More stories

  • in

    Effects of vegetation spatial pattern on erosion and sediment particle sorting in the loess convex hillslope

    Zhao, B. H. et al. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau China. Geoderma 296, 10–17 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Shi, P. et al. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau China. Sci. Total Environ. 707, 135507 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Zhang, Y. et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma 351, 188–196 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chang, E. H. et al. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau China. CATENA 181, 104095 (2019).Article 

    Google Scholar 
    Chang, E. H. et al. The impact of vegetation successional status on slope runoff erosion in the Loess Plateau of China. Water 11, 2614 (2019).CAS 
    Article 

    Google Scholar 
    Sun, L. Y., Zhou, J. L., Cai, Q. G., Liu, S. X. & Xiao, J. G. Comparing surface erosion processes in four soils from the Loess Plateau under extreme rainfall events. Int. Soil Water Conse. 9, 520–531 (2021).Article 

    Google Scholar 
    Wang, R. et al. Effects of gully head height and soil texture on gully headcut erosion in the Loess Plateau of China. CATENA 207, 105674 (2021).Article 

    Google Scholar 
    Wei, H., Zhao, W. W. & Wang, H. Effects of vegetation restoration on soil erosion on the Loess Plateau: A case study in the Ansai watershed. Int. J. Environ. Res. Pub He. 18, 6266 (2021).Article 

    Google Scholar 
    Zhang, X., Li, P., Li, Z. B., Yu, G. Q. & Li, C. Effects of precipitation and different distributions of grass strips on runoff and sediment in the loess convex hillslope. CATENA 162, 130–140 (2018).Article 

    Google Scholar 
    Foster, G. R., Huggins, L. F. & Meyer, L. D. A laboratory study of rill hydraulics: II Shear Stress Relationships. T Asabe. 27, 797–804 (1984).Article 

    Google Scholar 
    Zhu, B. B., Zhou, Z. C. & Li, Z. B. Soil erosion and controls in the slope-gully system of the Loess Plateau of China: A review. Front. Environ. Sci. 9, 657030 (2021).Article 

    Google Scholar 
    Wang, H., Wang, J. & Zhang, G. H. Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China. CATENA 201, 105235 (2021).Article 

    Google Scholar 
    Chang, X. G. et al. Determining the contributions of vegetation and climate change to ecosystem WUE variation over the last two decades on the Loess Plateau China. Forests 12, 1442 (2021).Article 

    Google Scholar 
    Li, B. B. et al. Deep soil moisture limits the sustainable vegetation restoration in arid and semi-arid Loess Plateau. Geoderma 399, 115122 (2021).ADS 
    Article 

    Google Scholar 
    Dong, L. B. et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manage. 302, 113985 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi, P. et al. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau China. Agric. Water Manage. 259, 107231 (2022).Article 

    Google Scholar 
    Xia, L. et al. Soil moisture response to land use and topography across a semi-arid watershed: Implications for vegetation restoration on the Chinese Loess Plateau. J. Mt Sci. 19, 103–120 (2022).Article 

    Google Scholar 
    Chen, Y. X. et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau China. Appl. Soil Ecol. 170, 104292 (2022).Article 

    Google Scholar 
    Qiu, L. J. et al. Quantifying spatiotemporal variations in soil moisture driven by vegetation restoration on the Loess Plateau of China. J. Hydrol. 600, 126580 (2021).Article 

    Google Scholar 
    Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    Hu, C. J., Fu, B. J., Liu, G. H., Jin, T. T. & Guo, L. Vegetation patterns influence on soil microbial biomass and functional diversity in a hilly area of the Loess Plateau China. J. Soil Sedim. 10, 1082–1091 (2010).CAS 
    Article 

    Google Scholar 
    Sun, C. L., Chai, Z. Z., Liu, G. B. & Xue, S. Changes in species diversity patterns and spatial heterogeneity during the secondary succession of grassland vegetation on the Loess Plateau China. Front. Plant Sci. 8, 1465 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, J. X. Threholds in vegetation-precipitation relationship and the implications in restoration of vegetation on the Loesee Plateau China. Acta Ecol. Sin. 25, 1233–1239 (2005).
    Google Scholar 
    Yang, X., Shao, M. A., Li, T. C. G, M. & Chen, M. Y. Community characteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau. Ecol. Indic. 122, 107236 (2021).Bullock, M. S., Nelson, S. D. & Kemper, W. D. Soil cohesion as affected by freezing, water content, time and tillage. Soil Sci. Soc. Am. J. 52, 70–776 (1988).Article 

    Google Scholar 
    Wang, T. et al. Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall. J. Arid Land. 9, 34–243 (2017).
    Google Scholar 
    Su, Y. Y., Li, P., Ren, Z. P., Xiao, L. & Zhang, H. Freeze–thaw effects on erosion process in loess slope under simulated rainfall. J. Arid Land. 12, 937–949 (2020).Article 

    Google Scholar 
    Slattery, M. C. & Burt, T, P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow. Earth Surf. Proc. Land. 22, 705–719 (1997).Wu, F. Z., Shi, Z. H., Yue, B. J. & Wang, L. Particle characteristics of sediment in erosion on hillslope. Acta Pedol. Sin. 49, 1235–1240 (2012).
    Google Scholar 
    Issa, O. M., Bissonnais, Y. L. & Planchon, O. Soil detachment and transport on field-and laboratory-scale interrill areas: Erosion processes and the size-selectivity of eroded sediment. Earth Surf. Proc. Land. 31, 929–939 (2006).ADS 
    Article 

    Google Scholar 
    Shi, Z. H. et al. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J. Hydrol. 454–455, 123–130 (2012).Article 

    Google Scholar 
    Koiter, A. J., Owens, P. N. & Petticrew, E. L. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci. Rev. 125, 24–42 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, C. Z. & Shang, G. Z. P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. J. Hydrol. 331, 178–185 (2006).ADS 
    Article 

    Google Scholar 
    Pan, C. Z. & Shang, G. Z. P. The effects of ryegrass roots and shoots on loess erosion under simulated rainfall. CATENA 2007(70), 350–355 (2007).
    Google Scholar 
    Zheng, M. G., Cai, Q. G., Wang, C. F. & Liu, J. G. Effect of vegetation and other measures for soil and water conservation on runoff-sediment relationship in watershed scale. J. Hydraul. Eng. 38, 47–53 (2007).
    Google Scholar 
    Wei, X. et al. Flow characteristics of convex composite slopes of loess under vegetation cover. Trans. Chin. Soc. Agric. Eng. 30, 147–154 (2014).CAS 

    Google Scholar 
    Wang, L. et al. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau China. J. Hydrol. 512, 168–176 (2014).ADS 
    Article 

    Google Scholar 
    Li, M., Yao, W. Y., Ding, W. F., Yang, J. F. & Chen, J. N. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system. J. Geogr. Sci. 19, 321–330 (2009).Article 

    Google Scholar 
    Benito, E., Santiago, J. L., Blas, E. D. & Varela, M. E. Deforestation of water-repellent soils in Galicia (NW Spain): Effects on surface runoff and erosion under simulated rainfall. Earth Surf. Proc. Land. 28, 145–155 (2003).ADS 
    Article 

    Google Scholar 
    Han, P. & Li, X. X. Study on soil erosion and vegetation effect on soil conservation in the Yellow River Basin. J. Basic Sci. Eng. 16, 181–190 (2008).
    Google Scholar 
    Bissonnais, Y. L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47, 425–437 (1996).Zhang, X., Yu, G. Q., Li, Z. B. & Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 28, 2415–2433 (2014).Article 

    Google Scholar 
    Xu, G. C. et al. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau China. CATENA 158, 20–29 (2017).Article 

    Google Scholar 
    Yu, Y. et al. Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China. J. Soil Sedim. 17, 144–156 (2017).CAS 
    Article 

    Google Scholar 
    Dou, Y. X., Yang, Y., An, S. S. & Zhu, Z. L. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau China. CATENA 185, 104294 (2020).CAS 
    Article 

    Google Scholar 
    He, J., Shi, X. Y. & Fu, Y. J. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manage. 289, 112562 (2021).PubMed 
    Article 

    Google Scholar 
    Qiu, D. X., Gao, P., Mu, X. M. & Zhao, B. L. Vertical variations and transport mechanism of soil moisture in response to vegetation restoration on the Loess Plateau of China. Hydrol. Process. 35, e14397 (2021).
    Google Scholar 
    Zhang, G. H., Liu, G. B., Wang, G. L. & Wang, Y. X. Effects of Vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere 21, 676–684 (2011).CAS 
    Article 

    Google Scholar 
    Gu, Z. J. et al. Estimating the effect of Pinus massoniana Lamb plots on soil and water conservation during rainfall events using vegetation fractional coverage. CATENA 109, 225–233 (2013).Article 

    Google Scholar 
    Comprehensive analysis of relationship between vegetation attributes and soil erosion on hillslopes in the Loess Plateau of China. Environ Earth Sci. 72, 1721–1731 (2014).Zhao, G. J., Mu, X. M., Wen, Z. M., Wang, F. & Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad. Dev. 24, 499–510 (2013).Article 

    Google Scholar 
    Zhang, L., Wang, J. M., Bai, Z. K. & Lv, C. J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. CATENA 128, 44–53 (2015).Article 

    Google Scholar 
    Wei, W., Pan, D. L. & Feng, J. Tradeoffs between soil conservation and soil-water retention: The role of vegetation pattern and density. Land Degrad. Dev. 33, 18–27 (2021).Article 

    Google Scholar 
    Asadi, H., Ghadiri, H., Rose, C. W., Yu, B. & Hussein, J. An investigation of flow-driven soil erosion processes at low streampowers. J. Hydrol. 342, 134–142 (2007).ADS 
    Article 

    Google Scholar 
    Shi, Z. H., Yan, F. L., Li, L., Li, Z. X. & Cai, C. F. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. CATENA 81, 240–248 (2010).Article 

    Google Scholar 
    Zhou, J. et al. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau China. CATENA 137, 1–11 (2016).Article 

    Google Scholar 
    Han, Z. M. et al. Effects of vegetation restoration on groundwater drought in the Loess Plateau China. J. Hydrol. 591, 125566 (2020).Article 

    Google Scholar 
    Liang, Y., Jiao, J. Y., Tang, B. Z., Cao, B. T. & Li, H. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region China. J. Hydrol. 584, 124694 (2020).Article 

    Google Scholar  More

  • in

    Predicting the potential for zoonotic transmission and host associations for novel viruses

    Data collectionVirus-host data was collated from various sources. Major sources for the association databases included data shared by Olival et al4., Pandit et al.3, and Johnson et al.13. In data provided by Olival et al (assessed September 2019), host-virus associations have been assigned a score, based on detection methods and tests that are specific and more reliable. We used associations that have been identified as the most reliable (stringent data) from Olival et al4. In addition, a query in GenBank was run to parse out hosts reported for each GenBank submission for viruses presented in each of these three databases. Initially, for each virus name, taxonomic ID was identified using entrez.esearch function in biopython package. The taxonomic ID helped linked to the GenBank databases, identify the ICTV lineage and associated data in PubMed20,21. NCBI TaxID closely follows the ICTV database, but some recent changes in ICTV might not always be reflected in NCBI, so we manually checked names to ensure matching. This included virus genus and family information along with a standard virus name. Host data were aggregated based on the taxonomic ID and associated standard name. Finally, for each virus, a search was completed in PubMed to compile the number of hits related to the virus and their vertebrate hosts using the search terms below. The number of PubMed hits (PMH1) were used as a proxy for sampling bias3,13. The virus-host association data source is presented in supplementary code and data files (https://zenodo.org/record/5899054).$$ searchterm= (+virus_name+,[Title/Abstract])\ ANDleft(host,OR,hosts,OR,reservoir,OR,reservoirs,OR right.\ wild,OR,wildlife,OR,domestic,OR,animal,OR,animals,OR\ mammal,OR,bird,OR,birds,OR,aves,OR,avian,OR,avians\ left. OR,vertebrate,OR,vertebrates,OR,surveillance,OR,sylvaticright)$$Along with the PubMed terms we also queried the nucleotide database on PubMed using the taxonomic ID to find the number of GenBank entries for these viruses (PMH2). A correlation analysis between the PMH1 and PMH2 of well-recognized known viruses showed a high correlation with each other for us to safely use GenBank hits for novel viruses during the prediction stage of the model (Fig. S32).Development of ({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}})
    a. Centrality measures of observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}}))To test if centrality measures (degree centrality, betweenness centrality, eigenvector centrality, clustering coefficient) for viral nodes in the observed network (({G}_{c})) vary significantly between viral families, we firstly used the Kolmogorov-Smirnov (KS) test. KS test is routinely used to identify distances between cumulative distribution functions of two probability distributions and is largely used to compare degree distributions of networks22,23. For each viral family, distributions of centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) and clustering coefficient within the observed network (({G}_{c})) were compared with the distribution of all nodes in the network using the two-tailed KS test. Secondly, a linear regression model with virus family as a categorical variable and the number of PubMed hits as a covariate to adjust for sampling bias were fitted to understand associations of viral families with centrality measures.$${centrality},{measure}={beta }_{0}{intercept}+{{beta }_{1}{Viral}{family}}_{{categorical}}+{beta }_{2}{PubMed},{hits}$$After fitting the model, node-level permutations were implemented. For each random permutation, the output variable was randomly assigned to covariate values and the model was re-fitted. Finally, a p-value was calculated by comparing the distribution of coefficients from permutations with the original model coefficient.Network topology feature selectionUsing the observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}})), multiple network topological features for all node (virus) pairs were calculated. The following are topological network features calculated. Features data type, definition and methods to calculate these features are presented in Table S3.1. The Jaccard coefficient: a commonly used similarity metric between nodes in information retrieval, is also called an intersection of over the union for two nodes in the network. In the unipartite network generated here, it represents the proportion of common neighbor viruses from the union of neighbor viruses for two nodes. Neighbor viruses are defined as viruses with which the virus shares at least a single host.2. Adamic/Adar (Frequency-Weighted Common Neighbors): Is the sum of inverse logarithmic degree centrality of the neighbors shared by two nodes in the network24. The concept of Adamic Adar index is a weighted common neighbors for viruses in the network. Within network prediction, the index assumes that viruses with large neighborhoods have a less significant impact while predicting a connection between two viruses compared with smaller neighborhoods.Both Jaccard and Adamic Adar coefficients have been routinely used for generalized network prediction and have shown high accuracy in predicting missing links in networks, specifically bipartite networks25, the information flowing through neighborhoods formed by two nodes might not always be enough to have similar predictive power in an unipartite network. This warrants use of other topology features along with neighborhood-based features.3. Resource allocation: Similarity score of two nodes defined by the weights of common neighbors of two nodes. Resource allocation is another measure to quantify the closeness of two nodes in the network and hence to understand the similarity of hosts they infect.4. Preferential attachment coefficients: The mechanism of preferential attachment can be used to generate evolving scale-free networks, where the probability that a new link is connected to node x is proportional to k26.5. Betweenness centrality: For a node in the network betweenness centrality is the sum of the fraction of all-pairs shortest paths that pass through it. The feature that we used for training the supervised learning model was the absolute difference between of betweenness centralities of two nodes. The difference between the betweenness centrality represents the difference in the sharing observed by two viruses in the pair.6. Degree centrality: The degree centrality for a node v is the fraction of nodes it is connected to. The feature that we used for training the supervised learning model was the absolute difference between degree centralities of two nodes. Unlike the difference in the betweenness centrality, the difference in degree centrality only looks at the difference in the number of observed host sharing.7. Network clustering: All nodes were classified into community clusters using Louvain methods27. A binary feature variable was generated to describe if both the nodes in the pair were part of the same cluster or not. If both viruses are from the same cluster, it represents a similar host predilection than when both viruses are not from the same cluster hence accounting for the evolutionary predilection of viruses (or virus families) to infect a certain type of host.These topological network characteristics come with certain limitations when it comes to the unipartite network of viruses with links formed due to shared hosts and might not truly represent the flow of information between nodes as compared to a bipartite network. Therefore, to account for these limitations, we use multiple network features as weak learners in our model building characteristics summarizing the network through the use of several quantitative metrics. In addition to this, we estimated the feature importance of these metrics in predicting missing links between viruses to quantify the information pasting through these links.Pearson’s correlation coefficients were calculated to identify highly correlated features and for choosing features for model training (Fig. S33). Virological features included in model training were categorical variables describing the virus family of both the nodes in the pair, followed by a binary variable if both the viruses belong to the same virus family. During the model development, PubMed hits generated three predictive features for each pair of viruses on which model training and predictions were conducted. These included two features representing PubMed hits for the two viruses in the pair (PubMedV1, PubMedV2) and the absolute difference between PubMedV1 and PubMedV2 to account for differences in sampling bias between the two viruses.Cross-validation and fitting generalized boosting machine (GBMs) modelsA nested-cross-validation was implemented for the binary model while simple cross-validation was implemented for the multiclass model (multiple output categories). The parameters of the binary model were first hyper-tuned using a cross-validated grid-search method. Values were tested using a grid search to find the best-performing model parameters that showed the highest sensitivity (recall). The parameters tested for hypertuning and their performance are provided in the supplementary material (supplementary results and Table S5). For further cross-validation of the overall binary model, all the viruses were randomly assigned to five groups. For each fold, the viruses assigned to a group were dropped from the data, and a temporary training network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{t}}}}}}}{{{{{boldsymbol{)}}}}}}) was constructed, assuming that this represented the current observed status of the virus-host community. For all possible pairs in ({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{t}}}}}}}) (both that sharing and not sharing any hosts) ten topological and viral characteristics were calculated as training features (Table S4). Categorical features were one-hot-encoded and numeric features were scaled. An XGBClassifier model with binary: logistic family was trained using the feature dataset to predict if virus pairs share hosts (1,0 encoded output). The cross-validation was also used to determine the optimum decision threshold for determining binary classification (Fig. S6) and a precision-recall curve was used to identify positive predictive value and sensitivity at the optimum threshold (Fig. S8).The multiclass model was implemented in the same way, creating an observed network (({G}_{c})) based on species-level sharing of hosts and randomly dropping viruses to generate a training network (({G}_{t})) to train the XGboost model. The output variables were generated based on the taxonomical orders of shared hosts. A pair of viruses can share multiple hosts, hence we trained a multioutput-multiclass model. Humans were considered an independent category of taxonomical order (label) and were given a separate label from primates. For fine-tuning the multiclass model, we started with the best performing parameters of the binary model and manually tested 5 combinations of model parameters by adjusting values of the learning rate, number of estimators, maximum depth, and minimum child weight (Supplementary code and results).We used three methods to estimate the importance of features for our binary model. Specifically, improvement in accuracy brought by branching based on the feature (gain), the percentage of times the feature appears in the XGboost tree model (weight), and the relative number of observations related to the specific feature (cover). Results for feature importance are shown in supplementary results (Fig. S10).Missing links for novel viruses, binary and multiclass predictionThe wildlife surveillance data represented a sampling of 99,379 animals (94,723 wildlife, 4656 domesticated animals) conducted in 34 countries around the world between 2009–2019 (Table S6)1. Specimens were tested using conventional Rt-PCR, Quantitative PCR, Sanger sequencing, and Next Generation Sequencing protocols to detect viruses from 28 virus families or taxonomic groups (Table S7). Testing resulted in 951 novel monophyletic clusters of virus sequences (referred to as novel viruses henceforth). Within 951 novel viruses, 944 novel viruses had vertebrate hosts that were identified with certainty based on barcoding methods and field identification. Host species identification was confirmed by cytochrome b (cytb) DNA barcoding using DNA extracted from the samples28. We predicted the shared host links between novel viruses and known viruses using binary and multiclass models in the following steps. Out of 944 novel viruses discovered in the last ten years, we were able to generate predictions for 531 novel viruses that were detected in species already classified as hosts within the network. The remaining 413 viruses were the first detection of any virus in that species and thus host associations could not be informed by the observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{C}}}}}}})) data.1. A new node representing the novel virus was inserted in the observed network (({{{{{{boldsymbol{G}}}}}}}_{{{{{{boldsymbol{c}}}}}}})). Using the list of species in which the novel virus was detected, new edges were created with known viruses that are also known to be found in those hosts. This generated a temporary network for the novel virus (({{{{{{boldsymbol{G}}}}}}}_{{temp}})). If the novel virus was not able to generate any edges with known viruses, meaning the host in which they have been found was never found positive for any known virus, predictions were not performed.2. Using ({{{{{{boldsymbol{G}}}}}}}_{{temp}}) feature values were calculated for the novel virus (betweenness centrality, clustering, and degree). For all possible pairs of the novel virus with known viruses that are not yet connected with each other through an edge in ({{{{{{boldsymbol{G}}}}}}}_{{temp}}) a feature dataset was generated (Jaccard coefficient(novel virus, known virus), the difference in betweenness centrality of the novel virus and known virus, if the novel virus and known virus were in the same cluster, the difference in degree centrality(novel virus, known virus), if the novel virus and known virus were from same virus family, the difference in PubMed hits(novel virus, known virus), PubMed hits for the novel virus, PubMed hits for the known virus). Studies and nucleotide sequences for novel viruses are expected to be published and shared on PubMed’s Nucleotide database and in various peer-reviewed publications. Data associated with GenBank accession numbers and nucleotide sequences for novel viruses are presented in Supplementary Data 3 and Supplementary Data 4 respectively. At the time of development of the model, data for all viruses was not shared in a format that would reflect on PubMed’s database, we decided to use the number of unique species the virus was detected in the last ten years of wildlife surveillance conducted by the USAID PREDICT project. These detections will be reflected in PubMed’s Nucleotide database and search term eventually, hence we considered them as a proxy for search terms conducted for known viruses. Currently, evaluation of the effects of this substitution of PubMed hits with the number of detections for novel viruses is not possible with limited data on novel viruses but needs to be reevaluated as more studies are published on these novel viruses. To further evaluate the association between PubMed hits through search term and Genbank hits, we ran a generalized linear regression model with PubMed hits as dependent variable and Genbank hits as intendent variable, accounting for virus families.$${{PubMed}}_{{Search}}left({log }right)={beta }_{0}{intercept}+{{beta }_{1}{Virus}{family}}_{{categorical}}+{beta }_{2}{Genbank},{hits},({log })$$The results indicated that Genbank hits had statistically significant predictive value in predicting PubMed hits (β = 0.72, p  More

  • in

    Permian hypercarnivore suggests dental complexity among early amniotes

    All vertebrates examined in this study and histologically sampled (Supplementary Table 1) exhibit polyphyodonty and dentine growth lines (Figs. 2–4 and Supplementary Figs. 2–9) that are morphologically consistent with the incremental lines of von Ebner of extant mammalian and crocodilian teeth: alternating opaque zones, line trajectories paralleling the pulp cavity, and widths ranging between 1 and 30 mm18. All functional teeth were continuously replaced through the development of the replacement tooth, lingual to the functional tooth, resulting in resorption of its base and shedding.Fig. 2: Incremental lines of Mesenosaurus efremovi.a ROMVP 85502, lingual view of fragmented dentary with dashed red lines through the plane of the LL section of the functional and replacement teeth. b Whole view of tooth family LL section near crown apex. c Closeup view of functional tooth LL cross-section showing incremental lines, white arrows. d Closeup view of replacement tooth TR cross-section showing incremental lines, white arrows.Full size imageFig. 3: Incremental lines of Dimetrodon cf. D. limbatus.a Lateral view of Dimetrodon. b ROMVP 85510, maxillary tooth family, photographed in lingual view showing the plane of LL section through the functional tooth and replacement tooth. c Whole view of longitudinal LL section near the crown apex of functional and replacement tooth. d Closeup view of functional tooth LL cross-section showing incremental lines, white arrows. e Closeup view of replacement tooth LL cross-section showing incremental lines, white arrows. Skull drawing was modified from Reisz42 and Brink and Reisz43.Full size imageFig. 4: Incremental lines of Edaphosaurus sp.a Lateral view of Edaphosaurus. b USNM PAL 706602, maxillary tooth family, photographed in lingual view showing the plane of LL section through the functional tooth and replacement tooth. c Whole view of longitudinal LL section near crown apex of functional and replacement tooth. d Closeup view of functional tooth LL cross-section showing incremental lines, white arrows. Skull drawing was modified from Romer and Price41 and Modesto44.Full size imageReplacement pattern in Mesenosaurus efremovi
    Replacement in the gracile predator Mesenosaurus efremovi from the Richards Spur locality (Fig. 1) appears to occur as a wave in alternating tooth positions, with every other functional tooth in a sequence undergoing replacement during one event. Gaps in the tooth row represent stages in the replacement cycle when the old tooth has been shed, but the replacement tooth has not yet become functional and is not ankylosed to the jawbone. Frequently, these small replacement teeth are lost during fossilization, but in the case of the Dolese Mesenosaurus, preservation is so exquisite that these unattached replacement teeth are preserved, often in place (Fig. 1e). We found that numerous specimens of M. efremovi have tooth families containing a functional tooth and a single replacement tooth lingual to it, but one maxilla (ROMVP 85456) was observed to have a tooth family containing a functional tooth and two successive replacement teeth (Fig. 1c).The replacement rate found in one tooth family within an M. efremovi dentary was 39 days (ROMVP 85502; Fig. 2), and 34 days for the left maxilla (ROMVP 85443; Supplementary Fig. 2). Replacement rates of three tooth families (mx10, mx12, and mx15) for ROMVP 85457 were estimated to be 46, 36, and 35 days. Thus, the replacement rate for M. efremovi does not appear to vary significantly in one specimen across tooth position, size, or ontogenetic age of tooth.Replacement pattern in other synapsidsIn contrast to the availability of many Mesenosaurus specimens for destructive sampling, other taxa are exceedingly rare, and few specimens were available for destructive analysis. Thus, only a single maxilla of the apex predator Dimetrodon with a replacement tooth in position was available (Fig. 3). The functional tooth had a total of 459 incremental lines, whereas the replacement tooth had a total of 354 lines, resulting in a replacement rate of 105 days. In contrast, the maxillary tooth for the basal sphenacodont Haptodus, was calculated to have functional tooth longevity of approximately 152 days and since neither a replacement tooth nor a resorption pit was present, the minimum replacement rate is 152 days.Similarly, relatively little material was available for the larger varanopid predator Watongia meieri which is only known from the holotype material, with a resorption pit on one of the two teeth (mx19) on a maxillary fragment, but both teeth were missing the crown apex; thus, only a minimum age could be determined using the incremental line counts. The tooth with the resorption pit was determined to be a minimum of 81 days old, while the adjacent tooth not in the process of being replaced was approximately 68 days old. A second maxillary tooth with a resorption pit at mx18 was determined to be 145 days old. Additionally, one complete tooth with no resorption pit was longitudinally LL sectioned and estimated to be 108 days old.One maxilla of the small, very rare herbivorous caseid Oromycter was available for destructive sampling (Supplementary Fig. 3). The tooth with a resorption pit in position mx07 was determined to have a total of 506 incremental lines, whereas the tooth without a resorption pit (mx09) had a total of 426 incremental lines. For the mx09 tooth family, the missing replacement tooth was estimated to have 115 incremental lines, resulting in an approximate replacement rate of 391 days.The left dentary of the large herbivorous caseid Ennatosaurus, known only from five specimens, exhibited two posterior teeth with resorption pits on positions d08 and d07 (Supplementary Fig. 4). Tooth position d08 had a visibly larger and more developed resorption pit, with the functional tooth having a total of 628 incremental lines, whereas d07 had a smaller resorption pit and a total of 567 incremental lines. The missing replacement teeth for both d07 and d08 were estimated to have 136 and 169 incremental lines, resulting in a replacement rate of approximately 431 and 459 days, respectively.One maxilla of the herbivorous edaphosaurid Edaphosaurus had a resorption pit at tooth position mx09 (Fig. 4) and was estimated to have a total of 506 incremental lines. The adjacent tooth at position mx10 had no resorption pit and was determined to have a total of 429 lines. For the mx09 tooth family, the missing replacement tooth was estimated to have 131 incremental lines, resulting in a replacement rate of 381 days.Replacement pattern in early and extant reptilesFor the insectivorous parareptile Delorhynchus the functional tooth had a total of 147 incremental lines, while the replacement tooth had 43 lines (Supplementary Fig. 5), resulting in a replacement rate of 104 days. For the other parareptile Colobomycter the premaxillary functional tooth had a total of 157 incremental lines, whereas the replacement tooth had a total of 59 lines, resulting in a replacement rate of 98 days (Supplementary Fig. 6). For the omnivorous eureptile Captorhinus, the functional tooth was 146 days, and the replacement tooth was 69 days, resulting in a replacement rate of approximately 77 days. For the other eureptile, the highly specialized insectivore Opisthodontosaurus, the maximum tooth age for positions d04 to d07 was 151, 155, 206, and 258, respectively (Supplementary Fig. 7). Although no replacement teeth were present, it was possible to use the resorption pit heights to estimate the replacement rates of 182 and 193 days for d06 and d07, respectively. These rates, although different from Captorhinus are not unexpected since this small, close relative of Captorhinus has a very odd, unusual dentition, specialized for feeding on harder shelled invertebrates.In addition to the above Paleozoic amniotes, two skulls were examined for the extant varanid lizards, Varanus bengalensis and Varanus komodoensis, as well as shed teeth of the latter were also available for study and comparison. The maxillary bone of Varanus bengalensis carried dentition showing six replacement events, but only the mx04 tooth position was sectioned. The functional tooth was determined to have 188 incremental lines, and since a continuous record for the replacement tooth’s incremental lines was not visible, the replacement rate was estimated based on its entire dentine area divided by the functional tooth’s mean line width. The estimated replacement rate for V. bengalensis was approximately 110 days. Unlike M. efremovi, the base of the teeth is characterized by plicidentine, and neither tooth serrations (ziphodonty; Supplementary Fig. 8) nor resorption pits were observed for V. bengalensis.Similar to Mesenosaurus, Varanus komodoensis, a highly endangered varanid lizard, exhibits ziphodonty on both the mesial and distal tooth surfaces and provides a valuable comparison with the fossil taxon. Two isolated teeth of an adult individual that were in the process of attachment, but not yet ankylosed with the jawbone, were sectioned. The age of the first tooth was determined to have 106 lines, and the second tooth had approximately 135 lines. A third isolated shed tooth (due to resorption from replacement tooth or from the processing of food)29 provided by the Toronto Zoo was determined to have approximately 227 incremental lines. Thus, from the age of initial tooth attachment to the age of shedding, a tooth appears to be functional for an average of 107 days. Additionally, as in Mesenosaurus, the adult skull of V. komodoensis (ROM R7565) showed that each tooth position exhibited multiple replacement teeth for both the dentary and the maxilla, also confirmed by the data from Auffenberg30.Replacement pattern in a stem amnioteFor the representative carnivorous stem amniote Seymouria (Supplementary Fig. 9) the functional tooth was determined to have a maximum of 171 incremental lines, while the missing replacement tooth was estimated to have had approximately 36 lines. Thus, the estimated replacement rate for Seymouria was calculated to be 135 days.Replacement rate and body massThere seems to be no significant relationship between replacement rate and body mass (kg) for the taxa examined (Supplementary Fig. 10). Although the largest body sized taxon Ennatosaurus had the longest replacement rate, but the other large species had varying rates, while the smallest taxa (Captorhinus, Delorhynchus, Colobomycter, and Opisthodontosaurus) all have varying replacement rates. Instead, replacement rates appear to be related to feeding behaviour since the herbivorous synapsids all exhibited long replacement rates and great tooth longevities (Fig. 5).Fig. 5: Rates of tooth replacement and age across a range of taxa.a Relationship between the total number of incremental lines of von Ebner (age) for the functional tooth and the tooth families replacement rate or period (days). The symbols indicate the type of feeding behaviour, with circles representing carnivory, triangles representing herbivory, square representing insectivory, and diamond representing omnivory. b Phylogenetic tree of all taxa (n = 11) used in the analyses, displaying the age in millions of years ago (length of bars) and tooth longevity (gradient in branch colours). c Phylogenetic tree of all taxa (n = 9) used in the analyses, displaying the age in millions of years ago (mya) (length of bars) and tooth replacement rate (gradient in branch colours). Reconstructed using the ‘contMap’ function in the ‘phytools’ R package. The tree was modified from Maddin, Evans, and Reisz45 and Reisz and Sues12. Source data are provided as a Source Data file.Full size image More

  • in

    Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms

    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.PubMed 

    Google Scholar 
    Leibold MA. Chase JM Metacommunity Ecology. Levin SA, Horn HS, editors: Princeton University Press, Princeton; 2018.Logue JB, Mouquet N, Peter H, Hillebrand H, Declerck P, Flohre A, et al. Empirical approaches to metacommunities: A review and comparison with theory. Trends Ecol Evol. 2011;26:482–91.PubMed 

    Google Scholar 
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 

    Google Scholar 
    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.PubMed 

    Google Scholar 
    Langenheder S, Lindström ES. Factors influencing aquatic and terrestrial bacterial community assembly. Environ Microbiol Rep. 2019;11:306–15.PubMed 

    Google Scholar 
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.
    Google Scholar 
    Vass M, Langenheder S. The legacy of the past: Effects of historical processes on microbial metacommunities. Aquat Micro Ecol. 2017;79:13–9.
    Google Scholar 
    Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
    Google Scholar 
    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci. 2015;112:E1326–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang FG, Zhang QG. Patterns in species persistence and biomass production in soil microcosms recovering from a disturbance reject a neutral hypothesis for bacterial community assembly. PLoS One. 2015;10:e0126962.PubMed 
    PubMed Central 

    Google Scholar 
    Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD, et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci. 2014;111:E836–45.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrenberg S, O’Neill SP, Knelman JE, Todd B, Duggan S, Bradley D, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 2013;7:1102–11.PubMed 
    PubMed Central 

    Google Scholar 
    Jiang L, Morin PJ. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J Anim Ecol. 2007;76:660–8.PubMed 

    Google Scholar 
    Tucker CM, Fukami T. Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci. 2014;281:20132637.PubMed 
    PubMed Central 

    Google Scholar 
    Grainger TN, Letten AD, Gilbert B, Fukami T. Applying modern coexistence theory to priority effects. Proc Natl Acad Sci. 2019;116:6205–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang L, Patel SN. Community assembly in the presence of disturbance: A microcosm experiment. Ecology 2008;89:1931–40.PubMed 

    Google Scholar 
    Loeuille N, Leibold MA. Evolution in metacommunities: On the relative importance of species sorting and monopolization in structuring communities. Am Nat. 2008;171:788–99.PubMed 

    Google Scholar 
    Shade A, Jones SE, McMahon KD. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ Microbiol. 2008;10:1057–67.CAS 
    PubMed 

    Google Scholar 
    Pereira CL, Araújo MB, Matias MG. Interplay between productivity and regional species pool determines community assembly in aquatic microcosms. Aquat Sci. 2018;80:45.
    Google Scholar 
    Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neubauer SC, Piehler MF, Smyth AR, Franklin RB. Saltwater intrusion modifies microbial community structure and decreases denitrification in tidal freshwater marshes. Ecosystems. 2018;22:912–28.
    Google Scholar 
    Rath KM, Fierer N, Murphy DV, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019;13:836–46.CAS 
    PubMed 

    Google Scholar 
    Tang X, Xie G, Shao K, Tian W, Gao G, Qin B. Aquatic bacterial diversity, community composition and assembly in the semi-arid Inner Mongolia Plateau: combined effects of salinity and nutrient levels. Microorganisms. 2021;9:208.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst Biol. 2011;5:S15.PubMed 
    PubMed Central 

    Google Scholar 
    Langenheder S, Comte J, Zha Y, Samad MS, Sinclair L, Eiler A, et al. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. Environ Microbiol Rep. 2016;8:479–85.CAS 
    PubMed 

    Google Scholar 
    Comte J, Lindström ES, Eiler A, Langenheder S. Can marine bacteria be recruited from freshwater sources and the air? ISME J. 2014;8:2423–30.PubMed 
    PubMed Central 

    Google Scholar 
    Comte J, Langenheder S, Berga M, Lindström ES. Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change. Environ Microbiol. 2017;19:251–60.CAS 
    PubMed 

    Google Scholar 
    Langenheder S, Ragnarsson H. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 2007;88:2154–61.PubMed 

    Google Scholar 
    del Giorgio PA, Bird DF, Prairie YT, Planas D. Flow cytometric determination of bacterial abundance in lakeplankton with the green nucleid acid stain SYTO 13. Limnol Oceanogr. 1996;41:783–9.
    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Székely AJ, Berga M, Langenheder S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 2013;7:61–71.PubMed 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.
    Google Scholar 
    Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, et al. DegePrime, a program for degenerate primer design for broad- taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol. 2014;80:5116–23.PubMed 
    PubMed Central 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 2012;93:2533–47.PubMed 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R package version 2.5-7. ed 2020.Bier RL Field and chemistry data from 2016 Fluctuations Project Data sets. In: DiVA, editor. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3517382016.Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. 2012;50:1–23.
    Google Scholar 
    Willis A, Martin BD, Trinh P, Teichman S, Barger K, Bunge J. Breakaway: Species Richness Estimation and Modeling. R package version 4.7.3. ed. 2020.Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M. Betapart: Partitioning beta diversity into turnover and nestedness components. R package version 1.5.2 ed. 2020.Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL, editors. Wiley StatsRef: Statistics Reference Online: John Wiley & Sons, Inc; 2017. p. 1–15.Jabot F, Laroche F, Massol F, Arthaud F, Crabot J, Dubart M, et al. Assessing metacommunity processes through signatures in spatiotemporal turnover of community composition. Ecol Lett. 2020;23:1330–9.PubMed 

    Google Scholar 
    Rosseel Y. Lavaan: An R Package for Structural Equation Modeling. J Stat Softw. 2012;48:1–36.
    Google Scholar 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics 2008;24:282–4.CAS 
    PubMed 

    Google Scholar 
    Drake JA. Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat. 1991;137:1–26.
    Google Scholar 
    Orrock JL, Fletcher RL Jr. Changes in community size affect the outcome of competition. Am Nat. 2005;166:107–11.PubMed 

    Google Scholar 
    Fukami T. Community assembly along a species pool gradient: implications for multiple‐scale patterns of species diversity. Popul Ecol. 2004;46:137–47.
    Google Scholar 
    Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werba JA, Stucy AL, Peralta AL, McCoy MW. Effects of diversity and coalescence of species assemblages on ecosystem function at the margins of an environmental shift. PeerJ. 2020;8:e8608.PubMed 
    PubMed Central 

    Google Scholar 
    Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2013;7:937–48.CAS 
    PubMed 

    Google Scholar 
    Muylaert K, Van Der Gucht K, Vloemans N, Meester LD, Gillis M, Vyverman W. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol. 2002;68:4740–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee AM, Sæther B-E, Engen S. Spatial covariation of competing species in a fluctuating environment. Ecology 2020;101:e02901.PubMed 

    Google Scholar 
    Liu J, Fu B, Yang H, Zhao M, He B, Zhang XH. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Front Microbiol. 2015;6:64.PubMed 
    PubMed Central 

    Google Scholar 
    Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication: National University of Ireland, Galway; 2022.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 2014;5:e01371–14.PubMed 
    PubMed Central 

    Google Scholar 
    Andersson MGI, Berga M, Lindström ES, Langenheder S. The spatial structure of bacterial communities is influenced by historical environmental conditions. Ecology 2014;95:1134–40.PubMed 

    Google Scholar 
    Ai D, Gravel D, Chu C, Wang G. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities. PLoS One. 2013;8:e68927.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maloufi S, Catherine A, Mouillot D, Louvard C, Couté A, Bernard C, et al. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshw Biol. 2016;61:633–45.
    Google Scholar 
    Firkowski CR, Thompson PL, Gonzalez A, Cadotte MW, Fortin M-J. Multi-trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. Ecol Monogr. n/a:e1484.Lennon JT, Jones SE. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    PubMed 

    Google Scholar 
    Knope ML, Forde SE, Fukami T. Evolutionary history, immigration history, and the extent of diversification in community assembly. Front Microbiol. 2011;2:273.PubMed 

    Google Scholar 
    Fukami T. Assembly history interacts with ecosystem size to influence species diversity. Ecology 2004;85:3234–42.
    Google Scholar 
    Orrock JL, Watling JI. Local community size mediates ecological drift and competition in metacommunities. Proc Biol Sci. 2010;277:2185–91.PubMed 
    PubMed Central 

    Google Scholar 
    Chase JM. Community assembly: When should history matter? Oecologia 2003;136:489–98.PubMed 

    Google Scholar 
    Ron R, Fragman-Sapir O, Kadmon R. Dispersal increases ecological selection by increasing effective community size. Proc Natl Acad Sci. 2018;115:11280–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siqueira T, Saito VS, Bini LM, Melo AS, Petsch DK, Landeiro VL, et al. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology 2020;101:e03014.PubMed 

    Google Scholar 
    Vass M, Székely AJ, Lindström ES, Langenheder S. Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Sci Rep. 2020;10:2455.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shen D, Langenheder S, Jürgens K. Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol. 2018;9:2188.PubMed 
    PubMed Central 

    Google Scholar 
    Cunze S, Heydel F, Tackenberg O. Are plant species able to keep pace with the rapidly changing climate? PLoS One. 2013;8:e67909.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Feeding ecology of the endangered Asiatic wild dogs (Cuon alpinus) across tropical forests of the Central Indian Landscape

    Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manag. 42, 528 (1978).Article 

    Google Scholar 
    Ackerman, B. B., Lindzey, F. G. & Hemker, T. P. Cougar food habits in Southern Utah. J. Wildl. Manag. 48, 147 (1984).Article 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Klare, U., Kamler, J. F. & Macdonald, D. W. A comparison and critique of different scat-analysis methods for determining carnivore diet: Comparison of scat-analysis methods. Mammal Rev. 41, 294–312 (2011).Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349, aac6284 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Monterroso, P. et al. Feeding ecological knowledge: The underutilised power of faecal DNA approaches for carnivore diet analysis. Mammal Rev. 49, 97–112 (2019).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J., Hofmeyr, M. & Kerley, G. I. H. Prey preferences of the African wild dog Lycaon Pictus (Canidae: Carnivora): Ecological requirements for conservation. J. Mammal. 87, 1122–1131 (2006).Article 

    Google Scholar 
    Crawford, K., Mcdonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal Rev. 38, 87–107 (2008).Article 

    Google Scholar 
    Crossey, B., Chimimba, C., du Plessis, C., Ganswindt, A. & Hall, G. African wild dogs ( Lycaon pictus ) show differences in diet composition across landscape types in Kruger National Park, South Africa. J. Mammal. 102, 1211–1221 (2021).Article 

    Google Scholar 
    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Treves, A. & Karanth, K. U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article 

    Google Scholar 
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B. & Nupp, T. E. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: The importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18 (2003).Article 

    Google Scholar 
    Kamler, J. F. et al. Cuon alpinus. IUCN Red List Threat. Spec. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T5953A72477893.en (2015).Article 

    Google Scholar 
    Johnsingh, A. J. T. Distribution and status of dhole Cuon alpinus Pallas, 1811 in South Asia. Mammalia 49, (1985).Acharya, B. B. Dissertation submitted to Saurashtra University, Rajkot, Gujarat, for the award of the Degree of Doctor of Philosophy in Wildlife Science. 133.Sillero-Zubiri, E. C., Hoffmann, M. & Macdonald, D. W. Canids: Foxes, Wolves, Jackals and Dogs. 443.Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karanth, K. K., Nichols, J. D., Karanth, K. U., Hines, J. E. & Christensen, N. L. The shrinking ark: Patterns of large mammal extinctions in India. Proc. R. Soc. B Biol. Sci. 277, 1971–1979 (2010).Article 

    Google Scholar 
    Srivathsa, A., Karanth, K. K., Jathanna, D., Kumar, N. S. & Karanth, K. U. On a dhole trail: Examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLoS ONE 9, e98803 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).PubMed 
    Article 

    Google Scholar 
    Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs 12, 14–34 (2017).Article 

    Google Scholar 
    Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).Article 

    Google Scholar 
    Clements, H. S., Tambling, C. J., Hayward, M. W. & Kerley, G. I. H. An objective approach to determining the weight ranges of prey preferred by and accessible to the five large african carnivores. PLoS ONE 9, e101054 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hayward, M. W., Lyngdoh, S. & Habib, B. Diet and prey preferences of dholes ( C uon alpinus ): Dietary competition within A sia’s apex predator guild. J. Zool. 294, 255–266 (2014).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S. & Oli, M. K. Every dog has its prey: Range-wide assessment of links between diet patterns, livestock depredation and human interactions for an endangered carnivore. Sci. Total Environ. 714, 136798 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, J. A. Cuon alpinus. Mamm. Spec. https://doi.org/10.2307/3503800 (1978).Article 

    Google Scholar 
    Srivathsa, A., Sharma, S., Singh, P., Punjabi, G. A. & Oli, M. K. A strategic road map for conserving the Endangered dhole Cuon alpinus in India. Mammal Rev. 50, 399–412 (2020).Article 

    Google Scholar 
    Ghaskadbi, P., Nigam, P. & Habib, B. Stranger Danger: Differential response to strangers and neighbors by a social carnivore, the Asiatic wild dog (Cuon alpinus). Behav. Ecol. Sociobiol. 76, 86. https://doi.org/10.1007/s00265-022-03188-4 (2022). Article 

    Google Scholar 
    Ghaskadbi, P., Das, J., Mahadev, V. & Habib, B. First record of mixed species association between dholes and a wolf from Satpura Tiger Reserve, India. Canid Biol. Conserv. 23(4): 15–17. http://www.canids.org/CBC/23/Dhole_wolf_association.pdf (2021).Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgaonkar, A. Satpura National Park, India. 135.Borah, J., Deka, K., Dookia, S. & Gupta, R. P. Food habits of dholes (Cuon alpinus) in Satpura Tiger Reserve. Madhya Pradesh, India. 73, 85–88 (2009).
    Google Scholar 
    Karanth, K. U. & Sunquist, M. E. Behavioural correlates of predation by tiger ( Panthera tigris ), leopard ( Panthera pardus ) and dhole ( Cuon alpinus ) in Nagarahole, India. J. Zool. 250, 255–265 (2000).Article 

    Google Scholar 
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope. Tetracerus quadricornis. 73, 1–6 (2009).
    Google Scholar 
    Sharma, K., Chundawat, R. S., Van Gruisen, J. & Rahmani, A. R. Understanding the patchy distribution of four-horned antelope Tetracerus quadricornis in a tropical dry deciduous forest in Central India. J. Trop. Ecol. 30, 45–54 (2014).Article 

    Google Scholar 
    Rahman, D. A., Syamsudin, M., Firdaus, A. Y. & Afriandi, H. T. Photographic record of Dholes predating on a young Banteng in southwestern Java, Indonesia. J. Threat. Taxa 13, 20278–20283 (2021).Article 

    Google Scholar 
    Durbin, L. S., Venkataraman, A., Hedges, S. & Dukworth, W. South Asia—south of th e Himalaya (oriental). In Canids: Foxes, Wolves, Jackals and Dogs . Status Survey and Conserva- tion Action Plan. (IUCN Canid Specialist Group, 2004).Bashir, T., Bhattacharya, T., Poudyal, K., Roy, M. & Sathyakumar, S. Precarious status of the Endangered dhole Cuon alpinus in the high elevation Eastern Himalayan habitats of Khangchendzonga Biosphere Reserve, Sikkim, India. Oryx 48, 125–132 (2014).Article 

    Google Scholar 
    Yoshimura, H., Hirata, S. & Kinoshita, K. Plant-eating carnivores: Multispecies analysis on factors influencing the frequency of plant occurrence in obligate carnivores. Ecol. Evol. 11, 10968–10983 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Snake-in-the-diet-of-Cuon-alpinus-Pallas-1811-in-Kalakad-Mundanthurai-Tiger-Reserve-Tamil-Nadu.pdf.Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR)— Phase IV Monitoring Report and Report on Collaring of Leopards. (2014). 26 (2015).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2015). 62 (2016).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2016). 27 (2017).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2017). 44 (2018).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2018). 41 (2019).Habib, B. et al. Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) (2019). 47 https://ntca.gov.in/assets/uploads/Reports/WII/TATR%20Phase%20IV%202019.pdf (2020).Jhala, Y. V., Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018. 656 https://ntca.gov.in/assets/uploads/Reports/AITM/Tiger_Status_Report_2018.pdf (2019).Bagchi, S., Goyal, S. P. & Sankar, K. Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. J. Zool. 260, 285–290 (2003).Article 

    Google Scholar 
    Woodroffe, R., Lindsey, P. A., Romañach, S. S. & Ranah, S. M. K. African Wild Dogs ( Lycaon pictus ) Can Subsist on Small Prey: Implications for Conservation. J. Mammal. 88, 181–193 (2007).Article 

    Google Scholar 
    Merrill, E. et al. Building a mechanistic understanding of predation with GPS-based movement data. Philos. Trans. R. Soc. B Biol. Sci. 365, 2279–2288 (2010).Article 

    Google Scholar 
    Pitman, R. T., Mulvaney, J., Ramsay, P. M., Jooste, E. & Swanepoel, L. H. Global Positioning System-located kills and faecal samples: A comparison of leopard dietary estimates. J. Zool. 292, 18–24 (2014).Article 

    Google Scholar 
    Jansen, C., Leslie, A. J., Cristescu, B., Teichman, K. J. & Martins, Q. Determining the diet of an African mesocarnivore, the caracal: Scat or GPS cluster analysis?. Wildl. Biol. 2019, wlb.00579 (2019).Article 

    Google Scholar 
    Leighton, G. R. M. et al. An integrated dietary assessment increases feeding event detection in an urban carnivore. Urban Ecosyst. 23, 569–583 (2020).Article 

    Google Scholar 
    Studd, E. K. et al. The Purr-fect Catch: Using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol. Evol. 12, 1277–1287 (2021).Article 

    Google Scholar 
    Bhandari, A., Ghaskadbi, P., Nigam, P. & Habib, B. Dhole pack size variation: Assessing the effect of Prey availability and Apex predator. Ecol. Evol. 11, 4774–4785 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubel, T. Y. et al. Additive opportunistic capture explains group hunting benefits in African wild dogs. Nat. Commun. 7, 11033 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, D. M., Vyver, D. B. & Bissett, C. The influence of an apex predator introduction on an already established subordinate predator. J. Zool. 313, 224–235 (2021).Article 

    Google Scholar 
    Johnsingh, A. J. T. Prey selection in three large sympatric carnivores in Bandipur. Mammalia 56, (1992).Marucco, F., Pletscher, D. H. & Boitani, L. Accuracy of scat sampling for carnivore diet analysis: Wolves in the Alps as a case study. J. Mammal. 89, 665–673 (2008).Article 

    Google Scholar 
    Martins, Q., Horsnell, W. G. C., Titus, W., Rautenbach, T. & Harris, S. Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J. Zool. 283, 81–87 (2011).Article 

    Google Scholar 
    Champion, S. H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).
    Google Scholar 
    Thinley, P. et al. Seasonal diet of dholes (Cuon alpinus) in northwestern Bhutan. Mamm. Biol. 76, 518–520 (2011).Article 

    Google Scholar 
    Modi, S., Habib, B., Ghaskadbi, P., Nigam, P. & Mondol, S. Standardization and validation of a panel of cross-species microsatellites to individually identify the Asiatic wild dog (Cuon alpinus). PeerJ 7, e7453 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Modi, S., Mondol, S., Nigam, P. & Habib, B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci. Rep. 11, 16371 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Putman, R. J. Facts from faeces. Mammal Rev. 14, 79–97 (1984).Article 

    Google Scholar 
    Kohn, M. H. & Wayne, R. K. Facts from feces revisited. Trends Ecol. Evol. 12, 223–227 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukherjee, S., Goyal, S. P. & Chellam, R. Standardisation of scat analysis techniques for leopard (Panthera pardus) in Gir National Park, Western India. Mammalia 58, (1994).Bahuguna, A., Sahajpal, V., Goyal, S. P., Mukherjee, S. & Thakur, V. Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India (Wildlife Institute of India, 2010).
    Google Scholar 
    Leopold, B. D. & Krausman, P. R. Diets of 3 Predators in Big Bend National Park, Texas. J. Wildl. Manag. 50, 290 (1986).Article 

    Google Scholar 
    Van Ballenberghe, V., Erickson, A. W. & Byman, D. Ecology of the Timber Wolf in Northeastern Minnesota. Wildl. Monogr. 3–43 (1975).Ciucci, P., Boitani, L., Pelliccioni, E. R., Rocco, M. & Guy, I. A comparison of scat-analysis methods to assess the diet of the wolf Canis lupus. Wildl. Biol. 2, 37–48 (1996).Article 

    Google Scholar 
    Weaver, J. L. Refining the equation for interpreting prey occurrence in Gray wolf scats. J. Wildl. Manag. 57, 534–538 (1993).Article 

    Google Scholar 
    Chakrabarti, S. et al. Adding constraints to predation through allometric relation of scats to consumption. J. Anim. Ecol. 85, 660–670 (2016).PubMed 
    Article 

    Google Scholar 
    Lumetsberger, T. et al. Re-evaluating models for estimating prey consumption by leopards. J. Zool. 302, 201–210 (2017).Article 

    Google Scholar 
    Jacobs, J. Quantitative measurement of food selection: A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417 (1974).ADS 
    PubMed 
    Article 

    Google Scholar 
    Karanth, K. U. & Nichols, J. D. Distribution and Dynamics of Tiger and Prey Populations in Maharashtra, India Final Technical Report (October 2001 to August 2005). (2005).19 LIVESTOCK CENSUS-2012 ALL INDIA REPORT. https://d1wqtxts1xzle7.cloudfront.net/56129012/6ESSJan-6098P-with-cover-page-v2.pdf?Expires=1644491741&Signature=Apc1rT2raxYnUyrRJ64NqOd6oUEpnF2AiRQVPB-9gS2W2TIrOcInF3KnBJVA2dPxzfbIz8ap9IPe-l24mpYs9i8xEZAvsxRVnDhSHT8H9C9fd0voDxyUwl3gUyJgDDzLO-204J95UuopJQw5Df6xTNmTOs5Oiadk0Fkf9Fk-QRVajisuRjzyX2eLmrBH4LyTJFu5irffnKwnluqHl53KoMAQ6nTKi7dlqI4pdFIVCtisXpkSsI44xV1mYX6KC67zmKCZlvjpTxTuHCFV4nmfpgZpPXh4sIOE-0utbwcf5g~UdmRtVVhaXfjZ2iw0gOm7-bIuQILDldPr3OnNUqXbSw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (2012).The Measurement of Niche Overlap and Some Relatives – Hurlbert – 1978 – Ecology – Wiley Online Library. https://esajournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.2307/1936632.Habib, B., Ghaskadbi, P., Khan, S., Hussain, Z. & Nigam, P. Not a cakewalk: Insights into movement of large carnivores in human-dominated landscapes in India. Ecol. Evol. 11, 1653–1666 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Neu, C. W., Byers, C. R. & Peek, J. M. A technique for analysis of utilization-availability data. J. Wildl. Manag. 38, 541–545 (1974).Article 

    Google Scholar  More

  • in

    Dogs suppress a pivotal function in the food webs of sandy beaches

    Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Cons. 157, 341–351 (2013).Article 

    Google Scholar 
    Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Cons. 210, 56–59 (2017).Article 

    Google Scholar 
    Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S. & Berger, J. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132 (2011).Article 

    Google Scholar 
    Ritchie, E. G., Dickman, C. R., Letnic, M., Vanak, A. T. & Gommper, M. Dogs as predators and trophic regulators. Free-ranging dogs and wildlife conservation, 55–68 (2014).Gompper, M. E. In Free-ranging dogs and wildlife conservation, Oxford University Press (2014).Somaweera, R., Webb, J. K. & Shine, R. It’sa dog-eat-croc world: Dingo predation on the nests of freshwater crocodiles in tropical Australia. Ecol. Res. 26, 957–967 (2011).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. In Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.) (ed Matthew E Gompper) Ch. 4, 94–113 (Oxford University Press, 2013).Zapata-Ríos, G. & Branch, L. C. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol. Cons. 193, 9–16 (2016).Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Gingold, G., Yom-Tov, Y., Kronfeld-Schor, N. & Geffen, E. Effect of guard dogs on the behavior and reproduction of gazelles in cattle enclosures on the Golan Heights. Anim. Conserv. 12, 155–162 (2009).Article 

    Google Scholar 
    Fernández-Juricic, E. & Tellería, J. L. Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47, 13–21 (2000).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Rev. 39, 265–283 (2009).Article 

    Google Scholar 
    Silva-Rodríguez, E. A. & Sieving, K. E. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Cons. 150, 103–110 (2012).Article 

    Google Scholar 
    Banks, P. B. & Bryant, J. V. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Let. 3, 611–613 (2007).Article 

    Google Scholar 
    Langston, R., Liley, D., Murison, G., Woodfield, E. & Clarke, R. What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus?. Ibis 149, 27–36 (2007).Article 

    Google Scholar 
    Lenth, B. E., Knight, R. L. & Brennan, M. E. The effects of dogs on wildlife communities. Nat. Areas J. 28, 218–227 (2008).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. Dogs as agents of disturbance. Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.), 94–113 (2013).Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413 (2012).PubMed 
    Article 

    Google Scholar 
    Maguire, G. S., Miller, K. K. & Weston, M. A. In Impacts of Invasive Species on Coastal Environments 397–412 (Springer, 2019).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Díaz, S., Fargione, J., Chapin, F. S. III. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    Nel, R. et al. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 150, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 157, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 23, 1–11 (2019).MathSciNet 

    Google Scholar 
    Lockwood, J. L. & Maslo, B. In Coastal Convervation (eds Brooke Maslo & JL Lockwood) 1–10 (Cambridge University Press, 2014).Morin, D. J., Lesmeister, D. B., Nielsen, C. K. & Schauber, E. M. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Glob. Ecol. Conserv. 15, e00413 (2018).Article 

    Google Scholar 
    Cortés, E. I., Navedo, J. G. & Silva-Rodríguez, E. A. Widespread presence of domestic dogs on sandy beaches of Southern Chile. Animals 11, 161 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burger, J., Jeitner, C., Clark, K. & Niles, L. J. The effect of human activities on migrant shorebirds: Successful adaptive management. Environ. Conserv. 31, 283–288 (2004).Article 

    Google Scholar 
    Dowling, B. & Weston, M. A. Managing a breeding population of the Hooded Plover Thinornis rubricollis in a high-use recreational environment. Bird Conserv. Int. 9, 255–270 (1999).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Interference competition at the landscape level: The effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47, 1225–1232 (2010).Article 

    Google Scholar 
    Marzluff, J. M., McGowan, K. J., Donnelly, R. & Knight, R. L. In Avian ecology and conservation in an urbanizing world 331–363 (Springer, 2001).Handler, A., Lonsdorf, E. V. & Ardia, D. R. Evidence for red fox (Vulpes vulpes) exploitation of anthropogenic food sources along an urbanization gradient using stable isotope analysis. Can. J. Zool. 98, 79–87 (2020).Article 

    Google Scholar 
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. The J. Wildlife Manag. 67, 324–333 (2003).Article 

    Google Scholar 
    Méndez, A. et al. Adapting to urban ecosystems: unravelling the foraging ecology of an opportunistic predator living in cities. Urban Ecosyst. 23, 1117–1126 (2020).Article 

    Google Scholar 
    Rees, J., Webb, J., Crowther, M. & Letnic, M. Carrion subsidies provided by fishermen increase predation of beach-nesting bird nests by facultative scavengers. Anim. Conserv. 18, 44–49 (2015).Article 

    Google Scholar 
    Kimber, O. et al. The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Glob. Ecol. Conserv. 23, e01071 (2020).Article 

    Google Scholar 
    Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Cortés-Avizanda, A., Jovani, R., Donázar, J. A. & Grimm, V. Bird sky networks: How do avian scavengers use social information to find carrion?. Ecology 95, 1799–1808 (2014).PubMed 
    Article 

    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. Royal Soc. B: Biol. Sci. 284, 20162654 (2017).Article 

    Google Scholar 
    Soulsbury, C. D., Iossa, G., Baker, P. J., White, P. C. & Harris, S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J. Mammal. 92, 190–199 (2011).Article 

    Google Scholar 
    Johnson, C. N. & VanDerWal, J. Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. J. Appl. Ecol. 46, 641–646 (2009).Article 

    Google Scholar 
    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Schlacher, T. A., Strydom, S. & Connolly, R. M. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecologica 48, 7–12 (2013).ADS 
    Article 

    Google Scholar 
    Dunbrack, T. R. & Dunbrack, R. L. Why take your dog on a picnic: presence of a potential predator (Canis lupus familiaris) reverses the outcome of food competition between northwestern crows (Corvus caurinus) and glaucous-winged gulls (Larus glaucescens). Northwest. Nat. 91, 94–98 (2010).Article 

    Google Scholar 
    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Cons. 238, 108234 (2019).Article 

    Google Scholar 
    Bhadra, A. et al. The meat of the matter: A rule of thumb for scavenging dogs?. Ethol. Ecol. Evol. 28, 427–440 (2016).Article 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 

    Google Scholar 
    Ogada, D., Torchin, M., Kinnaird, M. & Ezenwa, V. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. & Evol. 2, 229–236 (2018).Article 

    Google Scholar 
    Gómez-Serrano, M. Á. Four-legged foes: Dogs disturb nesting plovers more than people do on tourist beaches. Ibis 163, 338–352 (2021).Article 

    Google Scholar 
    Stantial, M., Cohen, J., Darrah, A., Farrell, S. & Maslo, B. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01806-160108 (2021).Article 

    Google Scholar 
    Mahon, P. S. Targeted control of widespread exotic species for biodiversity conservation: The red fox (Vulpes vulpes) in New South Wales, Australia. Ecol. Manag. Restor. 10, S59–S69 (2009).ADS 
    Article 

    Google Scholar 
    Colwell, M. A. In The Population Ecology and Conservation of Charadrius Plovers 127–147 (CRC Press, 2019).Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).Article 

    Google Scholar 
    Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).Article 

    Google Scholar 
    Meek, P. et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 23, 2321–2343 (2014).Article 

    Google Scholar 
    Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12, e0186679 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. Royal Soc. B: Biol. Sci. 274, 1101–1108 (2007).Article 

    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).Article 

    Google Scholar 
    Team, R. D. C. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria (2013).Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Schlacher, T. A. et al. Conservation gone to the dogs: When canids rule the beach in small coastal reserves. Biodivers. Conserv. 24, 493–509 (2015).Article 

    Google Scholar 
    Lewin, W.-C., Freyhof, J., Huckstorf, V., Mehner, T. & Wolter, C. When no catches matter: Coping with zeros in environmental assessments. Ecol. Ind. 10, 572–583 (2010).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 488 (Springer Science & Business Media, 2002).Bolker, B. & Team, R. (R package version 0.9, 2010).Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 439 (2015).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3. R Found. Stat. Comput., Vienna. https://CRAN. R-project. org/package= dplyr (2015).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016). More

  • in

    Predictors of psychological stress and behavioural diversity among captive red panda in Indian zoos and their implications for global captive management

    Influence of independent variables on the extent of stereotyped behaviourThe overall level of stereotypy we observed was low, suggesting that the pandas in our study were not seriously stressed. The variables that we found to be correlated with stereotypy are consistent with what we know of pandas’ natural history. Our study reports that variables like logs on the ground, nest, sociality, zoo, tree density, age and tree height used by pandas are the driving force for stereotypy in captive pandas involved in the study.Making the captive environment more naturalistic by integrating enrichment into the enclosure seems to be a promising way of alleviating stress and improving both welfare and reintroduction success41. It also helps to improve reproductive rate and overall health39. Improved health reduces stress and gives greater control over the environment increasing the chances of survival and longevity both in captivity and following release into the wild5. It is generally accepted that enrichment of the captive environment increases animals’ ability to cope with challenges and positive use of the environment reduces or eliminates aberrant behaviour23. Lack of enclosure enrichments and less complex enclosures can cause stereotypy and other atypical behaviours24, while providing enrichment increases the frequency of natural behaviours25 and thereby reduces stress, which in turn decreases stereotypy27. But enrichment needs to be appropriate for the species of animal concerned. Abnormal behaviours are often associated with captive conditions that deviate greatly from the species’ natural environment. Consistent with this argument we found that though dead and fallen logs on the ground are one of the important characteristics of the panda habitats in the wild42,43,44,45, merely providing them in captivity does not ensure the species’ welfare: in fact, stereotypy increased with log density in our study subjects. This could be due to the fact that four individuals that showed more stereotypy were housed in the small barren enclosures with no trees but more logs as a part of enrichment. Without those four individuals, the linear relation between stereotypy and log density was not statistically significant. This clearly suggested that merely providing logs in the small enclosures does not maintain welfare.
    When animals are housed in enclosures designed to resemble their natural habitat by considering their natural history (provision of vegetation, shelter, pool, etc.), there is a reduction or elimination of abnormal patterns of behaviour such as stereotypies, increased fitness and improved health, all of which may influence reproduction25,46,47,48. For many species, nests, shelter or burrows in enclosures will serve as retreat and hiding places, which are essential to cope with environmental stressors10. Gerbils, mice and rabbits have all shown less stereotyped behaviour when retreats are provided9,49,50,51. Such retreats can mitigate the effects of zoo visitors, who can serve as a source of stress for species that rarely interact with humans in the wild. Consistent with these previous results, we found that with provision of nests, the extent of stereotypy decreased in captive pandas. Many species prefer nests both for rearing the young as well as for resting and shelter, and pandas follow this pattern, so providing nests in adequate numbers will supports their natural behaviour as well as provide relief from environmental stressors. Zidar recommends providing one more nest than there are individuals in an enclosure52.Although pandas are an asocial species, our study showed that pandas show more stereotyped behaviour when housed alone than when with another individual or in group. Being a solitary species in the wild might encourage management to house them singly in captivity, but not every activity and habit of species in the wild can be used in captivity. For example, polar bears are also a solitary species, and it was at one time thought best to manage them alone, but it was found that managing them in a social setting reduces stereotypic pacing behaviour53, consistent with this study. Importantly, managers of zoo should note that living in group is greatly influenced by the individuals’ compatibility and hence this should be kept in mind while pairing.Similarly, we found that the presence of trees, and greater mean tree height use by pandas, reduced stereotypy. Pandas’ preferred high elevation habitat is favourable for taller trees20, and Shrestha et al. found that canopy cover was an important factor in habitats for pandas in the wild54. In European zoos, pandas spend 90% of their time off the ground37. Consistent with these previous findings, our study reveals that more and taller trees support natural behaviours in panda. The Central Zoo Authority (CZA) of India enrichment manual recommends taller tree provision in panda enclosures, and again we provide empirical support for its recommendation.We found that with increasing age stereotypy increased in pandas. The older the individuals the more time spent in captivity with its associated risks of stereotypic behaviour. The same trend has been observed in other species: for example in captive bears stereotypic behaviour increased with age55. In another study Asiatic black bear and sun bear showed more stereotypy with age56.Influence of independent variables on behavioural diversityAs noted in the “Introduction” section, in a species like the panda, high daytime behavioural diversity is not necessarily a positive indication of good welfare. However, our comparison of behavioural diversity with stereotypy showed a negative trend (though not significant), suggesting that low behavioural diversity might be associated with poorer welfare.Nonetheless, we found some results that suggested that lower diversity might in fact be associated with a more natural lifestyle. Because of the amount of time that wild pandas spend foraging57 and sleeping or inactive, they cannot show much behavioural diversity, and in our sample of captive individuals, they showed the same trend. For example, behavioural diversity was lower when pandas were provided with more trees in the enclosure. This suggests that when appropriate conditions are maintained in captivity, panda prefer to be inactive during the day, as is consistent with their natural history57. As pandas are essentially arboreal mammals, naturally they also spend most of the time inactive (e.g. sleeping) on the trees57. Indeed, providing larger trees would promote inactive behaviours and hence lower behaviour diversity in captivity, this captures their natural behaviour. This is consistent with our results where increased tree height used by pandas decreased behavioural diversity.We found behavioural diversity was greater when there are more logs in the enclosure. In the Yele Reserve in Sichuan, China, Wei et al. found 107 of 185 panda dropping sites (57.8%) on shrub branches, 49 (26.5%) on fallen logs, and only 29 (15.7%) on the forest floor44. Droppings were found mostly on elevated structures ranging from 1 to 3 m above the forest floor and occasionally on trees over 12 m. Moreover, microhabitats selected by pandas were also characterized by fallen logs and tree stumps42,45. Wei and Zhang mention that to access bamboo leaves easily, pandas usually use some elevated objects, such as shrub branches, fallen logs, or tree stumps to lift their body43. Hence, providing tree logs in the vicinity supports their natural behaviour. But at the same time management should keep in mind that merely providing logs in the enclosure would not guarantee species welfare, as discussed in previous section with respect to stereotypy.Temperature is an important element of microclimate for animals, and influences the activity level of captive animals10. When temperature rises, many species show distress in captivity10. The red panda inhabits low-temperature areas20, so it is unlikely that higher temperatures would support natural behaviours. We found that with increased temperature behavioural diversity decreased in captive pandas. Similarly, we found that pandas showed higher behavioural diversity in the winter season, where temperatures are low as compared to summer season.Studies that have tried to relate behavioural diversity and stereotypy in captive animals have varied in their interpretation; many have found significantly inverse relationships between the two19. In this study our multivariate model suggested that behavioural diversity is negatively influenced by stereotypy in captive pandas, confirming previous research.Other factors associated with variations in behavioural diversity are less easy to identify with welfare, positive or negative. Behavioural diversity also decreases with age of pandas and increases with distance to cage mate, number of visitors and quantum of bamboo provided, though these effects were not significant in the REVS model.Taken together, these results suggest that higher behavioural diversity is not a straightforward indicator of better welfare in all captive animals. The overall non-significant relationship between stereotyped behaviour and diversity we observed could well be the result of a mixture of factors operating in opposite directions. To interpret diversity correctly, it would be helpful to know what level of diversity the species shows in the wild, and such data are rarely available—a limitation of our study as of many others. Although there are dissenting voices58, arguably what matters most both in terms of welfare and in terms of potential reintroduction to the wild, is that a captive animal’s time budget approximates as closely as possible that of a wild animal. It is not diversity as such that is important, but the behaviours that the animal exhibits.Differences between zoosOur study showed that both the extent of stereotyped behaviour and behavioural diversity varied significantly among zoos. However, Zoo 2, an important breeding centre, housed only a female and her two cubs; this may lead to many factors being confounded and is thus a limitation to our study. Captive animals rely on the zoo environment, its routine and husbandry practices to limit their stress levels, and any failure to provide suitable resources will certainly disturb them and lead to distress10. Controlling such variables appropriately will help reduce stress among captive animals, and we can rely to some extent on our knowledge of the species’ natural history to guide us through this challenge. Our study was able to identify some of the factors that are associated with better welfare, but even with these factors taken into account, significant differences among the three zoos remained. These are presumably due to subtler variations in the zoos’ environment or management regimes. Since the panda is endemic to high elevations, we considered whether differences between the elevations of the zoos might be relevant, but the biggest differences were between Zoos 1 and 3, which are at essentially the same elevation.In Zoo 1 pandas showed lower stereotypy and higher behavioural diversity then the other two zoos. Again, these differences may be due to subtle differences between the management regimes in the three zoos; possibilities include keepers’ attitudes and the zoo’s experience in managing pandas. It is notable that Zoo 1 has longer and wider experience in the management of red pandas than the other two zoos, which have joined the captive breeding programme more recently and have fewer animals. Other notable differences were that in Zoo 1, pandas are fed twice a day as compared to the other two zoos where feed is given all at one time (both bamboo and supplementary diet); and that in Zoo 1 the enclosures were of a good size for a small mammal like the red panda, and were well maintained with much natural vegetation. The other two zoos had a large enclosure with poor vegetation (trees and grass), or a small enclosure with a barren floor and no trees at all. Location of the enclosure also needs to be considered: in two of the enclosures at Zoo 3 the sun shone directly on the animals with no shade as such, keeping the temperature higher than would be natural for pandas. Any of these factors could be the reason the pandas performed comparatively well in Zoo 1, and it would be necessary to study a wider (and, therefore, cross-national) sample of zoos holding pandas to identify which of them are the most important. More

  • in

    Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota

    Samuel, B. S., Rowedder, H., Braendle, C., Félix, M. A. & Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 113, E3941–E3949 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world: Advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).
    Google Scholar 
    King, K. C. Defensive symbionts. Curr. Biol. 29, R78–R80 (2019).CAS 
    PubMed 

    Google Scholar 
    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Litvak, Y. et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25, 128–139 (2019).CAS 
    PubMed 

    Google Scholar 
    Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front. Immunol. 11, 626329 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. C. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, K. A., Bolton, J. S. & King, K. C. A globally ubiquitous symbiont can drive experimental host evolution. Mol. Ecol. 30, 3882–3892 (2021).CAS 
    PubMed 

    Google Scholar 
    Dahan, D., Preston, G. M., Sealey, J. & King, K. C. Impacts of a novel defensive symbiosis on the nematode host microbiome. BMC Microbiol. 20, 1–10 (2020).
    Google Scholar 
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).CAS 
    PubMed 

    Google Scholar 
    Zheng, Y. et al. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil: A new attempt for a biocontrol strategy. Front. Plant Sci. 12, 655673 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Tudela, H., Claus, S. P. & Saleh, M. Next generation microbiome research: Identification of keystone species in the metabolic regulation of host-gut microbiota interplay. Front. Cell Dev. Biol. 9, 719072 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mateos-Hernández, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccine 8, 1–21 (2020).
    Google Scholar 
    Mateos-Hernández, L. et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 12, 704621 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dirksen, P. et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 14, 38 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Berg, M. et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10, 1998–2009 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, F. et al. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 8, 485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).CAS 
    PubMed 

    Google Scholar 
    Röttjers, L. & Faust, K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hou, Y. et al. Hierarchical microbial functions prediction by graph aggregated embedding. Front. Genet. 11, 608512 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz, S., Huang, H., Appel, M. D., Berg, M. & Shapira, M. Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect. Immun. 81, 514–520 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 7, 852–857 (2019).
    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).CAS 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open-source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media (2009).Lhomme, S. NetSwan: Network Strengths and Weaknesses Analysis. R Pack Version (2015).Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A. L. & Depner, M. NetCoMi: Network construction and comparison for microbiome data in R. Brief Bioinform. 22, bbaa290 (2021).PubMed 

    Google Scholar 
    Kanehisa, M. Goto, S, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, H. & Peddada, S. D. Analysis of microbial compositions: A review of normalization and differential abundance analysis. npj Biofilms Microbiomes 6, 60 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters. R package version 3.2. (2021).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 

    Google Scholar 
    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42 (1943).
    Google Scholar 
    Ford, S. A. & King, K. C. Harnessing the power of defensive microbes: Evolutionary implications in nature and disease control. PLoS Pathog. 12, e1005465 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 

    Google Scholar 
    Wu-Chuang, A. et al. Thermostable keystone bacteria maintain the functional diversity of the Ixodes scapularis microbiome under heat stress. Microb. Ecol. https://doi.org/10.1007/s00248-021-01929-y (2021).Article 
    PubMed 

    Google Scholar 
    Ford, S. A. & King, K. C. In vivo microbial coevolution favors host protection and plastic downregulation of immunity. Mol. Biol. Evol. 38, 1330–1338 (2021).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Q. et al. The microbial network property as a bio-indicator of antibiotic transmission in the environment. Sci. Total Environ. 758, 143712 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Morais, U. L. A look at the way we look at complex networks’ robustness and resilience. https://arxiv.org/ftp/arxiv/papers/1909/1909.06448.pdf (2017).Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538–2545 (2002).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estrada-Peña, A., Cabezas-Cruz, A. & Obregón, D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens 9, 309 (2020).PubMed Central 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. Proc. Natl. Acad. Sci. USA 116, 19368–19373 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. 77, 342–356 (2013).
    Google Scholar 
    Coyte, K. Z., Rao, C., Rakoff-Nahoum, S. & Foster, K. R. Ecological rules for the assembly of microbiome communities. PLoS Biol. 19, e3001116 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).CAS 
    PubMed 

    Google Scholar 
    Sheridan, K. J. et al. Ergothioneine biosynthesis and functionality in the opportunistic fungal pathogen, Aspergillus fumigatus. Sci. Rep. 6, 1–17 (2016).
    Google Scholar 
    Rothfork, J. M. et al. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: New role for the NADPH oxidase in host defense. Proc. Natl. Acad. Sci. USA 101, 13867–13872 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaupp, R., Ledala, N. & Somerville, G. A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. Microbiol. 2, 33 (2012).
    Google Scholar 
    Matchado, M. S. et al. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 19, 2687–2698 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, D. et al. Microbiome multi-omics network analysis: Statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, C. et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 13, 3867 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mammeri, M. et al. Cryptosporidium parvum infection depletes butyrate producer bacteria in goat kid microbiome. Front. Microbiol. 16, 548737 (2020).
    Google Scholar 
    Foo, J. L., Ling, H., Lee, Y. S. & Chang, M. W. Microbiome engineering: Current applications and its future. Biotechnol. J. 12, 1600099 (2017).Inda, M. E., Broset, E., Lu, T. K. & de la Fuente-Nunez, C. Emerging frontiers in microbiome engineering. Trends Immunol. 40, 952–973 (2019). More