Computer Supported Cooperative Work and Social Computing 2124–2136 (ACM, 2017).Ward-Fear, G., Pauly, G. B., Vendetti, J. E. & Shine, R. Authorship protocols must change to credit citizen scientists. Trends Ecol. Evol. 35, 187–190 (2020).
    Google Scholar 
    Pandya, R. E. A framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 10, 314–317 (2012).
    Google Scholar 
    Sorensen, A. E. et al. Reflecting on efforts to design an inclusive citizen science project in West Baltimore. Citiz. Sci. Theory Pract. 4, 13 (2019).
    Google Scholar 
    Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science? Public. Underst. Sci. 25, 2–16 (2016).
    Google Scholar 
    Hermoso, M. I., Martin, V. Y., Gelcich, S., Stotz, W. & Thiel, M. Exploring diversity and engagement of divers in citizen science: insights for marine management and conservation. Mar. Policy 124, 104316 (2021).
    Google Scholar 
    Barahona-Segovia, R. M. et al. Combining citizen science with spatial analysis at local and biogeographical scales for the conservation of a large-size endemic invertebrate in temperate forests. For. Ecol. Manag. 497, 119519 (2021).
    Google Scholar 
    Bowser, A., Wiggins, A., Shanley, L., Preece, J. & Henderson, S. Sharing data while protecting privacy in citizen science. Interactions 21, 70–73 (2014).
    Google Scholar 
    Wiggins, A., Newman, G., Stevenson, R. D. & Crowston, K. Mechanisms for data quality and validation in citizen science. In IEEE Seventh Int. Conf. on e-Science Workshops 14–19 (IEEE, 2011).Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016). This article discusses common assumptions and evidence about citizen science data quality.
    Google Scholar 
    Downs, R. R., Ramapriyan, H. K., Peng, G. & Wei, Y. Perspectives on citizen science data quality. Front. Clim. 3, 615032 (2021). This article describes perspectives on quality assessment and control issues.
    Google Scholar 
    Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019). This article identifies the full potential of citizen science for SDG monitoring and implementation.
    Google Scholar 
    Phillips, T., Ferguson, M., Minarchek, M., Porticella, N. & Bonney, R. Evaluating learning outcomes from citizen science. The Cornell Lab of Ornithology https://www.birds.cornell.edu/citizenscience/wp-content/uploads/2018/10/USERS-GUIDE_linked.pdf (2014).Tredick, C. A. et al. A rubric to evaluate citizen-science programs for long-term ecological monitoring. BioScience 67, 834–844 (2017).
    Google Scholar 
    Kieslinger, B. et al. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hekler, S., Haklay, M., Bowser, A., Vogel, J. & Bonn, A.) 81–95 (UCL Press, 2018).Schaefer, T., Kieslinger, B., Brandt, M. & van den Bogaert, V. in The Science of Citizen Science (eds Vohland, K. et al.) 495–514 (Springer International Publishing, 2021).Prysby, M. & Oberhauser, K. S. in The Monarch Butterfly: Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 9–20 (Cornell Univ. Press, 2004).Danielsen, F. et al. A multicountry assessment of tropical resource monitoring by local communities. BioScience 64, 236–251 (2014). The article presents the largest quantitative study to date of the accuracy of citizen science across the three tropical continents.
    Google Scholar 
    Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).
    Google Scholar 
    Serret, H., Deguines, N., Jang, Y., Lois, G. & Julliard, R. Data quality and participant engagement in citizen science: comparing two approaches for monitoring pollinators in France and South Korea. Citiz. Sci. Theory Pract. 4, 22 (2019).
    Google Scholar 
    Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. J. Soc. Conserv. Biol 25, 1148–1154 (2011).
    Google Scholar 
    Deguines, N., de Flores, M., Loïs, G., Julliard, R. & Fontaine, C. Fostering close encounters of the entomological kind. Front. Ecol. Environ. 16, 202–203 (2018).
    Google Scholar 
    van der Wal, R., Sharma, N., Mellish, C., Robinson, A. & Siddharthan, A. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. J. Soc. Conserv. Biol. 30, 550–561 (2016).
    Google Scholar 
    Watson, D. & Floridi, L. Crowdsourced science: sociotechnical epistemology in the e-research paradigm. Synthese 195, 741–764 (2018).MathSciNet 

    Google Scholar 
    Silvertown, J. et al. Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125–146 (2015).
    Google Scholar 
    Edgar, G. & Stuart-Smith, R. Ecological effects of marine protected areas on rocky reef communities — a continental-scale analysis. Mar. Ecol. Prog. Ser. 388, 51–62 (2009).ADS 

    Google Scholar 
    Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).
    Google Scholar 
    Johnson, N., Druckenmiller, M. L., Danielsen, F. & Pulsifer, P. L. The use of digital platforms for community-based monitoring. BioScience 71, 452–466 (2021).
    Google Scholar 
    Hochmair, H. H., Scheffrahn, R. H., Basille, M. & Boone, M. Evaluating the data quality of iNaturalist termite records. PLoS ONE 15, e0226534 (2020).
    Google Scholar 
    Torres, A.-C., Bedessem, B., Deguines, N. & Fontaine, C. Online data sharing with virtual social interactions favor scientific and educational successes in a biodiversity citizen science project. J. Responsible Innov. https://doi.org/10.1080/23299460.2021.2019970 (2022).Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27, 130–137 (2012).
    Google Scholar 
    Robinson, O. J., Ruiz-Gutierrez, V. & Fink, D. Correcting for bias in distribution modelling for rare species using citizen science data. Divers. Distrib. 24, 460–472 (2018).
    Google Scholar 
    Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).
    Google Scholar 
    Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves? PLoS ONE 10, e0139600 (2015).
    Google Scholar 
    Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 9, 88–97 (2018).
    Google Scholar 
    Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics 72, 649–658 (2016).MathSciNet 
    MATH 

    Google Scholar 
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    Google Scholar 
    Kelling, S., Yu, J., Gerbracht, J. & Wong, W.-K. Emergent filters: automated data verification in a large-scale citizen science project. In IEEE Seventh Int. Conf. on e-Science Workshops 20–27 (IEEE, 2011).Kelling, S. et al. Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).
    Google Scholar 
    Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).ADS 

    Google Scholar 
    Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).ADS 

    Google Scholar 
    Brashares, J. S. & Sam, M. K. How much is enough? Estimating the minimum sampling required for effective monitoring of African reserves. Biodivers. Conserv. 14, 2709–2722 (2005).
    Google Scholar 
    Andrianandrasana, H. T., Randriamahefasoa, J., Durbin, J., Lewis, R. E. & Ratsimbazafy, J. H. Participatory ecological monitoring of the Alaotra Wetlands in Madagascar. Biodivers. Conserv. 14, 2757–2774 (2005).
    Google Scholar 
    Jiguet, F., Devictor, V., Julliard, R. & Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44, 58–66 (2012).ADS 

    Google Scholar 
    Martin, G., Devictor, V., Motard, E., Machon, N. & Porcher, E. Short-term climate-induced change in French plant communities. Biol. Lett. 15, 20190280 (2019).
    Google Scholar 
    Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40, 281–295 (2017).
    Google Scholar 
    Gregory, R. D. et al. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269–288 (2005).
    Google Scholar 
    Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).
    Google Scholar 
    Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).
    Google Scholar 
    Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).
    Google Scholar 
    Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6, 1967–1976 (2016).
    Google Scholar 
    Desaegher, J., Nadot, S., Fontaine, C. & Colas, B. Floral morphology as the main driver of flower-feeding insect occurrences in the Paris region. Urban. Ecosyst. 21, 585–598 (2018).
    Google Scholar 
    Osenga, E. C., Vano, J. A. & Arnott, J. C. A community-supported weather and soil moisture monitoring database of the Roaring Fork catchment of the Colorado River Headwaters. Hydrol. Process. 35, e14081 (2021).
    Google Scholar 
    Ryan, S. F. et al. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 285, 20181977 (2018).
    Google Scholar 
    Paap, T., Wingfield, M. J., Burgess, T. I., Hulbert, J. M. & Santini, A. Harmonising the fields of invasion science and forest pathology. NeoBiota 62, 301–332 (2020).
    Google Scholar 
    Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012). This article gives a history account of the development of citizen science.
    Google Scholar 
    Clark, G. F. et al. A visualization tool for citizen-science marine debris big data. Water Int. 46, 211–223 (2021).
    Google Scholar 
    Gray, A., Robertson, C. & Feick, R. CWDAT — an open-source tool for the visualization and analysis of community-generated water quality data. ISPRS Int. J. Geo-Inf. 10, 207 (2021).
    Google Scholar 
    Hoyer, T., Moritz, J. & Moser, J. Visualization and perception of data gaps in the context of citizen science projects. KN J. Cartogr. Geogr. Inf. 71, 155–172 (2021).
    Google Scholar 
    Liu, H.-Y., Dörler, D., Heigl, F. & Grossberndt, S. in The Science of Citizen Science (eds Vohland, K. et al.) 439–459 (Springer International Publishing, 2021).Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).
    Google Scholar 
    Kobori, H. et al. Citizen science: a new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).
    Google Scholar 
    Clavero, M. & Revilla, E. Mine centuries-old citizen science. Nature 510, 35–35 (2014).ADS 

    Google Scholar 
    Kalle, R., Pieroni, A., Svanberg, I. & Sõukand, R. Early citizen science action in ethnobotany: the case of the folk medicine collection of Dr. Mihkel Ostrov in the territory of present-day Estonia, 1891–1893. Plants 11, 274 (2022).
    Google Scholar 
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017). This article highlights the magnitude of citizen science contributions to global biodiversity datasets.
    Google Scholar 
    Groom, Q., Weatherdon, L. & Geijzendorffer, I. R. Is citizen science an open science in the case of biodiversity observations? J. Appl. Ecol. 54, 612–617 (2017).
    Google Scholar 
    Cooper, C. B., Shirk, J. & Zuckerberg, B. The invisible prevalence of citizen science in global research: migratory birds and climate change. PLoS ONE 9, e106508 (2014).ADS 

    Google Scholar 
    Morales, C. L. et al. Does climate change influence the current and future projected distribution of an endangered species? The case of the southernmost bumblebee in the world. J. Insect Conserv. 26, 257–269 (2022).
    Google Scholar 
    Campbell, H. & Engelbrecht, I. The Baboon Spider Atlas — using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) diversity and distributions in southern Africa. Insect Conserv. Divers. 11, 143–151 (2018).
    Google Scholar 
    Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2021).
    Google Scholar 
    Croft, S., Chauvenet, A. L. M. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).
    Google Scholar 
    Hsing, P. et al. Economical crowdsourcing for camera trap image classification. Remote Sens. Ecol. Conserv. 4, 361–374 (2018).
    Google Scholar 
    Altwegg, R. & Nichols, J. D. Occupancy models for citizen-science data. Methods Ecol. Evol. 10, 8–21 (2019).
    Google Scholar 
    Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: the integration of citizen science and artificial intelligence. Animals 10, 132 (2020).
    Google Scholar 
    Hsing, P.-Y. et al. Citizen scientists: school students conducting, contributing to and communicating ecological research — experiences of a school–university partnership. Sch. Sci. Rev. 101, 67–74 (2020).
    Google Scholar 
    Degnan, L. MammalWeb citizen science wildlife monitoring. Vimeo https://vimeo.com/237565215 (2017).Hsing, P.-Y. et al. Large-scale mammal monitoring: the potential of a citizen science camera-trapping project in the UK. Ecol. Solut. Evid. (in the press).Chapman, H. Spotting wildlife helps teens cope with life in lockdown. The Northern Echo https://www.thenorthernecho.co.uk/news/18459359.spotting-wildlife-helps-teens-cope-life-lockdown/ (2020).McKie, R. How an army of ‘citizen scientists’ is helping save our most elusive animals. The Guardian https://www.theguardian.com/environment/2019/jul/28/britain-elusive-animals-fall-into-camera-trap-citizen-scientist (2019).Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).ADS 

    Google Scholar 
    Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).ADS 

    Google Scholar 
    Aparicio Camín, N., Comaposada, A., Paul, E., Maceda-Veiga, A. & Piera, J. Analysis of species richness in Barcelona beaches using a citizen science based approach (Sociedad Ibérica de Ecología, 2019).Chao, A., Colwell, R. K., Chiu, C. & Townsend, D. Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods Ecol. Evol. 8, 1221–1232 (2017).
    Google Scholar 
    Mominó, J. M., Piera, J. & Jurado, E. in Analyzing the Role of Citizen Science in Modern Research (eds Ceccaroni, L. & Piera, J.) 231–245 (IGI Global, 2017).Salvador, X. et al. Guia Participativa Marina del Barcelonès (Marcombo, 2021).Carayannis, E. G., Barth, T. D. & Campbell, D. F. The Quintuple Helix innovation model: global warming as a challenge and driver for innovation. J. Innov. Entrep. 1, 2 (2012).
    Google Scholar 
    Goodchild, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007).
    Google Scholar 
    Capineri, C. et al. European Handbook of Crowdsourced Geographic Information (Ubiquity Press, 2016).Skarlatidou, A. & Haklay, M. Geographic Citizen Science Design: No One Left Behind (UCL Press, 2021).Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).
    Google Scholar 
    Jeddi, Z. et al. Citizen seismology in the Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00139 (2020).Eurostat. LUCAS — Land use and land cover survey. eurostat https://ec.europa.eu/eurostat/statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (2021).Laso Bayas, J. et al. Crowdsourcing in-situ data on land cover and land use using gamification and mobile technology. Remote. Sens. 8, 905 (2016).ADS 

    Google Scholar 
    EU. Regulation (EU) 2016/679 Of The European Parliament And Of The Council, Article 5(c). EU https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).Danielsen, F. et al. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18, 41 (2013).
    Google Scholar 
    Boissière, M., Herold, M., Atmadja, S. & Sheil, D. The feasibility of local participation in measuring, reporting and verification (PMRV) for REDD. PLoS ONE 12, e0176897 (2017).
    Google Scholar 
    Walker, D. W., Smigaj, M. & Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. WIREs Water 8, e1488 (2021).
    Google Scholar 
    Danielsen, F. et al. Community monitoring of natural resource systems and the environment. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-012220-022325 (2022).Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00349 (2019).Shinbrot, X. A. et al. Quiahua, the first citizen science rainfall monitoring network in Mexico: filling critical gaps in rainfall data for evaluating a payment for hydrologic services program. Citiz. Sci. Theory Pract. 5, 19 (2020).
    Google Scholar 
    Little, K. E., Hayashi, M. & Liang, S. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54, 317–324 (2016).
    Google Scholar 
    Wolff, E. The promise of a “people-centred” approach to floods: types of participation in the global literature of citizen science and community-based flood risk reduction in the context of the Sendai Framework. Prog. Disaster Sci. 10, 100171 (2021).
    Google Scholar 
    Hauser, D. D. W. et al. Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environ. Res. Lett. 16, 095003 (2021).ADS 

    Google Scholar 
    Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).ADS 

    Google Scholar 
    Robles, M. C. et al. Clouds around the world: how a simple citizen science data challenge became a worldwide success. Bull. Am. Meteorol. Soc. 101, E1201–E1213 (2020).
    Google Scholar 
    Beeden, R. J. et al. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef. Environ. Monit. Assess. 186, 8527–8540 (2014).
    Google Scholar 
    Miller-Rushing, A. J., Gallinat, A. S. & Primack, R. B. Creative citizen science illuminates complex ecological responses to climate change. Proc. Natl Acad. Sci. USA 116, 720–722 (2019).
    Google Scholar 
    Kress, W. J. et al. Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68, 348–358 (2018).
    Google Scholar 
    Kirchhoff, C. et al. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 755, 142348 (2021).ADS 

    Google Scholar 
    Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
    Google Scholar 
    Soil Survey Staff, Natural Resources Conservation Service & USDA. Web soil survey. USDA https://websoilsurvey.nrcs.usda.gov/ (2019).Cooper, C. B., Hochachka, W. M. & Dhondt, A. A. in Citizen Science (eds Dickinson, J. L. & Bonney, R.) 99–113 (Cornell Univ. Press, 2012).Bastin, L., Schade, S. & Schill, C. in Mapping and the Citizen Sensor (eds Foody, G. et al.) 249–272 (Ubiquity Press, 2017).Resnik, D. B., Elliott, K. C. & Miller, A. K. A framework for addressing ethical issues in citizen science. Environ. Sci. Policy 54, 475–481 (2015). This article outlines basic considerations for ethical research practices in citizen science.
    Google Scholar 
    Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. Lond. B 268, 2473–2478 (2001).
    Google Scholar 
    Lotfian, M., Ingensand, J. & Brovelli, M. A. The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13, 8087 (2021).
    Google Scholar 
    Kissling, W. D. et al. Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs). Biodiversity 16, 99–107 (2015).
    Google Scholar 
    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
    Google Scholar 
    Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR principles for Indigenous data futures. Sci. Data 8, 108 (2021).
    Google Scholar 
    UKEOF Citizen Science Working. Data management planning for citizen science. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1406 (2020). This document provides advice about the development of data management plans.Hansen, J. S. et al. Research data management challenges in citizen science projects and recommendations for library support services. A scoping review and case study. Data Sci. J. 20, 25 (2021).
    Google Scholar 
    Croucher, M., Graham, L., James, T., Krystalli, A. & Michonneau, F. A guide to reproducible code. British Ecological Society https://www.britishecologicalsociety.org/publications/guides-to/ (2019).Parker, A., Dosemagen, S., Molloy, J., Bowser, A. & Novak, A. Open hardware: an opportunity to build better science. Wilson Center https://www.wilsoncenter.org/publication/open-hardware-opportunity-build-better-science (2021).Palmer, M. S., Dewey, J. & Huebner, S. Snapshot Safari educational materials. Libraries Digital Conservancy https://hdl.handle.net/11299/217102 (2020).Campbell, J., Bowser, A., Fraisl, D. & Meloche, M. in Data for Good Exchange (IIASA, 2019).Fraisl, D. et al. Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environ. Sci. Policy 128, 81–93 (2022).
    Google Scholar 
    Humm, C. & Schrögel, P. Science for all? Practical recommendations on reaching underserved audiences. Front. Commun. https://doi.org/10.3389/fcomm.2020.00042 (2020).Article 

    Google Scholar 
    Clary, E. G. & Snyder, M. The motivations to volunteer: theoretical and practical considerations. Curr. Dir. Psychol. Sci. 8, 156–159 (1999).
    Google Scholar 
    Hobbs, S. J. & White, P. C. L. Motivations and barriers in relation to community participation in biodiversity recording. J. Nat. Conserv. 20, 364–373 (2012).
    Google Scholar 
    Lukyanenko, R., Wiggins, A. & Rosser, H. K. Citizen science: an information quality research frontier. Inf. Syst. Front. 22, 961–983 (2020).
    Google Scholar 
    Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796 (2016).
    Google Scholar 
    Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution? Biodivers. Conserv. 29, 1767–1781 (2020).
    Google Scholar 
    Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in Citizen Science data reporting: implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS 

    Google Scholar 
    Cretois, B. et al. Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway. Ecol. Evol. 11, 15191–15204 (2021).
    Google Scholar 
    Haklay, M. E. in European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 35–44 (Ubiquity Press, 2016).Haklay, M. in Citizen Science (eds Haklay, M. et al.) 52–62 (UCL Press, 2018).Schade, S., Herding, W., Fellermann, A. & Kotsev, A. Joint statement on new opportunities for air quality sensing — lower-cost sensors for public authorities and citizen science initiatives. Res. Ideas Outcomes 5, e34059 (2019).
    Google Scholar 
    Moustard, F. et al. Using Sapelli in the field: methods and data for an inclusive citizen science. Front. Ecol. Evol https://doi.org/10.3389/fevo.2021.638870 (2021).Article 

    Google Scholar 
    Pettibone, L. et al. Transdisciplinary sustainability research and citizen science: options for mutual learning. GAIA — Ecol. Perspect. Sci. Soc. 27, 222–225 (2018).
    Google Scholar 
    Low, R., Schwerin, T. & Codsi, R. Citizen Science As A Tool For Transdisciplinary Research And Stakeholder Engagement (ESSOAr, 2020).Ottinger, G. in The Routledge Handbook of the Political Economy of Science (eds Tyfield, D., Lave, R., Randalls, S. & Thorpe, C.) 351–364 (Routledge, 2017).Rey-Mazón, P., Keysar, H., Dosemagen, S., D’Ignazio, C. & Blair, D. Public lab: community-based approaches to urban and environmental health and justice. Sci. Eng. Ethics 24, 971–997 (2018).
    Google Scholar 
    Brown, A., Franken, P., Bonner, S., Dolezal, N. & Moross, J. Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 36, S82–S101 (2016).
    Google Scholar 
    Pocock, M. J. O. et al. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56, 274–281 (2019).
    Google Scholar 
    Gollan, J., de Bruyn, L. L., Reid, N. & Wilkie, L. Can volunteers collect data that are comparable to professional scientists? A study of variables used in monitoring the outcomes of ecosystem rehabilitation. Environ. Manag. 50, 969–978 (2012).ADS 

    Google Scholar 
    van Noordwijk, T. C. G. E. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 373–395 (Springer International Publishing, 2021).Auerbach, J. et al. The problem with delineating narrow criteria for citizen science. Proc. Natl. Acad. Sci. USA 116, 15336–15337 (2019).
    Google Scholar 
    Gold, M., Wehn, U., Bilbao, A. & Hager, G. EU Citizen observatories landscape report II: addressing the challenges of awareness, acceptability, and sustainability. EU https://zenodo.org/record/4472670 (2020).WeObserve Consortium. Roadmap for the uptake of the citizen observatories’ knowledge base. WeObserve Consortium https://zenodo.org/record/4646774 (2021).UNECE. Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention). UNECE https://unece.org/fileadmin/DAM/env/pp/documents/cep43e.pdf (1998).UNECE. Draft updated recommendations on the more effective use of electronic information tools. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_E.pdf (2021).UNECE. Draft updated recommendations on the more effective use of electronic information tools, Addendum. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_Add.1_E.pdf (2021).UNEP. Measuring progress: environment and the SDGs. UNEP http://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs (2021).SDSN TReNDS. Strengthening measurement of marine litter in Ghana. How citizen science is helping to measure progress on SDG 14.1.1b. SDSN TReNDS https://storymaps.arcgis.com/stories/2622af0a0c7d4c709c3d09f4cc249f7d (2021).Goudeseune, L. et al. Citizen science toolkit for biodiversity scientists. biodiversa https://zenodo.org/record/3979343 (2020).Veeckman, C., Talboom, S., Gijsel, L., Devoghel, H. & Duerinckx, A. Communication in citizen science. A practical guide to communication and engagement in citizen science. SCivil https://www.scivil.be/sites/default/files/paragraph/files/2020-01/Scivil%20Communication%20Guide.pdf (2019).Durham, E., Baker, S., Smith, M., Moore, E. & Morgan, V. BiodivERsA: stakeholder engagement handbook. biodiversa https://www.biodiversa.org/702 (2014).WeObserve Consortium. WeObserve Cookbook. WeObserve Consortium https://zenodo.org/record/5493543 (2021).Danielsen, F. et al. Testing focus groups as a tool for connecting Indigenous and local knowledge on abundance of natural resources with science-based land management systems. Conserv. Lett. 7, 380–389 (2014).
    Google Scholar 
    Elliott, K. C., McCright, A. M., Allen, S. & Dietz, T. Values in environmental research: citizens’ views of scientists who acknowledge values. PLoS ONE 12, e0186049 (2017).
    Google Scholar 
    Yamamoto, Y. T. Values, objectivity and credibility of scientists in a contentious natural resource debate. Public. Underst. Sci. 21, 101–125 (2012).
    Google Scholar 
    Danielsen, F. et al. in Handbook of Citizen Science in Ecology and Conservation (eds Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F.) 25–29 (Univ. California Press, 2020).Eicken, H. et al. Connecting top-down and bottom-up approaches in environmental observing. BioScience 71, 467–483 (2021). This article highlights the benefits of linking community- and science/policy-led approaches.
    Google Scholar 
    Slough, T. et al. Adoption of community monitoring improves common pool resource management across contexts. Proc. Natl Acad. Sci. USA 118, e2015367118 (2021).
    Google Scholar 
    Wilderman, C. C., Barron, A. & Imgrund, L. Top down or bottom up? ALLARM’s experience with two operational models for community science. In 4th Natl Monitoring Conf. (National Water Quality Monitoring Council, 2004).Johnson, N. et al. Community-based monitoring and Indigenous knowledge in a changing Arctic: a review for the sustaining Arctic Observing Networks. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1314 (2016).Lau, J. D., Gurney, G. G. & Cinner, J. Environmental justice in coastal systems: perspectives from communities confronting change. Glob. Environ. Change 66, 102208 (2021).
    Google Scholar 
    Lyver, P. O. B. et al. An Indigenous community-based monitoring system for assessing forest health in New Zealand. Biodivers. Conserv. 26, 3183–3212 (2017).
    Google Scholar 
    Cuyler, C. et al. Using local ecological knowledge as evidence to guide management: a community-led harvest calculator for muskoxen in Greenland. Conserv. Sci. Pract. 2, e159 (2020).
    Google Scholar 
    Fox, J. A. Social accountability: what does the evidence really say? World Dev. 72, 346–361 (2015).
    Google Scholar 
    Wheeler, H. C. et al. The need for transformative changes in the use of Indigenous knowledge along with science for environmental decision-making in the Arctic. People Nat. 2, 544–556 (2020).
    Google Scholar 
    Storey, R. G., Wright-Stow, A., Kin, E., Davies-Colley, R. J. & Stott, R. Volunteer stream monitoring: do the data quality and monitoring experience support increased community involvement in freshwater decision making? Ecol. Soc. 21, art32 (2016).
    Google Scholar 
    Brofeldt, S. et al. Community-based monitoring of tropical forest crimes and forest resources using information and communication technology — experiences from Prey Lang, Cambodia. Citiz. Sci. Theory Pract. 3, 4 (2018).
    Google Scholar 
    Menton, M. & Le Billon, P. Environmental Defenders: Deadly Struggles For Life And Territory (Routledge, 2021).Eastman, L. B., Hidalgo-Ruz, V., Macaya-Caquilpán, V., Núñez, P. & Thiel, M. The potential for young citizen scientist projects: a case study of Chilean schoolchildren collecting data on marine litter. J. Integr. Coast. Zone Manag. 14, 569–579 (2014).
    Google Scholar 
    Hidalgo-Ruz, V. & Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar. Environ. Res. 87–88, 12–18 (2013).
    Google Scholar 
    Kruse, K., Kiessling, T., Knickmeier, K., Thiel, M. & Parchmann, I. in Engaging Learners with Chemistry (eds Ilka P., Shirley S. & Jan A.) 225–240 (Royal Society of Chemistry, 2020).Wichman, C. S. et al. Promoting pro-environmental behavior through citizen science? A case study with Chilean schoolchildren on marine plastic pollution. Mar. Policy 141, 105035 (2022).
    Google Scholar 
    Bravo, M. et al. Anthropogenic debris on beaches in the SE Pacific (Chile): results from a national survey supported by volunteers. Mar. Pollut. Bull. 58, 1718–1726 (2009).
    Google Scholar 
    Hidalgo-Ruz, V. et al. Spatio-temporal variation of anthropogenic marine debris on Chilean beaches. Mar. Pollut. Bull. 126, 516–524 (2018).
    Google Scholar 
    Honorato-Zimmer, D. et al. Mountain streams flushing litter to the sea — Andean rivers as conduits for plastic pollution. Environ. Pollut. 291, 118166 (2021).
    Google Scholar 
    Amenábar Cristi, M. et al. The rise and demise of plastic shopping bags in Chile — broad and informal coalition supporting ban as a first step to reduce single-use plastics. Ocean. Coast. Manag. 187, 105079 (2020).
    Google Scholar 
    Kiessling, T. et al. Plastic Pirates sample litter at rivers in Germany — riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 245, 545–557 (2019).
    Google Scholar 
    Kiessling, T. et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Total. Environ. 789, 147849 (2021).ADS 

    Google Scholar  More